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Abstract. We study the spatial discretizations of dynamical systems: can we
recover some dynamical features of a system from numerical simulations? Here,
we tackle this issue for the simplest algorithm possible: we compute long seg-
ments of orbits with a �xed number of digits. We show that the dynamics of the
discretizations of a C1 generic conservative di�eomorphism of the torus is very
di�erent from that observed in the C0 regularity. The proof of our results in-
volves in particular a local-global formula for discretizations, as well as a study of
the corresponding linear case, which uses ideas from the theory of quasicrystals.

Résumé. Le problème qui nous intéresse est celui de la discrétisation spatiale
des systèmes dynamiques : est-il possible de retrouver certaines propriétés dy-
namiques d'un système à partir de simulations numériques ? Nous donnons ici
des éléments de réponse à cette question dans le cas où les simulations se font
avec l'algorithme le plus simple possible : on calcule des segments d'orbites très
longs, à précision décimale �xée. Nous démontrons que le comportement dyna-
mique des discrétisations d'un C1-di�éomorphisme conservatif générique du tore
est complètement di�érent de celui observé dans le cas de la régularité C0. La
preuve des résultats passe en particulier par l'obtention d'une formule reliant
les comportement local et global des discrétisations, ainsi qu'une étude du cas
linéaire utilisant des concepts issus de la théorie des quasi-cristaux.
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1. Introduction

This paper is concerned with the issue of numerical experiments on dynami-
cal systems. More precisely, consider a discrete-time dynamical system f on the
torus Tn = Rn/Zn endowed with Lebesgue measure 1, and de�ne some spatial dis-
cretizations of this system in the following way: consider the collection (EN )N∈N
of uniform grids on Tn

EN =

{(
i1
N
, · · · , in

N

)
∈ Rn/Zn

∣∣∣∣ 1 ≤ i1, · · · , in ≤ N
}
,

1991 Mathematics Subject Classi�cation. 37M05, 37A05, 37A45, 37C20, 52C23.
1. We will see in Appendix A a more general framework where our results remain true.
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and de�ne a Euclidean projection PN on the nearest point of EN ; in other words
PN (x) is (one of) the point(s) of EN which is the closest from x. This projection
allows to de�ne the discretizations of f .

De�nition 1. The discretization fN : EN → EN of f on the grid EN is the map
fN = PN ◦ f|EN .

Such discretizations fN are supposed to re�ect what happens when segments of
orbits of the system f are computed with a computer: in particular, if we take
N = 10k, the discretization models computations made with k decimal places. The
question we are interested in is then the following: can the dynamics of the system
f be inferred from the dynamics of (some of) its discretizations fN?

Here, we will focus on a number associated to the combinatorics of the dis-
cretizations, called the degree of recurrence. As every discretization is a �nite map
fN : EN → EN , each of its orbits is eventually periodic. Thus, the sequence of sets
(fkN (EN ))k∈N (the order of discretization N being �xed) is eventually constant,
equal to a set Ω(fN ) called the recurrent set 2. This set coincides with the union of
the periodic orbits of fN ; it is the biggest subset of EN on which the restriction of
fN is a bijection. Then, the degree of recurrence of fN , denoted by D(fN ), is the
ratio between the cardinality of Ω(fN ) and the cardinality of the grid EN .

De�nition 2. Let E be a �nite set and σ : E → E be a �nite map on E. The
recurrent set of σ is the union Ω(σ) of the periodic orbits of σ. The degree of
recurrence of the �nite map σ is the ratio

D(σ) =
Card

(
Ω(σ)

)
Card(E)

.

This degree of recurrenceD(fN ) ∈ [0, 1] represents the loss of information induced
by the iteration of the discretization fN . For example if D(fN ) = 1, then fN is a
bijection. Also, a �nite map with a degree of recurrence equal to 1 preserves the
uniform measure on EN , and thus can be considered as conservative.

The goal of this paper is to study the behaviour of the degree of recurrence D(fN )
as N goes to in�nity and for a generic dynamics f of the torus Tn, n ≥ 2. More
precisely, on every Baire space B it is possible to de�ne a good notion of genericity:
a property on elements of B will be said generic if satis�ed on at least a countable
intersection of open and dense subsets of B.

For our purpose, the spaces Diffr(Tn) and Diffr(Tn,Leb) of respectively Cr-
di�eomorphisms and Lebesgue measure preserving Cr-di�eomorphisms of Tn are
Baire spaces for every r ∈ [0,+∞], when endowed with the classical metric on Cr-
di�eomorphisms 3. Elements of Diffr(Tn) will be called dissipative and elements
of Diffr(Tn,Leb) conservative. Also, the spaces Diff0(Tn) and Diff0(Tn,Leb) of
homeomorphisms will be denoted by respectively Homeo(Tn) and Homeo(Tn,Leb).

We will also consider the case of generic expanding maps of the circle. Indeed, for
any r ∈ [1,+∞], the space Dr(S1) of Cr expanding maps 4 of the circle S1, endowed
with the classical Cr topology, is a Baire space.

The study of generic dynamics is motivated by the phenomenon of resonance that
appears on some very speci�c examples like that of the linear automorphism of the
torus (x, y) 7→ (2x + y, x + y): as noticed by É. Ghys in [Ghy94],the fact hat this
map is linear with integer coe�cients forces the discretizations on the uniform grids

2. Note that a priori, (fN )k 6= (fk)N .
3. For example, dC1(f, g) = supx∈Tn d(f(x), g(x)) + supx∈Tn ‖Dfx −Dgx‖.
4. Recall that a C1 map f is expanding if for every x ∈ S1, |f ′(x)| > 1.
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to be bijections with a (very) small order (see also [DF92] or the introduction of
[Gui15c]). One can hope that this behaviour is exceptional; to avoid them, É. Ghys
proposes to study the case of generic maps.

To begin with, let us recall what happens for generic homeomorphisms. The
following result can be found in Section 5.2 of [Gui15d].

Theorem 3 (Guihéneuf). Let f ∈ Homeo(Tn) be a generic dissipative homeomor-
phism. Then D(fN ) −→

N→+∞
0.

This theorem expresses that there is a total loss of information when a discretiza-
tion of a generic homeomorphism is iterated. This is not surprising, as a generic
dissipative homeomorphism has an �attractor dynamics� (see for example [AA13]).
The following result is the Corollary 5.24 of [Gui15c] (see also Section 4.3 of [Gui15d]
and Proposition 2.2.2 of [Mie05]).

Theorem 4 (Guihéneuf, Miernowski). Let f ∈ Homeo(Tn,Leb) be a generic con-
servative homeomorphism. Then the sequence (D(fN ))N∈N accumulates on the
whole segment [0, 1].

Thus, the degree of recurrence of a generic conservative homeomorphism accu-
mulates on the biggest set on which it can a priori accumulate. Then, the behaviour
of this combinatorial quantity depends a lot on the order N of the discretization
and not at all on the dynamics of the homeomorphism f . Moreover, as there exists
a subsequence (Nk)k∈N such that D(fN ) −→

N→+∞
0, there exists �a lot� of discretiza-

tions that do not re�ect the conservative character of the homeomorphism.

In this paper, we study the asymptotic behaviour of the degree of recurrence
in higher regularity. Our results can be summarized in the following theorem (see
Corollary 39, Theorem 41 and Corollary 49).

Theorem A. Let f be either
� a generic dissipative C1-di�eomorphism of Tn;
� a generic conservative C1-di�eomorphism of Tn;
� a generic Cr expanding map 5 of the circle S1, for any 1 ≤ r ≤ ∞;

Then

D(fN ) −→
N→+∞

0.

We must admit that the degree of recurrence gives only little information about
the dynamics of the discretizations. Theorem A becomes interesting when compared
to the corresponding case in C0 regularity: in the conservative setting, it indicates
that the bad behaviours observed for generic conservative homeomorphisms should
disappear in higher regularity: the behaviour of the rate of injectivity is less ir-
regular for generic conservative C1 di�eomorphisms than for generic conservative
homeomorphisms(compare Theorems 4 and A). This big di�erence suggests that
the wild behaviours of the global dynamics of discretizations of generic conservative
homeomorphisms observed in [Gui15d] may not appear for higher regularities. For
example, we can hope that � contrary to what happens for generic conservative
homeomorphisms � it is possible to recover the physical measures of a generic C1

conservative di�eomorphism by looking at some well-chosen invariant measures of
the discretizations, as suggested by some numerical experiments (see also [Gui15e]).

5. This point was previously announced by P.P. Flockerman and O. E. Lanford, but remained
unpublished, see [Flo02].
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Despite this, Theorem A shows that when we iterate the discretizations of a
generic conservative di�eomorphism, we lose a great amount of information. More-
over, although f is conservative, its discretizations tend to behave like dissipative
maps. This can be compared with the work of P. Lax [Lax71]: for any conservative
homeomorphism f , there is a bijective �nite map arbitrarily close to f . Theorem A
states that for a generic conservative C1 di�eomorphism, the discretizations never
possess this property.

But the main interest of Theorem A lies in the techniques used to prove it: we
will link the global and local behaviours of the discretizations, thus reduce the proof
to that of a linear statement.

Firstly, as it can be obtained as the decreasing limit of �nite time quantities, the
degree of recurrence is maybe the easiest combinatorial invariant to study: we will
deduce its behaviour from that of the rate of injectivity.

De�nition 5. Let n ≥ 1, f : Tn → Tn an endomorphism of the torus and t ∈ N.
The rate of injectivity in time t and for the order N is the quantity

τ t(fN ) =
Card

(
(fN )t(EN )

)
Card(EN )

.

Then, the upper rate of injectivity of f in time t is de�ned as

τ t(f) = lim sup
N→+∞

τ t(fN ), (1)

and the asymptotic rate of injectivity of f is

τ∞(f) = lim
t→+∞

τ t(f)

(as the sequence (τ t(f))t is decreasing, the limit is well de�ned).

The link between the degree of recurrence and the rates of injectivity is made by
the trivial formula:

D(fN ) = lim
t→+∞

τ t(fN ).

Furthermore, when N is �xed, the sequence (τ t(fN ))t is decreasing in t, so D(fN ) ≤
τ t(fN ) for every t ∈ N. Taking the upper limit in N , we get

lim sup
N→+∞

D(fN ) ≤ τ t(f)

for every t ∈ N, so considering the limit t→ +∞, we get

lim sup
N→+∞

D(fN ) ≤ lim
t→+∞

τ t(f) = τ∞(f). (2)

In particular, if we have an upper bound on τ∞(f), this will give a bound on
lim supN→+∞D(fN ). This reduces the proof of Theorem A to the study of the
asymptotic rate of injectivity τ∞(f).

For generic dissipative C1-di�eomorphisms, the fact that the sequence (D(fN ))N
converges to 0 (Theorem A) is an easy consequence of Equation 2 and of a theorem
of A. Avila and J. Bochi (Theorem 37, see also [AB06]).

For conservative di�eomorphisms and expanding maps, the study of the rates
of injectivity will be the opportunity to understand the local behaviour of the dis-
cretizations: we will �linearize� the problem and reduce it to a statement about
generic sequences of linear maps.

Let us �rst de�ne the corresponding quantities for linear maps: as in general a
linear map does not send Zn into Zn, we will approach it by a discretization. For
any A ∈ GLn(R) and any x ∈ Zn, Â(x) is de�ned as the point of Zn which is
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the closest from A(x). Then, for any sequence (Ak)k of linear maps, the rate of

injectivity τk(A1, · · · , Ak) is de�ned as the density of the set (Âk ◦ · · ·◦ Â1)(Zn) (see
De�nition 7):

τk(A1, · · · , Ak) = lim sup
R→+∞

Card
(
(Âk ◦ · · · ◦ Â1)(Zn) ∩B(0, R)

)
Card

(
Zn ∩B(0, R)

) ∈]0, 1],

and the asymptotic rate of injectivity τ∞((Ak)k) is the limit of τk(A1, · · · , Ak) as k
tends to in�nity. These de�nitions are made to mimic the corresponding de�nitions
for di�eomorphisms. Then, the following statement asserts that that the rates of
injectivity of a generic map are obtained by averaging the corresponding quantities
for the di�erentials of the di�eomorphism, and thus makes the link between local
and global behaviours of the discretizations (Theorem 26).

Theorem B. Let r ∈ [1,+∞], and f ∈ Diffr(Tn) (or f ∈ Diffr(Tn,Leb)) be a
generic di�eomorphism. Then τk(f) is well de�ned (that is, the limit superior in
(1) is a limit) and satis�es:

τk(f) =

∫
Tn
τk
(
Dfx, · · · , Dffk−1(x)

)
d Leb(x).

The same kind of result holds for generic expanding maps (see Theorem 31).

For conservative di�eomorphisms, the core of the proof of Theorem A is the study
of the rate of injectivity of generic sequences of matrices with determinant 1, that
we will conduct in Section 2. Indeed, applying Theorem B wich links the local and
global behaviours of the di�eomorphism, together with Rokhlin tower theorem and
a statement of local linearization of di�eomorphisms (Lemma 42 combined with the
smoothing result [Avi10] of A. Avila), we reduce the proof of Theorem A to the
main result of Section 2 (Theorem 9).

Theorem C. For a generic sequence of matrices (Ak)k≥1 of `∞(SLn(R)), we have

τ∞
(
(Ak)k≥1

)
= 0.

This linear statement has also nice applications to image processing. For example
� the result remains true for a generic sequence of isometries �, it says that if
we apply a naive algorithm, the quality of a numerical image will be necessarily
deteriorated by rotating this image many times by a generic sequence of angles (see
[Gui15b]). Theorem C is also the central technical result of [Gui15e], wich study the
physical measures of discretizations of generic conservative C1-di�eomorphisms.

The proof of Theorem C (which is the most di�cult and most original part of the
proof of Theorem A) uses the nice formalism of model sets, developed initially for
the study of quasicrystals. Using an equidistribution property, this allows to get a
geometric formula for the computation of the rate of injectivity of a generic sequence
of matrices (Proposition 12): the rate of injectivity of a generic sequence A1, · · · , Ak
of matrices of SLn(R) can be expressed in terms of areas of intersections of cubes in
Rnk. This formula, by averaging what happens in the image sets (Âk ◦· · ·◦Â1)(Zn),
re�ects the global behaviour of these sets. Also, it transforms the iteration into
a passage in high dimension. These considerations allow to prove Theorem C, by
geometric considerations about the volume of intersections of cubes, without having
to make �clever� perturbations of the sequence of matrices (that is, the perturbations
made a each iteration are chosen independently from that made in the past or in
the future).

Note that the fact that the local-global formula is true for Cr-generic di�eomor-
phisms does not help to conclude about the degree of recurrence of such maps: a



6 PIERRE-ANTOINE GUIHÉNEUF

priori, we need to perturb the derivative of such maps on a large subset of the torus.
However, it is likely that Theorem 41 remains true for these higher regularities, at
least on some generic sets of open subsets of Diffr(Tn,Leb).

The end of this paper is devoted to the results of the simulations we have con-
ducted about the degree of recurrence of C1-di�eomorphisms and expanding maps;
it shows that in practice, the degree of recurrence tends to 0, at least for the exam-
ples of di�eomorphisms we have tested.

Recall that we will see in Appendix A that the quite restrictive framework of the
torus Tn equipped with the uniform grids can be generalized to arbitrary manifolds,
provided that the discretizations grids behave locally (and almost everywhere) like
the canonical grids on the torus.

To �nish, we state some questions related to Theorem A that remain open.
� What is the behaviour of the degree of recurrence of discretizations of generic
Cr-expanding maps of the torus Tn, for n ≥ 2 and r > 1? In the view of
Theorem A, we can conjecture that this degree of recurrence tends to 0. To
prove it we would need a generalization of Lemma 45 to bigger dimensions.

� What is the behaviour of the degree of recurrence of discretizations of generic
Cr-di�eomorphisms of the torus Tn for r > 1? These questions seem to be
quite hard, as it may require some perturbation results in the Cr topology for
r > 1.

Acknowledgments. Je tiens à remercier tous ceux qui m'ont aidé, de près ou de
loin, pendant ces recherches, et en particulier Yves Meyer, qui m'a fait découvrir
les ensembles modèle, ainsi que François Béguin, pour son soutien constant, ses
innombrables relectures et ses conseils éclairés.

2. The linear case

We begin by the study of the linear case, corresponding to the �local behaviour�
of C1 maps. We �rst de�ne the linear counterpart of the discretization.

De�nition 6. The map P : R→ Z is de�ned as a projection from R onto Z. More
precisely, for x ∈ R, P (x) is the unique 6 integer k ∈ Z such that k − 1/2 < x ≤
k + 1/2. This projection induces the map

π : Rn 7−→ Zn

(xi)1≤i≤n 7−→
(
P (xi)

)
1≤i≤n

which is an Euclidean projection on the lattice Zn. For A ∈ Mn(R), we denote by
Â the discretization of A, de�ned by

Â : Zn −→ Zn

x 7−→ π(Ax).

This de�nition allows us to de�ne the rate of injectivity for sequences of linear
maps.

6. Remark that the choice of where the inequality is strict and where it is not is arbitrary.
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Figure 1. Successive images of Z2 by discretizations of random matrices in
SL2(R), a point is black if it belongs to (Âk ◦ · · · ◦ Â1)(Z2). The Ai are cho-
sen randomly, using the singular value decomposition: they are chosen among the
matrices of the form RθDtRθ′ , with Rθ the rotation of angle θ and Dt the diagonal
matrix Diag(et, e−t), the θ, θ′ being chosen uniformly in [0, 2π] and t uniformly in
[−1/2, 1/2]. From left to right and top to bottom, k = 1, 3, 20.

De�nition 7. Let A1, · · · , Ak ∈ GLn(R). The rate of injectivity of A1, · · · , Ak is
the quantity 7 8

τk(A1, · · · , Ak) = lim sup
R→+∞

Card
(
(Âk ◦ · · · ◦ Â1)(Zn) ∩BR)

)
Card

(
Zn ∩BR

) ∈]0, 1],

and for an in�nite sequence (Ak)k≥1 of invertible matrices, as the previous quantity
is decreasing in k, we can de�ne the asymptotic rate of injectivity

τ∞
(
(Ak)k≥1

)
= lim

k→+∞
τk(A1, · · · , Ak) ∈ [0, 1].

For a typical example of the sets (Âk ◦ · · · ◦ Â1)(Z2), see Figure 1. Finally, we
de�ne a topology on the set of sequences of linear maps.

De�nition 8. We �x once for all a norm ‖ · ‖ on Mn(R). For a bounded sequence
(Ak)k≥1 of matrices of SLn(R), we set

‖(Ak)k‖∞ = sup
k≥1
‖Ak‖.

In other words, we consider the space `∞(SLn(R)) of uniformly bounded sequences
of matrices of determinant 1 endowed with this natural metric.

We can now state the main result of this section.

Theorem 9. For a generic sequence of matrices (Ak)k≥1 of `∞(SLn(R)), we have

τ∞
(
(Ak)k≥1

)
= 0.

Moreover, for every ε > 0, the set of(Ak)k≥1 ∈ `∞(SLn(R)) such that τ∞
(
(Ak)k≥1

)
<

ε is open and dense.

Remark 10. The second part of this statement is easily deduced from the �rst by
applying the continuity of τk on a generic subset (Remark 14).

Remark 11. The same statement holds for generic sequences of isometries (see also
[Gui15b]).

7. By de�nition, BR = B∞(0, R).
8. In the sequel we will see that the lim sup is in fact a limit for a generic sequence of matrices.

It can also easily shown that it is a limit in the general case.
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We take advantage of the rational independence between the matrices of a generic
sequence to obtain geometric formulas for the computation of the rate of injectivity.
The tool used to do that is the formalism of model sets 9 (see for example [Moo00]
or [Mey12] for surveys about model sets, see also [Gui15a] for the application to the
speci�c case of discretizations of linear maps).

Let us summarize the di�erent notations we will use throughout this section.
We will denote by 0k the origin of the space Rk, and W k =] − 1/2, 1/2]nk (unless
otherwise stated). In this section, we will denote BR = B∞(0, R) and Dc(E) the
density of a �continuous� set E ⊂ Rn, de�ned as (when the limit exists)

Dc(E) = lim
R→+∞

Leb(BR ∩ E)

Leb(BR)
,

while for a discrete set E ⊂ Rn, the notation Dd(E) will indicate the discrete
density of E, de�ned as (when the limit exists)

Dd(E) = lim
R→+∞

Card(BR ∩ E)

Card(BR ∩ Zn)
,

We will consider (Ak)k≥1 a sequence of matrices of SLn(R), and denote

Γk = (Âk ◦ · · · ◦ Â1)(Zn).

Also, Λk will be the lattice MA1,··· ,AkZ
n(k+1), with

MA1,··· ,Ak =


A1 − Id

A2 − Id
. . . . . .

Ak − Id
Id

 ∈Mn(k+1)(R), (3)

and Λ̃k will be the lattice M̃A1,··· ,AkZ
nk, with

M̃A1,··· ,Ak =


A1 − Id

A2 − Id
. . . . . .

Ak−1 − Id
Ak

 ∈Mnk(R).

Finally, we will denote

τk(A1, · · · , Ak) = Dc

(
W k+1 + Λk

)
the mean rate of injectivity in time k of A1, · · · , Ak.

2.1. A geometric viewpoint to compute the rate of injectivity in arbi-

trary times. We begin by motivating the introduction of model sets by giving an
alternative construction of the image sets (Âk ◦ · · · ◦ Â1)(Zn) using this formalism.

Let A1, · · · , Ak ∈ GLn(R), then

Γk = (Âk ◦ · · · ◦ Â1)(Zn)

=
{
p2(λ) | λk ∈ Λk, p1(λ) ∈W k

}
= p2

(
Λ ∩

(
p−1

1 (W k)
))
, (4)

with p1 the projection on the nk �rst coordinates and p2 the projection on the n
last coordinates. This allows us to see the set Γk as a model set.

9. Also called cut-and-project sets.
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Figure 2. Geometric construction to compute the rate of injectivity: the green
points are the elements of Λ, the blue parallelogram is a fundamental domain of Λ
and the grey squares are centred on the points of Λ and have radii 1/2. The rate
of injectivity is equal to the area of the intersection between the union of the grey
squares and the blue parallelogram.

Here, we suppose that the set p1(Λk) is dense (thus, equidistributed) in the image
set im p1 (note that this condition is generic among the sequences of invertible linear
maps). In particular, the set {p2(γ) | γ ∈ Λk} is equidistributed in the window W k.

The following property makes the link between the density of Γk � that is, the
rate of injectivity of A1, · · · , Ak � and the density of the union of unit cubes centred
on the points of the lattice Λk (see Figure 2). This formula seems to be very speci�c
to the model sets de�ned by the matrixMA1,··· ,Ak and the windowW k, it is unlikely
that it can be generalized to other model sets.

Proposition 12. For a generic sequence of matrices (Ak)k of SLn(R), we have

Dd(Γk) = Dc

(
W k + Λ̃k

)
= τk(A1, · · · , Ak).

Remark 13. The density on the left of the equality is the density of a discrete set
(that is, with respect to counting measure), whereas the density on the right of the
equality is that of a continuous set (that is, with respect to Lebesgue measure). The
two notions coincide when we consider discrete sets as sums of Dirac masses.

Remark 14. Proposition 12 asserts that for a generic sequence of matrices, the rate
of injectivity τk in time k coincides with the mean rate of injectivity τk, which
is continuous and piecewise polynomial of degree ≤ nk in the coe�cients of the
matrix.

Remark 15. The formula of Proposition 12 could be used to compute numerically
the mean rate of injectivity in time k of a sequence of matrices: it is much faster
to compute the volume of a �nite number of intersections of cubes (in fact, a small
number) than to compute the cardinalities of the images of a big set [−R,R]n∩Zn.

Proof of Proposition 12. We want to determine the density of Γk. By Equation (4),
we have

x ∈ Γk ⇐⇒ x ∈ Zn and ∃λ ∈ Λk : x = p2(λ), p1(λ) ∈W k.

But if x = p2(λ), then we can write λ = (λ̃, 0n) + (0(k−1)n,−x, x) with λ̃ ∈ Λ̃k.
Thus,

x ∈ Γk ⇐⇒ x ∈ Zn and ∃λ̃ ∈ Λ̃k : (0(k−1)n,−x)− λ̃ ∈W k

⇐⇒ x ∈ Zn and (0(k−1)n, x) ∈
⋃
λ̃∈Λ̃k

λ̃−W k.
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Thus, x ∈ Γk if and only if the projection of (0(k−1)n, x) on Rnk/Λ̃k belongs to⋃
λ̃∈Λ̃k

λ̃−W k. Then, the proposition follows directly from the fact that the points

of the form (0(k−1)n, x), with x ∈ Zn, are equidistributed in Rnk/Λ̃k.

To prove this equidistribution, we compute the inverse matrix of M̃A1,··· ,Ak :

M̃−1
A1,··· ,Ak =


A−1

1 A−1
1 A−1

2 A−1
1 A−1

2 A−1
3 · · · A−1

1 · · ·A
−1
k

A−1
2 A−1

2 A−1
3 · · · A−1

2 · · ·A
−1
k

. . . . . .
...

A−1
k−1 A−1

k−1A
−1
k

A−1
k

 .

Thus, the set of points of the form (0(k−1)n, x) in Rnk/Λ̃k corresponds to the image
of the action

Zn 3 x 7−→


A−1

1 · · ·A
−1
k

A−1
2 · · ·A

−1
k

...
A−1
k−1A

−1
k

A−1
k

x

of Zn on the canonical torus Rnk/Znk. But this action is ergodic (even in restriction
to the �rst coordinate) when the sequence of matrices is generic. �

Recall the problem raised by Theorem 9: we want to make τk tend to 0 as k tends
to in�nity. By an argument of equidistribution stated by Proposition 12, generically,
it is equivalent to make the mean rate of injectivity τk tend to 0 when k goes to
in�nity, by perturbing every matrix in SLn(R) of at most δ > 0 (�xed once for all).
The conclusion of Theorem 9 is motivated by the phenomenon of concentration of
the measure on a neighbourhood of the boundary of the cubes in high dimension.

Proposition 16. Let W k be the in�nite ball of radius 1/2 in Rk and vk the vector
(1, · · · , 1) ∈ Rk. Then, for every ε, δ > 0, there exists k0 ∈ N∗ such that for every
k ≥ k0, we have Leb

(
W k ∩ (W k + δvk)

)
< ε.

The case of equality τk = 1 is given by Hajós theorem.

Theorem 17 (Hajós, [Haj41]). Let Λ be a lattice of Rn. Then the collection of
squares {B∞(λ, 1/2)}λ∈Λ tiles Rn if and only if in a canonical basis of Rn (that is,
permuting coordinates if necessary), Λ admits a generating matrix which is upper
triangular with ones on the diagonal.

Remark 18. The kind of questions addressed by Hajós theorem are in general quite
delicate. For example, we can wonder what happens if we do not suppose that the
centres of the cubes form a lattice of Rn. O. H. Keller conjectured in [Kel30] that
the conclusion of Hajós theorem is still true under this weaker hypothesis. This
conjecture was proven to be true for n ≤ 6 by O. Perron in [Per40a, Per40b], but
remained open in higher dimension until 1992, when J. C. Lagarias and P. W. Shor
proved in [LS92] that Keller's conjecture is false for n ≥ 10 (this result was later
improved by [Mac02] which shows that it is false as soon as n ≥ 8; the case n = 7
is to our knowledge still open).

Combining Hajós theorem with Proposition 12, we obtain that the equality τk = 1
occurs if and only if the lattice given by the matrixMA1,··· ,Ak satis�es the conclusions
of Hajós theorem 10. The heuristic suggested by the phenomenon of concentration

10. Of course, this property can be obtained directly by saying that the density is equal to 1 if
and only if the rate of injectivity of every matrix of the sequence is equal to 1.
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of the measure is that if we perturb �randomly� any sequence of matrices, we will go
�far away� from the lattices satisfying Hajós theorem and then the rate of injectivity
will be close to 0.

2.2. A �rst step: proof that the asymptotic rate of injectivity is gener-

ically smaller than 1/2. As a �rst step, we prove that rate of injectivity of a
generic sequence of `∞(SLn(R)) is smaller than 1/2.

Proposition 19. Let (Ak)k≥1 be a generic sequence of matrices of SLn(R). Then
there exists a parameter λ ∈]0, 1[ such that for every k ≥ 1, we have τk(A1, · · · , Ak) ≤
(λk + 1)/2. In particular, τ∞((Ak)k) ≤ 1/2.

To begin with, we give a lemma estimating the sizes of intersections of cubes
when the mean rate of injectivity τk is bigger than 1/2.

Lemma 20. Let W k =]− 1/2, 1/2]k and Λ ⊂ Rk be a lattice with covolume 1 such
that Dc(W

k + Λ) ≥ 1/2. Then, for every v ∈ Rk, we have

Dc

(
(W k + Λ + v) ∩ (W k + Λ)

)
≥ 2Dc(W

k + Λ)− 1.

Proof of Lemma 20. We �rst remark that Dc(Λ+W k) is equal to the volume of the
projection of W k on the quotient space Rk/Λ. For every v ∈ Rk, the projection of
W k + v on Rk/Λ has the same volume; as this volume is greater than 1/2, and as
the covolume of Λ is 1, the projections of W k and W k + v overlap, and the volume
of the intersection is bigger than 2Dc(W

k + Λ) − 1. Returning to the whole space
Rk, we get the conclusion of the lemma. �

A simple counting argument leads to the proof of the following lemma.

Lemma 21. Let Λ1 be a subgroup of Rm, Λ2 be such that Λ1 ⊕ Λ2 is a lattice of
covolume 1 of Rm, and C be a compact subset of Rm. Let C1 be the projection of C
on the quotient Rm/Λ1, and C2 the projection of C on the quotient Rm/(Λ1⊕Λ2).
We denote by

ai = Leb
{
x ∈ C1 | Card{λ2 ∈ Λ2 | x ∈ C1 + λ2} = i

}
(in particular,

∑
i≥1 ai = Leb(C1)). Then,

Leb(C2) =
∑
i≥1

ai
i
.

In particular, the area of C2 (the projection on the quotient by Λ1⊕Λ2) is smaller
than (or equal to) that of C1 (the projection on the quotient by Λ1). The loss of
area is given by the following corollary.

Corollary 22. With the same notations as for Lemma 21, if we denote by

D1 = Leb
{
x ∈ C1 | Card{λ2 ∈ Λ2 | x ∈ C1 + λ2} ≥ 2

}
,

then,

Leb(C2) ≤ Leb(C1)− D1

2
.

Proof of Proposition 19. Let (Ak)k≥1 be a bounded sequence of matrices of SLn(R)
and δ > 0. We proceed by induction on k and suppose that the proposition is proved
for a rank k ∈ N∗. Let Λ̃k be the lattice spanned by the matrix M̃B1,··· ,Bk andW

k =

] − 1/2, 1/2]nk be the window corresponding to the model set Γk modelled on Λk
(the lattice spanned by the matrixMB1,··· ,Bk , see Equation (3)). By Proposition 12,
if the sequence (Ak)k is generic, then we have

τk(B1, · · · , Bk) = Dc

(
W k + Λ̃k

)
.
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How to read these �gures : The top of the �gure represents the set W k + Λ̃k by the
1-dimensional set [−1/2, 1/2] + νZ (in dark blue), for a number ν > 1. The bottom
of the �gure represents the set W k+1 + Λ̃k+1 by the set [−1/2, 1/2]2 + Λ, where
Λ is the lattice spanned by the vectors (0, ν) and (1, 1 − ε) for a parameter ε > 0
close to 0. The dark blue cubes represent the �old� cubes, that is, the thickening
in dimension 2 of the set W k + Λ̃k, and the light blue cubes represent the �added�
cubes, that is, the rest of the set W k+1 + Λ̃k+1.

Figure 3. In the case where the rate
is bigger than 1/2, some intersections
of cubes appear automatically between
times k and k + 1.

Figure 4. In the case where the rate is
smaller than 1/2, there is not necessarily
new intersections between times k and
k + 1.

We now choose a matrix Bk+1 satisfying ‖Ak+1 − Bk+1‖ ≤ δ, such that there
exists x1 ∈ Zn \ {0} such that ‖Bk+1x1‖∞ ≤ 1 − ε, with ε > 0 depending only on
δ and ‖(Ak)k‖ (and n): indeed, for every matrix B ∈ SLn(R), Minkowski theorem
implies that there exists x1 ∈ Zn \ {0} such that ‖Bx1‖∞ ≤ 1; it then su�ces to
modify slightly B to decrease ‖Bx1‖∞. We can also suppose that the sequence of
matrices B1, · · · , Bk+1 is generic. Again, Proposition 12 reduces the calculation of
the rate on injectivity τk+1(B1, · · · , Bk+1) to that of the density of W k+1 + Λ̃k+1.
By the form of the matrix M̃B1,··· ,Bk , this set can be decomposed into

W k+1 + Λ̃k+1 = W k+1 +

(
Λ̃k
0n

)
+

0n(k−1)

− Id
Bk+1

Zn.

In particular, as |det(Bk+1)| = 1, this easily implies that Dc

(
W k+1 + Λ̃k+1

)
≤

Dc

(
W k + Λ̃k

)
.

What we need is a more precise bound. We apply Corollary 22 to

Λ1 =
(
Λ̃k, 0

n
)
, Λ2 =

0n(k−1)

− Id
Bk+1

Zn and C = W k+1.

Then, the decreasing of the rate of injectivity between times k and k + 1 is bigger
than the D1 de�ned in Corollary 22: using Lemma 20, we have

Dc

((
W k + Λ̃k

)
∩
(
W k + Λ̃k +

(
0n(k−1),−x1

)))
≥ 2Dd(Γk)− 1;

thus, as ‖x1‖∞ < 1− ε (see Figure 3),

D1 ≥ εn
(
2Dd(Γk)− 1

)
.
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From Corollary 22 we deduce that

Dd(Γk+1) = Dc

(
W k+1 + Λ̃k+1

)
≤ Dc

(
W k + Λ̃k

)
− 1

2
D1

≤ Dd(Γk)−
1

2
εn
(
2Dd(Γk)− 1

)
.

This proves the theorem for the rank k + 1. �

2.3. Proof of Theorem 9: generically, the asymptotic rate is zero. We now
come to the proof of Theorem 9. The strategy of proof is identical to that we used
in the previous section to state that generically, the asymptotic rate is smaller than
1/2 (Proposition 19): we will use an induction to decrease the rate step by step.
Recall that τk(A1, · · · , Ak) indicates the density of the set W k+1 + Λk.

Unfortunately, if the density of W k + Λ̃k � which is generically equal to the
density of the k-th image

(
Âk ◦ · · · ◦ Â1

)
(Zn) � is smaller than 1/2, then we can

not apply exactly the strategy of proof of the previous section (see Figure 4). For
example, if we take

A1 = diag(100, 1/100) and A2 = diag(1/10, 10),

then
(
Â2 ◦ Â1

)
(Z2) = (2Z)2, and for every B3 close to the identity, we have

τ3(A1, A2, B3) = τ2(A1, A2) = 1/100.
Moreover, if we set Ak = Id for every k ≥ 2, then we can set B1 = A1, B2 = A2

and for each k ≥ 2 perturb each matrix Ak into the matrix Bk = diag(1 + δ, 1/(1 +
δ)), with δ > 0 small. In this case, there exists a time k0 (minimal) such that
τk0(B1, · · · , Bk0) < 1/100. But if instead of Ak0 = Id, we have Ak0 = diag(1/5, 5),
this construction does not work anymore: we should have setBk = diag(1/(1+δ), 1+
δ). This suggests that we should take into account the next terms of the sequence
(Ak)k to perform the perturbations. And things seems even more complicated when
the matrices are no longer diagonal. . .

To overcome this di�culty, we use the same strategy of proof than in the case
where τ ≥ 1/2, provided that we wait for long enough time: for a generic sequence
(Ak)k≥1, if τk(A1, · · · , Ak) > 1/`, then τk+`−1(A1, · · · , Ak+`−1) is strictly smaller
than τk(A1, · · · , Ak). More precisely, we consider the maximal number of disjoint
translates of W k + Λ̃k in Rnk: we easily see that if the density of W k + Λ̃k is
bigger than 1/`, then there can not be more than ` disjoint translates of W k + Λ̃k
in Rnk(Lemma 23). At this point, Lemma 24 states that if the sequence of matrices
is generic, then either the density of W k+1 + Λ̃k+1 is smaller than that of W k + Λ̃k
(Figure 5), or there can not be more than `− 1 disjoint translates of W k+1 + Λ̃k+1

in Rn(k+1)(see Figure 6). Applying this reasoning (at most) `− 1 times, we obtain
that the density of W k+`−1 + Λ̃k+`−1 is smaller than that of W k + Λ̃k. For example
if Dc

(
W k + Λ̃k

)
> 1/3, then Dc

(
W k+2 + Λ̃k+2

)
< D

(
W k + Λ̃k

)
(see Figure 7). To

apply this strategy in practice, we have to obtain quantitative estimates about the
loss of density we get between times k and k + `− 1.

Remark that with this strategy, we do not need to make �clever� perturbations
of the matrices: provided that the coe�cients of the matrices are rationally inde-
pendent, the perturbation of each matrix is made independently from that of the
others. However, this reasoning does not tell when exactly the rate of injectivity
decreases (likely, in most of cases, the speed of decreasing of the rate of injectivity is
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much faster than the one obtained by this method), and does not say either where
exactly the loss of injectivity occurs in the image sets.

We will indeed prove a more precise statement of Theorem 9.

Theorem 9. For a generic sequence of matrices (Ak)k≥1 of `∞(SLn(R)), for every
` ∈ N, there exists λ` ∈]0, 1[ such that for every k ∈ N,

τ `k(A1, · · · , A`k) ≤ λk` +
1

`
. (5)

Also, for every ν < 1, we have

τk(A1, · · · , Ak) = o
(

ln(k)−ν
)
. (6)

In particular, the asymptotic rate of injectivity τ∞
(
(Ak)k≥1

)
is equal to zero.

The following lemma is a generalization of Lemma 20. It expresses that if the
density of W k + Λ̃k is bigger than 1/`, then there can not be more than ` disjoint
translates of W k + Λ̃k, and gives an estimation on the size of these intersections.

Lemma 23. Let W k =]− 1/2, 1/2]k and Λ ⊂ Rk be a lattice with covolume 1 such
that Dc(W

k + Λ) ≥ 1/`. Then, for every collection v1, · · · , v` ∈ Rk, there exists
i 6= i′ ∈ J1, `K such that

Dc

(
(W k + Λ + vi) ∩ (W k + Λ + vi′)

)
≥ 2

`Dc(W
k + Λ)− 1

`(`− 1)
.

Proof of Lemma 23. For every v ∈ Rk, the density Dc(W
k + Λ + v) is equal to the

volume of the projection of W k on the quotient space Rk/Λ. As this volume is
greater than 1/`, and as the covolume of Λ is 1, the projections of the W k + vi
overlap, and the volume of the points belonging to at least two di�erent sets is
bigger than `Dc(W

k + Λ) − 1. As there are `(` − 1)/2 possibilities of intersection,
there exists i 6= i′ such that the volume of the intersection between the projections
of W k + vi and W k + vi′ is bigger than 2(`Dc(W

k + Λ)− 1)/(`(`− 1)). Returning
to the whole space Rk, we get the conclusion of the lemma. �

Recall that we denote Λ̃k the lattice spanned by the matrix

M̃A1,··· ,Ak =


A1 − Id

A2 − Id
. . . . . .

Ak−1 − Id
Ak

 ∈Mnk(R),

andW k the cube ]−1/2, 1/2]nk. The proof of Theorem 9 will reduce to the following
technical lemma.

Lemma 24. For every δ > 0 and every M > 0, there exists ε > 0 and an open set
of matrices O ⊂ SLn(R), which is δ-dense in the set of matrices of norm ≤M , such
that if ` ≥ 2 and D0 > 0 are such that for every collection of vectors v1, · · · , v` ∈ Rn,
there exists j, j′ ∈ J1, `K such that

Dc

((
W k + Λ̃k + (0(k−1)n, vj)

)
∩
(
W k + Λ̃k + (0(k−1)n, vj′)

))
≥ D0,

then for every B ∈ O, if we denote by Λ̃k+1 the lattice spanned by the matrix

M̃A1,··· ,Ak,B,

(1) either Dc(W
k+1 + Λ̃k+1) ≤ Dc(W

k + Λ̃k)− εD0/(4`);
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(2) or for every collection of vectors w1, · · · , w`−1 ∈ Rn, there exists i 6= i′ ∈
J1, `− 1K such that

Dc

((
W k+1 + Λ̃k+1 + (0kn, wi)

)
∩
(
W k+1 + Λ̃k+1 + (0kn, wi′)

))
≥ εD0/`

2.

Remark 25. If ` = 2, then we have automatically the conclusion (1) of the lemma;
that easily implies Proposition 19.

In a certain sense, the conclusion (1) corresponds to an hyperbolic case, and the
conclusion (2) expresses that there is a di�usion between times k and k + 1.

Proof of Lemma 24. Let Oε be the set of the matrices B ∈ SLn(R) satisfying: for
any collection of vectors w1, · · · , w`−1 ∈ Rn, there exists a set U ⊂ Rn/BZn of
measure > ε such that every point of U belongs to at least ` di�erent cubes of the
collection (Bv + wi + W 1)v∈Zn, 1≤i≤`−1. In other words 11, every x ∈ Rn whose
projection x on Rn/BZn belongs to U satis�es

`−1∑
i=1

∑
v∈Zn

1x∈Bv+wi+W 1 ≥ `. (7)

We easily see that the sets Oε are open and that the union of these sets over ε > 0
is dense (it contains the set of matrices B whose entries are all irrational). Thus, if
we are given δ > 0 and M > 0, there exists ε > 0 such that O = Oε is δ-dense in
the set of matrices of SLn(R) whose norm is smaller than M .

We then choose B ∈ O and a collection of vectors w1, · · · , w`−1 ∈ Rn. Let x ∈ Rn

be such that x ∈ U . By hypothesis on the matrix B, x satis�es Equation (7), so
there exists ` + 1 integer vectors v1, · · · , v` and ` indices i1, · · · , i` such that the
couples (vj , ij) are pairwise distinct and that

∀j ∈ J1, `K, x ∈ Bvj + wij +W 1. (8)

The following formula makes the link between what happens in the n last and in
the n penultimates coordinates of Rn(k+1):

W k+1 + Λ̃k+1 +
(
0(k−1)n, 0n, wij

)
= W k+1 + Λ̃k+1 +

(
0(k−1)n,−vj , wij +Bvj

)
, (9)

(we add a vector belonging to Λ̃k+1).
We now apply the hypothesis of the lemma to the vectors −v1, · · · ,−v`+1: there

exists j 6= j′ ∈ J1, `K such that

Dc

((
W k + Λ̃k + (0(k−1)n,−vj)

)
∩
(
W k + Λ̃k + (0(k−1)n,−vj′)

))
≥ D0. (10)

Let y be a point belonging to this intersection. Applying Equations (8) and (10),
we get that

(y, x) ∈W k+1 +
(
Λ̃k, 0

n
)

+
(
0(k−1)n,−vj , wij +Bvj

)
(11)

and the same for j′.
Two di�erent cases can occur.

11. Matrices that does not possess this property for every ε > 0 are such that the union of cubes
form a k-fold tiling. This was the subject of Furtwängler conjecture, see [Fur36], proved false by
G. Hajós. R. Robinson gave a characterization of such k-fold tilings in some cases, see [Rob79] or
[SS94, p. 29].
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x

y

Figure 5. First case of Lemma 24, in
the case ` = 3: the set W k+1 + Λ̃k+1

auto-intersects.

x

y

Figure 6. Second case of Lemma 24,
in the case ` = 3: two distinct ver-
tical translates of W k+1 + Λ̃k+1 inter-
sect (the �rst translate contains the dark
blue thickening of W k + Λ̃k, the second
is represented in grey).

(i) Either ij = ij′ (that is, the translation vectors wij and wij′ are equal). As a
consequence, applying Equation (11), we have

(y, x) +
(
0(k−1)n, vj ,−Bvj − wij

)
∈
(
W k+1 +

(
Λ̃k, 0

n
))
∩(

W k+1 +
(
Λ̃k, 0

n
)

+ v′
)
,

with
v′ =

(
0(k−1)n,−(vj′ − vj), B(vj′ − vj)

)
∈ Λ̃k+1 \ Λ̃k.

This implies that the set W k+1 + Λ̃k+1 auto-intersects (see Figure 5).

(ii) Or ij 6= ij′ (that is, wij 6= wij′ ). Combining Equations (11) and (9) (note that(
Λ̃k, 0

n
)
⊂ Λ̃k+1), we get

(y, x) ∈
(
W k+1 + Λ̃k+1 +

(
0kn, wij

))
∩
(
W k+1 + Λ̃k+1 +

(
0kn, wij′

))
.

This implies that two distinct vertical translates ofW k+1 +Λ̃k+1 intersect (see
Figure 6).

We now look at the global behaviour of all the x such that x ∈ U . Again, we
have two cases.

(1) Either for more than the half of such x (for Lebesgue measure), we are in the
case (i). To each of such x corresponds a translation vector wi. We choose wi
such that the set of corresponding x has the biggest measure; this measure is
bigger than ε/

(
2(`− 1)

)
≥ ε/(2`). Reasoning as in the proof of Proposition 19,

and in particular using the notations of Corollary 22, we get that the density
D1 of the auto-intersection of W k+1 + Λ̃k+1 + (0, wi) is bigger than D0ε/(2`).
This leads to (using Corollary 22)

Dc(W
k+1 + Λ̃k+1) < Dc(W

k + Λ̃k)−
D0ε

4`
.

In this case, we get the conclusion (1) of the lemma.

(2) Or for more than the half of such x, we are in the case (ii). Choosing the couple
(wi, wi′) such that the measure of the set of corresponding x is the greatest, we
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Figure 7. Intersection of cubes in the case where the rate is bigger than 1/3. The
thickening of the cubes ofW k+Λ̃k is represented in dark blue and the thickening of
the rest of the cubes ofW k+1 +Λ̃k+1 is represented in light blue; we have also repre-
sented another cube of W k+2 + Λ̃k+2 in yellow. We see that if the projection on the
z-axis of the centre of the yellow cube is smaller than 1, then there is automatically
an intersection between this cube and one of the blue cubes.

get

Dc

((
W k+1 + Λ̃k+1 + (0kn, wi)

)
∩
(
W k+1 + Λ̃k+1 + (0kn, wi′)

))
≥ D0ε

(`− 1)(`− 2)
.

In this case, we get the conclusion (2) of the lemma.

�

We can now prove Theorem 9.

Proof of Theorem 9. As in the proof of Proposition 19, we proceed by induction on
k. Suppose that Λ̃k is such that Dc(W

k+Λ̃k) > 1/`. Then, Lemma 23 ensures that
it is not possible to have ` disjoint translates of W k + Λ̃k. Applying Lemma 24, we
obtain that either Dc(W

k+1 + Λ̃k+1) < Dc(W
k + Λ̃k), or it is not possible to have

` − 1 disjoint translates of W k+1 + Λ̃k+1. And so on, applying Lemma 24 at most
`− 1 times, there exists k′ ∈ Jk + 1, k + `− 1K such that W k′ + Λ̃k′ has additional
auto-intersections. Quantitatively, combining Lemmas 23 and 24, we get

Dc

(
W k+`−1 + Λ̃k+`−1

)
≤ D

(
W k + Λ̃k

)
− ε

4`

( ε
`2

)`−1
2
`Dc(W

k + Λ̃k)− 1

`(`− 1)
,

thus

Dc

(
W k+`−1 + Λ̃k+`−1

)
− 1/` ≤

(
1− 1

2

( ε
`2

)`)(
Dc

(
W k + Λ̃k

)
− 1/`

)
,

in other words, if we denote τk = τk(B1, · · · , Bk) and λ` = 1−
(
ε
`2

)`
,

τk+`−1 − 1/` ≤ λ`
(
τk − 1/`

)
. (12)

This implies that for every ` > 0, the sequence of rates τk is smaller than a se-
quence converging exponentially fast to 1/`: we get Equation (5). In particular, the
asymptotic rate of injectivity is generically equal to zero.

We now prove the estimation of Equation (6). Suppose that τk ∈ [1/(`−2), 1/(`−
1)], we compute how long it takes for the rate to be smaller than 1/(` − 1). We
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apply Equation (12) j times to ` and get

τk+j` − 1/` ≤ λj`(τ
k − 1/`),

with λ = 1−
(
ε
`2

)`
. In the worst case, we have τk = 1/(`− 2), thus if j′ satis�es

1

`− 1
− 1

`
= λj

′

`

(
1

`− 2
− 1

`

)
, (13)

then j = dj′e is such that τk+j` ≤ 1/(`− 1). Equation (13) is equivalent to

j′ =
−1

log λ`

(
log 2− log

(
1− 1

`− 1

))
.

And for ` very big, we have the equivalent (recall that λ` = 1− 1
2

(
ε
`2

)`
)

j′ ∼
(
`2

ε

)`
2 log 2.

Thus, when ` is large enough, the time it takes for the rate to decrease from 1/(`−2)

to 1/(`− 1) is smaller than `2(`+1) = e2(`+1) log `.
On the other hand, if we set f(k) = (log k)−ν , the time it takes for f to go from

1/(`− 2) to 1/(`− 1) is equal to

e(`−1)1/ν − e(`−2)1/ν = e(`−1)1/ν
(

1− e(`−2)1/ν−(`−1)1/ν
)
∼ e(`−1)1/ν

when l goes to in�nity, thus smaller than e(`−1)1/ν+1 when ` is large enough. But we
have 2(`+1) log ` = o

(
(`−1)1/ν +1

)
. So, when ` is large enough, it takes arbitrarily

much more time for τk to decrease from 1/(`−2) to 1/(`−1) than for f to decrease
from 1/(`− 2) to 1/(`− 1). As a consequence, τ(k) = o(f(k)). �

3. A local-global formula for Cr-generic expanding maps and

Cr-generic diffeomorphisms

The goal of this section is to study the rate of injectivity of generic Cr-expanding
maps and Cr-generic di�eomorphisms of the torus Tn. Here, the term expanding
map is taken from the point of view of discretizations: we say that a linear map
A is expanding if there does not exist two distinct integer points x, y ∈ Zn such
that Â(x) = Â(y). This condition is satis�ed in particular if for every x 6= 0, we
have ‖Ax‖∞ ≤ ‖x‖∞; thus when n = 1 this de�nition coincides with the classical
de�nition of expanding map.

The main result of this section is that the rate of injectivity of both generic C1-
di�eomorphisms and generic Cr-expanding maps of the torus Tn is obtained from
a local-global formula (Theorems 26 and 31). Let us begin by explaining the case
of di�eomorphisms.

Theorem 26. Let r ≥ 1, and f ∈ Diffr(Tn) (or f ∈ Diffr(Tn,Leb)) be a generic
di�eomorphism. Then τk(f) is well de�ned (that is, the limit superior in (1) is a
limit) and satis�es:

τk(f) =

∫
Tn
τk
(
Dfx, · · · , Dffk−1(x)

)
d Leb(x).

Moreover, the function τk is continuous in f .

The idea of the proof of this theorem is very simple: locally, the di�eomorphism
is almost equal to a linear map. This introduces an intermediate mesoscopic scale
on the torus:

� at the macroscopic scale, the discretization of f acts as f ;
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� at the intermediate mesoscopic scale, the discretization of f acts as a linear
map;

� at the microscopic scale, we are able to see that the discretization is a �nite
map and we see that the phase space is discrete.

This remark is formalized by Taylor's formula: for every ε > 0 and every x ∈ Tn,
there exists ρ > 0 such that f and its Taylor expansion at order 1 are ε-close on
B(x, ρ). We then suppose that the derivative Dfx is �good�: the rate of injectivity
of any of its C1-small perturbations can be seen on a ball BR of Rn (with R uniform
in x). Then, the proof of the local-global formula is made in two steps.

� Prove that �a lot� of maps of SLn(R) are �good�. This is formalized by
Lemma 32, which gives estimations of the size of the perturbations of the
linear map allowed, and of the size of the ball BR. Its proof is quite technical
and uses crucially the formalism of model sets, and an improvement of Weyl's
criterion.

� Prove that for a generic di�eomorphism, the derivative satis�es the conditions
of Lemma 32 at almost every point. This follows easily from Thom's transver-
sality theorem.

As the case of expanding maps is more complicated but similar, we will prove
the local-global formula only for expanding maps; the adaptation of it for di�eo-
morphisms is straightforward.

Remark that the hypothesis of genericity is necessary to get Theorem 26. For
example, it can be seen that if we set

f0 =

(
1
2 −1
1
2 1

)
,

then τ(f0) = 1/2 whereas τ(f0 + (1/4, 3/4)) = 3/4. Thus, if g is a di�eomorphism
of the torus which is equal to f0 + v on an open subset of T2, with v a suitable
translation vector, then the conclusions of Theorem 26 does not hold (see Example
11.4 of [Gui15c] for more explanations).

The de�nition of the linear analogue of the rate of injectivity of an expanding
map in time k is more complicated than for di�eomorphisms: in this case, the set
of preimages has a structure of d-ary tree. We de�ne the rate of injectivity of a
tree � with edges decorated by linear expanding maps � as the probability of
percolation of a random graph associated to this decorated tree (see De�nition 29).
In particular, if all the expanding maps were equal, then the connected component
of the root of this random graph is a Galton-Watson tree. We begin by the de�nition
of the set of expanding maps.

De�nition 27. For r ≥ 1 and d ≥ 2, we denote by Dr(Tn) the set of Cr �Zn-
expanding maps� of Tn for the in�nite norm. More precisely, Dr(Tn) is the set of
maps f : Tn → Tn, which are local di�eomorphisms, such that the derivative f (brc)

is well de�ned and belongs to Cr−brc(Tn) and such that for every x ∈ Tn and every
v ∈ Zn \ {0}, we have ‖Dfxv‖∞ ≥ 1.

In particular, for f ∈ Dr(Tn), the number of preimages of any point of Tn is
equal to a constant, that we denote by d.

Remark that in dimension n = 1, the set Dr(S1) coincides with the classical set
of expanding maps: f ∈ Dr(S1) if and only if it belongs to Cr(S1) and f ′(x) ≥ 1
for every x ∈ S1.

We now de�ne the linear setting corresponding to a map f ∈ D(Tn).
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De�nition 28. We set (see also Figure 8)

Ik =

k⊔
m=1

J1, dKm

the set of m-tuples of integers of J1, dK, for 1 ≤ m ≤ k.
For i = (i1, · · · , im) ∈ J1, dKm, we set length(i) = m and father(i) = (i1, · · · , im−1) ∈

J1, dKm−1 (with the convention father(i1) = ∅).

The set Ik is the linear counterpart of the set
⊔k
m=1 f

−m(y). Its cardinal is equal
to d(1− dk)/(1− d).

De�nition 29. Let k ∈ N. The complete tree of order k is the rooted d-ary tree
Tk whose vertices are the elements of Ik together with the root, denoted by ∅, and
whose edges are of the form (father(i), i)i∈Ik (see Figure 8).

Let (pi)i∈Ik be a family of numbers belonging to [0, 1]. These probabilities will be
seen as decorations of the edges of the tree Tk. We will call random graph associated
to (pi)i∈Ik the random subgraph G(pi)i of Tk, such that the laws of appearance the
edges (father(i), i) of G(pi)i are independent Bernoulli laws of parameter pi. In
other words, G(pi)i is obtained from Tk by erasing independently each vertex of Tk
with probability 1− pi.

We de�ne the mean density D((pi)i) of (pi)i∈Ik as the probability that in G(pi)i ,
there is at least one path linking the root to a leaf.

Remark that if the probabilities pi are constant equal to p, the random graph
G(pi)i is a Galton-Watson tree, where the probability for a vertex to have i children

is equal to
(
d
i

)
pi(1− p)d−i.

De�nition 30. By the notation D((detDf−1
x )x∈f−m(y), 1≤m≤k), we will mean that

the mean density is taken with respect to the random graph Gf,y associated to the
decorated tree whose vertices are the f−m(y) for 0 ≤ m ≤ k, and whose edges are
of the form (f(x), x) for x ∈ f−m(y) with 1 ≤ m ≤ k, each one being decorated by
the number detDf−1

x (see Figure 9).

Recall that the rates of injectivity are de�ned by (see also De�nition 5)

τk(fN ) =
Card

(
(fN )k(EN )

)
Card(EN )

and τk(f) = lim sup
N→+∞

τk(fN ).

∅

(1)

(2)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

Figure 8. The tree T2 for
d = 2.

y

x(1)

x(2)

x(1,1)

x(1,2)

x(2,1)

x(2,2)

detDf
−1
x(1)

detDf
−1
x(1,1)

detDf−1
x(1,2)

detDf −1x
(2)

detDf
−1
x(2,1)

detDf−1
x(2,2)

Figure 9. The probability tree associated to the
preimages of y, for k = 2 and d = 2. We have
f(x(1,1)) = f(x(1,2)) = x(1), etc.
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Theorem 31. Let r ≥ 1, f a generic element of Dr(Tn) and k ∈ N. Then, τk(f)
is a limit (that is, the sequence (τk(fN ))N converges), and we have

τk(f) =

∫
Tn
D
(
(detDf−1

x )1≤m≤k
x∈f−m(y)

)
d Leb(y). (14)

Moreover, the map f 7→ τk(f) is continuous in f .

The proof of Theorem 31 is mainly based on the following lemma, which treats
the linear corresponding case. Its statement is divided into two parts, the second
one being a quantitative version of the �rst.

Lemma 32. Let k ∈ N, and a family (Ai)i∈Ik of invertible matrices, such that for
any i ∈ Ik and any v ∈ Zn \ {0}, we have ‖Aiv‖∞ ≥ 1.

If the image of the map

Zn 3 x 7→
⊕
i∈Ik

A−1
i A−1

father(i) · · ·A
−1

fatherlength(i)(i)
x

projects on a dense subset of the torus RnCard Ik/ZnCard Ik , then we have

D

 ⋃
i∈J1,dKk

(
Âfatherk−1(i) ◦ · · · ◦ Âi

)
(Zn)

 = D
(
(detA−1

i )i
)
.

More precisely, for every `′, c ∈ N, there exists a locally �nite union of positive
codimension submanifolds Vq of (GLn(R))Card Ik such that for every η′ > 0, there
exists a radius R0 > 0 such that if (Ai)i∈Ik satis�es d((Ai)i, Vq) > η′ for every q,
then for every R ≥ R0, and every family (vi)i∈Ik of vectors of Rn, we have 12∣∣∣∣∣∣D+

R

 ⋃
i∈J1,dKk

(
π(Afatherk−1(i) + vfatherk−1(i)) ◦ · · · ◦ π(Ai + vi)

)
(Zn)

−D((detA−1
i )i

)∣∣∣∣∣∣ < 1

`′

(15)
(the density of the image set is �almost invariant� under perturbations by transla-
tions), and for every m ≤ k and every i ∈ J1, dKk, we have 13

D+
R

{
x ∈

(
Afatherm(i) + vfatherm(i)

)
(Zn)

∣∣∣∣ d(x, (Zn)′
)
<

1

c`′(2n+ 1)

}
<

1

c`′
(16)

(there is only a small proportion of the points of the image sets which are obtained
by discretizing points close to (Zn)′).

The local-global formula (14) will later follow from this lemma, an appropriate
application of Taylor's theorem and Thom's transversality theorem (Lemma 35).

The next lemma uses the strategy of proof of Weyl's criterion to get a uniform
convergence in Birkho�'s theorem for rotations of the torus Tn whose rotation
vectors are outside of a neighbourhood of a �nite union of hyperplanes.

Lemma 33 (Weyl). Let dist be a distance generating the weak-* topology on P the
space of Borel probability measures on Tn. Then, for every ε > 0, there exists a
locally �nite family of a�ne hyperplanes Hi ⊂ Rn, such that for every η > 0, there
exists M0 ∈ N, such that for every λ ∈ Rn satisfying d(λ, Hq) > η for every q, and
for every M ≥M0, we have

dist

(
1

M

M−1∑
m=0

δ̄mλ , LebRn/Zn

)
< ε,

12. The map π(A+ v) is the discretization of the a�ne map A+ v.
13. Where (Zn)′ stands for the set of points of Rn at least one coordinate of which belongs to

Z+ 1/2.
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where δ̄x is the Dirac measure of the projection of x on Rn/Zn.

Proof of Lemma 33. As dist generates the weak-* topology on P, it can be replaced
by any other distance also generating the weak-* topology on P. So we consider
the distance distW de�ned by:

distW (µ, ν) =
∑
k∈Nn

1

2k1+···+kn

∣∣∣∣∣
∫
Rn/Zn

ei2πk·x d(µ− ν)(x)

∣∣∣∣∣ ;
there exists K > 0 and ε′ > 0 such that if a measure µ ∈ P satis�es

∀k ∈ Nn : 0 < k1 + · · ·+ kn ≤ K,

∣∣∣∣∣
∫
Rn/Zn

ei2πk·x dµ(x)

∣∣∣∣∣ < ε′, (17)

then dist(µ,Leb) < ε.
For every k ∈ Nn \ {0} and j ∈ Z, we set

Hj
k = {λ ∈ Rn | k · λ = j}.

Remark that the family {Hj
k}, with j ∈ Z and k such that 0 < k1 + · · ·+ kn ≤ K,

is locally �nite. We denote by {Hq}q this family, and choose λ ∈ Rn such that
d(λ, Hq) > η for every q. We also take

M0 ≥
2

ε′ |1− ei2πη|
. (18)

Thus, for every k ∈ Nn such that k1 + · · · + kn ≤ K, and every M ≥ M0, the
measure

µ =
1

M

M−1∑
m=0

δ̄mλ.

satis�es ∣∣∣∣∣
∫
Rn/Zn

ei2πkx dµ(x)

∣∣∣∣∣ =
1

M

∣∣∣∣1− ei2πMk·λ1− ei2πk·λ

∣∣∣∣ ≤ 2

M0

1

|1− ei2πk·λ|
.

By (18) and the fact that d(k · λ,Z) ≥ η, we deduce that∣∣∣∣∣
∫
Rn/Zn

ei2πkx dµ(x)

∣∣∣∣∣ ≤ ε′.
Thus, the measure µ satis�es the criterion (17), which proves the lemma. �

Proof of Lemma 32. To begin with, let us treat the case d = 1. Let A1, · · · , Ak be
k invertible matrices. We want to compute the rate of injectivity of Âk ◦ · · · ◦ Â1.
Recall that we set

M̃A1,··· ,Ak =


A1 − Id

A2 − Id
. . . . . .

Ak−1 − Id
Ak

 ∈Mnk(R),

Λ̃k = M̃λ1,··· ,λkZ
nk and W k =]−1/2, 1/2]nk. Resuming the proof of Proposition 12,

we see that x ∈
(
Âk ◦ · · · ◦ Â1

)
(Zn) if and only if (0n(k−1), x) ∈ W k + Λ̃k. This

implies the following statement.
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D

 ⋃
i∈J1,dKk

(
Âfatherk−1(i) ◦ · · · ◦ Âi

)
(Zn)



D

 ⋃
i∈J1,dKk

fatherk−1(i)=1

(
Âfatherk−2(i) ◦ · · · ◦ Âi

)
(Zn)



D

 ⋃
i∈J1,dKk

fatherk−1(i)=2

(
Âfatherk−2(i) ◦ · · · ◦ Âi

)
(Zn)



de
tA
−1

(1
)

detA −
1(2)

Figure 10. Calculus of the density of the image set at the level k according to the
density of its sons.

Lemma 34. We have

det(Ak · · ·A1)D
(
Âk ◦ · · · ◦ Â1

)
(Zn) = ν(pr

Rnk/Λ̃k
(W k)), (19)

where ν is the uniform measure on the submodule pr
Rnk/Λ̃k

(0n(k−1),Zn) of Rnk/Λ̃k.

In particular, if the image of the map

Zn 3 x 7→
k⊕

m=1

(Am)−1 · · · (Ak)−1x

projects on a dense subset of the torus Rnk/Znk, then the quantity (19) is equal to
the volume of the intersection between the projection of W k on Rnk/Λ̃k and a fun-
damental domain of Λ̃k (see the end of the proof of Proposition 12 and in particular
the form of the matrix M̃−1

A1,··· ,Ak). By the hypothesis made on the matrices Am �
that is, for any v ∈ Zn \ {0}, ‖Amv‖∞ ≥ 1 � this volume is equal to 1 (simply
because the restriction to W k of the projection Rnk 7→ Rnk/Λ̃k is injective). Thus,
the density of the set

(
Âk ◦ · · · ◦ Â1

)
(Zn) is equal to 1/(det(Ak · · ·A1)) .

We now consider the general case where d is arbitrary. We take a family (Ai)i∈Ik
of invertible matrices, such that for any i ∈ Ik and any v ∈ Zn \ {0}, we have
‖Aiv‖∞ ≥ 1. A point x ∈ Zn belongs to⋃

i∈J1,dKk

(
Âfatherk−1(i) ◦ · · · ◦ Âi

)
(Zn)

if and only if there exists i ∈ J1, dKk such that (0m−1, x) ∈ W k + Λ̃i. Equivalently,
a point x ∈ Zn does not belong to the set(

Âfatherk−1(i) ◦ · · · ◦ Âi
)
(Zn)

if and only if for every i ∈ J1, dKk, we have (0n(k−1), x) /∈ W k + Λ̃i. Thus, if the
image of the map

Zn 3 x 7→
⊕
i∈Ik

A−1
i A−1

father(i) · · ·A
−1

fatherlength(i)(i)
x
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projects on a dense subset of the torus RnCard Ik/ZnCard Ik , then the events x ∈ Si,
with

Si =
⋃

i∈J1,dKk

fatherk−1(i)=i

(
Âfatherk−1(i) ◦ · · · ◦ Âi

)
(Zn)

are independent (see Figure 10), meaning that for every F ⊂ J1, dK, we have

D

(⋂
i∈F

Si

)
=
∏
i∈F

D
(
Si
)
. (20)

Thus, by the inclusion-exclusion principle, we get

D

 ⋃
i∈J1,dK

Si

 =
∑

∅6=F⊂J1,dK

(−1)Card(F )+1
∏
i∈F

D
(
Si
)
.

Moreover, the fact that for any i ∈ Ik and any v ∈ Zn \ {0}, we have ‖Aiv‖∞ ≥ 1
leads to

D(Si) = detA−1
fatherk−1(i)

D

 ⋃
i∈J1,dKk

fatherk−1(i)=i

(
Âfatherk−2(i) ◦ · · · ◦ Âi

)
(Zn)

 .

These facts imply that the density we look for follows the same recurrence relation
as D

(
(detA−1

i )i
)
, thus

D

 ⋃
i∈J1,dKk

(
Âfatherk−1(i) ◦ · · · ◦ Âi

)
(Zn)

 = D
(
(detA−1

i )i
)
.

The second part of the lemma is an e�ective improvement of the �rst one. To
obtain the bound (15), we combine Lemma 33 with Lemma 34 to get that for every
ε > 0, there exists a locally �nite collection of submanifolds Vq of (GLn(R))Card Ik

with positive codimension, such that for every η′ > 0, there exists R0 > 0 such that
if d((Ai)i, Vq) > η′ for every q, then Equation (20) is true up to ε.

The other bound (16) is obtained independently from the rest of the proof by a
direct application of Lemma 33 and of Lemma 34 applied to k = 1. �

Lemma 35 (Perturbations in Cr topology). Let 1 ≤ r ≤ +∞ and f a generic
element of Dr(Tn). Then, for every k ∈ N, every `′ ∈ N and every �nite collection
(Vq) of submanifolds of positive codimension of (GLn(R))dm, there exists η > 0 such
that the set

Tη =

{
y ∈ Tn

∣∣∣∣∣ ∀q, d((Dfx)1≤m≤kx∈f−m(y)

, Vq

)
> η

}
contains a �nite disjoint union of cubes 14, whose union has measure bigger than
1− 1/`′.

Proof of Lemma 35. By Thom's transversality theorem, for a generic map f ∈
Dr(Tn), the set {

y ∈ Tn

∣∣∣∣∣ ∀q, (Dfx)1≤m≤kx∈f−m(y)

∈ Vq

}

14. here, a cube is just any ball for the in�nite norm.
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if �nite. Thus, the sets T {
η are compact sets and their (decreasing) intersection over

η is a �nite set. So, there exists η > 0 such that T {
η is close enough to this �nite set

for Hausdor� topology to have the conclusions of the lemma. �

We can now begin the proof of Theorem 31.

Proof of Theorem 31. Let f ∈ Dr(Tn). The idea is to cut the torus Tn into small
pieces on which f is very close to its Taylor expansion at order 1.

Let m ∈ N, and U` (` ∈ N∗) be the set of maps f ∈ Dr(Tn) such that the set of
accumulation points of the sequence (τmN (f))N is included in the ball of radius 1/`
and centre ∫

Tn
D
(
(Dfx)1≤m≤k

x∈f−m(y)

)
d Leb(y).

(that is, the right side of Equation (14)). We want to show that U` contains an
open and dense subset of Dr(Tn). In other words, we pick a map f , an integer `
and δ > 0, and we want to �nd another map g ∈ Dr(Tn) which is δ-close to f for
the Cr distance, and which belongs to the interior of U`.

To do that, we �rst set `′ = 3` and c = d(1 − dk)/(1 − d) = Card(Ik), and use
Lemma 32 to get a locally �nite union of positive codimension submanifolds Vq of
(GLn(R))Card(Ik). We then apply Lemma 35 to these submanifolds, to the δ we
have �xed at the beginning of the proof and to `′ = 4`; this gives us a parameter
η > 0 and a map g ∈ Dr(Tn) such that dCr(f, g) < δ, and such that the set{

y ∈ Tn

∣∣∣∣∣ ∀q, d((Dgx)1≤m≤kx∈g−m(y)

, Vq

)
< η

}
is contained in a disjoint �nite union C of cubes, whose union has measure bigger
than 1−1/(4`). Finally, we apply Lemma 32 to η′ = η/2; this gives us a radius R0 >
0 such that if (Ai)i∈Ik is a family of matrices ofGLn(R) satisfying d((Ai)i, Vq) > η/2
for every q, then for every R ≥ R0, and every family (vi)i∈Ik of vectors of Rn, we
have∣∣∣∣∣∣D+

R

 ⋃
i∈J1,dKk

(
π(Afatherk−1(i) + vfatherk−1(i)) ◦ · · · ◦ π(Ai + vi)

)
(Zn)

−D((detA−1
i )i

)∣∣∣∣∣∣ < 1

3`
,

(21)
and for every i, j,

D+
R

{
x ∈

(
Ajm(i) + vjm(i)

)
(Zn)

∣∣∣∣ d(x, (Zn)′
)
<

1

3`(2n+ 1) Card Ik

}
<

1

3`Card Ik
.

(22)

We now take a map h ∈ Dr(Tn) such that dC1(g, h) < δ′, and prove that if δ′ is
small enough, then h belongs to the interior of U`. First of all, we remark that if δ′

is small enough, then the set{
y ∈ Tn

∣∣∣∣∣ ∀q, d((Dhx)1≤m≤kx∈h−m(y)

, Vq

)
> η/2

}
contains a set C′, which is a �nite union of cubes whose union has measure bigger
than 1− 1/(3`).

Let C be a cube of C′, y ∈ C and x ∈ f−m(y), with 1 ≤ m ≤ k. We write the
Taylor expansion of order 1 of h at the neighbourhood of x; by compactness we
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obtain

sup

{
1

‖z‖
∥∥h(x+ z)− h(x)−Dhx(z)

∥∥ ∣∣∣∣ x ∈ C, z ∈ B(0, ρ)

}
−→
ρ→0

0.

Thus, for every ε > 0, there exists ρ > 0 such that for all x ∈ C and all z ∈ B(0, ρ),
we have ∥∥h(x+ z)−

(
h(x) +Dhx(z)

)∥∥ < ε‖z‖ ≤ ερ. (23)

We now take R ≥ R0. We want to �nd an order of discretization N such that
the error made by linearizing h on B(x,R/N) is small compared to N , that is, for
every z ∈ B(0, R/N), we have∥∥h(x+ z)−

(
h(x) +Dhx(z)

)∥∥ < 1

3`(2n+ 1) Card Ik
· 1

N
.

To do that, we apply Equation (23) to

ε =
1

3R`(2n+ 1) Card Ik
,

to get a radius ρ > 0 (we can take ρ as small as we want), and we set N = dR/ρe
(thus, we can take N as big as we want). By (23), for every z ∈ B(0, R), we obtain
the desired bound:∥∥h(x+ z/N)−

(
h(x) +Dhx(z/N)

)∥∥ < 1

3`(2n+ 1) Card Ik
· 1

N
.

Combined with (22), this leads to

Card
(
hN
(
B(x,R/N)

)
∆PN

(
h(x) +Dhx(B(0, R/N))

))
Card

(
B(x,R/N) ∩ EN

) ≤ 1

3`Card Ik
; (24)

in other words, on every ball of radius R/N , the image of EN by hN and the dis-
cretization of the linearization of h are almost the same (that is, up to a proportion
1/(3`Card Ik) of points).

We now set R1 = R0‖f ′‖m∞, and choose R ≥ R1, to which is associated a number
ρ > 0 and an order N = dR/ρe, that we can choose large enough so that 2R/N ≤
‖f ′‖∞. We also choose y ∈ C. As

Card
(
hmN (EN )∩B(y,R/N)

)
= Card

 ⋃
x∈h−m(y)

hmN
(
B(x,R/N) ∩ EN

)
∩B(y,R/N)

 ,

and using the estimations (21) and (24), we get∣∣∣∣∣Card
(
hmN (EN ) ∩B(y,R/N)

)
Card

(
B(y,R/N) ∩ EN

) −D
(
(detDf−1

x )1≤m≤k
x∈f−m(y)

)∣∣∣∣∣ < 2

3`
.

As such an estimation holds on a subset of Tn of measure bigger than 1 − 1/(3`),
we get the conclusion of the theorem. �

We can easily adapt the proof of Lemma 32 to the case of sequences of matrices,
without the hypothesis of expansivity.

Lemma 36. For every k ∈ N and every `′, c ∈ N, there exists a locally �nite union
of positive codimension submanifolds Vq of (GLn(R))k (respectively (SLn(R))k)
such that for every η′ > 0, there exists a radius R0 > 0 such that if (Am)1≤m≤k
is a �nite sequence of matrices of (GLn(R))k (respectively (SLn(R))k) satisfying
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d((Am)m, Vq) > η′ for every q, then for every R ≥ R0, and every family (vm)1≤m≤k
of vectors of Rn, we have∣∣∣D+

R

((
Âk ◦ · · · ◦ Â1

)
(Zn)

)
− det(A−1

k · · ·A
−1
1 )τk(A1, · · · , Ak)

∣∣∣ < 1

`′

(the density of the image set is �almost invariant� under perturbations by transla-
tions), and for every m ≤ k, we have 15

D+
R

{
x ∈

(
Am + vm

)
(Zn)

∣∣∣∣ d(x, (Zn)′
)
<

1

c`′(2n+ 1)

}
<

1

c`′

(there is only a small proportion of the points of the image sets which are obtained
by discretizing points close to (Zn)′).

With the same proof as Theorem 31, Lemma 36 leads to the local-global formula
for Cr-di�eomorphisms (Theorem 26).

4. Asymptotic rate of injectivity for a generic dissipative

diffeomorphism

First of all, we tackle the issue of the asymptotic rate of injectivity of generic
dissipative di�eomorphisms. Again, we will consider the torus Tn equipped with
Lebesgue measure Leb and the canonical measures EN , see Section A for a more
general setting where the result is still true. The study of the rate of injectivity for
generic dissipative di�eomorphisms is based on the following theorem of A. Avila
and J. Bochi.

Theorem 37 (Avila, Bochi). Let f be a generic C1 maps of Tn. Then for every
ε > 0, there exists a compact set K ⊂ Tn and an integer m ∈ N such that

Leb(K) > 1− ε and Leb(fm(K)) < ε.

This statement is obtained by combining Lemma 1 and Theorem 1 of [AB06].

Remark 38. As C1 expanding maps of Tn and C1 di�eomorphisms of Tn are open
subsets of the set of C1 maps of Tn, the same theorem holds for generic C1 expand-
ing maps and C1 di�eomorphisms of Tn (this had already been proved in the case
of C1-expanding maps by A. Quas in [Qua99]).

This theorem can be used to compute the asymptotic rate of injectivity of a
generic di�eomorphism.

Corollary 39. The asymptotic rate of injectivity of a generic dissipative di�eomor-
phism f ∈ Diff1(Tn) is equal to 0. In particular, the degree of recurrence D(fN ) of
a generic dissipative di�eomorphism tends to 0 when N goes to in�nity.

Remark 40. the same statement holds for generic C1 expanding maps.

Proof of Corollary 39. The proof of this corollary mainly consists in stating what
good properties can be supposed to possess the compact set K of Theorem 37.
Thus, for f a generic di�eomorphism and ε > 0, there exists m > 0 and a compact
set K such that Leb(K) > 1− ε and Leb(fm(K)) < ε.

First of all, it can be easily seen that Theorem 37 is still true when the compact
set K is replaced by an open set O: simply consider an open set O′ ⊃ fm(K) such
that Leb(O′) < ε (by regularity of the measure) and set O = f−m(O′) ⊃ K. We

15. Recall that (Zn)′ stands for the set of points of Rn at least one coordinate of which belongs
to Z+ 1/2.
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then approach the set O by unions of dyadic cubes of Tn: we de�ne the cubes of
order 2M on Tn

CM,i =
n∏
j=1

[
ij

2M
,
ij + 1

2M

]
,

and set

UM = Int

 ⋃
CM,i⊂O

CM,i

 ,

where Int denotes the interior. Then, the union
⋃
M∈N UM is increasing in M and

we have
⋃
M∈N UM = O. In particular, there exists M0 ∈ N such that Leb(UM0) >

1 − ε, and as UM0 ⊂ O, we also have Leb(fm(UM0)) < ε. We denote U = UM0 .
Finally, as U is a �nite union of cubes, and as f is a di�eomorphism, there exists
δ > 0 such that the measure of the δ-neighbourhood of fm(U) is smaller than ε.
We call V this δ-neighbourhood.

As U is a �nite union of cubes, there exists N0 ∈ N such that if N ≥ N0, then
the proportion of points of EN which belong to U is bigger than 1 − 2ε, and the
proportion of points of EN which belong to V is smaller than 2ε. Moreover, if N0

is large enough, then for every N ≥ N0, and for every xN ∈ EN ∩ U , we have
fmN (xN ) ∈ V . This implies that

Card(fmN (EN ))

Card(EN )
≤ 4ε,

which proves the corollary. �

5. Asymptotic rate of injectivity for a generic conservative

diffeomorphism

The goal of this section is to prove that the degree of recurrence of a generic
conservative C1-di�eomorphism is equal to 0.

Theorem 41. For a generic conservative di�eomorphism f ∈ Diff1(Tn,Leb), we
have

lim
t→∞

τk(f) = 0;

more precisely, for every ε > 0, the set of di�eomorphisms f ∈ Diff1(Tn,Leb) such
that limt→+∞ τ

k(f) < ε is open and dense.
In particular 16, we have limN→+∞D(fN ) = 0.

It will be obtained by using the local-global formula (Theorem 26) and the result
about the asymptotic rate of injectivity of a generic sequence of matrices (Theo-
rem 9). The application of the linear results will be made through the following
lemma of [ACW14], which allows to linearize locally a conservative di�eomorphism.

Lemma 42 (Avila, Crovisier, Wilkinson). Let C be the unit ball of Rn for ‖ · ‖∞
and ε > 0. Then, there exists δ > 0 such that for every g1 ∈ Diff∞(Rn,Leb) such
that dC1(g1|C , Id|C) < δ, there exists g2 ∈ Diff∞(Rn,Leb) such that:

(i) dC1(g2|C , g1|C) < ε;

(ii) g2|(1−ε)C = Id|(1−ε)C ;

(iii) g2|C{ = g1|C{ .

16. Using Equation (2) page 4.
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The proof of this lemma involves a result of J. Moser [Mos65]. The reader may
refer to [ACW14, Corollary 6.9] for a complete proof 17. By a regularization result
due to A. Avila [Avi10], it is possible to weaken the hypothesis of regularity in the
lemma �g1 ∈ Diff∞(Rn,Leb)� into the hypothesis �g1 ∈ Diff1(Rn,Leb)�.

Proof of theorem 41. We show that for every ` ∈ N and every ε > 0, the set of
conservative di�eomorphisms such that lim supt→∞ τ

t
∞ < 1/`+ ε contains an open

dense subset of Diff1(Tn,Leb). To begin with, we �x f ∈ Diff1(Tn,Leb) and
δ > 0 (which will be a size of perturbation of f). By Theorem 9, and in particular
Equation (5), there exists a parameter λ ∈]0, 1[ (depending only on δ, ` and ‖f‖C1),
such that for every sequence (Ak)k≥1 of linear maps in SLn(R), there exists a
sequence (Bk)k≥1 of (generic) linear maps in SLn(R) such that for each k, we have
‖Ak − Bk‖ ≤ δ and τ `k(B1, · · · , B`k) ≤ λk + 1/` (as the sequence is generic, this
property remains true on a whole neighbourhood of (Bk)k≥1, see Remark 14). From
that parameter λ, we deduce a time k0 > 0 such that

1

k0

k0∑
k=1

λk =
λ

k0

1− λk0
1− λ

< ε/100.

Applying a classical technique in this context (see for example [Boc02]), we use
a Rokhlin tower of height k0 with an open basis U :

� The sets U, f(U), · · · , fk0−1(U) are pairwise disjoint;
� the measure of the union of the ��oors� U ∪ f(U) ∪ · · · ∪ fk0−1(U) is bigger
than 1− ε/100;

for the existence of such towers, see for example [Gui12, Lemme 6.8] or [Hal56,
Chapter �Uniform topology�].

We then approach the basis U by a disjoint union of cubes of Tn (as in page 28,
from now we suppose that U is a union of such cubes). If these cubes are small
enough, on each cube C, it is possible to perturb f into a di�eomorphism g such
that on each set (1− ε/100)C, g is a�ne and irrational, using Lemma 42, the reg-
ularization result of A. Avila [Avi10] and Franks lemma 18 (see [Fra71] or [Cro06]).
We do the same thing on the k0 − 1 �rst images of each cube and perturb g such
that on each set gk((1 − ε/100)C), the perturbed di�eomorphism h is linear and
equal to Bk. By what we have said at the beginning of the proof, we can more-
over suppose that the sequence B1, · · · , Bk0 of linear maps is generic, and satis�es
τk(B1, · · · , Bk) ≤ λk + 1/` for every k ≤ k0− 1. By the choice of k0 we have made,

17. Le 12/09/2015, cette version n'est pas encore en ligne. . .
18. Which is valid only in the C1 topology.
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this implies that

τk0(h) ≤
k0−1∑
k=0

Leb(hk(U))τk0
(
h|hk(U)

)
+ Leb

(
(U ∪ · · · ∪ hk0−1(U)){

)
τk0
(
h(U∪···∪hk0−1(U)){

)
≤
k0−1∑
k=0

Leb(hk(U))τk0−k
(
h|hk(U)

)
+ Leb

(
(U ∪ · · · ∪ hk0−1(U)){

)
≤Leb(U)

k0−1∑
k=0

(
λk0−k +

1

`

)
+ ε/100

≤ 1

k0

k0∑
k=1

(λk + 1)/2 + ε/100

≤1/`+ ε/2.

Moreover, the di�erentials of h form generic sequences on a set of measure at least
1− ε/10. This implies that the rate of injectivity is continuous in h when restricted
to this subset of Tn. Thus, the inequality τk0(h) ≤ 1/` + ε still holds on a whole
neighbourhood of h. This proves the theorem. �

6. Asymptotic rate of injectivity of a generic Cr expanding map

In this section, we prove that the asymptotic rate of injectivity of a generic
expanding map is equal to 0. Note that a local version of this result was already
obtained by P.P. Flockermann in his thesis (Corollary 2 page 69 and Corollary 3
page 71 of [Flo02]), stating that for a generic C1+α expanding map f of the circle,
the �local asymptotic rate of injectivity� is equal to 0 almost everywhere. Some
of his arguments will be used in this section. Note also that in C1 regularity, the
equality τ∞(f) = 0 for a generic f is a consequence of Theorem 37 of A. Avila and
J. Bochi (see also Corollary 39); the same theorem even proves that the asymptotic
rate of injectivity of a generic C1 endomorphism of the circle is equal to 0.

De�nition 43. We de�ne Zm as the number of children at the m-th generation in
Gf,y (see De�nition 30).

Proposition 44. For every r ∈]1,+∞], for every f ∈ Dr(S1) and every y ∈ S1,
we have

P(Zm > 0) −→
m→+∞

0.

Equivalently,

D
(
(detDf−1

x )1≤m≤k
x∈f−m(y)

)
−→
k→+∞

0.

Lemma 45. The expectation of Zm satis�es

E(Zm) = (Lm1)(y),

where L is the Ruelle-Perron-Frobenius associated to f and 1 denotes the constant
function equal to 1 on S1. In particular, there exists a constant Σ0 > 0 such that
E(Zm) ≤ Σ0 for every m ∈ N.

The second part of the lemma is deduced from the �rst one by applying the
theorem stating that for every Cr expanding map f of S1 (r > 1), the maps Lm1
converge uniformly towards a Hölder map, which is the density of the unique SRB
measure of f (see for example [FJ03]). The �rst assertion of the lemma follows from
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the convergence of the operators f∗N acting on P (the space of Borel probability
measures) towards the Ruelle-Perron-Frobenius operator.

De�nition 46. The transfer operator associated to the map f (usually called
Ruelle-Perron-Frobenius operator), which acts on densities of probability measures,
will be denoted by Lf . It is de�ned by

Lfφ(y) =
∑

x∈f−1(y)

φ(x)

f ′(x)
.

Lemma 45 follows directly from the following lemma.

Lemma 47. Denoting LebN the uniform measure on EN , for every C1 expanding
map of S1 and every m ≥ 0, we have convergence of the measures (f∗N )m(λN )
towards the measure of density Lmf 1 (where 1 denotes the constant function equal to

1).

The proof of this lemma is straightforward but quite long. We sketch here this
proof, the reader will �nd a complete proof using generating functions in Section 3.4
of [Flo02] and a quantitative version of it in Section 12.2 of [Gui15c].

Sketch of proof of Lemma 47. As f is C1, by the mean value theorem, for every
segment I small enough, we have∣∣∣∣Leb(I)− Leb(f(I))

f ′(x0)

∣∣∣∣ ≤ ε.
Moreover, for every interval J ,∣∣∣∣Leb(J)− Card(J ∩ EN )

Card(EN )

∣∣∣∣ ≤ 1

N
.

These two inequalities allows to prove the local convergence of the measures f∗N (λN )
towards the measure with density Lf1. The same kind of arguments holds in arbi-
trary times, and allow to prove the lemma. �

Lemma 48. We �x an integer K > 0, and denote by AK the event �0 < Zm ≤ K
for an in�nite number of generations m�. Then the probability of AK is equal to 0.

Proof of Lemma 48. We remark that we have the inequality

P(Zm+1 = 0 | Zm ≤ K) ≥
(

1− 1

‖f ′‖∞

)dK
.

In particular, if Zm ≤ K, then with probability bigger than (1−‖f ′‖−1
∞ )dK , we will

have Zm′ = 0 for every m′ > m. Thus, the event AK,M : �Zm ≤ K for at least M
generations m and Zm′ > 0 for every m′� has probability

P(AK,M ) ≤

(
1−

(
1− 1

‖f ′‖∞

)dK)M
.

So, as AK is obtained as the decreasing intersection AK =
⋂
M∈NAK,M , we have

P(AK) = 0. �

Proof of Proposition 44. Let ε > 0. We denote by B the event �there exists m ∈ N
such that Zm = 0�. It is obtained as the disjoint union

B =
⊔
m∈N

(
(Zm+1 = 0) ∩ (Zm > 0)

)
.
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So there exists M0 ∈ N such that

P

 ⊔
m≥M0

(
(Zm+1 = 0) ∩ (Zm > 0)

) = P

 ⋃
m≥M0

(Zm > 0 | B)

 < ε/2. (25)

In other words, if there exists m ∈ N such that Zm = 0, then the smallest m such
that this property holds is smaller than M0 with probability bigger than 1− ε/2.

We also denote by CK the event �for all but a �nite number of m ∈ N, we have
Zm > K�. By Markov inequality and Lemma 45, we have

P(Zm ≥ 2Σ0/ε) ≤ ε/2.
Thus, we have

P(C2Σ0/ε) ≤ ε/2. (26)

We now take m ≥M0 and K = 2Σ0/ε. We remark that

P(Zm > 0) = P
(
(Zm > 0) ∩AK

)
+ P

(
(Zm > 0) ∩B

)
+ P

(
(Zm > 0) ∩ CK

)
≤ P(AK) + P

(
(Zm > 0) | B

)
+ P(CK).

Using Lemma 48 and the estimations (25) and (26), this leads to

P(Zm > 0) ≤ ε,
which proves the proposition. �

Corollary 49. For a generic map f ∈ Dr(S1), we have τ∞(f) = 0. In particular,
limN→+∞D(fN ) = 0.

Proof of Corollary 49. It is an easy consequence of the local-global formula (Theo-
rem 31), Proposition 44 and the dominated convergence theorem. �

7. Numerical simulations

Figure 11. Simulation of the degree of recurrence D(fN ) of the conservative dif-
feomorphism f , depending on N , on the grids EN with N = 128k, k = 1, · · · , 150.

We have computed numerically the degree of recurrence of a di�eomorphism f ,
which is C1-close to Id. It is de�ned by f = Q ◦ P , with

P (x, y) =
(
x, y + p(x)

)
and Q(x, y) =

(
x+ q(y), y

)
,

p(x) =
1

209
cos(2π × 17x) +

1

271
sin(2π × 27x)− 1

703
cos(2π × 35x),
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Figure 12. Simulation of the degree of recurrence D(gN ) of the expanding map g,
depending on N , on the grids EN with N = 128k, k = 1, · · · , 1 000.

q(y) =
1

287
cos(2π × 15y) +

1

203
sin(2π × 27y)− 1

841
sin(2π × 38y).

On Figure 11, we have represented graphically the quantity D(f128k) for k from 1
to 150. It appears that, as predicted by Theorem 41, this degree of recurrence goes
to 0. In fact, it is even decreasing, and converges quite fast to 0: as soon as N = 128,
the degree of recurrence is smaller than 1/2, and if N & 1000, then D(fN ) ≤ 1/10.
Note that, contrary to what is predicted by theory, this phenomenon was already
observed for examples of conservative homeomorphisms of the torus which have big
enough derivatives not to be considered as �typical from the C1 case� (see [Gui15d]).

We also present the results of the numerical simulation we have conducted for
the degree of recurrence of the expanding map of the circle g, de�ned by

g(x) = 2x+ ε1 cos(2πx) + ε2 sin(6πx),

with ε1 = 0.127 943 563 72 and ε2 = 0.008 247 359 61.
On Figure 12, we have represented the quantity D(g128k) for k from 1 to 1 000.

It appears that, as predicted by Corollary 49, this degree of recurrence seems to
tend to 0. In fact, it is even decreasing, and converges quite fast to 0: as soon as
N = 128, the degree of recurrence is smaller than 1/5, and if N & 25 000, then
D(gN ) ≤ 1/50.

Appendix A. A more general setting where the theorems are still

true

Here, we give weaker assumptions under which the theorems of this paper are
still true: the framework �torus Tn with grids EN and Lebesgue measure� could be
seen as a little too restrictive.

So, we take a compact smooth manifold M (possibly with boundary) and choose
a partition M1, · · · ,Mk of M into closed sets 19 with smooth boundaries, such that
for every i, there exists a chart ϕi : Mi → Rn. We endow Rn with the euclidean
distance, which de�nes a distance on M via the charts φi (this distance is not

19. That is,
⋃
iMi =M , and for i 6= j, the intersection between the interiors of Mi and Mj are

empty.
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necessarily continuous). From now, we study what happens on a single chart, as
what happens on the neighbourhoods of the boundaries of these charts �counts for
nothing� from the Lebesgue measure viewpoint.

Finally, we suppose that the uniform measures on the grids EN =
⋃
iEN,i con-

verge to a smooth measure λ on M when N goes to in�nity.
This can be easily seen that these conditions are su�cient for Corollary 39 to be

still true.

For the rest of the statements of this paper, we need that the grids behave locally
as the canonical grids on the torus.

For every i, we choose a sequence (κN,i)N of positive real numbers such that
κN,i −→

N→+∞
0. This de�nes a sequence EN,i of grids on the set Mi by EN,i =

ϕ−1
i (κN,iZ

n). Also, the canonical projection π : Rn → Zn (see De�nition 6) allows
to de�ne the projection πN,i, de�ned as the projection on κN,iZn in the coordinates
given by ϕi:

πN,i : Mi −→ EN,i

x 7−→ ϕ−1
i

(
κN,iπ

(
κ−1
N,iϕi(x)

))
.

We easily check that under these conditions, Theorems 26, 31 and 41 and Corol-
lary 49 are still true, that is if we replace the torus Tn by M , the uniform grids
by the grids EN , the canonical projections by the projections πN,i, and Lebesgue
measure by the measure λ.
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