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ABSTRACT
We are interested in the dynamical be-

haviour of discretizations of a generic conserva-
tive homeomorphism of a compact manifold.

It turns out that the dynamics of the dis-
cretizations of such homeomorphisms does not
depend on the homeomorphim itself but rather
on the order of the discretization.

PROBLEM
We study the link between the dynamical be-

haviour of a dynamical system and the dynam-
ical behaviour of its numerical simulations: can
some dynamical features be detected on numeri-
cal simulations?

A computer works with a finite number of
decimal places. When one simulate a discrete-
time dynamical system, numerical errors made
at each iteration may add up, so that after a
while the numerically calculated orbit of a point
will have nothing in common with the actual
one. Nevertheless, a numerically calculated or-
bit is close to an actual orbit at any time, thus
one can hope that the collective behaviour of
numerically calculated orbits provides informa-
tions about the collective behaviour of actual or-
bits.

THE MODEL
Spatial discretization is modeled by numeri-

cal truncation. Consider a discrete time dynami-
cal system f whose phase space is the torus T2

(under reasonable assumptions, results remain
true for an arbitrary compact manifold of dimen-
sion ≥ 2, possibly with boundary). A numerical
simulation of the system with a precision 2−N re-
places the continuous phase space T2 by a dis-
crete space EN made of points of T2 whose coor-
dinates are binary numbers with at most N dec-
imal places, and replaces the map f by its dis-
cretization fN : EN → EN that maps x ∈ EN
to the point (or one of the points) of EN nearest
f(x).
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Uniform discretization grids of order 1, 2 and 3 on T2

and their associated cubes.

Let λ be Lebesgue measure (resusts can be gen-
eralized to arbitrary good measures) and con-
sider generic homeomorphisms of Homeo(T2, λ)
(homeomorphisms of T2 which preserve λ): a
property is said to be generic if it is true on a
denseGδ subset of Homeo(T2, λ); as genericity is
stable under countable intersections one can talk
(abusively) about generic homeomorphisms.

FINITE MAPS
The dynamics of any finite map σ : EN → EN

is quite simple: given x ∈ EN , the orbit (σk(x))k
is preperiodic. To study the dynamics of σ one
can focus on simple quantities such as the cardi-
nal of the union of periodic orbits of σ, the num-
ber of periodic orbits of σ, their lengths. . .

SOME SIMULATIONS

Number of periodic or-
bits depending on N for
a perturbation of iden-
tity (left) and a pertur-
bation of standard linear
Anosov map (right), on
grids of size N = 128k,
k = 1, . . . , 100 (more sim-
ulations in [1]).

COMBINATORIAL RESULTS
Theorem 1 (Miernowski). For a generic homeo-
morphism f ∈ Homeo(T2, λ), for infinitely many
integers N , fN is a cyclic permutation.

Theorem 2. For a generic homeomorphism f ∈
Homeo(T2, λ), f has a periodic point, and for in-
finitely many integers N , fN has a unique periodic
orbit, whose period equals to the smallest period of pe-
riodic points of f ; moreover one can suppose that EN
is covered by a single (pre-periodic) orbit of fN .

Theorem 3. Let ϑ : N → R such that ϑ(N) =
o(Card(EN )). For a generic homeomorphism f ∈
Homeo(T2, λ) and for infinitely many integers N ,
the discretization fN is a permutation and has at least
ϑ(N) cycles which are pairwise conjugated.

LESSON: The dynamics of a single discretiza-
tion of a generic homeomorphism has in general
nothing to do with the dynamics of the initial
homeomorphism.

SKETCHES OF PROOFS
We set that every time homeomorphisms are

well approximated by a certain type of discrete
maps, this type of discrete maps appears in-
finitely many times on the discretizations of a
generic homeomorphism.

A type of approximation T = (TN )N∈N is a se-
quence of subsets of the set F(EN , EN ) of appli-
cations from EN into itself.

A type of approximation T is dense if for all
f ∈ Homeo(T2, λ), all ε > 0 and all N0 ∈ N,
there exists N ≥ N0 and σN ∈ TN such that
dn(f, σN ) < ε (dN is the uniform distance re-
stricted to EN ).

Theorem 4. Let T be a dense type of approximation.
Then for a generic f ∈ Homeo(T2, λ) and for all
N0 ∈ N, there exists N ≥ N0 such that fN ∈ TN .

So to prove theorems 1, 2 and 3, we just have
to prove that the corresponding types of approx-
imations are dense.

Theorem 5 (Lax, Alpern). The set of cyclic permu-
tations of the grids EN is a dense type of approxi-
mation (wonderful combinatorial proof based on mar-
riage lemma).

Proposition 6 (Variations of Lax’s theorem).
For all ε > 0, the set of applications of EN into it-

self which have a single orbit and whose periodic orbit
covers a proportion smaller than ε of EN is a dense
type of approximation.

Let ϑ : N→ R such that ϑ(N) = o(Card(EN )).
Then the set of permutations of EN which have at
least ϑ(N) periodic orbits with the same length is a
dense type of approximation.

AVERAGE BEHAVIOUR
The previous theorems express that the dy-

namics of a single discretization does not reflect
the actual dynamics of the homeomorphism.
However, one might reasonably expect that the
properties of the homeomorphism are transmit-
ted to many discretizations. It is not so, for in-
stance:

Theorem 7. For a generic conservative homeomor-
phism f , the proportion of integers N between 1 and
M such that fN is a cyclic permutation accumulates
on both 0 and 1 when M goes to infinity.

In fact, for most of the properties considered
in the previous paragraph, the frequency they
appear on discretizations of orders smaller than
M accumulates on both 0 and 1 when M goes to
infinity.

LESSON: A dynamical property of a generic
homeomorphism can not be deduced from the
frequency it appears on discretizations.

AND AFTER. . .
• One can prove that it is possible to re-

cover some important dynamical features of a
generic homeomorphism by looking at the cor-
responding dynamical features of all the dis-
cretizations; for example one can retrieve the
set of all invariant compact sets or the set of
all invariant measures. However it is impos-
sible to recover physical measures of generic
conservative homeomorphisms (see [1]).

• The dissipative case (without assumption of
preservation of a given measure) is much more
simple: the results express that generically, the
dynamics of the discretizations tends to that of
the initial homeomorphism (see [1]).

• So far, only little is known about discretiza-
tions of generic C1-diffeomorphisms. How-
ever, one can hope that the behaviour of dis-
cretizations reflects better the dynamics of the
initial dynamical system.
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