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Année universitaire 2025-2026, master 1, Théorie des nombres 1. Corrigé de

certains exercices de la feuille de TD numéro 1.

Exercice 1
Question (a). Dans l’anneau principal Z, l’idéal aZflbZ admet un générateur

m (uniquement déterminé à un inversible près, c’est-à-dire ici au signe près). Si

x est un élément de Z on a donc par définition

m|x ≈∆ (a|x et b|x),

ce qui fait de m le PPCM de a et b, par définition du PPCM dans un anneau

intègre général.

Remarque. Ce fait s’étend en fait sans aucune di�culté à une famille

quelconque d’entiers, même infinie : si (ai)iœI est une famille d’entiers, et si m
désigne un générateur de

u
i aiZ, alors m est un PPCM de (ai)iœI : les multiples

de m sont exactement les multiples de tous les ai. Exemple à méditer : si on

prend pour (ai) la famille de tous les nombres premiers, son PPCM est.... 0, qui

est le seul entier qui soit multiple de tous les nombres premiers. C’est une petite

bizarrerie de 0 : pour l’ordre usuel, c’est le plus petit élément de N, mais pour

la divisibilité c’est le plus grand ! On retrouve ce genre de blague à propos du

cardinal de Z/nZ, qui vaut n sauf quand n est nul, car Z/0Z ƒ Z est infini.

Question (b). Commençons par traiter le cas où m et n sont strictement

positifs. Soit d leur PGCD. Il est alors > 1, et > 1 s’ils ne sont pas premiers

entre eux. Plaçons-nous dans ce cas. Écrivons m = µd et n = ‹d. On a µ < m et

‹ < n, et µ‹d = m‹ = nµ est un multiple commun strictement positif de m et

n, qui est strictement inférieur à mn (exercice : montrez que c’est précisément

le PPCM de m et n). C’est donc un élément non nul modulo nm, mais nul

modulo n et m ; sa classe modulo mn est en conséquence un élément non trivial

du noyau de Z/nmZ æ Z/nZ ◊Z/mZ, qui n’est dès lors pas injectif, et n’est a
fortiori pas un isomorphisme.

Plaçons-nous maintenant dans le cas où m ou n est nul ; quitte à les échanger,

supposons n = 0. Le PGCD de m et n vaut alors m. Supposons que m et n ne

sont pas premiers, c’est-à-dire que m ”= 1.

On a alors Z/nZ = Z/nmZ ƒ Z, et le morphisme canonique de Z/nmZ dans

Z/nZ ◊ Z/mZ s’identifie au morphisme x ‘æ (x, x) de Z vers Z ◊ Z/mZ. Or

comme m ”= 1, l’élément 1 de Z/mZ n’est pas nul, si bien que l’élément (0, 1)

n’est pas de la forme (x, x). Par conséquent Z/nmZ æ Z/nZ◊Z/mZ n’est pas

surjectif, et n’est a fortiori pas un isomorphisme.

Question (c). Soient r et s deux éléments de Q◊
tels que ordp(r) < ordp(s).

Posons n = ordp(r) et m = ordp(s). Écrivons

r = pn a

b
et s = pm c

d
,

où a, b, c sont des entiers relatifs premiers à p. On a alors

r + s = pn a

b
+ pm c

d
= pn

1a

b
+ pm≠n c

d
=

2
= pn

3
ad + pm≠nbc

bd

4
.
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Comme a et b sont premiers à p et comme m > n par hypothèse , la somme

ad + pm≠nbc est première à p. Et comme b et d sont premiers à p, le produit bd
est encore premiers à p. Il vient

ordp(r+s) = ordp

Q

ccca
pn ·

premier à p˙ ˝¸ ˚
ad + pm≠nbc

bd¸˚˙˝
premier à p

R

dddb
= n = ordp(r) = min(ordp(r), ordp(s)).

Question (d). Soit (r1, . . . , rn) une famille finie d’éléments de Q◊
. Soit G le

sous-groupe de Q◊
engendré par les ri. Nous allons montrer que G ”= Q◊

, ce qui

prouvera que ce dernier n’est pas de type fini. Soit P l’ensemble des nombres

premiers intervenant dans la décomposition des ri (en produits de puissances

entières relatives de nombres premiers).

Tout élément de G est de la forme
r

rni
i où les ni appartiennent à Z.

Par conséquent, la décomposition d’un élément de G en produits de puissances

entières relatives de nombres premiers ne fait intervenir que des éléments de P.

Choisissons un nombre premier p n’appartenant pas à P (ce qui est possible

car il y a une infinité de nombres premiers) ; par ce qui précède, p /œ G.

Exercice 2
Cet exercice est assez facile, une fois qu’on a remarqué que la fonction Ï

d’Euler est multiplicative : Ï(ab) = Ï(a)Ï(b) lorsque a et b sont premier entre

eux (c’est une conséquence du théorème chinois). Par suite, il su�t de vérifier les

identités demandées sur Ï(n) lorsque n est une puissance pure pk
d’un nombre

premier p.

Question (a). Les entiers 1 6 x 6 pk
pas premiers à pk

sont les multiples de

p. Il y en a pk≠1, ce qui permet de conclure.

Question (b-c) Lorsque m > 1 vérifie m.a = 0 modulo n, alors ma = kn.
Mais alors m.(a/pgcd(a, n) = k.(n/pgcd(a, n)). Les deux termes (a/pgcd(a, n)

et (n/pgcd(a, n) étant premiers entre eux, il s’ensuit que m est divisible par

(n/pgcd(a, n). Finalement le plus petit m possible est (n/pgcd(a, n).

Question (d). Il su�t de traiter n = pk, et c’est une identité télescopique

dans ce cas en utilisant a).

Exercice 3
Question (a). Tout nombre premier impair est égal à 1 ou à (≠1) modulo

4. Supposons qu’il n’y ait qu’un nombre fini de nombres premiers égaux à (≠1)

modulo 4, disons p1, . . . , pr. Posons N = 4p1p2 . . . pr ≠1. Alors N > 0 et N vaut

(≠1) modulo 4. Si p est un diviseur de N il ne peut diviser 4p1 . . . pr, et n’est

donc ni égal à 2 ni à l’un des pi ; par conséquent il est égal à 1 modulo 4. En

considérant l’écriture de N comme produit de nombres premiers on voit alors

que N = 1 modulo 4, ce qui est absurde (notez que 1 et (≠1) di�èrent modulo

4).
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Question (b). Tout nombre premier est égal à 0, 1, (≠1), 2 ou (≠2) modulo

5. Supposons qu’il n’y ait qu’un nombre fini de nombres premiers égaux à (≠1)

modulo 5, disons p1, . . . , pr. Posons N = 10(p1p2 . . . pr)
2 ≠ 1. Alors N > 0 et

N = (≠1) modulo 5. Si p est un diviseur de N il ne peut diviser 10p1 . . . pr, et

n’est donc ni égal à 2, ni à 5 ni à l’un des pi ; par conséquent il est égal à 1, 2

ou (≠2) modulo 5.

On a par ailleurs pour un tel p l’égalité 5(p1p2 . . . pr)
2 ≠ 1 = 0 modulo p ; il

vient

5 =

3
1

p1 . . . , pr

42

dans Z/pZ (notez que comme p n’est pas égal à l’un des pi, le produit p1 . . . pr

est bien inversible dans Z/pZ). Par conséquent 5 est un carré modulo p. On a

alors (par la loi de réciprocité quadratique LRQ)

1p

5

2
= (≠1)

(p≠1)
2 · (5≠1)

2

3
5

p

4
=

3
5

p

4
= 1.

Ainsi p est un carré modulo 5. Par inspection directe, on voit que ceci force p
à valoir 1 ou (≠1) modulo 5. Comme on savait déjà que p vaut 1, 2 ou (≠2)

modulo 5, la seule possibilité est que p vaille 1 modulo 5.

En considérant l’écriture de N comme produit de nombres premiers on voit

alors que N = 1 modulo 5, ce qui est absurde (notez que 1 et (≠1) di�èrent

modulo 5).

Question (c). Tout nombre premier est égal à 2, 3 1 ou (≠1) modulo 6.

Supposons qu’il n’y ait qu’un nombre fini de nombres premiers égaux à (≠1)

modulo 6, disons p1, . . . , pr. Posons N = 6p1p2 . . . pr ≠ 1. Alors N > 1 et

N = (≠1) modulo 6. Si p est un diviseur de N il ne peut diviser 6p1 . . . pr,

et n’est donc ni égal à 2 ni à 3 ni à l’un des pi ; par conséquent il est égal à 1

modulo 6. En considérant l’écriture de N comme produit de nombres premiers

on voit alors que N = 1 modulo 6, ce qui est absurde (notez que 1 et (≠1)

di�èrent modulo 6).

Question (d). On utilise le fait (cours) qu’il y a
p≠1

2 carrés non-nuls dans

(Z/pZ)
◊, et que ces carrés sont les racines du polynôme x

p≠1
2 ≠ 1. Il s’ensuit

que le symbole d’Euler (
b
p ) := b

p≠1
2 mod p vaut 1 lorsque b ”= 0 est un carré

modulo p, et ≠1 si b n’est pas un carré modulo p. S’il existait a tel que a2
+ 1

soit multiple de p, on aurait (≠1) = a2
modulo p, et, d’après le symbole d’Euler

qui caractérise le fait d’être un carré modulo p, (≠1)
(p≠1/)2

serait donc égal à 1

modulo p. Cela revient, p étant impair (et donc 1 étant di�érent de (≠1) modulo

p) à demander que (p ≠ 1)/2 soit pair, c’est-à-dire que p soit égal à 1 modulo 4.

Or p est par hypothèse égal à ≠1 modulo 4, ce qui est absurde (notez que 1 et

≠1 di�èrent modulo 4).

Supposons qu’il n’y ait qu’un nombre fini de nombres premiers égaux à 1

modulo 4, disons p1, . . . , pn. L’entier N = 4p2
1 . . . p2

r + 1 est alors non nul et si p
divise N alors p ne peut être égal à 2 ni à l’un des pi. Il vaut donc (≠1) modulo

4, mais c’est absurde par la première question.
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