
FEUILLE DE TD 2, 4MA033 2025-2026

Exercice 1 (Le symbole de Legendre comme signature d’une permutation). Soient p un nombre
premier impair et a un entier qui n’est pas un multiple de p. Démontrer que le symbole de
Legendre

(
a
p

)
est égal à la signature de la permutation “multiplication par a” de (Z/pZ)×.

Exercice 2. Soit f ∈ Z[T] un polynôme non constant.

(a) Montrer qu’il existe des entiers n arbitrairement grands tels que f(n) ne soit pas un
nombre premier.

(b) Montrer que l’ensemble des nombres premiers qui divisent l’une des valeurs f(n), pour
n ⩾ 1, est infini.

Exercice 3 (Calcul du signe de la somme de Gauss). Soit n ⩾ 1 un entier impair, et

Gn =

n−1∑
k=0

exp

(
2πi

k2

n

)
.

On se propose de calculer la somme de Gauss Gn, incluant son signe, selon la méthode analytique
inaugurée par P.L Dirichlet.

(a) On note pour t ∈ [0, 1[,

f(t) =

n−1∑
k=0

exp

(
2πi

(t+ k)2

n

)
.

Démontrer que f se prolonge en une fonction 1-périodique sur R, continue, et de classe
C1 par morceaux.

(b) Rappeler le théorème de convergence (de Dirichlet !) pour les séries de Fourier des fonc-
tions continues et de classe C1 par morceaux. L’appliquer au cas de f, avec SN(f)(t) =∑N

−N cme2iπmt la somme partielle symétrique de la série de Fourier de f.

(c) En effectuant le changement de variables v = t+ k − mn
2 , démontrer que

cm = bm(n)

∫ n−mn
2

−mn
2

e2iπv
2/ndv,

avec bm(n) = e−iπnm2/2.

(d) Calculer bm(n) en fonction de la parité de m.

(e) Pour tout entier q on pose

uq =

∫ n(q+1)

nq

e2iπv
2/ndv et vq =

∫ n(q+ 1
2 )

n(q− 1
2 )

e2iπv
2/ndv.

Démontrer que c2q = u−q et que c2q+1 = (−i)nv−q. En déduire que

f(0) = u0 +
∑
q⩾1

(uq + u−q) + (−i)n
∑
q⩾1

(vq + v1−q).

(f) Démontrer que f(0) =
√
n(1 + (−i)n)J, avec J =

∫ +∞
−∞ e2iπv

2

dv (on pourra justifier par

une intégration par partie que l’intégrale qui définit J a du sens).
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(g) Conclure, en calculant l’intégrale de Fresnel J (en cadeau bonus),
que Gn =

√
n si n ≡ 1 mod 4, et Gn = i

√
n si n ≡ 3 mod 4.

Exercice 4 (Une démonstration de la loi de réciprocité quadratique). (notations de l’exercice
précédent).

(1) Démontrer l’égalité

Gpq =

p−1∑
x=0

q−1∑
y=0

exp

(
2πi

(qx+ py)2

pq

)
.

(2) Calculer
∑p−1

x=0 exp
(
2πi ℓx

2

p

)
selon que ℓ est un carré modulo p ou pas.

(3) En déduire l’égalité

Gpq = GpGq

(
p

q

)(
q

p

)
.

(4) Démontrer la loi de réciprocité quadratique (pq )(
q
p ) = (−1)(

p−1
2 )( q−1

2 ) en écrivant(
p

q

)(
q

p

)
=

Gpq√
pq

√
p

Gp

√
q

Gq
.

Exercice 5 (φ(n) tend vers l’infini). On rappelle que, si n = pk1
1 . . . pkr

r , alors l’indicatrice d’Euler

satisfait l’identité φ(n) = pk1−1
1 . . . pkr−1

r (p1 − 1) · · · (pr − 1).

(a) Déterminer tous les entiers n tels que φ(n) ⩽ 2, puis φ(n) ⩽ 3.

(b) On note pj le j-ème nombre premier. Démontrer par récurrence que pj > j.

(c) En déduire que φ(n) ⩾ An/ log2(n) pour une constante absolue A > 0, et donc que φ(n)
tend vers l’infini.

Exercice 6 (Générateurs des groupes cycliques (Z/pZ)×).

(a) Trouver un générateur du groupe cyclique (Z/97Z)×.

(b) Soit p un nombre premier de la forme 4ℓ + 1, où ℓ est un nombre premier. Démontrer
que 2 est un générateur de (Z/pZ)×.

Exercice 7 (Valuation p-adique des factorielles). Soit p un nombre premier. Écrivons n en base p,
c’est-à-dire

n = a0 + a1p+ · · ·+ arp
r avec ai ∈ {0, . . . , p− 1} et ar ̸= 0.

(a) Démontrer que la valuation p-adique de n! est donnée par

ordp(n!) =

∞∑
j=1

⌊
n

pj

⌋
=

n− (a0 + · · · −+an)

p− 1
,

où ⌊x⌋ désigne la partie entière d’un nombre réel x.

(b) Soit n ⩾ 1 un entier. Démontrer que tout nombre premier p satisfaisant à n < p ⩽ 2n divise le
coefficient binomial

(
2n
n

)
.

(c) Démontrer que le quotient de factorielles

n!(30n)!

(6n)!(10n)!(15n)!

est un nombre entier pour tout n ⩾ 1.

(d) Soient a, b ⩾ 1 des entiers. Démontrer que ordp(
(
a+b
a

)
) est le nombre de retenus dans l’addition

de a et b en base p.

(e) Soit p un nombre premier. Démontrer que
(
p
i

)
est divisible par p pour tout 1 ⩽ i ⩽ p − 1. En

déduire que np − n est divisible par p pour tout entier n et que l’application x 7→ xp induit un
morphisme d’anneaux A → A pour tout anneau A dans lequel p est nul.
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