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Part I

Topology
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From an etymological viewpoint, the topology is the study of the place. It
studies mathematical objects up to continuous deformations (more precisely, up
to homeomorphisms), it is sometimes called “mathematics of rubber.

Among others, some examples of use of topology:
• Classification of surfaces, and more generally classification of manifolds
via algebraic topology. This can be used in AI to classify geometrical
shapes, for example by using persistent homology.

• Proof of mathematical theorems by using the denseness of simple objects
among big sets of more complicated objects. This is the fundamental
idea of functional analysis; in particular it is used to define the Fourier
transform on the space L2(R).

• Optimisation problems: the theory of compact spaces gives criteria of
existence of optima.

• Definition of numbers and functions by the mean of series. The main
example of this is the theory of power series, which is used for example to
define the functions exp, sin, cos (and thus the number π). The matrix
exponential is also defined from a series, it is the main ingredient for the
resolution of linear differential equations.

• Fixed point theorems, and in particular that of Picard. From this theorem
one gets proofs of theorems like Cauchy-Lipschitz, local inversion, etc.
This fixed point theorem can also be applied to see if Newton method1

converges or not.
• Knot theory, which has applications to dynamical systems, or to the study
of the DNA’s structure.

• Number theory: one way to define p-adic fields Qp is to endow Q with an
appropriate metric and to take its completion with respect to this metric.

Two additional references:
• La première, en français : Mémo de topologie – Frédéric Le Roux https:

//webusers.imj-prg.fr/~frederic.le-roux/enseignement.html

• The second one, in English: Topology without tears – Sidney A. Morris
http://www.topologywithouttears.net/topbook.pdf

1This consists in an algorithm which finds approximate solutions for equations f(x) = 0.
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Chapter 1

Sets and maps

The goal of this small chapter is to revise some concepts of basic set theory.
Let us start with a very simple example of map.

×

×

×

×

x1

x2

y1

y2

f

A B

Figure 1.1: The map f

On this figure, A and B are two sets, each one having two elements: A =
{x1, x2} and B = {y1, y2}. The map f takes its arguments in the set A and
gives outputs in the set B; it is defined by

f : A → B
x 7→ y1.

We also denote A1 = {x1}, A2 = {x2} (which are subsets of A), B1 = {y1} and
B2 = {y2} (which are subsets of B). With this example we will play with image
and inverse image sets.
Exercise 1. 1. Give the list of the subsets of A and the list of the subsets of

B.
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2. Determine all possible image sets for f . Determine all possible inverse
image sets for f .

3. Determine if the following equalities hold:

(a) f
(
A1 ∪A2

)
= f

(
A1
)
∪ f
(
A2
)
;

(b) f
(
A1 ∩A2

)
= f

(
A1
)
∩ f
(
A2
)
;

(c) f−1(B1 ∩B2
)

= f−1(B1
)
∩ f−1(B2

)
;

(d) f−1(B1 ∪B2
)

= f−1(B1
)
∪ f−1(B2

)
;

(e) f−1(f(A2)) = A2;
(f) f(f−1(B)) = B.

It turns out that what happens on this very simple example is true in general,
as explained by the following propositions. The first one treats the case of image
sets.

Proposition 1.1. Let A and B be two sets, and f be a map from A to B. Then
for any subsets A1, A2 of A, one has:

f
(
A1 ∪A2

)
= f

(
A1
)
∪ f
(
A2
)

and
f
(
A1 ∩A2

)
⊆ f

(
A1
)
∩ f
(
A2
)
.

The second proposition treats the case of inverse image sets.

Proposition 1.2. Let A and B be two sets, and f be a map from A to B. For
any subsets B1, B2 of B, one has:

f−1(B1 ∩B2
)

= f−1(B1
)
∩ f−1(B2

)
and

f−1(B1 ∪B2
)

= f−1(B1
)
∪ f−1(B2

)
.

This third and last proposition shows what happens when we play with both
images and inverse images.

Proposition 1.3. Let A and B be two sets, and f be a map from A to B. Let
A1 ⊂ A, then

f−1(f(A1)) ⊇ A1.

Moreover, if f is injective, then the equality holds: f−1(f(A1)) = A1.
Let B1 ⊂ B, then

f(f−1(B1)) ⊆ B1.

Moreover, if f is surjective, then the equality holds: f(f−1(B1)) = B1.
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Supplementary exercises
Exercise 2. Let f : R→ R the map defined by f(0) = 0 and f(x) = sin(1/x) if
x 6= 0. Determine f(]1/2, 2[) and f−1(]1/2, 2[).
Exercise 3. Prove that if f is a map from A to B and A1 ⊂ A, B1 ⊂ B, then

f−1(B{
1) = f−1(B1){.

Prove that if f is injective, then f(A{
1) ⊆ f(A1){, and if f is surjective, then

f(A{
1) ⊇ f(A1){.
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Chapter 2

Normed vector spaces and
their topology

In all this chapter, all the considered vector spaces are real (i.e. R-vector spaces).

2.1 Norms
On the line R, the plane R2 or the space R3, there is a natural way to define a
distance between two vectors by the mean of the Euclidean norm. For example,
for v = (x, y, z) ∈ R3, this norm is defined as

‖v‖2 =
√
x2 + y2 + z2.

The Euclidean distance between two vectors u and v is then given by the norm
of their difference: ‖u − v‖2. More generally, the vector space Rn is endowed
with the Euclidean norm: for v = (v1, . . . , vn) ∈ Rn, one has

‖v‖2 =

√√√√ n∑
i=1

v2
i

and this norm allows to measure distances between vectors.
However, in some circumstances, one would like to measure the distance

between vectors in a different manner. For example in New-York, the good way
to measure distances is to consider the “1-norm”, defined by

‖v‖1 = |x|+ |y|

for v = (x, y). This distance is much more practical than the Euclidean distance
for a New-Yorker to measure traveling time in the city (see Figure 2.1).

More generally, there is no “best” choice of a distance on a vector space.
Rather, for each specific problem there can be more practical choices of distances
than others. To be easily manipulated, these distances have to satisfy some good
properties; classically one will use distances arising from a norm:
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Figure 2.1: City map: in New-York, the good way to measure distance between
two points is to measure the length of the smallest street path between these
two points (red); this distance is usually greater then the Euclidean distance (
greed, dotted).

Definition 2.1. Let V be a vector space. A norm on V is a map N : V → R+
satisfying the following properties:

1. ∀x ∈ V, N(x) = 0 =⇒ x = 0 (separation);
2. ∀x ∈ V, λ ∈ R, N(λx) = |λ|N(x) (absolute homogeneity);
3. ∀x, y ∈ V, N(x+ y) ≤ N(x) +N(y) (triangle inequality).

The distance associated to a norm N on the vector space V is then the map

dN : V × V −→ R+

(x, y) 7−→ N(x− y).

Exercise 4. Prove that the absolute value is a norm on R. Reciprocally, prove
that for any norm N on R, there is a number µ > 0 such that N(x) = µ|x| for
any x ∈ R.
Exercise 5. Prove that the maps x 7→ x2 and x 7→ 2x are not norms on R:
Example 2.2. For any n ∈ N∗ and any p ∈ R, p ≥ 1, one can define on the
vector space Rn the “p-norm”, by

‖v‖p =
(

n∑
i=1
|xi|p

)1/p

for v = (x1, . . . , xn).
Exercise 6. Prove that the map

‖ · ‖∞ : Rn −→ R+
(x1, . . . , xn) 7−→ max

(
|x1|, . . . , |xn|

)
defines a norm on Rn.
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Exercise 7. Prove that for any vectors x, y ∈ V , one has:∣∣N(x)−N(y)
∣∣ ≤ N(x− y).

This is called the inverse triangle inequality.

2.2 Open and closed sets
For now on, V is a vector space endowed with a norm ‖ · ‖.

Definition 2.3. For x ∈ V and r > 0, the ball of center x and radius r is the
set of points whose distance to x is smaller than r:

B(x, r) =
{
y ∈ V | ‖x− y‖ < r

}
.

Exercise 8. In R2, draw the unit open balls (i.e. the balls B(O, 1), where O is
the origin) for the norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ (as defined in Example 2.2 and
Exercise 6).

Definition 2.4. A subset O of V is open if any point of O is the center of a
ball included in O:

∀x ∈ O, ∃r > 0 : B(x, r) ⊂ O.

Let X be a subset of V . A subset O of X is open in X if

∀x ∈ O, ∃r > 0 : B(x, r) ∩X ⊂ O.

Exercise 9. The line R is endowed with the distance given by the absolute value.
Show that for any real numbers a < b the interval ]a, b[ is open. Show that the
interval ]0, 1] is not open but is open in ]−∞, 1].
Example 2.5. Any open ball is open.

Proposition 2.6. Any finite intersection of open sets is open. Any union of
open sets is open.

Exercise 10. Show that the intersection
∞⋂

n=1

]
− 1
n
,

1
n

[
is not open in R. Thus, an infinite intersection of open sets can be not open.

Definition 2.7. A subset F of V is called closed if its complementary is open.

Exercise 11. Prove that the segment [0, 1] is closed.
Be careful, some sets can be both closed and open (for example the whole

vector space V ), and many sets are neither closed nor open (for example [0, 1[
in R).
Exercise 12. Are the following subsets of R closed or open: N, Z, Q, R \Q?
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2.3 Continuity
In this section, V and W are two vector spaces endowed respectively with the
norms ‖ · ‖V and ‖ · ‖W , and X is a subset of V .

Definition 2.8. A map f : X →W is said to be continuous at x ∈ X if:

∀ε > 0, ∃δ > 0 : ∀y ∈ X, ‖x− y‖V < δ =⇒ ‖f(x)− f(y)‖W < ε.

The map f is said to be continuous if it is continuous at every point x ∈ X,
i.e.

∀x ∈ X, ∀ε > 0, ∃δ > 0 : ∀y ∈ X, ‖x− y‖V < δ =⇒ ‖f(x)− f(y)‖W < ε.

Exercise 13. Write with quantifiers the fact that a map f is not continuous.
Prove that the map χR+ , defined on R by χR+(x) = 0 if x < 0 and χR+(x) = 1

if x ≥ 0, is not continuous.
Reminder: the sum of to continuous functions with values in the same vec-

torial space is continuous; the product of two real continuous functions is con-
tinuous.

There is a practical characterisation of continuity in terms of open sets.

Proposition 2.9. A map f : X → W is continuous if and only if the inverse
image of any open subset of W is open in X.

Equivalently, f is continuous if and only if the inverse image of any closed
subset of W is closed in X.

This proposition can be used in two different manners. Of course, one can
prove that a map is continuous by proving that the inverse image of every open
set is open. One can also start from a map which we know to be continuous,
and use it to prove that a subset O of X is open by showing that it is the inverse
image of an open subset of W .

From this proposition we can deduce easily the following:

Proposition 2.10. The composition of two continuous maps is continuous.

In practical, when we have a map defined with a formula and want to prove it
to be continuous, we combine this proposition with the usual properties stating
that the product, sum, inverse, etc. of continuous maps is continuous.
Exercise 14. Prove that the set GLn(R) of invertible matrices is open in the
set Mn(R) of n × n matrices. Prove that the set SLn(R) of matrices with
determinant 1 is closed in Mn(R).

2.4 Uniformly continuous and Lipschitz maps
Here we define two notions that say that a map is “better than continuous”:
uniform continuity and Lipschitz continuity.
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Definition 2.11. A map f : X →W is said to be uniformly continuous if:

∀ε > 0, ∃δ > 0 : ∀x, y ∈ X, ‖x− y‖V < δ =⇒ ‖f(x)− f(y)‖W < ε.

This concept of uniform continuity in central in functional analysis. It can
be used to prove some results of density among continuous maps; for example
the fact that for any interval I, piecewise affine and continuous maps are dense
among continuous maps from I to R. It is also a key notion for defining Fourier
transform of L2 maps.
Exercise 15. Write with quantifiers the fact that a map f is not uniformly
continuous.

Prove that the map

f : R −→ R
x 7−→ x2

is continuous but not uniformly continuous.

Definition 2.12. Let k > 0, a map f : X →W is said to be k-Lipschitz if:

∀x, y ∈ X, ‖f(x)− f(y)‖W ≤ k‖x− y‖V .

A particular class of Lipschitz maps – contractions, which are k-Lipschitz
maps with k < 1 – will play a key role in the theory of complete spaces, where
they will be proved to possess a fixed point. Also, we will see in the differential
calculus part that a C1 map is Lipschitz (via the mean value theorem); this fact
is very important in analysis where it is used to bound norms of functions.
Exercise 16. Write with quantifiers the fact that a map f is not Lipschitz.

Prove that the map

f : R −→ R
x 7−→

√
x

is not Lipschitz. Prove that it is uniformly continuous.

Proposition 2.13. Lipschitz maps are uniformly continuous. Uniformly con-
tinuous maps are continuous.

2.5 Denseness
Definition 2.14. A set D ⊂ X is said to be dense in X if any ball of X meets
D:

∀x ∈ X, ∀ε > 0, B(x, ε) ∩D 6= ∅.

Example 2.15. The set Q of rational numbers is dense in the set R of real
numbers.
Example 2.16. The segment [0, 1] is not dense in the segment [−1, 2].
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2.6 Sequential characterisations
In this section we give some equivalent characterisations of the previous notions
in terms of sequences. As in the previous sections, V and W are two vector
spaces endowed respectively with the norms ‖ · ‖V and ‖ · ‖W , and X is a subset
of V . We first recall the definition of a limit.
Definition 2.17. A sequence (un)n∈N ∈ V N admits ` ∈ V as a limit if

∀ε > 0, ∃N ∈ N : ∀n ≥ N, ‖un − `‖V < ε.

Exercise 17. Prove that if a sequence (un)n∈N ∈ V N converges to `1 and `2,
then `1 = `2.
Proposition 2.18. A subset F of X is closed if and only if for any sequence
(un)n∈N ∈ FN of points of F which converges to ` ∈ X, the limit ` is in F .
Example 2.19. The set Q of rational numbers is not closed in R, as there exists
a sequence of rational numbers converging to

√
2 /∈ Q (for example the sequence

of decimal approximations of
√

2).
Proposition 2.20. A map f : X → F is continuous if and only if for any
sequence (un)n∈N ∈ XN converging to ` ∈ X, the sequence

(
f(un)

)
n∈N converges

to f(`).
Proposition 2.21. A subset D of X is dense in X if and only if for any point
x ∈ X, there exists a sequence (un)n∈N ∈ DN of points of D which converges to
x.
Example 2.22. The set GLn(R) of invertible matrices is dense in the set Mn(R)
of n× n matrices.

To see this, one can use the canonical form of matrices under equivalence: by
a Gaussian elimination, one can prove that for any matrix M ∈ Mn(R), there
exists two invertible matrices P,Q ∈ GLn(R) such that

M = P



1
. . . (0)

1
0

(0)
. . .

0


Q.

Then, the sequence (Mk)k≥1 defined by

Mk = P



1
. . . (0)

1
1/k

(0)
. . .

1/k


Q
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is a sequence of invertible matrices which converges to M .

2.7 limsup, liminf
Let (un)n∈N ∈ RN be a real sequence. There are a lot of examples for which
such a sequence admit no limit in +∞: take for example the sequence defined
by un = (−1)n. To bypass this problem, it is possible to define two numbers –
called supremum and infimum limits – which bound away from above and below
all the asymptotics of the sequence.

Definition 2.23. Let (un)n∈N ∈ RN be a real sequence. The supremum limit
of this sequence is the number (possibly equal to +∞ or −∞)

lim sup
n→+∞

un = lim
n→+∞

sup{um | m ≥ n}.

Similarly, the infimum limit of this sequence is the number (possibly equal to
+∞ or −∞)

lim inf
n→+∞

un = lim
n→+∞

inf{um | m ≥ n}.

The crucial fact of this definition is that infimum and supremum limits are
well defined. Indeed, the sequence (sup{um | m ≥ n})n∈N is decreasing1 and a
decreasing sequence always has a well defined limit. Remark that the supremum
limit can be equal to +∞ (in the case where at each time, the supremum is equal
to +∞) or to −∞ (in the case where the suprema form a sequence of numbers
tending to −∞).
Exercise 18. Let (un)n∈N ∈ RN be defined as un = (−1)n. Compute lim supn→+∞ un

and lim infn→+∞ un.

Proposition 2.24. A real sequence (un)n∈N ∈ RN converges to ` ∈ R ∪ {±∞}
if and only if lim supn→+∞ un = lim infn→+∞ un = `.

Supplementary exercises
Exercise 19. Let V be a vector space, and x ∈ V , R ≥ 0. Prove that any closed
ball, defined by

B(x,R) = {y ∈ V | ‖x− y‖ ≤ R}

is closed. Indication: use the sequential characterization of Proposition 2.18.
Exercise 20. Show that if a sequence converges, then it is bounded, i.e. there
exists R > 0 such that un ∈ B(0, R) for any n ∈ N.

1To see this, observe that {um | m ≥ n + 1} ⊂ {um | m ≥ n}.
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Chapter 3

Compactness

First, a warning: I will cheat a lot during this chapter, as we will not see any
of the two classical definitions of compacity. . .

Throughout this chapter, V is a finite dimensional vector space equipped
with a norm ‖ · ‖.

3.1 Definition and first properties
Definition 3.1. A set K ⊂ V is called compact if any real continuous function
f : K → R is bounded and attains its bounds, i.e.:

∃a, b ∈ K : ∀x ∈ K, f(a) ≤ f(x) ≤ f(b).

Exercise 21. Prove that any finite set is compact.
Example 3.2. The set R is not compact, as the map IdR is continuous but not
bounded.

In fact, this definition is about a property we want to be satisfied by some
sets, but is quite inconvenient to use. So we need some equivalent characterisa-
tions of compact sets.

Definition 3.3. A set B ⊂ V is bounded if it is included in some ball centered
at the origin:

∃R > 0 : B ⊆ B(0, R).

Theorem 3.4. Let V be a finite dimensional vector space. A set K ⊂ V is
compact if and only if it is closed and bounded.

It is easy to see that a set which is not closed is not compact. It is a bit
more complicated to prove that a set which is not closed is not compact, and
even more complicated to prove that in finite dimension, a set which is closed
and bounded is compact. One of the proofs of this statement uses supremum
limits. We outline a proof of one of the implications of this theorem in the case
where V = R.

14



Proof. Let K ⊂ V be a closed and bounded set; our goal is to prove that
K is compact. Let f : K → R be a continuous map. We know that there
exists a sequence (xn)n∈N ∈ Kn of elements of K realizing the supremum of f :
limn→+∞ f(xn) = supx∈K f(x). We denote ` = lim supn→+∞ xn. Then, it is
possible to prove that limn→+∞ f(xn) = f(lim supn→+∞ xn) = f(`). Moreover,
as K is closed and bounded, it is also possible to prove that ` ∈ R and then that
` ∈ K. This proves that supx∈K f(x) = f(`), with ` ∈ K; thus for any x ∈ K
one has f(x) ≤ f(`). A similar argument with lim inf instead of lim sup shows
that there exists `′ ∈ K such that for any x ∈ K, f(x) ≥ f(`′). This proves
that K is compact.

Proposition 3.5. Let F be a nonempty closed subset of Rn which is not
bounded, and f : F → R a continuous map such that

lim
x∈F,‖x‖→+∞

f(x) = +∞.

Then there exists y ∈ F satisfying f(y) = infx∈F f(x).

In other words, f is bounded from below and attains this bound.

Proof. By the hypothesis on the limit of f , we know that

∀A ∈ R, ∃R > 0 : ∀x ∈ F, ‖x‖ ≥ R =⇒ f(x) ≥ A.

As F is nonempty, we can pick x0 ∈ F and choose A = f(x0) + 1. This gives
us R0 > 0 such that if x ∈ F satisfies ‖x‖ ≥ R0, then f(x) ≥ f(x0) + 1.

Now, the closed ball

Bf (0, R0) = {x ∈ Rn | ‖x‖ ≥ R0}

is closed (as the inverse image of [R0,+∞[ by the continuous map ‖ · ‖) and
bounded (by the very definition of a bounded set). So the set K = F ∩Bf (0, R0)
is also closed (as the intersection of two closed sets) and bounded, in other words
it is compact.

Hence, the map f|K is bounded and attains its bounds, in particular it
attains its infimum at at least one point y ∈ K. But x0 ∈ K (because every
point x ∈ F \K satisfies f(x) ≥ f(x0) + 1), so this bound is less than or equal
to f(x0). This means that infx∈F f(x) = infx∈K f(x) = f(y)

Exercise 22. 1. Application: Show that if ABC is a triangle of the plane,
then there exists a point M of the plane minimizing the sum of the dis-
tances to A, B and C.

2. Application 2: Show d’Alembert-Gauss theorem: any nonconstant poly-
nom P ∈ C[X] has a root in C. Indication: if |P (z0)| = infz∈C |P (z)| > 0,
build a complex number z ∈ C (close to z0) such that |P (z)| < |P (z0)|.

Proposition 3.6. The image of a compact set by a continuous map is compact.
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3.2 Some applications
Theorem 3.7 (Heine). Let W be a normed vector space, K a compact subset
of V and f : K →W a continuous map. Then f is uniformly continuous.

As an example of application of this theorem, the is the fact that the set of
continuous and affine maps is dense in the set of continuous maps from [0, 1] to
R.

Proof. Let ε > 0, and define the set

E =
{

(x, y) ∈ K ×K | ‖f(x)− f(y)‖ ≥ ε
}
.

Let us first prove that this set is compact by proving that it is closed and
bounded. It is closed, as it is the inverse image of the closed interval [ε,+∞[
by the continuous map (x, y) 7→ ‖f(x)− f(y)‖. It is bounded as a subset of the
bounded set K ×K (each K is bounded because it is compact).

Now, consider the map ϕ : E → R, (x, y) 7→ ‖x−y‖. This map is continuous,
and E is compact, so it attains its bounds: there exists (x0, y0) ∈ E such that

ϕ(x, y) ≥ ϕ(x0, y0) for any (x, y) ∈ E. (3.1)

But as (x0, y0) ∈ E, one has ‖f(x0)− f(y0)‖ ≥ ε, so f(x0) 6= f(y0), so x0 6= y0
and hence ϕ(x0, y0) = ‖x0 − y0‖ > 0. Setting δ = ϕ(x0, y0) > 0, (3.1) can be
rewritten as ‖x− y‖ = ϕ(x, y) ≥ δ for any (x, y) ∈ E.

This implies that if ‖x−y‖ < δ, then (x, y) /∈ E and thus ‖f(x)−f(y)‖ < ε.
As ε is arbitrary, one gets that:

∀ε > 0, ∃δ > 0 : ∀x, y ∈ K, ‖x− y‖ < δ =⇒ ‖f(x)− f(y)‖ < ε,

which is the very definition of a uniformly continuous map.

Definition 3.8. Let N and N ′ be two norms on V . We say that they are
equivalent if there exists two positive numbers 0 < c < C such that for any
v ∈ V , one has:

cN(v) ≤ N ′(v) ≤ CN(v).

This usefulness of this definition comes from the fact that if two norms are
equivalent, they will define the same open and closed sets, and a map which is
continuous for one norm will be continuous for the other one.

Theorem 3.9. If V is a finite dimensional vector space, then all the norms on
V are equivalent.

Thus, in a finite dimensional space, it is not necessary to precise the norm
we use when we talk about open or closed sets, continuous maps

16



Proof. Let N be a norm on V . To prove the theorem it is sufficient to prove
that N is equivalent to the infinite norm ‖ · ‖∞.

Let (e1, . . . , en) be a basis of V . Then, any vector x ∈ V can be written as
v =

∑
i=1n xiei, where the xi’s are real numbers. Hence, by triangle inequality,

one gets

N(v) = N

(∑
i=1n

xiei

)
≤

n∑
i=1

N(xiei) =
n∑

i=1
|xi|N(ei).

By definition of the infinite norm, each |xi| is smaller than ‖v‖∞, thus, by
denoting C =

∑n
i=1 N(ei), one gets

N(v) ≤ ‖v‖∞
n∑

i=1
N(ei) = C‖v‖∞.

This proves two things. First, this gives one of the two inequalities we need to
get the equivalence of norms. But second, this implies that the map v 7→ N(v)
is continuous for the norm ‖ · ‖∞ (because it is C-Lipschitz).

As this map N is continuous, it is bounded on the unit sphere of the norm
‖ · ‖∞ (as this sphere is compact): there exists a ∈ V with ‖a‖∞ = 1 such
that for any v ∈ V satisfying ‖v‖∞ = 1, one has N(a) ≤ N(v). As ‖a‖∞ = 1,
one has a 6= 0 and so c = N(a) > 0. Now, take any v ∈ V \ {0}. The vector
w = 1

‖v‖∞
v satisfies ‖w‖∞ = 1, so N(w) ≥ c, hence

N(v) = ‖v‖∞N
(

1
‖v‖∞

v) = ‖v‖∞N(w)
)
≥ c‖v‖∞,

which gives us the missing inequality to prove the equivalence of norms N and
‖ · ‖∞.

Proposition 3.10. Let V and W be two finite dimensional vector spaces of
respective dimensions n and m, and with respective norms ‖ · ‖V and ‖ · ‖V . Let
also L : V → W be a linear map. Then L is Lipschitz (and thus continuous).
Moreover, the following defines a norm on the m× n-dimensional vector space
made of linear maps1 from V to W :

|||L||| = sup
‖x‖V =1

‖L(x)‖W .

Proof. To prove the continuity of L, we use equivalence of norms in finite di-
mension: it is sufficient to get that L is Lipschitz with respect to the infinite
norm, and this fact is immediate when one writes the map L in coordinates.

This implies in particular that |||L||| is finite for any linear map L. The proof
of the fact that |||·||| is a norm is a simple verification.

1This set can be identified with Mm,n(R).
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Proposition 3.11. This operator (or triple) norm is sub-multiplicative:

|||MN ||| ≤ |||M ||| |||N |||.

This property is crucial in the definition of the matrix exponential.

Proof. Let M : W → W ′ and N : V → W , where V , W and W ′ are endowed
respectively with norms ‖ · ‖V , ‖ · ‖W and ‖ · ‖W ′ . We compute:

|||MN ||| = sup
‖x‖V =1

‖MN(x)‖W ′ = sup
‖x‖V =1
‖N(x)‖W 6=0

(∥∥∥∥M (
N(x)
‖N(x)‖W

)∥∥∥∥
W ′
‖N(x)‖W

)
.

The last equation is obtained by multiplying and dividing by ‖N(x)‖W . One can
restrict the supremum to vectors x satisfying ‖N(x)‖W 6= 0 because vectors such
that ‖N(x)‖W = 0 do not contribute to the supremum (they satisfy MN(x) =
0). As the supremum of a product is smaller than the product of the supremums
(for nonnegative numbers), one gets

|||MN ||| ≤ sup
‖x‖V =1
‖N(x)‖W 6=0

∥∥∥∥M (
N(x)
‖N(x)‖W

)∥∥∥∥
W ′

sup
‖x‖V =1
‖N(x)‖W 6=0

‖N(x)‖W .

The second supremum is equal to |||N |||. For the first supremum, one notices
that the vector N(x)/‖N(x)‖W is of norm 1, so by definition of the triple norm
of M , ∥∥∥∥‖M (

N(x)
‖N(x)‖W

)∥∥∥∥
W ′
≤ |||M |||.

So finally,
|||MN ||| ≤ |||M ||| |||N |||.

Exercise 23. Consider the map

L : R2 → R2, (x, y) 7→ (x, 2y − x).

Compute |||L||| for the norms ‖ · ‖1 and ‖ · ‖∞.
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Chapter 4

Completeness

Let V be a real vector space, endowed with a norm ‖ · ‖.

4.1 Definitions and first properties
Definition 4.1. A Cauchy sequence of V is a sequence (un)n∈N ∈ V N satisfying:

∀ε > 0, ∃N > 0 : ∀p, q ≥ N, ‖up − uq‖ ≤ ε.

In some sense, a Cauchy sequence is a sequence whose terms are eventually
very close one to each other.
Exercise 24. Prove that the sequence defined by un = 1/n (for any n ≥ 1) is
Cauchy.
Exercise 25. Prove that any Cauchy sequence is bounded.

Proposition 4.2. Any convergent sequence is Cauchy.

The converse is not true in general. The sets where it is true are called
complete.

Definition 4.3. A set X ⊂ V is called complete if any Cauchy sequence of X
converges in X. If the vector space V is itself complete, it is called a Banach
space.

Example 4.4. The set X =]0, 1[ is not complete. Indeed, take the sequence
un = 1/n for n ≥ 1. Then this sequence converges to 0 in R, in particular it is
Cauchy. So it is Cauchy in ]0, 1[. However, it does not converge in ]0, 1[ (as it
converges to 0 /∈]0, 1[).

The good point with this notion of completeness is that it encompasses all
finite dimensional vector spaces.

Theorem 4.5. Any closed subset of a finite dimensional vector space on R is
complete.

In particular, the line R is complete.

19



4.2 Applications
As a first application of the notion of completeness, we address the problem of
convergence of series.

Definition 4.6. Let (un)n∈N ∈ V n be a sequence. The series
∑

n≥0 un is said
normally convergent if the series of positive real numbers

∑
n≥0 ‖un‖ converges

in R (that is, is < +∞).

Proposition 4.7. If V is a Banach space, then any normally convergent series
is convergent.

Proof. As V is complete, to prove that the series is convergent, it is sufficient
to prove that the sequence of partial sums

Uk =
k∑

n=0
un ∈ V

is Cauchy, that is

∀ε > 0, ∃N ∈ N : ∀p, q ≥ N, ‖Up − Uq‖ ≤ ε.

But for p > q, one has

Up − Uq =
p∑

n=0
un −

q∑
n=0

un =
p∑

n=q+1
un,

thus ∥∥Up − Uq

∥∥ =

∥∥∥∥∥
p∑

n=q+1
un

∥∥∥∥∥ ≤
p∑

n=q+1
‖un‖. (4.1)

But by hypothesis, the series
∑

n≥0 ‖un‖ converges in R, so in particular it is
Cauchy:

∀ε > 0, ∃N ∈ N : ∀p > q ≥ N,
p∑

n=0
‖un‖ −

q∑
n=0
‖un‖ =

p∑
n=q+1

‖un‖ ≤ ε.

Combing this with (4.1), one gets that the sequence (Uk)k∈N of partial sums is
Cauchy, and thus converges.

Exercise 26. By using an operator norm, prove that for any matrixM ∈Mn(R),
its exponential is well defined:

exp(M) =
∞∑

n=0

1
n!M

n.

Exercise 27 (a simple criterion of convergence of a power series). Let k > 0
and (un)n∈N a sequence of real numbers such that for any n ≥ 1, one has
|un+1| ≤ k|un|.
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1. Prove that for any n ∈ N, one has |un| ≤ kn|u0|.
2. Prove that the power series

∑
n≥0 unx

n converges for any x ∈ R satisfying
|x| < 1/k.

As a second application of complete spaces, we now state the Picard’s fixed
point theorem.

Definition 4.8. A contraction is a map which is k-Lipschitz for some k < 1.
A fixed point of a map f : V → V is a point y ∈ V such that f(y) = y.

Theorem 4.9 (Picard, Banach). Let V be a Banach space and f : V → V be
a contraction. Then f admits a unique fixed point. Moreover, for any x0 ∈ V ,
the sequence defined by the recurrence relation xn+1 = f(xn) converges towards
this fixed point.

This theorem has numerous applications, among them Cauchy-Lipschitz,
local inversion and implicit function theorems.

Proof. We first prove that f hat at least one fixed point.
Let x0 ∈ V , and define the sequence (xn)n∈N ∈ V n by the recurrence relation

xn+1 = f(xn). Then, for any n > 1, as f is k-Lipschitz,

‖xn+1 − xn‖ = ‖f(xn)− f(xn−1)‖ ≤ k‖xn − xn−1‖.

Iterating this procedure, a simple recurrence shows that

‖xn+1 − xn‖ ≤ kn‖x1 − x0‖.

This shows that the series
∑

n≥0(un+1− un) is normally convergent (as k < 1),
thus (by Proposition 4.7) is convergent. But

N∑
n=0

(un+1 − un) = uN+1 − u0,

so the sequence (uN )N∈N converges, to a point that we denote by y ∈ V .
Passing to the limit in the equality un+1 = f(un), one gets that y = f(y): y

is a fixed point for f .
Finally, we prove that f admits a unique fixed point. Suppose that y and z

are fixed points of f . Then

‖y − z‖ = ‖f(y)− f(z)‖ ≤ k‖y − z‖.

This implies that (1 − k)‖y − z‖ ≤ 0 and so (as k < 1), ‖y − z‖ ≤ 0. As
‖y − z‖ ≥ 0, one gets ‖y − z‖ = 0 and the separation axiom then implies that
y = z.
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A small remark: by the proof, one can see that

‖un − y‖ = lim
N→+∞

∥∥∥∥∥
N∑

k=n

un+1 − un

∥∥∥∥∥ ≤
∞∑

k=n

kn‖x1 − x0‖ = kn

1− k ‖x1 − x0‖,

so the sequence (xn)n∈N converges exponentially fast towards y.
Exercise 28. Let f : I → R a map of class C1 on an open interval I, and a ∈ I
a fixed point of f . We suppose that |f ′(a)| < 1. Show that there exists a closed
interval J ⊂ I, stable by f (i.e. f(J) ⊂ J) and containing a, such that for any
x0 ∈ J , the sequence defined by the recurrence relation xn+1 = f(xn) converges
to a.
Exercise 29 (Newton’s method). Let c < d ∈ R, and f : [c, d] → R be a C2

map. We suppose that f(c) < 0 < f(d) and f ′(x) > 0 for every x ∈ [c, d].
1. Prove that f has a unique zero in the interval [c, d], i.e. a point a ∈ [c, d]

such that f(a) = 0.
The goal of this exercise is to state a numerical algorithm that finds quickly
approximations of the zero a. To do this, we define a sequence (xn)n∈N ∈ RN by
recurrence in a geometric manner: xn+1 is the intersection between the tangent
to the curve of f at the point (xn, f(xn)) and the axis y = 0.

x0x1x2
•a

2. Prove that
xn+1 = F (xn) with F (x) = x− f(x)

f ′(x) .

At his point, a small computation leads to F ′(a) = 0, so it is possible to apply
Exercise 28 (and so Picard’s theorem) and deduce that for any x0 sufficiently
close to a, the sequence (xn)n∈N converges to a. In the following questions we
specify the speed of this convergence.

3. By applying Taylor formula to f between a and x, show that for any
x ∈ [c, d], one has1

|F (x)− a| ≤ 1
2

supz∈[(a,x)] |f ′′(z)|
f ′(x) (x− a)2.

1Where [(a, x)] = [a, x] if a ≤ x and [(a, x)] = [x, a] if x ≤ a.
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Deduce that there exists C > 0 such that for any x ∈ [c, d], one has∣∣F (x)− a
∣∣ ≤ C|x− a|2.

4. Show that there exists α > 0 such that the segment [a−α, a+α] is stable
by F (i.e. F ([a− α, a+ α]) ( [a− α, a+ α]).

5. Finally, show that for any x0 ∈ [a− α, a+ α], one has

C|xn − a| ≤ (Cα)2n

.

We say that the convergence of xn towards a is of order 2 (or quadratic).
This algorithm is implemented in most of programing languages as the basic

one to approximate solutions of equations f(x) = 0. It can be generalised to
higher dimensional cases.
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Part II

Differential calculus
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Pour cette partie, deux références en français : la première est la suite de
la référence pour la topologie : Mémo de calcul différentiel – Frédéric Le Roux
https://webusers.imj-prg.fr/~frederic.le-roux/enseignement.html
La seconde est un excellent livre contenant beaucoup d’exercices : Petit guide de
calcul différentiel à l’usage de la licence et de l’agrégation – François Rouvière.

And one reference in English: Differential Calculus – Pierre Schapira https:
//webusers.imj-prg.fr/~pierre.schapira/lectnotes/CalD.pdf
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Chapter 5

Differentials

5.1 Differentiable maps
One would like to generalize to higher dimensional cases the notion of derivative
for a map f : R→ Rp:

lim
h→0

f(a+ h)− f(a)
h

.

If we try to apply this formula to a map f : Rn → Rp, we
are lead to consider small vectors h ∈ Rn. The problem is
that in Rn, there are many ways to approach a. For example
on the figure, if the above limit exists for h going to a along
each path, these three limits could be different (and they are
in most of the cases).

×a

As a first attempt to try generalizing the derivatives to higher dimensional
cases, it is possible to define partial derivatives:

Definition 5.1. Let (e1, . . . , en) be a basis of Rn and f : U → Rp, where U is
an open subset of Rn. We say that f admits a partial derivative at a ∈ U with
respect to the i-th variable if the map R→ Rp, t 7→ f(a+ tei) is differentiable
at 0. In this case, its derivative is denoted by ∂f

∂xi
(a).

The problem with this definition is that it does not take into account all the
possible manners for h to tend to 0 (as in the previous picture).

The solution to this problem is to consider derivatives from a
different viewpoint: for a map f : R → R, the derivative f ′(a)
represents the slope of the line that fits the best the curve of f
at the point (a, f(a)). In other words, close to a, the map f is
close to the affine map x 7→ f(a) + (x− a)f ′(a), and one writes a
Taylor expansion of order 1 :

f(a+ h) = f(a) + hf ′(a) + o(h),
where o(h) is a function which is negligible in comparison with ‖h‖ when h
tends to 0.
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This is the great idea of differential calculus: approach a map by an affine
one. This allows us to reduce the study of the initial map (in general difficult) to
the one of an affine map (which is in general very simple). In higher dimensions,
this gives the following definition:

Definition 5.2. Let U be an open set of Rn, and f : U → Rp. We say that f
is differentiable at a ∈ U if there exists a linear map L : Rn → Rp such that

f(a+ h) = f(a) + L(h) + o(h).

The map L is unique; it is called the differential of f at the point a, and is
denoted by Df(a). So we have:

f(a+ h) = f(a) +Df(a).h+ o(h).

If a map is differentiable at every point a ∈ U , we say that it is differentiable
in U .

We recall that o(h) is a notation for a map satisfying:

lim
h→0,h6=0

‖o(h)‖
‖h‖

= lim
h→0,h6=0

‖f(a+ h)− f(a)− L(h)‖
‖h‖

= 0.

Exercise 30. Show that the differential of a map, if it exists, is unique.

Remark 5.3. A priori, the notion of differentiability could depend on the norms
chosen for the spaces Rn and Rp. However, as all norms are equivalent in finite
dimension, this is not the case: a map differentiable for a choice of norms will
also be differentiable for another choice of norms. This property is no longer
true in the infinite dimensional case.

Proposition 5.4. A map which is differentiable at a ∈ U is continuous at a.

Example 5.5. Let L : Rn → Rp be an linear map, b ∈ Rp and f(x) = b + L(x)
be the corresponding affine map. Then f is differentiable and its differential is
everywhere equal to L.
Exercise 31. Let f : R→ R be a differentiable function. Express the differential
of f in terms of the derivative of f .
Exercise 32. The formula f(x, y) = xe3y defines a map from R2 to R. By using
a Taylor expansion, prove that f is differentiable at the point (2, 1).
Exercise 33. Let |||·||| be a matrix norm on Mn(R) (endowed with an operator
norm). Prove that if H ∈Mn(R) satisfies |||H||| < 1, then one has

(In +H)−1 =
∞∑

k=0
(−H)k.

Deduce that the differential of the map f : M 7→M−1 at In is − Id.
We recall that we have seen in Exercise 14 that GLn(R) is an open subset

of Mn(R). With the formula (A + H)−1 = A−1(In + HA−1)−1, deduce the
differentiability and the differential of f at any point A ∈ GLn(R).
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A map f which is differentiable at a ∈ U possesses a directional derivative
in every direction at a, that is, for any v ∈ Rn:

lim
t→0,t6=0

f(a+ tv)− f(a)
t

= Df(a).v.

In particular, when (e1, . . . , en) is a basis of Rn, the i-th partial derivative is
the directional derivative in the direction ei, and one has:

∂f

∂xi
(a) = Df(a).ei.

So when v =
∑n

i=1 viei is a vector of Rn, as Df(a) is linear, one has

Df(a).v =
n∑

i=1
viDf(a).ei =

n∑
i=1

vi
∂f

∂xi
(a).

If (e′1, . . . , e′p) is a basis of Rp, the Jacobian matrix of f at a, denoted by Jf(a),
is the matrix representation of Df(a) in the bases (ei) and (e′j). What we have
just seen implies that

Jf(a) =
(

∂f
∂x1

· · · ∂f
∂xn

)
.

In practical, if we know that a map is differentiable, this allows us to compute
in practical the differential. However, there exist examples of maps admitting
partial derivatives but not differentiable.
Exercise 34. Let f be the map:

f : R2 −→ R

(x, y) 7−→

{
0 if (x, y) = (0, 0)

xy2

x2+y2 if (x, y) 6= (0, 0).

Prove that f is continuous at (0, 0), that it admits directional derivatives for
any direction, but that it is not differentiable at (0, 0).

So we need to get some tools to prove that a map is differentiable or not.

Proposition 5.6. If f1, f2 : U → Rp are differentiable at a ∈ U , then:
• f1 +f2 is differentiable at a and one has D(f1 +f2)(a) = Df1(a)+Df2(a);
• if W = R, then f1f2 is differentiable at a and one has D(f1f2)(a) =
f1(a).Df2(a) + f2(a).Df1(a).

If f : U → W can be decomposed into two components: f = (f1, f2), and if f1
and f2 are differentiable at a ∈ U , then Df(a) = (Df1(a), Df2(a).

Proposition 5.7. Let f : U → Rp and g : U ′ → Rp′ , where U ′ is an open
subset of Rp. If f is differentiable at a ∈ U and g is differentiable at f(a) ∈ U ′,
then g ◦ f is differentiable at a and one has:

D(g ◦ f)(a) = Dg(f(a)).Df(a).
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In other words the differential at a of the composition of g and f is the
compositions of the differentials of g at f(a) and of f at a.
Exercise 35. Let f : R2 → R3 defined by f(x, y) = (sin(x+ y), 2xy2, y).

1. (a) Compute the partial derivatives ∂f
∂x ,

∂f
∂y at a point (x0, y0) and write

the Jacobian matrix.

(b) Recall the link between partial derivatives and differential, and give
the value of Df(x0, y0)(~h) for any vector ~h = (hx, hy).

(c) Write the approximation f(x0 + ~h) given by the differential.
2. Same questions for the map defined by g(a, b, c) = (2a+ b2c, aeb).
3. How can we get the matrix of the linear map D(f ◦ g) from those of Df

et Dg ?
Exercise 36. Let I be an open interval of R and f : I2 → R a differentiable
map. Show that the map g : I → R defined by g(x) = f(x, x) is differentiable,
and compute its derivative in terms of the partial derivatives of f .

5.2 C1 maps
Theorem 5.8 (Mean value theorem). Let U ⊂ Rn be an open set and f : U →
Rp be a differentiable map. Suppose that |||Df(x)||| ≤ M for any x ∈ U . Then
for any a, b ∈ U such that [a, b] ⊂ U , we have

‖f(b)− f(a)‖ ≤M‖b− a‖.

In particular, if U is convex, then f is k-Lipschitz, with k = supx∈U |||Df(x)|||.
Exercise 37. Show that the following system has a unique solution:{

x = 1
3 cos(x+ y)

y = 1
3 sin(x− y)

Indication: use mean value theorem, and apply Picard’s fixed point theorem.

Definition 5.9. A map f : U → Rp is called C1 if is is differentiable on U , and
moreover the map X 7→ Df(x) is continuous (from the open set U to the set of
linear maps from V to W ).

It is straightforward that the sum, the product and the composition of C1

maps is itself C1.

Theorem 5.10. The map f is of class C1 if and only if
• f has partial derivatives at every point x ∈ U , and
• these partial derivatives are continuous.
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5.3 Extrema: order 1 conditions
If f : U → R is differentiable at a ∈ U , it is possible to define the gradient vector
of f at a as:

∇f(a) =
(
∂f

∂x1
, · · · , ∂f

∂xn

)
.

So in this case we have
Df(a).h = 〈∇f(a), h〉.

To summarize, Df(a), Jf(a) and ∇f(a) represent the same object, but the first
one is a linear form, the second is a matrix and the last one is a vector.

The gradient vector ∇f(a) represents the direction of “greatest slope” at a.
It is orthogonal to level sets of the function f .
Definition 5.11. A level set of a map F : U → R is a set of the form f−1(c)
for some c ∈ R.

In general, level sets of a map from R2 to R are paths, while level sets of
a map from R3 to R are surfaces. This is rigorously expressed by the implicit
function theorem.
Exercise 38. Represent the lines of level c of the following maps (when they
exist!):

1. f(x, y) = ln(x+ y) for c = −1, 0, 1, 2;
2. f(x, y) = x2 + y2 for c = −1, 0, 1, 2.

On each picture, draw one gradient vector on one point of each level line.
Definition 5.12. Let f : U → R be a map defined on an open set, and a ∈ U a
point where f is differentiable. The point a is called a critical point ifDf(a) = 0.
Theorem 5.13. Let f : U → R be a map defined on an open set, and a ∈ U a
point where f is differentiable. If f admits a local extremum at a, then a is a
critical point.
Exercise 39. Consider the map f from R2 to R defined by

f(x, y) = x5 − x2y + y.

Show that f is of class C1 on R2 and compute its Jacobian matrix and its
gradient. Determine the critical points of f .
Exercise 40. Show that the map f : R2 → R, defined by

f(x, y) = x2 + y4 − e−y2
+ e−x2

,

admits a global minimum, and determine it.
Same question for the map f : R× R∗+ → R defined by

f(x, y) = y(x2 + (ln y)2).

Same question for the map f : R2 → R defined by

f(x, y) = sin x sin y sin(x+ y).
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Exercise 41 (Fermat Point, continuation of Exercise 22). Let ABC be a non
flat plane triangle. We want to find the minimum in the plane of the map

f(M) = MA+MB +MC.

1. Prove that the map x 7→ ‖x‖2 is differentiable on R2 \ {0}. Deduce that
f is differentiable on R2 \ {A,B,C}.

2. Prove that if P /∈ {A,B,C} is a local extremum of f , then

~PA

PA
+

~PB

PB
+

~PC

PC
= 0

3. Deduce that ÂPB = B̂PC = ĈPA = 2π/3.
4. Using the fact that for any angle α, the set of points M of the plane such

that ÂMB = α is an arc of circle passing through A and B, prove that f
has at most one local extremum different from A, B and C.

5. (difficult) Prove that if all angles of ABC are smaller than 2π/3, then
A, B and C are not local minima of f , and thus that f has a unique
minimum, lying in the interior of ABC.

We now come to the problem of optimization under constraints.
Let U ⊂ Rn be an open set and ϕ1, · · · , ϕk be maps from U to R. We

consider the set

S =
{
x ∈ U | ϕ1(x) = · · · = ϕk(x) = 0

}
.

We also consider a map f : U → R, and our aim is to find the extrema of f|S ,
in other words we want to maximize or minimize the quantity f(x) for x ∈ S.

Definition 5.14. A point x ∈ S is called regular if the gradients∇ϕ1(x), · · · ,∇ϕk(x)
form a free family of Rn.

This definition is motivated by the implicit function theorem: around a
regular point, the set S is in fact “locally as Rn−k”. The dimension n − k
comes from the heuristic: “we are in Rn so we have n variables, and there are
k equations ϕi(x) = 0, thus the set of solutions is of dimension n− k.

For example, around a regular point,
• if n = 2 and k = 1 or if n = 3 and k = 2, the set S is locally a curve;
• if n = 3 and k = 1, the set S is locally a surface;
The Lagrange multipliers theorem1 gives a necessary condition for a regular

point of S to be a extremum of the map f .
1Appelé “théorème des extrema liés” en français.
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Theorem 5.15 (Lagrange). Suppose that a ∈ S is a regular point of S at which
f is differentiable. If a is a local extremum of f|S, then there exists numbers
λ1, · · · , λk ∈ R such that

∇f(a) = λ1∇ϕ1(a) + · · ·+ λk∇ϕk(a).

In other words, the gradient ∇f(a) belongs to the subspace spanned by the
gradients ∇ϕ1(a), · · · ,∇ϕk(a). This condition which can seem a bit obscure is
the algebraic reformulation of a geometric property: at a local extremum a of
f|S , the level set {x ∈ U | f(x) = f(a)} is tangent to the surface S; in other
words the gradient of f is orthogonal to S.

In practical problems, we usually use both the condition given by Lagrange
multipliers and the conditions ϕi(x) = 0.
Exercise 42. Let α and β be two real numbers. Using Lagrange multipliers,
determine the maximum and the minimum on the unit circle S1 of R2 of the
map f(x, y) = αx+ βy.
Exercise 43. Determine the extrema of the map f : R3 → R defined by

f(x, y, z) = 13
2 x

2 + 3y − 4z

on the unit sphere of R3.
Exercise 44. Let f : Rn → R be defined by f(x) = x1x2 . . . xn, and X be the
set

X = {(x1 · · · , xn) ∈ Rn
+ | x1 + · · ·+ xn = n}.

1. Determine the maximum of f on X.
2. Deduce from it the inequality between arithmetic and geometric means:

for any (x1, . . . , xn) ∈ Rn
+,

n
√
x1 . . . xn ≤

x1 + · · ·+ xn

n
.

5.4 Implicit function theorem
In this section, we give a flavor of the important applications of differential
calculus to geometry.

In lot of problems, the parameter space is not an open subset of Rn but
rather a subset of Rn which locally “look like” Rd, with d ≤ n. For example,
the sphere – which is a subspace of R3 – look locally like the plane R2 (so much
that for a long time, a lot of people have thought that the Earth was flat). Also,
the parameter space of a system depending on two angles is a 2-dimensional
torus, which again locally look like R2.

The problem is that for now, we can only use differentials with maps having
an open domain. The definitions of submanifold and then manifold are done to
solve it: a submanifold of Rn is a set which locally look like Rd, for d ≤ n; it is
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possible to locally rectify these sets to make them correspond to an open subset
of Rn.

One of the grounding results of this theory is the implicit function theorem; it
says that under some natural conditions, a subset of Rn+p defined by p equations
can be seen as the graph of a map from an open subset of Rn to Rp.

Theorem 5.16 (Implicit function). Let U be an open subset of Rn × Rp and
f : U → Rp a C1 map. Suppose that there exists (a, b) ∈ U such that
• f(a, b) = 0;
• Dyf(a, b) is invertible (in other words, the matrix formed by the partial
derivatives ∂f

∂xn+1
(a, b), . . . , ∂f

∂xn+p
(a, b) has nonzero determinant).

Then the equation f(x, y) = 0 can be solved locally with respect to the y variable:
there exists a neighbourhood V of a in Rn and a neighbourhood W of b in
Rp, with V × W ⊂ U , and a unique map ϕ : V → W such that, for any
(x, y) ∈ V ×W ,

f(x, y) = 0 ⇐⇒ y = ϕ(x).
Moreover, ϕ is of class C1 on V .

For example, if f : R2 → R, and (a, b) is such that f(a, b) = 0 and
∂f/∂y(a, b) 6= 0, then there exists a map ϕ such that for (x, y) close to (a, b),
one has f(x, y) = 0 if and only if y = ϕ(x).

This theorem can be visualized geometrically. The set defined by the can-
cellation of f is S = {(x, y) ∈ U | f(x, y) = 0} (remark that it is the same set
as for the Lagrange multipliers theorem!). The implicit function theorem says
that under some condition, this set is the graph of a map ϕ.

Notice that the condition of the theorem is very natural. Take
for example the subset of R2 defined by the equation f(x, y) =
x2−y = 0. This curve is locally a graph y = ϕ(x) around each
of its points except from the point (0, 0) (if it was then some
points should have two images by ϕ). This point is “bad”
because the tangent to the curve is vertical. Implicit function
theorem says that if this tangent is not vertical, then indeed
the curve is locally the graph of some map.

In the case where the hypothesis of invertibility of the matrix is not satisfied,
it is possible to permute the coordinates of Rn+p to try to apply the theorem.
For instance, in the previous example, the curve cannot be defined as y = ϕ(x)
around (0, 0), but it can be defined as x = φ(y).
Exercise 45. Let F (x, y) = x2 + y4 − 3xy + x.

1. Compute and represent the gradient vector at the point (2, 1). What can
be deduced for the level line

L1 = {(x, y)|F (x, y) = 1} ?

2. Show that the equation x2 + y4 − 3xy + x = 1 defines implicitly y as a
map of x in a neighbourhood of (2, 1).
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3. Differentiate the equation F (x, ϕ(x)) = 0. Deduce the derivative ϕ′(2).
This is a general procedure to find the differential of the map ϕ; it gives:

Proposition 5.17. Under the hypothesis of implicit function theorem, one has

Dϕ(a) = −
(
Dyf(a, b)

)−1 ◦Dxf(a, b).

Exercise 46. Same exercise as Exercise 45, but with the equation x5+3xy−y6 =
1 and the point (1, 0).
Exercise 47. Show that the equation xy+ yz+xz+ 2x+ 2y− z = 0 defines im-
plicitely a map (x, y) 7−→ z = ϕ(x, y) in a neighbourhood of (0, 0, 0). Compute
the differential of this map at the point (0, 0).

34



Chapter 6

Order two differentials

6.1 C2 maps
Let U be an open subset of Rn and f : U → Rp. Our goal in this chapter is to
define second order differential and to use it to state order two conditions for
extrema: we will get necessary and sufficient conditions for critical points to be
local minima or maxima.

Definition 6.1. We say that f is of class C2 if it is differentiable and if its
differential x 7→ Df(x) is a C1 map.

This definition is a bit more complicated that it seems. For every x ∈ U ,
the differential Df(x) is a linear map from Rn to Rp, i.e. Df(x) ∈ L(Rn,Rp),
with L(Rn,Rp) a vector space of dimension np. Hence, D(Df)(x) is a linear
map from Rn to L(Rn,Rp), i.e. D(Df(x)) ∈ L(Rn, L(Rn,Rp)). In practical,
this map

D(Df)(x) : Rn × Rn −→ Rp

(h, k) 7−→ D(Df)(x).(h, k)

is a bilinear map, that is, is linear in h and in k.
In practical, it is easier to see D(Df) = D2f in coordinates. Indeed, we

have the same result as in C1 regularity, which links the fact of being C2 with
the order two partial derivatives:

∂

∂xi

(
∂f

∂xj

)
= ∂2f

∂xi∂xj

Theorem 6.2. The map f is of class C2 if and only if
• f has order two partial derivatives at every point x ∈ U , and
• these partial derivatives x 7→ ∂2f/∂xi∂xj are continuous.

35



If the map f is C2, then the map D2f can be easily expressed in coordinates:
if h = (h1, . . . , hn) and k = (k1, . . . , kn), then

D2f(x).(h, k) =
∑

1≤i,j≤n

hikj
∂2f

∂xi∂xj
(x). (6.1)

In the particular case where p = 1 (when f takes real values), the map D2f
can be represented as a matrix called Hessian matrix:

H(f)(x) =


∂2f

∂x1∂x1
(x) . . . ∂2f

∂xn∂x1
(x)

...
. . .

...
∂2f

∂x1∂xn
(x) . . . ∂2f

∂xn∂xn
(x)

 ,

and the formula (6.1) can be rewritten as

D2f(x).(h, k) =
(
h1 · · · hn

)
H(f)(x)

k1
...
kn


Exercise 48. Let f be the function from R2 to R defined by f(x, y) = x4 + y4−
2xy. Compute the order two partial derivatives of f .

You might have remarked that in this example, the crossed partial derivatives
are equal: ∂2f/∂x∂y = ∂2f/∂y∂x. This is in fact true in general.
Theorem 6.3 (Schwarz). Suppose that f is a C2 map, and let x ∈ U . Then
for any 1 ≤ i, j ≤ n,

∂2f

∂xi∂xj
(x) = ∂2f

∂xj∂xi
(x).

This theorem can be rephrased in terms of differential: the map D2f is
symmetric, that is

D2f(x).(h, k) = D2f(x).(k, h).
A map which is bilinear, symmetric and with values in R is called a quadratic
form. Schwarz theorem implies that if f : U → R is of class C2, then D2f is a
quadratic form.

Before stating the order two conditions of extremum, we have to give Taylor
formula for order two:
Theorem 6.4 (Taylor). Let f be C2 in an open set containing x ∈ U . Then

f(x+ h) = f(x) +Df(x).h+ 1
2D

2f(x).(h, h) + o2(h),

where o2(h) is a notation for a map such that:

lim
h→0,h 6=0

‖o2(h)‖
‖h‖2 = lim

h→0,h6=0

‖f(x+ h)− f(x)−Df(x).h− 1
2D

2f(x).(h, h)‖
‖h‖2 = 0.

Exercise 49. Let u : Rn → Rp be a linear map, and a ∈ Rp. We define
f : Rn → R by f(x) = ‖u(x) − a‖2

2, where ‖ · ‖2 is the Euclidean norm. Show
that f is of class C2 and compute Df(x) and D2f(x) for any x ∈ Rn.
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6.2 Local extrema: order two conditions
Order two differentials can tell us whether a critical point is a local maximum,
minimum or not a local extremum.

Theorem 6.5. Suppose that f : U → R is of class C2. Then
• If x is a critical point for f and if for any h 6= 0, D2f(x).(h, h) > 0, then
f admits a local strict minimum at x, i.e.

∃ε > 0 : ∀y ∈ B(x, ε) \ {x}, f(y) > f(x).

• If x is a critical point for f and if there exists h 6= 0 and k 6= 0 such
that D2f(x).(h, h) > 0 and D2f(x).(k, k) < 0, then f admits no local
extremum at x.

• If f admits a local minimum at x, then x is a critical point for f and for
any h 6= 0, D2f(x).(h, h) ≥ 0.

Of course, the same holds for maxima by reversing the inequalities.

Be careful with strict and large inequalities in this theorem: if for example
D2f(x).(h, h) = 0 for some h 6= 0, then it is impossible to conclude.

This theorem can be easily understood applying Taylor theorem: close to x,
the map f “looks like” its Taylor expansion at order two. If x is a critical point,
then f(x + h) ' f(x) + D2f(x).(h, h). In other words, f is almost equal to a
constant plus a quadratic form, so morally, x is an extremal point for f if and
only if it is an extremal point for this quadratic form1.

Let us study quadratic forms in R2. We write

H(f)(a) =
(

∂2f
∂x1∂x1

(x) ∂2f
∂y∂x (x)

∂2f
∂x∂y (x) ∂2f

∂y∂y (x)

)
=
(
r s
s t

)
.

Algebra tells us that such a matrix can be diagonalized, in other words in a
good basis or R2,

D2f(a)(h, h) =
(
h1 h2

)(λ 0
0 µ

)(
h1
h2

)
= λh2

1 + µh2
2.

Note that D2f(a)(0, 0) = 0, so the fact that (0, 0) is a local extremum of D2f
or not depends on the sign of the eigenvalues λ and µ. Moreover, we know that
λµ = detH(a) and λ+ µ = trH(a). So to summarize:

Proposition 6.6. Let f : U → R be of class C2, where U is an open subset of
R2, and a ∈ U be a critical point of f . We write

H(f)(a) =
(
r s
s t

)
.

1however this heuristic is no longer true in the degenerate cases where there exists h 6= 0
such that D2f(x).(h, h) = 0.
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• If rt− s2 < 0, then a is not a local extremum of f .
• If rt− s2 > 0 and r + t > 0, then a is a local maximum of f .
• If rt− s2 > 0 and r + t < 0, then a is a local minimum of f .

The same kind of results holds in higher dimensions. To reduce quadratic
forms there is a quick algorithm due to Gauss.
Exercise 50. Determine local extrema of the map f : (R∗+)2 → R defined by

f(x, y) = xy

(1 + x)(1 + y)(x+ y) .

Same question for f : R2 → R

f(x, y) = x3 + y3 − 3xy.

Exercise 51. Let
f(x, y) = x2 − y2 + y4

4 .

Determine the extrema of f , and sketch its level lines.
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