PHYSICAL MEASURES OF DISCRETIZATIONS OF GENERIC DIFFEOMORPHISMS

PIERRE-ANTOINE GUIHÉNEUF

ABSTRACT. What is the ergodic behaviour of numerically computed segments of orbits of a diffeomorphism? In this paper, we try to answer this question for a generic conservative C^1-diffeomorphism, and segments of orbits of Baire-generic points. The numerical truncation will be modelled by a spatial discretization. Our main result states that the uniform measures on the computed segments of orbits, starting from a generic point, accumulates on the whole set of measures that are invariant under the diffeomorphism. In particular, unlike what could be expected naively, such numerical experiments do not see the physical measures (or more precisely, cannot distinguish physical measures from the other invariant measures).

RéSUMÉ. Que se passe-t-il d’un point de vue ergodique lorsqu’on calcule de longs segments d’orbite d’un difféomorphisme, à précision numérique fixée? On tente ici de répondre à cette question pour un C^1-difféomorphisme conservatif générique, et pour la plupart des orbites au sens de Baire. L’opération de troncation numérique sera modélisée par une discrétisation spatiale. Notre principal résultat exprime que les mesures uniformes sur les segments d’orbites calculés, en partant d’un point générique, s’accumulent sur l’ensemble des mesures invariantes par le difféomorphisme. En particulier, de telles simulations numériques ne permettent pas de distinguer les mesures physiques du système parmi toutes les autres mesures invariantes.

Contents

1. Introduction 1
2. Statement of the theorem and sketch of proof 5
3. Discretizations of sequences of linear maps 8
4. An improved ergodic closing lemma 10
5. Proof of the perturbation lemma (Lemma 8) 12
6. Numerical simulations 20
Appendix A. A more general setting where the theorems are still true 26
Appendix B. Proof of Lemma 13 26
References 33

1. Introduction

This paper is devoted to the study of the physical measures of the discretizations of a generic conservative diffeomorphism. Recall the classical definition of a physical measure for a map f.

Definition 1. Let X be a compact manifold equipped with a Lebesgue measure Leb, and $f : X \to X$. A Borel probability measure μ is called physical (also called Sinai-Ruelle-Bowen) for the map f if its basin of attraction has positive Lebesgue measure,
where the \textit{basin of attraction} of μ for f is the set
\[\left\{ x \in X \mid \frac{1}{M} \sum_{m=0}^{M-1} \delta_{f^m(x)} \to \mu \right\} \]
of points whose Birkhoff's limit coincides with μ (where the convergence of measures is taken in the sense of weak-* topology).

Heuristically, the physical measures are the ones that can be observed in practice, because they are “seen” by a “large” set of points x.

The question of existence, stochastic stability, dependence with respect to parameters, etc. have been extensively studied (see for example the quite old surveys [You02] and [Via97]). Here, our aim is to study similar concepts in the view of discretizations: which measures can be seen by the discretizations of generic conservative C^1-diffeomorphisms?

In this paper we will consider that the space phase is the torus \mathbb{T}^n endowed with Lebesgue measure. We will model the numerical truncation made by a computer by a spatial discretization. Thus, we define the uniform grids
\[E_N = \left\{ \left(\frac{i_1}{N}, \ldots, \frac{i_n}{N} \right) \in \mathbb{R}^n/\mathbb{Z}^n \mid 1 \leq i_1, \ldots, i_n \leq N \right\}. \]
In particular, if $N = 10^k$, then E_N represents the set of points whose coordinates are decimal numbers with a most k decimal places. We then take $P_N : \mathbb{T}^n \to E_N$ a projection on the nearest point of E_N; in other words $P_N(x)$ is (one of) the point(s) of E_N which is the closest from x. This allows to define the discretizations of f.

\textbf{Definition 2.} The \textit{discretization} $f_N : E_N \to E_N$ of f on the grid E_N is the map $f_N = P_N \circ f \mid_{E_N}$.

In particular, if $N = 10^k$, then f_N models the map which is iterated by the computer when it works with k digits.

We will see in Section A that the quite restrictive framework of the torus \mathbb{T}^n equipped with the uniform grids can be generalized to arbitrary manifolds, provided that the discretizations grids behave locally (and almost everywhere) like the canonical grids on the torus.

We denote by $\mu_{x_N}^{f_N}$ the limit of the Birkhoff sums
\[\frac{1}{M} \sum_{m=0}^{M-1} \delta_{f_N^m(x_N)}. \]
More concretely, $\mu_{x_N}^{f_N}$ is the f_N-invariant probability measure supported by the periodic orbit on which the positive orbit of $x_N = P_N(x)$ falls after a while. We would like to know the answer the following question: for a generic conservative C^1-diffeomorphism f, does the sequence of measure $\mu_{x_N}^{f_N}$ tend to a physical measure of f for most of the points x as N goes to infinity?

The corresponding C^0 case has already been treated in [Gui15e]:

\textbf{Theorem 3 (Guihéneuf).} \textit{For a generic homeomorphism $f \in \text{Homeo}(\mathbb{T}^n, \text{Leb})$, for any f-invariant probability measure μ, there exists a subsequence $(N_k)_k$ of discretizations such that for any point $x \in \mathbb{T}^n$,
\[\mu_{x_{N_k}}^{f_{N_k}} \xrightarrow[k \to +\infty]{} \mu. \]
It implies in particular that for a generic homeomorphism \(f \in \text{Homeo}(T^n, \text{Leb}) \) and every \(x \in T^n \), the measures \(\mu^{f_N} \) accumulate on the whole set of \(f \)-invariant measures when \(N \) goes to infinity (moreover, given an \(f \)-invariant measure \(\mu \), the sequence \((N_k)_{k \geq 0} \) such that \(\mu^{f_{N_k}} \) tends to \(\mu \) can be chosen independently of \(x \)). In a certain sense, this theorem in the case of homeomorphisms expresses that from the point of view of the discretizations, all the \(f \)-invariant measures are physical.

In the \(C^1 \)-case, it can be easily obtained that for a generic conservative \(C^1 \)-diffeomorphism \(f \), any \(f \)-invariant measure is the limit of a sequence of \(f_N \)-invariant measures (Corollary 10.9 of [Gui15c]). This is a consequence of an ergodic closing lemma of R. Mañé and F. Abdenur, C. Bonatti and S. Crovisier (see [ABC11]); however it does not say anything about the basin of attraction of these discrete measures.

In this paper, we improve this statement for generic conservative \(C^1 \)-diffeomorphisms, in order to describe the basin of attraction of the discrete measures. In particular, we prove the following result (Theorem 4).

Theorem A. For a generic diffeomorphism \(f \in \text{Diff}^1(T^n, \text{Leb}) \), for a generic point \(x \in T^n \), for any \(f \)-invariant probability measure \(\mu \), there exists a subsequence \((N_k)_k \) of discretizations such that

\[
\mu^{f_{N_k}} \xrightarrow{k \to +\infty} \mu.
\]

Notice that given an \(f \)-invariant measure \(\mu \), the sequence \((N_k)_k \) such that \(\mu^{f_{N_k}} \) converges to \(\mu \) depends on the point \(x \), contrary to what happens in the \(C^0 \) case.

Remark that in Theorem A, the generic set of points \(x \) depends on the diffeomorphism. However, we will also prove that if we fix a countable subset \(D \subset T^n \), then for a generic conservative \(C^1 \)-diffeomorphism \(f \) and for any \(x \in D \), the measures \(\mu^{f_N} \) accumulate on the whole set of \(f \)-invariant measures (Addendum 5). This is a process that is usually applied in practice to detect the \(f \)-invariant measures: fix a finite set \(D \subset T^n \) and compute the measure \(\mu^{f_N}_x \) for \(x \in D \) and for a large order of discretization \(N \). Our theorem expresses that it is possible that the measure that we observe on numerical experiments is very far away from the physical measure.

Note that in the space \(\text{Diff}^1(T^n, \text{Leb}) \), there are open sets where generic diffeomorphisms are ergodic: the set of Anosov diffeomorphisms is open in \(\text{Diff}^1(T^n, \text{Leb}) \), and a generic Anosov conservative \(C^1 \)-diffeomorphism is ergodic (it is a consequence of the fact that any \(C^2 \) Anosov conservative diffeomorphism is ergodic (see for instance [AS67]), together with the theorem of regularization of conservative diffeomorphisms of A. Avila [Avi10]). More generally, A. Avila, S. Crovisier and A. Wilkinson have set recently in [ACW14] a generic dichotomy for a conservative diffeomorphism \(f \): either \(f \) is ergodic, either all the Lyapunov exponents of \(f \) vanish. In short, there are open sets where generic conservative diffeomorphisms have only one physical measure; in this case, our result asserts that this physical measure is not detected on discretizations by computing the measures \(\mu^{f_N}_x \).

Recall that results of stochastic stability are known to be true in various contexts (for example, expanding maps [Kif86a], [Kif86b], [Kel82], uniformly hyperbolic attractors [Kif86b], [You86], etc.). These theorems suggest that the physical measures can always be observed in practice, even if the system is noisy. Theorem A indicates that the effects of discretizations (i.e. numerical truncation) might be quite different from those of a random noise.

However, we shall remark that the arguments of the beginning of the proof of Theorem A implies that for a generic diffeomorphism \(f \in \text{Diff}^1(T^n, \text{Leb}) \) and a generic point \(x \in T^n \) (or equivalently, for any \(x \in T^n \) and for a generic \(f \in \text{Diff}^1(T^n, \text{Leb}) \), the
measures
\[\mu^f_{x,m} = \frac{1}{m} \sum_{i=0}^{m-1} f^i \delta_x \]
accumulate on the whole set of \(f \)-invariant measures. Thus, it would be nice to obtain a statement similar to Theorem A, but where the hypothesis “for a Baire-generic set of points \(x \)” would be replaced by “for Lebesgue almost all point \(x \).

Note that Theorem A does not say anything about the measures \(\mu^f_{T^n} \), defined as follows. Consider \(\text{Leb}_N \) the uniform measure on the grid \(E_N \) and set
\[\mu^f_{T^n} = \lim_{M \to +\infty} \frac{1}{M} \sum_{m=0}^{M-1} (f^m_N)^*(\text{Leb}_N). \]
The limit in the previous equation is well defined: the measure \(\mu^f_{T^n} \) is supported by the union of periodic orbits of \(f_N \), and the total measure of each of these periodic orbits is proportional to the size of its basin of attraction under \(f_N \). For now, the theoretical study of the measures \(\mu^f_{T^n} \) for generic conservative \(C^1 \)-diffeomorphisms seems quite hard, as this kind of questions is closely related to the still open problem of genericity of ergodicity among these maps (see [ACW14] for the most recent advances on this topic).

On numerical simulations of these measures \(\mu^f_{T^n} \), it is not clear whether they converge towards Lebesgue measure or not (see Figures 12, 13 and 14). However, one can hope that their behaviour is not as erratic as for generic conservative homeomorphisms, where they accumulate on the whole set of \(f \)-invariant measures (see Section 4.6 of [Gui15e]). Indeed, [Gui15b] shows that a simple dynamical invariant associated to each discretization \(f_N \) (the degree of recurrence) converges to 0 as \(N \) tends to +\(\infty \) for a generic conservative \(C^1 \)-diffeomorphism, while it accumulates on the whole segment \([0,1]\) for generic conservative homeomorphisms; this shows that the discretizations of generic conservative \(C^1 \)-diffeomorphism and homeomorphisms might have quite different dynamical characteristics.

At the end of this paper, we also present numerical experiments simulating the measures \(\mu^f_{T^n} \) for some examples of conservative \(C^1 \)-diffeomorphisms \(f \) of the torus. The results of these simulations are quite striking for an example of \(f \)-close to \(\text{Id} \) (see Figure 7): even for very large orders \(N \), the measures \(\mu^f_{T^n} \) do not converge to Lebesgue measure at all, and depend quite dramatically on the integer \(N \). This illustrates perfectly Theorem 4 (more precisely, Addendum 5), which states that if \(x \) is fixed, then for a generic \(f \in \text{Diff}^1(T^2, \text{Leb}) \), the measures \(\mu^f_{T^n} \) accumulate on the whole set of \(f \)-invariant measures, but do not say anything about, for instance, the frequency of orders \(N \) such that \(\mu^f_{T^n} \) is not close to Lebesgue measure. Moreover, the same phenomenon (although less pronounced) occurs for diffeomorphisms close to a linear Anosov automorphism (Figure 9).

The proof of Theorem A uses crucially results about the dynamics of discretizations of generic sequences of linear maps: the discretization of a linear map \(A \in \text{SL}_n(\mathbb{R}) \) is a map \(\hat{A} : \mathbb{Z}^n \to \mathbb{Z}^n \), such that \(\hat{A}(x) \) is the point of \(\mathbb{Z}^n \) which is the closest of \(Ax \). In particular, Lemma 12 (whose proof is in appendix, because it is already done in [Gui15b]) expresses that the preimage of some points of \(\mathbb{Z}^n \) by a generic sequence of discretizations have a big cardinality. This will allow us to merge some orbits of the discretizations. The proof of Theorem A also uses two connecting lemmas (the connecting lemma for pseudo-orbits of [BC04] and an improvement of the ergodic closing lemma of [ABC11])
and a statement of local linearization of a C^1-diffeomorphism (Lemma 22) involving the regularization result due to A. Avila [Avi10].

1.1. Acknowledgements. Je remercie très chaleureusement Sylvain Crovisier pour son aide précieuse concernant les lemmes de perturbation, ainsi que François Béguin à qui cet article doit beaucoup.

2. Statement of the theorem and sketch of proof

We recall the statement of the main theorem of this paper (stated as Theorem A in the introduction).

Theorem 4. For a generic diffeomorphism $f \in \text{Diff}^1(T^n, \text{Leb})$, for a generic point $x \in T^n$, for any f-invariant probability measure μ, there exists a subsequence $(N_k)_k$ of discretizations such that

$$\mu_x^{fN_k} \xrightarrow{k \to +\infty} \mu.$$

Remark that the theorem in the C^0 case is almost the same, except that here, the starting point $x \in T^n$ is no longer arbitrary but has to be chosen in a generic subset of the torus, and that the sequence $(N_k)_k$ depends on the starting point x. The proof of this theorem will also lead to the two following statements.

Addendum 5. For a generic diffeomorphism $f \in \text{Diff}^1(T^n, \text{Leb})$, for any $\varepsilon > 0$ there exists a ε-dense subset (x_1, \ldots, x_m) such that for any f-invariant probability measure μ, there exists a subsequence $(N_k)_k$ of discretizations such that for every j,

$$\mu_{x_j}^{fN_k} \xrightarrow{k \to +\infty} \mu.$$

Also, for any countable subset $D \subset T^n$, for a generic diffeomorphism $f \in \text{Diff}^1(T^n, \text{Leb})$, for any f-invariant probability measure μ, and for any finite subset $E \subset D$, there exists a subsequence $(N_k)_k$ of discretizations such that for every $x \in E$, we have

$$\mu_x^{fN_k} \xrightarrow{k \to +\infty} \mu.$$

The first statement asserts that if f is a generic conservative C^1-diffeomorphism, then for any f-invariant measure μ, there exists an infinite number of discretizations f_N which possess an invariant measure which is close to μ, and whose basin of attraction is ε-dense. Basically, for an infinite number of N any f-invariant will be seen from any region of the torus.

In the second statement, a countable set of starting points of the experiment is chosen “by the user”. This is quite close to what happens in practice: we take a finite number of points x_1, \ldots, x_m and compute the measures $\mu_x^{fN_k}$ for all m, for big $N \in \mathbb{N}$ and for “large” times T (we can expect that T is large enough to have $\mu_x^{fN_k} \simeq \mu_x^{fN_k}$). In this case, the result expresses that it may happen (in fact, for arbitrarily large N) that the measures $\mu_x^{fN_k}$ are not close to the physical measure of f but are rather chosen “at random” among the set of f-invariant measures.

We also have a dissipative counterpart of Theorem 4, whose proof is easier.

Theorem 6. For a generic dissipative diffeomorphism $f \in \text{Diff}^1(T^n)$, for any f-invariant probability measure μ such that the sum of the Lyapunov exponents of μ is
negative (or equal to 0), for a generic point \(x \) belonging to the same chain recurrent class as \(\mu \), there exists a subsequence \((N_k)_k\) of discretizations such that
\[
\mu_{x}^{fN_k} \xrightarrow{k \to +\infty} \mu.
\]

Remark that if we also consider the inverse \(f^{-1} \) of a generic diffeomorphism \(f \in \text{Diff}^1(T^n) \), we can recover any invariant measure \(\mu \) of \(f \) by looking at the measures \(\mu_{x}^{fN_k} \) for generic points \(x \) in the chain recurrent class of \(\mu \).

The proof of this result is obtained by applying Lemma 24 during the proof of Theorem 4.

We also have the same statement as Theorem 4 but for expanding maps of the circle. We denote \(E^1_d(S^1) \) the set of \(C^1 \)-expanding maps of the circle of degree \(d \).

Proposition 7. For a generic expanding map \(f \in E^1_d(S^1) \), for any \(f \)-invariant probability measure \(\mu \), for a generic point \(x \in S^1 \), there exists a subsequence \((N_k)_k\) of discretizations such that
\[
\mu_{x}^{fN_k} \xrightarrow{k \to +\infty} \mu.
\]

The proof of this statement is far easier than that of Theorem 4, as it can be obtained by coding any expanding map of class \(C^1 \) (that is, any \(f \in E^1_d(S^1) \) is homeomorphic to a full shift on a set with \(d \) elements).

We will use the connecting lemma for pseudo-orbits (see [BC04]), together with an ergodic closing lemma (adapted from [ABC11]) and the results of the appendix on the fact that the asymptotic rate is null (in particular Lemma 12), to prove that any invariant measure of the diffeomorphism can be observed by starting at any point of a generic subset of \(T^n \).

By Baire theorem and the fact that for a generic conservative diffeomorphism, a generic invariant measure is ergodic, non periodic and has no zero Lyapunov exponent (see Theorem 3.5 of [ABC11]), the proof of Theorem 4 can be reduced easily to that of the following approximation lemma.

Lemma 8. For every \(f \in \text{Diff}^1(T^n, \text{Leb}) \), for every \(f \)-invariant measure \(\mu \) which is ergodic, not periodic and has no zero Lyapunov exponent, for every open subset \(U \subset T^n \), for every \(C^1 \)-neighbourhood \(V \) of \(f \), for every \(\varepsilon > 0 \) and every \(N_0 \in \mathbb{N} \), there exists \(g \in \text{Diff}^1(T^n, \text{Leb}) \) such that \(g \in V \), there exists \(y \in U \) and \(N \geq N_0 \) such that \(\text{dist}(\mu, \mu^g_{y}^{\gamma N}) < \varepsilon \). Moreover, we can suppose that this property remains true on a whole neighbourhood of \(g \).

First of all, we explain how to deduce Theorem 4 from Lemma 8.

Proof of Theorem 4. We consider a sequence \((\nu_i)_{i \geq 0}\) of Borel probability measures, which is dense in the whole set of probability measures. We also consider a sequence \((U_i)_{i \geq 0}\) of open subsets of \(T^n \) which spans the topology of \(T^n \). This allows us to set
\[
S_{N_0,k_0,\ell,i} = \left\{ f \in \text{Diff}^1(T^n, \text{Leb}) \bigg| \exists \mu \text{ f-inv. : dist}(\mu, \nu_i) \leq 1/k_0 \implies \exists N \geq N_0, y \in U_i : d(\mu^f_{y}^{\gamma N}, \nu_i) < 2/k_0 \right\}.
\]

We easily see that the set
\[
\bigcap_{N_0,k_0,\ell,i \geq 0} S_{N_0,k_0,\ell,i}
\]
in contained in the set of diffeomorphisms satisfying the conclusions of the theorem.

It remains to prove that each set \(S_{N_0,k_0,\ell,i} \) contains an open and dense subset of \(\text{Diff}^1(T^n, \text{Leb}) \). Actually the interior of each set \(S_{N_0,k_0,\ell,i} \) is dense. This follows from
the upper semi-continuity of the set of f-invariant measures with respect to f and from the combination of Lemma 8 with the fact that for a generic diffeomorphism, a generic invariant measure is ergodic, non periodic and has no zero Lyapunov exponent (see Theorem 3.5 of [ABC11]).

It remains to prove Lemma 8. We now outline the main arguments of this quite long and technical proof.

Sketch of proof of Lemma 8. First of all, we take a point $x \in \mathbb{T}^n$ which is typical for the measure μ. In particular, by an ergodic closing lemma derived from that of F. Abdenur, C. Bonatti and S. Crovisier [ABC11] (Lemma 16), there is a perturbation of f (still denoted by f) so that the orbit ω of x is periodic of period τ_1; moreover, ω can be supposed to bear an invariant measure close to μ, to have an arbitrary large length, and to have Lyapunov exponents and Lyapunov subspaces close to that of μ under f. Applying the (difficult) connecting lemma for pseudo-orbits of C. Bonatti and S. Crovisier [BC04], we get another perturbation of the diffeomorphism (still denoted by f), such that the stable manifold of x under f meets the open set U at a point that we denote by y.

So, we need to perturb the diffeomorphism f so that:

- the periodic orbit x is stabilized by f_N. This can be easily made by a small perturbation of f;
- the positive orbit of y under f_N falls on the periodic orbit of x under f_N. This is the difficult part of the proof: we can apply the previous strategy to get every point of the positive orbit of y on the grid only during a finite time. It becomes impossible to perform perturbations to put the orbit of y on the grid — without perturbing the orbit of x — as soon as this orbit comes into a C/N-neighbourhood of the orbit of x (where C is a constant depending on \mathcal{V}).

To solve this problem, we need the results about the linear case we prove in the appendix. If n is large enough, at the scale of the grid E_N, the diffeomorphism f is linear. Thus, iterating the discretization of f is equivalent to iterate a discretization of the linear cocycle given by the differentials of f. We can thus apply the results of the linear case (Lemma 12), which allow us to merge the positive orbits of x and y under the discretization.

In more detail, we use Lemma 22 to linearize locally the diffeomorphism in the neighbourhood of the periodic orbit of ω. In particular, the positive orbit of y eventually belongs to this linearizing neighbourhood, from a time T_1. We denote $y' = f^{T_1}(y)$. To summarize, the periodic orbit ω bears a measure close to μ, its Lyapunov exponents are close to that of μ, its Lyapunov linear subspaces are close to that of μ (maybe not all along the periodic orbit, but at least for the first iterates of x). The diffeomorphism f is linear around each point of ω. Finally, the stable manifold of ω meets U at y, and the positive orbit of y is included in the neighbourhood of ω where f is linear from the point $y' = f^{T_1}(y)$.

We then choose an integer N large enough, and perturb the orbit of x such that it is stabilized by the discretization f_N. We want to make another perturbation of f such that the backward orbit of x by f_N also contains y' (recall that f_N is not necessarily one-to-one). This is done by a perturbation supported in the neighbourhood of ω where f is linear. First of all, during a time $t_4 \geq 0$, we apply Lemma 12 to find a point z in the neighbourhood of $f^{-t_4}(x)$ where f is linear, but far enough from $f^{-t_4}(x)$ compared to $1/N$, such that the t_4-th image of z by the discretization f_N is equal to x. Next, we perturb the orbit of z under f^{-1} during a time $t_3 \geq 0$ such that $f^{-t_3}(z)$ belongs to the stable subspace of $f^{-t_4-t_3}(x)$. Note that the support of this perturbation must
be disjoint from \(\omega \); this is the reason why \(z \) must be “far enough from \(x \)”. Finally, we find another time \(t_2 \) such that the negative orbit \(\{ f^{-t}(z') \}_{t \geq 0} \) of \(z' = f^{-t_3-t_2}(z) \) has an hyperbolic behaviour. We then perturb each point of the negative orbit of \(z' \) (within the stable manifold of \(\omega \)), so that it contains an arbitrary point of the stable manifold of \(\omega \), far enough from \(\omega \). This allows us to meet the point \(y' \), provided that the order of discretizations \(N \) is large enough.

To complete the proof, we consider the segment of \(f \)-orbit joining \(y \) to \(z \); we perturb each one of these points to put them on the grid \(E_N \) (with a perturbation whose supports size is proportional to \(1/N \)).

Notice that we shall have chosen carefully the parameters of the first perturbations in order to make this final perturbation possible. Also, remark that the length of the periodic orbit \(\omega \) must be very large compared to the times \(t_2, t_3 \) and \(t_4 \). This is why we will perform the proof in the opposite direction: we will begin by choosing the times \(t_i \) and make the perturbation of the dynamics afterwards.

Note that the Addendum 5 can be proved by using a small variation on Lemma 8, that we will explain at the end of Section 5.

3. Discretizations of sequences of linear maps

We begin by the study of the corresponding linear case, corresponding to the “local behaviour” of \(C^1 \) maps. We first define the linear counterpart of the discretization.

Definition 9. The map \(P : \mathbb{R} \to \mathbb{Z} \) is defined as a projection from \(\mathbb{R} \) onto \(\mathbb{Z} \). More precisely, for \(x \in \mathbb{R} \), \(P(x) \) is the unique\(^1\) integer \(k \in \mathbb{Z} \) such that \(k - 1/2 < x \leq k + 1/2 \). This projection induces the map

\[
\pi : \mathbb{R}^n \longrightarrow \mathbb{Z}^n
\]

\[
(x_1)_{1 \leq i \leq n} \longmapsto (P(x_i))_{1 \leq i \leq n}
\]

\(^1\) Remark that the choice of where the inequality is strict and where it is not is arbitrary.
which is an Euclidean projection on the lattice \mathbb{Z}^n. Let $A \in M_n(\mathbb{R})$. We denote by \widehat{A} the discretization of the linear map A, defined by

$$\widehat{A}: \mathbb{Z}^n \rightarrow \mathbb{Z}^n, \quad x \mapsto \pi(Ax).$$

This definition allows us to define the rate of injectivity for sequences of linear maps.

Definition 10. Let $A_1, \cdots, A_k \in GL_n(\mathbb{R})$. The rate of injectivity of A_1, \cdots, A_k is the quantity\(^2\)

$$\tau^k(A_1, \cdots, A_k) = \limsup_{R \rightarrow +\infty} \frac{\text{Card}((\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbb{Z}^n) \cap B_R)}{\text{Card}(\mathbb{Z}^n \cap B_R)} \in [0, 1],$$

and for an infinite sequence $(A_k)_{k \geq 1}$ of invertible matrices, as the previous quantity is decreasing in k, we can define the asymptotic rate of injectivity

$$\tau^\infty((A_k)_{k \geq 1}) = \lim_{k \rightarrow +\infty} \tau^k(A_1, \cdots, A_k) \in [0, 1].$$

Finally, we define a topology on the set of sequences of linear maps.

Definition 11. We fix once for all a norm $\| \cdot \|$ on $M_n(\mathbb{R})$. For a bounded sequence $(A_k)_{k \geq 1}$ of matrices of $SL_n(\mathbb{R})$, we set

$$\|(A_k)_{k \geq 1}\|_\infty = \sup_{k \geq 1} \|A_k\|.$$

In other words, we consider the space $\ell^\infty(SL_n(\mathbb{R}))$ of uniformly bounded sequences of matrices of determinant 1, endowed with the metric $\| \cdot \|_\infty$.

We can now state the result we are interested in.

Lemma 12. For every $R_0 > 0$ and $\delta > 0$, there exists $k_0 \in \mathbb{N}$ such that the set O^k_ϵ of sequences $\{(A_k)_{k \geq 1} \in \ell^\infty(SL_n(\mathbb{R}))\}$ such that there exists a sequence $(w_k)_{k \geq 1}$ of translation vectors belonging to $[-1/2, 1/2]^n$, and a vector $\tilde{y}_0 \in \mathbb{Z}^n$, with norm bigger than R_0, such that $(\pi(A + w))$ denotes the discretization of the affine map $A + w$

$$(\pi(A_{k_0} + w_{k_0}) \circ \cdots \circ \pi(A_1 + w_1))(\tilde{y}_0) = (A_{k_0} + w_{k_0} \circ \cdots \circ A_1 + w_1)(0) = 0.$$

Moreover, the point \tilde{y}_0 being fixed, this property can be supposed to remain true on a whole neighbourhood of the sequence $(A_k)_{k \geq 1} \in O^k_\epsilon$.

This lemma will be deduced from the following one.

Lemma 13. For a generic sequence of matrices $(A_k)_{k \geq 1}$ of $\ell^\infty(SL_n(\mathbb{R}))$, we have

$$\tau^\infty((A_k)_{k \geq 1}) = 0.$$

Moreover, for every $\epsilon > 0$, the set of $(A_k)_{k \geq 1} \in \ell^\infty(SL_n(\mathbb{R}))$ such that $\tau^\infty((A_k)_{k \geq 1}) < \epsilon$ contains an open and dense subset of $\ell^\infty(SL_n(\mathbb{R}))$.

Remark 14. The second part of this statement is easily deduced from the first by applying the continuity of τ^k on a generic subset (Remark 27).

Remark 15. The same statement holds for generic sequences of isometries; this leads to nice applications to image processing (see [Gui15d]).

2. By definition, $B_R = B_\infty(0, R) \cap \mathbb{Z}^n$.

3. In the sequel we will see that the lim sup is in fact a limit.
To prove Lemma 13, we take advantage of the rational independence between the matrices of a generic sequence to obtain geometric formulas for the computation of the rate of injectivity. The tool used to do that is the formalism of model sets \(^4\) (see for example [Moo00] or [Mey12] for surveys about model sets, see also [Gui15a] for the application to the specific case of discretizations of linear maps). Lemma 13 is proved in [Gui15b]. However, we have chosen to include a condensed proof in appendix for the sake of completeness. For more details and comments about the linear case, see also [Gui15c].

We now explain how to deduce Lemma 12 from Lemma 13.

Proof of Lemma 12. We set

\[O^k_\varepsilon = \{(A_k)_{k \geq 1} \in \ell^\infty(SL_n(\mathbb{R})) \mid \tau^k(A_1, \ldots, A_k) < \varepsilon\}. \]

Lemma 13 states that for every \(\varepsilon > 0 \), the set \(\bigcup_{k \geq 0} O^k_\varepsilon \) contains an open and dense subset of \(\ell^\infty(SL_n(\mathbb{R})) \). Together with the continuity of \(\tau^k \) at every generic sequence (Remark 27), this implies that for every \(\delta > 0 \), there exists \(k_0 > 0 \) such that \(O^k_{\varepsilon_0} \) contains an open and \(\delta \)-dense subset of \(\ell^\infty(SL_n(\mathbb{R})) \).

Then, if \(\tau^{k_0}(A_1, \ldots, A_k) < \varepsilon \), then there exists a point \(x_0 \in \mathbb{Z}^n \) such that

\[\text{Card} \big((A_{k_0} \circ \cdots \circ A_1)^{-1}(x_0)\big) \geq \frac{1}{\varepsilon} \]

(and moreover if the sequence \((A_k)_{k \geq 1} \) is generic, then this property remains true on a whole neighbourhood of the sequence). The lemma follows from this statement by remarking that on the one hand, if we choose \(w_k \in [-1/2, 1/2]^n \) such that

\[w_k = A_k^{-1}\left((A_{k_0} \circ \cdots \circ A_{k-1})^{-1}(x_0)\right) \mod \mathbb{Z}^n, \]

then the properties of the cardinality of the inverse image of \(x_0 \) are transferred to the point 0, and that on the other hand, for every \(R_0 > 0 \), there exists \(m \in \mathbb{N} \) such that every subset of \(\mathbb{Z}^n \) with cardinality bigger than \(m \) contains at least one point with norm bigger than \(R_0 \). \(\square \)

4. **An improved ergodic closing lemma**

The proof of Theorem 4 begins by the approximation of any invariant measure \(\mu \) of any conservative \(C^1 \)-diffeomorphism by a periodic measure of a diffeomorphism \(g \) close to \(f \). This is done by R. Mañé’s ergodic closing lemma, but we will need the fact that the obtained periodic measure inherits some of the properties of the measure \(\mu \). More precisely, given a \(C^1 \)-diffeomorphism \(f \), we will have to approach any non periodic ergodic measure of \(f \) with nonzero Lyapunov exponent by a periodic measure of a diffeomorphism \(g \) close to \(f \), such that the Lyapunov exponents and the Lyapunov subspaces of the measure are close to that of \(f \) by \(\mu \). We will obtain this result by modifying slightly the proof of a lemma obtained by F. Abdenur, C. Bonatti and S. Crovisier in [ABC11] (Proposition 6.1).

Lemma 16 (Ergodic closing lemma). Let \(f \in \text{Diff}^1(\mathbb{T}^n, \text{Leb}) \). We consider

- a number \(\varepsilon > 0 \);
- a \(C^1 \)-neighbourhood \(\mathcal{V} \) of \(f \);
- a time \(\tau_0 \in \mathbb{N} \);
- an ergodic measure \(\mu \) without zero Lyapunov exponent;
- a point \(x \in \mathbb{T}^n \) which is typical for \(\mu \) (see the beginning of the paragraph 6.1 of [ABC11]).

4. Also called cut-and-project sets.
moreover, we denote by λ the smallest absolute value of the Lyapunov exponents of μ, by F^s_x the stable subspace at x and by G^u_x the unstable subspace at x. Then, there exists a diffeomorphism $g \in \text{Diff}^1(T^n, \text{Leb})$ and a time $t_0 > 0$ (depending only in f, μ and x) such that:

1. $g \in V$;
2. the point x is periodic for g of period $\tau \geq \tau_0$;
3. for any $t \leq \tau$, we have $d(f^t(x), g^t(x)) < \varepsilon$;
4. x has no zero Lyapunov exponent for g and the smallest absolute value of the Lyapunov exponents of x is bigger than $\lambda/2$, we denote by F^s_x the stable subspace and G^u_x the unstable subspace;
5. the angles between F^s_x and F^u_x, and between G^s_x and G^u_x, are smaller than ε;
6. for any $t \geq t_0$, for any vectors of unit norm $v_F \in F^s_x$ and $v_G \in G^u_x$, we have

$$\frac{1}{t} \log \left(\|Dg^{-t}(v_F)\| \right) \geq \frac{\lambda}{4} \quad \text{and} \quad \frac{1}{t} \log \left(\|Dg^t(v_G)\| \right) \geq \frac{\lambda}{4}$$

Remark that the proof of Proposition 6.1 of [ABC11] yields a similar lemma but with the weaker conclusion

5. “the angle between G^s_x and G^u_x, is smaller than ε”.

Indeed, the authors obtain the linear space G^u_x by a fixed point argument: Lemma 6.5 of [ABC11] states that the cone C_x is invariant by Df^{-t_0}, and thus contains both G^s_x and G^u_x. Taking C as big as desired, the cone C_x is as thin as desired and thus the angle between G^s_x and G^u_x is as small as desired. Unfortunately, in the original proof of Proposition 6.1 of [ABC11], the linear space F^u_x is not defined in the same way; it is an invariant subspace which belongs to C_x, which is an arbitrarily thick cone. Thus, the angle between F^s_x and F^u_x, is not bounded by this method of proof. Our goal here is to modify the proof of Proposition 6.1 of [ABC11] to have simultaneously two thin cones C^s_x and C^u_x which are invariant under respectively Df^{-t_0} and Df^t

We begin by modifying the Lemma 6.2 of [ABC11]: we replace its forth point

- a sequence of linear isometries $P_n \in O_d(R)$ such that $\|P_n - \text{Id}\| < \varepsilon$, by the point

- two sequences of linear isometries $P_n, Q_n \in O_d(R)$ such that $\|P_n - \text{Id}\| < \varepsilon$ and $\|Q_n - \text{Id}\| < \varepsilon$, and its forth conclusion

d) For every $i \leq j \in \{1, \ldots, k\}$ the inclination of $Df^{t_0}_{i,j}$ with respect to $E_{i,j}$ is less than C.

by the conclusion

d) For every $i \leq j \in \{1, \ldots, k\}$ the inclination of $Df^{t_0}_{i,j}$ with respect to $E_{i,j}$ is less than C and the inclination of $Df_{i,j}$ with respect to $E_{i,j}$ is less than C.

These replacements in the lemma are directly obtained by replacing Claim 6.4 of [ABC11] by the following lemma.

Lemma 17. For any $\eta > 0$, there exists a constant $C > 0$ such that for any matrix $A \in GL_n(R)$ and any linear subspace $E \subset R^n$, there exists two orthogonal matrices $P, Q \in O_n(R)$ satisfying $\|P - \text{Id}\| < \eta$ and $\|Q - \text{Id}\| < \eta$, such that the inclinations of $(PAQ)(E)$ and $(PAQ)^{-1}(E)$ with respect to E are smaller than C.

5. Stable and unstable in the sense of Oseledets splitting.
6. The inclination of a linear subspace $E \subset R^n$ with respect to another subspace $E' \subset R^n$ with the same dimension is the minimal norm of the linear maps $f : E \to E'$ whose graph are equal to E.
Proof of Lemma 17. Given $\eta > 0$, there exists a constant $C > 0$ and a matrix $P_0 \in O_n(\mathbb{R})$ such that $\|P_0 - \text{Id}\| < \eta$, satisfying: for any linear subspace $E' \subset \mathbb{R}^n$, one of the two inclinations of E' and of $P_0(E')$ with respect to E is smaller then C.

We then choose an orthogonal matrix $Q \in O_n(\mathbb{R})$ such that $\|Q - \text{Id}\| < \eta$ and that (taking a bigger C if necessary) both inclinations of $Q^{-1}(A^{-1}(E))$ and $Q^{-1}((A^{-1}P_0^{-1})(E))$ with respect to E are smaller than C. There are two cases: either the inclination of $(AQ)(E)$ with respect to E is smaller than C, and in this case we choose $P = \text{Id}$, or the inclination of $(AQ)(E)$ with respect to E is bigger than C, and in this case we can choose $P = P_0$. In both cases, the lemma is proved. \hfill \Box

The rest of the proof of Lemma 16 can be easily adapted from the proof of Proposition 6.1 of [ABC11].

5. Proof of the perturbation lemma (Lemma 8)

We now come to the proof of Lemma 8. We first do this proof in dimension 2, to simplify some arguments and to be able to make pictures.

Proof of Lemma 8. Let f be a conservative C^1-diffeomorphism, \mathcal{V} a C^1-neighbourhood of f, $\varepsilon > 0$ and $N_0 \in \mathbb{N}$. We denote $M = \max \left(\|Df\|_\infty, \|Df^{-1}\|_\infty\right)$. We also choose an f-invariant measure μ which is ergodic, not periodic and has no zero Lyapunov exponent, and an open set $U \subset T^2$. We will make several successive approximations of f in \mathcal{V}; during the proof we will need to decompose this neighbourhood: we choose $\delta > 0$ such that the open δ-interior \mathcal{V}' of \mathcal{V} is non-empty.

Step 0: elementary perturbation lemmas. During the proof of Lemma 8, we will use three different elementary perturbation lemmas.

The first one is the elementary perturbation lemma in C^1 topology.

Lemma 18 (Elementary perturbation lemma in C^1 topology). For every diffeomorphism $f \in \text{Diff}^1(T^n, \text{Leb})$ and every $\delta > 0$, there exists $\eta > 0$ and $r_0 > 0$ such that the following property holds: for every $x, y \in T^n$ such that $d(x, y) < r_0$, there exists a diffeomorphism $g \in \text{Diff}^1(T^n, \text{Leb})$ satisfying $d_{C^1}(f, g) < \delta$, such that $g(x) = f(y)$ and that f and g are equal out of the ball $B\left(\frac{1 + \eta}{2}, \frac{1 + \eta}{2} d(x, y)\right)$.

This lemma allows to perturb locally the orbit of a diffeomorphism; a proof of it can be found for example in [Arn98, Proposition 5.1.1].

The second one is an easy corollary of the first one. We will use it to perturb a segment of orbit such that for any N large enough, each point of this segment of orbit belongs to the grid E_N.

Lemma 19 (Perturbation of a point such that it belongs to the grid). For every open set \mathcal{V}' of $\text{Diff}^1(T^n, \text{Leb})$, there exists $\eta' > 0$ such that for N large enough every $x \in T^n$, there exists $g \in \text{Diff}^1(T^n, \text{Leb})$ such that

- $g \in \mathcal{V}'$;
- $g(x_N) = (f(x))_N$;
- $f = g$ outside of $B(x, (1 + \eta')/N)$.

Applying this lemma to several points $x_i \in T^n$ which are far enough one from the others (for $i \neq j$, $d(x_i, x_j) \geq 2(1 + \eta')/N$), it is possible to perturb f into a diffeomorphism g such that for every i, $g((x_i)_N) = (f(x_i))_N$.

These two perturbations will be applied locally.

The third perturbation lemma is an improvement of Lemma 18; it states that the perturbation can be supposed to be a translation in a small neighbourhood of the perturbed point.
Lemma 20 (Elementary perturbation with local translation). For every open set \mathcal{V}' of $\text{Diff}^1(\mathbb{T}^n, \text{Leb})$, and every $r > 0$, there exists $N_1 > 0$ such that for every $N \geq N_1$ and every $\|v\|_{\infty} \leq 1/(2N)$, there exists $g \in \text{Diff}^1(\mathbb{R}^n, \text{Leb})$ such that:
- $g \in \mathcal{V}'$;
- $\text{Supp}(g) \subset B(0, 10r)$;
- for every $x \in B(0, r)$, $g(x) = x + v$.

Proof of Lemma 20. Take an appropriate Hamiltonian, see Figure 2. □

Step 1: choice of the starting point x of the orbit. Let λ be the smallest absolute value of the Lyapunov exponents of μ (in particular, $\lambda > 0$).

We choose a point x which is regular for the measure μ: we suppose that it satisfies the conclusions of Oseledets and Birkhoff theorems, and Mañé’s ergodic closing lemma (see Paragraph 6.1 of [ABC11]). We denote by F^s_f the stable subspace and G^u_f the unstable subspace for the Oseledets splitting at the point x. By Oseledets theorem, the growth of the angles $\angle(F^s_{f^t(x)}, G^u_{f^t(x)})$ between the stable and unstable subspaces is subexponential (in both positive and negative times).

Step 2: choice of the parameters we use to apply the ergodic closing lemma. In this second step, we determine the time during which we need an estimation of the angle between the stable and unstable subspaces of f and its perturbations, and the minimal length of the approximating periodic orbit.

We first use the “hyperbolic-like” behaviour of f near the orbit of x: for well chosen times t_1 and t_2, each vector which is not too close to $G^u_{f^{t_1}(x)}$ is mapped by $D_f^{-t_2}$ into a vector which is close to $F^s_{f^{t_1-t_2}(x)}$. Given a vector $v \in T^n_{f^{t_1}(x)}$, it will allow us to perturb f into g such that an iterate of v under Dg^{-1} belongs to $F^s_{f^{t_1-t_2}(x)}$.

Lemma 21. For every $\alpha > 0$, there exists two times t_1 and $t_2 \geq 0$ such that if $v \in T^n_{f^{t_1}(x)}$ is such that the angle between v and $G^u_{f^{t_1}(x)}$ is bigger than α, then the angle between $D_{f^{t_1}(x)}v$ and $G^u_{f^{t_1-t_2}(x)}$ is smaller than α (see Figure 4).

Proof of Lemma 21. It easily follows from Oseledets theorem, and more precisely from the fact that the function $\exp(t\lambda)/\angle(F^s_{f^{t}(x)}, G^u_{f^{t}(x)})$ goes to $+\infty$ when t goes to $+\infty$. □

So, we fix two times t_1 and $t_2 \geq 0$, obtained by applying Lemma 21 to $\alpha = \arcsin(1/(1 + \eta))$, where η is the parameter obtained by applying the elementary perturbation lemma (Lemma 18) to $\delta/2$ (see Figure 3).
We also choose a time \(t_3 \geq \bar{t}_0 \) (\(\bar{t}_0 \) being given by Lemma 16) such that
\[
e^{-\lambda(t_3+t_2)/4} \geq M^{-t_2}.
\]
This estimation will be applied to point 6. of Lemma 16. It will imply that for every \(v \in F^f_{t_1(x)} \) and for every \(t \geq t_2 + t_3 \), we have
\[
\|Df^{-t}_{t_1(x)}(v)\| \geq \|Df^{-t_2}_{t_1(x)}(v)\| \geq \frac{1}{M^{t_2}}\|v\|.
\]
We then apply Lemma 12 to
\[
R_0 = M^{t_2+t_3}(1 + \eta'),
\]
where \(\eta' \) is given by Lemma 19 applied to the parameter \(\delta/2 \). This gives us a parameter \(k_0 = t_4 \). Note that \(R_0 \) is chosen so that if \(v \in T_{t_1(x)}T^s \) is such that \(\|v\| \geq R_0/N \), then for any \(t \in [0, t_2 + t_3] \), we have
\[
\|Df^{-t}_{t_1(x)}(v)\| \geq (1 + \eta')/N.
\]
Thus, we will be able to apply Lemma 19 to the points \(f^{-t}(f^{t_1(x)} + v) \), with \(t \in [0, t_2 + t_3] \), without perturbing the points of the orbit of \(x \).

Step 3: global perturbation of the dynamics. We can now apply the ergodic closing lemma we have stated in the previous section (Lemma 16) to the neighborhood \(V' \), the measure \(\mu \), the point \(x_1 = f^{t_1-t_2-t_3}(x) \) and \(\tau_0 \geq t_2 + t_3 + t_4 \) large enough so that \(\tau_0\lambda/4 \geq 3 \). We also need that the expansion of vectors \(F^{g_1} \) along the segment of orbit \((x_2, g_2(x_2), \ldots, g_{n_2}^{t_2-t_3-t_4}(x_2)) \) is bigger than 3, but it can be supposed true by taking a bigger \(\tau_0 \) if necessary. This gives us a first perturbation \(g_1 \) of the diffeomorphism \(f \), such that the point \(x_1 \) is periodic under \(g_1 \) with period \(\tau_1 \geq \tau_0 \), and such that the Lyapunov exponents of \(x_1 \) for \(g_1 \) are close to that of \(x_1 \) under \(f \), and the stable and unstable subspaces of \(g_1 \) at the point \(g_1(x_1) \) are close to that of \(f \) at the point \(x_1 \) for every \(t \in [0, t_2 + t_3] \).

Remark that by the hypothesis on \(\tau_0 \), the Lyapunov exponent of \(g_1^{\tau_1} \) at \(x_1 \) is bigger than 3, thus we will be able to apply Lemma 19 to every point of the orbit belonging to \(F^{g_1} \), even when the orbit returns several times near \(x_1 \). Also note that these properties are stable under \(C^1 \) perturbation.

We then use the connecting lemma for pseudo-orbits of C. Bonatti and S. Crovisier (see [BC04]), which implies that the stable manifolds of the periodic orbits of a generic conservative \(C^1 \)-diffeomorphism are dense. This allows us to perturb the diffeomorphism \(g_1 \) into a diffeomorphism \(g_2 \in V' \) such that there exists a point \(x_2 \) close to \(x_1 \) such that:

1. \(x_2 \) is periodic for \(g_2 \) with the same period than that of \(x_1 \) under \(g_1 \), and moreover the periodic orbit of \(x_2 \) under \(g_2 \) shadows that of \(x_1 \) under \(g_1 \);
2. the Lyapunov exponents and the Lyapunov subspaces of \(x_2 \) for \(g_2 \) are very close to that of \(x_1 \) for \(g_1 \) (see the conclusions of Lemma 16, in particular the Lyapunov subspaces are close during a time \(t_3 + t_2 \));
3. the stable manifold of \(x_2 \) under \(g_2 \) meets the set \(U \), at a point denoted by \(y_2 \).

Step 4: linearization near the periodic orbit. We then use Franks lemma (see [Fra71]) to perturb slightly the differentials of \(g_2 \) at the points \(g_2^{t_2+t_3}(x_2), \ldots, g_2^{t_2+t_3+t_4}(x_2) \), such that these differentials belong to the open set of matrices defined by Lemma 12. This gives us another diffeomorphism \(g_3 \) close to \(g_2 \), such that the point \(x_2 \) still satisfies the nice properties (1), (2) and (3).

We then use a lemma of [ACW14] which allows to linearize locally a conservative diffeomorphism.
Lemma 22 (Avila, Crovisier, Wilkinson). Let C be the unit ball of \mathbb{R}^n for $\| \cdot \|_{\infty}$ and $\varepsilon > 0$. Then, there exists $\delta > 0$ such that for every $g_1 \in \text{Diff}^\infty(\mathbb{R}^n, \text{Leb})$ such that $d_{C^1}(g_1|_{C}, \text{Id}|_{C}) < \delta$, there exists $g_2 \in \text{Diff}^\infty(\mathbb{R}^n, \text{Leb})$ such that:
(i) $d_{C^1}(g_2|_{C}, g_1|_{C}) < \varepsilon$;
(ii) $g_2|(1-\varepsilon)C = \text{Id}|(1-\varepsilon)C$;
(iii) $g_2|\mathbb{S} = g_1|\mathbb{S}$.

The proof of this lemma involves a result of J. Moser [Mos65]. The reader may refer to [ACW14, Corollary 6.9] for a complete proof. By a regularization result due to A. Avila [Avi10], it is possible to weaken the hypothesis of regularity in the lemma to $g_1 \in \text{Diff}^1(\mathbb{R}^n, \text{Leb})$.

By Lemma 22, there exists a parameter $r > 0$ such that it is possible to linearize g_3 in the r-neighbourhood of the periodic orbit of x_2, without changing the nice properties (1), (2) and (3) of the periodic orbit of x_2. We can choose r small enough so that the $10r$-neighbourhoods of the points of the periodic orbit of x_2 are pairwise disjoint. This gives us a diffeomorphism g_4, to which are associated two points x_4 and y_4, such that x_4 satisfies the properties (1), (2) and (3), and such that:

(i) the differentials of f at the points $g_4^{n_3 + t_3}(x_4), \ldots, g_4^{n_3 + t_3 + t_4}(x_4)$ lie in the open dense set of matrices of Lemma 12;

(ii) g_4 is linear in the r-neighbourhood of each point of the periodic orbit of x_4.

Step 5: choice of the order of discretization. We choose a neighbourhood $\mathcal{V}'' \subset \mathcal{V}'$ of g_4 such that properties (1) to (3) are still true for every diffeomorphism $g \in \mathcal{V}''$. We denote by ω_{x_4} the periodic orbit of x_4 under g_4, and by $B(\omega_{x_4}, r)$ the r-neighbourhood of this periodic orbit. We also denote T_1 the smallest integer such that $g_4^t(y_4) \in B(\omega_{x_4}, r/2)$ for every $t \geq T_1$, and set $y_4' = g_4^{T_1}(y_4)$. Thus, the positive orbit of y_4' will stay forever in the linearizing neighbourhood of ω_{x_4}. Taking T_1 bigger if necessary, we can suppose that y_4' belongs to the linearizing neighbourhood of the point x_4. We can also suppose that for every $t \in [0, \tau_1]$,

$$3d(g_4^{T_1-t'}(y_4), g_4^{-t'}(x_4)) \leq \min_{\tau_1 \leq t' \leq T_1} d(g_4^{T_1-t'}(y_4), g_4^{-t'}(x_4)).$$

We can now choose the order N of the discretization, such that

(i) $N \geq N_0$ (N_0 has been chosen at the very beginning of the proof);

(ii) applying Lemma 20 to the parameter r and the neighbourhood \mathcal{V}'' to get an integer N_1, we have $N \geq N_1$, so that it is possible to choose the value of the points of ω_{x_4} modulo E_N without changing the properties (1) to (5);

(iii) the distance between two distinct points of the segment of orbit $y_4, g_4(y_4), \ldots, g_4^{T_1}(y_4)$ is y_4' bigger than $2(1 + \eta')/N + 2/N$, so that it will be possible to apply Lemma 19 simultaneously to each of these points, even after the perturbation made during the step (ii), such that these points belong to E_N;

(iv) every $\sqrt{2}/N$-pseudo-orbit starting at a point of the periodic orbit ω_{x_4} stays during a time $T'\tau_1$ in the $d(y_4', \omega_{x_4})$-neighbourhood of the periodic orbit, where T' the smallest integer such that

$$\left(1 + \frac{1}{3(1 + \eta)}\right)^{T'} \geq \nu.$$
Step 6: application of the linear theorem. By the hypothesis (ii) on N, we are able to use Lemma 20 (elementary perturbation with local translation) to perturb each point of the periodic orbit ω such that we obtain a diffeomorphism $g_5 \in \mathcal{V}''$ and points x_5, y_5 and y'_5 satisfying properties (1) to (5) and moreover:

(6) for every $t \in [t_2 + t_3, t_2 + t_3 + 4]$, the value of $g'_5(x_5)$ modulo E_N is equal to w_k/N, where w_k is given by Lemma 12;

(7) for any other t, $g'_5(x_5)$ belongs to E_N.

In particular, the periodic orbit of x_5 under g_5 is stabilized by the discretization $(g_5)_N$ (indeed, recall that $w_k \in [-1/2, 1/2]^k$).

By construction of the diffeomorphism g_5 (more precisely, the hypotheses (4), (5), (6) and (7)), it satisfies the conclusions of Lemma 12; thus there exists a point $z \in B(g_5^{t_2+t_3}(x_5), r)$ such that $(g_5)^t_N(z) = (g_5)^{t_2+t_3+t_4}(x_5)$ and that \[\|z - g_5^{t_2+t_3}(x_5)\| \geq R_0/N \] (where R_0 is defined by Equation (2)). Remark that hypothesis (iv) implies that $\|z - g_5^{t_2+t_3}(x_5)\| \ll r$.

Step 7: perturbations in the linear world. In this step, our aim is to perturb the negative orbit of z under g_5 such that it meets the point g'_5. Remark that by hypothesis (iv), every point of $z, g_5^{-1}(z), \ldots, g_5^{-t_2}(z)$ is in the linearizing neighbourhood of ω_{x_5}.

From now, all the perturbations we will make will be local, and we will only care of the positions of a finite number of points. Thus, it will not be a problem if these perturbations make hypotheses (3) and (5) become false, provided that they have a suitable behaviour on this finite set of points.

First, if necessary, we make a perturbation in the way of Figure 3, so that the angle between the lines $(g_5^{t_2+t_3}(x_5) z)$ and $G_{g_5^{t_2+t_3}(x_5)}$ is bigger than α; this gives us

and ν is the maximal modulus of the eigenvalues of $(Dg_4)^{t_1}_{x_4}$. A simple calculus shows that this condition is true if for example

\[N \geq \frac{2 \sqrt{n}(M^{t_1} - 1)}{r(M - 1)}. \]

This condition will be used to apply the process described by Lemma 23.
By applying an elementary perturbation (Lemma 18) whose support is contained in to the perturbation that we will make during step 7.

Figure 4. Proof of Lemma 21: make a small perturbation at times t_1 and $t_1 - t_2$ (in red), the hyperbolic-like behaviour of f does the rest of the work for you. In red: the perturbation we will make during step 7.

a diffeomorphism g_6. More precisely, the support of the perturbation we apply is contained in a ball centred at z and with radius $d(z, x_6)$, so that this perturbation does not change the orbit of x_6. Under these conditions, we satisfy the hypotheses of Lemma 21, thus the angle between $(g_6^{t_1}(x_6), g_6^{-t_2}(z))$ and $F_{g_6}^{t_1}(x_6)$ is smaller than α. Another perturbation, described by Figure 3, allows us to suppose that $g_6^{-t_2}(z)$ belongs to $F_{g_6}^{t_1}(x_6)$. This gives us a diffeomorphism that we still denote by g_6. Remark that it was possible to make these perturbations independently because the segment of negative orbit of the point z we considered does not enter twice in the neighbourhood of a point of ω_{x_6} where the diffeomorphism is linear.

Thus, the points $z' = g_6^{-t_2}(z)$ and $y_6' = y_6$ both belong to the local stable manifold of the point $x_6 = x_5$ for g_6 (which coincides with the Oseledets linear subspace $F_{x_6}^{T'}$ since g_6 is linear near x_6).

The next perturbation takes place in the neighbourhood of the point x_6 (and not in all the linearizing neighbourhoods of the points of ω_{x_6}).

Lemma 23. For every $y' \in F_{x_6}^{g_6}$ such that $d(y', x_6) > d(z', x_6)\nu^{T'\tau_1}$ (T' being defined by Equation (3)), there exists a diffeomorphism g_7 close to g_6 and $T' \in \mathbb{N}$ such that $g_7^{-\tau_1 T'}(z') = y'$. Moreover, the perturbations made to obtain g_7 are contained in the linearizing neighbourhood of ω_{x_6}, do not modify the images of ω_{x_6}, nor these of the negative orbit of z' by the discretization or these of the positive orbit of y' in the linearizing neighbourhood of ω_{x_6}.

Proof of Lemma 23. During this proof, if r and s are two points of $W^s(x_6)$, we will denote by $[r, s]$ the segment of $W^s(x_6)$ between r and s. Remark that if r and s lie in the neighbourhood of x_6 where g_6 is linear, then $[r, s]$ is a real segment, included in $F_{x_6}^{g_6}$; moreover, we will denote $[r, +\infty]$ the connected component of $W^s(x_6) \setminus \{r\}$ which does not contain x_6.

Consider the point $z' \in F_{x_6}^{g_6}$, and choose a point

$$p \in \left[g_6^{-\tau_1}(z'), \left(1 + \frac{1}{2(1+\eta)}\right) g_6^{-\tau_1}(z') \right].$$

By applying an elementary perturbation (Lemma 18) whose support is contained into $B(g_6^{-\tau_1}(z'), d(x_6, g_6^{-\tau_1}(z'))/2)$, it is possible to perturb g_6 into a diffeomorphism g_7 such
that $g_7^t(z') = p$ (see Figure 5). Applying this process t times, for every
\[
p \in \left[g_6^{-\tau_1}(z'), \left(1 + \frac{1}{2(1 + \eta)}\right)^t g_6^{-\tau_1}(z') \right],
\]
it is possible to perturb g_6 into a diffeomorphism g_7 such that $g_7^{-\tau_1}(z') = p$ (the supports of the perturbations are disjoint because the expansion of $g_6^{-\tau_1}$ is bigger than 3). But as T' satisfies Equation (5), the union
\[
\bigcup_{t \geq 0} \left[g_6^{-\tau_1}(z'), \left(1 + \frac{1}{2(1 + \eta)}\right)^t g_6^{-\tau_1}(z') \right]
\]
covers all the interval $[g_6^{-\tau_1}T'(z'), +\infty[$. By the hypothesis made on y', we also have $y' \in [g_6^{-\tau_1}T'(z'), +\infty[$; this proves the lemma. \hfill \Box

Thus, by hypothesis (iv), it is possible to apply Lemma 23 to our setting. This gives us a diffeomorphism g_7.

Step 8: final perturbation to put the segment of orbit on the grid. To summarize, we have a diffeomorphism $g_7 \in \mathcal{V}'$, and periodic orbit ω_{x_7} of g_7, stablished by $(g_7)_N$, which bears a measure close to μ. We also have a segment of real orbit of g_7 which links the points $y_7 \in U$ and z, where z is such that $(g_7)_N(z) \in (\omega_{x_7})_N$. To finish the proof of the lemma, it remains to perturb g_7 so that the segment of orbit which links the points y_7 and z is stabilized by the discretization $(g_7)_N$.

We now observe that by the construction we have made, the distance between two different points of the segment of orbit under g_7 between y_7 and z is bigger than $2(1 + \eta')/N$, and the distance between one point of this segment of orbit and a points of ω_{x_7} is bigger than $(1 + \eta')/N$.

Indeed, if we take one point of the segment of forward orbit $z, g_7^{-1}(z), \cdots, g_7^{-t_2-t_3}(z)$, and one point in the periodic orbit ω_{x_7}, this is due to the hypothesis $\|z - x_7\| \geq R_0/N$ (R_0 being defined by Equation (2)) combined with Equation (3). If we take one point in this segment $z, g_7^{-1}(z), \cdots, g_7^{-t_2-t_3}(z)$, and one among the rest of the points (that is, the segment of orbit between y_7 and z), this is due to the fact that the Lyapunov exponent of $g_7^{\tau_1}$ in x_7 is bigger than 3, and to Equation (4).

Figure 5. Perturbation such that the point y'_6 belongs to the negative orbit of z': the initial orbit is drawn in blue (below) and the perturbed orbit in red (above). From a certain time, the red orbit overtakes the blue orbit.
If we take one point of the form $g_7^{-t}(z)$, with $t > t_2 + t_3$, but belonging to the neighbourhood of ω_{x_7}, where g_7 is linear, and one point of ω_{x_7}, this follows from the estimation given by Equation (1) applied to $\|v\| \geq R_0/N$. If for the second point, instead of considering a point of ω_{x_7}, we take an element of the segment of orbit between y_7 and z, this follows from the fact that the Lyapunov exponent of g_7^{-t} in x_7 is bigger than 3.

Finally, for the points of the orbit that are not in the neighbourhood of ω_{x_7} where g_7 is linear, the property arises from hypothesis (iii) made on N.

Thus, by Lemma 19, we are able to perturb each of the points of the segment of orbit under g_7 between y_7 and z, such that each of these points belongs to the grid. This gives us a diffeomorphism $g_8 \in \mathcal{V}$.

To conclude, we have a point $y_8 \in \mathcal{U}$ whose orbit under $(g_8)_N$ falls on the periodic orbit $(\omega_{x_7})_N$, which bears a measure ε-close to μ. The lemma is proved.

The proof in higher dimensions is almost identical. The perturbation lemmas are still true9, and the arguments easily adapts by considering the “super-stable” manifold of the orbit ω_x, that is the set of points $y \in \mathbb{T}^n$ whose positive orbit is tangent to the Oseledets subspace corresponding to the maximal Lyapunov exponent. In particular, Lemma 16 is still true in this setting, and the connecting lemma for pseudo-orbits MR2090361 implies that generically, this “super-stable” manifold is dense in \mathbb{T}^n.

The proofs of the two statements of the addendum are almost identical.

For the first statement (the fact that for every $\varepsilon > 0$, the basin of attraction of the discrete measure can be supposed to contain a ε-dense subset of the torus), we apply exactly the same proof than that of Lemma 8: making smaller perturbations of the diffeomorphism if necessary, we can suppose that the stable manifold of y_8 is ε-dense. Thus, there exists a segment of backward orbit of y_8 which is ε-dense, and we apply the same strategy of proof consisting in putting this segment of orbit on the grid.

For the second statement, it suffices to apply the strategy of the first statement, and to conjugate the obtained diffeomorphism g_9 by an appropriate conservative diffeomorphism with small norm (this norm can be supposed to be as small as desired by taking ε small), so that the image of the ε-dense subset of \mathbb{T}^2 by the conjugation contains the set E.

To obtain Theorem 6 (dealing with the dissipative case) it suffices to replace the use of Lemmas 21 and 12 by the following easier statement.

Lemma 24. For every $\alpha > 0$ and every $R_0 > 0$, there exists three times $t_1, t_2 \geq 0$ and $t_4 \geq 0$ such that:

- there exists $v \in TT^h_{f_1(x)} \cap \mathbb{Z}^n$ such that $\|v\| \geq R_0$ and
 $$(\tilde{D}f_{t_1} \circ \cdots \circ \tilde{D}f_{t_1})(v) = 0;$$

- if $v \in TT^h_{f_1(x)}$ is such that the angle between v and $G_{f_1(x)}$ is bigger than α, then the angle between $Df_{t_1}^{-t_2}v$ and $F_{f_1-t_2(x)}$ is smaller than α (see Figure 4).

Proof of Lemma 24. This comes from Oseledets theorem and the hypotheses made on the Lyapunov exponents of x, and in particular that their sum is strictly negative. \square

9. In particular, Lemma 20 can be obtained by considering a plane (P) containing both x and y and taking a foliation of \mathbb{R}^n by planes parallel to (P). The desired diffeomorphism is then defined on each leaf by the time-$\psi(t)$ of the Hamiltonian given in the proof of the lemma, with ψ is a smooth compactly supported map on the space $\mathbb{R}^n/(P)$, equal to 1 in 0 and with small C^1 norm.
6. Numerical simulations

In this section, we present the results of the numerical simulations we have conducted in connection with Theorem 4.

6.1. Simulations of the measures $\mu_x^{f_N}$ for conservative torus diffeomorphisms.

We have computed numerically the measures $\mu_x^{f_N}$ for conservative diffeomorphisms $f \in \text{Diff}^1(T^2, \text{Leb})$, for the uniform grids

$$E_N = \left\{ \left(\frac{i}{N}, \frac{j}{N} \right) \in T^2 \mid 0 \leq i, j \leq N - 1 \right\},$$

and for starting points x either equal to $(1/2, 1/2)$, or chosen at random. We present images of sizes 128×128 pixels representing in logarithmic scale the density of the measures $\mu_x^{f_N}$: each pixel is coloured according to the measure carried by the set of points of E_N it covers. Blue corresponds to a pixel with very small measure and red to a pixel with very high measure. Scales on the right of each image corresponds to the measure of one pixel on the \log_{10} scale: if green corresponds to -3, then a green pixel will have measure 10^{-3} for $\mu_x^{f_N}$. For information, when Lebesgue measure is represented, all the pixels have a value about -4.2.

We have carried out the simulations on two different diffeomorphisms.

- The first conservative diffeomorphism f_1 is of the form $f_1 = Q \circ P$, where both P and Q are homeomorphisms of the torus that modify only one coordinate:

$$P(x, y) = (x, y + p(x)) \quad \text{and} \quad Q(x, y) = (x + q(y), y),$$

with

$$p(x) = \frac{1}{209} \cos(2\pi x) + \frac{1}{471} \sin(2\pi x) - \frac{1}{703} \cos(2\pi x),$$

$$q(y) = \frac{1}{287} \cos(2\pi y) + \frac{1}{403} \sin(2\pi y) - \frac{1}{841} \sin(2\pi y).$$

This C^∞-diffeomorphism is in fact C^1-close to the identity. This allows f_1 to admit periodic orbits with not too large periods. Note that f_1 is also chosen so that it is not C^2-close to the identity.

- The second conservative diffeomorphism f_2 is the composition $f_2 = f_1 \circ A$, with A the linear Anosov map

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

As f_1 is C^1-close to Id, the diffeomorphism f_2 is C^0-conjugated to the linear automorphism A, which is in particular ergodic.

To compute these measures, we used Floyd’s Algorithm (or the “tortoise and the hare algorithm”). It has appeared that on the examples of diffeomorphisms we have tested, we were able to test orders of discretization $N \approx 2^{20}$. Thus, the first figures represent the measures $\mu_x^{f_N}$ for $N \in [2^{20} + 1, 2^{20} + 9]$. We have also computed the distance between the measure $\mu_x^{f_N}$ and Lebesgue measure (see Figure 6). The distance we have chosen is given by the formula

$$d(\mu, \nu) = \sum_{k=0}^{\infty} \frac{1}{2^k} \sum_{i,j=0}^{2^k-1} |\mu(C_{i,j,k}) - \nu(C_{i,j,k})| \in [0, 2],$$

where

$$C_{i,j,k} = \left[\frac{i}{2^k}, \frac{i+1}{2^k} \right) \times \left[\frac{j}{2^k}, \frac{j+1}{2^k} \right].$$
In practice, we have computed an approximation of this quantity by summing only on the $k \in [0, 7]$.

Figure 6. Distance between Lebesgue measure and the measure $\mu^{(f_i)_N}$ depending on N for f_1 (left) and f_2 (right), on the grids E_N with $N = 2^{20} + k$, $k = 1, \ldots, 100$.

Figure 7. Simulations of invariant measures $\mu^{(f_i)_N}_x$ on the grids E_N, with $N = 2^{20} + i$, $i = 1, \ldots, 6$ and $x = (1/2, 1/2)$ (from left to right and top to bottom).

In the case of the diffeomorphism f_1, which is close to the identity, we observe a strong variation of the measure $\mu^{(f_1)_N}_x$ depending on N (left of Figure 6 and Figure 7). More precisely, for 7 on the 9 orders of discretization represented on Figure 7, these measures seem to be supported by a small curve; for $N = 2^{20} + 3$, this measure seems to be supported by a figure-8 curve, and for $N = 2^{20} + 5$, the support of the measure is
Figure 8. Simulations of invariant measures $\mu_{x}^{(f_1)_N}$ on the grid E_N, with $N = 2^{23}$, and x a random point of T^2, represented by the black and white box. The behaviour observed on the top left picture is the most frequent, but we also observe other kind of measures: for example, the measures has a very small support like on the bottom left picture on about 10 of the 100 random draws we have made; we even see appearing the strange behaviour of the last picture once.

quite complicated and looks like an interlaced curve. The fact that the measures $\mu_{x}^{(f_1)_N}$ strongly depend on N reflects the behaviour predicted by Theorem 4: in theory, for a generic C^1 diffeomorphism, the measures $\mu_{x}^{(f)_N}$ should accumulate on the whole set of f-invariant measures; here we see that these measures strongly depend on N (moreover, we can see on Figure 6 that on the orders of discretization we have tested, these measures are never close to Lebesgue measure). We have no satisfying explanation to the specific shape of the supports of the measures. When we fix the order of discretization and make vary the starting point x, the behaviour is very similar: the measures $\mu_{x}^{(f_1)_N}$ widely depend on the point x (see Figure 8). We also remark that increasing the order of discretizations does not make the measures $\mu_{x}^{(f_1)_N}$ evolve more smoothly.

For f_2 (a small C^1-perturbation of the linear Anosov map A), most of the time, the measures $\mu_{x}^{(f_2)_N}$ are close to Lebesgue measure, but for one order of discretization N (here, $N = 2^{20} + 4$), the measure becomes very different from Lebesgue measure (we can see on the right of Figure 6 that this phenomenon appears twice when $N \in [2^{20} + 1, 2^{20} + 100]$). The same phenomenon holds when we fix the order of discretization but change the starting point x (see Figure 10), except that the number of apparition of measures that are singular with respect to Lebesgue measure is smaller than in Figure 9. Again, we think that this follows from the fact that the orders of discretizations tested are bigger. In this case, the simulations suggest the following behaviour: when the
order of discretization N increases, the frequency of apparition of measures $\mu_x^{(f_x)_N}$ far away from Lebesgue measures tends to 0.
Recall that Addendum 5 states that if x is fixed, then for a generic $f \in \text{Diff}^1(T^2, \text{Leb})$, the measures $\mu_{f^N_x}$ accumulate on the whole set of f-invariant measures, but do not say anything about, for instance, the frequency of orders N such that $\mu_{f^N_x}$ is not close to Lebesgue measure. It is natural to think that this frequency depends a lot on f; for example that such N are very rare close to an Anosov diffeomorphism and more frequent close to an “elliptic” dynamics like the identity. The results of numerical simulations seem to confirm this heuristic.

6.2. Simulations of the measures $\mu_{f^N_T}$ for conservative torus diffeomorphisms.

We now present the results of numerical simulations of the measures $\mu_{f^N_T}$. Recall that the measure $\mu_{f^N_T}$ is supported by the union of periodic orbits of f_N, and is such that the total measure of each periodic orbit is equal to the cardinality of its basin of attraction.

First, we simulate a conservative diffeomorphism g_1 which is close to the identity in the C^1 topology. We have chosen $g_1 = Q \circ P$, where
\[
P(x, y) = (x, y + p(x)) \quad \text{and} \quad Q(x, y) = (x + q(y), y),
\]
with
\[
p(x) = \frac{1}{209} \cos(2\pi \times 17x) + \frac{1}{271} \sin(2\pi \times 27x) - \frac{1}{703} \cos(2\pi \times 35x),
\]
\[
q(y) = \frac{1}{287} \cos(2\pi \times 15y) + \frac{1}{203} \sin(2\pi \times 27y) - \frac{1}{841} \sin(2\pi \times 38y).
\]

We have also simulated the conservative diffeomorphism $g_2 = g_1 \circ A$, with A the standard Anosov automorphism
\[
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix},
\]
thus g_2 is a small C^1 perturbation of A; in particular the theory asserts that it is topologically conjugated to A. We can test whether this property can be observed on simulations or not.

\[\text{Figure 11. Distance between Lebesgue measure and the measure } \mu_{f^N_T} \text{ depending on } N \text{ for } g_1 \text{ (left) and } g_2 \text{ (right), on the grids } E_N \text{ with } N = 128k, k = 1, \ldots, 150.\]

For g_1, the distance $d(\mu_{f^N_T}, \text{Leb})$ is quite quickly smaller than 0.1, and oscillates between 0.05 and 0.1 from $N = 128 \times 30$. It is not clear if in this case, the sequence of measures $(\mu_{f^N_T})_N$ converge towards Lebesgue measure or not (while for the C^0 perturbation of the identity, it is clear that these measures do not converge to anything, see [Gui15e]). The distance $d(\mu_{f^N_T}, \text{Leb})$ even seem to increase slowly (in average — there
are a lot of oscillations) from $N = 50 \times 128$. We have the same kind of conclusion for g_2: by looking at Figure 11, we can not decide if the sequence of measures $(\mu^{(g_2)}_{T^2})$ seem to tend to Lebesgue measure or not.

![Figure 12](image1.png)

Figure 12. Simulations of invariant measures $\mu^{(g_1)}_{T^2}$ on the grids E_N, with $N = 2^k$, $k = 10, 14, 15$ (from left to right and top to bottom).

The behaviour of the computed invariant measures $\mu^{(g_1)}_{T^2}$, where g_1 is a small C^1 perturbation of the identity, is way smoother than in the C^0 case (compare Figure 12 with [Gui15e]). Indeed, the measure $\mu^{(g_1)}_{T^2}$ has quickly a big component which is close to Lebesgue measure: the images contain a lot of light blue. Thus, we could be tempted to conclude that these measures converge to Lebesgue measure. However, there are still little regions that have a big measure: in the example of Figure 12, it seems that there are invariant curves that attract a lot of the points of the grid (as can also be observed on Figure 7). We have no explanation to this phenomenon, and we do not know if it still occurs when the order of discretization is very large.

![Figure 13](image2.png)

Figure 13. Simulations of invariant measures $\mu^{(g_2)}_{T^2}$ on the grids E_N, with $N = 2^k$, $k = 10, 14, 15$ (from left to right and top to bottom).

For the discretizations of g_2, the simulations on grids of size $2^k \times 2^k$ might suggest that the measures $\mu^{(g_2)}_{T^2}$ tend to Lebesgue measure (Figure 13). Actually, when we perform a lot of simulations, we realize that there are also big variations of the behaviour of the measures (Figure 14): the measure is often well distributed in the torus, and sometimes quite singular with respect to Lebesgue measure (as it can be seen in Figure 11). This behaviour is almost identical to that observed in the C^0 case in the neighbourhood of A (see [Gui15e]).
Figure 14. Simulations of invariant measures $\mu^{(q_2)_N}_{T^2}$ on the grids E_N, with $N = 11516, \cdots , 11524$ (from left to right and top to bottom).

Appendix A. A more general setting where the theorems are still true

Here, we give weaker assumptions under which the theorems of this paper are still true: the framework “torus T^n with grids E_N and Lebesgue measure” could be seen as a little too restrictive.

So, we take a compact smooth manifold M (possibly with boundary) and choose a partition M_1, \cdots , M_k of M into closed sets\footnote{That is, $\bigcup_i M_i = M$, and for $i \neq j$, the intersection between the interiors of M_i and M_j are empty.} with smooth boundaries, such that for every i, there exists a chart $\varphi_i : M_i \to \mathbb{R}^n$. We endow \mathbb{R}^n with the euclidean distance, which defines a distance on M via the charts ϕ_i (this distance is not necessarily continuous). From now, we study what happens on a single chart, as what happens on the neighbourhoods of these charts “counts for nothing” from the Lebesgue measure viewpoint.

Finally, we suppose that the uniform measures on the grids $E_N = \bigcup_i E_{N,i}$ converge to a smooth measure λ on M when N goes to infinity.

We also need that the grids behave locally as the canonical grids on the torus.

For every i, we choose a sequence $(\kappa_{N,i})_N$ of positive real numbers such that $\kappa_{N,i} \to 0$. This defines a sequence $E_{N,i}$ of grids on the set M_i by $E_{N,i} = \varphi_i^{-1}(\kappa_{N,i} \mathbb{Z}^n)$. Also, the canonical projection $\pi : \mathbb{R}^n \to \mathbb{Z}^n$ (see Definition 9) allows to define the projection $\pi_{N,i}$, defined as the projection on $\kappa_{N,i} \mathbb{Z}^n$ in the coordinates given by φ_i:

$$\pi_{N,i} : \quad M_i \to E_{N,i} \quad x \mapsto \varphi_i^{-1}(\kappa_{N,i} \pi(\kappa_{N,i}^{-1} \varphi_i(x))).$$

We easily check that under these conditions, Theorem A is still true, that is if we replace the torus T^n by M, the uniform grids by the grids E_N, the canonical projections by the projections $\pi_{N,i}$, and Lebesgue measure by the measure λ.

Appendix B. Proof of Lemma 13

Let us summarize the different notations we will use throughout this section. We will denote by 0^k the origin of the space \mathbb{R}^k, and $W^k =]-1/2, 1/2[^{nk}$ (unless otherwise stated). In this section, we will denote $B_R = B_\infty(0, R)$ and $D_c(E)$ the density of a
PHYSICAL MEASURES OF DISCRETIZATIONS OF GENERIC Diffeomorphisms

“continuous” set $E \subset \mathbb{R}^n$, defined as (when the limit exists)

$$D_c(E) = \lim_{R \to +\infty} \frac{\text{Leb}(B_R \cap E)}{\text{Leb}(B_R)},$$

while for a discrete set $E \subset \mathbb{R}^n$, the notation $D_d(E)$ will indicate the discrete density of E, defined as (when the limit exists)

$$D_d(E) = \lim_{R \to +\infty} \frac{\text{Card}(B_R \cap E)}{\text{Card}(B_R \cap \mathbb{Z}^n)}.$$

We will consider $(A_k)_{k \geq 1}$ a sequence of matrices of $SL_n(\mathbb{R})$, and denote

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbb{Z}^n).$$

Also, Λ_k will be the lattice $M_{A_1, \cdots, A_k} \mathbb{Z}^{n(k+1)}$, with

$$M_{A_1, \cdots, A_k} = \begin{pmatrix} A_1 & -\text{Id} \\ A_2 & -\text{Id} \\ \vdots & \vdots \\ A_k & -\text{Id} \\ \text{Id} & & & \end{pmatrix} \in M_{n(k+1)}(\mathbb{R}),$$

and $\tilde{\Lambda}_k$ will be the lattice $\widetilde{M}_{A_1, \cdots, A_k} \mathbb{Z}^{nk}$, with

$$\widetilde{M}_{A_1, \cdots, A_k} = \begin{pmatrix} A_1 & -\text{Id} \\ A_2 & -\text{Id} \\ \vdots & \vdots \\ A_{k-1} & -\text{Id} \\ A_k & \text{Id} \end{pmatrix} \in M_{nk}(\mathbb{R}).$$

Finally, we will denote

$$\pi^k(A_1, \cdots, A_k) = D_c\left(W^{k+1} + \Lambda_k\right)$$

the mean rate of injectivity in time k of A_1, \cdots, A_k.

B.1. A geometric viewpoint to compute the rate of injectivity in arbitrary times. We begin by motivating the introduction of model sets by giving an alternative construction of the image sets $(\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbb{Z}^n)$ using this formalism.

Let $A_1, \cdots, A_k \in GL_n(\mathbb{R})$, then

$$\Gamma_k = (\widehat{A}_k \circ \cdots \circ \widehat{A}_1)(\mathbb{Z}^n)$$

$$= \{p_2(\lambda) \mid \lambda_k \in \Lambda_k, p_1(\lambda) \in W^k\}$$

$$= p_2\left(\Lambda \cap \left(p_1^{-1}(W^k)\right)\right),$$

with p_1 the projection on the nk first coordinates and p_2 the projection on the n last coordinates. This allows us to see the set Γ_k as a model set.

Here, we suppose that the set $p_1(\Lambda_k)$ is dense (thus, equidistributed) in the image set $\text{im} p_1$ (note that this condition is generic among the sequences of invertible linear maps). In particular, the set $\{p_2(\gamma) \mid \gamma \in \Lambda_k\}$ is equidistributed in the window W^k.

The following property makes the link between the density of Γ_k — that is, the rate of injectivity of A_1, \cdots, A_k — and the density of the union of unit cubes centred on the points of the lattice Λ_k (see Figure 15). This formula seems to be very specific to the model sets defined by the matrix M_{A_1, \cdots, A_k} and the window W^k, it is unlikely that it can be generalized to other model sets.
Figure 15. Geometric construction to compute the rate of injectivity: the green points are the elements of Λ, the blue parallelogram is a fundamental domain of Λ and the grey squares are centred on the points of Λ and have radii 1/2. The rate of injectivity is equal to the area of the intersection between the union of the grey squares and the blue parallelogram.

Proposition 25. For a generic sequence of matrices $(A_k)_k$ of $SL_n(\mathbf{R})$, we have

$$D_d(\Gamma_k) = D_c(W^k + \tilde{\Lambda}_k) = \tau^k(A_1, \cdots, A_k).$$

Remark 26. The density on the left of the equality is the density of a discrete set (that is, with respect to counting measure), whereas the density on the right of the equality is that of a continuous set (that is, with respect to Lebesgue measure). The two notions coincide when we consider discrete sets as sums of Dirac masses.

Remark 27. Proposition 25 asserts that for a generic sequence of matrices, the rate of injectivity τ^k in time k coincides with the mean rate of injectivity τ_k, which is continuous and piecewise polynomial of degree $\leq nk$ in the coefficients of the matrix.

Proof of Proposition 25. We want to determine the density of Γ_k. By Equation (7), we have

$$x \in \Gamma_k \iff x \in \mathbf{Z}^n \text{ and } \exists \lambda \in \Lambda_k : x = p_2(\lambda), p_1(\lambda) \in W^k.$$

But if $x = p_2(\lambda)$, then we can write $\lambda = (\tilde{\lambda}, 0^n) + (0^{(k-1)n}, -x, x)$ with $\tilde{\lambda} \in \tilde{\Lambda}_k$. Thus,

$$x \in \Gamma_k \iff x \in \mathbf{Z}^n \text{ and } \exists \tilde{\lambda} \in \tilde{\Lambda}_k : (0^{(k-1)n}, -x) - \tilde{\lambda} \in W^k$$

$$\iff x \in \mathbf{Z}^n \text{ and } (0^{(k-1)n}, x) \in \bigcup_{\tilde{\lambda} \in \tilde{\Lambda}_k} \tilde{\lambda} - W^k.$$

Thus, $x \in \Gamma_k$ if and only if the projection of $(0^{(k-1)n}, x)$ on $\mathbf{R}^{nk}/\tilde{\Lambda}_k$ belongs to $\bigcup_{\tilde{\lambda} \in \tilde{\Lambda}_k} \tilde{\lambda} - W^k$. Then, the proposition follows directly from the fact that the points of the form $(0^{(k-1)n}, x)$, with $x \in \mathbf{Z}^n$, are equidistributed in $\mathbf{R}^{nk}/\tilde{\Lambda}_k$.

To prove this equidistribution, we compute the inverse matrix of $\tilde{M}_{A_1, \cdots, A_k}$:

$$\tilde{M}_{A_1, \cdots, A_k}^{-1} = \begin{pmatrix}
A_1^{-1} & A_1^{-1}A_2^{-1} & A_1^{-1}A_2^{-1}A_3^{-1} & \cdots & A_1^{-1} \cdots A_k^{-1} \\
A_2^{-1} & A_2^{-1}A_3^{-1} & \cdots & A_2^{-1} \cdots A_k^{-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_k^{-1} & A_k^{-1}A_{k-1}^{-1} & \cdots & A_k^{-1}
\end{pmatrix}.$$
Thus, the set of points of the form \((0^{(k-1)n}, x)\) in \(\mathbb{R}^{nk}/\Lambda_k\) corresponds to the image of the action

\[
Z^n \ni x \mapsto \left(\begin{array}{cccc}
A_1^{-1} & \cdots & A_k^{-1} \\
A_2^{-1} & \cdots & A_k^{-1} \\
& \vdots & \\
A_{k-1}^{-1} & A_k^{-1} \\
\end{array} \right) x
\]

of \(Z^n\) on the canonical torus \(\mathbb{R}^{nk}/Z^{nk}\). But this action is ergodic (even in restriction to the first coordinate) when the sequence of matrices is generic. \(\square\)

B.2. Proof of Lemma 13: generically, the asymptotic rate is zero. We now come to the proof of Lemma 13. We will use an induction to decrease the rate step by step. Recall that \(\tau^{k}(A_1, \cdots, A_k)\) indicates the density of the set \(W^{k+1} + \Lambda_k\).

More precisely, we will prove that for a generic sequence \((A_k)_{k \geq 1}\), if \(\tau^k(A_1, \cdots, A_k) > 1/\ell\), then \(\tau^{k+\ell-1}(A_1, \cdots, A_{k+\ell-1})\) is strictly smaller than \(\tau^k(A_1, \cdots, A_k)\). More precisely, we consider the maximal number of disjoint translates of \(W^k + \Lambda_k\) in \(\mathbb{R}^{nk}\); we easily see that if the density of \(W^k + \Lambda_k\) is bigger than \(1/\ell\), then there can not be more than \(\ell\) disjoint translates of \(W^k + \Lambda_k\) in \(\mathbb{R}^{nk}\) (Lemma 28). At this point, Lemma 31 states that if the sequence of matrices is generic, then either the density of \(W^{k+1} + \Lambda_{k+1}\) is smaller than that of \(W^k + \Lambda_k\) (Figure 16), or there can not be more than \(\ell - 1\) disjoint translates of \(W^{k+1} + \Lambda_{k+1}\) in \(\mathbb{R}^{n(k+1)}\) (see Figure 17). Applying this reasoning (at most) \(\ell - 1\) times, we obtain that the density of \(W^{k+\ell-1} + \Lambda_{k+\ell-1}\) is smaller than that of \(W^k + \Lambda_k\). For example if \(D_c(W^k + \Lambda_k) > 1/3\), then \(D_c(W^{k+2} + \Lambda_{k+2}) < D(W^k + \Lambda_k)\) (see Figure 18). To apply this strategy in practice, we have to obtain quantitative estimates about the loss of density we get between times \(k\) and \(k + \ell - 1\).

Remark that with this strategy, we do not need to make “clever” perturbations of the matrices: provided that the coefficients of the matrices are rationally independent, the perturbation of each matrix is made independently from that of the others. However, this reasoning does not tell when exactly the rate of injectivity decreases (likely, in most of cases, the speed of decreasing of the rate of injectivity is much faster than the one obtained by this method), and does not say either where exactly the loss of injectivity occurs in the image sets.

We will indeed prove a more precise statement of Lemma 13.

Lemma 13. For a generic sequence of matrices \((A_k)_{k \geq 1}\) of \(\ell \infty(\text{SL}_n(\mathbb{R}))\), for every \(\ell \in \mathbb{N}\), there exists \(\lambda_\ell \in [0,1]\) such that for every \(k \in \mathbb{N}\),

\[
\tau^{\ell k}(A_1, \cdots, A_k) \leq \lambda_\ell^k + \frac{1}{\ell}.
\]

Thus, the asymptotic rate of injectivity \(\tau^\infty((A_k)_{k \geq 1})\) is equal to zero.

The following lemma expresses that if the density of \(W^k + \Lambda_k\) is bigger than \(1/\ell\), then there can not be more than \(\ell\) disjoint translates of \(W^k + \Lambda_k\), and gives an estimation on the size of these intersections.

Lemma 28. Let \(W^k = [-1/2, 1/2]^k\) and \(\Lambda \subset \mathbb{R}^k\) be a lattice with covolume 1 such that \(D_c(W^k + \Lambda) \geq 1/\ell\). Then, for every collection \(v_1, \cdots, v_\ell \in \mathbb{R}^k\), there exists \(i \neq i' \in [1, \ell]\) such that

\[
D_c((W^k + \Lambda + v_i) \cap (W^k + \Lambda + v_{i'})) \geq \frac{2\ell D_c(W^k + \Lambda) - 1}{\ell(\ell - 1)}.
\]
Proof of Lemma 28. For every $v \in \mathbb{R}^k$, the density $D_c(W^k + \Lambda + v)$ is equal to the volume of the projection of W^k on the quotient space \mathbb{R}^k/Λ. As this volume is greater than $1/\ell$, and as the covolume of Λ is 1, the projections of the $W^k + v_i$ overlap, and the volume of the points belonging to at least two different sets is bigger than $\ell D_c(W^k + \Lambda) - 1$. As there are $\ell(\ell - 1)/2$ possibilities of intersection, there exists $i \neq i'$ such that the volume of the intersection between the projections of $W^k + v_i$ and $W^k + v_{i'}$ is bigger than $2(\ell D_c(W^k + \Lambda) - 1)/(\ell(\ell - 1))$. Returning to the whole space \mathbb{R}^k, we get the conclusion of the lemma. \square

We will also need the following lemma, whose proof consists in a simple counting argument.

Lemma 29. Let Λ_1 be a subgroup of \mathbb{R}^m, Λ_2 be such that $\Lambda_1 \oplus \Lambda_2$ is a lattice of covolume 1 of \mathbb{R}^m, and C be a compact subset of \mathbb{R}^m. Let C_1 be the projection of C on the quotient \mathbb{R}^m/Λ_1, and C_2 the projection of C on the quotient $\mathbb{R}^m/(\Lambda_1 \oplus \Lambda_2)$. We denote by

$$a_i = \text{Leb}\left\{ x \in C_1 \mid \text{Card}\{\lambda_2 \in \Lambda_2 \mid x \in C_1 + \lambda_2\} = i \right\}$$

(in particular, $\sum_{i \geq 1} a_i = \text{Leb}(C_1)$). Then,

$$\text{Leb}(C_2) = \sum_{i \geq 1} \frac{a_i}{i}.$$

In particular, the area of C_2 (the projection on the quotient by $\Lambda_1 \oplus \Lambda_2$) is smaller than (or equal to) that of C_1 (the projection on the quotient by Λ_1). The loss of area is given by the following corollary.

Corollary 30. With the same notations as for Lemma 29, if we denote by

$$D_1 = \text{Leb}\left\{ x \in C_1 \mid \text{Card}\{\lambda_2 \in \Lambda_2 \mid x \in C_1 + \lambda_2\} \geq 2 \right\},$$

then,

$$\text{Leb}(C_2) \leq \text{Leb}(C_1) - \frac{D_1}{2}.$$

Recall that we denote $\tilde{\Lambda}_k$ the lattice spanned by the matrix

$$\tilde{M}_{A_1, \ldots, A_k} = \begin{pmatrix} A_1 & -\text{Id} \\ A_2 & -\text{Id} \\ \vdots & \ddots \\ A_{k-1} & -\text{Id} \\ A_k \end{pmatrix} \in M_{nk}(\mathbb{R}),$$

and W^k the cube $[-1/2, 1/2]^nk$. The proof of Lemma 13 will reduce to the following technical lemma.

Lemma 31. For every $\delta > 0$ and every $M > 0$, there exists $\varepsilon > 0$ and an open set of matrices $\mathcal{O} \subset SL_n(\mathbb{R})$, which is δ-dense in the set of matrices of norm $\leq M$, such that if $\ell \geq 2$ and $D_0 > 0$ are such that for every collection of vectors $v_1, \ldots, v_\ell \in \mathbb{R}^n$, there exists $j, j' \in [1, \ell]$ such that

$$D_c\left(\left(W^k + \tilde{\Lambda}_k + (0^{(k-1)n}, v_j)\right) \cap \left(W^k + \tilde{\Lambda}_k + (0^{(k-1)n}, v_{j'})\right)\right) \geq D_0,$$

then for every $B \in \mathcal{O}$, if we denote by $\tilde{\Lambda}_{k+1}$ the lattice spanned by the matrix $\tilde{M}_{A_1, \ldots, A_k, B}$, (1) either $D_c(W^{k+1} + \tilde{\Lambda}_{k+1}) \leq D_c(W^k + \tilde{\Lambda}_k) - \varepsilon D_0/(4\ell)$;
Figure 16. First case of Lemma 31, in the case \(\ell = 3 \): the set \(W_k^{k+1} + \tilde{\Lambda}_{k+1} \) auto-intersects.

Figure 17. Second case of Lemma 31, in the case \(\ell = 3 \): two distinct vertical translates of \(W_k^{k+1} + \tilde{\Lambda}_{k+1} \) intersect (the first translate contains the dark blue thickening of \(W_k + \tilde{\Lambda}_k \), the second is represented in grey).

(2) or for every collection of vectors \(w_1, \ldots, w_{\ell-1} \in \mathbb{R}^n \), there exists \(i \neq i' \in [1, \ell - 1] \) such that

\[
D_{\epsilon} \left(\left(W^{k+1} + \tilde{\Lambda}_{k+1} + (0^{kn}, w_i) \right) \cap \left(W^{k+1} + \tilde{\Lambda}_{k+1} + (0^{kn}, w_{i'}) \right) \right) \geq \varepsilon D_0 / \ell^2.
\]

In a certain sense, the conclusion (1) corresponds to an hyperbolic case, and the conclusion (2) expresses that there is a diffusion between times \(k \) and \(k + 1 \).

Proof of Lemma 31. Let \(O_\varepsilon \) be the set of the matrices \(B \in SL_n(\mathbb{R}) \) satisfying: for any collection of vectors \(w_1, \ldots, w_{\ell-1} \in \mathbb{R}^n \), there exists a set \(U \subset \mathbb{R}^n / B\mathbb{Z}^n \) of measure \(> \varepsilon \) such that every point of \(U \) belongs to at least \(\ell \) different cubes of the collection \((Bv + w_1 + W^1)_{v \in \mathbb{Z}^n, 1 \leq i \leq \ell - 1} \). In other words, every \(x \in \mathbb{R}^n \) whose projection \(\pi \) on \(\mathbb{R}^n / B\mathbb{Z}^n \) belongs to \(U \) satisfies

\[
\sum_{i=1}^{\ell-1} \sum_{v \in \mathbb{Z}^n} 1_{x \in Bv + w_i + W^1} \geq \ell. \tag{9}
\]

We easily see that the sets \(O_\varepsilon \) are open and that the union of these sets over \(\varepsilon > 0 \) is dense (it contains the set of matrices \(B \) whose entries are all irrational). Thus, if we are given \(\delta > 0 \) and \(M > 0 \), there exists \(\varepsilon > 0 \) such that \(O = O_\varepsilon \) is \(\delta \)-dense in the set of matrices of \(SL_n(\mathbb{R}) \) whose norm is smaller than \(M \).

We then choose \(B \in O \) and a collection of vectors \(w_1, \ldots, w_{\ell-1} \in \mathbb{R}^n \). Let \(x \in \mathbb{R}^n \) be such that \(\pi \in U \). By hypothesis on the matrix \(B \), \(x \) satisfies Equation (9), so there exists \(\ell + 1 \) integer vectors \(v_1, \ldots, v_\ell \) and \(\ell \) indices \(i_1, \ldots, i_\ell \) such that the couples \((v_{i_j}, i_{j})\) are pairwise distinct and that

\[
\forall j \in [1, \ell], \quad x \in Bv_{i_j} + w_{i_j} + W^1. \tag{10}
\]

The following formula makes the link between what happens in the \(n \) last and in the \(n \) penultimates coordinates of \(\mathbb{R}^{n(k+1)} \):

\[
W^{k+1} + \tilde{\Lambda}_{k+1} + (0^{(k-1)n}, 0^n, w_{i_j}) = W^{k+1} + \tilde{\Lambda}_{k+1} + (0^{(k-1)n}, -v_{j}, w_{i_j} + Bv_{j}), \tag{11}
\]

(we add a vector belonging to \(\tilde{\Lambda}_{k+1} \)).
We now apply the hypothesis of the lemma to the vectors \(-v_1, \ldots, -v_{\ell+1}\): there exists \(j \neq j' \in [1, \ell]\) such that
\[
D_c\left(\left(W^k + \bar{\Lambda}_k + (0^{(k-1)n}, -v_j)\right) \cap \left(W^k + \bar{\Lambda}_k + (0^{(k-1)n}, -v_{j'})\right)\right) \geq D_0. \quad (12)
\]
Let \(y\) be a point belonging to this intersection. Applying Equations (10) and (12), we get that
\[
(y, x) \in W^{k+1} + (\bar{\Lambda}_k, 0^n) + (0^{(k-1)n}, -v_j, w_{ij} + Bv_j)
\]
and the same for \(j'\).

Two different cases can occur.

(i) Either \(i_j = i_{j'}\) (that is, the translation vectors \(w_{ij}\) and \(w_{ij'}\) are equal). As a consequence, applying Equation (13), we have
\[
(y, x) = (0^{(k-1)n}, v_j, -Bv_j - w_{ij}) \in \left(W^{k+1} + (\bar{\Lambda}_k, 0^n)\right) \cap \left(W^{k+1} + (\bar{\Lambda}_k, 0^n) + v'\right),
\]
with
\[
v' = (0^{(k-1)n}, -(v_{j'} - v_j), B(v_{j'} - v_j)) \in \bar{\Lambda}_{k+1} \setminus \bar{\Lambda}_k.
\]
This implies that the set \(W^{k+1} + \bar{\Lambda}_{k+1}\) auto-intersects (see Figure 16).

(ii) Or \(i_j \neq i_{j'}\) (that is, \(w_{ij} \neq w_{ij'}\)). Combining Equations (13) and (11) (note that \((\bar{\Lambda}_k, 0^n) \subset \bar{\Lambda}_{k+1}\)), we get
\[
(y, x) \in \left(W^{k+1} + \bar{\Lambda}_{k+1} + (0, w_{ij})\right) \cap \left(W^{k+1} + \bar{\Lambda}_{k+1} + (0, w_{ij'})\right).
\]
This implies that two distinct vertical translates of \(W^{k+1} + \bar{\Lambda}_{k+1}\) intersect (see Figure 17).

We now look at the global behaviour of all the \(x\) such that \(\pi \in U\). Again, we have two cases.

(1) Either for more than the half of such \(\pi\) (for Lebesgue measure), we are in the case (i). To each of such \(\pi\) corresponds a translation vector \(w_i\). We choose \(w_i\) such that the set of corresponding \(\pi\) has the biggest measure; this measure is bigger than \(\varepsilon/(2(\ell - 1)) \geq \varepsilon/(2\ell)\). Using the notations of Corollary 30, we get that the density \(D_1\) of the auto-intersection of \(W^{k+1} + \bar{\Lambda}_{k+1} + (0, w_i)\) is bigger than \(D_0\varepsilon/(2\ell)\). This leads to (using Corollary 30)
\[
D_c(W^{k+1} + \bar{\Lambda}_{k+1}) < D_c(W^k + \bar{\Lambda}_k) - \frac{D_0\varepsilon}{4\ell}.
\]
In this case, we get the conclusion (1) of the lemma.

(2) Or for more than the half of such \(\pi\), we are in the case (ii). Choosing the couple \((w_i, w_{i'})\) such that the measure of the set of corresponding \(\pi\) is the greatest, we get
\[
D_c\left(\left(W^{k+1} + \bar{\Lambda}_{k+1} + (0^{kn}, w_i)\right) \cap \left(W^{k+1} + \bar{\Lambda}_{k+1} + (0^{kn}, w_{i'})\right)\right) \geq \frac{D_0\varepsilon}{(\ell - 1)(\ell - 2)}.
\]
In this case, we get the conclusion (2) of the lemma.

\[\square\]

We can now prove Lemma 13.
Proof of Lemma 13. We proceed by induction on k. Suppose that Λ_k is such that $D_c(W^k + \Lambda_k) > 1/\ell$. Then, Lemma 28 ensures that it is not possible to have ℓ disjoint translates of $W^k + \Lambda_k$. Applying Lemma 31, we obtain that either $D_c(W^{k+1} + \Lambda_{k+1}) < D_c(W^k + \Lambda_k)$, or it is not possible to have $\ell - 1$ disjoint translates of $W^{k+1} + \Lambda_{k+1}$. And so on, applying Lemma 31 at most $\ell - 1$ times, there exists $k' \in [k + 1, k + \ell - 1]$ such that $W^{k'} + \Lambda_{k'}$ has additional auto-intersections. Quantitatively, combining Lemmas 28 and 31, we get

$$D_c(W^{k+\ell-1} + \Lambda_{k+\ell-1}) - 1/\ell \leq \frac{\varepsilon}{4\ell} \left(2 - \frac{\varepsilon}{\ell^2} \right) \left(D_c(W^k + \Lambda_k) - 1/\ell \right),$$

thus

$$D_c(W^{k+\ell-1} + \Lambda_{k+\ell-1}) - 1/\ell \leq \frac{\varepsilon}{2\ell^2} \left(D_c(W^k + \Lambda_k) - 1/\ell \right),$$

in other words, if we denote $\tau^k = \frac{\varepsilon}{2\ell^2}(B_1, \ldots, B_k)$ and $\lambda_\ell = 1 - \left(\frac{\varepsilon}{\ell^2} \right)_{\ell}$,

$$\tau^{k+\ell-1} - 1/\ell \leq \lambda_\ell \left(\tau^k - 1/\ell \right). \quad (14)$$

This implies that for every $\ell > 0$, the sequence of rates τ^k is smaller than a sequence converging exponentially fast to $1/\ell$: we get Equation (8). In particular, the asymptotic rate of injectivity is generically equal to zero. □

References

[You02] ______, *What are SRB measures, and which dynamical systems have them?*, J. Statist. Phys. 108 (2002), no. 5-6, 733–754, Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays.

Université Paris-Sud, Universidade Federal Fluminense, Niterói
E-mail address: pierre-antoine.guiheneuf@math.u-psud.fr