ON THE COHOMOLOGY OF p-ADIC ANALYTIC SPACES, II: THE
Cs«-CONJECTURE

PIERRE COLMEZ AND WIESLAWA NIZIOL

ABsTrACT. Long ago, Fontaine formulated conjectures (now theorems) relating étale and de
Rham cohomologies of algebraic varieties over p-adic fields. In an earlier work we have shown
that pro-étale and de Rham cohomologies of analytic varieties in the two extreme cases: proper
and Stein, are also related. In the proper case, the comparison theorems are similar to those for
algebraic varieties, but for Stein varieties they are quite different.

In this paper, we state analogs of Fontaine’s conjectures for general smooth dagger vari-
eties, that interpolate between these two extreme cases, and we prove them for “small” varieties
(which include quasi-compact varieties and their naive interiors, and analytifications of algebraic
varieties). The proof uses a “geometrization” of all involved cohomologies in terms of quasi-
Banach-Colmez spaces (qBC’s for short), quasi- because we relax the finiteness conditions. The
heart of the proof is a delicate induction argument starting from the case of affinoids and ex-
ploiting properties of qBC’s in the inductive step. These properties should be of independent
interest and we have devoted a large part of the paper to their study.

CONTENTS
[l.__Introductionl 2
|I1.1. Comparison theorems for algebraic varieties| 2
|I1.2. Analytic varieties| 4
L3 Proofd 6
2. Review of almost C-representations | 9
2.1 Nofafion] 9
2.2.  Almost C-representations| 9
2.3.  Morphisms of B j;-representations| 11
3. The categories A% and ¢ %% 12
13.1. The category A% 12
13.2. The category #¢ and coherent sheaves on the Fargues-Fontaine curve 14
13.3.  Categorification of height| 19
13.4.  The category q#%]| 21
[4.  Filtered (¢, N)-modules| 23
[4.1.  Filtered (¢, N, ¥k )-modules over K| 23
[4.2. Filtered (¢, N, ¥k )-modules and almost C-representations| 25
[4.3.  Filtered (¢, N)-modules over C| 27
|4.4.  Filtered (¢, N)-modules and BC’s| 29
5. Comparison theorems: examples and a conjecture) 31
10.1. Cliffs Notes| 31
p.2. Proper rigid analytic varieties| 32
p.3.  Dagger Stein varieties and dagger affinoids| 34
15.4. The fundamental diagram| 35

Date: July 22, 2022.
The authors’ research was supported in part by the grant NR-19-CE40-0015-02 COLOSS and the NSF grant No.
DMS-1440140.



2 PIERRE COLMEZ AND WIESLAWA NIZIOL

6. De Rham-to-pro-étale comparison theorem for small varieties| 37
6.1.  Conjectures| 37
16.2.  Equivalence of conjectures| 38
16.3. Proot of the conjectures for small varieties| 41
|7. Pro-étale-to—de Rham comparison theorem for small varieties| 43
[7.1. The pro-étale-to-de Rham Ci-conjecture for varieties over K| 43
[7.2. The pro-étale-to-de Rham C4i-conjecture for varieties over (] 45
[References] 46

1. INTRODUCTION

Let Ok be a complete discrete valuation ring with fraction field K of characteristic 0 and with
perfect residue field k of characteristic p. Let K be an algebraic closure of K, let C' be its p-adic
completion, and let &% denote the integral closure of Ok in K. Let W (k) be the ring of Witt
vectors of k with fraction field F' (i.e, W (k) = Or) and let ¢ be the absolute Frobenius on W (k).
Set ¥x = Gal(K/K).

1.1. Comparison theorems for algebraic varieties. In order to put our results into perspec-
tive, let us first recall what is known for algebraic varieties. The story started with Tate conjectur-
ing [41] the existence of a Hodge-like decomposition for the étale cohomology of smooth and proper
algebraic (or even rigid analytic) varieties over K and proving the existence of such a decompo-
sition for abelian varieties with good reduction. One upshot of Tate’s results is that the p-adic
periods of algebraic varieties do not live in C. Fontained constructed [22], 23], 24] rings Bis, Bst,
Bgr that should contain these periods and refined Tate’s conjecture by conjecturing (first [22] 23]
in the case of X with good reduction and then [25] in the case of X with semistable reduction) the
existence of functorial period isomorphisms relating étale and de Rham cohomologies of smooth
algebraic varieties.

Conjecture 1.1. (Fontaine) Let X be a proper and smooth algebraic variety over K admitting a
semistable model over Ok . Let i > 0.
(i) (Conjecture Cqr) We have a functorial Yy -equivariant isomorphism preserving filtrations

Hi(Xco, Qp) ®q, Bar =~ Hig(X) ®x Bar

(ii) (Conjecture Cs;) We have a functorial 9y -equivariant isomorphism commuting with ¢ and N
Hét(XCa Q) ®q, Byt ~ Hiix(X) ®F B,

compatible with the de Rham period morphism, and the natural injections Bt CBgr and HﬁKCHéR.

As we explain below (Remark[1.3)) these conjectures are now theorems (even without the asump-
tions on existence of nice models, properness, or even smoothness).

Remark 1.2. (i) All the above cohomology groups are finite dimensional over the appropriate
field (Q, for étale cohomology, K for de Rham, and F for Hyodo-Kato).
(ii) The existence of the period isomorphism implies in particular that

dimq, H} (Xc, Q,) = dimg Hig(X).

(iii) The Hyodo-Kato cohomology group in (ii) is an F-vector space with a semilinear Frobe-
nius ¢ and a monodromy operator N satisfying Ny = ppN. Moreover, there is a Hyodo-Kato
isomorphism

ik Hi(X) @p K 5 Hig(X)
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(iv) In Cyg, the filtration on the left hand side is the one coming from Bgg; the one on the right
hand side is the tensor product of the Hodge filtration on H’y(X) and the filtration on Byg. In
Cst, the ¢ and N on the left hand side are those coming form Bg;; on the right hand side they are
the tensor products of those coming from Hiyy (X) and Bg.

(v) Galois properties of the rings By, and Bgr make it possible to recover de Rham cohomol-
ogy from étale cohomology by taking fixed points by ¥k : we have functorial “étale-to-de Rham”
isomorphisms

Hin(X) ~ (Hi(Xc,Qp) ®q, Bar)¥, as filtered K-vector spaces,
Hig(X) ~ (H, (Xe, Qp) ®q, By )?*, as F-vector spaces with a ¢ and a N.

Moreover, the Hydo-Kato isomorphism is induced by the inclusion By; C Bgr. Note that, instead
of tensor products, we could have considered ¥x-equivariant homomorphisms: we have functorial
isomorphisms

Hip(X)* ~ Homg, (H. (X, Q,), Bar), as filtered K-vector spaces,
Hix(X)* ~ Homg, (H(Xc,Qp), Bst), as F-vector spaces with a ¢ and a N.

(vi) It is possible to extract Q, from By, using the extra structures. This induces a description
of étale cohomology by de Rham cohomology (with the extra structures coming from Hydo-Kato
cohomology), i.e., it gives a “de Rham-to-étale” bicartesian diagram

Hét(Xchp) (HﬁK(X) RF Bst)N:0,¢:1

| ’

FO(Hjp(X) ®x Bar) Hip(X) ®K Bar

One can refine this diagram by taking a large enough twist, which makes it possible to remove
denominatorsﬂ in ¢: if r > ¢, we have a bicartesian diagram

Hgt(XCan(r)) (HﬁK(X) Rp B:—t)N:O#’:PT

: '

Fr(Hip(X) ok Blg) Hip(X) @k Bly

(vii) The pair (Hjjx(X), Hig (X)) is a filtered (¢, N)-module in the sense of Fontaine; the fact
that the above diagram is bicartesian and H, gt(Xc, Q,) is finite dimensional implies, in particular,
that this filtered (¢, N)-module is weakly admissible, a condition that can be described purely in
terms of the interplay between ¢, N and the filtration.

Remark 1.3. (i) As we have mentioned above, Fontaine’s conjecture is now a theorem. There have
been essentially four lines of attack: the almost étale approach [18], the syntomic approach [42], the
motivic approach [33], and the derived geometry approach [2]. The resulting period isomorphisms
are compared in [34]. The most comprehensive results are those of Beilinson [2]: there is no
assumption of properness, existence of good models or smoothness.

(i) If we don’t assume X to have a semistable model over Ok then Hij (X) has to be replaced
with HI?IK(XF), which is not an F-vector space anymore but a F™ -vector space, where F"" is the
maximal unramified extension of F. Moreover, HIi{K(Xf) is equipped with a semi-linear action of
Y commuting with ¢ and N and the action of ¥k is smooth (i.e., any element x is fixed by ¢, for
some finite extension L of K that depends on ). In this case, the isomorphisms involving Hjjx (X)
in (v) of Remark involve smooth vectors for the action of ¥k and not only fixed vectors: i.e,
we have a functorial isomorphism

Hiy (X7)* ~ Hom3" (H. (Xc,Qp),Bgt)  of (¢, N, ¥k )-modules over F™".

IRecall that Bqg = BIR[%L Byt = B;[%]
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1.2. Analytic varieties. Interest in analytic varieties is more recent despite the fact that Tate [41]
already formulated his conjecture for rigid analytic spaces. Scholze [38] established a version of
Tate’s original conjecture for smooth and proper analytic spaces over K or C and proved the
Cqr-conjecture for smooth and proper analytic spaces over K. We proved the Cy-conjecture for
proper analytic spaces with a semistable model [I3] (see [30] for a simplified construction) and
“de Rham-to-pro-étale” versions of the Cy-conjecture for Stein varieties [II] over K (also with a
semistable model).

In this paper, we will consider smooth dagger varieties over K or C' (without any assumption
on the existence of nice models):

e Any proper or partially proper rigid analytic variety has a natural dagger structure, and this
includes, in particular, analytifications of algebraic varieties, Stein varieties (e.g. étale coverings of
Drinfeld’s spaces in any dimension), or, more generally, holomorphically convex varieties (proper
fibrations over a Stein base).

e Dagger varieties that are not necessarily partially proper include overconvergent affinoids or,
more generally, quasi-compact rigid analytic varieties with an overconvergent structure.

As we have seen in the case of algebraic varieties, Fontaine’s conjectures Cyg and Cy can be
split in two: a “de Rham-to-étale” direction, and a “étale-to-de Rham” direction. We are going
to state analogous conjectures for analytic varieties but with étale cohomology replaced with pro-
étale cohomology (i.e., we are dealing with “rational” p-adic Hodge theory and not “integral” p-adic
Hodge theory; in particular, the pro-étale cohomology of the analytication of an algebraic variety
is much bigger than the étale cohomology of the algebraic variety — the latter is finite dimensional).

1.2.1. The “de Rham-to-étale” Cqr and Cy conjectures for dagger varieties.

Conjecture 1.4. (de Rham-to-pro-étale Cqr + Cy) Let X be a smooth dagger variety over C.
Let i <r. We have a functorial bicartesian diagram:

Hri>roét(X7 Qy(r)) — (HﬁK(X)(@FmB:‘t)N:W:pT
o w
H'(F'RTar(X/BJR)) Hin(X/Bh)

Remark 1.5. (i) The BJ;-cohomology group Hip(X/BJy) is a torsion-free BJ;-module from
which one recovers the usual de Rham cohomology by moding out by t. If X is defined over K
then Hip (Xc/Bg) ~ Hip (X)©xBg.

(ii) If X is defined over K, all spaces are endowed with a natural topology and an action of ¥k
and all maps are supposed to be ¥k -equivariant and continuous.

(iii) As we have shown in [I5], if X is defined over C, then all spaces have a natural topology
and are C-points of VS’s (pro-étale sheaves on the category Perf¢ of perfectoid spaces over C) and
all maps are supposed to be evaluations of morphisms of VS’s and continuous.

(iv) The Hyodo-Kato cohomology group Hi (X) (see [I5, Sec. 2|) is a F™-module with a
Frobenius ¢, a monodromy operator N, a (pro-)smooth action of ¥k, and a Hyodo-Kato isomor-
phism ik @ Hip (X)@pa Bl = Hig(X/Blg). The definitions of Hj (X) and gk are adapted
from the ones of Beilinson in the algebraic setting and use the alterations of Hartl and Temkin to
produce good local models.

(v) In the case of proper analytic varieties, all cohomology groups in the diagram are finite
dimensional (as was the case in the algebraic setting) and the kernels of the horizontal arrows
are 0. This is not the case for a general analytic variety and all spaces have to be seen in the
derived category of locally convex topological vector spaces over Qp; in particular, the tensor
products are (derived) completed tensor products. Even if H!y (X), for X over K, is finite dimen-
sional, H*(Fil" (Bl ®xRT4r(X))) surjects onto Q'(X¢)?=" and hence can be huge (and then so

is Hi oo (X0, Qp(r))).
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1.2.2. The “étale-to-de Rham” Cyqr and Cy conjectures for dagger varieties. In the other direction,
we have the following conjectures:

Conjecture 1.6. (pro-étale-to-de Rham) Let X be a smooth dagger variety defined over K. We
have functorial isomorphims:

(Car) H'x (X)* ~ Homg, (Héroét(Xc, Q,),Bar), as filtered K-vector spaces,

(Cst) Hip (X)* ~ Hom? (H! et (Xc, Qp), Bst),  as (¢, N, 9k )-modules over F™.

p

Remark 1.7. As we mentioned above, even if Hip(X) is finite dimensional, Hémét (Xc,Qp) is,

in general, huge. Hence it is a little bit of a miracle that one could recover Hiy (X) from it.

The previous conjecture uses Galois action to recover de Rham and Hyodo-Kato cohomologies
from pro-étale cohomology. If X is defined over C, there is no Galois action anymore but one can
use the VS structure alluded to above to recover part of the structure. This leads to the following
conjecture:

Conjecture 1.8. Let X be a smooth dagger variety defined over C. We have functorial isomor-
phismd):
(Cqr) HomBgR(HQR(X/Bj;R),BdR) ~ Homvs (H},0¢0 (X, Qp), Bar),  as Bar-modules,
(Cqt) Hom o (Hipc (X ), Bgt) =~ Homysg (}Hli)mét(X7 Q,).Bst), as By -modules.

Remark 1.9. (i) It is not possible to recover filtration on the B;R—cohomology just by looking at
the cohomology level because the tkIBSIR’s are all isomorphic as VS’s whereas the thjR’s are all
distinct as ¥x-modules.

(i) In the same way, ¢ and N disappear since M = MN=0¢=1 ®@ge=1 Bt if M = Mo @ par B,
where M is a finite rank (¢, N)-module over F™.

(iii) One way to understand points (i) and (ii) of the remark is the following. Conjecture[I.4]rep-
resents H ;roét as the H? of a quasi-coherent sheaf on the Fargues-Fontaine curve that is obtained as
the "modification" at co of the sheaf associated to a ¢-module. The H° determines the sheaf (be-
cause there is no H'), but not the "modification" that gave rise to it. Maybe a more sophisticated

formulation on the level of derived categories would allow to do that (see Remark ?

Our main result towards these conjectures is Thorem below, in which a small variety (for
results pertaining to “big” varieties, see Remark is a smooth dagger variety that is quasi-
compact or can be covered by a finite number of Stein varieties whose intersections have finite
dimensional de Rham cohomology (the latter case includes analytifications of algebraic varieties
and naive interiors of quasi-compact varieties).

Theorem 1.10. If X is small, then:
e Conjecture 18 true.
o If X is defined over K, then Conjecture[1.0]is true, and if X is defined over C, Conjecture[I.§

1S true.

The VS’s in the diagram in Conjecture [[.4] have some finiteness properties: they are extensions
of finite Dimensional Vector Spaces (also known as Banach-Colmez spaces, and referred to as BC’s
in the rest of the text) by torsion IBXR—MOdules. In particular, such objects W (referred to as
gBC’s, the “q” standing for “quasi”) have a height ht(W) € N (if W is the qBC attached to a finite
dimensional Q,-vector space W, then ht(W) = dimg, W). We have the following result echoing
(ii) of Remark which is the key to the proof of all the results in Theorem it is a little bit
surprising that the pro-étale cohomology encodes this finiteness result considering how big it is if
X is not proper.

2In all of the paper Homyg means morphisms of VS’s which are continuous on C-points.
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Theorem 1.11. If X is a quasi-compact smooth dagger variety, we have
bt (H}ot (X, Qp)) = dime (Hig (Xc))-
The fact that the diagram in Conjecture [1.4] is bicartesian implies in particular that the asso-

ciated sequence is exact. The exactitude on the right can be rephrased in a way echoing (vii) of
Remark

Theorem 1.12. If X is a quasi-compact smooth dagger variety, (Hiy(X), H(X/B1R)) is an
acyclicﬁ filtered (v, N)-module.

Remark 1.13. (i) The proof of Theorem makes heavy use of the theory of BC’s and, in
particular, the geometric point of view advocated in Le Bras’s thesis [32]. About half of the paper
is devoted to proving results about BC’s that are needed in the proof of our main result. Some of
these results may be of independent interest.

(ii) For proper varieties, we can use the more naive theory of BC’s as in [13], where we treated
the case of varieties with semistable models over the integers.

(iii) For an overconvergent affinoid or a small Stein variety, one gets a direct proof from the
basic comparison theorem proved in [I5]. The main difficulty is to go from this case to the case of a
variety covered by a finite number n of overconvergent affinoids or small Stein varieties. This relies
on a delicate induction on n which deepest part is establishing Theorem and Theorem |1.12
see Proposition [1.17] and the ensuing comments.

Remark 1.14. (i) If X is smooth and Stein over C' or K, it can be written as a strict increasing
union of overconvergent affinoids. We get that the horizontal rows in the diagram in Conjecture
are surjective and their kernels are (21 (X)/Ker d)(r—i). In particular, we have an exact sequence

0= Q1 (X)/Kerd = Hi o0 (X, Qp(r) = (Hic (X)@pu BN — 0

generalizing the exact sequence of [I1), Th. 1.8] which was proven under the assumption that X has
a semistable model. It is not difficult to deduce Conjectures [I.4] [I.6] and [I.8]in this case.

(ii) A general partially proper rigid analytic variety can be written as an increasing union
of quasi-compact dagger varieties, but there are annoying problems with R!lim’s that show up
when you want to deduce Conjectures and in general from the quasi-compact case
of Theorem (these problems do not appear in the Stein case). The main issue seems to be
whether or not the Hodge filtration on de Rham cohomology is formed of closed subspaces. We
have partial results (for example for a product of a Stein and a proper variety or for a proper
fibration over a curve), but nothing definitive; we report on these results in [16].

1.3. Proofs. The main ingredients in the proofs are the results from [I5] and the parallel theories
of BC’s [8, 9] [32] and Fontaine’s almost C-representations [27, 28§].

Let X be a quasi-compact smooth dagger variety over C. From [I5] we use the existence of the
basic comparison isomorphism with syntomic cohomology:

(1.15) Hyn (X, Qp(r) = Hipot (X, Qp(r)), i<,

syn P

and the exact sequence

(1.16) <+ = DRIYX) = HE (X, Qp(r) ——HKL(X)MSDRE(X) — - - -

syn
where we have set:
HKL(X) := (Hjj (X)@puBH)N=0¢=F" DRL(X) := H' (RTar(X/Blg)/F").

Very important for what follows is that this exact sequence and the isomorphism (1.15)) can be
promoted to the category of VS’s (see [I5, Th. 1.3, Th.1.7]).

3This means that the associated vector bundle on the Fargues-Fontaine curve has cohomology only in degree 0.
It is purely a condition on the interplay between ¢, N and the filtration. Weakly admissible filtered (¢, N)-modules
are acyclic.
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1.3.1. On the proof of Conjecture[1.7} Proving Conjecture amounts to splitting the long exact
sequence into short exact sequences, which can be done directly for dagger affinoids (Theo-
rem, going back to the definition of syntomic cohomology. The problem is to go from affinoids
to varieties covered by a finite number of affinoids. This we do by induction on the number of
affinoids needed, using the theory of BC’s. We already used BC’s in [13] to treat the proper case
(with a semistable model), but there we were helped by Scholze’s theorem [38, Th.1.1] that the
H;l)roet
use the basic theory of BC’s as developed in [8,[@]. In the present paper, we need to use the more
powerful point of view advocated in Le Bras’ thesis [32]. The key result that comes out of the

theory of BC’s is the following proposition (Proposition [6.11)):

(X,Qp(r))’s are, in that case, finite dimensional Q,-vector spaces; this made it possible to

Proposition 1.17. The following properties are equivalent:
( ) The diagram in Conjecture [1.4) is bicartesian.
' dr)) s acyclic, fori =r —1 and i =r.
Hix(X),F'Hiz(X/B lic, f 1 and )
e kernel ana cokernel o , r)) — & por o= ave height 0.
The k l and cok Lof HY o6 (X, Qp Hi (X B )N=0%=P" have height 0
@ B(H, 060 (X, Qp(r))) = dime Hig (X).

The equivalence of (d), which is a condition only about r, and (b), which involves r and r — 1,
makes it possible to do an induction on r. Among the ingredients that go into the proof of this
proposition are:

e an interpretation (Proposition of ht(W) for a ¢qBC W as the rank of Homyg(W,B4gr)
(i.e. a categorification of the height ht),

e a dichotomy (Proposition that tells us what happens if the sequence associated to the
diagram is not exact on the right.

It is in this dichotomy that we use in an essential way that the degrees of involved cohomology
groups are < r: this implies that the slopes of Frobenius on Hyodo-Kato cohomology are < r.

1.3.2. On the proof of Conjectures[I.¢ and[I.8 Conjectures [I.6]and [I.8]follow from Conjecture [I-4]
and results about almost C representations or BC’s of the following type:

Homg, (B} /t",Bar) =0 and Homvys(Bj;/t",Bar) =0

(Proposition for the first statement and Corollary for the second; this type of results
allow us to get rid of the de Rham terms in the sequence of Hom’s that is deduced from the exact
sequence associated to the bicartesian diagram of Conjecture [1.4])

Homg, (M @ pnr BE)N=09=P" Byp) = M}
Homvs((M ®Fnr B;)N:O’@ZPT,BdR) = M* ®Fnr BdR

if M is a (¢, N)-module of slopes < r (Theorem and corollaries for the first statement and

Proposition and for the second).

Acknowledgments. W.N. would like to thank MSRI, Berkeley, and the Isaac Newton Institute,
Cambridge, for hospitality during Spring 2019 and Spring 2020 semesters, respectively, when parts
of this paper were written. We would like to thank Guido Bosco, Jean-Benoit Bost, Gabriel
Dospinescu, Laurent Fargues, Marco Maculan, Jeréme Poineau, Peter Scholze for helpful conver-
sations concerning the content of this paper.

1.3.3. Notation and conventions. Let Ok be a complete discrete valuation ring with fraction field
K of characteristic 0 and perfect residue field k& of characteristic p. /I:et K be an algebraic closure
of K and let &% denote the integral closure of Ok in K. Let C = K be the p-adic completion of
K. Let W(k) be the ring of Witt vectors of k with fraction field F' (i.e., W(k) = OF); let e = eg
be the ramification index of K over F. Set ¥x = Gal(K/K) and let ¢ be the absolute Frobenius
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on W (k). We will denote by A, Ber, Bst, Bar the crystalline, semistable, and de Rham period
rings of Fontaine.

We will denote by Ok, 0, and 0%, depending on the context, the scheme Spec(&k) or the
formal scheme Spf(&) with the trivial, the canonical (i.e., associated to the closed point), and
the induced by N — Ok,1 +— 0, log-structure, respectively. Unless otherwise stated all formal
schemes are p-adic, locally of finite type, and equidimensional. For a (p-adic formal) scheme X
over Ok, let Xy denote the special fiber of X; let X,, denote its reduction modulo p”.

All rigid analytic spaces considered will be over K or C. We assume that they are separated,
taut, and countable at infinity.

Our cohomology groups will be equipped with a canonical topology. To talk about it in a
systematic way, we will work rationally in the category of locally convex K-vector spaces and
integrally in the category of pro-discrete &'x-modules. For details the reader may consult [I1) Sec.
2.1, 2.3]. To summarize quickly:

(1) Ck is the category of convex K-vector spaces; it is a quasi-abelian category. We will
denote the left-bounded derived oco-category of Ck by Z(Ck). A morphism of complexes
that is a quasi-isomorphism in 2(Ck), i.e., its cone is strictly exact, will be called a strict
quasi-isomorphism. The associated cohomology objects are denoted by H "(E) € LH(Ck);
they are called classical if the natural map H"(E) — H"(E) is an isomorphism.

(2) Objects in the category PDg of pro-discrete €k-modules are topological €x-modules
that are countable inverse limits, as topological @x-modules, of discrete &'x-modules M?,
i € N. It is a quasi-abelian category. Inside PDg we distinguish the category PCg of
pseudocompact Ox-modules, i.e., pro-discrete modules M ~ lim; M; such that each M; is
of finite length (we note that if K is a finite extension of Q,, this is equivalent to M being
profinite). It is an abelian category.

(3) There is a tensor product functor from the category of pro-discrete €x-modules to convex
K-vector spaces:

(-)®K : PDg — Cr, M= M ®g, K.

Since Ck admits filtered inductive limits, the functor (—)®K extends to a functor (—)®K :
Ind(PDg) — Ck. The functor (—)®K is right exact but not, in general, left exact. We
will consider its (compatible) left derived functors

(-)@"K : 27 (PDk) = Pro(2™(Ck)), (-)@"K : 2 (Ind(PDk)) — Pro(2~(Ck)).

If FE is a complex of torsion free and p-adically complete (i.e., F ~ lim,, E/p"™) modules
from PDg then the natural map

E®'K —» EQK

is a strict quasi-isomorphism [I1, Prop. 2.6].

Unless otherwise stated, we work in the derived (stable) oco-category Z(A) of left-bounded
complexes of a quasi-abelian category A (the latter will be clear from the context). Many of our
constructions will involve (pre)sheaves of objects from 2(A). We will use a shorthand for certain
homotopy limits: if f: C'— C’ is a map in the derived co-category of a quasi-abelian category, we
set

[C—Lo '] = holim(C — ¢’ « 0).

For an operator F acting on C, we will use the brackets [C]¥ to denote the derived eigenspaces
and the brackets (C)¥" or simply C¥" to denote the non-derived ones.
Finally, we will use freely the notation and results from [14].
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2. REVIEW OF ALMOST C-REPRESENTATIONS

We will briefly review Fontaine’s theory of almost C-representations [27] (see also [28]) and
some of its consequences. The theory has a satisfactory shape only when [K : Q,] < oo, but some
parts work for K arbitrary. Fortunately, the almost C-representations that we are going to deal
with have special features and we are only going to use the results in §[2.3] for which we provide
alternative proofs (working for general K).

2.1. Notation. A banach is a Banach space over Q,, (up to an equivalence of norms) and a banach
representation of ¥y is a banach with a continuous and linear action of ¥k . Denote by Z(¥k) the
category of banach representations of ¥k . It has a natural exact category structure: a short exact
sequence in B(Yx ) is a sequence

OHBléBgﬁ)ng)O,

where g is a strict epimorphism and f is a kernel of g.

A Qp-representation of Y is a finite dimensional Q,-vector space with a continuous and linear
action of ¥y . Similarly, a C-representation of 9k is a finite dimensional C-vector space with
a continuous and semilinear action of ¢x. We will denote by Repq (¥k), resp. Repq(9k),
the category of Q,-representations, resp. C-representations. More generally, one can define the
category Repgy (9 ) of finite length B -representations.

Fontaine proved the following surprising theorem:

Theorem 2.1. (Fontaine, [27, Th. A, Th. A']) If [K : Q] < 0o, the forgetful functors
Repc(gK) — %(g[(), RepBIR, (%K) — %(g]()
are fully faithful.

In other words, if Wi, Wy are two C-representations of ¥, all Q,-linear continuous ¥g-
equivariant maps, of W; to Wy are necessarily C-linear. Similarly, if Wi, W5 are two BIR—
representations of ¥, all Q,-linear continuous ¥x-equivariant maps, of W; to Wy are necessarily
B, -linear

dR :

Remark 2.2. The proof uses Sen’s theory [39] and gives a stronger result: one has the same
statements for E-linear maps between FE-representations for which the Hodge-Tate-Sen weights
are algebraic over E (a condition that is automatic for £ = Q,, if [K : Q,] < oo, whence the
theorem). In particular, we have the following fundamental result, valid for arbitrary K:

Homg, (C,C) ~ K

2.2. Almost C-representations.

2.2.1. The general theory. Two banach representations Wy and W5 are almost isomorphic if there
exist two finite dimensional Q,,-vector spaces V; C W;, i = 1, 2, stable under ¥ such that W7 /V; ~
Wy /Va. An almost C-representation is a banach representation which is almost isomorphic to C'¢
for some d € N. Denote by €(¥x) the category of almost C-representations.

Remark 2.3. The above definition makes sense for arbitrary K, but the theory has a satisfactory
shape only for [K : Q,] < oo; maybe the point of view developped in [28] would lead to satisfactory
theory for arbitrary K?

From now on, assume that [K : Q,] < co. Then ¢(¥x) is an abelian subcategory of the exact
category #B(Yr). If W/Vo = C?/V, one sets diim W = d and ht(W) = dimq, V> — dimq, Vi. This
is independent of choices and yields additive functions [27, Th. B] — a nontrivial fact whose proof
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uses the theory of BC’sﬂ [8], [9]. We have d(C) = 1,ht(C) = 0 and d(V') = 0,ht(V') = dimg, (V)
if V' is a Qp-representation. The category € (¥k) contains all BXR—representations and if W is a
B -representation of length d then it is almost isomorphic to C? [27, Th. C|; we have d(W) = d
and ht(W) = 0. In particular, the B -representations C and C(1) are almost isomorphic.

Remark 2.4. The category ¢ (¥k) modulo almost isomorphisms is semi-simple with a single
isomorphism class of simple objects, the class of C.

Fontaine reduced the computation of Ext-groups in the category % (%) to the computation
of Ext-groups in the category RepBIR (%K) and the computation of Ext-groups in the category
Repq, (¥ ) via the following fact (which relies on [27, Prop. 5.5] and [27, Prop. 5.6]):

Proposition 2.5. (Fontaine, [27, Prop. 6.4, Prop. 6.5])
(i) Let X, Y € Repgq, (Yk). Then we have a canonical isomorphism

Exty, (X,Y) 5 Extiyg,(X,Y), i>0.
(i) Let X,Y € Repg: (9Kk). Then we have a canonical isomorphism

EXtiaj;R(gK)(X’ Y) 5 Extigg, ) (X,Y), i>0.

He proved the following result:

Theorem 2.6. (Fontaine, [27, Th. 6.1, Prop. 6.8, Prop.6.9]) Let X, Y € €(9x).
(i) Th(; Qp-ve§tor spaces Ext%(gK)(X, Y) have finite rank and are trivial for i > 3.
(i) > 2io(—1)" dimq, Extiy (g, (X,Y) = —[K : Qp] ht(X) ht(Y).
(iii) There exists a natural trace map EXt?g(gK)(X, X (1)) = Q, and, for 0 < i <2, the map

Extly g, (X,Y) X Ext%;(;}()(y, X(1)) = ExtZ g, (X, X(1)) = Qp
defines a perfect duality.

2.2.2. B:fR—representations. BXR—representations are objects of € (¥k) and we have a recipe for
computing Ext groups between these objects. We still assume [K : Q] < oo, but the results below
are valid in greater generality (see Remark.

Let x be the cyclotomic character. Let Ko, C K(up) denote the cyclotomic Z,-extension of
K. Let v be a topological generator of Gal(K/K). We choose a sequence {(pn }n>1 of primitive
p"’th roots of unity (p»,n > 1, such that C§"+1 = (pn. Let t € Bji'R be the uniformizer associated
to {(pn frn>1. We will also use its twisted form ¢’ := ¢/m; defined in [27] Sec. 2.1]; it is a uniformizer
of Bl as well, fixed by Gal(K /K ) whereas t is only fixed by Gal(K /K (jip)).

Proposition 2.7. Let W be a B(TR—representation. The groups Ext%(%()(C, W) are computed by
the complex

x> (t'z,(y—1)z) (z,9)~ ' y—(x " (7)y—1)z)
Wiy ———————= W) @ W(o) Wy,

where W) is the space of generalized invariantﬂ and Wy =t/ ((¢') ' W)y
Proof. By Proposition 2.5 the natural map

(2.8) ExthR(gK)(C, W) — Extly g, (C, W)

from the Ext-groups in the category of BIR—representations is an isomorphism. Our proposition is
now [27, Th.2.14]. O

4More specifically, the proof uses the result which says that, if S is an effective BC of dimension 1 and height h
and if f : S — C is a morphism of BC’s whose image is not finite-dimensional, then f is surjective and its kernel
has dimension 0 and height h.

5The elements killed by (g1 —1)---(gr — 1) for all g1,...,9r € ¥k, for r big enough.
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We will state two simple consequences of the above proposition.

Corollary 2.9. If N >0 and1 <1 < j, then

Home g, ) (BJp/t', t "Bz /t/) =0 and Extyy, B/t .t VBl /) =0.
Proof. By devissage (and twisting by x 7 for 0 < j < i — 1), we can reduce to the case i = 1. If
W = t_NB;rR/tj, we have W) = K and W(;) = Kt', and our result follows from Proposition

(multiplication by ¢ induces an isomorphism of W gy with W(;y and the other maps are identically
zero, and it follows that the complex in the proposition is acyclic). 0

Lemma 2.10. Let j € Z,k > 1. Then

) 0 ifj#0
Bt @t o) = {0 170
o 0 ifj#0,k
Exti () (Bir/t*, C(j)) = {K Fi— Ok
. 0 ifj#k
EXt?K(‘ﬁK)(BIR/tk7O(])) = {K ifj=k

Proof. We will use Proposition with W = (Blz/tF)(1 — j) as well as the duality between
Ext%(%()(@ W) and Extgg_(;K)(VV, C(1)) from Theorem We have W) = Kt/=1(1 — j) if
1<j<hk Wgo=0ifj<0orj>k+1, and Wy =~ Kt't (1 —5)if0<j<j—1, Wy =0if
j < —lorj>k. Inthe complex from Proposition computing the Ext-groups EXt%(gK)(C, W),
the only nonzero maps are the multiplications by ¢' : W) — W(;) which are isomorphisms unless
exactly one of the two groups is trivial (i.e., j =0 or j = k). Our result follows. O

Remark 2.11. Every non-trivial extension of B} /t* by C(k) is isomorphic to By /t5T1.

Example 2.12. Eztensions of Tate twists. We have Ext}g(gK)(C’, C) ~ K (the K-vector space is
generated by the class of C'® (Qp ® Q,logt)). Since Ext%(gK) (C,C) ~ K by Remark this im-
plies that Ext?g(%()(C, C) = 0 by Theorem We also have, by duality, Ext%(%()(C, C(1)~ K
(generated by the class of B /t?) and Ethg((gK) (C,C(1)) =~ K, and all the other Extfg(%() (C,C())
are trivial.

2.3. Morphisms of BIR-representations. In this section, K is arbitrary. We are going to derive
consequences of the following two results which are valid for such K. These are the results that
we will use in the rest of the paper.

Proposition 2.13. (i) Homgy, (C,C) ~ K.

(ii) K is dense in BJy.
Proof. Fontaine’s proof [26] of (i) works for arbitrary K (the alternative proof in [29], which uses
class field theory, works only for [K : Q,] < 00). For (ii), see [10]. O

Proposition 2.14. We have
(i) Homg, (C,C) ~ K, Homg, (C,C(j)) =0 if j #0.
(ii) Homg, (Big.t VBI: /t*Bls) ~ K for N >0, k > 1; compatibly in k.
(iii) Homg, (BIR, BIR) ~ K, Homg, (Bgr,Bar) ~ K.
(iv) Homg, (/B /"B, Bar) = 0, Homg, (BIz /t*Bl; Bl /t‘Biz) = 0 if £ > k.

Proof. The first claim of (i) is Fontaine’s theorem. The second claim of (i) follows from the fact
that C(j) does not have elements on which the action of ¥ factors through a finite quotient and
hence A € Homg,, (C, C(j)) is identically zero on K, and thus on C' by continuity and density of
KinC.
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Let us prove (ii). Any map A : Bl — t VB, /t"B}; send K to K since elements of K are
the smooth vectors for the action of ¥k in BIR and t~V BQ'R th;fR. By continuity, and density
of K in Bl one sees that A(By) € BIz/t*Bl;.

Now, if k = 1, A(tK) is sent to 0 in BJ /t = C since C(—1) does not have elements on which the
action of ¥ factors through a finite quotient. But tK is dense in tBjR, hence X factors through
Blz/t = C. It follows from (i) that A is the multiplication by x € K (composed with Bl — C).
Now, if £ > 1, we can compose with BIR/tk — C to deduce that there exist kK € K such that A —«
has values in tBIR / thjR. But the image of K by A — & is identically 0 for the same reasons as
above; hence A\ = k and we are done.

The first statement of (iii) follows from (ii) since

Homg, (B}, Bz) = lim, Homg, (B, Bl /t"BiR)

For the second statement, let A € Homg,. (Bqr, Bar). By the same arguments as above, A(K) C K;
hence, by continuity, )\(BjR) - Bz{R and the restriction of A to B(TR is the multiplication by an
element x of K. But Ay defined by Ay (z) = tYA\(t~Vx) also belongs to Homg, (Bgr, B4r) and
is the multiplication by & on tV Bg‘R. It follows that Ay is the multiplication by s on B(‘fR, and A
is the multiplication by x on t~VBJ;. Hence the second claim of (iii).

Finally, for (iv) we may assume j = 0 by twisting. Then the same arguments as for (ii) show
that A(BJ/t*) C By for the first claim, and that 6 o A is k6 for some x € K for both claims.
One deduces that A = k on K. But we can find a sequence (x,,)n,en of elements of K converging
to t* in B hence to 0 in B, /t*, and continuity of A implies that 0 = A\(0) = xt*. Hence x =0
(since £ > k for the second claim), and A = 0, which finishes the proof. O

3. THE CATEGORIES #% AND qHABE

In this chapter we recall the definition of BC’sﬂ and introduce qBC’s (categories %€ and ¢B%E).
We will study properties of both categories, in particular, the canonical filtration and its relation
to the Harder-Narasimhan filtration. Moreover, we will partially categorify height of BC’s and
introduce a notion of acyclic (¢, N)-modules that will play an important role later on in the paper.

3.1. The category #A%. We will discuss now basic properties of the category #AC of BC’s and
the canonical filtration of its objects.

3.1.1. Definitions and basic properties. Recall [8] that a BCﬂW is, morally, a finite dimensional C-
vector space up to a finite dimensional Q,-vector space. It has a Dimension Dim' W = (a, b), where
a =dimW € N, the dimension of W, is the dimension of the C-vector space and b = ht W € Z,
the height of W, is the dimension of the Q,-vector space.

More precisely, a Vector Space (VS for short) W is a pro-étale sheaf of Q,-vector spaces on
Perfc: A — W(A). Trivial examples of VS’s are:

o finite dimensional Q,-vector spaces V: A+ V for all A,

o Ve for d € N, with VI(A) = A9, for all A.
More interesting examples are provided by Fontaine’s rings:

e B, B, Bl Beuis, Bst, Bar are naturally VS’s (and even Rings).

e If m > 1, then B, := BI; /t™BJ; is a VS (and also a Ring).

e Let h>1and d € Z. Then Uyg = (BS,)? =" if d > 0, and U, 4 = B4/Q, if d < 0, are
VS’s.

A Vector Space W is said to be finite Dimensional (a BC for short) if it “is equal to V¢, for
some d € N, up to finite dimensional Q,-vector spaces” there exists finite dimensional Q,-vector

60ften called Banach-Colmez spaces.
"Called in [] "finite dimensional Banach Space".
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spaces Vi, V5 and exact sequencesﬁ
0-VioY—=>Vis0, 00Ve—Y W0,

so that W is obtained from V¢ by “adding V; and moding out by V5”. Then dimW = d and
htW = dime ‘/1 - dime VQ

Remark 3.1. (i) We are, in general, only interested in W = W(C') but, without the extra structure,
it would be impossible to speak of its Dimension (for example, C and C & Q, are isomorphic as
topological Q,-vector spaces).

(ii) The functor W — W(C) of C-points is faithful for BC’s. Also, if W is a BC, then W(A) is a
Q,-Banach, for all A, and if W; — Wy is a morphism of BC’s, then W (A) — Wy(A) is continuous
and strict, for all A.

We quote [13], Prop. 5.16]:
Proposition 3.2. (i) The Dimension of a BC is independent of the choices made in its definition.
(i) If f : Wy — Wy is a morphism of BC’s, then Ker f, Coker f and Im f are BC’s, and we
have
DimW; = DimKer f + Dim Im f and Dim Wy = Dim Coker f 4+ Dim Im f.
(iil) If dim W = 0, then ht W > 0.

(iv) If W has an increasing filtration such that the successive quotients are V', and if W' is a
sub-BC of W, then ht W > 0.

We will denote by %% the category of BC’s. It is an abelian category.
Example 3.3. The Spaces B,,, and Uy, 4 defined above are BC’s. Their Dimensions are

(d, h) if d >0,

DimB,, = (m,0), DimU; 4=
(m, 0) od {(d,h) it d < 0.

3.1.2. Canonical filtration. In his thesis [35], [36], Plit introduced a filtration on objects of #%
and stated a number of results about this filtration. We will review them briefly here.

Remark 3.4. Most of these results can be recovered from the relation of % to vector bundles on
the Fargues-Fontaine curve and the Harder-Narasimhan filtration studied in Le Bras’ thesis (see

Section [3.2.4]).

Definition 3.5. (Curvature) Le W € %% . We say that W has:
curvature > 0, if Hom(W, V1) =0,

curvature = 0, or is affine, if it is a successive extension of V!,
curvature < 0, if it injects into B4y (or, equivalently, into (B];)?),
curvature < 0, if it injects into a IB%CTR-module,

curvature > 0, if Hom(W,B1;) = 0.

Remark 3.6. (i) If W has curvature > 0 (resp. > 0) and W’ has curvature < 0 (resp. < 0), then
Homgg%o(w, W/) =0.

(ii) A sub-VS of an VS with curvature < 0 (resp. < 0) has curvature < 0 (resp. < 0).

(iii) A quotient of an VS with curvature > 0 (resp. > 0) has curvature > 0 (resp. > 0).

Proposition 3.7. (The canonical filtration) Every W € #%€ have a unique filtration, called the
canonical filtration,
W>0 C WZO cW

8In fact, by [32, Prop.7.8], a sequence 0 — Wi — Wo — W3 — 0 of BC’s is exact if and only if 0 — Wy (A) —
Wa(A) — W3(A) — 0 is exact for all sympathetic algebras A. This implies that the latter sequence is actually
strictly exact.
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such that:
e Wy has curvature > 0,
o Wxo/Wso has curvature 0,
o W/Ws¢ has curvature < 0.

Proof. One defines W as the intersection of the kernels of all morphisms o : W — B,,,, for m > 1,
and W as the intersection of the kernels of all morphisms a : W — Byg. O

Remark 3.8. (i) W<o. = W/W is the largest quotient of curvature < 0 of W.
(ii) W=09:= W5(/Ws is the largest affine sub-VS of W<=0.

3.2. The category #% and coherent sheaves on the Fargues-Fontaine curve. The canon-
ical filtration of BC’s is closely related to the Harder-Narasimhan filtration defined, using the
presentation of %% via coherent sheaves on the Fargues-Fontaine curve, by Le Bras [32]. We will
now explain this relation.

3.2.1. The Fargues-Fontaine curve. The (algebraic) Fargues-Fontaine curve X = Xy is the pro-
jective scheme attached to the graded Q,-algebra ®y>0Uq, where Uy = (Bctis)q’zpd. The closed
points of X are in bijection with the Q,-lines of Uy; if z € X, we fix a basis t, of the corresponding
line. The field C' corresponds to a specific point oo of X, and t = ¢, is Fontaine’s p-adic 2mi. We
denote by C, the residue field at z; it is an algebraically close field, complete for v, and ch =",
but C} is not necessarily isomorphic to C. The residue field at oo is C' itself.

The completed local ring o X,z at « is the ring IB(TR(CQE), and t, is a uniformizer (if z = oo, then
B (Cs) = Big)
ar\“z dr/:

3.2.2. Harder-Narasimhan categories. A Harder-Narasimhan category is an exact category with
two real valued functions rk and deg (rank and degree) — which are additive in short exact sequences
— satisfying extra conditions (see |20 5.5.1], [I]). This allows to define a slope function u = %
taking values in R][{£oo} (endowed with the obvious ordering).

An object & is of slope X if u(&) = A. It is semistable if p(&') < p(&) for all strict subobjects
&' C &. Tt is stable if p(&") < u(&) for all strict subobjects &’ C &. Any object & has a canonical
decreasing filtration (the Harder-Narasimhan filtration) by strict subobjects &2 (with £2* C &2+
if A > u), such that, if £>* = U,> &34, then £2*/&>? is semistable of slope .

We say that & has slopes > A (resp. > \) if & = &2* (resp. & = &>?), and has slopes < A
(resp. < A) if £>* =0 (resp. £2* = 0).

This has a number of consequences:

o If & is of slopes > A and &, is of slopes < A, then Hom(&, &) = 0.

e A quotient of an object of slopes > A has slopes > .

e A subobject of an object of slopes < A has slopes < A.

o Il A\ < Ao, if & is of slopes > A1 and &3 of slopes < Ao, then an extension of & by &) has
slopes in [A1, Ag].

3.2.3. Vector bundles. To a vector bundle & on X, one can attach its rank rk(&) € N, its degree
deg(&) € Z, and its slope p(&) = iig((;;). These definitions can be extended to torsion coherent
sheaves by additivity in short exact sequences. In particular, torsion sheaves have rank 0, degree > 0

and slope +00. Endowed with rk and deg, the category Cohx of coherent sheaves on X is a Harder-

Narasimhan category.
The following result [20] is fundamental:

Theorem 3.9. (Fargues-Fontaine)
(i) If A = £ (in lowest terms), there exists, up to isomorphism, a unique stable vector bundle
O(N) of slope X; its rank is h and its degree d.
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(ii) Fvery vector bundle & on X is a direct sum
E=0M)D - ®O(\).

In particular the Harder-Narasimhan filtration splits (non canonically).
(iil) Fvery coherent sheaf & on X is a direct sum

&= ﬁ()‘l) - D ﬁ()‘r) D <@$€X yac)v
where %, is a torsion coherent sheaf, supported at x and zero for almost all x.

The A1, ..., A, above are the slopes of & (to which one has to add +oc if one of the %, is non
7€ero).
We have, by |20, Prop. 8.2.3],
FE = HY(X,6(\) =0, ifA>0,
HYX,0(\) =0, HYX,0\)=Bl/(t"Biz ®Q,n), ifA<0.

(3.10) HY(X,00\) = (B},

Note that H (X, 0())), for i = 0, 1, is the space of C-points of a BC H!(X, 0()\)), and we have
Dim(HO(X, 6(\))) = (d, 1), Dim(H(X, 6(\)) =0, if A >0,
Dim(H°(X,0(\)) =0, Dim(H'(X,0(\)) = (d,—h), if A <0.

Note also that H*(X, &()\)), for i = 0, 1, clearly depends only on C” if A > 0; this is less clear when
A < 0 (since t depends on C') but it is still true.

3.2.4. The category Cohy. In his thesis [32], Le Bras shows that #% is the smallest sub-abelian
category of the category of VS’s, stable by extensions, and containing Q, and V!; this gives an
efficient alternative definition of %% (in particular, it shows that a VS extension of two BC’s is
a BC).

We note Cohy the sub-category of D?(Cohy) of complexes &, such that H'(&,) = 0if i # —1,0,
H~1(&,) has slopes < 0 and H°(&,) has slopes > 0. Any object of Cohy can be represented by

a complex & 1 > & of coherent sheaves such that H%(X,&_1) =0 (i.e., &1 has slopes < 0) and
H'(X, &) =0 (i.e., & has slopes > 0). Le Bras defines an exact functor

BC : Cohy — B

(denoted by RY7, in [32, 6.2]): for a complex of coherent sheaves .# on X, BC(.Z) is the sheaf
associated to the presheaf S — HY(Xg, %#s). By definition of this functoﬂ one gets an exact
sequence in #%E:

0— H'(X,&1) = BO(E-1 > &) — HO(X, &) — 0.
If& 2 & et F_q 5 Fo are objects of Cohy, then

o 1
Hompo(BO(6 % &), BC(F, & %) = (Hom(5_17</—1) Ext (é@o,y_l))

0 Hom(é"o, Lgﬁo)
The following result is the main result of [32].
Theorem 3.11. (Le Bras, [32] Th.1.2]) The functor BC realizes an equivalence of categories

Cohy ~ #¥€.

9More generally, BC(&,) is an extension of HO(X, H?(£*)) by HY (X, H~1(&*)).
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3.2.5. Harder-Narasimhan filtration on BC’s. One endows Cohy with functions rank rk™, de-

_ deg”

gree deg™ and slope p~ = T35, by setting:

tk™ (61 % &) = deg(&) — deg(&-1), deg™ (E-1 > &) = rk(&-1) — 1k(&),

which turn it into a Harder-Narasimhan category.
By transport of structure, this endows also % with functions rank rk™, degree deg™ and slope
1~ ; we have

rk™ =dim and deg = —ht.

If .Z, is torsion, then p~ (BC(0 — .%;)) = 0.
If A= % (in lowest terms), denote by Uy the BC defined by Uy := U 4. Note that, if A = % is
in lowest terms and e > 1, then Uep q = US. Then we have

b [EC o), iAo,
*THEY(X, 000), ifA<o.

Alternatively,
Uy - {BC(O = O(N), fA>0,
BC(6(\) — 0), if A < 0.
Then
rk(Uy) = sign(\) d, deg™(Uy) = —sign(\) h, s (Uy) = _71

Remark 3.12. (i) Since Q, = Uy, we have u~ (Q,) = —oc.

(ii) BC’s are naturally diamonds (and were amongst the first non trivial examples of diamonds)
and, as such, have connected components. If W is a BC, then W~ ~°° is the connected component
of 0 and the quotient W—°° is the largest étale quotient (group of connected components, a finite
dimensional Q,-vector space).

(iii) The Harder-Narasimhan filtration splits (non canonically), and every BC can be decomposed
as

(3.13) W=U_y/\, & - U_1), & (& H(X, F)),

where the ); are non zero elements of QU{—oc}, U_;/,, is of slope \;, and .%; is a torsion coherent
sheaf, supported at x, zero for almost all z, and H°(X,.%,) is of slope 0. The \; are the slopes of
W (to which one has to add 0 if one of the .%, is non zero).

(iv) In the exact sequence
0— H'(X,&1) = BO(E-1 > &) — HUX, &) — 0,
the term on the left represents the subspace of slopes > 0 of BC(&-4 5 &o).

Remark 3.14. (i) The existence of the exact sequence 0 — W>~° — W — W~ — (0 makes
it possible to show that a decreasing sequence of BC’s is stationary: indeed, if (W,,),en is such
a sequence, then dim(W,) is decreasing and bounded below by 0, hence is constant for n > N.
It follows that Wy /W,, is of dimension 0 and hence is a quotient of W>. Since ht(Wx/W,,)
is increasing and bounded by ht(W,>) < oo, one concludes that Wy /W, is constant for n big
enough, and that so is W,,.

(ii) One can also use a presentation to reduce to the case W = V¢, and then argue by induction
on d using the fact that a sub-BC of V! is either V! of a finite dimensional Q,-vector space. This
proof applies verbatim to almost C-representations.

Lemma 3.15. (|9, Prop.2.4]) A sub-BCW of V¥ containing no V!, satisfies dim(W) < ht(W)
or, equivalently, has slopes < —1.
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Proof. We will use the equivalence Cohy ~ %% . By decomposing W as a direct sum of stable
BC’s, it suffices to prove the statement for Uy, with A = % > 0 (here we used the fact that W does
not contain V'). This amounts to showing that, if f : Uy — V¥ is an injective map then h > d.
Passing to the category Coh’, we see that we need to show that if a map frro0) — LoosCN is
injective on global sections then h > d. But this map factors as

fb
O(N) Loo s ON

| f

OX .00 @ O(N) = (100 sC) @ ON) > 15 ,CP

Tracing this diagram from the left upper corner first vertically then horizontally we obtain a map
f 1 O(\) = 10 «C", which is injective on global sections. Now, passing back (from the category
Cohy) to the category % we get an injective map f : Uy — V. Since Uy, is of Dimension (d, h)
and V" of Dimension (h,0), the existence of an injection implies h < d, as wanted. O
3.2.6. Morphisms. We can describe Hom and Ext! in the category %% using the curve. For
example:
(1) If Dy is the division algebra with center Q,, and invariant A\, we have
Endgc(Uy) = End(O(N)) = Da.
(2) Recall that, if \; = Z—i, Ay = ;172 and A\; + Ay = % in the minimal form, we have &(\) ®

27

O(X2) = O(A + Ag)"A122) where (A Ag) = f2h. Also:
Hom(O(\1), O(\y)) = Hom (0, O(Ma — A1), Hom(&,6(N\)) = H* (X, O(\)).

(3) There is a bijection « — T, between the closed points of X and the Q,-lines of U;(C). If
x € X, then End(U,/T,) = C,, where C,, is the residue field of the local ring of z in X
(recall that C, is an algebraically closed field, complete for the p-adic valuation, an untilt
of C”; but C,, is not always isomorphic to C).

(4) Similarly, Uy/T%?% = BC(iy«B4(Cy)), and thus End(Uy/T2?) = B4(Cy).

(5) If A = % > 0 then Hom(Uy,V?) is the C-module of rank h generated by 0 o ¢, for
0<i<h-1.

3.2.7. Slope 0 and curvature 0. The map . +— HY(X,.#) induces an equivalence of categories
from the category of torsion coherent sheaves, supported at x, to the category of finite length
B (C)-modules. A finite length Bj; (C,)-module is a direct sum of B,,(C,) = B3 (Cy)/t™, and
the sheaf i, .B,, corresponding to B,,(Cy) (where i, denotes the inclusion of = in X) lives in an
exact sequence

005, O(m) = iz By, — 0
Passing to the sequence of H’s (which is exact as H!(X, &) = 0), this gives an isomorphism
HY(X, iy «Bp) = Uy /Qpt™.
One deduces from the equivalence Cohy, ~ %% that
Endgge (Un /Qpty") = Endcony (iz,sBim (Ca)) = Endgs (o) (B (Cr)) = B (Ca).
In particular, for m = 1, one obtains
Endges (U1/Qpts) ~ Cy.
Note also that, if z # oo, then
Hom g4 (U1 /Qpts, V') =~ Homeony (iz B foo«Bm) = 0,

since the two sheaves are supported at distinct points.
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In the special case = oo, which will be crucial for our results, ¢, = ¢ and U,,/Qut™ = By,
and one can describe directly the object Ml of %% attached to a BXR-module of finite length M:
we have

_ +
M=M gt Big-
This can be summarized by the following result.

Proposition 3.16. The functor M — M = M ®BIR IB%(TR defines an equivalence of categories

between the category of BXR—modules of finite length and the subcategory of BE of objects of
curvature 0.

Corollary 3.17. (i) The kernel and cokernel of a morphism of objects of curvature 0 are of
curvature 0.
(ii) If W is a torsion IB%:IR—module, then Homyg(W, ]B;fR) =0 and Homyg(W,B4r) = 0.

Proof. Point (i) is a direct consequence of Proposition To prove point (ii) we may assume W to

be finitely generated (since, in any case, it is an inductive limit of finitely generated IB%;;R—modules).

Then, we can use Proposition to write W as W ®@g+ IB%(J{R for some torsion B:{R—module w.
dR

Now we have, using Proposition and the fact that IB%(J{R = limy IB(J{R/tk,
+ Y + kY s + kY +y =
Homyg (W, Bz ) = limy, Homyg(W, Bjg /") = limg HomBIR (W,BR/t") = H01ran+R(VV7 Bjr)=0

This proves the result for IB%IR. To prove it for Bqr, note that W is naturally a Q,-banach and
Byr is an inductive limit of the =~ B:{R which are Q,-Fréchet’s. Hence there exists /N such that
W maps to t*NBjR and then W maps to t*N]B%jR. This makes it possible to use the case of IB%(J{R
to finish the proof. d

3.2.8. Canonical and Harder-Narasimhan filtrations. The relation between the decomposition ((3.13))
and the filtration of Proposition [3.7]is given by:

W > (@x,50 Usiyn,) @ (@aze H(X, F2)),
Weo = (B0 U_i)n,) @ HYX, Foo) = H (X, oo @ (®ri<0 O(—1/N:))),
Weo > @®x,<0U_1/n,, Woo = H(X, Fs).

From the properties of Harder-Narasimhan filtrations and the above decompositions, we can
deduce the following results.

Corollary 3.18. (i) W is of curvature < 0 (resp. < 0) if and only if W ~ H°(X, &), where & is
a vector bundle of slopes > 0 (resp. the sum of a vector bundle of slopes > 0 and a torsion sheaf
supported at o).

(ii) An extension of two BC’s of curvature < 0 (resp. < 0) is of curvature < 0 (resp. < 0).

Corollary 3.19. The sign of the curvature determines the sign of the height:
(a) curvature 0 implies height 0;
(b) curvature < 0 implies height > 0;
(¢) curvature > 0 implies height < 0.

Corollary 3.20. The curvature decreases by going to a subobject and increases by taking a
quotient:

(i) A sub-BC of a BC of curvature < 0 (resp. < 0) has curvature < 0 (resp. < 0).

(ii) A sub-BC of height 0 of a BC of curvature < 0 has curvature 0.

(iii) A quotient of a BC of curvature > 0 (resp. > 0) has curvature > 0 (resp. > 0).

(iv) A quotient of height 0 of a BC of curvature > 0 has curvature 0.
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Remark 3.21. An important consequence of (ii) of Corollary is that a sub-BC U of a torsion
B;-module W satisfies ht(U) > 0 and U is itself a torsion B];-module if and only if ht(U) = 0.

This can be proven, without the Harder-Narasimhan decomposition, by induction on the length
of W, using the fact that a sub-BC of V! is either V! or a finite dimensional Q,-vector space and
the fact that an extension of BjR—modules is itself a ]B%jR—module. This proof extends verbatim to
almost C-representations thanks to Proposition [2.5

3.2.9. BC’s of curvature < 0. Plat says that a BC of curvature < 0 is constructible, but we will
not use this terminology.

Lemma 3.22. The following conditions are equivalent:
(i) W is of curvature < 0.
(ii) There is an exact sequence

(3.23) 0>V ->W->M-=0,

where M is of curvature 0 and V' is finite dimensional over Q.

Proof. Implication (i)=-(ii) follows from the fact that, if W is of curvature < 0, then
W =H(X, Zoo) ® ( @a,/n,20 Ua,n,)

and we have an exact sequence 0 — Q,n; — Ug,/p, = Bg, — 0. Then V = &g, /5, Q,n: gives what
we want.

The converse implication (ii)=-(i) follows from the fact that M is of slope 0 and V of slope —co
by assumption, so any extension has slopes in [—o0, 0]. g

3.3. Categorification of height. We will introduce now a partial categorification of height of
BC’s.

3.3.1. Useful lemma. We will need the following two lemmas.

Lemma 3.24. Let \: ano W, — Bar be continuous, where the Wy, ’s are Q,-Banach spaces.
(i) There exists N such that \([],,>o Wn) C tVBI;.
(ii) If j € N, there exists N(j) such that M[T,>n ;) Wn) C /Big.

Proof. (i) is a consequence of the fact that [], -, Wy is Fréchet and Bgg is the inductive limit of
the Fréchet’s t_NBgR.

(ii) is a consequence of the fact that t~VBZ;/t/Bl; is a Banach; hence \; : [LsoWn —
t~NBI; /!B, factors through Hn<N(j) W,. O

Lemma 3.25. Let W = 'mn W, where the Wy, ’s are Qp-Banach spaces, the transition maps are
strict and the system is Mittag-Leffler.

(1) If Y is a Qp-Banach space, Hom(W,Y) = lim Hom(W,,Y).

(i) Hom(W,t/Bjg) = lim, lim Hom(W,,, /B /t/ 7" B ).

(iii) Hom(W, Bqr) = Hom(W, Bl;) ®p+ Bar.

Proof. Since the system is Mittag-Leffler, one can replace W,, by the image of W, 1 — W,, for k
big enough (this image is still a Banach space by the strictness assumption) without changing W
or hgn Hom(W,,,Y). Hence we may assume W,,;; — W, to be surjective, and we can choose a
supplementary Banach subspace W) of W/ = Ker (W, 11 — W,,) inside W,,11: then W) — W,, is
an isomorphism of Banach spaces, hence W ~ [[, W},. This implies Hom(W,Y") = @, Hom(W},,Y")
from which (i) follows (since W,, =[], ,, Wy).

Having written W as [, W/, we can apply Lemma to deduce (ii) and (iii) from (i), since
t/BiR /t'T"B1 is a Qp-Banach space. O
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3.3.2. The functor W — h(W). If W is a topological VS, set

h(W) := Hom(W, Bggr)
(Let us remind that this includes the requirement that W(C') — Bgg is continuous.) This is a
Bgr-module; hence h(—) is a functor from the category #% to the category of vector spaces over
Bar. In most cases of interest, because of Lemmas [3.24] and [3:25] and Corollary 3.17, we have in
fact

h(W) = Hom®*(W, By := colimyo Homys (W, ¢ *B_,) = Hom(W, B3) ®p: Bar
We also set
Ext"*(W, Bqr) := colimy,>o Exty (W, ¢ *BJ).

This is a Bgr-module as well.
Lemma 3.26. (i) If W is of curvature < 0, then Ext"*(W, Bqg) = 0.

(ii)) If 0 - Wy - W — Wy — 0 is an exact sequence of BC’s of curvature < 0, the sequence
0 — h(W3) = h(W) = h(W;) — 0 is ezact.

Proof. Claim (ii) follows immediately from (i).

Now, the exact sequence ([3.23) shows that it suffices to prove (i) for an affine and for Q,,. That
Extyg(Qp, Bjz) = 0 follows easily, by devissage, from the fact that the maps B /t™+! — B, /t™
are surjective and Extyg(Qp, V1) = 0 (see [32, Th.4.1]). This implies that

Extl’h(Qp, Byr) = colimy>g ExtbS(Qp, t_kBXR) =0,

as wanted.
To show that Extl’h(W, Bar) = 0 for W affine, it suffices, again by devissage, to show that
Ext"# (V! Bqr) = 0. To show the latter fact we use the exact sequence

0t "Bl =t "Bl —»t "V =0
and the fact that Homyg(V?!, IB%IR) = (0. This gives us the exact sequence
0 — Homys (VY ¢ F 71V — Extyg(VY, ¢ *BlR) — Extyg(VY, ¢ F1BR).

Since the first two terms are isomorphic to B, /¢ as Biz-modules, Extyg(V!, t7*B;) — Extyg (V! t7*1B1,)
is zero. This finishes the proof. d

Proposition 3.27. (i) If W is of curvature < 0 then rk(h(W)) = ht(W).
(ii) In general, rk(h(W)) = ht(W) + rk(Ext"* (W, Bqr)).

Proof. For (i), by assumption, we have the exact sequence 0 — V — W — M — 0, where M is
affine. This yields the exact sequence

0 — h(M) — h(W) = h(V) = ExtbH (M, Bag).

Since h(M) = 0 and we have Extl’h(l\/[[7 Bar) = 0, by Lemma this sequence implies that
tk(h(W)) = dimqg, V. We are done because ht(W) = dimq, V.

(ii) follows via the exact sequence of Ext? of a presentation: if 0 — V — W’ — W — 0 represents
W, where W’ is an extension of V¢ by a Q,-vector space V' of finite dimension, arguing as for (1)
we get the following diagram with exact row:

0 — (W) — h(W') — h(V) — Ext" (W, Bgqg) — ExtV (W, Bgg) — 0
Ix
(V")
Since W’ is of curvature < 0, by Lemma we have Ext™¥ (W' Bag) = 0. It follows that

rk(h(W)) = rk(h(V")) — tk(h(V)) + rk(Ext (W, Bar)),
which gives us what we wanted because ht(W) = rk(h(V")) — rk(h(V)). O
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3.4. The category ¢#%. We need to enlarge the category #% to allow extensions by arbitrary
B,,-Modules, for m > 1.

3.4.1. Definitions. A qBC (q stands for quasi) is a VS W such that there exists m > 1 and a
sub-B,,,-Module Wy of W such that W/W, is a BC. We will denote by ¢ %% the full subcategory
of VS’s consisting of qBC’s.

Remark 3.28. Proposition extends to arbitrary B,,-modules: if W is a B,,-Module, then
W(C) is a B,,-module, and can be written as ®;c(B,,/t?)e; (with j; < m). The natural map
of B,,-Modules B,, ®g,, W(C) — W gives an isomorphism when evaluated on C-points, hence
is an isomorphism (the kernel and cokernel are 0 since their C-points are 0). It follows that
W ~ @ier(B,,/t/")e;, and one can deduce the result for arbitrary B,,-modules from its counterpart
for finite type ones.

For W € q#%, we define:
ht(W) := ht(W/Wy).
This does not depend on the choice of Wy: if W{, is another choice, then W{ = Wy N'Wj is also a
possible choice, and we have exact sequences in #%€":
0— Wo/Wi — W/ Wy —W/Wo—0, 0—W,/W5 —W/Wi — W/ Wy — 0;
now, since Wo/W{ and W;/W{ are finite lenght B,,,-Modules, their height is 0, hence
ht (W/Wo) = ht(W/Wg) = ht(W/Wp),
as wanted.

Definition 3.29. We say that W has curvature < 0 (resp. 0, resp. > 0) if W/Wj has.

This does not depend on the choice of Wy for the same reasons as above, because Wj/W{ and
Wo /W have curvature 0, hence W/W{ has curvature < 0 (resp. 0, resp. > 0) if and only if W/Wj,
has, and if and only if W/W; has.

Remark 3.30. We have analogs of Corollary[3.19)and Corollary[3.20]in the category ¢#%. Indeed,
in the case of the first corollary this is clear. In the case of the other one, this follows easily from
the independence of height and curvature from the presentation of qBC’s and the analogous results
for BC’s.

Lemma 3.31. Let W be a VS. Assume that W has a presentation
0-W W=V, =0, 0=-Vy—=>Y—->W =0,

where Vi and Vo are BC’s, and Y is a B,,-Module. Then W is in ¢BE€, and ht(W) = ht(V;) —
ht(Vy).

Proof. We have to produce a sub-B,,-Module Wy of W such that W/W is a BC. If we can do the
same for W, then Wy = W{ will work.
Hence, we can assume V; = 0, in which case we have an exact sequence

0>V >Y—>W-—0.

Since Y is a B,,-Module, V5 has slopes < 0 (hence is isomorphic to H(X,.%), for a coherent sheaf
Z), and the arrow Vo — Y factors through H°(X, o X,00 ® F), which is a Bjz-Module of finite
type. Hence the image of this arrow lands in a sub-B,,,-Module of finite type. This B,,-Module can
be included in a direct factor, still of finite type, and one takes for Wy a complementary subspace
of this direct factor.

The equality of heights is clear since everything contributing lives inside a BC. O
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3.4.2. ¢BC’s and morphisms.

Lemma 3.32. Let 71 : W — W be a morphism of VS’s, with W a B,,-Module and W' a BC.
Then, Ker 7 contains a sub-B,,-Module Wy such that W/W is a BC.

Proof. After quotienting W by a maximal sub-B,,-Module of Kerm, one can assume that Ker
contains no non-zero sub-B,,-Module (the inverse image of a B,,-Module of Ker7/Wj is a-B,;,-
Module of Ker 7). We want to infer that then W is of finite length or, equivalently, that its t-torsion
sub-Module is of finite rank over B;.

If not, this sub-Module contains an increasing sequence of sub-Modules X,,, with X,, ~ V.
Denote by Y,, the intersection of Ker 7 and X,,, and by I,, the image of X,, in W’. Since X,,+1/X,, ~
V!, we have an exact sequence

0= Yor1/Y, =V = 1,14/I, — 0.

It follows that one has either Y, 1/Y, ~ V! and I,,,1 = I,,, or Y,,11/Y,, is of finite dimension
over Q, and dimI,; = dimI, 4+ 1. Since dimW’ < oo, the second case can only happen for a
finite number of n’s, hence Y,,11/Y,, =~ V1 if n is big enough. In particular,

ht (Y1) =ht(Y,,) and dim(Y,41) =dim(Y,,) +n+1—ng, if n > no.

Now, Y,, is a sub-module of Ker 7, hence contains no V! by assumption. Since Y,, is a sub-BC
of V", Lemma gives a contradiction for n > ht(Y,,) — dim(Y,,) + ng, which concludes the
proof. O

Lemma 3.33. Let m: W — W' be a morphism of VS’s, with W, W ¢B€’s. If W{, is a sub-B,,-
Module of W' such that W /W{, is a BC, there exists a sub-By,-Module Wy of W such that W/W,
is a BC and 71(Wy) C Wy

Proof. By assumption, there exists a sub-B,,-Module W; of W such that W/W; is a BC. Applying
Lemma to T : Wy — W /W{, produces Wy such that W, /Wy is a BC and 7#(Wy) C W{,. But
then W/Wj is also BC as an extension of the two BC’s W/W; and W, /W. O

Proposition 3.34. Il 7 : W — W is a morphism in qB%, then Ker w, Im 7, and Coker w are in
q#B€ and ht(W) = ht(Ker 7) + ht(Im 7).

Proof. Lemma m gives us sub-B,,-Modules Wy and W} of W and W’ such that W = W/W,
and W = W /Wi are BC’s and m(Wy) C W{. Then the restriction of 7 to Wy is B,,-linear, hence
its kernel K° and its cokernel C° are B,,-Modules. The snake Lemma give us exact sequences
0—-K° = Kermr =V, -0and 0 = Vy, = C° — Cokerm — V5 — 0, with Vy, Vs, V3 BC’s. This
implies that Ker 7 is in ¢%% and, using Lemma [3.31] that so is Coker 7.

Now Im 7 is the cokernel of Ker 7 — W, hence is also a gBC. Finally the formula for the heights
is easily deduced from the analogous formula for BC’s. g

Remark 3.35. (i) The above proposition implies that the category ¢#% is abelian.
(ii) It follows that a sequence Wy ER Wy 2 Wj is exact if and only if the associated sequence

W1 (C) ER Wy (C) L W5(C) is exact (H = (Kerg + Coker f)/(Ker g N Coker f) is a qBC, hence
H = 0 if and only if H(C) = 0).

3.4.3. Exactness of the functor h(—).

Lemma 3.36. Let 0 - Wy — Wy — W3 — 0 be an exact sequence of gBC’s. Then there exist
sub-B,,-Modules W} of W, such W; /W' are BC’s, pour i = 1,2,3, and such that we have an exact
sequence 0 — W) — W, — W, — 0.
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Proof. Start with a B,,-Module W4 C W3 such that W3/WY is a BC. Lemma provides
W, C Wy with image W% incuded in W4. Then W/ is a B,,-Module since W, — WY is a
morphism of B,,,-Modules. And W3 /W% is a quotient of Wy /W, hence is BC. Finally, if W/ is the
kernel of W), — WY, the wanted sequence is exact, W} is a B,,-Module as kernel of a morphism of
B,,,-Modules, and Wy /W is a subobject of Wy /W, hence is a BC. O

Corollary 3.37. If 0 > W; — Wy — W3 — 0 is an exact sequence of gBC’s, of curvatures < 0,
then the sequence 0 — h(W3) — h(W3) — h(W1) — 0 is ezact.

Proof. Choose W}, for i = 1,2, 3, fulfilling the conclusions of Lemma[3.36} set W/ = W, /W;. Then
0 — W/ - W) — W{ — 0 is an exact sequence of BC’s of curvature < 0, hence the sequence
0 = h(WY) = h(WY) — h(W{) — 0 is exact by Lemma One concludes remarking that
h(W}) =0 (since W} is a B,,,-Module), hence h(W/) — h(W,) is an isomorphism. O

4. FILTERED (¢, N)-MODULES

In this chapter we study filtered (¢, N, ¥k )-modules over K or C and their relations to the
categories of almost C-representations and BC’s. In particular, we introduce the notion of acyclic
(¢, N, 9k )-modules as a generalization of weakly-admissible (¢, N, %k )-modules. While the (¢, N, ¥k )-
modules (Hiy (X¢), Hig (X)) coming from algebraic geometry tend to be weakly admissible those
coming from overconvergent geometry tend to be only acyclic (as shown later in this paper).

The results of this chapter will be crucial for the proofs of our results towards the Cg;-conjecture.
In particular, Theorem and its corollaries (resp. Propositiong4.22)) will be used to study the
pro-étale-to-de Rham part of the Cyi-conjecture for varieties over K (resp. over C'). The dichotomy
of Proposition {.I8] will play a big role in the proof of the de Rham-to-pro-étale part of the Cg-
conjecture.

4.1. Filtered (¢, N,¥9k)-modules over K.

4.1.1. Filtered (o, N, 9 )-modules.

e (¢, N,9k)-modules. A (o, N)-module over F or F™ is a finite dimensional F-module or
F™-module M endowed with a Frobenius ¢ : M — M, semilinear with respect to the absolute
Frobenius on F' or F™, and a linear map N : M — M satisfying Ny = ppN.

More generally, a (¢, N,9k)-module over F™ is a (¢, N)-module over F™ endowed with a
smoo‘dﬂ semilinear action of ¥k which commutes with ¢ and N.

If M is a (p, N,9k)-module over F' or F™, we define its dual M* as Homp(M, F) endowed
with actions of ¢, N and ¥k given by

(e(w),v) = ({0 (v)),  (N(w),0) = —=(u, N()), (o(n),v) = o({p,07 ' (v))), if 0 € D

e Filtered modules. A filtered module (M,Fil*) over K is a K-module M together with a
descending filtration Fil®* on Mx = K ® M by sub-K-modules Fil' My, with Fil' My = My if
i < 0 and Fil'My = 0if i > 0.

If (M,Fil®) is a filtered module over K, we define the dual filtered module (AM*,Fil{) by
endowing the K-dual M* = Homg (M, K) of M, with the filtration

Fil', M* = (Fil'*~*M)*.
If the filtration is obvious from the context, we don’t indicate it in the notation; for example, the
de Rham cohomology of a variety X over K is a filtered module over K if we endow it with the
Hodge filtration, and will just be denoted by H3y (X)), the Hodge filtration being taken for granted.

e Filtered (v, N, 9k )-modules. A filtered (p, N)-module (M, Fil*) over K is a (¢, N)-module M
over F' with a structure of filtered module over K on Mg = M Qp K.

10This means that the stabilizers of elements of M are open in Y.
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A filtered (o, N, 9k )-module (M, Fil*) over K is a (¢, N, 9k )-module M over F™" with a struc-
ture of filtered module over K on Mg = (M ®pnr F)%(.

If (M,Fil®) is a filtered (¢, N, 9k )-module over K, we define its dual (M*,Fil]) as the dual
(p, N, 9k )-module M* with the module M7 = (Mg)* endowed with the filtration Fil .

As before, if the filtration is obvious from the context, we will use sometimes just M to denote
a filtered (p, N)-module (M,Fil®) over K or sometimes (M, Mk) as in the case of de Rham
cohomology: if X is a smooth quasi-compact dagger variety over K then (Hjy(Xc¢), Hig (X)) is
a filtered (¢, N, ¥k )-module over K thanks to the Hyodo-Kato isomorphism.

4.1.2. Acyclicity and admissibility. If M is a filtered (p, N, 9k )-module over K, the rank rk(M)
of M is the dimension of M over F™. If M has rank 1, one defines the degree deg(M) of M by
the formula

deg(M) = tn(M) — tg (M),

where t (M) et (M) are defined by choosing a basis e of M over F™:
o there exists A € (F™)* such that p(e) = Ae, and we set tn (M) = v,(N);
e there exists i € Z, unique, such that e € M}, — M?l, and we set tg (M) = i.
If M has rank r > 2, then det M = A" M is of rank 1, and one defines the degree of M by:

deg(M) := deg(det M) =ty (M) —ty(M),
tn(M) ==ty (det(M)), ty(M):=tg(det M) =Y idimgx Mj /M.

icZ
Endowed with the rank and degree functions, the category of filtered (¢, N, ¥k )-modules over K
is a Harder-Narasimhan ®-category.

Definition 4.1. A filtered (¢, N, ¥k )-module over K is said to be weakly admissible if it is semi-
stable of slope 0 (a reformulation [I9] of the original notion [2I]). It is said to be acyclic if its
Harder-Narasimhan slopes are > 0.

Remark 4.2. A weakly admissible filtered (p, N, %k )-module is acyclic; conversely an acyclic
filtered (¢, N, ¥k )-module is weakly admissible if and only if it is of degree 0.

Lemma 4.3. The following conditions are equivalent for a filtered (¢, N, %k )-module (M,Fil®)
over K:

(a) (M,Fil®) is acyclic.

(b) There exists a filtration Fil} on My such that Fili Mg C Fil'My for all i, and (M, Fil}) is
weakly admissible.

Proof. To prove (a)=-(b), it is enough to show that one can find a filtration such that Fil: My C
Fil' My for all i, there exist 4 with Fil} My # Fil' Mg, and (M, Fil}) is acyclic. Indeed the degree
of (M,Fil}) is then strictly smaller than that of (M,Fil*). Hence by repeating the process one
ends up with a filtration such that Fil;M x C Fil' My for all i, (M, Fil}) is acyclic and of degree
0, hence it is of Harder-Narasimhan slope 0, i.e., it is weakly admissible.

To construct such a Fil], let M! be the largest subobject of Harder-Narasimhan slope 0, and
let M? be the quotient M/M;. Then M? has Harder-Narasimhan slope > 0, and if we pick up any
filtration Fil} on M7, such that Fil} M2 = Fil' M3 for all i except ig, for which Fil’® M7 /Fill M7 is
of dimension 1, then (M2, Fil}) has Harder-Narasimhan slope > 0 since the degree of any subobject
has decreased by at most 1 and hence is > 0. Then defining Fﬂi M as the inverse image of Fili M%
in Fil' My gives a filtration with the desired properties.

The converse implication is obvious: the Harder-Narasimhan slope of (M, Fil®) is greater or
equal to that of (M, Fil?). O
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Lemma 4.4. Let (M, Fil®) be an acyclic filtered (p, N,9x)-module over K, with p-slopes in [0,7],
and Fil® My = My, Fil" "™ My = 0. Then there exists a filtration Fil] on Mk such that (M, Fil})
s weakly admissible and Fil’iMK C FiliMK for all i, Fil(l)MK = Mg, FilI'HMK =0.

Proof. In the proof of Lemma the -slopes of M? are in [0,7], and since deg(M?) > 0, this
implies that Fil' My # 0. Let iy be the largest integer with Fil My # 0; define Fil} by Fili“MK
of codimension 1 in Fil® My, and Fil’i My = Fil' My is i = 0. Then, as in the proof of Lemma
(M, Fil}) is acyclic, Fil) Mg = Mg, Fil;"' Mg = 0, and deg(M, Fil}) < deg(M, Fil®). Iterating
the process gives the wanted filtration. O

4.1.3. The complex attached to a filtered (p, N,9k)-module. If (M,Fil®) is a filtered (p, N, ¥k )-
module over K, we set

X (M, Fil*) := (M @pne By)V=9%=1 X4r(M,Fil*) := (Mg @k Bar)/Fil® (Mg @k Bar).
Then X (M, Fil*) and Xag (M, Fil*) are inductive limits of the X (M, Fil*) and X7} (M, Fil*)
(defined by replacing By, and Bgr by ¢t~ "B and t*TBIR), which are objects of € (%k).

The complex X (M, Fil®) — Xqr(M,Fil®) is called [12] §5.3] the “fundamental complex asso-
ciated to M”. Tts H? is denoted by Vi (M, Fil®). Hence, we have an exact sequence

0 — Vit (M, Fil*) — X (M, Fil*) — Xqr (M, Fil*)

Remark 4.5. (i) The cohomology of the fundamental complex is equal to that of the complex
XS(:)(M, Fil*) — Xég (M, Fil®), for r big enough. It follows that its cohomology groups are objects
of €(9x).

(ii) The pair (X (M, Fil*), Xqr (M, Fil®)) is a B-pair in the sense of Berger [3, [4]; attached to
it is a ¥k -equivariant vector bundle & (M, Fil®) on the Fargues-Fontaine curve [20, §10.1] and the
fundamental complex computes the cohomology (not the ¥k-equivariant) of this vector bundle.
Since the HN-slope of & (M, Fil®) is that of (M, Fil®), the vector bundle & (M, Fil®) has vanishing
H' if and only if (M, Fil®) is acyclic (see Theorem and formulas ) It follows that, if
(M, Fil®) is acyclic, we have an exact sequence

0 = Vig (M, Fil*) — Xy (M, Fil*) — Xar(M, Fil*) = 0
(iii) If (M, Fil®) is acyclic, then Vi (M, Fil®) is a finite dimensional Q,-vector space if and only

if (M, Fil®) is of slope 0 (i.e., is weakly admissible). This implies it is admissible: the natural maps
give ¥ -equivariant isomorphisms

Vit (M, Fil*) @ By — M @ By of Bgi-modules commuting with ¢ and N,
‘/st(M7 Fll.) ® Bar = Mg @k Bar of filtered Bgr-modules,

and V := Vg (M, Fil®) is a potentially semi-stable representation of ¥, with Dagr (V) = Mk and
Dy (V) = M.
(iv) If (M, Fil®) is acyclic, but not admissible, the natural map
Ve (M, Fil*) @ Bl — Fil®(My @ Bar)

is not an isomorphism (the kernel is huge), but it is surjective. Indeed, one can pick a filtration
Fil} on Mk, such that Fili My C Fil'M for all 4, and (M, Fil7) is admissible. Then we have an
exact sequence

(4.6) 0 — Vi (M, Fil}) — Vo (M, Fil*) = Fil®(Mg @k Bar)/Fil)(Mg @k Bar) — 0

and B - Vi (M, Fil*) contains B - Vi (M, Fil}) which, by admissibility of (M, Fil}), is equal to
Fil?(M x ®x Bar) and the above exact sequence gives the desired surjectivity.

4.2. Filtered (¢, N,%k)-modules and almost C-representations.
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4.2.1. The functors D3y and D7;. The definitions of the classical contravariant functors DjJg, D
and D, for finite dimensional Q,-representations of ¥k extend to objects of €' (¥x ) contrarily to
those of the (more commonly used) covariant functors Dygr, Ds; and Dpg. If W € €(9k ), set

D5(W) := Homg, (W, Bst), Dir(W) := Homg, (W, Bar).

Then DX (W) is a (p, N)-module over K (with (p(u),v) = ¢({u,v)) and (N(u),v) = N({u,v)))
and DXp (W) is a filtered module over K (with Fil'Dz (W) = {u, uw(W) C t'Biz}). We also
define D% (W) as:

pst
D;it(W) = Hom?ﬁn;( (VV7 Bst) = hﬂ HomgL (VV7 Bst)
[L:K]<oo

This is a (¢, N, 9k )-module over F™.
Remark 4.7. The natural maps

DL(W) @5 K = Dig(W), (Dl (W) @ur K75 — Dy (W)
induced by the injections By @ p K < Bgr and By @ pnr K — Bgg are injective.

The following result is an extension to acyclic filtered (p, N)-modules of a classical result for
admissible filtered (¢, N)-modules.

Theorem 4.8. If (M, Fil®) is an acyclic filtered (¢, N)-module over K, then
D (Vi (M, Fil®)) ~ M* as (¢, N)-modules over F,
Dir (Ve (M, Fil®)) ~ (M}, FilY) as filtered K-modules.

Proof. We start with noticing that the natural pairing injects M* into Homg, (X (M), Bst) (as
a (¢, N)-module) and Mj: into Homy, (Xs (M), Bar). Moreover, the natural map from K Qp
Homg, (Xst(M),Bst) to Homg, (X5t (M), B4gr) is injective (see Remark , and one can deduce
that D} — M™ is an isomorphism from the same result for D}y.

Hence, we just have to prove the result for D};. To do so, pick a filtration Fil} as in (iv)
of Remark Fili Mg C Fil'Mg for all 4 and (M,Fil}) is admissible. Let V := Vi (M, Fil®),
V1 := Vi(M,Fil}), and W = FilO(MK ®KBdR)/Fﬂ[1) (Mg ®xBar), so that the exact sequence
becomes 0 - V7 -V — W — 0.

Now, W is a direct sum of factors of the form t*'BZ, /t*2B};. Hence D} (W) = 0 thanks
to Proposition and we get injections M} — D3z (V) — D3z (Vi). But dimg D3 (Vi) <
dimq, Vi = dimg M (the first inequality is true for any finite dimensional Q,-representation of
% and the second equality is true because V; is de Rham). It follows that these injections are
in fact isomorphisms, which proves what we want except for the equality of the filtrations on Mp
and DXg (V).

So let p € M}. One can extend p to a Bgr-linear map Bqr ® x Mx — Bgr. Thanks to (iv)
of Remark one sees that u(V) C /By is equivalent to u(Fil’(Mg ®x Bar)) C t'Bj;. But
Fil'(Mg @k Bar) = 3., Fil" Mg @5 t "By, and u(Mg) C K, hence pu(Fil®(My @k Bar)) C
‘Bl if and only if u(Fil"My) = 0 for n > 1 —i. By definition this translates into u € Fil, M3,
as wanted. d

Corollary 4.9. If (M, Fil®) is an acyclic filtered (o, N, 9k )-module over K, then

Dy (Veo (M, Fil®)) o~ M™ as (¢, N, 9k )-modules over F™,
Dig (Ve (M, Fil®)) ~ (M}, Fil]) as filtered K-modules.

Proof. As in the proof of the above theorem, we have an injection of the right hand sides into the
left hand sides, and to check that these are isomorphisms, we just have to bound the dimensions
of the left hand sides. This can be achieved by passing to a finite extension L of K such that the
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action of ¢, on M is unramified, and applying the proposition to a (¢, N)-module M (L) over Fr,
such that M = F™ @p, M(L). O

Corollary 4.10. Let (M, Fil®) be an acyclic filtered (p, N, 9k )-module over K, with ¢-slopes in
[077’}} and FﬂOMK = Mg, FﬂTJrlMK =0. Set

Vit (M, Fil*) := Ker((M & pur B;)N:O’W:pr — (Mg ®k BXR)/FHT)

Thed™]

Dy (Vi (M, Fil®)) ~ M*{r} as (¢, N, 9 )-modules over F™,
Digr(VE(M,Fil®)) ~ (M}, Fill {r}) as filtered K-modules.

Proof. The conditions imply that V7 (M, Fil®) = t" Vi (M, Fil®). Hence
Homg, (V) (M, Fil®), Bs) = t"Homg, (Vi (M, Fil*), Be)
and the result follows. O

Example 4.11. If M in Corollary satisfies Fil" Mg = Mk, then (Mg Qk B(J{R)/Filr = 0.
Hence

VM, Fil®) = X3,0M) = (M @ BEN-007
The corollary then becomes:
Homgg: (X§ (M), Bg) ~ M™,  as (p, N, 9k )-modules over F™,

My ifj <0,

Homg, (X7, (M), t"B1,) ~
gy (XG (M), /B g) {o —

Lemma 4.12. Under the hypothesis of Corollary[{.10, we have Homg, (V5 (M,Fil*), C(j)) = 0,
forj>r+1.

Proof. We can write V' := VJ(M,Fil®) in the form 0 — V;—V — W — 0, as in the proof of
Theorem with V7 of dimension dim(M), de Rham with Hodge-Tate weights in [0, 7], and W a
finite type BjR—module7 sum of t“BjR/thIR’S, with0<a<b<r+1.

We have an exact sequence

0 — Home(g,) (W, C(j)) = Home (g, ) (V,C(j)) = Homeg g, (V1, C(j))

Since j > r 4+ 1, by Lemma we have Homcg(gk)(t“BgR thIR,C(j)) =
hence Home g, \(W,C(j)) = 0. Since the Hodge-Tate weights of Vi are <
Home (g, (V, C(j)) = 0.

This concludes the proof. O

0ifb<r+1;
r, we also have

4.3. Filtered (¢, N)-modules over C.

4.3.1. Filtered (¢, N)-modules and vector bundles. A filtered (p, N)-module (M, M) over C is a
M, p, N, M;R), where:

HThe notations M{r} and Fil§ {r} mean that the action of ¢ is multiplied by p” and that the filtration is shifted
by r: we have Fil{ {r} = Fil’"".
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To such an (M, M) one can attach a vector bundle & (M, M) on Xpr, characterized by
HO(Xpp \ {00}, 6(M, Mp)) = (M @pur Bu) V=041, E(M, M) © By o0 = M.
We set
Ve (M, MJy) == H°(Xpp, &(M, Mjy)) = Ker (M ®@par Bgt)V=0¢=! — (M @pnr Bar)/MJR)

Definition 4.13. (M, M) is weakly admissible if &(M, M) is semistable, of slope 0. It is
acyclic if the slopes of &(M, M) are > 0.

Remark 4.14. (i) If (M, Fil®) is a weakly admissible (resp. acyclic) filtered (¢, N)-module over K,
the induced filtered (@, N)-module (M ®p Fnr,FilO(MK ®xK Bar)) over C is weakly admissible
(resp. acyclic).

(ii) It follows from the classification of vector bundles on Xpp that (M, M) is weakly admissible
if and only if it is admissible (i.e., a direct sum of trivial line bundles &x...). This translates into
the following: (M, M) is weakly admissible if and only if Vi (M, M) is finite dimensional over
Q, and the sequence

0 — Vie(M, Mz) = (M @par Byt)V=%°=! — (M @pur Bar)/Mj; — 0
is exact. Moreover, if this is the case, the triviality of & (M, MIR) implies that the natural maps
Ve (M, MR) ®q, Bst = M ®@p=r By, Vi (M, M) ®q, Bix — Mz

are isomorphisms (for the second map this is also equivalent to the map Vi (M, M, (;rR) ®q, Bar —
M ®pn Bggr being a filtered isomorphism).
(iii) The following conditions are equivalent:
o (M, M) is acyclic,
o HY(X,&(M,M])) =0 (and hence &(M, M) is acyclic),
o (M @pnr Byt)V=0¢=1 — (M ®@por Bar)/M g is surjective.
o There exists a sub—BjR lattice NIR C MIR such that (M, N, d+R) is weakly admissible.
(The first two points are equivalent by Theorem and formulas , the second and the
third are equivalent because

HY(X,&(M, M) = Coker((M @ pa Bo)N=0¢=1 s (M @ e Bar) /M)
the first and last points are equivalent by the same arguments as in Lemma )

Remark 4.15. Since (M, Mj;) — &(M,MJ;) commutes with tensor products, and since the
slope of & ® &’ is equal to the sum of slopes of & and &”, the tensor product of two acyclic filtered
p-modules is again acyclic.

Remark 4.16. Assume that the ¢-slopes are in [0,7] and M ®t"BJ; C t"Mj; C M ®B;. Then
the following conditions are equivalent:

o (M, M;R) is acyclic,

o (M ®@pu: Bgt)V=09=P" — (M @pur Bar)/t" M, is surjective,

o for all k > 0, (M ®@par t *B)N=0¢=P" — (M ®@pu: t *BI)/t" My is surjective.

This follows from the fact that ((1\1\44 g tt;kki{it);\,;o;i;ppr o~ ggf;ﬁiﬂi;
for exemple, by a Dimension of BC argument. For the same reasons, for all £ > 0,

Ve (M, M’;FR) = Ker<(M & por t—kB;E)NZO,AP:p"‘ S (M @ t_deJrR)/trMIR)

for k£ > 1, as can be shown,

4.3.2. Acyclicity and curvature. The following results supply key arguments in the proof of our
main comparison theorem (Theorem [6.14)).

Lemma 4.17. Let M be a (p, N)-module over F™ whose @-slopes are in [0,7]. Then the Q,-
module (M ® pn: BR)N=09=P" generates the B -module M ® o Bl;.
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Proof. Since B:{R is a local ring , with residue field C, it suffices to show that (M @ pnr BL)NV=0%=P"
generates the C-module M @ pnr C.
, .
Now, the map z — = —u Nz + % Nz — %?N% + .-+, for u € B, maping to log([p’]/p) in

B(J{R, induces a g-equivariant isomorphism M @ BL. . — (M @ par BY)V=0. Since u has image 0

cris

in C, we are reduced to proving that (M & pnr B;S)W:pr generates the C-module M @pnr C.
Since B, contains W (kc), the theorem of Dieudonné-Manin allows us to reduce to the case
where M is elementary with slopes 3 <, i.e., it is generated by ey, ..., e, with

ple1) = ez, p(e2) =e3,..., plen) = pes.

The map z — xe; +p "p(z)es + - +p’(h*1)rg0h*1(:c)eh induces an isomorphism of Uy, yp—q :=
(B;is)“"h:pm_a with (M ®pw BE,)?=P". Hence we are reduced to proving that the image of
Uh.rh—a by the map x — (0(x),0(¢(2)),...,0(¢" "1 (x))) does not lie inside a proper sub-C-module
of C*. Assume that it does. Then there exists g, ..., \,_1 € C, not all zero, such that \gf(z) +
MO(p(z)) + -+ A_10(p" () = 0 for all € Uy, »h—q. In particular, one can apply this to az,
for @ € Q. Setting p;(x) = Xib('(2)), we get po(x)a + pr()p(a) + - + pr_1(2)p" ' (a) = 0,
for all @ € Q,n. Linear independence of characters implies that p;(z) = 0 for all ¢ and z, and we
get our contradiction. O

Proposition 4.18. Let M be a (¢, N)-module over F™ with o-slopes in [0,7]. Let My be a Bl -
lattice in M @ Bagr, with M @par t" Bl C "My C M @por Bl Set Mz = ML ®pt B:.
Then one and only one of the following holds:

(a) The map (M ®@pu: BR)N=09=P" — (M @pu BIR)/t" My is surjective.

(b) The image of the map (M @par B )N=0¢=P" — (M @pur BI;)/t"MI; has height > 0.

Proof. Since (M ®p= BJ;)/t"M i has curvature 0, all its sub-BC’s have curvature < 0. Hence, if
we are not in case (b), this implies that the curvature of the image is 0 (use Corollary , and
hence that the image is a B;“R—module (see Proposition . Now Lemma implies that we
are in case (a), as wanted. O

Remark 4.19. In case (b), Coker ((M ®par B )N=0¢=P" — (M @pu B3)/t"MJR) has height < 0
and thus does not have curvature < 0.

4.4. Filtered (¢, N)-modules and BC’s. The following computations supply key arguments in
the proofs of our pro-étale-to-de Rham comparison theorems in Chapter [7]

4.4.1. Finite rank (p, N)-modules.

Proposition 4.20. Let M be a (¢, N)-module with p-slopes in [0,7], and let
X (M) i= (M @ Bh)N=00=0",
Then:
Homvys (XL, (M), Bar) ~ M* @ pnr Bar, Homyg (X[ (M), Bst) ~ M* @pn By

Proof. XI,(M) is of curvature < 0, and the condition on the slopes imply ([13, Ex.5.18]) that
ht(X% (M) = rk(M). It follows from Proposition that rk(h(X%,(M))) = rk(M). On the other
hand, the inclusion B, < Byr induces a natural map M* @pa Bqr — h(XZ,(M)). Lemma m
implies that this map is injective. Since the two modules have the same rank over the field Bgg,
this natural map is an isomorphism, which provides our first isomorphism.

For the second isomorphism, the injection of the right hand side into the left hand side is obvious
(it follows, for example, from the first isomorphism). To prove the converse inclusion, it is enough,
granting the first isomorphism, to show that if A € M™ @ pur Bgg satisfies A(XZ (M)) C By, then
A € M* ®pnr Bgg. For this, pick a weakly admissible filtration M(;FR on M Q@pnr Bgr, and let
V = Vu(M, MdJrR) so that V ®q, Bst ~ M ®@pu By (see Remark. Since t"V C X (M),
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we have A(V) C By, and since V generates M Q@pur By, we have A\(M) C Bg. This implies
A € M* Qpnr By, as wanted. O

Remark 4.21. The map z +— v — {{Nx + %TNQJZ — g—?N‘n’x + - -+ induces isomorphisms

XT

cris

Since By, = BT

cris[
Homys (X (M), Bs;) =Homvys (X5, (M), Bl;,) ®p+ Bat
M* @pa BE, € Homyg (XL (M), BE. ) € M* @pn t "B,

cris cris cris

(M) := (M @B )?=P" 3 X7 (M), Homys(XL(M),BZ..) ~ Homys (X%, (M),B.)

cris » Feris cris cris

1

u, 3], we obtain:

(For the inclusion on the right, use the fact that V' in the proof of Proposition is included in
t7"Xr. (M)and M Cc V@B, )

cris cris”

Proposition 4.22. Let (M, M;'R) be an acyclic filtered (v, N)-module over C' with p-slopes in
1t st + + .t +
[0,7], with "B @ M C t"Mj, C Bjg ® M. Set M}y := B ®pt Mgy and

VI (M, M) := Ker((M @pur Byp)V=07F" 5 (M @pur BIR)/t"MIR )
Then
Homys (V5 (M, M{3),Bar) ~ M* @par Bar, Homys(VL (M, Mjz), Bs) ~ M* @pu: By

Proof. Let X4z (M) := (M ®@pnr BIs)/t"Mig; this is a Bjz-module killed by ¢". The hypothesis
give us an exact sequence

0 — Vg (M, M;R) — X& (M) — XGr(M) — 0

The first isomorphism is then a consequence of Proposition and vanishing of Homvyg (X}, (M), Bar)
and Exti,’g(XSR(M ),Bar) (Corollary and Lemma

For the second isomorphism pick up a weakly admissible filtration IV ;R containing M ;R (this is
possible because (M, M:R) is acyclic), set V := Vi (M, NjR), and argue as in Proposition O

Remark 4.23. As in Remark we have

Homys (Vi (M, MJR), Bst) =Homvys (Vi (M, M), Bl @5+ Bgt

cris

M* @pn BE, € Homys (Vg (M, MJ;),B.) C M* @pa t "B,

cris cris cris

Remark 4.24. We could also have argued as in the proof of Theorem [4.8to prove Propositions[£.20]
and [4.221

Proposition 4.25. Let (M, M;'R) be an acyclic filtered (o, N)-module over C' with p-slopes in
[0,7], and M @pn: "By C t"Mjy C M ®pu By, Let k > 2r. Then the natural map of By -
modules

M* @pnr (B:R/tk) — Homys (Vg (M, MiR)v]BcTR/tk>
induced by the inclusion VI, (M, M;R) CM® ]B%IR, has kernel and cokernel killed by t*".

Proof. Choose a Njy with M ®p= Bl C Njp C MJ; such that (M, Nj;) is weakly admissible.
(This is possible by an adaptation of Lemma4.4/to (¢, N)-modules over C.) Let Vi = VI (M, Njy),
V = Vi (M,M};), and W = V/Vi, so that V; is a finite dimensional Q,-vector space, and
W = t"Mlg /t"Nly is a Bl;-module killed by ¢".

Set hy(—) := Homyg(—, Bl /t*). Since (we skipped the subscripts FT)

t"B t"N+ "M B
M ® dR dR dR \ 1 ® dR
T C — C — C BT
tRB MetFB . MRtEB thB s
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d Vv t"NIL t"Mi, h ive di
11 I — — o, Wi Vi 11111 JAY lagral
a 1 C MetBT,’ MetBL,’ e have a commutative diagra,

TVt rNT
M* @ ("Bl /1) —> hi(~odB ) —> hy (i) —> M* @ ("B /tF)

M@t B, MetFB},
hi(V) hie (V1)

where the composed map M* ® (B, /t*) — M* ® ("B /t*) is multiplication by ¢". Now, since
V1 is finite dimensional over Q,, and N(TR =N® t’T]B%érR, we have, using Proposition

+
t"Nig

UGS

Nt
) = Homg: ( s B /4) = Vi@ (Bl /tF) = hi(Va).

RS M®FB,
It follows that:

o Ker(M* @ (Bl /t*) — hi(V)) is a subobject of Ker(M* @ (B /t") & M* @ ("Bl /t5)),
hence is killed by ¢".

e Coker(hy (V) — hi (V1)) is a subquotient of Coker(M* ® (B, /t*) N M*® (t"Biz/t*)), and
hence is killed by ¢". The cokernel of M* @ (B /t*) — hi (V1) is also killed by " and, since the
kernel of hy (V) — hy (V1) is hi(W) which is killed by ¢", it follows that Coker(M* @ (Bl /tF) —
hi(V)) is killed by ¢

This concludes the proof. O

5. COMPARISON THEOREMS: EXAMPLES AND A CONJECTURE

In this Chapter we will formulate a conjecture: the existence of the fundamental diagram
for smooth dagger varieties over C. Before doing that though we will first look at examples of
comparison theorems and fundamental diagrams.

5.1. Cliffs Notes. Here we make a small digression with a quick review of relevant results from
[14] and [I5].
Proposition 5.1. (Colmez-Niziot, [I4, Th.1.1], [I5, Th.1.3])

(1) Analytic varieties: To any smooth dagger or rigid analytic variety X over C there are
naturally associated:
(a) A pro-étale cohomology RT proet (X, Qp(r)), r € Z.
(b) A syntomic cohomology RTsyn (X, Qp(r)), r € N, with a natural period morphism

Qp . RFsyn(Xv Qp(r)) — Rrproét (X7 Qp(r))v
which is a strict quasi-isomorphism after truncation T<,. This morphism can be lifted
to the derived category of Vector Spaces.

(¢c) A Hyodo-Kato cohomologﬂ RI'uk(X). This is a dg F™ -algebra equipped with a
Frobenius ¢ and a monodromy operator N. We have natural Hyodo-Kato strict quasi-
isomorphisms

~R ~ ~R ~
i - Rk (X)(X)ch — RFdR(X), ik : RNk (X)@Fan:R — RFdR(X/B:{R)
(d) A distinguished triangle
REgyn (X, Qp(r)) ——[RTuk (X)® pur BN =097 SRR (X/BlR)/F”
that can be lifted to the derived category of Vector Spaces.

(e) (Local-global compatibility) In the case X has a semistable weak formal model the
above constructions are compatible with their analogs defined using the model.

12We take here the Hyodo-Kato cohomology defined in [15].
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(2) Compatibility: Let X be a smooth dagger variety over C' and let X denote its completion.
Then there exist natural compatible morphisms [14], Sec. 3.2.4]

tproct - Rlproct (X, Qp(r) = Rlproct (X, Qp(1r)), 7 €2,
1 ROgn(X,Qu(r)) = ROgyn(X,Qu(r), 7€ Z,
RT4r(X) = R4 (X), RLar(X/Bi;) — RLar(X/Bly),
Rlyk (X) — RTuk (X).
They are strict quasi-isomorphisms if X is partially proper.

5.2. Proper rigid analytic varieties. We start with smooth and proper varieties.

5.2.1. Algebraic varieties. Let Xi be an algebraic variety over K and set X = X, 7z. Recall the
comparison theorem (recall that all the cohomology groups involved have finite dimension):

Theorem 5.2. Let r > 0. There exists a natural Bgg-linear Galois equivariant period isomor-

phisn{™
ast: o Hg (X, Qp) ®Q, By ~ Hyx (X) ®@por By,
that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism
agr @ Hg(X,Qp) ®q, Bar ~ Hir(Xk) ®k Bar.
In particular, we have the natural isomorphism
HE(X,Qp) ~ (Hix(X) @po Bgt)?= V=0 N FO(HIR (Xk) ®K Bar), as a Yx-module,
as well as the natural isomorphisms
(5.3) Homg (Hz (X, Qp), Bst) ~ Hij (X)*™, as a (¢, N,9k)-module,
Homy, (H4 (X, Qp),Bar) ~ Hijr(Xk)*, as a filtered K-module.
5.2.2. Proper rigid analytic varieties over K. Let X be a proper smooth rigid analytic variety
over K. Let X = X ¢. The following result generalizes [13, Cor. 1.10], where semistable reduction
was assumed. We note that all the cohomology groups involved have finite dimension: for étale

cohomology this is the result of Scholze |38, Th. 1.1]; for Hyodo-Kato cohomology this follows from
the Hyoodo-Kato isomorphism and finitness of de Rham cohomology.

Theorem 5.4. Let r > 0. There exists a natural Bgi-linear and 9y -equivariant period isomor-
phism
Qgt + Hgt(X, Qp) ®Qp Bst ~ H{IK(X) ®Fnr Bst7
that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism
Q4R Hgt (X, Qp) ®Qp Byr ~ HgR,f(X) 039572 Bgr.
In particular, have the following natural isomorphisms

(5.5) Homg (Hz (X, Qp), Bst) >~ Hij (X)*, as a (¢, N,9k)-module,

Homy, (Hi (X, Q,),Bar) ~ Hig(X)*, as a filtered K-module.

Proof. Take s > r. To define the period maps consider the following composition

05,71 _ _ s —s
as(s) s HE(X, Qp(s)) —— Hin (X, 5) = (Hig (X) @poe BE) V=09 L Hippe (X) @pnr B,
where «a; is the period map from [I5, Cor. 6.9]. Set

Qe =1 g (8)€%,  aar = L (LK © ) as,

I3Note that there is no assumption on the variety. This formulation of the comparison theorem is due to
Beilinson [2].
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where ¢ is the generator of Z,(1) corresponding to ¢.
We follow the proof of [I3] Cor. 1.10], which uses BC’s. We will sketch the arguments and refer
the reader to [I3] for details. We start with stating the isomorphism

(Hir(X) @k Big)/F* = (H"(RTqr(X) ®x Big)/F*),
which follows from the degeneration of the Hodge-de Rham spectral sequencﬂ (proved by Scholze
as a corollary of the de Rham comparison theorem [38]). Using this isomorphism, we obtain the
long exact sequence (obtained from the definition of overconvergent syntomic cohomology)

(5.6) = (Hig'(X) @ Bip)/F® = Hiu(X, Qp(s)) = (Hfi(X) @pm BN 097

syn
— (Hyp z(X) @ Bgp)/F* —

We recall that the groups Hyyy (X), Hip (X) have finite dimension over F™ and K, respectively.
The above long exact sequence yields short exact sequences

0— H” (X, Qp(s)) — (HI’:IK(X) ® par B;)N:o,@:ps - (HT

syn dR,?(X) ®f B;{_R)/FS —0

To prove this, we observe that the map f,. : (Hfx (X)®@pa B)N=09=P" (Hng(X)@?B:R)/FS
is the evaluation on C of a map of BC’s. But, the syntomic cohomology group H{,(Xc, Qp(s)),
r < s, is a finite dimensional Q,-vector space since we have the quasi-isomorphism [I5] 6.10] with
étale cohomology. This implies that the cokernel of f;, viewed as a map of BC’s, is of Dimension
(0,d;). On the other hand, the Space (H"  —(X)®%Bg)/F*® is a successive extension of C-vector

dR,K
spaces. The theory of BC’s implies now that the map (H" . —(X)®@%Big)/F* — Coker f, is zero,

dR,K
hence Coker f, = 0, as wanted.

We have the Hyodo-Kato isomorphism (see [15], Cor. 4.32|)
LHK - HIT:IK(X) ®Fnr C ~ HgR(X)'
Taking ¥ -smooth vectors of both sides (note that X is quasi-compact) we get the Hyodo-Kato

isomorphism
Hig(X) @pnr K ~ Hijp (Xk) @k K.

Hence the pair (Hfk(X), Higr (X)) is a (@, N, 9k )-filtered module (in the sense of Fontaine).
The above short exact sequence and a “weight" argument shows that Vg (Hjjk(X), Hig(Xk)) ~
H!(X,Q,). Here Vg (—) is Fontaine’s functor from filtered Frobenius modules to Galois rep-
resentations. The short exact sequence and C-dimension count give also that tn(Hfk(X)) =
tu(Hig(XK)), where t5(D) = vp(det ) and tg (D) = Y ,5 i dimg (F*D/F D). The theory of
BC’s now implies that the pair (Hjj (X), Hig(Xk)) is weakly admissible from which our theorem
follows. O

Remark 5.7. The isomorphisms (5.3) and (5.5) are strict if we put the weak topology on the
Homs.

5.2.3. Proper rigid analytic varieties over C'. Let X be a smooth rigid analytic variety over C. Its
p-adic étale cohomology is finite rank by [38, Th.1.1]. Its Hyodo-Kato cohomology is finite rank
by the Hyodo-Kato isomorphism and finitness of de Rham cohomology. Its BXR—cohomology is
free, finite rank over B, by the comparison isomorphism with Hyodo-Kato cohomology.

Theorem 5.8. Let r > 0. There exists a natural Bg-linear period isomorphism
Qgt - Hgt(X, Qp) ®QP Bst ~ HﬁK(X) ®Fnr Bst7
that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism

(5.9) aar © Hg (X, Qp) ®q, Bar ~ Hir(X/Br) ®p: Bar.

14Alternatively7 one can use an argument analogous to the one we use in the proof of Theorem below.
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Here, the filtration on Hjp (X/BJR) is defined by
F'Hig(X/Bgg) = Im(H" (F'RL4r (X/BR)) = Hir(X/Big))-

Remark 5.10. A de Rham comparison isomorphism as in (5.9) was constructed earlier in [7]
Th.13.1]. It did not treat filtrations.

Proof. Take s > r. The period maps are define as in Theorem but by dropping the map tpk-
We note that H"(RTqr (X/ BCTR) /F?®) is a BC, a successive extension of C-vector spaces of finite
rank. This follows from the fact that the distinguished triangle [I5], 3.28] yields the distinguished
triangle

@RF(X, Q9 (s —i)[~i] = RTar(X/BjR)/F** — RTar(X/BjR)/F*

i<s
and RT4r(X/BjR)/F' ~ RI(X, Ox) by [15, 3.27]. Having that, the same arguments as in the
case of proper varieties over K yield short exact sequence

(5.11) 0= H&(X,Qp(s)) = (Hinc(X) @pm BHN=09=" — H'(RTar(X/Big)/F*) = 0
Moreover, these arguments show that the canonical map
Hig(X/Blg)/F* — H'(RFar (X/Bjg)/F*)
is an isomorphism. This can be proved in the following way. By , we have a surjection
(Hi (X) @pue BYN=09P" — H"(RTar(X/BR)/F*).
Since the above map factors through the natural map
(5.12) Hig(X/BJp)/F* — H'(RFar (X/Bjg)/F*)
that latter is surjective as well. But it is also injective. Indeed, we have the distinguished triangle
F*RIqr(X/BJR) = RTar(X/BJz) — Rl4r(X/Blg)/F*
It yields the long exact sequence of cohomology groups
— H(F*RLar(X/Bjg)) % Hin(X/Bjg) — H"(RLan(X/Blp) /F*) -

Since F*Hr (X/B1z) = Im f,, the map in (5.12) is injective. We are done.
The two isomorphisms in our theorem follow now from Remark [f.14] using the last part of

Remark (take M = Hiy(X), M+ = FO(H}p (X/BJg) ©@gt_ Bar))- O
Remark 5.13. (i) One can restate the theorem as follows (& (—, —) is the associated vector bundle

on the Fargues-Fontaine curve Xpr):
Hg (X, Qp) ~ H°(Xer, € (Hik (X), HgR(X/BIR)))'
(ii) From Theorem we get natural isomorphisms
Homvys(H (X, Qp), Bst) ~ Hompnr (Hiji (X ), Bgt), as Bg-modules,
Homvs(H (X, Qp), Bar) ~ HomBIR(HgR(X/BIR), Bar), as Bggr-modules.
5.3. Dagger Stein varieties and dagger affinoids. Having the comparison result from [I5]

Cor. 6.9], we can now deduce a (simplified) fundamental diagram for pro-étale cohomology from
the one for overconvergent syntomic cohomology.

Theorem 5.14. (Simplified fundamental diagram) Let X be a smooth dagger Stein variety or a
smooth dagger affinoid over C'. Let v > 0. There is a natural map of strictly exact sequences
0— Q" Y(X)/Kerd — H"

proét(Xa Qp("')) —> (HI”_‘IK(X)(@FMB;)N:OWZPT -0

H \LB \LLHK®9

_ d r = r
0= Q" 1(X)/Kerd QO (X)4=0 Hi(X) — 0
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Moreover, H;met(X7 Q,(r)) is Fréchet or LB, respectively, the vertical maps are strict and have

closed images, and Ker 3 ~ (H{IK(X)@Fan;)Nzovﬁa:PPl,

Proof. We define 8 := p~"Ba !, using [15, Cor.6.9] and [I5, Prop.5.13]; the twist by p~" being

T o

added to make this map compatible with symbols. The theorem follows immediately from [I5]
Cor. 6.9] and [15, Prop. 5.13]. O

5.4. The fundamental diagram. We will now introduce the fundamental diagram, look at some
examples, where it appears, and, finally, state a conjecture concerning it.

5.4.1. Fxamples. We start with examples.

e Proper varieties.
Corollary 5.15. Let X be a smooth proper variety over C. We have the bicartesian diagram

asy(r)

(5.16) HE (X, Qu(r)) 2 (Hip (X) @ BE o7 N0
iadR(T) ibnx@L
F'Hig (X/Bgg) = Hr (X/Bg)

Recall that this means that this is a pushout and pullback diagram, or, that the sequence
(5.17) - -
r st (1) Daar (7 r =0,0=p" T LtHK ®t+can pop
0= HZ (X, Qp(r) =" (Hij (X)@pu BH) V== @ F" Hip (X/Bp) ™ Hip(X/Blz) = 0

is exact.

Proof. Follows immediately from the short exact sequence (5.11)). O

Remark 5.18. (i) The passage the other way, from diagram to Theorem is also possible:
the exact sequence yields the exact sequence and we can finish as in the proof of
Theorem [5.8)

(ii) The natural map H"(F"RI4r(X/B1g)) = F"Hir(X/BJy) is an isomorphism.

e Dagger Stein varieties and dagger affinoids.

Corollary 5.19. Let X be a smooth dagger Stein variety or a smooth dagger affinoid over C. Let
r > 0. We have the bicartesian diagram (recall that all cohomologies are classical)

ast (1)

(5.20) HE (X, Qp(r)) (Hi (X) @ s BE)N=00=7"

iadn(r) iLHK(@L

H"F'RI4r(X/Blg) ——— HiRx(X/Blg).
Proof. Consider the following diagram of maps of distinguished triangles

f1

r LHK®L

RIsyn (X, Qp(r)) —— [RTux (X )®FmB;’;]N:0W p

IB \LLHK(@L
Y

fa
FTRFdR(X/BdR) D RFdR(X/BdR) —_— > RFdR X/B /FT

A RT4r(X/BiL)/F"
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Since H (RTqr(X/BR)/F") = 0 for i > r, the maps fi, f> are surjective in degrees > r. It suffices
to show that Ker f; = Ker f, in degree r. We have the following commutative diagram

f1

0 Ker fi H (X, Qp(r) —— (Hjg (X))@ BE)N=00=7"
L | | e

0 Ker f, H™ FrRT g (X/Bly) — > Hin(X/By)
Z\Lﬂ $19 $19

0 —> Ker fo.c — = H"F'RIgp (X) — i (X)

We claim that the map Ker fo — Ker f3 ¢ is an isomorphism. Indeed, we compute

Ker fo < Coker(H' 5z ' (Xk)®xBlz — H  ((RT4r (X))@ BlR)/F")) = Q1 Xk) Ker d® O,
Ker fo.c < Q”_l(XK) Ker d® g C.

O

5.4.2. Conjecture. We will formulate now a conjecture describing pro-étale cohomology in terms
of the de Rham complex.

Conjecture 5.21. (Cy-conjecture) Let X be a smooth dagger variety over C. Let r > i. The
commutative diagram

ﬁ'i

proét

(X, Qp(r)) —= (Hipg (X)® o B ) N=0-0=0"

| |

HF'RTar (X/B) Hig(X/Bfg)

is bicartesian. That is, the following sequence
(5.22)

0= Hl e (X, Qp(r) = (Hip (X)@paBH)N=09=" @ H'F'RT4r(X/BJy) — Hin(X/Blz) — 0

1s exact.

Remark 5.23. (i) This conjecture is known so far in the following cases:

e X is proper (see Examples [5.4.1)). In this case, the two horizontal arrows are injective.
e X is Stein or affinoid (see Examples [5.4.1). In this case, the two horizontal arrows are
surjective and their kernels are Q" ~1(X)/Ker d.

(ii) Let X be a smooth dagger variety over C. If r > 4, set

H™ = Hiyoer (X, Q1) X i= (Hipge(X)® pue B V=00
Fri = HF"RL4r (X/BR) B':= Hix(X/BL)

and denote by H™!, X", etc. the images of f[’“’i, )?r’i, etc. in Cq,. Note that the X" and B’s
are classical, i.e., X" ~ X" and B ~ B*.
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We have a commutative diagram with exact rows and columns:

0 0
_ v !
H™ Fte X" —— B*
b et t)
I:[rJrl,i ﬁrﬂ,i ® )Z'rJrl,i Ei
! |

Hiig (X)@parC > Hip(X)

| V

0

0

The vertical maps are multiplications by ¢ (on pro-étale cohomology, this corresponds to the Tate
twist); for the isomorphism X" +5% /t X" ~ Hi (X)®pa:C, see Remark the bottom isomor-
phism is the Hyodo-Kato map. It follows that, for fixed i, the conjecture for r is equivalent to the
conjecture for r 4+ 1. Hence it is enough to prove it for one r > i (for example r = 7).

(iil) Since the Bi’s are actually classical, and we have a long exact sequence

RN )Z—T,i—l D ﬁr,i—l — Ei—l N E[r,i — )Z'T,i ey ﬁr,i N Ei ...

it is enough, thanks to an induction on 4, to prove surjectivity of X" @ F™* — B%: this will show
that X™ @ F™ — B' is surjective (since B' ~ B?) and that the long exact sequence splits into
short exact sequences, as wanted.

(iv) We will prove this conjecture for quasi-compact varieties in Theorem below.

6. DE RHAM-TO-PRO-ETALE COMPARISON THEOREM FOR SMALL VARIETIES

We will now prove Conjecture for small varieties. In this chapter, until Theorem all
cohomologies, unless otherwise stated, are algebraic, i.e., we ignore topological issues (see (iii) of
Remark of why this is a reasonable thing to do).

6.1. Conjectures. Let X be a smooth dagger variety over C. We will first state and discuss four
conjectures, a priori unrelated, on the cohomology of X:

e Conjecture (already stated above) describes the p-adic pro-étale cohomology of X in
terms of the de Rham complex.

The remaining conjectures assume X to be quasi-compact:

e Conjecture gives a restriction on the Hodge filtration on the de Rham cohomology in
terms of the slopes of Frobenius on the Hyodo-Kato cohomology.

o Conjecture says that, even if huge, the pro-étale cohomology groups HY,, s (X, Q,) have
nevertheless Q,,-dimension equal to dime H] (X).

e Conjecture says that H .. (X, Q) is of curvature < 0.

proét
Next, we proceed to proving these conjectures in the case X is quasi-compact. The proof uses:
— the period quasi-isomorphism between pro-étale cohomology and syntomic cohomology
from [15], 6.10],
— the canonical distinguished triangle involving syntomic cohomology from [I5] 5.12],
— delicate properties of BC’s (scattered through [8] [0} [32] [35] and recalled in Section for
the convenience of the reader).

These ingredients allow us to prove that the four conjectures above are, in fact, equivalent
(see Proposition as well as Lemma and Lemma for precise statements). We show
then Conjecture by induction on the number n of affinoids needed to cover X; for n = 1,
Conjecture [5.21] is exactly Corollary
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6.1.1. Acyclicity of de Rham cohomology. For a smooth dagger variety X over C, we set
(1) FUHR(X/Bg) = Im(H" (F'RTar (X/Bg)) = Hig(X/Br));
(2) Hip(X/Bgr) := HgR(X/BgR)GéBgRBdR and equip it with the induced filtration.

Conjecture 6.1. Let X be a smooth quasi-compact dagger variety over C. For all r, the map
(Hi (X)@ e BE)N=09=" — Hip (X/Bg) /F"
is surjective, i.e., the pair (Hjjx(X), FOHig (X/Bar)) is acyclic.

Remark 6.2. If X is proper, then the pair (Hjji (X), FOH/z (X/Bgr)) is weakly admissible hence
X verifies the conjecture. If X is Stein, then Hjp(X/B1;)/F" = 0 and X clearly satisfies the
conjecture.

6.1.2. Curvature and height of pro-étale cohomology. Let X be a smooth quasi-compact dagger
variety over C.

Conjecture 6.3. Then, for all r > 0, HT ¢ (X, Q) has curvature < 0.

Conjecture 6.4. For all r,
ht(Hy o6 (X, Qp)) = dime Hijg (X).

Remark 6.5. (i) If X is proper, Conjecture is a theorem: we have the exact sequence of BC'’s

(see Section [5.2.3))

0 = Hypout (X, Qp(r) = (Hiig (X) @pue BE)V =097 — H(RLar(X/Bg)/F") = 0

We know that HJ . (X,Qp) has finite dimension over Q,; hence its height is equal to its dimen-
sion over Q,. We also know that the slopes of Frobenius on Hfjx(X) are < r, which implies
that ht((Hi (X) @par BE)N=09=P") = dimpar Hjji (X). Now, the above short exact sequence
implies that ht(HJ .. (X,Qp)) = dimpa Hik (X) and, since by the Hyodo-Kato isomorphism

dimpne Hipp (X) = dime Hjp (X), we have

dime (H;roét (Xv QP)) = dlmc HSR(X)V

as wanted.
(ii) Does there exist non proper dagger varieties X such that HJ . (X, Q) s finite dimensional
over Q,, for all 7?7 Already for r =1, one needs 0(X) = C.

6.2. Equivalence of conjectures. In this section we assume X to be a smooth dagger variety
over C such that Hiy (X/BJ) is (free) of finite rank over By for all i (for example, X could be
quasi-compact, or the interior of a quasi-compact, or the analytification of an algebraic variety,

see Corollary [6.18)). Conjectures and make sense in this, slightly more general,

set-up.

6.2.1. The key diagram. Fix r and, for ¢ < r, set

Hni = H}iroét(‘)() Qp(r))7 Xr’i = (HﬁK(X)(gFH,B;)N:O,@:pT’
F*:= H'(F"RTar(X/Bgg)), DR™ := H'(RTar(X/Bip)/F"),
B' = HjiR(X/BgR) Fil™? .= Im(F™" — BY)

We also denote by

Hr,i’ X’r,i’ IE-r,i7 ]D)RT’i, Bi, ]FI-lHT,i
the associated VS’s. Remark makes it possible to navigate freely between these VS’s and their
C-points.
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The isomorphism between pro-étale and syntomic cohomologies (see [I5] 6.19]) yields a commu-
tative diagram with exact rows:

Hr’i_l XT,i—l DRr,i—l . H’r,z‘ Xr,z’ DRT',i
{ / I | / |
Fri-l Bi~! DR Fr B! DR™*

’ / | | / |

Fri=l/tr — Bi=1/trFil"™"~! = DR™"! — F™/t" — B?/t"Fil"" — DR

The bottom sequence is exact because t”F" — ¢"Fil™" is an isomorphism (multiplying by ¢ kills
the big B g-torsion in F" % and B’ is a free finite rank B(TR—module thanks to the Hyodo-Kato
1som0rphlsm), hence we have an isomorphism:

(6.6) Ker(F" — F"/t") 5 Ker(B' — B! [t'Fil'™").

All the spaces in the diagram are C-points of VS’s and those in the top and the bottom rows
are C-points of qBC’s (this is clear for all of them except for H™® (and H™*~!), for which one
can use Lemma and the fact that DR™ is a B,-module and X" is equal to the C-points of
a BC), and the above diagram lifts to a diagram of VS’s (see [15], Sec. 7]).

Lemma 6.7. For all i > 0, we have the following isomorphisms:
Coker (X" @ F™" — B') ~ Coker(X™" — B'/Fil""),
Ker(H™" — X" @& F"") ~ Coker(X"" '@ F™"~' — B"1)

These isomorphisms can be lifted to the category of VS’s and Coker(XT’i — Bi/FilT’i) is the
C-points of a BC.

Proof. The first isomorphism is clear. Using the snake lemma in the following commutative diagram
with exact rows we prove the second isomorphism.

0— X"1/H™"1 — DR""' — Ker(H" — X") — 0

| I

0 —= B !/Fil"* —= DR"""' — Ker(F" — B') — 0

The claim about BC’s follows from Proposition because the VS’s corresponding to X™?
and B/Fil™" are BC’s. O

Corollary 6.8. If Ker(H™" — X" @ F™") # 0, then it has height < 0 hence can not have
curvature < 0.

Proof. Use Lemma[6.7] to pass to
Coker (X"~ @ F™"~! — B*~!) 5 Coker(X™~! — B~ /Fil™" ).
Now use Proposition [£.18 and Remark [1.19] O

6.2.2. Left exactness. We will study now the exactness on the left of the sequence in Conjec-

ture 5211

Lemma 6.9. The following properties are equivalent:
(a) The map H™" — X" & F"" is injective.
(a’) The map H™" — X" @ (F™" /t"F™") is injective.
(b) (Hig (X), FOH ' (X/Bar)) is acyclic.
(c¢) Ker(H™" — X™7) has curvature 0.
(¢') Ker(H™ — X™") has height 0.
(d) H™" has curvature < 0.
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Proof. We note that map in (a) can be lifted to the category ¢B%€ and its kernel is equal to the
C-points of a gBC by Proposition [3.34]

e We clearly have (a’) = (a). For the opposite implication use the isomorphism .

e The equivalence of (a) and (b) is a reformulation of the isomorphisms in Lemma (use
Remark .

e We have (c)=(c’) by Remark- And, since Ker (H™" — X""), which is a gBC, is a quotient
of DR™" !, which has curvature 0 (since it is a B,-module), (¢')=(c) as well (use Remark [3.30) -

e We have (a’)=-(d) since H™" is a submodule of X" & (F™" /t"), the first term of which comes
from a BC of curvature < 0 (since this BC is a Submodule of a B,-Module, use Remark and
the second term is an affine qBC.

e We have (d)=(c) since Ker(H"" — X"") is a sub-VS of Hf  and hence has curvature < 0
(since so does H . by assumption), and it is also a quotient of DR™"™ ! and hence has curvature >
0 (since so does DR™ '), Here we have used again Remark

e We have (c)=>(a’) since the inclusion of the kernels implies that Ker (H"" — X"" & (F"" /t")))
corresponds to a gBC of curvature < 0 (by Remark [3.30)), and thus it is trivial by Corollary[6.8] O

6.2.3. Right exactness. We pass now to the study of the exactness on the right of the sequence in

Conjecture [5.21]

Lemma 6.10. The following properties are equivalent:
(a) The map X™" & F™" — B" is surjective.
(') The map X™" @ (F™" /t"F™") — B" /t"Fil™" is surjective.
(b) (Hix(X), FOH R (X/Bar)) is acyclic.
(c) Coker(H™" — X™") has curvature 0.
(¢") Coker(H™" — X"™") has height 0.

Proof. e Clearly (a) = (a'). For the opposite implication use isomorphism

e The equivalence of (a) and (b) is a reformulation of the first isomorphism from Lemma
(use Remark [£.16).

e We clearly have (c)=-(c¢’) and the opposite implication follows from the fact that the cokernel
of H™" — X" is a sub-qBC of DR™". Since the latter has curvature 0 (because it is a B,.-Module)
(c) follows from Remark

e Let I” be the image of X™" in DR™", and let J” be the image of X™" in B"/Fil™". Then
Coker (H"" — X"") ~ " ~ J" since B"/Fil™" — DR™" is injective. It follows that Coker(H"" —
X"") has curvature 0 if and only if J” does. And thus if and only if J” = B"/Fil™" by Proposi-
tion [4.18] The equivalence of (c) and (b) follows. O

6.2.4. Bicartesian property. We can now put Lemma [6.9 and Lemma [6.10] together:

Proposition 6.11. The following properties are equivalent:
(a) The diagram in Conjecture[5.21] is bicartesian.
(b) (Hjik(X), FOH! R (X/Bar)) is acyclic, fori=r—1 and i =r.
(¢) The kernel and cokernel of Coker(H™" — X"™") have curvature 0.
(¢') The kernel and cokernel of Coker(H™" — X™") have height 0.
(d) ht(H™") = dime Hip (X).

Proof. e Let us start by noting that, by Remark (ii), in (a) we can assume = r.

e Note that (a), (b), (c) and (c) are, respectively, equivalent to the conjunction of (a), (b), (c)
and (c’) from Lemma [6.9] and [6.10] The equivalence of (a), (b) (c) and (c’) follows.

e (a)=(d): by assumption we have the exact sequence

O Hr,r (Fr,r/tr) @ Xr,'r‘ - Br/trFﬂTﬂ' - 5 0
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This sequence can be lifted to the category ¢#B%. Since F™"/t" and B" /t"Fil™" have curvature 0,
and hence height zero, and

ht(X"") = dimpar Hyg (X) = dime Hyg (X),

(d) follows. The first equality above uses the fact that the @-slopes are < r.
e (d)=(b): Since DR™" ! and DR"" are B,-modules, the images I"~! and I” of X""~! and X""
have height > 0. Since

ht(H"") = (ht(DR™" ') — ht(I" 1)) + (ht(X"") — ht(I"))

and ht(DR"" ') = 0, the condition ht(H"") = ht(X"") (equivalent to (d) as we have seen) implies
that ht(I"~!) = ht(I") = 0. As we have seen above in proving the equivalence of (b) and (c) in
Lemma this implies (b).

This finishes the proof of our proposition. O

Corollary 6.12. If X is quasi-compact then Conjectures and[6.4 are equivalent.

Proof. Equivalence of (a) and (d) from Proposition shows that, already for a fixed r, Conjec-
tures and are equivalent. Moreover, taken for all r, (b) from Proposition shows that
they are equivalent to Conjecture The equivalence of (b) and (d) from Lemma 6.9 shows that
Conjectures and are equivalent (but one has to change r). O

Remark 6.13. It is easy to see that Corollary holds, more generally, if Hip(X/BJy) is finite
rank over BXR for all . The proof is the same as in the quasi-compact case.

6.3. Proof of the conjectures for small varieties. Finally, we are ready to prove our main
theorem for small varieties. We start with quasi-compact varieties.

Theorem 6.14. Let X be a quasi-compact smooth dagger variety over C'.
(i) For all r > i, the diagram
i

proét

(X, Q1) — (Hjp (X) B B N=00="

l i

H'(F"(RLar(X/Bg))) —— Hig(X/Bjy)
is bicartesian. Equivalently, the following sequence is exact

0 = H oo (X, Qp(r) = H'(F"(RTar (X/B ))& (Hi (X)& poe BHN 072" - Hip (X/BfR) — 0

Moreover, for all r,
(ii) (Hg(X), FOH5R (X/Bar)) is acyclic.
(iif) H}, o6 (X, Qp(r)) has curvature < 0.
(iv) Be(Hy o (X, Q(1))) = ditne: i (X).

Proof. Let X be as in the theorem. By Remark (iii) we can remove all the tildas in the
statement of the theorem. We have seen (Corollary that the properties (i)-(iv) for all r are
equivalent (on the other hand, they are not (!) equivalent for a fixed r). It suffices thus to show
(iv) for all r. This we do by induction on the number n of open affinoids necessary for covering X:
the base case of n =1 is Corollary

We pass from n to n+ 1 using Mayer-Vietoris (and the fact that an intersection of two affinoids
is an affinoid, from which it follows that if U; is covered by n open affinoids and if Us is an affinoid,
then Uy N U, is covered by n open affinoids).
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Take then Uy, Us as above. Let U = Uy UUs,. If ¢ > 0, we set

Asi = H, oo (U, Qp(r),  Asiyr = Hoe (U [[ U2, Qp(r)),
Azivo = Hpoe(Ur N Us, Qp(r))
Bs; = (Hiyg(U)@ e BN By = (Hi (U [ [ U2) @ e BE) V=00,
Bsita = (Hiy (Un N U2)@pu BR)N=00=P",
We have a commutative diagram

0—Ag— A1 — - — Az = Azr — Az 1 — -

b | | |

0—By—DB)—:+—DBsg._1 — B3, = B34 1 — -

in which the rows are exact; in the top row we have qBC’s and in the bottom row we have BC'’s.

We denote by K; and C; the kernel and cokernel of A; — B;, respectively. It is clear from the
definition that B; has curvature < 0; that is, it is of curvature < 0. We infer, using Proposition [3.27]
that rk(h(B;)) = ht(B;) (see Section for the definition of the functor h). We know that C;
is a subobject of an affine BC and that K; is a quotient of B,-module. This implies in particular
that ht(A4;) < ht(B;) with equality if and only if C; and K; are affine. We note that then A;
has curvature < 0 because its quotient by the B,-module K; is a sub-BC of B; and hence has
curvature < 0 (and even < 0 if is not zero).

Lemma 6.15. If ht(Ay) = ht(By) for all k < 3r 4+ 2, k # 3r, and if As, has curvature < 0, then
ht(As,) = ht(Bs,.).

Proof. Note that the equality ht(Ay) = ht(By) (together with the fact that K} is a quotient of
an affine and C}, a subobject of an affine) implies that Ay and By have curvature < 0, that Kj
and C}, are affines, and that the map h(Bj) — h(Aj) is an isomorphism. All the terms of the
commutative subdiagram

Asp_o — Agp 1 — Az — Az —> Az

| | | | |

B3, _o — B3,_1 — B3, — B3r+1 - B3r+2

have curvature < 0 and so do the kernels A} of Ay — A4 and B}, of By — Byy1 (as subojects of
gBC’s of curvature < 0). We infer, using Corollary that the rows of the commutative diagram

h(Asr—2) <— h(Azr—1) <= h(As;) <— h(Aszry1) < h(Asp12)

! ! ! ! !

h(33r72) =~ h(33r71) -~ h(Bsr) -~ h(33r+1) -~ h(33r+2)

are exact. As we have seen above, h(Bj;) — h(Ag) is an isomorphism if k # 3r; hence also
h(Bs;) — h(As,) by the 5-Lemma. Since Bs, has curvature < 0 and so does A3, by assumption,

it follows from Proposition that ht(As,) = ht(Bs,), as wanted. O
Our theorem now follows from the following proposition. O

Proposition 6.16. If Uy, U et Uy NUs satisfy Conjectures and (which are equiva-
lent), the same holds for U.

Proof. By assumption, Uy, Us and Uy N Uy safisfy Conjectures and [6-4] for all r; we will
show that the same holds for U, using induction on r. We assume thus that the result is shown up
to r — 1 (it is trivial for r = 0). Hence, in particular, ht(Ay) = ht(By) for all k£ < 3r 4+ 2, k # 3r,
and the problem is to show that ht(As,) = ht(Bs;.).
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Since the result is true for degree r—1, by Lemma we have that (Hyy' (U), FOHz ' (U/Bar))
is acyclic. By Lemmal6.9] this implies that A3, has curvature > 0. We can thus apply Lemma [6.15]
and hence ht(As,.) = ht(Bs,.). O

Remark 6.17. Granting Corollary (see Remark , the same proof applies (because the
intersection of two Stein is Stein) to smooth dagger varieties that are small, i.e., that can be covered
by a finite number of Stein varieties U; such that Hip (U;/Bg) is free of finite rank over By for
all degrees ¢ and intersections U;. We deduce the following result:

Corollary 6.18. The statement of Theorem[6.1]] applies to:
e analytifications of algebraic varieties,
® o naive interio of a quasi-compact rigid analytic variety X.

Proof. We just have to show that these varieties can be covered by a finite number of Stein varieties
U; such that Hig (U;/BZg) is free of finite rank over Bjj; for all i, I.

e In the first case, pick a covering by affine opens, and use the analytifications of these affine
opens for your Stein covering.

e In the second case, cover X with a finite number of affinoids X; and choose, for each j, a
naive interior U; C X;. For the sake of this corollary, a naive interior of a smooth dagger affinoid
is a Stein subvariety whose complement is open and quasi-compact. We easily check that the
intersections Uy C Xy are also naive interiors. We take U := U;U;. It is an admissible open of X,
which we call a naive interior of X.

The U;’s are a covering of U with the desired properties: Hip (U;/BJy) is a free BIz-module
whose reduction modulo ker# is isomorphic to Hiy (Ur), which is of finite rank over C' by [31]
Th. A]. O

7. PRO-ETALE-TO-DE RHAM COMPARISON THEOREM FOR SMALL VARIETIES

In this chapter we propose a recipe to extract, from the pro-étale cohomology of varieties defined
over C, the Hyodo-Kato and de Rham cohomologies (as modules over the relevant rings) and, for
varieties defined over K, to extract also Frobenius, monodromy, and the naive Hodge filtration.

7.1. The pro-étale-to—de Rham Cy-conjecture for varieties over K. In this section, we
study the following conjecture extracting, for analytic spaces over K, the Hyodo-Kato and de
Rham cohomologies from the pro-étale cohomology. This extends to p-adic analytic spaces the
Cst-conjecture of Fontaine. (We go back to working with locally convex topological vector spaces.)

Conjecture 7.1. Let X be a smooth dagger variety over K. We have natural strict isomorphisms:

Homg, (Hf)roét(Xc,Qp),BSt) ~ Hiw(Xe)*, as a (o, N,9x)-module,

Homg,, (H;mét(Xc, Q,),Bar) ~ Hig(X)*, as a filtered K-module.

Remark 7.2. Our approach uses syntomic cohomology, which gives a description of Héroét (Xc, Qp(r))

for r > 4, rather than that of Hémét (Xc,Qp). Hence we are going to consider the following equiv-
alent form of Conjecture (where the {r} has the same meaning as in Corollary [4.10):

Homng((Hémét(Xc, Q,(r)), By) ~ HﬁK(XC)*{r}, as a (p, N, 9k )-module,
Homg,, (H' et (X, Qp(r), Bar) =~ Hig(X)*{r}, as a filtered K-module.

proét
Our main result is the following:
Theorem 7.3. Conjecture [71] holds for:
(a) affinoids,

(b) quasi-compact varieties,

15See the proof for a precise definition



44 PIERRE COLMEZ AND WIESLAWA NIZIOL

(c) all other small varieties.

The case of affinoids is included in the case of quasi-compact varieties, but the proof is consid-
erably simpler.

7.1.1. Dagger affinoids. We note that it suffices to show that we have natural isomorphisms since
the weak topology on the Hom-spaces is Hausdorff. Let

i i sh =0,p=p" §74 i
M = Hjjx(Xe), XL(M):=(M&puBH)N=0¢=P" Mg = (K @pn M)%% ~ Hi R (X).

The last isomorphism follows from the Hyodo-Kato isomorphism [I5, Th.4.27]. Recall that we
have the exact sequence (see Theorem [5.14))

(7.4) 0— (" Kerd)@xC — H oo (X, Qp(i) — X (M) — 0.
Applying Homg, (—, Bs;) and Homg, (—, B4r) to it, we get the following exact sequences

0 —Homg; (X:t(M),B +) — Homg (H;met(Xc, Q,(7)), Bs;) — Homy, ((Q7 L/ Ker d)@xC, By),
0 —Homg, (X% (M), Bgr) — Homy, (Hpmét(Xc, Q, (%)), B4r) — Homy, ((QZX 1/Ker d)®xC,Bar).

Lemma 7.5. We have
Hom?}?{((Q?l/Ker d)@KC, By) =0, HomgK((Qggl/Ker d)@KC, Bar) =0.

Proof. Since Homf" (% '/Ker d)@xC,By;) ~ colimp,,x Homg, (U '/ Ker d)®xC,By) and
By — Byg, it suffices to show that Home, ((Qé;l/Ker d)@KC’, Bar) = 0, for a finite extension L
of K.

But Homg, (C, B4r) = 0 (Proposition (iv)); hence Homg, ((Q05t/ Ker d) @ C, Bar) = 0.
Since our maps are requested to be continuous and (Q% '/ Ker d)®x C is dense in (' !/ Ker d)®@C,
we get the wanted vanishing. O

This lemma yields isomorphisms
Homg, (X4 (M), Bs) = Homy (Hyoe (X, Q1) Bst),
Homg, (X5, (M), Bar) = Hom, (Hpoe (Xos Qp(4)), Bar)-

p

The filtration on Mg is concentrated in degree i (i.e., FiliMK = Mg and Fili+1MK = 0). Hence
we can use Example of Corollary to finish the proof of Conjecture in the case of
dagger affinoids.

7.1.2. Quasi-compact dagger varieties. Let X be a quasi-compact dagger variety over K. Fix r > 1.
Set:

H-M = ﬁriroét(XC’ Qy(r), F:=H'(F'(RTar(X)®xBJR)),
X" = (Hjg (Xo)®pwBHN=0=" B! = Hig (X)®xB;.

Let A™ be the kernel of the canonical map Fri — Bt Then A™ is also canonically a subgroup
of H™!. Let

Fr’i = f—jr’i/gr’i, Fr’i = ﬁr’i/gr’i.
Note that F™i/A™ is a subgroup of B, hence it is classical.

Lemma 7.6. We have, for alli < r,

Homg;! (A”Bst) 0, HOIngK(AVT’i7BdR>=O.
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Proof. 1t suffices to show that
Hom" (A", By) =0, Homg, (A", Bqr) = 0.
And, for that, it is enough to prove the second statement. Let
DR™ := H'((BjR®RTar)/F")

so that we have a long exact sequence --- DR™ ' — F™ — B’ — DR™" — --. which shows that
A" is a quotient of DR™* ™. Hence it is enough to prove the same statement for DR™, with i < r.
Now DR™ is the i-th hypercohomology group of the complex

DR™* := ((BiR/t")®k O — (Blg/t"™ Q' — - = (Bl /H@Q ).

Choose a covering of X by dagger affinoids, and denote by Z™* the group of i-cocycles of the Cech
double complex associated to this covering. Since DR™ is a quotient of Z™?, it is enough to prove
that Homg,, (2", Bgr) = 0.

Denote by Z}{l the group of i-cocycles of the Cech double complex associated to the above
covering and the complex

DR} == (6 - Q' - - Q7).
We are going to prove that ZjST(tT*ijR/tTBIR) @K Z%" — Z" has dense image. This will
allow us to conclude since Hom,, (" /B, /t"Bls) @x Z2',Bar) = 0 by Proposition and
our maps are assumed to be continuous.

To prove this density, choose a Banach basis over K of the K-Banach BIR/t’" of the form
(tjen)ogjg,«,lﬁneN (pick a family e, of elements of BIR/tT whose images in BIR/t = C form a
Banach basis of C' over K). Then one can use (t/e,)o<j<k—1,neN as a Banach basis of B;R/tk,
if k < r. This makes it possible to decompose DR"™*® as a completed direct sum of the complexes
t'e, © DR} 7*’s, and then Z™ is the completion of the sum of the t/e, ® Zj 7""’s. O

It follows from Lemma [7.6] that we have isomorphisms
Homs™ (A, By) = Hom3 (A", Byy), Home, (A", Bar) = Hom,, (™, Bar)
Since X is quasi-compact, Conjecture holds and we have the exact sequence :
0— H" = X" @ F 5 B 0.
This induces exact sequences
(7.7) 0H 5 X"aeF" 5B 50, 0H" - X" = B/F" 0,
Since F' is a subgroup of B’ all the terms in these sequences are classical. This identifies

topologically H'* with VJ;(Hiy(Xc), Hig(X)). Hence we can use Corollary to finish the
proof of Conjecture in the case of quasi-compact dagger varieties.

7.1.3. Other small varieties. The proof in the case of other small varieties is the same as in the
quasi-compact case, using the fact that Conjecture holds in that case (by Remark|6.17).

7.2. The pro-étale-to—de Rham C-conjecture for varieties over C'. The following theorem
shows that one can recover de Rham cohomology (without the Hodge filtration) and Hyodo-Kato
cohomology (without actions of ¢ and N) from pro-étale cohomology for varieties over C', despite
the absence of Galois action.

Theorem 7.8. Let X be a small dagger variety over C. Let i > 0.
HomVS(H;mét(X, Q,),Bs) ~ Hompnr (Hfj (X),Bgt), as a By -module,
Homvs (H;roét (X, Qp)deR) ~ HOIan+R (H(ZiR(X/B;jFR)v BdR), as a BdR—module.
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Proof. If M is a VS, we set
h(M) := Homys (M, Bar).
Fix r > 1. Set:
H' = Hipog (Xe, Qu(r)), F™ = HY(F" (RDan(X/B) @ Bip)),
Xt = (HﬁK(XC)‘/X\’F“B;)N:OW:pTv B = HéR(X/BgR)QA@BIRBXR'

Let A™ be the kernel of the canonical map F** — B’. Then A™ is a torsion B_;-module; it is
also canonically a subgroup of H™?. Let

T

H' :=H/A™Y, F'i=Fri/A™

Since A" is a torsion Biz-module, h(A™) = 0 by Corollary [3.17 hence we have an isomorphism
R(E™Y) S h(H™).
We also have natural sequences
0—-H" X" pF" 5B -0, 0-H" -X"@F" B -0
0-H" =X~ 5B /F' -0
Since X is small, the last sequence is a sequence of BC’s. It is exact (see Remark because
passing to C-points yields the sequence 0 — H" - X™i Bi/FT’Z — 0 which was proven to

be exact, as a consequence of the validity of Conjecture (see ) This identifies T with
VI (Hix (X),t="F""), which makes it possible to use Proposition to prove Theorem O

Remark 7.9. (i) If X is proper, then H'(X, Q,) is a finite dimensional Q,-vector space with no
extra structure. This shows that it is hopeless to try to recover the actions of ¢ and N on Hij (X)
or the filtration on Hiy(X/B1y) using Theorem

(ii) On the other hand, if X is a dagger affinoid, we know what the filtration on Hiy (X/B1R)
is: we have FITFHip (X/BiR) = t* Hiz (X/BR). Also, as we have seen
(7.10) (Hi (X) @ BN 09T o (Hjy (X) @ BY,) 7~

Using Lemma [£.17] one sees that
Hine(X)* © B, € Homys(Hine(X) © B, )*= B

c {>‘ € HIZLIK(X)* @ Beris, Spn()‘) € HﬁK(X)* ® BjR’ Vn > 0}
~ Hige(X)* B

Since
Homvys (H' (X, Q, (i), BLs,) = Homys (Higk (X) ® By, )# 7, BL,)

cris cris cris

v

by the proof of Theorem one sees that one can recover the action of ¢ on Hi (X) @ C (by
tensoring with C above Bj‘ris and dualizing).

(iii) If X is a general smooth dagger variety over C, point (ii) suggests that one can recover a
sheafified version of the actions of ¢ on Hjji (X) and of the filtration on Hi (X/BJg). Recovering

the action of N seems out of reach by these methods.
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