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Abstract. Long ago, Fontaine formulated conjectures (now theorems) relating étale and de
Rham cohomologies of algebraic varieties over p-adic fields. In an earlier work we have shown
that pro-étale and de Rham cohomologies of analytic varieties in the two extreme cases: proper
and Stein, are also related. In the proper case, the comparison theorems are similar to those for
algebraic varieties, but for Stein varieties they are quite different.

In this paper, we state analogs of Fontaine’s conjectures for general smooth dagger vari-
eties, that interpolate between these two extreme cases, and we prove them for “small” varieties
(which include quasi-compact varieties and their naive interiors, and analytifications of algebraic
varieties). The proof uses a “geometrization” of all involved cohomologies in terms of quasi-
Banach-Colmez spaces (qBC’s for short), quasi- because we relax the finiteness conditions. The
heart of the proof is a delicate induction argument starting from the case of affinoids and ex-
ploiting properties of qBC’s in the inductive step. These properties should be of independent
interest and we have devoted a large part of the paper to their study.
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1. Introduction

Let OK be a complete discrete valuation ring with fraction field K of characteristic 0 and with
perfect residue field k of characteristic p. Let K be an algebraic closure of K, let C be its p-adic
completion, and let OK denote the integral closure of OK in K. Let W (k) be the ring of Witt
vectors of k with fraction field F (i.e, W (k) = OF ) and let ϕ be the absolute Frobenius on W (k).
Set GK = Gal(K/K).

1.1. Comparison theorems for algebraic varieties. In order to put our results into perspec-
tive, let us first recall what is known for algebraic varieties. The story started with Tate conjectur-
ing [41] the existence of a Hodge-like decomposition for the étale cohomology of smooth and proper
algebraic (or even rigid analytic) varieties over K and proving the existence of such a decompo-
sition for abelian varieties with good reduction. One upshot of Tate’s results is that the p-adic
periods of algebraic varieties do not live in C. Fontained constructed [22, 23, 24] rings Bcris, Bst,
BdR that should contain these periods and refined Tate’s conjecture by conjecturing (first [22, 23]
in the case of X with good reduction and then [25] in the case of X with semistable reduction) the
existence of functorial period isomorphisms relating étale and de Rham cohomologies of smooth
algebraic varieties.

Conjecture 1.1. (Fontaine) Let X be a proper and smooth algebraic variety over K admitting a
semistable model over OK . Let i ≥ 0.

(i) (Conjecture CdR) We have a functorial GK-equivariant isomorphism preserving filtrations

Hi
ét(XC ,Qp)⊗Qp

BdR ' Hi
dR(X)⊗K BdR

(ii) (Conjecture Cst) We have a functorial GK-equivariant isomorphism commuting with ϕ and N

Hi
ét(XC ,Qp)⊗Qp

Bst ' Hi
HK(X)⊗F Bst,

compatible with the de Rham period morphism, and the natural injections Bst⊂BdR and Hi
HK⊂Hi

dR.

As we explain below (Remark 1.3) these conjectures are now theorems (even without the asump-
tions on existence of nice models, properness, or even smoothness).

Remark 1.2. (i) All the above cohomology groups are finite dimensional over the appropriate
field (Qp for étale cohomology, K for de Rham, and F for Hyodo-Kato).

(ii) The existence of the period isomorphism implies in particular that

dimQp
Hi

ét(XC ,Qp) = dimK H
i
dR(X).

(iii) The Hyodo-Kato cohomology group in (ii) is an F -vector space with a semilinear Frobe-
nius ϕ and a monodromy operator N satisfying Nϕ = pϕN . Moreover, there is a Hyodo-Kato
isomorphism

ιHK : Hi
HK(X)⊗F K

∼→ Hi
dR(X)
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(iv) In CdR, the filtration on the left hand side is the one coming from BdR; the one on the right
hand side is the tensor product of the Hodge filtration on Hi

dR(X) and the filtration on BdR. In
Cst, the ϕ and N on the left hand side are those coming form Bst; on the right hand side they are
the tensor products of those coming from Hi

HK(X) and Bst.
(v) Galois properties of the rings Bst and BdR make it possible to recover de Rham cohomol-

ogy from étale cohomology by taking fixed points by GK : we have functorial “étale-to-de Rham”
isomorphisms

Hi
dR(X) ' (Hi

ét(XC ,Qp)⊗Qp
BdR)GK , as filtered K-vector spaces,

Hi
HK(X) ' (Hi

ét(XC ,Qp)⊗Qp
Bst)

GK , as F -vector spaces with a ϕ and a N.

Moreover, the Hydo-Kato isomorphism is induced by the inclusion Bst ⊂ BdR. Note that, instead
of tensor products, we could have considered GK-equivariant homomorphisms: we have functorial
isomorphisms

Hi
dR(X)∗ ' HomGK

(Hi
ét(XC ,Qp),BdR), as filtered K-vector spaces,

Hi
HK(X)∗ ' HomGK

(Hi
ét(XC ,Qp),Bst), as F -vector spaces with a ϕ and a N.

(vi) It is possible to extract Qp from Bst, using the extra structures. This induces a description
of étale cohomology by de Rham cohomology (with the extra structures coming from Hydo-Kato
cohomology), i.e., it gives a “de Rham-to-étale” bicartesian diagram

Hi
ét(XC ,Qp) //

��

(Hi
HK(X)⊗F Bst)

N=0,ϕ=1

��
F 0(Hi

dR(X)⊗K BdR) // Hi
dR(X)⊗K BdR

One can refine this diagram by taking a large enough twist, which makes it possible to remove
denominators1 in t: if r ≥ i, we have a bicartesian diagram

Hi
ét(XC ,Qp(r)) //

��

(Hi
HK(X)⊗F B+

st)
N=0,ϕ=pr

��
F r(Hi

dR(X)⊗K B+
dR) // Hi

dR(X)⊗K B+
dR

(vii) The pair (Hi
HK(X), Hi

dR(X)) is a filtered (ϕ,N)-module in the sense of Fontaine; the fact
that the above diagram is bicartesian and Hi

ét(XC ,Qp) is finite dimensional implies, in particular,
that this filtered (ϕ,N)-module is weakly admissible, a condition that can be described purely in
terms of the interplay between ϕ, N and the filtration.

Remark 1.3. (i) As we have mentioned above, Fontaine’s conjecture is now a theorem. There have
been essentially four lines of attack: the almost étale approach [18], the syntomic approach [42], the
motivic approach [33], and the derived geometry approach [2]. The resulting period isomorphisms
are compared in [34]. The most comprehensive results are those of Beilinson [2]: there is no
assumption of properness, existence of good models or smoothness.

(ii) If we don’t assume X to have a semistable model over OK then Hi
HK(X) has to be replaced

with Hi
HK(XK), which is not an F -vector space anymore but a F nr-vector space, where F nr is the

maximal unramified extension of F . Moreover, Hi
HK(XK) is equipped with a semi-linear action of

GK commuting with ϕ and N and the action of GK is smooth (i.e., any element x is fixed by GL for
some finite extension L of K that depends on x). In this case, the isomorphisms involving Hi

HK(X)

in (v) of Remark 1.2 involve smooth vectors for the action of GK and not only fixed vectors: i.e,
we have a functorial isomorphism

Hi
HK(XK)∗ ' Homsm

GK
(Hi

ét(XC ,Qp),Bst) of (ϕ,N,GK)-modules over F nr.

1Recall that BdR = B+
dR[ 1

t
], Bst = B+

st[
1
t
].
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1.2. Analytic varieties. Interest in analytic varieties is more recent despite the fact that Tate [41]
already formulated his conjecture for rigid analytic spaces. Scholze [38] established a version of
Tate’s original conjecture for smooth and proper analytic spaces over K or C and proved the
CdR-conjecture for smooth and proper analytic spaces over K. We proved the Cst-conjecture for
proper analytic spaces with a semistable model [13] (see [30] for a simplified construction) and
“de Rham-to-pro-étale” versions of the Cst-conjecture for Stein varieties [11] over K (also with a
semistable model).

In this paper, we will consider smooth dagger varieties over K or C (without any assumption
on the existence of nice models):
• Any proper or partially proper rigid analytic variety has a natural dagger structure, and this

includes, in particular, analytifications of algebraic varieties, Stein varieties (e.g. étale coverings of
Drinfeld’s spaces in any dimension), or, more generally, holomorphically convex varieties (proper
fibrations over a Stein base).
• Dagger varieties that are not necessarily partially proper include overconvergent affinoids or,

more generally, quasi-compact rigid analytic varieties with an overconvergent structure.
As we have seen in the case of algebraic varieties, Fontaine’s conjectures CdR and Cst can be

split in two: a “de Rham-to-étale” direction, and a “étale-to-de Rham” direction. We are going
to state analogous conjectures for analytic varieties but with étale cohomology replaced with pro-
étale cohomology (i.e., we are dealing with “rational” p-adic Hodge theory and not “integral” p-adic
Hodge theory; in particular, the pro-étale cohomology of the analytication of an algebraic variety
is much bigger than the étale cohomology of the algebraic variety – the latter is finite dimensional).

1.2.1. The “de Rham-to-étale” CdR and Cst conjectures for dagger varieties.

Conjecture 1.4. (de Rham-to-pro-étale CdR + Cst) Let X be a smooth dagger variety over C.
Let i ≤ r. We have a functorial bicartesian diagram:

Hi
proét(X,Qp(r)) //

��

(Hi
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr

��
Hi(F rRΓdR(X/B+

dR)) // Hi
dR(X/B+

dR)

Remark 1.5. (i) The B+
dR-cohomology group Hi

dR(X/B+
dR) is a torsion-free B+

dR-module from
which one recovers the usual de Rham cohomology by moding out by t. If X is defined over K
then Hi

dR(XC/B
+
dR) ' Hi

dR(X)⊗̂KB+
dR.

(ii) If X is defined over K, all spaces are endowed with a natural topology and an action of GK
and all maps are supposed to be GK-equivariant and continuous.

(iii) As we have shown in [15], if X is defined over C, then all spaces have a natural topology
and are C-points of VS’s (pro-étale sheaves on the category PerfC of perfectoid spaces over C) and
all maps are supposed to be evaluations of morphisms of VS’s and continuous.

(iv) The Hyodo-Kato cohomology group Hi
HK(X) (see [15, Sec. 2]) is a F nr-module with a

Frobenius ϕ, a monodromy operator N , a (pro-)smooth action of GK , and a Hyodo-Kato isomor-
phism ιHK : Hi

HK(X)⊗̂FnrB+
dR
∼→ Hi

dR(X/B+
dR). The definitions of Hi

HK(X) and ιHK are adapted
from the ones of Beilinson in the algebraic setting and use the alterations of Hartl and Temkin to
produce good local models.

(v) In the case of proper analytic varieties, all cohomology groups in the diagram are finite
dimensional (as was the case in the algebraic setting) and the kernels of the horizontal arrows
are 0. This is not the case for a general analytic variety and all spaces have to be seen in the
derived category of locally convex topological vector spaces over Qp; in particular, the tensor
products are (derived) completed tensor products. Even if Hi

dR(X), for X over K, is finite dimen-
sional, Hi(Filr(B+

dR⊗̂KRΓdR(X))) surjects onto Ωi(XC)d=0 and hence can be huge (and then so
is Hi

proét(XC ,Qp(r))).
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1.2.2. The “étale-to-de Rham” CdR and Cst conjectures for dagger varieties. In the other direction,
we have the following conjectures:

Conjecture 1.6. (pro-étale-to-de Rham) Let X be a smooth dagger variety defined over K. We
have functorial isomorphims:

(CdR) Hi
dR(X)∗ ' HomGK

(Hi
proét(XC ,Qp),BdR), as filtered K-vector spaces,

(Cst) Hi
HK(X)∗ ' Homsm

GK
(Hi

proét(XC ,Qp),Bst), as (ϕ,N,GK)-modules over F nr.

Remark 1.7. As we mentioned above, even if Hi
dR(X) is finite dimensional, Hi

proét(XC ,Qp) is,
in general, huge. Hence it is a little bit of a miracle that one could recover Hi

dR(X) from it.

The previous conjecture uses Galois action to recover de Rham and Hyodo-Kato cohomologies
from pro-étale cohomology. If X is defined over C, there is no Galois action anymore but one can
use the VS structure alluded to above to recover part of the structure. This leads to the following
conjecture:

Conjecture 1.8. Let X be a smooth dagger variety defined over C. We have functorial isomor-
phisms2:

(CdR) HomB+
dR

(Hi
dR(X/B+

dR),BdR) ' HomVS(Hiproét(X,Qp),BdR), as BdR-modules,

(Cst) HomFnr(Hi
HK(X),Bst) ' HomVS(Hiproét(X,Qp),Bst), as Bst-modules.

Remark 1.9. (i) It is not possible to recover filtration on the B+
dR-cohomology just by looking at

the cohomology level because the tkB+
dR’s are all isomorphic as VS’s whereas the tkB+

dR’s are all
distinct as GK-modules.

(ii) In the same way, ϕ and N disappear since M = MN=0,ϕ=1 ⊗Bϕ=1
cr

Bst if M = M0 ⊗Fnr Bst,
where M0 is a finite rank (ϕ,N)-module over F nr.

(iii) One way to understand points (i) and (ii) of the remark is the following. Conjecture 1.4 rep-
resents Hi

proét as the H
0 of a quasi-coherent sheaf on the Fargues-Fontaine curve that is obtained as

the "modification" at ∞ of the sheaf associated to a ϕ-module. The H0 determines the sheaf (be-
cause there is no H1), but not the "modification" that gave rise to it. Maybe a more sophisticated
formulation on the level of derived categories would allow to do that (see Remark 7.9) ?

Our main result towards these conjectures is Thorem 1.10 below, in which a small variety (for
results pertaining to “big” varieties, see Remark 1.14) is a smooth dagger variety that is quasi-
compact or can be covered by a finite number of Stein varieties whose intersections have finite
dimensional de Rham cohomology (the latter case includes analytifications of algebraic varieties
and naive interiors of quasi-compact varieties).

Theorem 1.10. If X is small, then:
• Conjecture 1.4 is true.
• If X is defined over K, then Conjecture 1.6 is true, and if X is defined over C, Conjecture 1.8

is true.

The VS’s in the diagram in Conjecture 1.4 have some finiteness properties: they are extensions
of finite Dimensional Vector Spaces (also known as Banach-Colmez spaces, and referred to as BC’s
in the rest of the text) by torsion B+

dR-Modules. In particular, such objects W (referred to as
qBC’s, the “q” standing for “quasi”) have a height ht(W) ∈ N (if W is the qBC attached to a finite
dimensional Qp-vector space W , then ht(W) = dimQp

W ). We have the following result echoing
(ii) of Remark 1.2 which is the key to the proof of all the results in Theorem 1.10; it is a little bit
surprising that the pro-étale cohomology encodes this finiteness result considering how big it is if
X is not proper.

2In all of the paper HomVS means morphisms of VS’s which are continuous on C-points.
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Theorem 1.11. If X is a quasi-compact smooth dagger variety, we have

ht(Hiproét(XC ,Qp)) = dimC(Hi
dR(XC)).

The fact that the diagram in Conjecture 1.4 is bicartesian implies in particular that the asso-
ciated sequence is exact. The exactitude on the right can be rephrased in a way echoing (vii) of
Remark 1.2:

Theorem 1.12. If X is a quasi-compact smooth dagger variety, (Hi
HK(X), Hi(X/B+

dR)) is an
acyclic3 filtered (ϕ,N)-module.

Remark 1.13. (i) The proof of Theorem 1.10 makes heavy use of the theory of BC’s and, in
particular, the geometric point of view advocated in Le Bras’s thesis [32]. About half of the paper
is devoted to proving results about BC’s that are needed in the proof of our main result. Some of
these results may be of independent interest.

(ii) For proper varieties, we can use the more naive theory of BC’s as in [13], where we treated
the case of varieties with semistable models over the integers.

(iii) For an overconvergent affinoid or a small Stein variety, one gets a direct proof from the
basic comparison theorem proved in [15]. The main difficulty is to go from this case to the case of a
variety covered by a finite number n of overconvergent affinoids or small Stein varieties. This relies
on a delicate induction on n which deepest part is establishing Theorem 1.11 and Theorem 1.12,
see Proposition 1.17 and the ensuing comments.

Remark 1.14. (i) If X is smooth and Stein over C or K, it can be written as a strict increasing
union of overconvergent affinoids. We get that the horizontal rows in the diagram in Conjecture 1.4
are surjective and their kernels are (Ωi−1(X)/Ker d)(r−i). In particular, we have an exact sequence

0→ Ωr−1(X)/Ker d→ Hr
proét(X,Qp(r))→ (Hr

HK(X)⊗̂FnrB+
st)

N=0,ϕ=pr → 0

generalizing the exact sequence of [11, Th. 1.8] which was proven under the assumption that X has
a semistable model. It is not difficult to deduce Conjectures 1.4, 1.6 and 1.8 in this case.

(ii) A general partially proper rigid analytic variety can be written as an increasing union
of quasi-compact dagger varieties, but there are annoying problems with R1 lim’s that show up
when you want to deduce Conjectures 1.4, 1.6 and 1.8 in general from the quasi-compact case
of Theorem 1.10 (these problems do not appear in the Stein case). The main issue seems to be
whether or not the Hodge filtration on de Rham cohomology is formed of closed subspaces. We
have partial results (for example for a product of a Stein and a proper variety or for a proper
fibration over a curve), but nothing definitive; we report on these results in [16].

1.3. Proofs. The main ingredients in the proofs are the results from [15] and the parallel theories
of BC’s [8, 9, 32] and Fontaine’s almost C-representations [27, 28].

Let X be a quasi-compact smooth dagger variety over C. From [15] we use the existence of the
basic comparison isomorphism with syntomic cohomology:

(1.15) Hi
syn(X,Qp(r))

∼→ Hi
proét(X,Qp(r)), i ≤ r,

and the exact sequence

(1.16) · · · → DRi−1
r (X)→ Hi

syn(X,Qp(r))−−→HKi
r(X)

ιHK−−→DRi
r(X)→ · · · ,

where we have set:

HKi
r(X) := (Hi

HK(X)⊗̂FnrB+
st)

N=0,ϕ=pr , DRi
r(X) := Hi(RΓdR(X/B+

dR)/F r).

Very important for what follows is that this exact sequence and the isomorphism (1.15) can be
promoted to the category of VS’s (see [15, Th. 1.3, Th. 1.7]).

3This means that the associated vector bundle on the Fargues-Fontaine curve has cohomology only in degree 0.
It is purely a condition on the interplay between ϕ, N and the filtration. Weakly admissible filtered (ϕ,N)-modules
are acyclic.
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1.3.1. On the proof of Conjecture 1.4. Proving Conjecture 1.4 amounts to splitting the long exact
sequence (1.16) into short exact sequences, which can be done directly for dagger affinoids (Theo-
rem 5.14), going back to the definition of syntomic cohomology. The problem is to go from affinoids
to varieties covered by a finite number of affinoids. This we do by induction on the number of
affinoids needed, using the theory of BC’s. We already used BC’s in [13] to treat the proper case
(with a semistable model), but there we were helped by Scholze’s theorem [38, Th. 1.1] that the
Hi

proét(X,Qp(r))’s are, in that case, finite dimensional Qp-vector spaces; this made it possible to
use the basic theory of BC’s as developed in [8, 9]. In the present paper, we need to use the more
powerful point of view advocated in Le Bras’ thesis [32]. The key result that comes out of the
theory of BC’s is the following proposition (Proposition 6.11):

Proposition 1.17. The following properties are equivalent:
(a) The diagram in Conjecture 1.4 is bicartesian.
(b) (Hi

HK(X), F 0Hi
dR(X/BdR)) is acyclic, for i = r − 1 and i = r.

(c) The kernel and cokernel of Hrproét(X,Qp(r))→ (Hr
HK(X)⊗FnrB+

st)
N=0,ϕ=pr have height 0.

(d) ht(Hrproét(X,Qp(r))) = dimC H
r
dR(X).

The equivalence of (d), which is a condition only about r, and (b), which involves r and r − 1,
makes it possible to do an induction on r. Among the ingredients that go into the proof of this
proposition are:
• an interpretation (Proposition 3.27) of ht(W) for a qBC W as the rank of HomVS(W,BdR)

(i.e. a categorification of the height ht),
• a dichotomy (Proposition 4.18) that tells us what happens if the sequence associated to the

diagram is not exact on the right.
It is in this dichotomy that we use in an essential way that the degrees of involved cohomology

groups are ≤ r: this implies that the slopes of Frobenius on Hyodo-Kato cohomology are ≤ r.

1.3.2. On the proof of Conjectures 1.6 and 1.8. Conjectures 1.6 and 1.8 follow from Conjecture 1.4
and results about almost C representations or BC’s of the following type:

HomGK
(B+

dR/t
k,BdR) = 0 and HomVS(B+

dR/t
k,BdR) = 0

(Proposition 2.14 for the first statement and Corollary 3.17 for the second; this type of results
allow us to get rid of the de Rham terms in the sequence of Hom’s that is deduced from the exact
sequence associated to the bicartesian diagram of Conjecture 1.4.)

HomGK
((M ⊗Fnr B+

st)
N=0,ϕ=pr ,BdR) = M∗

K

HomVS((M ⊗Fnr B+
st)

N=0,ϕ=pr ,BdR) = M∗ ⊗Fnr BdR

if M is a (ϕ,N)-module of slopes ≤ r (Theorem 4.8 and corollaries for the first statement and
Proposition 4.20 and 4.22 for the second).

Acknowledgments. W.N. would like to thank MSRI, Berkeley, and the Isaac Newton Institute,
Cambridge, for hospitality during Spring 2019 and Spring 2020 semesters, respectively, when parts
of this paper were written. We would like to thank Guido Bosco, Jean-Benoît Bost, Gabriel
Dospinescu, Laurent Fargues, Marco Maculan, Jerôme Poineau, Peter Scholze for helpful conver-
sations concerning the content of this paper.

1.3.3. Notation and conventions. Let OK be a complete discrete valuation ring with fraction field
K of characteristic 0 and perfect residue field k of characteristic p. Let K be an algebraic closure
of K and let OK denote the integral closure of OK in K. Let C = K̂ be the p-adic completion of
K. Let W (k) be the ring of Witt vectors of k with fraction field F (i.e., W (k) = OF ); let e = eK
be the ramification index of K over F . Set GK = Gal(K/K) and let ϕ be the absolute Frobenius



8 PIERRE COLMEZ AND WIESŁAWA NIZIOŁ

on W (k). We will denote by Acr,Bcr,Bst,BdR the crystalline, semistable, and de Rham period
rings of Fontaine.

We will denote by OK , O×K , and O0
K , depending on the context, the scheme Spec(OK) or the

formal scheme Spf(OK) with the trivial, the canonical (i.e., associated to the closed point), and
the induced by N → OK , 1 7→ 0, log-structure, respectively. Unless otherwise stated all formal
schemes are p-adic, locally of finite type, and equidimensional. For a (p-adic formal) scheme X
over OK , let X0 denote the special fiber of X; let Xn denote its reduction modulo pn.

All rigid analytic spaces considered will be over K or C. We assume that they are separated,
taut, and countable at infinity.

Our cohomology groups will be equipped with a canonical topology. To talk about it in a
systematic way, we will work rationally in the category of locally convex K-vector spaces and
integrally in the category of pro-discrete OK-modules. For details the reader may consult [11, Sec.
2.1, 2.3]. To summarize quickly:

(1) CK is the category of convex K-vector spaces; it is a quasi-abelian category. We will
denote the left-bounded derived ∞-category of CK by D(CK). A morphism of complexes
that is a quasi-isomorphism in D(CK), i.e., its cone is strictly exact, will be called a strict
quasi-isomorphism. The associated cohomology objects are denoted by H̃n(E) ∈ LH(CK);
they are called classical if the natural map H̃n(E)→ Hn(E) is an isomorphism.

(2) Objects in the category PDK of pro-discrete OK-modules are topological OK-modules
that are countable inverse limits, as topological OK-modules, of discrete OK-modules M i,
i ∈ N. It is a quasi-abelian category. Inside PDK we distinguish the category PCK of
pseudocompact OK-modules, i.e., pro-discrete modules M ' limiMi such that each Mi is
of finite length (we note that if K is a finite extension of Qp this is equivalent to M being
profinite). It is an abelian category.

(3) There is a tensor product functor from the category of pro-discrete OK-modules to convex
K-vector spaces:

(−)⊗K : PDK → CK , M 7→M ⊗OK
K.

Since CK admits filtered inductive limits, the functor (−)⊗K extends to a functor (−)⊗K :

Ind(PDK) → CK . The functor (−)⊗K is right exact but not, in general, left exact. We
will consider its (compatible) left derived functors

(−)⊗LK : D−(PDK)→ Pro(D−(CK)), (−)⊗LK : D−(Ind(PDK))→ Pro(D−(CK)).

If E is a complex of torsion free and p-adically complete (i.e., E ' limnE/p
n) modules

from PDK then the natural map

E⊗LK → E⊗K

is a strict quasi-isomorphism [11, Prop. 2.6].

Unless otherwise stated, we work in the derived (stable) ∞-category D(A) of left-bounded
complexes of a quasi-abelian category A (the latter will be clear from the context). Many of our
constructions will involve (pre)sheaves of objects from D(A). We will use a shorthand for certain
homotopy limits: if f : C → C ′ is a map in the derived ∞-category of a quasi-abelian category, we
set

[ C
f // C ′ ] := holim(C → C ′ ← 0).

For an operator F acting on C, we will use the brackets [C]F to denote the derived eigenspaces
and the brackets (C)F or simply CF to denote the non-derived ones.

Finally, we will use freely the notation and results from [14].



THE Cst-CONJECTURE 9

2. Review of almost C-representations

We will briefly review Fontaine’s theory of almost C-representations [27] (see also [28]) and
some of its consequences. The theory has a satisfactory shape only when [K : Qp] <∞, but some
parts work for K arbitrary. Fortunately, the almost C-representations that we are going to deal
with have special features and we are only going to use the results in § 2.3 for which we provide
alternative proofs (working for general K).

2.1. Notation. A banach is a Banach space over Qp (up to an equivalence of norms) and a banach
representation of GK is a banach with a continuous and linear action of GK . Denote by B(GK) the
category of banach representations of GK . It has a natural exact category structure: a short exact
sequence in B(GK) is a sequence

0→ B1
f→ B2

g→ B3 → 0,

where g is a strict epimorphism and f is a kernel of g.
A Qp-representation of GK is a finite dimensional Qp-vector space with a continuous and linear

action of GK . Similarly, a C-representation of GK is a finite dimensional C-vector space with
a continuous and semilinear action of GK . We will denote by RepQp

(GK), resp. RepC(GK),
the category of Qp-representations, resp. C-representations. More generally, one can define the
category RepB+

dR
(GK) of finite length B+

dR-representations.
Fontaine proved the following surprising theorem:

Theorem 2.1. (Fontaine, [27, Th.A, Th.A′]) If [K : Qp] <∞, the forgetful functors

RepC(GK)→ B(GK), RepB+
dR

(GK)→ B(GK)

are fully faithful.

In other words, if W1,W2 are two C-representations of GK , all Qp-linear continuous GK-
equivariant maps, of W1 to W2 are necessarily C-linear. Similarly, if W1,W2 are two B+

dR-
representations of GK , all Qp-linear continuous GK-equivariant maps, of W1 to W2 are necessarily
B+

dR-linear.

Remark 2.2. The proof uses Sen’s theory [39] and gives a stronger result: one has the same
statements for E-linear maps between E-representations for which the Hodge-Tate-Sen weights
are algebraic over E (a condition that is automatic for E = Qp, if [K : Qp] < ∞, whence the
theorem). In particular, we have the following fundamental result, valid for arbitrary K:

HomGK
(C,C) ' K

2.2. Almost C-representations.

2.2.1. The general theory. Two banach representations W1 and W2 are almost isomorphic if there
exist two finite dimensionalQp-vector spaces Vi ⊂Wi, i = 1, 2, stable under GK such thatW1/V1 '
W2/V2. An almost C-representation is a banach representation which is almost isomorphic to Cd

for some d ∈ N. Denote by C (GK) the category of almost C-representations.

Remark 2.3. The above definition makes sense for arbitrary K, but the theory has a satisfactory
shape only for [K : Qp] <∞; maybe the point of view developped in [28] would lead to satisfactory
theory for arbitrary K?

From now on, assume that [K : Qp] <∞. Then C (GK) is an abelian subcategory of the exact
category B(GK). If W/V2

∼= Cd/V1, one sets dimW = d and ht(W ) = dimQp V2− dimQp V1. This
is independent of choices and yields additive functions [27, Th.B] – a nontrivial fact whose proof
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uses the theory of BC’s4 [8], [9]. We have d(C) = 1,ht(C) = 0 and d(V ) = 0,ht(V ) = dimQp
(V )

if V is a Qp-representation. The category C (GK) contains all B+
dR-representations and if W is a

B+
dR-representation of length d then it is almost isomorphic to Cd [27, Th.C]; we have d(W ) = d

and ht(W ) = 0. In particular, the B+
dR-representations C and C(1) are almost isomorphic.

Remark 2.4. The category C (GK) modulo almost isomorphisms is semi-simple with a single
isomorphism class of simple objects, the class of C.

Fontaine reduced the computation of Ext-groups in the category C (GK) to the computation
of Ext-groups in the category RepB+

dR
(GK) and the computation of Ext-groups in the category

RepQp
(GK) via the following fact (which relies on [27, Prop. 5.5] and [27, Prop. 5.6]):

Proposition 2.5. (Fontaine, [27, Prop. 6.4, Prop. 6.5])
(i) Let X,Y ∈ RepQp

(GK). Then we have a canonical isomorphism

ExtiGK
(X,Y )

∼→ ExtiC (GK)(X,Y ), i ≥ 0.

(ii) Let X,Y ∈ RepB+
dR

(GK). Then we have a canonical isomorphism

Exti
B+

dR(GK)
(X,Y )

∼→ ExtiC (GK)(X,Y ), i ≥ 0.

He proved the following result:

Theorem 2.6. (Fontaine, [27, Th. 6.1, Prop. 6.8, Prop. 6.9]) Let X,Y ∈ C (GK).
(i) The Qp-vector spaces ExtiC (GK)(X,Y ) have finite rank and are trivial for i ≥ 3.
(ii)

∑2
i=0(−1)i dimQp

ExtiC (GK)(X,Y ) = −[K : Qp] ht(X) ht(Y ).
(iii) There exists a natural trace map Ext2

C (GK)(X,X(1))→ Qp and, for 0 ≤ i ≤ 2, the map

ExtiC (GK)(X,Y )× Ext2−i
C (GK)(Y,X(1))→ Ext2

C (GK)(X,X(1))→ Qp

defines a perfect duality.

2.2.2. B+
dR-representations. B+

dR-representations are objects of C (GK) and we have a recipe for
computing Ext groups between these objects. We still assume [K : Qp] <∞, but the results below
are valid in greater generality (see Remark 2.2).

Let χ be the cyclotomic character. Let K∞ ⊂ K(µp∞) denote the cyclotomic Zp-extension of
K. Let γ be a topological generator of Gal(K∞/K). We choose a sequence {ζpn}n≥1 of primitive
pn’th roots of unity ζpn , n ≥ 1, such that ζppn+1 = ζpn . Let t ∈ B+

dR be the uniformizer associated
to {ζpn}n≥1. We will also use its twisted form t′ := t/πt defined in [27, Sec. 2.1]; it is a uniformizer
of B+

dR as well, fixed by Gal(K/K∞) whereas t is only fixed by Gal(K/K(µp∞)).

Proposition 2.7. Let W be a B+
dR-representation. The groups ExtiC (GK)(C,W ) are computed by

the complex

W(0)

x 7→(t′x,(γ−1)x)// W(1) ⊕W(0)

(x,y)7→(t′y−(χ−1(γ)γ−1)x)// W(1),

where W(0) is the space of generalized invariants5 and W(1) = t′((t′)−1W )(0).

Proof. By Proposition 2.5, the natural map

(2.8) Exti
B+

dR(GK)
(C,W )→ ExtiC (GK)(C,W )

from the Ext-groups in the category of B+
dR-representations is an isomorphism. Our proposition is

now [27, Th. 2.14]. �

4More specifically, the proof uses the result which says that, if S is an effective BC of dimension 1 and height h

and if f : S → C is a morphism of BC’s whose image is not finite-dimensional, then f is surjective and its kernel
has dimension 0 and height h.

5The elements killed by (g1 − 1) · · · (gr − 1) for all g1, . . . , gr ∈ GK , for r big enough.
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We will state two simple consequences of the above proposition.

Corollary 2.9. If N ≥ 0 and 1 ≤ i < j, then

HomC (GK)(B
+
dR/t

i, t−NB+
dR/t

j) = 0 and Ext1
C (GK)(B

+
dR/t

i, t−NB+
dR/t

j) = 0.

Proof. By devissage (and twisting by χ−j for 0 ≤ j ≤ i − 1), we can reduce to the case i = 1. If
W = t−NB+

dR/t
j , we have W(0) = K and W(1) = Kt′, and our result follows from Proposition 2.7

(multiplication by t′ induces an isomorphism of W(0) with W(1) and the other maps are identically
zero, and it follows that the complex in the proposition is acyclic). �

Lemma 2.10. Let j ∈ Z, k ≥ 1. Then

Ext0
C (GK)(B

+
dR/t

k, C(j)) '

{
0 if j 6= 0

K if j = 0,

Ext1
C (GK)(B

+
dR/t

k, C(j)) '

{
0 if j 6= 0, k

K if j = 0, k,

Ext2
C (GK)(B

+
dR/t

k, C(j)) '

{
0 if j 6= k

K if j = k.

Proof. We will use Proposition 2.7 with W = (B+
dR/t

k)(1 − j) as well as the duality between
ExtiC (GK)(C,W ) and Ext2−i

C (GK)(W,C(1)) from Theorem 2.6. We have W(0) = Ktj−1(1 − j) if
1 ≤ j ≤ k, W(0) = 0 if j ≤ 0 or j ≥ k + 1, and W(1) ' Kt′tj−1(1− j) if 0 ≤ j ≤ j − 1, W(1) = 0 if
j ≤ −1 or j ≥ k. In the complex from Proposition 2.7 computing the Ext-groups ExtiC (GK)(C,W ),
the only nonzero maps are the multiplications by t′ : W(0) →W(1) which are isomorphisms unless
exactly one of the two groups is trivial (i.e., j = 0 or j = k). Our result follows. �

Remark 2.11. Every non-trivial extension of B+
dR/t

k by C(k) is isomorphic to B+
dR/t

k+1.

Example 2.12. Extensions of Tate twists. We have Ext1
C (GK)(C,C) ' K (the K-vector space is

generated by the class of C⊗ (Qp⊕Qp log t)). Since Ext0
C (GK)(C,C) ' K by Remark 2.2, this im-

plies that Ext2
C (GK)(C,C) = 0 by Theorem 2.6. We also have, by duality, Ext1

C (GK)(C,C(1)) ' K
(generated by the class ofB+

dR/t
2) and Ext2

C (GK)(C,C(1)) ' K, and all the other ExtiC (GK)(C,C(j))

are trivial.

2.3. Morphisms of B+
dR-representations. In this section, K is arbitrary. We are going to derive

consequences of the following two results which are valid for such K. These are the results that
we will use in the rest of the paper.

Proposition 2.13. (i) HomGK
(C,C) ' K.

(ii) K is dense in B+
dR.

Proof. Fontaine’s proof [26] of (i) works for arbitrary K (the alternative proof in [29], which uses
class field theory, works only for [K : Qp] <∞). For (ii), see [10]. �

Proposition 2.14. We have
(i) HomGK

(C,C) ' K, HomGK
(C,C(j)) = 0 if j 6= 0.

(ii) HomGK
(B+

dR, t
−NB+

dR/t
kB+

dR) ' K for N ≥ 0, k ≥ 1; compatibly in k.
(iii) HomGK

(B+
dR,B

+
dR) ' K, HomGK

(BdR,BdR) ' K.
(iv) HomGK

(tjB+
dR/t

kB+
dR,BdR) = 0, HomGK

(B+
dR/t

kB+
dR,B

+
dR/t

`B+
dR) = 0 if ` > k.

Proof. The first claim of (i) is Fontaine’s theorem. The second claim of (i) follows from the fact
that C(j) does not have elements on which the action of GK factors through a finite quotient and
hence λ ∈ HomGK

(C,C(j)) is identically zero on K, and thus on C by continuity and density of
K in C.
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Let us prove (ii). Any map λ : B+
dR → t−NB+

dR/t
kB+

dR send K to K since elements of K are
the smooth vectors for the action of GK in B+

dR and t−NB+
dR/t

kB+
dR. By continuity, and density

of K in B+
dR one sees that λ(B+

dR) ⊂ B+
dR/t

kB+
dR.

Now, if k = 1, λ(tK) is sent to 0 in B+
dR/t = C since C(−1) does not have elements on which the

action of GK factors through a finite quotient. But tK is dense in tB+
dR, hence λ factors through

B+
dR/t = C. It follows from (i) that λ is the multiplication by κ ∈ K (composed with B+

dR → C).
Now, if k ≥ 1, we can compose with B+

dR/t
k → C to deduce that there exist κ ∈ K such that λ−κ

has values in tB+
dR/t

kB+
dR. But the image of K by λ − κ is identically 0 for the same reasons as

above; hence λ = κ and we are done.
The first statement of (iii) follows from (ii) since

HomGK
(B+

dR,B
+
dR) = limk HomGK

(B+
dR,B

+
dR/t

kB+
dR)

For the second statement, let λ ∈ HomGK
(BdR,BdR). By the same arguments as above, λ(K) ⊂ K;

hence, by continuity, λ(B+
dR) ⊂ B+

dR and the restriction of λ to B+
dR is the multiplication by an

element κ of K. But λN defined by λN (x) = tNλ(t−Nx) also belongs to HomGK
(BdR,BdR) and

is the multiplication by κ on tNB+
dR. It follows that λN is the multiplication by κ on B+

dR, and λ
is the multiplication by κ on t−NB+

dR. Hence the second claim of (iii).
Finally, for (iv) we may assume j = 0 by twisting. Then the same arguments as for (ii) show

that λ(B+
dR/t

k) ⊂ B+
dR for the first claim, and that θ ◦ λ is κθ for some κ ∈ K for both claims.

One deduces that λ = κ on K. But we can find a sequence (xn)n∈N of elements of K converging
to tk in B+

dR hence to 0 in B+
dR/t

k, and continuity of λ implies that 0 = λ(0) = κtk. Hence κ = 0

(since ` > k for the second claim), and λ = 0, which finishes the proof. �

3. The categories BC and qBC

In this chapter we recall the definition of BC’s6 and introduce qBC’s (categories BC and qBC ).
We will study properties of both categories, in particular, the canonical filtration and its relation
to the Harder-Narasimhan filtration. Moreover, we will partially categorify height of BC’s and
introduce a notion of acyclic (ϕ,N)-modules that will play an important role later on in the paper.

3.1. The category BC . We will discuss now basic properties of the category BC of BC’s and
the canonical filtration of its objects.

3.1.1. Definitions and basic properties. Recall [8] that a BC7 W is, morally, a finite dimensional C-
vector space up to a finite dimensional Qp-vector space. It has a Dimension DimW = (a, b), where
a = dimW ∈ N, the dimension of W, is the dimension of the C-vector space and b = htW ∈ Z,
the height of W, is the dimension of the Qp-vector space.

More precisely, a Vector Space (VS for short) W is a pro-étale sheaf of Qp-vector spaces on
PerfC : Λ 7→W(Λ). Trivial examples of VS’s are:
• finite dimensional Qp-vector spaces V : Λ 7→ V for all Λ,
• Vd, for d ∈ N, with Vd(Λ) = Λd, for all Λ.

More interesting examples are provided by Fontaine’s rings:
• B+

cris, B
+
st, B

+
dR, Bcris, Bst, BdR are naturally VS’s (and even Rings).

• If m ≥ 1, then Bm := B+
dR/t

mB+
dR is a VS (and also a Ring).

• Let h ≥ 1 and d ∈ Z. Then Uh,d = (B+
cris)

ϕh=pd if d ≥ 0, and Uh,d = Bd/Qph if d < 0, are
VS’s.

A Vector Space W is said to be finite Dimensional (a BC for short) if it “is equal to Vd, for
some d ∈ N, up to finite dimensional Qp-vector spaces”: there exists finite dimensional Qp-vector

6Often called Banach-Colmez spaces.
7Called in [8] "finite dimensional Banach Space".
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spaces V1, V2 and exact sequences8

0→ V1 → Y→ Vd → 0, 0→ V2 → Y→W→ 0,

so that W is obtained from Vd by “adding V1 and moding out by V2”. Then dimW = d and
htW = dimQp

V1 − dimQp
V2.

Remark 3.1. (i) We are, in general, only interested inW = W(C) but, without the extra structure,
it would be impossible to speak of its Dimension (for example, C and C ⊕Qp are isomorphic as
topological Qp-vector spaces).

(ii) The functor W 7→W(C) of C-points is faithful for BC’s. Also, if W is a BC, then W(Λ) is a
Qp-Banach, for all Λ, and if W1 →W2 is a morphism of BC’s, then W1(Λ)→W2(Λ) is continuous
and strict, for all Λ.

We quote [13, Prop. 5.16]:

Proposition 3.2. (i) The Dimension of a BC is independent of the choices made in its definition.
(ii) If f : W1 → W2 is a morphism of BC’s, then Ker f , Coker f and Im f are BC’s, and we

have
DimW1 = Dim Ker f + Dim Im f and DimW2 = Dim Coker f + Dim Im f.

(iii) If dimW = 0, then htW ≥ 0.
(iv) If W has an increasing filtration such that the successive quotients are V1, and if W′ is a

sub-BC of W, then htW′ ≥ 0.

We will denote by BC the category of BC’s. It is an abelian category.

Example 3.3. The Spaces Bm and Uh,d defined above are BC’s. Their Dimensions are

DimBm = (m, 0), DimUh,d =

{
(d, h) if d ≥ 0,

(−d,−h) if d < 0.

3.1.2. Canonical filtration. In his thesis [35], [36], Plût introduced a filtration on objects of BC

and stated a number of results about this filtration. We will review them briefly here.

Remark 3.4. Most of these results can be recovered from the relation of BC to vector bundles on
the Fargues-Fontaine curve and the Harder-Narasimhan filtration studied in Le Bras’ thesis (see
Section 3.2.4).

Definition 3.5. (Curvature) Le W ∈ BC . We say that W has:
• curvature > 0, if Hom(W,V1) = 0,
• curvature = 0, or is affine, if it is a successive extension of V1,
• curvature < 0, if it injects into BddR (or, equivalently, into (B+

dR)d),
• curvature ≤ 0, if it injects into a B+

dR-module,
• curvature ≥ 0, if Hom(W,B+

dR) = 0.

Remark 3.6. (i) If W has curvature > 0 (resp. ≥ 0) and W′ has curvature ≤ 0 (resp. < 0), then
HomBC (W,W′) = 0.

(ii) A sub-VS of an VS with curvature ≤ 0 (resp. < 0) has curvature ≤ 0 (resp. < 0).
(iii) A quotient of an VS with curvature ≥ 0 (resp. > 0) has curvature ≥ 0 (resp. > 0).

Proposition 3.7. (The canonical filtration) Every W ∈ BC have a unique filtration, called the
canonical filtration,

W>0 ⊂W≥0 ⊂W

8In fact, by [32, Prop. 7.8], a sequence 0 → W1 → W2 → W3 → 0 of BC’s is exact if and only if 0 → W1(Λ) →
W2(Λ) → W3(Λ) → 0 is exact for all sympathetic algebras Λ. This implies that the latter sequence is actually
strictly exact.
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such that:
• W>0 has curvature > 0,
• W≥0/W>0 has curvature 0,
• W/W≥0 has curvature < 0.

Proof. One defines W>0 as the intersection of the kernels of all morphisms α : W→ Bm, for m ≥ 1,
and W≥0 as the intersection of the kernels of all morphisms α : W→ BdR. �

Remark 3.8. (i) W≤0: = W/W>0 is the largest quotient of curvature ≤ 0 of W.
(ii) W=0 := W≥0/W>0 is the largest affine sub-VS of W≤0.

3.2. The category BC and coherent sheaves on the Fargues-Fontaine curve. The canon-
ical filtration of BC’s is closely related to the Harder-Narasimhan filtration defined, using the
presentation of BC via coherent sheaves on the Fargues-Fontaine curve, by Le Bras [32]. We will
now explain this relation.

3.2.1. The Fargues-Fontaine curve. The (algebraic) Fargues-Fontaine curve X = XFF is the pro-
jective scheme attached to the graded Qp-algebra ⊕d≥0Ud, where Ud = (B+

cris)
ϕ=pd . The closed

points of X are in bijection with the Qp-lines of U1; if x ∈ X, we fix a basis tx of the corresponding
line. The field C corresponds to a specific point ∞ of X, and t = t∞ is Fontaine’s p-adic 2πi. We
denote by Cx the residue field at x; it is an algebraically close field, complete for vp, and C[x = C[,
but Cx is not necessarily isomorphic to C. The residue field at ∞ is C itself.

The completed local ring ÔX,x at x is the ring B+
dR(Cx), and tx is a uniformizer (if x =∞, then

B+
dR(Cx) = B+

dR).

3.2.2. Harder-Narasimhan categories. A Harder-Narasimhan category is an exact category with
two real valued functions rk and deg (rank and degree) – which are additive in short exact sequences
– satisfying extra conditions (see [20, 5.5.1], [1]). This allows to define a slope function µ = deg

rk

taking values in R
∐
{±∞} (endowed with the obvious ordering).

An object E is of slope λ if µ(E ) = λ. It is semistable if µ(E ′) ≤ µ(E ) for all strict subobjects
E ′ ⊂ E . It is stable if µ(E ′) < µ(E ) for all strict subobjects E ′ ⊂ E . Any object E has a canonical
decreasing filtration (the Harder-Narasimhan filtration) by strict subobjects E≥λ (with E≥λ ⊂ E≥µ

if λ ≥ µ), such that, if E>λ = ∪µ>λE≥µ, then E≥λ/E>λ is semistable of slope λ.
We say that E has slopes ≥ λ (resp. > λ) if E = E≥λ (resp. E = E>λ), and has slopes ≤ λ

(resp. < λ) if E>λ = 0 (resp. E≥λ = 0).
This has a number of consequences:
• If E1 is of slopes ≥ λ and E2 is of slopes < λ, then Hom(E1,E2) = 0.
• A quotient of an object of slopes ≥ λ has slopes ≥ λ.
• A subobject of an object of slopes ≤ λ has slopes ≤ λ.
• Il λ1 ≤ λ2, if E1 is of slopes ≥ λ1 and E2 of slopes ≤ λ2, then an extension of E2 by E1 has

slopes in [λ1, λ2].

3.2.3. Vector bundles. To a vector bundle E on X, one can attach its rank rk(E ) ∈ N, its degree
deg(E ) ∈ Z, and its slope µ(E ) = deg(E )

rk(E ) . These definitions can be extended to torsion coherent
sheaves by additivity in short exact sequences. In particular, torsion sheaves have rank 0, degree> 0

and slope +∞. Endowed with rk and deg, the category CohX of coherent sheaves on X is a Harder-
Narasimhan category.

The following result [20] is fundamental:

Theorem 3.9. (Fargues-Fontaine)
(i) If λ = d

h (in lowest terms), there exists, up to isomorphism, a unique stable vector bundle
O(λ) of slope λ; its rank is h and its degree d.
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(ii) Every vector bundle E on X is a direct sum

E = O(λ1)⊕ · · · ⊕ O(λr).

In particular the Harder-Narasimhan filtration splits (non canonically).
(iii) Every coherent sheaf E on X is a direct sum

E = O(λ1)⊕ · · · ⊕ O(λr)⊕
(
⊕x∈X Fx

)
,

where Fx is a torsion coherent sheaf, supported at x and zero for almost all x.

The λ1, . . . , λr above are the slopes of E (to which one has to add +∞ if one of the Fx is non
zero).

We have, by [20, Prop. 8.2.3],

H0(X,O(λ)) = (B+
cris)

ϕh=pd , H1(X,O(λ)) = 0, if λ ≥ 0,(3.10)

H0(X,O(λ)) = 0, H1(X,O(λ)) = B+
dR/(t

dB+
dR ⊕Qph), if λ < 0.

Note that Hi(X,O(λ)), for i = 0, 1, is the space of C-points of a BC Hi(X,O(λ)), and we have

Dim(H0(X,O(λ))) = (d, h), Dim(H1(X,O(λ))) = 0, if λ ≥ 0,

Dim(H0(X,O(λ))) = 0, Dim(H1(X,O(λ))) = (d,−h), if λ < 0.

Note also that Hi(X,O(λ)), for i = 0, 1, clearly depends only on C[ if λ ≥ 0; this is less clear when
λ < 0 (since t depends on C) but it is still true.

3.2.4. The category Coh−X . In his thesis [32], Le Bras shows that BC is the smallest sub-abelian
category of the category of VS’s, stable by extensions, and containing Qp and V1; this gives an
efficient alternative definition of BC (in particular, it shows that a VS extension of two BC’s is
a BC).

We note Coh−X the sub-category of Db(CohX) of complexes E• such that Hi(E•) = 0 if i 6= −1, 0,
H−1(E•) has slopes < 0 and H0(E•) has slopes ≥ 0. Any object of Coh−X can be represented by
a complex E−1

0→ E0 of coherent sheaves such that H0(X,E−1) = 0 (i.e., E−1 has slopes < 0) and
H1(X,E0) = 0 (i.e., E0 has slopes ≥ 0). Le Bras defines an exact functor

BC : Coh−X → BC

(denoted by R0τ∗ in [32, 6.2]): for a complex of coherent sheaves F on X, BC(F ) is the sheaf
associated to the presheaf S 7→ H0(XS ,FS). By definition of this functor9, one gets an exact
sequence in BC :

0→ H1(X,E−1)→ BC(E−1
0→ E0)→ H0(X,E0)→ 0.

If E−1
0→ E0 et F−1

0→ F0 are objects of Coh−X , then

HomBC(BC(E−1
0→ E0),BC(F−1

0→ F0)) =

(
Hom(E−1,F−1) Ext1(E0,F−1)

0 Hom(E0,F0)

)
The following result is the main result of [32].

Theorem 3.11. (Le Bras, [32, Th. 1.2]) The functor BC realizes an equivalence of categories

Coh−X ' BC .

9More generally, BC(E•) is an extension of H0(X,H0(E •)) by H1(X,H−1(E •)).
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3.2.5. Harder-Narasimhan filtration on BC’s. One endows Coh−X with functions rank rk−, de-
gree deg− and slope µ− = deg−

rk−
, by setting:

rk−(E−1
0→ E0) = deg(E0)− deg(E−1), deg−(E−1

0→ E0) = rk(E−1)− rk(E0),

which turn it into a Harder-Narasimhan category.
By transport of structure, this endows also BC with functions rank rk−, degree deg− and slope

µ−; we have
rk− = dim and deg− = −ht.

If Fx is torsion, then µ−(BC(0→ Fx)) = 0.
If λ = d

h (in lowest terms), denote by Uλ the BC defined by Uλ := Uh,d. Note that, if λ = d
h is

in lowest terms and e ≥ 1, then Ueh,ed = Ueλ. Then we have

Uλ =

{
H0(X,O(λ)), if λ ≥ 0,

H1(X,O(λ)), if λ < 0.

Alternatively,

Uλ =

{
BC(0→ O(λ)), if λ ≥ 0,

BC(O(λ)→ 0), if λ < 0.

Then

rk−(Uλ) = sign(λ) d, deg−(Uλ) = −sign(λ)h, µ−(Uλ) =
−1

λ
.

Remark 3.12. (i) Since Qp = U0, we have µ−(Qp) = −∞.
(ii) BC’s are naturally diamonds (and were amongst the first non trivial examples of diamonds)

and, as such, have connected components. If W is a BC, then W>−∞ is the connected component
of 0 and the quotient W−∞ is the largest étale quotient (group of connected components, a finite
dimensional Qp-vector space).

(iii) The Harder-Narasimhan filtration splits (non canonically), and every BC can be decomposed
as

(3.13) W = U−1/λ1
⊕ · · · ⊕ U−1/λr

⊕
(
⊕x H0(X,Fx)

)
,

where the λi are non zero elements of Q∪{−∞}, U−1/λi
is of slope λi, and Fx is a torsion coherent

sheaf, supported at x, zero for almost all x, and H0(X,Fx) is of slope 0. The λi are the slopes of
W (to which one has to add 0 if one of the Fx is non zero).

(iv) In the exact sequence

0→ H1(X,E−1)→ BC(E−1
0→ E0)→ H0(X,E0)→ 0,

the term on the left represents the subspace of slopes > 0 of BC(E−1
0→ E0).

Remark 3.14. (i) The existence of the exact sequence 0 → W>−∞ → W → W−∞ → 0 makes
it possible to show that a decreasing sequence of BC’s is stationary: indeed, if (Wn)n∈N is such
a sequence, then dim(Wn) is decreasing and bounded below by 0, hence is constant for n ≥ N .
It follows that WN/Wn is of dimension 0 and hence is a quotient of W−∞N . Since ht(WN/Wn)

is increasing and bounded by ht(W−∞N ) < ∞, one concludes that WN/Wn is constant for n big
enough, and that so is Wn.

(ii) One can also use a presentation to reduce to the case W = Vd, and then argue by induction
on d using the fact that a sub-BC of V1 is either V1 of a finite dimensional Qp-vector space. This
proof applies verbatim to almost C-representations.

Lemma 3.15. ([9, Prop. 2.4]) A sub-BC W of VN , containing no V1, satisfies dim(W) < ht(W)

or, equivalently, has slopes < −1.
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Proof. We will use the equivalence Coh−X ' BC . By decomposing W as a direct sum of stable
BC’s, it suffices to prove the statement for Uλ, with λ = d

h > 0 (here we used the fact that W does
not contain V1). This amounts to showing that, if f : Uλ → VN is an injective map then h > d.
Passing to the category Coh−X , we see that we need to show that if a map f [ : O(λ)→ ι∞,∗C

N is
injective on global sections then h > d. But this map factors as

O(λ)

��

f[

// ι∞,∗CN

ÔX,∞ ⊗ O(λ) // (ι∞,∗C)⊗ O(λ)
∼ // ι∞,∗Ch

OO

Tracing this diagram from the left upper corner first vertically then horizontally we obtain a map
f : O(λ) → ι∞,∗C

h, which is injective on global sections. Now, passing back (from the category
Coh−X) to the category BC we get an injective map f̃ : Uλ → Vh. Since Uλ is of Dimension (d, h)

and Vh of Dimension (h, 0), the existence of an injection implies h < d, as wanted. �

3.2.6. Morphisms. We can describe Hom and Ext1 in the category BC using the curve. For
example:

(1) If Dλ is the division algebra with center Qp and invariant λ, we have

EndBC(Uλ) = End(O(λ)) = Dλ.

(2) Recall that, if λ1 = d1
h1
, λ2 = d2

h2
, and λ1 + λ2 = d

h in the minimal form, we have O(λ1)⊗
O(λ2) = O(λ1 + λ2)n(λ1,λ2), where n(λ,λ2) = h1

h2
h. Also:

Hom(O(λ1),O(λ2)) = Hom(O,O(λ2 − λ1)), Hom(O,O(λ)) = H0(X,O(λ)).

(3) There is a bijection x 7→ Tx between the closed points of X and the Qp-lines of U1(C). If
x ∈ X, then End(U1/Tx) = Cx, where Cx is the residue field of the local ring of x in X
(recall that Cx is an algebraically closed field, complete for the p-adic valuation, an untilt
of C[; but Cx is not always isomorphic to C).

(4) Similarly, Ud/T⊗dx = BC(ix,∗Bd(Cx)), and thus End(Ud/T⊗dx ) = Bd(Cx).
(5) If λ = d

h ≥ 0 then Hom(Uλ,V1) is the C-module of rank h generated by θ ◦ ϕi, for
0 ≤ i ≤ h− 1.

3.2.7. Slope 0 and curvature 0. The map F 7→ H0(X,F ) induces an equivalence of categories
from the category of torsion coherent sheaves, supported at x, to the category of finite length
B+

dR(Cx)-modules. A finite length B+
dR(Cx)-module is a direct sum of Bm(Cx) = B+

dR(Cx)/tmx , and
the sheaf ix,∗Bm corresponding to Bm(Cx) (where ix denotes the inclusion of x in X) lives in an
exact sequence

0→ O
tmx−→ O(m)→ ix,∗Bm → 0

Passing to the sequence of H0’s (which is exact as H1(X,O) = 0), this gives an isomorphism

H0(X, ix,∗Bm) = Um/Qpt
m
x .

One deduces from the equivalence Coh−X ' BC that

EndBC (Um/Qpt
m
x ) ' EndCohX

(ix,∗Bm(Cx)) ' EndB+
dR(Cx)(Bm(Cx)) ' Bm(Cx).

In particular, for m = 1, one obtains

EndBC (U1/Qptx) ' Cx.

Note also that, if x 6=∞, then

HomBC (U1/Qptx,V1) ' HomCohX
(ix,∗Bm, i∞,∗Bm) = 0,

since the two sheaves are supported at distinct points.
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In the special case x = ∞, which will be crucial for our results, tx = t and Um/Qpt
m = Bm,

and one can describe directly the object M of BC attached to a B+
dR-module of finite length M :

we have

M = M ⊗B+
dR

B+
dR.

This can be summarized by the following result.

Proposition 3.16. The functor M 7→ M = M ⊗B+
dR

B+
dR defines an equivalence of categories

between the category of B+
dR-modules of finite length and the subcategory of BC of objects of

curvature 0.

Corollary 3.17. (i) The kernel and cokernel of a morphism of objects of curvature 0 are of
curvature 0.

(ii) If W is a torsion B+
dR-module, then HomVS(W,B+

dR) = 0 and HomVS(W,BdR) = 0.

Proof. Point (i) is a direct consequence of Proposition 3.16. To prove point (ii) we may assumeW to
be finitely generated (since, in any case, it is an inductive limit of finitely generated B+

dR-modules).
Then, we can use Proposition 3.16 to write W as W ⊗B+

dR
B+

dR for some torsion B+
dR-module W .

Now we have, using Proposition 3.16 and the fact that B+
dR = limk B+

dR/t
k,

HomVS(W,B+
dR) = limk HomVS(W,B+

dR/t
k) = limk HomB+

dR
(W,B+

dR/t
k) = HomB+

dR
(W,B+

dR) = 0

This proves the result for B+
dR. To prove it for BdR, note that W is naturally a Qp-banach and

BdR is an inductive limit of the t−NB+
dR which are Qp-Fréchet’s. Hence there exists N such that

W maps to t−NB+
dR and then W maps to t−NB+

dR. This makes it possible to use the case of B+
dR

to finish the proof. �

3.2.8. Canonical and Harder-Narasimhan filtrations. The relation between the decomposition (3.13)
and the filtration of Proposition 3.7 is given by:

W>0 '
(
⊕λi>0 U−1/λi

)
⊕
(
⊕x 6=∞ H0(X,Fx)

)
,

W≤0 '
(
⊕λi<0 U−1/λi

)
⊕H0(X,F∞) = H0

(
X,F∞ ⊕

(
⊕λi<0 O(−1/λi)

))
,

W<0 ' ⊕λi<0U−1/λi
, W=0 ' H0(X,F∞).

From the properties of Harder-Narasimhan filtrations and the above decompositions, we can
deduce the following results.

Corollary 3.18. (i) W is of curvature < 0 (resp. ≤ 0) if and only if W ' H0(X,E ), where E is
a vector bundle of slopes ≥ 0 (resp. the sum of a vector bundle of slopes ≥ 0 and a torsion sheaf
supported at ∞).

(ii) An extension of two BC’s of curvature < 0 (resp. ≤ 0) is of curvature < 0 (resp. ≤ 0).

Corollary 3.19. The sign of the curvature determines the sign of the height:
(a) curvature 0 implies height 0;
(b) curvature < 0 implies height > 0;
(c) curvature > 0 implies height ≤ 0.

Corollary 3.20. The curvature decreases by going to a subobject and increases by taking a
quotient:

(i) A sub-BC of a BC of curvature ≤ 0 (resp. < 0) has curvature ≤ 0 (resp. < 0).
(ii) A sub-BC of height 0 of a BC of curvature ≤ 0 has curvature 0.
(iii) A quotient of a BC of curvature ≥ 0 (resp. > 0) has curvature ≥ 0 (resp. > 0).
(iv) A quotient of height 0 of a BC of curvature ≥ 0 has curvature 0.
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Remark 3.21. An important consequence of (ii) of Corollary 3.20 is that a sub-BC U of a torsion
B+

dR-module W satisfies ht(U) ≥ 0 and U is itself a torsion B+
dR-module if and only if ht(U) = 0.

This can be proven, without the Harder-Narasimhan decomposition, by induction on the length
of W, using the fact that a sub-BC of V1 is either V1 or a finite dimensional Qp-vector space and
the fact that an extension of B+

dR-modules is itself a B+
dR-module. This proof extends verbatim to

almost C-representations thanks to Proposition 2.5.

3.2.9. BC’s of curvature ≤ 0. Plût says that a BC of curvature ≤ 0 is constructible, but we will
not use this terminology.

Lemma 3.22. The following conditions are equivalent:
(i) W is of curvature ≤ 0.
(ii) There is an exact sequence

(3.23) 0→ V →W→M→ 0,

where M is of curvature 0 and V is finite dimensional over Qp.

Proof. Implication (i)⇒(ii) follows from the fact that, if W is of curvature ≤ 0, then

W = H0(X,F∞)⊕
(
⊕di/hi≥0 Udi/hi

)
and we have an exact sequence 0→ Qphi → Udi/hi

→ Bdi → 0. Then V = ⊕di/hi
Qphi gives what

we want.
The converse implication (ii)⇒(i) follows from the fact that M is of slope 0 and V of slope −∞

by assumption, so any extension has slopes in [−∞, 0]. �

3.3. Categorification of height. We will introduce now a partial categorification of height of
BC’s.

3.3.1. Useful lemma. We will need the following two lemmas.

Lemma 3.24. Let λ :
∏
n≥0Wn → BdR be continuous, where the Wn’s are Qp-Banach spaces.

(i) There exists N such that λ(
∏
n≥0Wn) ⊂ t−NB+

dR.
(ii) If j ∈ N, there exists N(j) such that λ(

∏
n≥N(j)Wn) ⊂ tjB+

dR.

Proof. (i) is a consequence of the fact that
∏
n≥0Wn is Fréchet and BdR is the inductive limit of

the Fréchet’s t−NB+
dR.

(ii) is a consequence of the fact that t−NB+
dR/t

jB+
dR is a Banach; hence λj :

∏
n≥0Wn →

t−NB+
dR/t

jB+
dR factors through

∏
n<N(j)Wn. �

Lemma 3.25. Let W = lim←−nWn, where the Wn’s are Qp-Banach spaces, the transition maps are
strict and the system is Mittag-Leffler.

(i) If Y is a Qp-Banach space, Hom(W,Y ) = lim−→n
Hom(Wn, Y ).

(ii) Hom(W, tjB+
dR) = lim←−k lim−→n

Hom(Wn, t
jB+

dR/t
j+kB+

dR)).
(iii) Hom(W,BdR) = Hom(W,B+

dR)⊗B+
dR

BdR.

Proof. Since the system is Mittag-Leffler, one can replace Wn by the image of Wn+k → Wn for k
big enough (this image is still a Banach space by the strictness assumption) without changing W
or lim−→n

Hom(Wn, Y ). Hence we may assume Wn+1 → Wn to be surjective, and we can choose a
supplementary Banach subspace W ′′n of W ′n = Ker (Wn+1 →Wn) inside Wn+1: then W ′′n →Wn is
an isomorphism of Banach spaces, henceW '

∏
nW

′
n. This implies Hom(W,Y ) = ⊕nHom(W ′n, Y )

from which (i) follows (since Wn =
∏
i≤nW

′
i ).

Having written W as
∏
nW

′
n, we can apply Lemma 3.24 to deduce (ii) and (iii) from (i), since

tjB+
dR/t

j+kB+
dR is a Qp-Banach space. �
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3.3.2. The functor W 7→ h(W). If W is a topological VS, set

h(W) := Hom(W,BdR)

(Let us remind that this includes the requirement that W(C) → BdR is continuous.) This is a
BdR-module; hence h(−) is a functor from the category BC to the category of vector spaces over
BdR. In most cases of interest, because of Lemmas 3.24 and 3.25 and Corollary 3.17, we have in
fact

h(W) = Hom\(W,BdR) := colimk≥0 HomVS(W, t−kB+
dR) = Hom(W,B+

dR)⊗B+
dR

BdR

We also set
Ext1,\(W,BdR) := colimk≥0 Ext1

VS(W, t−kB+
dR).

This is a BdR-module as well.

Lemma 3.26. (i) If W is of curvature ≤ 0, then Ext1,\(W,BdR) = 0.
(ii) If 0 → W1 → W → W2 → 0 is an exact sequence of BC’s of curvature ≤ 0, the sequence

0→ h(W2)→ h(W)→ h(W1)→ 0 is exact.

Proof. Claim (ii) follows immediately from (i).
Now, the exact sequence (3.23) shows that it suffices to prove (i) for an affine and for Qp. That

Ext1
VS(Qp,B+

dR) = 0 follows easily, by devissage, from the fact that the maps B+
dR/t

m+1 → B+
dR/t

m

are surjective and Ext1
VS(Qp,V1) = 0 (see [32, Th. 4.1]). This implies that

Ext1,\(Qp,BdR) = colimk≥0 Ext1
VS(Qp, t

−kB+
dR) = 0,

as wanted.
To show that Ext1,\(W,BdR) = 0 for W affine, it suffices, again by devissage, to show that

Ext1,\(V1,BdR) = 0. To show the latter fact we use the exact sequence

0→ t−kB+
dR → t−k−1B+

dR → t−k−1V1 → 0

and the fact that HomVS(V1,B+
dR) = 0. This gives us the exact sequence

0→ HomVS(V1, t−k−1V1)→ Ext1
VS(V1, t−kB+

dR)→ Ext1
VS(V1, t−k−1B+

dR).

Since the first two terms are isomorphic toB+
dR/t asB

+
dR-modules, Ext1

VS(V1, t−kB+
dR)→ Ext1

VS(V1, t−k−1B+
dR)

is zero. This finishes the proof. �

Proposition 3.27. (i) If W is of curvature ≤ 0 then rk(h(W)) = ht(W).
(ii) In general, rk(h(W)) = ht(W) + rk(Ext1,\(W,BdR)).

Proof. For (i), by assumption, we have the exact sequence 0 → V → W → M → 0, where M is
affine. This yields the exact sequence

0→ h(M)→ h(W)→ h(V )→ Ext1,\(M,BdR).

Since h(M) = 0 and we have Ext1,\(M,BdR) = 0, by Lemma 3.26, this sequence implies that
rk(h(W)) = dimQp V . We are done because ht(W) = dimQp V .

(ii) follows via the exact sequence of Ext\ of a presentation: if 0→ V →W′ →W→ 0 represents
W, where W′ is an extension of Vd by a Qp-vector space V ′ of finite dimension, arguing as for (1)
we get the following diagram with exact row:

0 // h(W) // h(W′) //

o��

h(V ) // Ext1,\(W,BdR) // Ext1,\(W′,BdR) // 0

h(V ′)

Since W′ is of curvature ≤ 0, by Lemma 3.26, we have Ext1,\(W′,BdR) = 0. It follows that

rk(h(W)) = rk(h(V ′))− rk(h(V )) + rk(Ext1,\(W,BdR)),

which gives us what we wanted because ht(W) = rk(h(V ′))− rk(h(V )). �
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3.4. The category qBC . We need to enlarge the category BC to allow extensions by arbitrary
Bm-Modules, for m ≥ 1.

3.4.1. Definitions. A qBC (q stands for quasi) is a VS W such that there exists m ≥ 1 and a
sub-Bm-Module W0 of W such that W/W0 is a BC. We will denote by qBC the full subcategory
of VS’s consisting of qBC’s.

Remark 3.28. Proposition 3.16 extends to arbitrary Bm-modules: if W is a Bm-Module, then
W(C) is a Bm-module, and can be written as ⊕i∈I(Bm/t

ji)ei (with ji ≤ m). The natural map
of Bm-Modules Bm ⊗Bm W(C) → W gives an isomorphism when evaluated on C-points, hence
is an isomorphism (the kernel and cokernel are 0 since their C-points are 0). It follows that
W ' ⊕i∈I(Bm/tji)ei, and one can deduce the result for arbitrary Bm-modules from its counterpart
for finite type ones.

For W ∈ qBC , we define:
ht(W) := ht(W/W0).

This does not depend on the choice of W0: if W′0 is another choice, then W′′0 = W0 ∩W′0 is also a
possible choice, and we have exact sequences in BC :

0→W0/W′′0 →W/W′′0 →W/W0 → 0, 0→W′0/W′′0 →W/W′′0 →W/W′0 → 0;

now, since W0/W′′0 and W′0/W′′0 are finite lenght Bm-Modules, their height is 0, hence

ht(W/W0) = ht(W/W′′0) = ht(W/W′0),

as wanted.

Definition 3.29. We say that W has curvature ≤ 0 (resp. 0, resp. ≥ 0) if W/W0 has.

This does not depend on the choice of W0 for the same reasons as above, because W′0/W′′0 and
W0/W′′0 have curvature 0, hence W/W′′0 has curvature ≤ 0 (resp. 0, resp. ≥ 0) if and only if W/W′0
has, and if and only if W/W0 has.

Remark 3.30. We have analogs of Corollary 3.19 and Corollary 3.20 in the category qBC . Indeed,
in the case of the first corollary this is clear. In the case of the other one, this follows easily from
the independence of height and curvature from the presentation of qBC’s and the analogous results
for BC’s.

Lemma 3.31. Let W be a VS. Assume that W has a presentation

0→W′ →W→ V1 → 0, 0→ V2 → Y→W′ → 0,

where V1 and V2 are BC’s, and Y is a Bm-Module. Then W is in qBC , and ht(W) = ht(V1) −
ht(V2).

Proof. We have to produce a sub-Bm-Module W0 of W such that W/W0 is a BC. If we can do the
same for W′, then W0 = W′0 will work.

Hence, we can assume V1 = 0, in which case we have an exact sequence

0→ V2 → Y→W→ 0.

Since Y is a Bm-Module, V2 has slopes ≤ 0 (hence is isomorphic to H0(X,F ), for a coherent sheaf
F ), and the arrow V2 → Y factors through H0(X, ÔX,∞ ⊗F ), which is a B+

dR-Module of finite
type. Hence the image of this arrow lands in a sub-Bm-Module of finite type. This Bm-Module can
be included in a direct factor, still of finite type, and one takes for W0 a complementary subspace
of this direct factor.

The equality of heights is clear since everything contributing lives inside a BC. �
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3.4.2. qBC’s and morphisms.

Lemma 3.32. Let π : W → W′ be a morphism of VS’s, with W a Bm-Module and W′ a BC.
Then, Kerπ contains a sub-Bm-Module W0 such that W/W0 is a BC.

Proof. After quotienting W by a maximal sub-Bm-Module of Kerπ, one can assume that Kerπ

contains no non-zero sub-Bm-Module (the inverse image of a Bm-Module of Kerπ/W0 is a-Bm-
Module of Kerπ). We want to infer that then W is of finite length or, equivalently, that its t-torsion
sub-Module is of finite rank over B1.

If not, this sub-Module contains an increasing sequence of sub-Modules Xn, with Xn ' Vn.
Denote by Yn the intersection of Kerπ and Xn, and by In the image of Xn in W′. Since Xn+1/Xn '
V1, we have an exact sequence

0→ Yn+1/Yn → V1 → In+1/In → 0.

It follows that one has either Yn+1/Yn ' V1 and In+1 = In, or Yn+1/Yn is of finite dimension
over Qp and dim In+1 = dim In + 1. Since dimW′ < ∞, the second case can only happen for a
finite number of n’s, hence Yn+1/Yn ' V1, if n is big enough. In particular,

ht(Yn+1) = ht(Yn0
) and dim(Yn+1) = dim(Yn0

) + n+ 1− n0, if n ≥ n0.

Now, Yn is a sub-module of Kerπ, hence contains no V1 by assumption. Since Yn is a sub-BC
of Vn, Lemma 3.15 gives a contradiction for n ≥ ht(Yn0) − dim(Yn0) + n0, which concludes the
proof. �

Lemma 3.33. Let π : W→W′ be a morphism of VS’s, with W, W′ qBC ’s. If W′0 is a sub-Bm-
Module of W′ such that W′/W′0 is a BC, there exists a sub-Bm-Module W0 of W such that W/W0

is a BC and π(W0) ⊂W′0.

Proof. By assumption, there exists a sub-Bm-Module W1 of W such that W/W1 is a BC. Applying
Lemma 3.32 to π : W1 →W′/W′0 produces W0 such that W1/W0 is a BC and π(W0) ⊂W′0. But
then W/W0 is also BC as an extension of the two BC’s W/W1 and W1/W0. �

Proposition 3.34. Il π : W→W′ is a morphism in qBC , then Kerπ, Im π, and Cokerπ are in
qBC and ht(W) = ht(Kerπ) + ht(Im π).

Proof. Lemma 3.33 gives us sub-Bm-Modules W0 and W′0 of W and W′ such that W = W/W0

and W′ = W′/W′0 are BC’s and π(W0) ⊂W′0. Then the restriction of π to W0 is Bm-linear, hence
its kernel K0 and its cokernel C0 are Bm-Modules. The snake Lemma give us exact sequences
0→ K0 → Kerπ → V1 → 0 and 0→ V2 → C0 → Cokerπ → V3 → 0, with V1, V2, V3 BC’s. This
implies that Kerπ is in qBC and, using Lemma 3.31, that so is Cokerπ.

Now Im π is the cokernel of Kerπ →W, hence is also a qBC. Finally the formula for the heights
is easily deduced from the analogous formula for BC’s. �

Remark 3.35. (i) The above proposition implies that the category qBC is abelian.
(ii) It follows that a sequence W1

f→ W2
g→ W3 is exact if and only if the associated sequence

W1(C)
f→ W2(C)

g→ W3(C) is exact (H = (Ker g + Coker f)/(Ker g ∩ Coker f) is a qBC, hence
H = 0 if and only if H(C) = 0).

3.4.3. Exactness of the functor h(−).

Lemma 3.36. Let 0 → W1 → W2 → W3 → 0 be an exact sequence of qBC’s. Then there exist
sub-Bm-Modules W′i of Wi, such Wi/W′i are BC’s, pour i = 1, 2, 3, and such that we have an exact
sequence 0→W′1 →W′2 →W′3 → 0.
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Proof. Start with a Bm-Module W′′3 ⊂ W3 such that W3/W′′3 is a BC. Lemma 3.33 provides
W′2 ⊂ W2 with image W′3 incuded in W′′3 . Then W′3 is a Bm-Module since W′2 → W′′3 is a
morphism of Bm-Modules. And W3/W′3 is a quotient of W2/W′2, hence is BC. Finally, if W′1 is the
kernel of W′2 →W′3, the wanted sequence is exact, W′1 is a Bm-Module as kernel of a morphism of
Bm-Modules, and W1/W′1 is a subobject of W2/W′2, hence is a BC. �

Corollary 3.37. If 0→W1 →W2 →W3 → 0 is an exact sequence of qBC’s, of curvatures ≤ 0,
then the sequence 0→ h(W3)→ h(W2)→ h(W1)→ 0 is exact.

Proof. Choose W′i, for i = 1, 2, 3, fulfilling the conclusions of Lemma 3.36; set W′′i = Wi/W′i. Then
0 → W′′1 → W′′2 → W′′3 → 0 is an exact sequence of BC’s of curvature ≤ 0, hence the sequence
0 → h(W′′3) → h(W′′2) → h(W′′1) → 0 is exact by Lemma 3.26. One concludes remarking that
h(W′i) = 0 (since W′i is a Bm-Module), hence h(W′′i )→ h(Wi) is an isomorphism. �

4. Filtered (ϕ,N)-modules

In this chapter we study filtered (ϕ,N,GK)-modules over K or C and their relations to the
categories of almost C-representations and BC’s. In particular, we introduce the notion of acyclic
(ϕ,N,GK)-modules as a generalization of weakly-admissible (ϕ,N,GK)-modules. While the (ϕ,N,GK)-
modules (Hi

HK(XC), Hi
dR(X)) coming from algebraic geometry tend to be weakly admissible those

coming from overconvergent geometry tend to be only acyclic (as shown later in this paper).
The results of this chapter will be crucial for the proofs of our results towards the Cst-conjecture.

In particular, Theorem 4.8 and its corollaries (resp. Propositions4.22) will be used to study the
pro-étale-to-de Rham part of the Cst-conjecture for varieties over K (resp. over C). The dichotomy
of Proposition 4.18 will play a big role in the proof of the de Rham-to-pro-étale part of the Cst-
conjecture.

4.1. Filtered (ϕ,N,GK)-modules over K.

4.1.1. Filtered (ϕ,N,GK)-modules.
• (ϕ,N,GK)-modules. A (ϕ,N)-module over F or F nr is a finite dimensional F -module or

F nr-module M endowed with a Frobenius ϕ : M → M , semilinear with respect to the absolute
Frobenius on F or F nr, and a linear map N : M →M satisfying Nϕ = pϕN .

More generally, a (ϕ,N,GK)-module over F nr is a (ϕ,N)-module over F nr endowed with a
smooth10 semilinear action of GK which commutes with ϕ and N .

If M is a (ϕ,N,GK)-module over F or F nr, we define its dual M∗ as HomF (M,F ) endowed
with actions of ϕ, N and GK given by

〈ϕ(µ), v〉 = ϕ(〈µ, ϕ−1(v)〉), 〈N(µ), v〉 = −〈µ,N(v)〉, 〈σ(µ), v〉 = σ(〈µ, σ−1(v)〉), if σ ∈ GK .

• Filtered modules. A filtered module (M,Fil•) over K is a K-module M together with a
descending filtration Fil• on MK = K ⊗F M by sub-K-modules FiliMK , with FiliMK = MK if
i� 0 and FiliMK = 0 if i� 0.

If (M,Fil•) is a filtered module over K, we define the dual filtered module (M∗,Fil•⊥) by
endowing the K-dual M∗ = HomK(M,K) of M , with the filtration

Fili⊥M
∗ = (Fil1−iM)⊥.

If the filtration is obvious from the context, we don’t indicate it in the notation; for example, the
de Rham cohomology of a variety X over K is a filtered module over K if we endow it with the
Hodge filtration, and will just be denoted by H•dR(X), the Hodge filtration being taken for granted.
• Filtered (ϕ,N,GK)-modules. A filtered (ϕ,N)-module (M,Fil•) over K is a (ϕ,N)-module M

over F with a structure of filtered module over K on MK = M ⊗F K.

10This means that the stabilizers of elements of M are open in GK .



24 PIERRE COLMEZ AND WIESŁAWA NIZIOŁ

A filtered (ϕ,N,GK)-module (M,Fil•) over K is a (ϕ,N,GK)-module M over F nr with a struc-
ture of filtered module over K on MK = (M ⊗Fnr K)GK .

If (M,Fil•) is a filtered (ϕ,N,GK)-module over K, we define its dual (M∗,Fil•⊥) as the dual
(ϕ,N,GK)-module M∗ with the module M∗

K = (MK)∗ endowed with the filtration Fil•⊥.
As before, if the filtration is obvious from the context, we will use sometimes just M to denote

a filtered (ϕ,N)-module (M,Fil•) over K or sometimes (M,MK) as in the case of de Rham
cohomology: if X is a smooth quasi-compact dagger variety over K then (Hi

HK(XC), Hi
dR(X)) is

a filtered (ϕ,N,GK)-module over K thanks to the Hyodo-Kato isomorphism.

4.1.2. Acyclicity and admissibility. If M is a filtered (ϕ,N,GK)-module over K, the rank rk(M)

of M is the dimension of M over F nr. If M has rank 1, one defines the degree deg(M) of M by
the formula

deg(M) := tN (M)− tH(M),

where tN (M) et tH(M) are defined by choosing a basis e of M over F nr:
• there exists λ ∈ (F nr)∗ such that ϕ(e) = λe, and we set tN (M) = vp(λ);
• there exists i ∈ Z, unique, such that e ∈M i

K −M
i+1
K , and we set tH(M) = i.

If M has rank r ≥ 2, then detM = ∧rM is of rank 1, and one defines the degree of M by:

deg(M) := deg(detM) = tN (M)− tH(M),

tN (M) := tN (det(M)), tH(M) := tH(detM) =
∑
i∈Z

i dimKM
i
K/M

i+1
K .

Endowed with the rank and degree functions, the category of filtered (ϕ,N,GK)-modules over K
is a Harder-Narasimhan ⊗-category.

Definition 4.1. A filtered (ϕ,N,GK)-module over K is said to be weakly admissible if it is semi-
stable of slope 0 (a reformulation [19] of the original notion [21]). It is said to be acyclic if its
Harder-Narasimhan slopes are ≥ 0.

Remark 4.2. A weakly admissible filtered (ϕ,N,GK)-module is acyclic; conversely an acyclic
filtered (ϕ,N,GK)-module is weakly admissible if and only if it is of degree 0.

Lemma 4.3. The following conditions are equivalent for a filtered (ϕ,N,GK)-module (M,Fil•)

over K:
(a) (M,Fil•) is acyclic.
(b) There exists a filtration Fil•1 on MK such that Fili1MK ⊂ FiliMK for all i, and (M,Fil•1) is

weakly admissible.

Proof. To prove (a)⇒(b), it is enough to show that one can find a filtration such that Fili1MK ⊂
FiliMK for all i, there exist i with Fili1MK 6= FiliMK , and (M,Fil•1) is acyclic. Indeed the degree
of (M,Fil•1) is then strictly smaller than that of (M,Fil•). Hence by repeating the process one
ends up with a filtration such that FilinMK ⊂ FiliMK for all i, (M,Fil•n) is acyclic and of degree
0, hence it is of Harder-Narasimhan slope 0, i.e., it is weakly admissible.

To construct such a Fil•1, let M1 be the largest subobject of Harder-Narasimhan slope 0, and
let M2 be the quotient M/M1. Then M2 has Harder-Narasimhan slope > 0, and if we pick up any
filtration Fil•1 onM2

K , such that Fili1M
2
K = FiliM2

K for all i except i0, for which Fili0M2
K/Fili01 M

2
K is

of dimension 1, then (M2,Fil•1) has Harder-Narasimhan slope ≥ 0 since the degree of any subobject
has decreased by at most 1 and hence is ≥ 0. Then defining Fili1MK as the inverse image of Fili1M

2
K

in FiliMK gives a filtration with the desired properties.
The converse implication is obvious: the Harder-Narasimhan slope of (M,Fil•) is greater or

equal to that of (M,Fil•1). �
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Lemma 4.4. Let (M,Fil•) be an acyclic filtered (ϕ,N,GK)-module over K, with ϕ-slopes in [0, r],
and Fil0MK = MK , Filr+1MK = 0. Then there exists a filtration Fil•1 on MK such that (M,Fil•1)

is weakly admissible and Fili1MK ⊂ FiliMK for all i, Fil01MK = MK , Filr+1
1 MK = 0.

Proof. In the proof of Lemma 4.3, the ϕ-slopes of M2 are in [0, r], and since deg(M2) > 0, this
implies that Fil1MK 6= 0. Let i0 be the largest integer with Fili0MK 6= 0; define Fil•1 by Fili01 MK

of codimension 1 in Fili0MK , and Fili1MK = FiliMK is i 6= 0. Then, as in the proof of Lemma 4.3,
(M,Fil•1) is acyclic, Fil01MK = MK , Filr+1

1 MK = 0, and deg(M,Fil•1) < deg(M,Fil•). Iterating
the process gives the wanted filtration. �

4.1.3. The complex attached to a filtered (ϕ,N,GK)-module. If (M,Fil•) is a filtered (ϕ,N,GK)-
module over K, we set

Xst(M,Fil•) := (M ⊗Fnr Bst)
N=0,ϕ=1, XdR(M,Fil•) := (MK ⊗K BdR)/Fil0(MK ⊗K BdR).

Then Xst(M,Fil•) and XdR(M,Fil•) are inductive limits of the X(r)
st (M,Fil•) and X(r)

dR (M,Fil•)

(defined by replacing Bst and BdR by t−rB+
st and t−rB+

dR), which are objects of C (GK).
The complex Xst(M,Fil•) → XdR(M,Fil•) is called [12, § 5.3] the “fundamental complex asso-

ciated to M ”. Its H0 is denoted by Vst(M,Fil•). Hence, we have an exact sequence

0→ Vst(M,Fil•)→ Xst(M,Fil•)→ XdR(M,Fil•)

Remark 4.5. (i) The cohomology of the fundamental complex is equal to that of the complex
X

(r)
st (M,Fil•)→ X

(r)
dR (M,Fil•), for r big enough. It follows that its cohomology groups are objects

of C (GK).
(ii) The pair (Xst(M,Fil•), XdR(M,Fil•)) is a B-pair in the sense of Berger [3, 4]; attached to

it is a GK-equivariant vector bundle E (M,Fil•) on the Fargues-Fontaine curve [20, § 10.1] and the
fundamental complex computes the cohomology (not the GK-equivariant) of this vector bundle.
Since the HN-slope of E (M,Fil•) is that of (M,Fil•), the vector bundle E (M,Fil•) has vanishing
H1 if and only if (M,Fil•) is acyclic (see Theorem 3.9 and formulas (3.10)). It follows that, if
(M,Fil•) is acyclic, we have an exact sequence

0→ Vst(M,Fil•)→ Xst(M,Fil•)→ XdR(M,Fil•)→ 0

(iii) If (M,Fil•) is acyclic, then Vst(M,Fil•) is a finite dimensional Qp-vector space if and only
if (M,Fil•) is of slope 0 (i.e., is weakly admissible). This implies it is admissible: the natural maps
give GK-equivariant isomorphisms

Vst(M,Fil•)⊗Bst
∼→M ⊗F Bst of Bst-modules commuting with ϕ and N ,

Vst(M,Fil•)⊗BdR
∼→MK ⊗K BdR of filtered BdR-modules,

and V := Vst(M,Fil•) is a potentially semi-stable representation of GK , with DdR(V ) = MK and
Dpst(V ) = M .

(iv) If (M,Fil•) is acyclic, but not admissible, the natural map

Vst(M,Fil•)⊗B+
dR → Fil0(MK ⊗K BdR)

is not an isomorphism (the kernel is huge), but it is surjective. Indeed, one can pick a filtration
Fil•1 on MK , such that Fili1MK ⊂ FiliMK for all i, and (M,Fil•1) is admissible. Then we have an
exact sequence

(4.6) 0→ Vst(M,Fil•1)→ Vst(M,Fil•)→ Fil0(MK ⊗K BdR)/Fil01(MK ⊗K BdR)→ 0

and B+
dR · Vst(M,Fil•) contains B+

dR · Vst(M,Fil•1) which, by admissibility of (M,Fil•1), is equal to
Fil01(MK ⊗K BdR) and the above exact sequence gives the desired surjectivity.

4.2. Filtered (ϕ,N,GK)-modules and almost C-representations.
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4.2.1. The functors D∗
dR and D∗

st. The definitions of the classical contravariant functors D∗
dR, D

∗
st

and D∗
pst for finite dimensional Qp-representations of GK extend to objects of C (GK) contrarily to

those of the (more commonly used) covariant functors DdR, Dst and Dpst. If W ∈ C (GK), set

D∗
st(W ) := HomGK

(W,Bst), D∗
dR(W ) := HomGK

(W,BdR).

Then D∗
st(W ) is a (ϕ,N)-module over K (with 〈ϕ(µ), v〉 = ϕ(〈µ, v〉) and 〈N(µ), v〉 = N(〈µ, v〉))

and D∗
dR(W ) is a filtered module over K (with FiliD∗

dR(W ) = {µ, µ(W ) ⊂ tiB+
dR}). We also

define D∗
pst(W ) as:

D∗
pst(W ) := Homsm

GK
(W,Bst) := lim−→

[L:K]<∞
HomGL

(W,Bst)

This is a (ϕ,N,GK)-module over F nr.

Remark 4.7. The natural maps

D∗
st(W )⊗F K → D∗

dR(W ), (D∗
pst(W )⊗Fnr K)GK → D∗

dR(W )

induced by the injections Bst ⊗F K ↪→ BdR and Bst ⊗Fnr K ↪→ BdR are injective.

The following result is an extension to acyclic filtered (ϕ,N)-modules of a classical result for
admissible filtered (ϕ,N)-modules.

Theorem 4.8. If (M,Fil•) is an acyclic filtered (ϕ,N)-module over K, then

D∗
st(Vst(M,Fil•)) 'M∗ as (ϕ,N)-modules over F ,

D∗
dR(Vst(M,Fil•)) ' (M∗

K ,Fil•⊥) as filtered K-modules.

Proof. We start with noticing that the natural pairing injects M∗ into HomGK
(Xst(M),Bst) (as

a (ϕ,N)-module) and M∗
K into HomGK

(Xst(M),BdR). Moreover, the natural map from K ⊗F
HomGK

(Xst(M),Bst) to HomGK
(Xst(M),BdR) is injective (see Remark 4.7), and one can deduce

that D∗
st →M∗ is an isomorphism from the same result for D∗

dR.
Hence, we just have to prove the result for D∗

dR. To do so, pick a filtration Fil•1 as in (iv)
of Remark 4.5: Fili1MK ⊂ FiliMK for all i and (M,Fil•1) is admissible. Let V := Vst(M,Fil•),
V1 := Vst(M,Fil•1), andW = Fil0(MK⊗KBdR)/Fil01(MK⊗KBdR), so that the exact sequence (4.6)
becomes 0→ V1 → V →W → 0.

Now, W is a direct sum of factors of the form tk1B+
dR/t

k2B+
dR. Hence D∗

dR(W ) = 0 thanks
to Proposition 2.14, and we get injections M∗

K ↪→ D∗
dR(V ) ↪→ D∗

dR(V1). But dimK D
∗
dR(V1) ≤

dimQp
V1 = dimKMK (the first inequality is true for any finite dimensional Qp-representation of

GK and the second equality is true because V1 is de Rham). It follows that these injections are
in fact isomorphisms, which proves what we want except for the equality of the filtrations on M∗

K

and D∗
dR(V ).

So let µ ∈ M∗
K . One can extend µ to a BdR-linear map BdR ⊗K MK → BdR. Thanks to (iv)

of Remark 4.5, one sees that µ(V ) ⊂ tiB+
dR is equivalent to µ(Fil0(MK ⊗K BdR)) ⊂ tiB+

dR. But
Fil0(MK ⊗K BdR) =

∑
n FilnMK ⊗K t−nB+

dR, and µ(MK) ⊂ K, hence µ(Fil0(MK ⊗K BdR)) ⊂
tiB+

dR if and only if µ(FilnMK) = 0 for n ≥ 1− i. By definition this translates into µ ∈ Fili⊥M
∗
K ,

as wanted. �

Corollary 4.9. If (M,Fil•) is an acyclic filtered (ϕ,N,GK)-module over K, then

D∗
pst(Vst(M,Fil•)) 'M∗ as (ϕ,N,GK)-modules over F nr,

D∗
dR(Vst(M,Fil•)) ' (M∗

K ,Fil•⊥) as filtered K-modules.

Proof. As in the proof of the above theorem, we have an injection of the right hand sides into the
left hand sides, and to check that these are isomorphisms, we just have to bound the dimensions
of the left hand sides. This can be achieved by passing to a finite extension L of K such that the
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action of GL on M is unramified, and applying the proposition to a (ϕ,N)-module M(L) over FL
such that M = F nr ⊗FL

M(L). �

Corollary 4.10. Let (M,Fil•) be an acyclic filtered (ϕ,N,GK)-module over K, with ϕ-slopes in
[0, r], and Fil0MK = MK , Filr+1MK = 0. Set

V rst(M,Fil•) := Ker
(
(M ⊗Fnr B+

st)
N=0,ϕ=pr → (MK ⊗K B+

dR)/Filr
)

Then11

D∗
pst(V

r
st(M,Fil•)) 'M∗{r} as (ϕ,N,GK)-modules over F nr,

D∗
dR(V rst(M,Fil•)) ' (M∗

K ,Fil•⊥{r}) as filtered K-modules.

Proof. The conditions imply that V rst(M,Fil•) = trVst(M,Fil•). Hence

HomGK
(V rst(M,Fil•),B?) = trHomGK

(Vst(M,Fil•),B?)

and the result follows. �

Example 4.11. If M in Corollary 4.10 satisfies FilrMK = MK , then (MK ⊗K B+
dR)/Filr = 0.

Hence

V rst(M,Fil•) = Xr
st(M) := (M ⊗Fnr B+

st)
N=0,ϕ=pr

The corollary then becomes:

Homsm
GK

(Xr
st(M),Bst) 'M∗, as (ϕ,N,GK)-modules over F nr,

HomGK
(Xr

st(M), tjB+
dR) '

{
MK if j ≤ 0,

0 if j ≥ 1.

Lemma 4.12. Under the hypothesis of Corollary 4.10, we have HomGK
(V rst(M,Fil•), C(j)) = 0,

for j ≥ r + 1.

Proof. We can write V := V rst(M,Fil•) in the form 0 → V1→V → W → 0, as in the proof of
Theorem 4.8, with V1 of dimension dim(M), de Rham with Hodge-Tate weights in [0, r], and W a
finite type B+

dR-module, sum of taB+
dR/t

bB+
dR’s, with 0 ≤ a ≤ b ≤ r + 1.

We have an exact sequence

0→ HomC (GK)(W,C(j))→ HomC (GK)(V,C(j))→ HomC (GK)(V1, C(j))

Since j ≥ r + 1, by Lemma 2.10, we have HomC (GK)(t
aB+

dR/t
bB+

dR, C(j)) = 0 if b ≤ r + 1;
hence HomC (GK)(W,C(j)) = 0. Since the Hodge–Tate weights of V1 are ≤ r, we also have
HomC (GK)(V,C(j)) = 0.

This concludes the proof. �

4.3. Filtered (ϕ,N)-modules over C.

4.3.1. Filtered (ϕ,N)-modules and vector bundles. A filtered (ϕ,N)-module (M,M+
dR) over C is a

tuple (M,ϕ,N,M+
dR), where:

(1) M is a finite dimensional F nr-vector space;
(2) ϕ : M →M is a Frobenius map;
(3) N : M →M is a F nr-linear monodromy map such that Nϕ = pϕN ;
(4) M+

dR ⊂M ⊗Fnr BdR is a sub-B+
dR-lattice.

11The notations M{r} and Fil•⊥{r} mean that the action of ϕ is multiplied by pr and that the filtration is shifted
by r: we have Fili⊥{r} = Fili−r

⊥ .
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To such an (M,M+
dR) one can attach a vector bundle E (M,M+

dR) on XFF, characterized by

H0(XFF \ {∞},E (M,M+
dR)) = (M ⊗Fnr Bst)

N=0,ϕ=1, E (M,M+
dR)⊗ ÔXFF,∞ = M+

dR.

We set

Vst(M,M+
dR) := H0(XFF,E (M,M+

dR)) = Ker
(
(M ⊗Fnr Bst)

N=0,ϕ=1 → (M ⊗Fnr BdR)/M+
dR

)
Definition 4.13. (M,M+

dR) is weakly admissible if E (M,M+
dR) is semistable, of slope 0. It is

acyclic if the slopes of E (M,M+
dR) are ≥ 0.

Remark 4.14. (i) If (M,Fil•) is a weakly admissible (resp. acyclic) filtered (ϕ,N)-module over K,
the induced filtered (ϕ,N)-module (M ⊗F F nr,Fil0(MK ⊗K BdR)) over C is weakly admissible
(resp. acyclic).

(ii) It follows from the classification of vector bundles onXFF that (M,M+
dR) is weakly admissible

if and only if it is admissible (i.e., a direct sum of trivial line bundles OXFF
). This translates into

the following: (M,M+
dR) is weakly admissible if and only if Vst(M,M+

dR) is finite dimensional over
Qp and the sequence

0→ Vst(M,M+
dR)→ (M ⊗Fnr Bst)

N=0,ϕ=1 → (M ⊗Fnr BdR)/M+
dR → 0

is exact. Moreover, if this is the case, the triviality of E (M,M+
dR) implies that the natural maps

Vst(M,M+
dR)⊗Qp

Bst →M ⊗Fnr Bst, Vst(M,M+
dR)⊗Qp

B+
dR →M+

dR

are isomorphisms (for the second map this is also equivalent to the map Vst(M,M+
dR)⊗Qp

BdR →
M ⊗Fnr BdR being a filtered isomorphism).

(iii) The following conditions are equivalent:
• (M,M+

dR) is acyclic,
• H1(X,E (M,M+

dR)) = 0 (and hence E (M,M+
dR) is acyclic),

• (M ⊗Fnr Bst)
N=0,ϕ=1 → (M ⊗Fnr BdR)/M+

dR is surjective.
• There exists a sub-B+

dR lattice N+
dR ⊂M

+
dR such that (M,N+

dR) is weakly admissible.
(The first two points are equivalent by Theorem 3.9 and formulas (3.10), the second and the

third are equivalent because

H1(X,E (M,M+
dR)) = Coker

(
(M ⊗Fnr Bst)

N=0,ϕ=1 → (M ⊗Fnr BdR)/M+
dR

)
the first and last points are equivalent by the same arguments as in Lemma 4.3.)

Remark 4.15. Since (M,M+
dR) 7→ E (M,M+

dR) commutes with tensor products, and since the
slope of E ⊗E ′ is equal to the sum of slopes of E and E ′, the tensor product of two acyclic filtered
ϕ-modules is again acyclic.

Remark 4.16. Assume that the ϕ-slopes are in [0, r] andM ⊗ trB+
dR ⊂ trM

+
dR ⊂M ⊗B+

dR. Then
the following conditions are equivalent:
• (M,M+

dR) is acyclic,
• (M ⊗Fnr Bst)

N=0,ϕ=pr → (M ⊗Fnr BdR)/trM+
dR is surjective,

• for all k ≥ 0, (M ⊗Fnr t−kB+
st)

N=0,ϕ=pr → (M ⊗Fnr t−kB+
dR)/trM+

dR is surjective.

This follows from the fact that (M⊗t−kB+
st)

N=0,ϕ=pr

(M⊗t1−kB+
st)

N=0,ϕ=pr
' M⊗t−kB+

dR

M⊗t1−kB+
dR

, for k ≥ 1, as can be shown,
for exemple, by a Dimension of BC argument. For the same reasons, for all k ≥ 0,

trVst(M,M+
dR) = Ker

(
(M ⊗Fnr t−kB+

st)
N=0,ϕ=pr → (M ⊗Fnr t−kB+

dR)/trM+
dR

)
4.3.2. Acyclicity and curvature. The following results supply key arguments in the proof of our
main comparison theorem (Theorem 6.14).

Lemma 4.17. Let M be a (ϕ,N)-module over F nr whose ϕ-slopes are in [0, r]. Then the Qp-
module (M ⊗Fnr B+

st)
N=0,ϕ=pr generates the B+

dR-module M ⊗Fnr B+
dR.
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Proof. Since B+
dR is a local ring , with residue field C, it suffices to show that (M⊗FnrB+

st)
N=0,ϕ=pr

generates the C-module M ⊗Fnr C.
Now, the map x 7→ x − uNx + u2

2! N
2x − u3

3! N
3x + · · · , for u ∈ B+

st maping to log([p[]/p) in
B+

dR, induces a ϕ-equivariant isomorphism M ⊗Fnr B+
cris → (M ⊗Fnr B+

st)
N=0. Since u has image 0

in C, we are reduced to proving that (M ⊗Fnr B+
cris)

ϕ=pr generates the C-module M ⊗Fnr C.
Since B+

cris contains W (kC), the theorem of Dieudonné-Manin allows us to reduce to the case
where M is elementary with slopes a

h ≤ r, i.e., it is generated by e1, . . . , eh with

ϕ(e1) = e2, ϕ(e2) = e3, . . . , ϕ(eh) = pae1.

The map x 7→ xe1 + p−rϕ(x)e2 + · · · + p−(h−1)rϕh−1(x)eh induces an isomorphism of Uh,rh−a :=

(B+
cris)

ϕh=prh−a

with (M ⊗Fnr B+
cris)

ϕ=pr . Hence we are reduced to proving that the image of
Uh,rh−a by the map x 7→ (θ(x), θ(ϕ(x)), . . . , θ(ϕh−1(x))) does not lie inside a proper sub-C-module
of Ch. Assume that it does. Then there exists λ0, . . . , λh−1 ∈ C, not all zero, such that λ0θ(x) +

λ1θ(ϕ(x)) + · · ·+ λh−1θ(ϕ
h−1(x)) = 0 for all x ∈ Uh,rh−a. In particular, one can apply this to αx,

for α ∈ Qph . Setting µi(x) = λiθ(ϕ
i(x)), we get µ0(x)α+ µ1(x)ϕ(α) + · · ·+ µh−1(x)ϕh−1(α) = 0,

for all α ∈ Qph . Linear independence of characters implies that µi(x) = 0 for all i and x, and we
get our contradiction. �

Proposition 4.18. Let M be a (ϕ,N)-module over F nr with ϕ-slopes in [0, r]. Let M+
dR be a B+

dR-
lattice in M ⊗Fnr BdR, with M ⊗Fnr trB+

dR ⊂ trM
+
dR ⊂M ⊗Fnr B+

dR. Set M
+
dR = M+

dR ⊗B+
dR

B+
dR.

Then one and only one of the following holds:
(a) The map (M ⊗Fnr B+

st)
N=0,ϕ=pr → (M ⊗Fnr B+

dR)/trM+
dR is surjective.

(b) The image of the map (M ⊗Fnr B+
st)

N=0,ϕ=pr → (M ⊗Fnr B+
dR)/trM+

dR has height > 0.

Proof. Since (M ⊗Fnr B+
dR)/trM+

dR has curvature 0, all its sub-BC’s have curvature ≤ 0. Hence, if
we are not in case (b), this implies that the curvature of the image is 0 (use Corollary 3.19), and
hence that the image is a B+

dR-module (see Proposition 3.16). Now Lemma 4.17 implies that we
are in case (a), as wanted. �

Remark 4.19. In case (b), Coker
(
(M⊗Fnr B+

st)
N=0,ϕ=pr → (M⊗Fnr B+

dR)/trM+
dR

)
has height < 0

and thus does not have curvature ≤ 0.

4.4. Filtered (ϕ,N)-modules and BC’s. The following computations supply key arguments in
the proofs of our pro-étale-to-de Rham comparison theorems in Chapter 7.

4.4.1. Finite rank (ϕ,N)-modules.

Proposition 4.20. Let M be a (ϕ,N)-module with ϕ-slopes in [0, r], and let

Xrst(M) := (M ⊗Fnr B+
st)

N=0,ϕ=pr .

Then:

HomVS(Xrst(M),BdR) 'M∗ ⊗Fnr BdR, HomVS(Xrst(M),Bst) 'M∗ ⊗Fnr Bst

Proof. Xrst(M) is of curvature ≤ 0, and the condition on the slopes imply ([13, Ex. 5.18]) that
ht(Xrst(M)) = rk(M). It follows from Proposition 3.27 that rk(h(Xrst(M))) = rk(M). On the other
hand, the inclusion B+

st ↪→ BdR induces a natural map M∗ ⊗Fnr BdR → h(Xrst(M)). Lemma 4.17
implies that this map is injective. Since the two modules have the same rank over the field BdR,
this natural map is an isomorphism, which provides our first isomorphism.

For the second isomorphism, the injection of the right hand side into the left hand side is obvious
(it follows, for example, from the first isomorphism). To prove the converse inclusion, it is enough,
granting the first isomorphism, to show that if λ ∈M∗ ⊗Fnr BdR satisfies λ(Xr

st(M)) ⊂ Bst, then
λ ∈ M∗ ⊗Fnr Bst. For this, pick a weakly admissible filtration M+

dR on M ⊗Fnr BdR, and let
V := Vst(M,M+

dR) so that V ⊗Qp
Bst ' M ⊗Fnr Bst (see Remark 4.14). Since trV ⊂ Xr

st(M),
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we have λ(V ) ⊂ Bst, and since V generates M ⊗Fnr Bst, we have λ(M) ⊂ Bst. This implies
λ ∈M∗ ⊗Fnr Bst, as wanted. �

Remark 4.21. The map x 7→ x− u
1!Nx+ u2

2! N
2x− u3

3! N
3x+ · · · induces isomorphisms

Xrcris(M) := (M ⊗ B+
cris)

ϕ=pr ∼→ Xrst(M), HomVS(Xrst(M),B+
cris) ' HomVS(Xrcris(M),B+

cris)

Since Bst = B+
cris[u,

1
t ], we obtain:

HomVS(Xrst(M),Bst) =HomVS(Xrst(M),B+
cris)⊗B+

cris
Bst

M∗ ⊗Fnr B+
cris ⊂ HomVS(Xrcris(M),B+

cris) ⊂M
∗ ⊗Fnr t−rB+

cris

(For the inclusion on the right, use the fact that V in the proof of Proposition 4.20 is included in
t−rXr

cris(M) and M ⊂ V ⊗B+
cris.)

Proposition 4.22. Let (M,M+
dR) be an acyclic filtered (ϕ,N)-module over C with ϕ-slopes in

[0, r], with trB+
dR ⊗M ⊂ trM

+
dR ⊂ B+

dR ⊗M . Set M+
dR := B+

dR ⊗B+
dR
M+

dR and

Vrst(M,M+
dR) := Ker((M ⊗Fnr Bst)

N=0,ϕ=pr → (M ⊗Fnr B+
dR)/trM+

dR).

Then

HomVS(Vrst(M,M+
dR),BdR) 'M∗ ⊗Fnr BdR, HomVS(Vrst(M,M+

dR),Bst) 'M∗ ⊗Fnr Bst

Proof. Let XrdR(M) := (M ⊗Fnr B+
dR)/trM+

dR; this is a B+
dR-module killed by tr. The hypothesis

give us an exact sequence

0→ Vrst(M,M+
dR)→ Xrst(M)→ XrdR(M)→ 0

The first isomorphism is then a consequence of Proposition 4.20 and vanishing of HomVS(XrdR(M),BdR)

and Ext1,\
VS(XrdR(M),BdR) (Corollary 3.17 and Lemma 3.26).

For the second isomorphism pick up a weakly admissible filtration N+
dR containing M+

dR (this is
possible because (M,M+

dR) is acyclic), set V := Vst(M,N+
dR), and argue as in Proposition 4.20. �

Remark 4.23. As in Remark 4.21, we have

HomVS(Vrst(M,M+
dR),Bst) =HomVS(Vrst(M,M+

dR),B+
cris)⊗B+

cris
Bst

M∗ ⊗Fnr B+
cris ⊂ HomVS(V rst(M,M+

dR),B+
cris) ⊂M

∗ ⊗Fnr t−rB+
cris

Remark 4.24. We could also have argued as in the proof of Theorem 4.8 to prove Propositions 4.20
and 4.22.

Proposition 4.25. Let (M,M+
dR) be an acyclic filtered (ϕ,N)-module over C with ϕ-slopes in

[0, r], and M ⊗Fnr trB+
dR ⊂ trM+

dR ⊂ M ⊗Fnr B+
dR. Let k ≥ 2r. Then the natural map of B+

dR-
modules

M∗ ⊗Fnr (B+
dR/t

k)→ HomVS(Vrst(M,M+
dR),B+

dR/t
k)

induced by the inclusion Vrst(M,M+
dR) ⊂M ⊗ B+

dR, has kernel and cokernel killed by t2r.

Proof. Choose a N+
dR with M ⊗Fnr B+

dR ⊂ N+
dR ⊂ M+

dR such that (M,N+
dR) is weakly admissible.

(This is possible by an adaptation of Lemma 4.4 to (ϕ,N)-modules over C.) Let V1 = Vrst(M,N+
dR),

V = Vrst(M,M+
dR), and W = V/V1, so that V1 is a finite dimensional Qp-vector space, and

W = trM+
dR/t

rN+
dR is a B+

dR-module killed by tr.
Set hk(−) := HomVS(−,B+

dR/t
k). Since (we skipped the subscripts F nr)

M ⊗ trB+
dR

tkB+
dR

⊂ trN+
dR

M⊗tkB+
dR

⊂ trM+
dR

M⊗tkB+
dR

⊂M ⊗ B+
dR

tkB+
dR
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and V1 ⊂
trN+

dR

M⊗tkB+
dR

, V ⊂ trM+
dR

M⊗tkB+
dR

, we have a commutative diagram

M∗ ⊗ (trB+
dR/t

k) // hk(
trM+

dR

M⊗tkB+
dR

) //

��

hk(
trN+

dR

M⊗tkB+
dR

) //

��

M∗ ⊗ (trB+
dR/t

k)

hk(V ) // hk(V1)

,

where the composed map M∗ ⊗ (B+
dR/t

k)→M∗ ⊗ (trB+
dR/t

k) is multiplication by tr. Now, since
V1 is finite dimensional over Qp, and N+

dR = V1 ⊗ t−rB+
dR, we have, using Proposition 3.16,

hk(
trN+

dR

M⊗tkB+
dR

) = HomB+
dR

(
trN+

dR

M⊗tkB+
dR

,B+
dR/t

k) = V ∗
1 ⊗ (B+

dR/t
k) = hk(V1).

It follows that:
• Ker

(
M∗ ⊗ (B+

dR/t
k) → hk(V )

)
is a subobject of Ker(M∗ ⊗ (B+

dR/t
k)

tr→ M∗ ⊗ (trB+
dR/t

k)),
hence is killed by tr.
• Coker(hk(V )→ hk(V1)) is a subquotient of Coker(M∗ ⊗ (B+

dR/t
k)

tr→M∗ ⊗ (trB+
dR/t

k)), and
hence is killed by tr. The cokernel of M∗ ⊗ (B+

dR/t
k) → hk(V1) is also killed by tr and, since the

kernel of hk(V )→ hk(V1) is hk(W ) which is killed by tr, it follows that Coker(M∗ ⊗ (B+
dR/t

k)→
hk(V )) is killed by t2r.

This concludes the proof. �

5. Comparison theorems: examples and a conjecture

In this Chapter we will formulate a conjecture: the existence of the fundamental diagram
for smooth dagger varieties over C. Before doing that though we will first look at examples of
comparison theorems and fundamental diagrams.

5.1. Cliffs Notes. Here we make a small digression with a quick review of relevant results from
[14] and [15].

Proposition 5.1. (Colmez-Nizioł, [14, Th. 1.1], [15, Th. 1.3])

(1) Analytic varieties: To any smooth dagger or rigid analytic variety X over C there are
naturally associated:
(a) A pro-étale cohomology RΓproét(X,Qp(r)), r ∈ Z.
(b) A syntomic cohomology RΓsyn(X,Qp(r)), r ∈ N, with a natural period morphism

αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r)),

which is a strict quasi-isomorphism after truncation τ≤r. This morphism can be lifted
to the derived category of Vector Spaces.

(c) A Hyodo-Kato cohomology12 RΓHK(X). This is a dg F nr-algebra equipped with a
Frobenius ϕ and a monodromy operator N . We have natural Hyodo-Kato strict quasi-
isomorphisms

ιHK : RΓHK(X)⊗̂RFnrC
∼→ RΓdR(X), ιHK : RΓHK(X)⊗̂RFnrB+

dR
∼→ RΓdR(X/B+

dR).

(d) A distinguished triangle

RΓsyn(X,Qp(r))−−→[RΓHK(X)⊗̂FnrB+
st]
N=0,ϕ=pr ιHK−−→RΓdR(X/B+

dR)/F r

that can be lifted to the derived category of Vector Spaces.
(e) (Local-global compatibility) In the case X has a semistable weak formal model the

above constructions are compatible with their analogs defined using the model.

12We take here the Hyodo-Kato cohomology defined in [15].
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(2) Compatibility: Let X be a smooth dagger variety over C and let X̂ denote its completion.
Then there exist natural compatible morphisms [14, Sec. 3.2.4]

ιproét : RΓproét(X,Qp(r))→ RΓproét(X̂,Qp(r)), r ∈ Z,

ι : RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r)), r ∈ Z,

RΓdR(X)→ RΓdR(X̂), RΓdR(X/B+
dR)→ RΓdR(X̂/B+

dR),

RΓHK(X)→ RΓHK(X̂).

They are strict quasi-isomorphisms if X is partially proper.

5.2. Proper rigid analytic varieties. We start with smooth and proper varieties.

5.2.1. Algebraic varieties. Let XK be an algebraic variety over K and set X = XK,K . Recall the
comparison theorem (recall that all the cohomology groups involved have finite dimension):

Theorem 5.2. Let r ≥ 0. There exists a natural Bst-linear Galois equivariant period isomor-
phism13

αst : Hr
ét(X,Qp)⊗Qp

Bst ' Hr
HK(X)⊗Fnr Bst,

that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism

αdR : Hr
ét(X,Qp)⊗Qp

BdR ' Hr
dR(XK)⊗K BdR.

In particular, we have the natural isomorphism

Hr
ét(X,Qp) ' (Hr

HK(X)⊗Fnr Bst)
ϕ=1,N=0 ∩ F 0(Hr

dR(XK)⊗K BdR), as a GK-module,

as well as the natural isomorphisms

Homsm
GK

(Hr
ét(X,Qp),Bst) ' Hr

HK(X)∗, as a (ϕ,N,GK)-module,(5.3)

HomGK
(Hr

ét(X,Qp),BdR) ' Hr
dR(XK)∗, as a filtered K-module.

5.2.2. Proper rigid analytic varieties over K. Let XK be a proper smooth rigid analytic variety
over K. Let X = XK,C . The following result generalizes [13, Cor. 1.10], where semistable reduction
was assumed. We note that all the cohomology groups involved have finite dimension: for étale
cohomology this is the result of Scholze [38, Th. 1.1]; for Hyodo-Kato cohomology this follows from
the Hyoodo-Kato isomorphism and finitness of de Rham cohomology.

Theorem 5.4. Let r ≥ 0. There exists a natural Bst-linear and GK-equivariant period isomor-
phism

αst : Hr
ét(X,Qp)⊗Qp

Bst ' Hr
HK(X)⊗Fnr Bst,

that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism

αdR : Hr
ét(X,Qp)⊗Qp

BdR ' Hr
dR,K

(X)⊗K BdR.

In particular, have the following natural isomorphisms

Homsm
GK

(Hr
ét(X,Qp),Bst) ' Hr

HK(X)∗, as a (ϕ,N,GK)-module,(5.5)

HomGK
(Hr

ét(X,Qp),BdR) ' Hr
dR(X)∗, as a filtered K-module.

Proof. Take s > r. To define the period maps consider the following composition

αst(s) : Hr
ét(X,Qp(s))

α−1
s−−→
∼

Hr
syn(X, s)→ (Hr

HK(X)⊗Fnr B+
st)

N=0,ϕ=ps p−s

−−→Hr
HK(X)⊗Fnr Bst,

where αs is the period map from [15, Cor. 6.9]. Set

αst := t−sαst(s)ε
s, αdR := ι−1

BK(ιHK ⊗ ι)αst,

13Note that there is no assumption on the variety. This formulation of the comparison theorem is due to
Beilinson [2].
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where ε is the generator of Zp(1) corresponding to t.
We follow the proof of [13, Cor. 1.10], which uses BC’s. We will sketch the arguments and refer

the reader to [13] for details. We start with stating the isomorphism

(Hr
dR(X)⊗K B+

dR)/F s
∼→ (Hr(RΓdR(X)⊗K B+

dR)/F s),

which follows from the degeneration of the Hodge-de Rham spectral sequence14 (proved by Scholze
as a corollary of the de Rham comparison theorem [38]). Using this isomorphism, we obtain the
long exact sequence (obtained from the definition of overconvergent syntomic cohomology)

→ (Hr−1
dR (X)⊗K B+

dR)/F s → Hr
syn(X,Qp(s))→ (Hr

HK(X)⊗Fnr B+
st)

N=0,ϕ=ps(5.6)

→ (Hr
dR,K

(X)⊗K B+
dR)/F s →

We recall that the groups Hr
HK(X), Hr

dR(X) have finite dimension over F nr and K, respectively.
The above long exact sequence yields short exact sequences

0→ Hr
syn(X,Qp(s))→ (Hr

HK(X)⊗Fnr B+
st)

N=0,ϕ=ps → (Hr
dR,K

(X)⊗K B+
dR)/F s → 0

To prove this, we observe that the map fr : (Hr
HK(X)⊗FnrB+

st)
N=0,ϕ=ps → (Hr

dR,K
(X)⊗KB+

dR)/F s

is the evaluation on C of a map of BC’s. But, the syntomic cohomology group Hr
syn(XC ,Qp(s)),

r ≤ s, is a finite dimensional Qp-vector space since we have the quasi-isomorphism [15, 6.10] with
étale cohomology. This implies that the cokernel of fi, viewed as a map of BC’s, is of Dimension
(0, di). On the other hand, the Space (Hr

dR,K
(X)⊗KB+

dR)/F s is a successive extension of C-vector
spaces. The theory of BC’s implies now that the map (Hr

dR,K
(X)⊗KB+

dR)/F s → Coker fr is zero,
hence Coker fr = 0, as wanted.

We have the Hyodo-Kato isomorphism (see [15, Cor. 4.32])

ιHK : Hr
HK(X)⊗Fnr C ' Hr

dR(X).

Taking GK-smooth vectors of both sides (note that X is quasi-compact) we get the Hyodo-Kato
isomorphism

Hr
HK(X)⊗Fnr K ' Hr

dR(XK)⊗K K.

Hence the pair (Hr
HK(X), Hr

dR(XK)) is a (ϕ,N,GK)-filtered module (in the sense of Fontaine).
The above short exact sequence and a “weight" argument shows that Vst(H

r
HK(X), Hi

dR(XK)) '
Hr

ét(X,Qp). Here Vst(−) is Fontaine’s functor from filtered Frobenius modules to Galois rep-
resentations. The short exact sequence and C-dimension count give also that tN (Hr

HK(X)) =

tH(Hr
dR(XK)), where tN (D) = vp(detϕ) and tH(D) =

∑
i≥0 i dimK(F iD/F i+1D). The theory of

BC’s now implies that the pair (Hr
HK(X), Hr

dR(XK)) is weakly admissible from which our theorem
follows. �

Remark 5.7. The isomorphisms (5.3) and (5.5) are strict if we put the weak topology on the
Homs.

5.2.3. Proper rigid analytic varieties over C. Let X be a smooth rigid analytic variety over C. Its
p-adic étale cohomology is finite rank by [38, Th. 1.1]. Its Hyodo-Kato cohomology is finite rank
by the Hyodo-Kato isomorphism and finitness of de Rham cohomology. Its B+

dR-cohomology is
free, finite rank over B+

dR, by the comparison isomorphism with Hyodo-Kato cohomology.

Theorem 5.8. Let r ≥ 0. There exists a natural Bst-linear period isomorphism

αst : Hr
ét(X,Qp)⊗Qp

Bst ' Hr
HK(X)⊗Fnr Bst,

that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism

(5.9) αdR : Hr
ét(X,Qp)⊗Qp

BdR ' Hr
dR(X/B+

dR)⊗B+
dR

BdR.

14Alternatively, one can use an argument analogous to the one we use in the proof of Theorem 5.8 below.
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Here, the filtration on Hr
dR(X/B+

dR) is defined by

F iHr
dR(X/B+

dR) := Im(Hr(F iRΓdR(X/B+
dR))→ Hr

dR(X/B+
dR)).

Remark 5.10. A de Rham comparison isomorphism as in (5.9) was constructed earlier in [7,
Th. 13.1]. It did not treat filtrations.

Proof. Take s > r. The period maps are define as in Theorem 5.4 but by dropping the map ιBK.
We note that Hr(RΓdR(X/B+

dR)/F s) is a BC, a successive extension of C-vector spaces of finite
rank. This follows from the fact that the distinguished triangle [15, 3.28] yields the distinguished
triangle ⊕

i≤s

RΓ(X,Ωi)(s− i)[−i]→ RΓdR(X/B+
dR)/F s+1 → RΓdR(X/B+

dR)/F s

and RΓdR(X/B+
dR)/F 1 ' RΓ(X,OX) by [15, 3.27]. Having that, the same arguments as in the

case of proper varieties over K yield short exact sequence

(5.11) 0→ Hr
ét(X,Qp(s))→ (Hr

HK(X)⊗Fnr B+
st)

N=0,ϕ=ps → Hr(RΓdR(X/B+
dR)/F s)→ 0

Moreover, these arguments show that the canonical map

Hr
dR(X/B+

dR)/F s → Hr(RΓdR(X/B+
dR)/F s)

is an isomorphism. This can be proved in the following way. By (5.11), we have a surjection

(Hr
HK(X)⊗Fnr B+

st)
N=0,ϕ=ps � Hr(RΓdR(X/B+

dR)/F s).

Since the above map factors through the natural map

(5.12) Hr
dR(X/B+

dR)/F s → Hr(RΓdR(X/B+
dR)/F s)

that latter is surjective as well. But it is also injective. Indeed, we have the distinguished triangle

F sRΓdR(X/B+
dR)→ RΓdR(X/B+

dR)→ RΓdR(X/B+
dR)/F s

It yields the long exact sequence of cohomology groups

→ Hr(F sRΓdR(X/B+
dR))

fr→ Hr
dR(X/B+

dR)→ Hr(RΓdR(X/B+
dR)/F s)→

Since F sHr
dR(X/B+

dR) = Im fr, the map in (5.12) is injective. We are done.
The two isomorphisms in our theorem follow now from Remark 4.14, using the last part of

Remark 4.16 (take M = Hr
HK(X),M+ = F 0(Hr

dR(X/B+
dR)⊗B+

dR
BdR)). �

Remark 5.13. (i) One can restate the theorem as follows (E (−,−) is the associated vector bundle
on the Fargues-Fontaine curve XFF):

Hr
ét(X,Qp) ' H0(XFF,E (Hr

HK(X), Hr
dR(X/B+

dR))).

(ii) From Theorem 5.8, we get natural isomorphisms

HomVS(Hr
ét(X,Qp),Bst) ' HomFnr(Hr

HK(X),Bst), as Bst-modules,

HomVS(Hr
ét(X,Qp),BdR) ' HomB+

dR
(Hr

dR(X/B+
dR),BdR), as BdR-modules.

5.3. Dagger Stein varieties and dagger affinoids. Having the comparison result from [15,
Cor. 6.9], we can now deduce a (simplified) fundamental diagram for pro-étale cohomology from
the one for overconvergent syntomic cohomology.

Theorem 5.14. (Simplified fundamental diagram) Let X be a smooth dagger Stein variety or a
smooth dagger affinoid over C. Let r ≥ 0. There is a natural map of strictly exact sequences

0→ Ωr−1(X)/Ker d // Hr
proét(X,Qp(r))

β̃
��

// (Hr
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr → 0

ιHK⊗θ
��

0→ Ωr−1(X)/Ker d
d // Ωr(X)d=0 // Hr

dR(X) −→ 0
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Moreover, Hr
proét(X,Qp(r)) is Fréchet or LB, respectively, the vertical maps are strict and have

closed images, and Ker β̃ ' (Hr
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr−1

.

Proof. We define β̃ := p−rβα−1
r , using [15, Cor. 6.9] and [15, Prop. 5.13]; the twist by p−r being

added to make this map compatible with symbols. The theorem follows immediately from [15,
Cor. 6.9] and [15, Prop. 5.13]. �

5.4. The fundamental diagram. We will now introduce the fundamental diagram, look at some
examples, where it appears, and, finally, state a conjecture concerning it.

5.4.1. Examples. We start with examples.

• Proper varieties.

Corollary 5.15. Let X be a smooth proper variety over C. We have the bicartesian diagram

(5.16) Hr
ét(X,Qp(r))

αst(r) //

αdR(r)

��

(Hr
HK(X)⊗Fnr B+

st)
ϕ=pr,N=0

ιHK⊗ι
��

F rHr
dR(X/B+

dR)
can // Hr

dR(X/B+
dR)

Recall that this means that this is a pushout and pullback diagram, or, that the sequence
(5.17)
0→ Hr

ét(X,Qp(r))
αst(r)⊕αdR(r)−−−−→ (Hr

HK(X)⊗FnrB+
st)

N=0,ϕ=pr⊕F rHr
dR(X/B+

dR)
ιHK⊗ι+can−−−−→ Hr

dR(X/B+
dR)→ 0

is exact.

Proof. Follows immediately from the short exact sequence (5.11). �

Remark 5.18. (i) The passage the other way, from diagram (5.16) to Theorem 5.8 is also possible:
the exact sequence (5.17) yields the exact sequence (5.11) and we can finish as in the proof of
Theorem 5.8.

(ii) The natural map Hr(F rRΓdR(X/B+
dR))→ F rHr

dR(X/B+
dR) is an isomorphism.

• Dagger Stein varieties and dagger affinoids.

Corollary 5.19. Let X be a smooth dagger Stein variety or a smooth dagger affinoid over C. Let
r ≥ 0. We have the bicartesian diagram (recall that all cohomologies are classical)

(5.20) Hr
ét(X,Qp(r))

αst(r) //

αdR(r)

��

(Hr
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr

ιHK⊗ι
��

HrF rRΓdR(X/B+
dR) // Hr

dR(X/B+
dR).

Proof. Consider the following diagram of maps of distinguished triangles

RΓsyn(X,Qp(r))
f1 //

β

��

[RΓHK(X)⊗̂FnrB+
st]
N=0,ϕ=pr

ιHK⊗ι
��

ιHK⊗ι // RΓdR(X/B+
dR)/F r

F rRΓdR(X/B+
dR)

f2 // RΓdR(X/B+
dR) // RΓdR(X/B+

dR)/F r
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Since Hi(RΓdR(X/B+
dR)/F r) = 0 for i ≥ r, the maps f1, f2 are surjective in degrees ≥ r. It suffices

to show that Ker f1
∼→ Ker f2 in degree r. We have the following commutative diagram

0 // Ker f1
//

��

Hr
syn(X,Qp(r))

f1 //

��

(Hr
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr

ιHK⊗ι
��

0 // Ker f2
//

o ϑ
��

HrF rRΓdR(X/B+
dR)

f2 //

ϑ����

Hr
dR(X/B+

dR)

ϑ����
0 // Ker f2,C

// HrF rRΓdR(X)
f2,C // Hr

dR(X)

We claim that the map Ker f2 → Ker f2,C is an isomorphism. Indeed, we compute

Ker f2
∼← Coker(Hr−1

dR (XK)⊗̂KB+
dR → Hr−1((RΓdR(XK)⊗̂KB+

dR)/F r))
∼→ Ωr−1(XK) Ker d⊗̂KC,

Ker f2,C
∼← Ωr−1(XK) Ker d⊗̂KC.

�

5.4.2. Conjecture. We will formulate now a conjecture describing pro-étale cohomology in terms
of the de Rham complex.

Conjecture 5.21. (Cst-conjecture) Let X be a smooth dagger variety over C. Let r ≥ i. The
commutative diagram

H̃i
proét(X,Qp(r)) //

��

(H̃i
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr

��
H̃iF rRΓdR(X/B+

dR) // H̃i
dR(X/B+

dR)

is bicartesian. That is, the following sequence
(5.22)
0→ H̃i

proét(X,Qp(r))→ (H̃i
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr ⊕ H̃iF rRΓdR(X/B+

dR)→ H̃i
dR(X/B+

dR)→ 0

is exact.

Remark 5.23. (i) This conjecture is known so far in the following cases:

• X is proper (see Examples 5.4.1). In this case, the two horizontal arrows are injective.
• X is Stein or affinoid (see Examples 5.4.1). In this case, the two horizontal arrows are

surjective and their kernels are Ωr−1(X)/Ker d.

(ii) Let X be a smooth dagger variety over C. If r ≥ i, set

H̃r,i := H̃i
proét(X,Qp(r)) X̃r,i := (H̃i

HK(X)⊗̂FnrB+
st)

N=0,ϕ=pr

F̃ r,i := H̃iF rRΓdR(X/B+
dR) B̃i := H̃i

dR(X/B+
dR)

and denote by Hr,i, Xr,i, etc. the images of H̃r,i, X̃r,i, etc. in CQp
. Note that the X̃r,i’s and B̃i’s

are classical, i.e., X̃r,i ' Xr,i and B̃i ' Bi.
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We have a commutative diagram with exact rows and columns:

0

��
0

��
H̃r,i //

o��

F̃ r,i ⊕ X̃r,i

t ��ot ��

// B̃i

t ��
H̃r+1,i // F̃ r+1,i ⊕ X̃r+1,i

��

// B̃i

��
Hi

HK(X)⊗̂FnrC

��

∼
ιHK

// Hi
dR(X)

��
0 0

The vertical maps are multiplications by t (on pro-étale cohomology, this corresponds to the Tate
twist); for the isomorphism Xr+1,i/tXr,i ' Hi

HK(X)⊗̂FnrC, see Remark 4.16; the bottom isomor-
phism is the Hyodo-Kato map. It follows that, for fixed i, the conjecture for r is equivalent to the
conjecture for r + 1. Hence it is enough to prove it for one r ≥ i (for example r = i).

(iii) Since the B̃i’s are actually classical, and we have a long exact sequence

· · · → X̃r,i−1 ⊕ F̃ r,i−1 → B̃i−1 → H̃r,i → X̃r,i ⊕ F̃ r,i → B̃i → · · ·

it is enough, thanks to an induction on i, to prove surjectivity of Xr,i ⊕ F r,i → Bi: this will show
that X̃r,i ⊕ F̃ r,i → B̃i is surjective (since B̃i ' Bi) and that the long exact sequence splits into
short exact sequences, as wanted.

(iv) We will prove this conjecture for quasi-compact varieties in Theorem 6.14 below.

6. De Rham-to-pro-étale comparison theorem for small varieties

We will now prove Conjecture 5.21 for small varieties. In this chapter, until Theorem 6.14, all
cohomologies, unless otherwise stated, are algebraic, i.e., we ignore topological issues (see (iii) of
Remark 5.23 of why this is a reasonable thing to do).

6.1. Conjectures. Let X be a smooth dagger variety over C. We will first state and discuss four
conjectures, a priori unrelated, on the cohomology of X:

• Conjecture 5.21 (already stated above) describes the p-adic pro-étale cohomology of X in
terms of the de Rham complex.

The remaining conjectures assume X to be quasi-compact:

• Conjecture 6.1 gives a restriction on the Hodge filtration on the de Rham cohomology in
terms of the slopes of Frobenius on the Hyodo-Kato cohomology.

• Conjecture 6.4 says that, even if huge, the pro-étale cohomology groups Hrproét(X,Qp) have
nevertheless Qp-dimension equal to dimC H

r
dR(X).

• Conjecture 6.3 says that Hrproét(X,Qp) is of curvature ≤ 0.

Next, we proceed to proving these conjectures in the case X is quasi-compact. The proof uses:

— the period quasi-isomorphism between pro-étale cohomology and syntomic cohomology
from [15, 6.10],

— the canonical distinguished triangle involving syntomic cohomology from [15, 5.12],
— delicate properties of BC’s (scattered through [8, 9, 32, 35] and recalled in Section 3.1 for

the convenience of the reader).

These ingredients allow us to prove that the four conjectures above are, in fact, equivalent
(see Proposition 6.11 as well as Lemma 6.9 and Lemma 6.10 for precise statements). We show
then Conjecture 6.4 by induction on the number n of affinoids needed to cover X; for n = 1,
Conjecture 5.21 is exactly Corollary 5.19.
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6.1.1. Acyclicity of de Rham cohomology. For a smooth dagger variety X over C, we set

(1) F iHr
dR(X/B+

dR) := Im(Hr(F iRΓdR(X/B+
dR))→ Hr

dR(X/B+
dR));

(2) Hr
dR(X/BdR) := Hr

dR(X/B+
dR)⊗̂B+

dR
BdR and equip it with the induced filtration.

Conjecture 6.1. Let X be a smooth quasi-compact dagger variety over C. For all r, the map

(Hr
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr → Hr

dR(X/B+
dR)/F r

is surjective, i.e., the pair (Hr
HK(X), F 0Hr

dR(X/BdR)) is acyclic.

Remark 6.2. If X is proper, then the pair (Hr
HK(X), F 0Hr

dR(X/BdR)) is weakly admissible hence
X verifies the conjecture. If X is Stein, then Hr

dR(X/B+
dR)/F r = 0 and X clearly satisfies the

conjecture.

6.1.2. Curvature and height of pro-étale cohomology. Let X be a smooth quasi-compact dagger
variety over C.

Conjecture 6.3. Then, for all r ≥ 0, Hrproét(X,Qp) has curvature ≤ 0.

Conjecture 6.4. For all r,

ht(Hrproét(X,Qp)) = dimC H
r
dR(X).

Remark 6.5. (i) If X is proper, Conjecture 6.4 is a theorem: we have the exact sequence of BC’s
(see Section 5.2.3)

0→ Hr
proét(X,Qp(r))→ (Hr

HK(X)⊗Fnr B+
st)

N=0,ϕ=pr → Hr(RΓdR(X/B+
dR)/F r)→ 0

We know that Hr
proét(X,Qp) has finite dimension over Qp; hence its height is equal to its dimen-

sion over Qp. We also know that the slopes of Frobenius on Hr
HK(X) are ≤ r, which implies

that ht((Hr
HK(X) ⊗Fnr B+

st)
N=0,ϕ=pr ) = dimFnr Hr

HK(X). Now, the above short exact sequence
implies that ht(Hrproét(X,Qp)) = dimFnr Hr

HK(X) and, since by the Hyodo-Kato isomorphism
dimFnr Hr

HK(X) = dimC H
r
dR(X), we have

dimQp
(Hr

proét(X,Qp)) = dimC H
r
dR(X),

as wanted.
(ii) Does there exist non proper dagger varieties X such that Hr

proét(X,Qp) s finite dimensional
over Qp for all r? Already for r = 1, one needs O(X) = C.

6.2. Equivalence of conjectures. In this section we assume X to be a smooth dagger variety
over C such that Hi

dR(X/B+
dR) is (free) of finite rank over B+

dR for all i (for example, X could be
quasi-compact, or the interior of a quasi-compact, or the analytification of an algebraic variety,
see Corollary 6.18). Conjectures 5.21, 6.1, 6.3, and 6.4 make sense in this, slightly more general,
set-up.

6.2.1. The key diagram. Fix r and, for i ≤ r, set

Hr,i := Hi
proét(X,Qp(r)), Xr,i := (Hi

HK(X)⊗̂FnrB+
st)

N=0,ϕ=pr ,

F r,i := Hi(F rRΓdR(X/B+
dR)), DRr,i := Hi(RΓdR(X/B+

dR)/F r),

Bi := Hi
dR(X/B+

dR) Filr,i := Im(F r,i → Bi)

We also denote by
Hr,i, Xr,i, Fr,i, DRr,i, Bi, Fil

r,i

the associated VS’s. Remark 3.35 makes it possible to navigate freely between these VS’s and their
C-points.
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The isomorphism between pro-étale and syntomic cohomologies (see [15, 6.19]) yields a commu-
tative diagram with exact rows:

Hr,i−1 //

��

Xr,i−1 //

��

DRr,i−1 // Hr,i //

��

Xr,i //

��

DRr,i

F r,i−1 //

��

Bi−1 //

��

DRr,i−1 // F r,i //

��

Bi //

��

DRr,i

F r,i−1/tr // Bi−1/trFilr,i−1 // DRr,i−1 // F r,i/tr // Bi/trFilr,i // DRr,i

The bottom sequence is exact because trF r,i → trFilr,i is an isomorphism (multiplying by tr kills
the big B+

dR-torsion in F r,i, and Bi is a free finite rank B+
dR-module thanks to the Hyodo-Kato

isomorphism), hence we have an isomorphism:

(6.6) Ker(F r,i → F r,i/tr)
∼→ Ker(Bi → Bi/trFilr,i).

All the spaces in the diagram are C-points of VS’s and those in the top and the bottom rows
are C-points of qBC’s (this is clear for all of them except for Hr,i (and Hr,i−1), for which one
can use Lemma 3.31 and the fact that DRr,i is a Br-module and Xr,i is equal to the C-points of
a BC), and the above diagram lifts to a diagram of VS’s (see [15, Sec. 7]).

Lemma 6.7. For all i ≥ 0, we have the following isomorphisms:

Coker
(
Xr,i ⊕ F r,i → Bi

)
' Coker

(
Xr,i → Bi/Filr,i

)
,

Ker
(
Hr,i → Xr,i ⊕ F r,i

)
' Coker

(
Xr,i−1 ⊕ F r,i−1 → Bi−1

)
These isomorphisms can be lifted to the category of VS’s and Coker

(
Xr,i → Bi/Filr,i

)
is the

C-points of a BC.

Proof. The first isomorphism is clear. Using the snake lemma in the following commutative diagram
with exact rows we prove the second isomorphism.

0 // Xr,i−1/Hr,i−1 //

��

DRr,i−1 // Ker
(
Hr,i → Xr,i

)
//

��

0

0 // Bi−1/Filr,i // DRr,i−1 // Ker
(
F r,i → Bi

)
// 0

The claim about BC’s follows from Proposition 3.34 because the VS’s corresponding to Xr,i

and Bi/Filr,i are BC’s. �

Corollary 6.8. If Ker
(
Hr,i → Xr,i ⊕ Fr,i

)
6= 0, then it has height < 0 hence can not have

curvature ≤ 0.

Proof. Use Lemma 6.7 to pass to

Coker
(
Xr,i−1 ⊕ Fr,i−1 → Bi−1

) ∼→ Coker
(
Xr,i−1 → Bi−1/Fil

r,i−1
)
.

Now use Proposition 4.18 and Remark 4.19. �

6.2.2. Left exactness. We will study now the exactness on the left of the sequence in Conjec-
ture 5.21.

Lemma 6.9. The following properties are equivalent:
(a) The map Hr,r → Xr,r ⊕ F r,r is injective.
(a′) The map Hr,r → Xr,r ⊕ (F r,r/trF r,r) is injective.
(b) (Hr−1

HK (X), F 0Hr−1
dR (X/BdR)) is acyclic.

(c) Ker(Hr,r → Xr,r) has curvature 0.
(c′) Ker(Hr,r → Xr,r) has height 0.
(d) Hr,r has curvature ≤ 0.
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Proof. We note that map in (a) can be lifted to the category qBC and its kernel is equal to the
C-points of a qBC by Proposition 3.34.
• We clearly have (a′) ⇒ (a). For the opposite implication use the isomorphism (6.6).
• The equivalence of (a) and (b) is a reformulation of the isomorphisms in Lemma 6.7 (use

Remark 4.16).
•We have (c)⇒(c′) by Remark 3.30. And, since Ker

(
Hr,r → Xr,r

)
, which is a qBC, is a quotient

of DRr,r−1, which has curvature 0 (since it is a Br-module), (c′)⇒(c) as well (use Remark 3.30).
• We have (a′)⇒(d) since Hr,r is a submodule of Xr,r ⊕ (Fr,r/tr), the first term of which comes

from a BC of curvature ≤ 0 (since this BC is a Submodule of a Br-Module, use Remark 3.30) and
the second term is an affine qBC.
• We have (d)⇒(c) since Ker

(
Hr,r → Xr,r

)
is a sub-VS of Hrproét and hence has curvature ≤ 0

(since so does Hrproét by assumption), and it is also a quotient of DRr,r−1 and hence has curvature ≥
0 (since so does DRr,r−1). Here we have used again Remark 3.30.
•We have (c)⇒(a′) since the inclusion of the kernels implies that Ker

(
Hr,r → Xr,r⊕(F r,r/tr))

)
corresponds to a qBC of curvature ≤ 0 (by Remark 3.30), and thus it is trivial by Corollary 6.8. �

6.2.3. Right exactness. We pass now to the study of the exactness on the right of the sequence in
Conjecture 5.21.

Lemma 6.10. The following properties are equivalent:
(a) The map Xr,r ⊕ F r,r → Br is surjective.
(a′) The map Xr,r ⊕ (F r,r/trF r,r)→ Br/trFilr,r is surjective.
(b) (Hr

HK(X), F 0Hr
dR(X/BdR)) is acyclic.

(c) Coker(Hr,r → Xr,r) has curvature 0.
(c′) Coker(Hr,r → Xr,r) has height 0.

Proof. • Clearly (a) ⇒ (a′). For the opposite implication use isomorphism 6.6.
• The equivalence of (a) and (b) is a reformulation of the first isomorphism from Lemma 6.7

(use Remark 4.16).
• We clearly have (c)⇒(c′) and the opposite implication follows from the fact that the cokernel

of Hr,r → Xr,r is a sub-qBC of DRr,r. Since the latter has curvature 0 (because it is a Br-Module)
(c) follows from Remark 3.30.
• Let Ir be the image of Xr,r in DRr,r, and let Jr be the image of Xr,r in Br/Fil

r,r. Then
Coker

(
Hr,r → Xr,r

)
' Ir ' Jr since Br/Fil

r,r → DRr,r is injective. It follows that Coker
(
Hr,r →

Xr,r
)
has curvature 0 if and only if Jr does. And thus if and only if Jr = Br/Fil

r,r by Proposi-
tion 4.18. The equivalence of (c) and (b) follows. �

6.2.4. Bicartesian property. We can now put Lemma 6.9 and Lemma 6.10 together:

Proposition 6.11. The following properties are equivalent:
(a) The diagram in Conjecture 5.21 is bicartesian.
(b) (Hi

HK(X), F 0Hi
dR(X/BdR)) is acyclic, for i = r − 1 and i = r.

(c) The kernel and cokernel of Coker(Hr,r → Xr,r) have curvature 0.
(c′) The kernel and cokernel of Coker(Hr,r → Xr,r) have height 0.
(d) ht(Hr,r) = dimC H

r
dR(X).

Proof. • Let us start by noting that, by Remark 5.23 (ii), in (a) we can assume i = r.
• Note that (a), (b), (c) and (c′) are, respectively, equivalent to the conjunction of (a), (b), (c)

and (c′) from Lemma 6.9 and 6.10. The equivalence of (a), (b) (c) and (c′) follows.
• (a)⇒(d): by assumption we have the exact sequence

0 // Hr,r // (F r,r/tr)⊕Xr,r // Br/trFilr,r // 0
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This sequence can be lifted to the category qBC . Since Fr,r/tr and Br/trFil
r,r have curvature 0,

and hence height zero, and

ht(Xr,r) = dimFnrHr
HK(X) = dimC H

r
dR(X),

(d) follows. The first equality above uses the fact that the ϕ-slopes are ≤ r.
• (d)⇒(b): Since DRr,r−1 and DRr,r are Br-modules, the images Ir−1 and Ir of Xr,r−1 and Xr,r

have height ≥ 0. Since

ht(Hr,r) = (ht(DRr,r−1)− ht(Ir−1)) + (ht(Xr,r)− ht(Ir))

and ht(DRr,r−1) = 0, the condition ht(Hr,r) = ht(Xr,r) (equivalent to (d) as we have seen) implies
that ht(Ir−1) = ht(Ir) = 0. As we have seen above in proving the equivalence of (b) and (c) in
Lemma 6.10, this implies (b).

This finishes the proof of our proposition. �

Corollary 6.12. If X is quasi-compact then Conjectures 5.21, 6.1, 6.3, and 6.4 are equivalent.

Proof. Equivalence of (a) and (d) from Proposition 6.11 shows that, already for a fixed r, Conjec-
tures 5.21 and 6.4 are equivalent. Moreover, taken for all r, (b) from Proposition 6.11 shows that
they are equivalent to Conjecture 6.3. The equivalence of (b) and (d) from Lemma 6.9 shows that
Conjectures 6.1 and 6.3 are equivalent (but one has to change r). �

Remark 6.13. It is easy to see that Corollary 6.12 holds, more generally, if Hi
dR(X/B+

dR) is finite
rank over B+

dR for all i. The proof is the same as in the quasi-compact case.

6.3. Proof of the conjectures for small varieties. Finally, we are ready to prove our main
theorem for small varieties. We start with quasi-compact varieties.

Theorem 6.14. Let X be a quasi-compact smooth dagger variety over C.
(i) For all r ≥ i, the diagram

H̃i
proét(X,Qp(r)) //

��

(H̃i
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr

��
H̃i(F r(RΓdR(X/B+

dR))) // H̃i
dR(X/B+

dR)

is bicartesian. Equivalently, the following sequence is exact

0→ H̃i
proét(X,Qp(r))→ H̃i(F r(RΓdR(X/B+

dR)))⊕(H̃i
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr → H̃i

dR(X/B+
dR)→ 0

Moreover, for all r,
(ii) (Hr

HK(X), F 0Hr
dR(X/BdR)) is acyclic.

(iii) Hrproét(X,Qp(r)) has curvature ≤ 0.
(iv) ht(Hrproét(X,Qp(r))) = dimC H

r
dR(X).

Proof. Let X be as in the theorem. By Remark 5.23 (iii) we can remove all the tildas in the
statement of the theorem. We have seen (Corollary 6.12) that the properties (i)-(iv) for all r are
equivalent (on the other hand, they are not (!) equivalent for a fixed r). It suffices thus to show
(iv) for all r. This we do by induction on the number n of open affinoids necessary for covering X:
the base case of n = 1 is Corollary 5.19.

We pass from n to n+ 1 using Mayer-Vietoris (and the fact that an intersection of two affinoids
is an affinoid, from which it follows that if U1 is covered by n open affinoids and if U2 is an affinoid,
then U1 ∩ U2 is covered by n open affinoids).
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Take then U1, U2 as above. Let U = U1 ∪ U2. If i ≥ 0, we set

A3i = Hi
proét(U,Qp(r)), A3i+1 = Hi

proét(U1

∐
U2,Qp(r)),

A3i+2 = Hi
proét(U1 ∩ U2,Qp(r))

B3i = (Hi
HK(U)⊗̂FnrB+

st)
N=0,ϕ=pr , B3i+1 = (Hi

HK(U1

∐
U2)⊗̂FnrB+

st)
N=0,ϕ=pr ,

B3i+2 = (Hi
HK(U1 ∩ U2)⊗̂FnrB+

st)
N=0,ϕ=pr .

We have a commutative diagram

0 // A0
//

��

A1
//

��

· · · // A3r−1
//

��

A3r
//

��

A3r+1
//

��

· · ·

0 // B0
// B1

// · · · // B3r−1
// B3r

// B3r+1
// · · ·

in which the rows are exact; in the top row we have qBC’s and in the bottom row we have BC’s.
We denote by Ki and Ci the kernel and cokernel of Ai → Bi, respectively. It is clear from the

definition that Bi has curvature ≤ 0; that is, it is of curvature < 0. We infer, using Proposition 3.27,
that rk(h(Bi)) = ht(Bi) (see Section 3.3.2 for the definition of the functor h). We know that Ci
is a subobject of an affine BC and that Ki is a quotient of Br-module. This implies in particular
that ht(Ai) ≤ ht(Bi) with equality if and only if Ci and Ki are affine. We note that then Ai
has curvature ≤ 0 because its quotient by the Br-module Ki is a sub-BC of Bi and hence has
curvature ≤ 0 (and even < 0 if is not zero).

Lemma 6.15. If ht(Ak) = ht(Bk) for all k ≤ 3r + 2, k 6= 3r, and if A3r has curvature ≤ 0, then
ht(A3r) = ht(B3r).

Proof. Note that the equality ht(Ak) = ht(Bk) (together with the fact that Kk is a quotient of
an affine and Ck a subobject of an affine) implies that Ak and Bk have curvature ≤ 0, that Kk

and Ck are affines, and that the map h(Bk) → h(Ak) is an isomorphism. All the terms of the
commutative subdiagram

A3r−2
//

��

A3r−1
//

��

A3r
//

��

A3r+1
//

��

A3r+2

��
B3r−2

// B3r−1
// B3r

// B3r+1
// B3r+2

have curvature ≤ 0 and so do the kernels A′k of Ak → Ak+1 and B′k of Bk → Bk+1 (as subojects of
qBC’s of curvature ≤ 0). We infer, using Corollary 3.37, that the rows of the commutative diagram

h(A3r−2) h(A3r−1)oo h(A3r)oo h(A3r+1)oo h(A3r+2)oo

h(B3r−2)

OO

h(B3r−1)oo

OO

h(B3r)oo

OO

h(B3r+1)oo

OO

h(B3r+2)oo

OO

are exact. As we have seen above, h(Bk) → h(Ak) is an isomorphism if k 6= 3r; hence also
h(B3r) → h(A3r) by the 5-Lemma. Since B3r has curvature ≤ 0 and so does A3r by assumption,
it follows from Proposition 3.27 that ht(A3r) = ht(B3r), as wanted. �

Our theorem now follows from the following proposition. �

Proposition 6.16. If U1, U2 et U1 ∩U2 satisfy Conjectures 5.21, 6.1, and 6.4 (which are equiva-
lent), the same holds for U .

Proof. By assumption, U1, U2 and U1 ∩ U2 safisfy Conjectures 5.21, 6.1, and 6.4 for all r; we will
show that the same holds for U , using induction on r. We assume thus that the result is shown up
to r − 1 (it is trivial for r = 0). Hence, in particular, ht(Ak) = ht(Bk) for all k ≤ 3r + 2, k 6= 3r,
and the problem is to show that ht(A3r) = ht(B3r).
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Since the result is true for degree r−1, by Lemma 6.10 we have that (Hr−1
HK (U), F 0Hr−1

dR (U/BdR))

is acyclic. By Lemma 6.9, this implies that A3r has curvature ≥ 0. We can thus apply Lemma 6.15,
and hence ht(A3r) = ht(B3r). �

Remark 6.17. Granting Corollary 6.12 (see Remark 6.13), the same proof applies (because the
intersection of two Stein is Stein) to smooth dagger varieties that are small, i.e., that can be covered
by a finite number of Stein varieties Uj such that Hi

dR(UI/B
+
dR) is free of finite rank over B+

dR for
all degrees i and intersections UI . We deduce the following result:

Corollary 6.18. The statement of Theorem 6.14 applies to:
• analytifications of algebraic varieties,
• a naive interior15 of a quasi-compact rigid analytic variety X.

Proof. We just have to show that these varieties can be covered by a finite number of Stein varieties
Uj such that Hi

dR(UI/B
+
dR) is free of finite rank over B+

dR for all i, I.
• In the first case, pick a covering by affine opens, and use the analytifications of these affine

opens for your Stein covering.
• In the second case, cover X with a finite number of affinoids Xj and choose, for each j, a

naive interior Uj ⊂ Xj . For the sake of this corollary, a naive interior of a smooth dagger affinoid
is a Stein subvariety whose complement is open and quasi-compact. We easily check that the
intersections UI ⊂ XI are also naive interiors. We take U := ∪jUj . It is an admissible open of X,
which we call a naive interior of X.

The Uj ’s are a covering of U with the desired properties: Hi
dR(UI/B

+
dR) is a free B+

dR-module
whose reduction modulo ker θ is isomorphic to Hi

dR(UI), which is of finite rank over C by [31,
Th.A]. �

7. Pro-étale–to–de Rham comparison theorem for small varieties

In this chapter we propose a recipe to extract, from the pro-étale cohomology of varieties defined
over C, the Hyodo-Kato and de Rham cohomologies (as modules over the relevant rings) and, for
varieties defined over K, to extract also Frobenius, monodromy, and the naive Hodge filtration.

7.1. The pro-étale–to–de Rham Cst-conjecture for varieties over K. In this section, we
study the following conjecture extracting, for analytic spaces over K, the Hyodo-Kato and de
Rham cohomologies from the pro-étale cohomology. This extends to p-adic analytic spaces the
Cst-conjecture of Fontaine. (We go back to working with locally convex topological vector spaces.)

Conjecture 7.1. Let X be a smooth dagger variety over K. We have natural strict isomorphisms:

Homsm
GK

(Hi
proét(XC ,Qp),Bst) ' Hi

HK(XC)∗, as a (ϕ,N,GK)-module,

HomGK
(Hi

proét(XC ,Qp),BdR) ' Hi
dR(X)∗, as a filtered K-module.

Remark 7.2. Our approach uses syntomic cohomology, which gives a description ofHi
proét(XC ,Qp(r))

for r ≥ i, rather than that of Hi
proét(XC ,Qp). Hence we are going to consider the following equiv-

alent form of Conjecture 7.1 (where the {r} has the same meaning as in Corollary 4.10):

Homsm
GK

(Hi
proét(XC ,Qp(r)),Bst) ' Hi

HK(XC)∗{r}, as a (ϕ,N,GK)-module,

HomGK
(Hi

proét(XC ,Qp(r)),BdR) ' Hi
dR(X)∗{r}, as a filtered K-module.

Our main result is the following:

Theorem 7.3. Conjecture 7.1 holds for:
(a) affinoids,
(b) quasi-compact varieties,

15See the proof for a precise definition
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(c) all other small varieties.

The case of affinoids is included in the case of quasi-compact varieties, but the proof is consid-
erably simpler.

7.1.1. Dagger affinoids. We note that it suffices to show that we have natural isomorphisms since
the weak topology on the Hom-spaces is Hausdorff. Let

M := Hi
HK(XC), Xi

st(M) := (M⊗̂RFnrB+
st)

N=0,ϕ=pi , MK = (K ⊗Fnr M)GK ' Hi
dR(X).

The last isomorphism follows from the Hyodo-Kato isomorphism [15, Th. 4.27]. Recall that we
have the exact sequence (see Theorem 5.14)

(7.4) 0→ (Ωi−1
X /Ker d)⊗̂KC → Hi

proét(XC ,Qp(i))→ Xi
st(M)→ 0.

Applying HomGK
(−,Bst) and HomGK

(−,BdR) to it, we get the following exact sequences

0→Homsm
GK

(Xi
st(M),Bst)→ Homsm

GK
(Hi

proét(XC ,Qp(i)),Bst)→ Homsm
GK

((Ωi−1
X /Ker d)⊗̂KC,Bst),

0→HomGK
(Xi

st(M),BdR)→ HomGK
(Hi

proét(XC ,Qp(i)),BdR)→ HomGK
((Ωi−1

X /Ker d)⊗̂KC,BdR).

Lemma 7.5. We have

Homsm
GK

((Ωi−1
X /Ker d)⊗̂KC,Bst) = 0, HomGK

((Ωi−1
X /Ker d)⊗̂KC,BdR) = 0.

Proof. Since Homsm
GK

((Ωi−1
X /Ker d)⊗̂KC,Bst) ' colimL/K HomGL

((Ωi−1
X /Ker d)⊗̂KC,Bst) and

Bst ↪→ BdR, it suffices to show that HomGL
((Ωi−1

X /Ker d)⊗̂KC,BdR) = 0, for a finite extension L
of K.

But HomGL
(C,BdR) = 0 (Proposition 2.14 (iv)); hence HomGL

((Ωi−1
X /Ker d)⊗K C,BdR) = 0.

Since our maps are requested to be continuous and (Ωi−1
X /Ker d)⊗KC is dense in (Ωi−1

X /Ker d)⊗̂KC,
we get the wanted vanishing. �

This lemma yields isomorphisms

Homsm
GK

(Xi
st(M),Bst)

∼→ Homsm
GK

(Hi
proét(XC ,Qp(i)),Bst),

HomGK
(Xi

st(M),BdR)
∼→ HomGK

(Hi
proét(XC ,Qp(i)),BdR).

The filtration on MK is concentrated in degree i (i.e., FiliMK = MK and Fili+1MK = 0). Hence
we can use Example 4.11 of Corollary 4.10 to finish the proof of Conjecture 7.1 in the case of
dagger affinoids.

7.1.2. Quasi-compact dagger varieties. Let X be a quasi-compact dagger variety overK. Fix r ≥ i.
Set:

H̃r,i := H̃i
proét(XC ,Qp(r)), F̃ r,i := H̃i(F r(RΓdR(X)⊗̂KB+

dR)),

Xr,i := (Hi
HK(XC)⊗̂FnrB+

st)
N=0,ϕ=pr , Bi := Hi

dR(X)⊗̂KB+
dR.

Let Ãr,i be the kernel of the canonical map F̃ r,i → Bi. Then Ãr,i is also canonically a subgroup
of H̃r,i. Let

H
r,i

:= H̃r,i/Ãr,i, F
r,i

:= F̃ r,i/Ãr,i.

Note that F̃ r,i/Ãr,i is a subgroup of Bi, hence it is classical.

Lemma 7.6. We have, for all i ≤ r,

Homsm
GK

(Ãr,i,Bst) = 0, HomGK
(Ãr,i,BdR) = 0.
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Proof. It suffices to show that

Homsm
GK

(Ar,i,Bst) = 0, HomGK
(Ar,i,BdR) = 0.

And, for that, it is enough to prove the second statement. Let

DRr,i := Hi((B+
dR⊗̂RΓdR)/F r)

so that we have a long exact sequence · · ·DRr,i−1 → F r,i → Bi → DRr,i → · · · which shows that
Ar,i is a quotient of DRr,i−1. Hence it is enough to prove the same statement for DRr,i, with i < r.

Now DRr,i is the i-th hypercohomology group of the complex

DRr,• :=
(
(B+

dR/t
r)⊗̂KO → (B+

dR/t
r−1)⊗̂KΩ1 → · · · → (B+

dR/t)⊗̂KΩr−1
)
.

Choose a covering of X by dagger affinoids, and denote by Zr,i the group of i-cocycles of the Čech
double complex associated to this covering. Since DRr,i is a quotient of Zr,i, it is enough to prove
that HomGK

(Zr,i,BdR) = 0.
Denote by Zj,iK the group of i-cocycles of the Čech double complex associated to the above

covering and the complex
DRj,•

K :=
(
O → Ω1 → · · · → Ωj−1

)
.

We are going to prove that
∑
j≤r(t

r−jB+
dR/t

rB+
dR) ⊗K Zj,iK → Zr,i has dense image. This will

allow us to conclude since HomGK
((tr−jB+

dR/t
rB+

dR) ⊗K Zj,iK ,BdR) = 0 by Proposition 2.14 and
our maps are assumed to be continuous.

To prove this density, choose a Banach basis over K of the K-Banach B+
dR/t

r of the form
(tjen)0≤j≤r−1, n∈N (pick a family en of elements of B+

dR/t
r whose images in B+

dR/t = C form a
Banach basis of C over K). Then one can use (tjen)0≤j≤k−1, n∈N as a Banach basis of B+

dR/t
k,

if k ≤ r. This makes it possible to decompose DRr,• as a completed direct sum of the complexes
tjen ⊗DRr−j,•

K ’s, and then Zr,i is the completion of the sum of the tjen ⊗ Zr−j,iK ’s. �

It follows from Lemma 7.6 that we have isomorphisms

Homsm
GK

(H
r,i
,Bst)

∼→ Homsm
GK

(H̃r,i,Bst), HomGK
(H

r,i
,BdR)

∼→ HomGK
(H̃r,i,BdR)

Since X is quasi-compact, Conjecture 5.21 holds and we have the exact sequence (5.22):

0→ H̃r,i → Xr,i ⊕ F̃ r,i → Bi → 0.

This induces exact sequences

(7.7) 0→ H
r,i → Xr,i ⊕ F r,i → Bi → 0, 0→ H

r,i → Xr,i → Bi/F
r,i → 0,

Since F
r,i

is a subgroup of Bi, all the terms in these sequences are classical. This identifies
topologically H

r,i
with V rst(H

i
HK(XC), Hi

dR(X)). Hence we can use Corollary 4.10 to finish the
proof of Conjecture 7.1 in the case of quasi-compact dagger varieties.

7.1.3. Other small varieties. The proof in the case of other small varieties is the same as in the
quasi-compact case, using the fact that Conjecture 5.21 holds in that case (by Remark 6.17).

7.2. The pro-étale–to–de Rham Cst-conjecture for varieties over C. The following theorem
shows that one can recover de Rham cohomology (without the Hodge filtration) and Hyodo-Kato
cohomology (without actions of ϕ and N) from pro-étale cohomology for varieties over C, despite
the absence of Galois action.

Theorem 7.8. Let X be a small dagger variety over C. Let i ≥ 0.

HomVS(Hiproét(X,Qp),Bst) ' HomFnr(Hi
HK(X),Bst), as a Bst-module,

HomVS(Hiproét(X,Qp),BdR) ' HomB+
dR

(Hi
dR(X/B+

dR),BdR), as a BdR-module.
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Proof. If M is a VS, we set
h(M) := HomVS(M,BdR).

Fix r ≥ i. Set:

Hr,i := Hiproét(XC ,Qp(r)), Fr,i := Hi(F r(RΓdR(X/B+
dR)⊗̂B+

dR
B+

dR)),

Xr,i := (Hi
HK(XC)⊗̂FnrB+

st)
N=0,ϕ=pr , Bi := Hi

dR(X/B+
dR)⊗̂B+

dR
B+

dR.

Let Ar,i be the kernel of the canonical map Fr,i → Bi. Then Ar,i is a torsion B+
dR-module; it is

also canonically a subgroup of Hr,i. Let

Hr,i := Hr,i/Ar,i, Fr,i := Fr,i/Ar,i.

Since Ar,i is a torsion B+
dR-module, h(Ar,i) = 0 by Corollary 3.17; hence we have an isomorphism

h(Hr,i) ∼→ h(Hr,i).

We also have natural sequences

0→ Hr,i → Xr,i ⊕ Fr,i → Bi → 0, 0→ Hr,i → Xr,i ⊕ Fr,i → Bi → 0

0→ Hr,i → Xr,i → Bi/Fr,i → 0

Since X is small, the last sequence is a sequence of BC’s. It is exact (see Remark 3.35) because
passing to C-points yields the sequence 0 → H

r,i → Xr,i → Bi/F
r,i → 0 which was proven to

be exact, as a consequence of the validity of Conjecture 5.21 (see (7.7)). This identifies Hr,i with
Vrst(Hi

HK(X), t−rF
r,i

), which makes it possible to use Proposition 4.22 to prove Theorem 7.8. �

Remark 7.9. (i) If X is proper, then Hi(X,Qp) is a finite dimensional Qp-vector space with no
extra structure. This shows that it is hopeless to try to recover the actions of ϕ and N on Hi

HK(X)

or the filtration on Hi
dR(X/B+

dR) using Theorem 7.8.
(ii) On the other hand, if X is a dagger affinoid, we know what the filtration on Hi

dR(X/B+
dR)

is: we have F i+kHi
dR(X/B+

dR) = tkHi
dR(X/B+

dR). Also, as we have seen

(7.10) (Hi
HK(X)⊗ B+

st)
N=0,ϕ=pi ' (Hi

HK(X)⊗ B+
cris)

ϕ=pi

Using Lemma 4.17, one sees that

Hi
HK(X)∗ ⊗B+

cris ⊂ HomVS((Hi
HK(X)⊗ B+

cris)
ϕ=pi ,B+

cris)

⊂ {λ ∈ Hi
HK(X)∗ ⊗Bcris, ϕ

n(λ) ∈ Hi
HK(X)∗ ⊗B+

dR, ∀n ≥ 0}

= Hi
HK(X)∗ ⊗B+

cris

Since
HomVS(Hi(X,Qp(i)),B+

cris)
∼= HomVS((Hi

HK(X)⊗ B+
cris)

ϕ=pi ,B+
cris)

by the proof of Theorem 7.8, one sees that one can recover the action of ϕ on Hi
HK(X) ⊗ C̆ (by

tensoring with C̆ above B+
cris and dualizing).

(iii) If X is a general smooth dagger variety over C, point (ii) suggests that one can recover a
sheafified version of the actions of ϕ on Hi

HK(X) and of the filtration on Hi
dR(X/B+

dR). Recovering
the action of N seems out of reach by these methods.
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