247 - Exemples de problèmes d'interversion de limites.

Premiers contre-exemples 1

- $-\lim_{x\to\infty}\lim_{y\to\infty}\mathbf{1}_{x\geq y}=0, \lim_{y\to\infty}\lim_{x\to\infty}\mathbf{1}_{x\geq y}=1.$ $-\text{ Soit } f: \mathbf{R}_+^*\to \mathbf{R}_+^*, \ (x,y)\mapsto \frac{x}{x+y}. \text{ Alors } \lim_{x\to0}\lim_{y\to0}f(x,y)=1 \text{ et}$ $\lim_{y\to 0} \lim_{x\to 0} f(x,y) = 0.$
- Soit $f_n = x^n \operatorname{sur} [0, 1]$. Alors $\lim_{x \to 1} \lim_{n \to \infty} f_n(x) = 0$ et $\lim_{n \to \infty} \lim_{x \to 1} f_n(x) = 0$
- Soit $f_n: \mathbf{R} \to \mathbf{R}, x \mapsto \frac{1}{n}\sin(nx)$. Alors $f_n \to 0$ alors que $f'_n \not\to 0$.
- Contre ex cvd alors que cvs : tente vers 0.

Un peu plus pêchu : la phénomène de Gibbs [Gou p. 267]

2 Limites de suites et séries

2.1Séries numériques

Théorème 1 (Sommation des équivalents).

Exemple. Développement asymptotique de la série harmonique.

Théorème 2 (Fubini).

Exemple.
$$\sum_{q\geq 2} \sum_{p\geq 2} \frac{(-1)^q}{p^q} = \frac{1}{2}$$
.

Théorème 3 (Produit de Cauchy).

Dessin et exemple!

Exemple.
$$\sum_{k\geq 0} \sum_{n\geq k} \binom{n}{k} \frac{1}{4^n} = 2 + \text{dessin.}$$

Théorème 4 (Taubérien de Hardy). Combes.

2.2 Suites et séries de fonctions

Théorème 5. Passage de la continuité à la limite uniforme.

 $x \mapsto x^n$ montre que la cvs ne suffit pas.

Exemple. exp est continue sur \mathbf{C} .

Proposition 1. Critère de cv uniforme (FGN p. 169).

Théorème 6. Dérivation et limite uniforme.

Exemple. Dérivée des séries entières classiques.

Contre ex du début.

Application. Formule sommatoire de Poisson, [Gou p. 271].

Théorème 7 (Holomorphie d'une limite).

Remarque. Pas besoin d'avoir la cvu des dérivées : on peut appliquer le th de Morera.

2.3 Cas des séries entières, comportement au voisinage du bord du disque de convergence

Proposition 2. Holomorphie dans le disque ouvert de convergence, calcul de la dérivée.

Théorème 8 (Abel, [Gou p. 252]).

Réciproque :

Théorème 9 (Taubérien d'Hardy-Littlewood).

Exemple. C'est moche, mais calcul de ln 2.

Théorème 10 (Étude aasymptotique). FGN p. 212

2.4 Séries de Fourier

Convergence ponctuelle, convergence uniforme, utilisation du théorème taubérien.

3 Liens avec l'intégration

3.1 Échange de limites et d'intégrales

Remarque. Une intégrale est une limite!

Théorème 11 (Convergence monotone).

Théorème 12 (Convergence dominée).

Exemple. Contre exemple!

Exemple. Trancature.

Exemple. Cayley-Hamilton (Fun!), [FGN alg. 2 p. 229].

Théorème 13 (Fubini).

Exemple. Bateau, calcul de l'intégrale de Gauss.

Théorème 14 (Sommation des relations de comparaison).

Exemple.
$$\sum_{n\geq 0} x^{2^n} \sim_{x\to 1} -\frac{\ln(1-x)}{\ln 2}$$
. [FGN p. 210]

Théorème 15 (Méthode de Laplace).

Cf leçon intégrales à paramètres.

3.2 Intégrales généralisées

Définition 1. Intégrale généralisée.

Théorème 16 (Critère d'Abel).

Exemple. Intégrale de Fresnel.

Exemple ([Cand p. 30/135]). Calcul de $\int_0^\infty \frac{\sin x}{x} dx$.

4 Calcul différentiel

Théorème 17 (Schwarz).

Corollaire 1. La hessienne en un point est une fbs.

Exemple. Hauchecorne...