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Abstract. The p-adic local Langlands correspondence for GL2(Qp) is given
by an exact functor from unitary Banach representations of GL2(Qp) to repre-
sentations of the absolute Galois group GQp of Qp. We prove, using characteris-
tic 0 methods, that this correspondence induces a bijection between absolutely
irreducible non-ordinary representations of GL2(Qp) and absolutely irreducible
2-dimensional representations of GQp . This had already been proved, by char-
acteristic p methods, but only for p ≥ 5.

1. Introduction

1.1. The p-adic local Langlands correspondence. Let p be a prime number
and let G = GL2(Qp). Let L be a finite extension of Qp, with ring of integers O,
residue field k and uniformizer $.

Let Banadm
G (L) be the category of admissible unitary L-Banach representations

of G. Any Π ∈ Banadm
G (L) has an open, bounded and G-invariant lattice Θ and

Θ⊗O k is an admissible smooth k-representation of G. We say that Π in Banadm
G (L)

is residually of finite length if for any (equivalently, one) such lattice Θ, the G-
representation Θ ⊗O k is of finite length. In this case the semi-simplification of
Θ⊗O k is independent of the choice of Θ, and we denote it by Π

ss
. We say that an

absolutely irreducible1 Π ∈ Banadm
G (L) is ordinary if it is a subquotient of a unitary

parabolic induction of a unitary character.
Let RepL(G) be the full subcategory of Banadm

G (L) consisting of representa-
tions Π having a central character and which are residually of finite length. Let
RepL(GQp

) be the category of finite dimensional continuous L-representations of
GQp = Gal(Qp/Qp). In [20, ch. IV] is constructed an exact, covariant functor (that
some people call the Montreal functor) Π 7→ V(Π) from RepL(G) to RepL(GQp).
We prove that this functor has all the properties needed to be called the p-adic
local Langlands correspondence for G.

Theorem 1.1. The functor Π 7→ V(Π) induces a bijection between the isomor-
phism classes of :
• absolutely irreducible non-ordinary Π ∈ Banadm

G (L),
• 2-dimensional absolutely irreducible continuous L-representations of GQp .

Implicit in the statement of the theorem is the fact that absolutely irreducible
Π ∈ Banadm

G (L) are residually of finite length so that one can apply the functor V
to them.
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1This means that Π⊗L L′ is topologically irreducible for all finite extensions L′ of L.
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One corollary of the theorem, and of the explicit construction of the represen-
tation Π(V ) of G corresponding to a representation V of GQp

(see below), is the
compatibility between the p-adic local Langlands correspondence and local class
field theory: we let ε : GQp → Z×p be the cyclotomic character and we view unitary
characters of Q×

p as characters of GQp via class field theory2 (for example, ε corre-
sponds to x 7→ x|x|). Note that, by Schur’s lemma [27], any absolutely irreducible
object of Banadm

G (L) admits a central character.

Corollary 1.2. If Π is an absolutely irreducible non-ordinary object of Banadm
G (L)

with central character δ, then V(Π) has determinant δε.

The next result shows that the p-adic local Langlands correspondence is a re-
finement of the classical one (that such a statement could be true was Breuil’s
starting point for his investigations on the existence of a p-adic local Langlands
correspondence [10]).

Let π be an admissible, absolutely irreducible, infinite dimensional, smooth L-
representation of G, and let W be an algebraic representation of G (so there exist
a ∈ Z and k ≥ 1 such thatW = Symk−1L2⊗deta). Let ∆ be the Weil representation
corresponding to π via the classical local Langlands correspondence; we view ∆ as
a (ϕ,GQp

)-module3 [40, 13]. Let F (∆,W ) be the space of isomorphism classes of
weakly admissible, absolutely irreducible, filtered (ϕ,N,GQp)-modules [39, Chap. 4]
whose underlying (ϕ,GQp)-module is isomorphic to ∆ and the jumps of the filtration
are −a and −a − k: if L ∈ F (∆,W ), the corresponding [22] representation VL

of GQp is absolutely irreducible and its Hodge-Tate weights are a and a + k. If
F (∆,W ) is not empty, it is either a point if π is principal series or P1(L) if π is
supercuspidal or a twist of the Steinberg representation4.

Theorem 1.3. (i) If Π is an admissible, absolutely irreducible, non-ordinary, uni-
tary completion of π ⊗W , then V(Π) is potentially semi-stable with Hodge-Tate
weights a and a+ k and the underlying (ϕ,GQp

)-module of Dpst(V(Π)) is isomor-
phic to ∆.

(ii) The functor Π 7→ Dpst(V(Π)) induces a bijection between the admissible,
absolutely irreducible, non-ordinary, unitary completions of π ⊗W and F (∆,W ).

The theorem follows from the combination of theorem 1.1, [20, th. 0.20] (or [30]),
[20, th. VI.6.42] and Emerton’s local-global compatibility5 ([34], th. 3.2.22).

If p ≥ 5, the results are not new; they were proven in [54], building upon [20, 43],
via characteristic pmethods, but these methods seemed to be very difficult to extend
to the case p = 2 (and also p = 3 in a special case). That we are able to prove the

2Normalized so that uniformizers correspond to geometric Frobenii.
3In general, this can require to extend scalars to a finite unramified extension of L, but we

assume that this is already possible over L.
4 In this last case, the filtration corresponding to ∞ ∈ P1(L) makes the monodromy operator

N on ∆ vanish and V∞ is crystalline (up to twist by a character) whereas, if L 6= ∞, VL is
semi-stable non-crystalline (up to twist by a character).

5 It is a little bit frustrating to have to use global considerations to prove it. By purely
local considerations, one could prove it when π is a principal series or a twist of the Steinberg
representation. When π is supercuspidal, one could show that there is a set Sπ of (ϕ, GQp )-modules

∆ such that the functor Π 7→ Dpst(V(Π)) induces a bijection between the admissible, absolutely
irreducible, unitary completions of π ⊗W and the union of the F (∆, W ), for ∆ ∈ Sπ , but we
would not know much about Sπ except for the fact that Sπ ∩ Sπ′ = ∅ if π 6∼= π′.
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theorem in full generality relies on a shift to characteristic 0 methods and an array
of results which were not available at the time [54] was written:
• The computation [52] of the blocks of the mod p representations of G, in the

case p = 2; this computation also uses characteristic 0 methods.
• Schur’s lemma for unitary Banach representations of p-adic Lie groups ([27]

which uses results of Ardakov and Wadsley [1].)
• The computation [21, 44] of the locally analytic vectors of unitary principal

series representations of G.
• The computation [30] of the infinitesimal action of G on locally analytic vectors

of objects of RepL(G).
There are 3 issues to tackle if one wants to establish theorem 1.1: one has to

prove that absolutely irreducible objects of Banadm
G (L) are residually of finite length

and bound this length, and one has to prove surjectivity and injectivity.

1.2. Residual finiteness. Before stating the result, let us introduce some nota-
tions. Let B be the (upper) Borel subgroup of G and let ω : Q×

p → k× be the
character x 7→ x|x| (mod p). If χ1, χ2 : Q×

p → k× are (not necessarily distinct)
smooth characters, we let

π{χ1, χ2} = (IndGBχ1 ⊗ χ2ω
−1)sssm ⊕ (IndGBχ2 ⊗ χ1ω

−1)sssm.

Then π{χ1, χ2} is typically of length 2, but it may be of length 3, and even 4 when
p = 2 or p = 3 (lemma 2.14 gives an explicit description of π{χ1, χ2}). Recall that
a smooth irreducible k-representation is called supersingular if it is not isomorphic
to a subquotient of some representation π{χ1, χ2}.

Theorem 1.4. Let Π be an absolutely irreducible object of Banadm
G (L). Then Π is

residually of finite length and, after possibly replacing L by a quadratic unramified
extension, Π

ss
is either absolutely irreducible supersingular or a subrepresentation

of some π{χ1, χ2}.

For p ≥ 5, this theorem is proved in [54]. The starting points of the proofs
in [54] and in this paper are the same: one starts from an absolutely irreducible
mod p representation π of G and considers the projective envelope P of its dual
(in a suitable category, cf. § 2.1). Then we are led to try to understand the ring E
of endomorphisms of P , as this gives a description of the Banach representations
of G which have π as a Jordan-Hölder component of their reduction mod p. After
this the strategies of proof differ completely and only some formal parts of [54] are
used in this paper (mainly §4 on Banach representations).

To illustrate the differences, let us consider the simplest case where π is super-
singular, so that V(π) is an irreducible representation of GQp . The key point in
both approaches to theorem 1.4 is to prove that the ring E[1/p] is commutative.
This is done as follows.

In [54], the functor Π 7→ V(Π) is used to show that E surjects onto the universal
deformation ring of V(π), which is commutative. It is then shown that this map is
an isomorphism by showing that it induces an isomorphism on the graded rings of E
and the universal deformation ring of V(π) with respect to the maximal ideals. To
control the dimension of the graded pieces of gr•E, one needs to be able to compute
the dimension of Ext-groups of mod p representations of G. These computations
become hard to handle for p = 3 and very hard for p = 2. Moreover, the argument
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uses that the universal deformation ring of V(π) is formally smooth, which fails if
p = 2 and in one case if p = 3.

In this paper we use the functor Π 7→ m(Π), defined in [54, § 4], from Banadm
G (L)

to the category of finitely generated E[1/p]-modules. We show that if Π is the
universal unitary completion of locally algebraic unramified principal series repre-
sentation of G, then the image of E[1/p]→ EndL(m(Π)) is commutative and then
show6 that the map

(1) E[1/p]→
∏
i

EndL(m(Πi))

is injective, where the product is taken over all such representations. The argu-
ment uses the work of Berger–Breuil [5], that the Πi are admissible and absolutely
irreducible, and we can control their reductions modulo p [4, 23]. The injectivity
of (1) is morally equivalent to the density of crystalline representations in the uni-
versal deformation ring of V(π), and is more or less saying that “polynomials are
dense in continuous functions”, an observation that was used by Emerton [34] in
a global context. However, in our local situation, P is not finitely generated over
O[[GL2(Zp)]], and things are more complicated than what the above sketch would
suggest; we refer the reader to §2.1 for a more detailed overview of the proof of the
theorem.

Remark 1.5. The approach developed in [54], when it works, gives more informa-
tion than theorem 1.4: one gets a complete description of finite length objects
of Banadm

G (L), not only of its absolutely irreducible objects and also a complete
description of the category of smooth locally admissible representations of G on
O-torsion modules. However, the fact that E is commutative is a very useful piece
of information, and, when π is either supersingular or generic principal series, in a
forthcoming paper [55] we will extend the results of [54] to the cases when p = 2
and p = 3.

Combining theorem 1.4 and the fact [27, cor. 3.14] that an irreducible object
of Banadm

G (L) decomposes as the direct sum of finitely many absolutely irreducible
objects after a finite extension of L, we obtain the following result:

Corollary 1.6. An object of Banadm
G (L) has finite length if and only if it is resid-

ually of finite length.

The following result answers question (Q3) of [20, p. 297] and is an easy con-
sequence of theorem 1.4, the exactness of the functor7 Π 7→ V(Π) and [20, th.
0.10].

Corollary 1.7. If Π ∈ Banadm
G (L) is absolutely irreducible, then dimLV(Π) ≤ 2.

1.3. Surjectivity. The surjectivity was proven in [20] (for p ≥ 3, and almost for
p = 2, see below) by constructing, for any 2-dimensional representation V of GQp , a
representation Π(V ) of G such that V(Π(V )) = V (or V̌ , depending on the normal-
isation). The construction goes through Fontaine’s equivalence of categories [41]

6We actually end up proving a weaker statement, which is too technical for this introduction,
see the proofs of corollary 2.20 and theorem 2.21. To show the injectivity of (1) one would
additionally have to show that the rings E[1/p]/aV in corollary 2.20 are reduced. We do not
prove this here, but will return to this question in [55].

7More precisely, of integral and torsion versions of this functor.
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between representations of GQp and (ϕ,Γ)-modules, as does the construction of the
functor Π 7→ V(Π). If D is the (ϕ,Γ)-module attached to V by this equivalence of
categories and if δ is a character of Q×

p , one can construct a G-equivariant sheaf
U 7→ D �δ U on P1 = P1(Qp). If δ = δD, where δD = ε−1 detV , then the global
sections of this sheaf fit into an exact sequence of G-representations

(2) 0→ Π(V )∗ ⊗ δ → D �δ P1 → Π(V )→ 0.

The proof of the existence of this decomposition is by analytic continuation, using
explicit computations to deal with trianguline representations, in which case Π(V )
is the universal completion of a locally analytic principal series [5, 9, 18, 32, 48], and
the Zariski density [17, 43, 7, 15] of trianguline (or even crystalline) representations
in the deformation space of V

ss
. That such a strategy could work was suggested by

Kisin who used a variant [43] to prove surjectivity for p ≥ 5 in a more indirect way.
This Zariski density was missing when p = 2 and V

ss
is scalar: the methods of [17,

43] prove that the Zariski closure of the trianguline (or crystalline) representations
is a union of irreducible components of the space of deformations of the residual
representation; so what was really missing was an identification of the irreducible
components, which is not completely straightforward. This is not an issue anymore
as we proved [24] that there are exactly 2 irreducible components and that the
crystalline representations are dense in each of them.

1.4. Injectivity. The following result is a strengthening of the injectivity of the
p-adic local Langlands correspondence.

Theorem 1.8. Let Π1,Π2 ∈ Banadm
G (L) be absolutely irreducible, non-ordinary.

(i) If V(Π1) ∼= V(Π2), then Π1
∼= Π2.

(ii) We have Homcont
L[P ](Π1,Π2) = Homcont

L[G](Π1,Π2), where P is the mirabolic
subgroup of G.

For absolutely irreducible non-ordinary objects of Banadm
G (L), the knowledge of

V(Π) is equivalent to that of the action of P (this is not true for ordinary objects).
So, theorem 1.8 is equivalent to the fact that we can recover an absolutely irreducible
non-ordinary object Π from its restriction to P . If we replace P with the Borel
subgroup B, then the result follows from [49] (see also [23, remark III.48] for a
different proof). The key difficulty is therefore controlling the central character,
and, thanks to results from [20, 23], the proof reduces to showing that δD is the
only character δ such that D �δ P1 admits a decomposition as in (2).

So assume D�δ P1 admits such a decomposition and set η = δ−1
D δ. We need to

prove that η = 1 and this is done in two steps: we first prove that η = 1 if it is
locally constant, and then we prove that η is locally constant.

The proof of step one splits into two cases:
• If D is trianguline then we use techniques of [21, 28] to study locally analytic

principal series appearing in the locally analytic vectors in Π1 and Π2, and make
use of their universal unitary completions.
• IfD is not trianguline then the restriction of global sectionsD�δP1 to any non-

empty compact open subset of P1 is injective on Π(V )∗ ⊗ δ, viewed as a subspace
of D �δ P1 via (2). If α ∈ O∗, let C α ⊂ D � Z×p be the image of the eigenspace of(
p 0
0 1

)
for the eigenvalue α under the restriction to Z×p . This image is the same for

δ and δD and can be described purely in terms of D as (1−αϕ) ·Dψ=α. Using the
action of

(
0 1
1 0

)
on D �δ P1 and D �δD

P1 we show that the “multiplication by η”
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operator mη : D � Z×p → D � Z×p (see no 3.1.2 for a precise definition) sends C α

into C αη(p), and using the above-mentionned injectivity, that η = 1.
To prove that η is locally constant, one can, in most cases, use the formulas [30]

for the infinitesimal action of G. In the remaining cases one uses the fact that the
characters η sending C α into C αη(p) for all α form a Zariski closed subgroup of the
space of all characters, and such a subgroup automatically contains a non-trivial
locally constant character if it is not reduced to {1}.

The reader will find a more detailed overview of the proof in §3.2.

Finally, we give a criterion for an absolutely irreducible object of Banadm
G (L) to

be non-ordinary; this refines theorem 1.4, by describing in which case the inclusion
Π

ss ⊂ π{χ1, χ2} given by this theorem is an equality. It is a consequence of theo-
rems 1.4 and 1.8, and of the compatibility [4, 23] of p-adic and mod p Langlands
correspondences.

Theorem 1.9. Let Π ∈ Banadm
G (L) be absolutely irreducible. The following asser-

tions are equivalent
(i) V(Π) is 2-dimensional.
(ii) Π is non-ordinary.
(iii) After possibly replacing L by a quadratic unramified extension, Π

ss
is either

absolutely irreducible supersingular or isomorphic to some π{χ1, χ2}.

1.5. Acknowledgements. V.P. would like to thank Matthew Emerton for a num-
ber of stimulating discussions. In particular, § 2.3 is closely related to a joint and
ongoing work with Emerton.

2. Residual finiteness

2.1. Overview of the proof. If G is any p-adic analytic group, let Modsm
G (O)

be the category of smooth representations of G on O-torsion modules. Pontryagin
duality induces an anti-equivalence of categories between Modsm

G (O) and a certain
category Modpro

G (O) of linearly compact O-modules with a continuous G-action,
see [35]. In particular, if G is compact then Modpro

G (O) is the category of compact
OJGK-modules, where OJGK is the completed group algebra. Let Mod?

G(O) be a
full subcategory of Modsm

G (O) closed under subquotients and arbitrary direct sums
in Modsm

G (O) and such that representations in Mod?
G(O) are equal to the union

of their subrepresentations of finite length. Let C(O) be the full subcategory of
Modpro

G (O) antiequivalent to Mod?
G(O) via the Pontryagin duality.

Let π ∈ Mod?
G(O) be admissible and absolutely irreducible, let P � π∨ be a

projective envelope of π∨ in C(O), and let E := EndC(O)(P ).
Let Π ∈ Banadm

G (L) and let Θ be an open, bounded and G-invariant lattice in
Π. Let Θd = HomO(Θ,O) be the Schikhof dual of Θ. Endowed with the topology
of pointwise convergence, Θd is an object of Modpro

G (O), see [54, Lem.4.4]. If Θd

is in C(O) then Ξd is in C(O) for every open bounded G-invariant lattice Ξ in Π,
since Θ and Ξ are commensurable and C(O) is closed under subquotients, see [54,
Lem.4.6]. We let Banadm

C(O) be the full subcategory of Banadm
G (L) consisting of those

Π with Θd in C(O). For Π ∈ Banadm
C(O) we let

m(Π) := HomC(O)(P,Θd)⊗O L.
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Then m(Π) is a right E[1/p]-module which does not depend on the choice of Θ, since
any two open, bounded lattices in Π are commensurable. The functor Π 7→ m(Π)
from Banadm

C(O) to the category of right E[1/p]-modules is exact by [54, Lem.4.9].
The proposition below is proved in [54, § 4], as we explain in §2.2.

Proposition 2.1. For Π in Banadm
C(O) the following assertions hold:

(i) m(Π) is a finitely generated E[1/p]-module;
(ii) dimL m(Π) is equal to the multiplicity with which π occurs as a subquotient

of Θ⊗O k;
(iii) if Π is topologically irreducible, then

a) m(Π) is an irreducible E[1/p]-module;
b) the natural map Endcont

G (Π)→ EndE[1/p](m(Π))op is an isomorphism.

Let us suppose that we are given a family {Πi}i∈I in Banadm
G (Li), where for each

i ∈ I, Li is a finite extension of L with residue field ki. Let us further suppose that
each Πi lies in Banadm

C(O), when considered as L-Banach representation. Suppose that
d ≥ 1 is an integer such that we can find open, bounded and G-invariant lattices Θi

in Πi such that π⊗k ki occurs with multiplicity ≤ d as a subquotient of Θi⊗OLi
ki

for all i ∈ I. Thus π occurs with multiplicity ≤ [Li : L]d as a subquotient of
Θi/($) and proposition 2.1 yields dimLi m(Πi) ≤ d. For simplicity let us further
assume that d = 1, then we can conclude that the action of E[1/p] induces a
homomorphism E[1/p]→ EndLi

(m(Πi)) ∼= Li. If ai is the kernel of this map then
E[1/p]/ai is commutative, and hence if we let a = ∩i∈Iai, then we deduce that
E[1/p]/a is commutative. Let us further assume that a = 0. Then we can conclude
that the ring E is commutative. Let Π in Banadm

C(O) be absolutely irreducible, and
let E be the image of E[1/p] in EndL(m(Π)). Since E[1/p] is commutative, so is
E , and using proposition 2.1 (iii) b) we deduce that E is a subring of Endcont

G (Π).
Now comes a new ingredient, not available at the time of writing [54]: by Schur’s

lemma [27], since Π is absolutely irreducible we have Endcont
G (Π) = L, hence E = L.

Since m(Π) is an irreducible E[1/p]-module by proposition 2.1 (iii) a), we conclude
that dimL m(Π) = 1, and hence by part (ii) of the proposition we conclude that π
occurs with multiplicity 1 as subquotient of Θ/$. If d > 1 one can still run the
same argument concluding that π occurs with multiplicity at most d as subquotient
of Θ/($) by using rings with polynomial identity.

All the previous constructions and the strategy of proof explained above work
in great generality (G was any p-adic analytic group), provided certain conditions
are satisfied, the hardest of which is finding a family {Πi}i∈I , which enjoys all
these nice properties. From now on we let G = GL2(Qp), and let Mod?

G(O) be
the category of locally admissible representations Modl.adm

G (O). This category,
introduced by Emerton in [35], consists of all representations in Modsm

G (O), which
are equal to the union of their admissible subrepresentations. For the family {Πi}i∈I
we take all the Banach representations corresponding to 2-dimensional crystalline
representations of GQp . It follows from the explicit description [4] of Π

ss

i , that π
can occur as a subquotient with multiplicity at most 2, and multiplicity one if π is
either supersingular or generic principal series.

The statement ∩i∈Iai = 0 morally is the statement “crystalline points are dense
in the universal deformation ring”, so one certainly expects it to be true, since



8 PIERRE COLMEZ, GABRIEL DOSPINESCU, AND VYTAUTAS PAŠKŪNAS

on the Galois side this statement is known [17, 43] to be true8. In fact, Emerton
has proved an analogous global statement “classical crystalline points are dense
in the big Hecke algebra” by using GL2–methods, [34, cor. 5.4.6]. The Banach
representation denoted by Π(P ) in §2.2 is a local analog of Emerton’s completed
cohomology. However, Emerton’s argument does not seem to carry over directly,
since although P is projective in Modpro

K (O), it is not a finitely generated OJKK–
module, and in our context the locally algebraic vectors in Π(P ) are not a semi-
simple representation of GL2(Qp). Because of this we do not prove directly that
∩iai = 0, but a weaker statement, which suffices for the argument to work. To get
around the issue that P is not finitely generated over OJKK we have to perform
some tricks, see propositions 2.18, 2.19.

2.2. Proof of proposition 2.1.

Proof. Part (i) is [54, prop. 4.17].
Part (ii) follows from the proof of [54, Lem. 4.15], which unfortunately assumes

Θd ⊗O k to be of finite length. This assumption is not necessary: since Θd is
an object of C(O) we may write Θd ⊗O k ∼= lim←−Mi, where the projective limit
is taken over all the finite length quotients. Since P is projective we obtain an
isomorphism HomC(O)(P,Θd ⊗O k) ∼= lim←−HomC(O)(P,Mi). Since Mi are of finite
length, [54, Lem. 3.3] says that dimk HomC(O)(P,Mi) is equal to the multiplicity
with which π∨ occurs in Mi as a subquotient, which is the same as multiplicity
with which π occurs in M∨

i as a subquotient. Dually we obtain Θ⊗O k ∼= (Θd ⊗O

k)∨ ∼= lim−→M∨
i , which allows to conclude that π occurs with finite multiplicity

in Θ ⊗O k if and only if dimk HomC(O)(P,Θd ⊗O k) is finite, in which case both
numbers coincide. Since P is a compact flat O-module and a projective object
in C(O), it follows that HomC(O)(P,Θd) is a compact, flat O-module, which is
congruent to HomC(O)(P,Θd/($)) modulo $, thus dimL HomC(O)(P,Θd) ⊗O L =
dimk HomC(O)(P,Θd ⊗O k).

Part (iii) a) is [54, prop. 4.18 (ii)] and Part (iii) b) is [54, prop. 4.19]. �

2.3. Rings with polynomial identity.

Definition 2.2. Let R be a (possibly non-commutative) ring and let n be a natural
number. We say that R satisfies the standard identity sn if for every n-tuple
Φ = (φ1, . . . , φn) of elements of R we have sn(Φ) :=

∑
σ sgn(σ)φσ(1) . . . φσ(n) = 0,

where the sum is taken over all the permutations of the set {1, . . . , n}.

Remark 2.3. (i) Since s2(φ1, φ2) = φ1φ2 − φ2φ1, the ring R satisfies the standard
identity s2 if and only if R is commutative.

(ii) We note that R satisfies sn if and only if the opposite ring Rop satisfies sn.
(iii) Let {ai}i∈I be a family of ideals of R such that

⋂
i∈I ai = 0. Then R satisfies

sn if and only if R/ai satisfies sn for all i ∈ I.
(iv) By a classical result of Amitsur and Levitzki [46, Thm.13.3.3], for any com-

mutative ring A, the ring Mn(A) satisfies the standard identity s2n.

Lemma 2.4. Let A be a commutative ring, n ≥ 1 and let M be an A-module which
is a quotient of An. Then EndA(M) satisfies the standard identity s2n.

8If we assume that p ≥ 5 then using results of [54] one may show that the assertion on the
Galois side implies the assertion on the GL2(Qp)-side.
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Proof. By hypothesis there are e1, ..., en ∈ M generating M as an A-module. Let
φ1, ..., φ2n ∈ EndA(M) and let X(1), ..., X(2n) ∈ Mn(A) be matrices such that
φk(ei) =

∑n
j=1X

(k)
ji ej for all i ≤ n and k ≤ 2n. Setting X = s2n(X(1), ..., X(2n)),

for all i ≤ n we have

s2n(φ1, ..., φ2n)(ei) =
n∑
j=1

Xjiej .

By remark 2.3 (iv) we have X = 0 and the result follows. �

Lemma 2.5. Let A be a commutative noetherian ring, let M be an A-module, such
that every finitely generated submodule is of finite length, and let n be an integer.
If dimκ(m)M [m] ≤ n for every maximal ideal m of A then EndA(M) satisfies the
standard identity s2n.

Proof. The assumption on M implies that M ∼= ⊕mM [m∞], where the sum is taken
over all the maximal ideals in A and M [m∞] = lim−→M [mn], where M [mn] = {m ∈
M : am = 0,∀a ∈ mn}. Since M [m∞] is only supported on {m}, if m1 6= m2

then HomA(M [m∞
1 ],M [m∞

2 ]) = 0. Thus EndA(M) ∼=
∏

m EndA(M [m∞]) and it is
enough to show the assertion in the case when M = M [m∞], which we now assume.

Since in this case EndA(M) = EndÂ(M), where Â is the m-adic completion of
A, we may further assume that (A,m) is a complete local ring. Let E(κ(m)) be
an injective envelope of κ(m) in the category of A-modules. The functor (∗)∨ :=
HomA(∗, E(κ(m))) induces an anti-equivalence of categories between artinian and
noetherian A-modules, see [38, Thm. A.35]. Hence, EndA(M) ∼= EndA(M∨)op.
Since M [m] ↪→ M is essential, we may embed M ↪→ E(κ(m))⊕d, where d =
dimκ(m)M [m]. Since E(κ(m))∨ ∼= A by [38, Thm. A.31], we obtain a surjection
A⊕d � M∨. We deduce from lemma 2.4 that EndA(M∨) satisfies the standard
identity s2n. �

2.4. Density. Let K be a pro-finite group with an open pro-p group. Let OJKK be
the completed group algebra, and let Modpro

K (O) be the category of compact linear-
topological OJKK-modules. Let {Vi}i∈I be a family of continuous representations
of K on finite dimensional L-vector spaces, and let M ∈ Modpro

K (O).

Definition 2.6. We say that {Vi}i∈I captures M if the smallest quotient M � Q,
such that Homcont

OJKK(Q,V
∗
i ) ∼= Homcont

OJKK(M,V ∗i ) for all i ∈ I is equal to M .

Lemma 2.7. Let N =
⋂
φ Kerφ, where the intersection is taken over all φ ∈

Homcont
OJKK(M,V ∗i ), for all i ∈ I. Then {Vi}i∈I captures M if and only if N = 0.

Proof. It is immediate that Homcont
OJKK(M/N, V ∗i ) ∼= Homcont

OJKK(M,V ∗i ) for all i ∈ I.
This implies the assertion. �

Lemma 2.8. Let M ′ be a closed OJKK-submodule of M . If {Vi}i∈I captures M ,
then it also captures M ′.

Proof. Let v ∈ M ′ be non-zero. Since {Vi}i∈I captures M , lemma 2.7 implies
that there exist i ∈ I and φ ∈ Homcont

OJKK(M,V ∗i ), such that φ(v) 6= 0. Thus⋂
φ Kerφ = 0, where the intersection is taken over all φ ∈ Homcont

OJKK(M
′, V ∗i ), for

all i ∈ I. Lemma 2.7 implies that {Vi}i∈I captures M ′. �

Lemma 2.9. Assume that {Vi}i∈I captures M and let φ ∈ Endcont
OJKK(M). If φ kills

Homcont
OJKK(M,V ∗i ) for all i ∈ I then φ = 0.
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Proof. The assumption on φ implies that Homcont
OJKK(Cokerφ, V ∗i ) ∼= Homcont

OJKK(M,V ∗i )
for all i ∈ I. Since {Vi}i∈I captures M , we deduce that M = Cokerφ and thus
φ = 0. �

Lemma 2.10. Let M ∈ Modpro
K (O) be O-torsion free, let Π(M) := Homcont

O (M,L)
be an L-Banach space equipped with a supremum norm. Then {Vi}i∈I captures M
if and only if the image of the evaluation map ⊕i HomK(Vi,Π(M))⊗L Vi → Π(M)
is a dense subspace.

Proof. It follows from [57, Thm.1.2] that the evaluation map M × Π(M) → L
induces an isomorphism

(3) M ⊗O L ∼= Homcont
L (Π(M), L).

If ϕ ∈ Homcont
OJKK(M,V ∗i ) then we define ϕd ∈ HomK(Vi,Π(M)) by ϕd(v)(m) :=

ϕ(m)(v). It follows from [57, Thm.1.2] that the map ϕ 7→ ϕd induces an isomor-
phism

(4) Homcont
OJKK(M,V ∗i ) ∼= HomK(Vi,Π(M)).

Let m ∈M and let `m be the image of m in Homcont
L (Π(M), L) under (3). Then for

all i ∈ I and all ϕ ∈ Homcont
OJKK(M,V ∗i ), ϕ(m) = 0 if and only if `m ◦ ϕd = 0. Using

lemma 2.7 and isomorphisms (3), (4) we deduce that {Vi}i∈I does not capture M
if and only if the image of the evaluation map ⊕i HomK(Vi,Π(M))⊗L Vi → Π(M)
is not a dense subspace. �

Lemma 2.11. The following assertions are equivalent:
(i) {Vi}i∈I captures every indecomposable projective in Modpro

K (O);
(ii) {Vi}i∈I captures every projective in Modpro

K (O);
(iii) {Vi}i∈I captures OJKK.

Proof. (i) implies (ii). Let P be a projective object in Modpro
K (O). Then P ∼=∏

j∈J Pj , where Pj is projective indecomposable for every j ∈ J , see [26, V.2.5.4].
For each j ∈ J let pj : P → Pj denote the projection. Since {Vi}i∈I captures Pj by
assumption, it follows from lemma 2.7 that Ker pj = ∩φ Kerφ ◦ pj , where the inter-
section is taken over all φ ∈ Homcont

OJKK(Pj , V
∗
i ), for all i ∈ I. Since ∩j∈J Ker pj = 0,

we use lemma 2.7 again to deduce that {Vi}i∈I captures P .
(ii) implies (iii), as OJKK is projective in Modpro

K (O).
(iii) implies (i). Every indecomposable projective object in Modpro

K (O) is a direct
summand of OJKK, see for example [51, prop. 4.2]. The assertion follows from
lemma 2.8. �

Let G be an affine group scheme of finite type over Zp such that GL is a split
connected reductive group over L. Let Alg(G) be the set isomorphism classes
of irreducible rational representations of GL, which we view as representations of
G(Zp) via the inclusion G(Zp) ⊂ G(L).

Proposition 2.12. Alg(G) captures every projective object in Modpro
G(Zp)(O),

Proof. The proof is very much motivated by [34, prop. 5.4.1], which implies the
statement for G = GL2. Let K = G(Zp) and let C (K,L) be the space of continuous
functions from K to L. Since K is compact, the supremum norm makes C (K,L)
into a unitary L-Banach representation of K. It is shown in [57, Lem.2.1, cor. 2.2]
that the natural map K → OJKK, g 7→ g induces an isometrical, K-equivariant
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isomorphism between C (K,L) and Homcont
O (OJKK, L). It is shown in [52, prop. A.3]

that the image of the evaluation map ⊕HomK(V,C (K,L)) ⊗ V → C (K,L) is a
dense subspace, where the sum is taken over all V ∈ Alg(G). Lemma 2.10 implies
that Alg(V ) captures OJKK, and the assertion follows from lemma 2.11. �

2.5. Locally algebraic vectors in Π(P ). From now on let G = GL2(Qp), K =
GL2(Zp), and let π be an admissible smooth, absolutely irreducible k-representation
of G. Recall that if χ1, χ2 : Q×

p → k× are smooth characters, then

π{χ1, χ2} := (IndGBχ1 ⊗ χ2ω
−1)sssm ⊕ (IndGBχ2 ⊗ χ1ω

−1)sssm.

Definition 2.13. If π is supersingular, let d(π) = 1. Otherwise, there is a unique
π{χ1, χ2} containing π and we let d(π) be the multiplicity of π in π{χ1, χ2}.

Lemma 2.14. Let χ1, χ2 : Q×
p → k× be smooth characters. Then π{χ1, χ2} is

isomorphic to one of the following:
(i) (IndGB χ1 ⊗ χ2ω

−1)sm ⊕ (IndGB χ2 ⊗ χ1ω
−1)sm, if χ1χ

−1
2 6= 1, ω±1;

(ii) (IndGB χ⊗ χω−1)⊕2
sm , if χ1 = χ2 = χ and p ≥ 3;

(iii) (1⊕ Sp⊕ IndGB ω ⊗ ω−1)⊗ χ ◦ det, if χ1χ
−1
2 = ω±1 and p ≥ 5;

(iv) (1⊕ Sp⊕ω ◦ det⊕Sp⊗ω ◦ det)⊗ χ ◦ det, if χ1χ
−1
2 = ω±1 and p = 3;

(v) (1⊕ Sp)⊕2 ⊗ χ ◦ det if χ1 = χ2 and p = 2.
In particular, d(π) = 1 unless we are in one of the following cases, when d(π) = 2:

(a) p ≥ 3 and π ∼= (IndGB χ⊗ χω−1)sm or
(b) p = 2 and either π ∼= χ◦det or π ∼= Sp⊗χ◦det, for some smooth character

χ : Q×
p → k×.

Proof. The representation (IndGB χ1 ⊗ χ2ω
−1)sm is irreducible if and only if χ1 6=

χ2ω
−1, otherwise its semi-simplification consists of a character and a twist of the

Steinberg representation, see [2, Thm. 30]. The result follows. �

Let Modl.adm
G (O) be the category of locally admissible representations introduced

by Emerton in [35]. Proposition 2.2.18 in [35] shows that Modl.adm
G (O) is closed un-

der subquotients and arbitrary direct sums in Modsm
G (O), and theorem 2.3.8 in [35]

implies that every locally admissible representation is a union of its subrepresenta-
tions of finite length. So Modl.adm

G (O) satisfies the conditions imposed on Mod?
G(O)

in §2.1. Let C(O) be the full subcategory of Modpro
G (O), which is anti-equivalent to

Modl.adm
G (O) via Pontryagin duality. We have Banadm

C(O) = Banadm
G (L).

Let P � π∨ be a projective envelope of π∨ in C(O) and let E = EndC(O)(P ).
Then π ↪→ P∨ is an injective envelope of π in Modl.adm

G (O). The following result is
[36, cor. 3.10].

Proposition 2.15. The restriction of P∨ to K is injective in Modsm
K (O), hence P

is projective in Modpro
K (O).

In particular9, P is a torsionfree, compact linear-topological O-module. Let

Π(P ) := Homcont
O (P,L)

with the topology induced by the supremum norm. If Π is an L-Banach space
and if Θ is an open, bounded lattice in Π, let Θd := HomO(Θ,O) be its Schikhof
dual. Equipped with the topology of pointwise convergence, Θd is a torsionfree,

9Alternatively one may argue in the same way as in [54, cor. 5.19].
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compact linear-topological O-module and it follows from [57, Thm.1.2] that we have
a natural isomorphism:

(5) Homcont
L (Π,Π(P )) ∼= Homcont

O (P,Θd)⊗O L.

We want to use (5) in two ways, which are consequences of [57, Thm.2.3]. If Π is
an admissible unitary L-Banach representation of G and Θ is an open, bounded,
G-invariant lattice in Π, then Θd is in C(O) and we have:

(6) Homcont
G (Π,Π(P )) ∼= HomC(O)(P,Θd)⊗O L = m(Π)

On the other hand, if V is a continuous representation of K on a finite dimen-
sional L-vector space and if Θ is a K-invariant lattice in V , then

(7) HomK(V,Π(P )) ∼= Homcont
OJKK(P,Θ

d)⊗O L ∼= Homcont
OJKK(P, V

∗).

We note that since V is finite dimensional any L-linear map is continuous.
Let Alg(G) be the set of isomorphism classes of irreducible rational represen-

tations of GL2 /L, which we view as representations of GL2(Zp) via the inclusion
GL2(Zp) ⊂ GL2(L). For V ∈ Alg(G) let AV := EndG(c-IndGK V ). It follows from
[8, rem.2.1.4.2] that AV ∼= EndG(c-IndGK 1) ∼= L[t, z±1]. In particular, AV is a
commutative noetherian ring. Frobenius reciprocity gives

HomK(V,Π(P )) ∼= HomG(c-IndGK V,Π(P )).

Hence, HomK(V,Π(P )) is naturally an AV -module. We transport the action of AV
onto Homcont

OJKK(P, V
∗) via (7).

Proposition 2.16. Let V ∈ Alg(G) and let m be a maximal ideal of AV . Then

dimκ(m) HomG(κ(m)⊗AV
c-IndGK V,Π(P )) ≤ d(π).

Proof. It follows from [8, prop. 3.2.1] that

(8) κ(m)⊗AV
c-IndGK V ∼= (IndGB δ1 ⊗ δ2| · |−1)sm ⊗L V,

where δ1, δ2 : Q×
p → κ(m)× are unramified characters with δ1| · | 6= δ2 and the

subscript sm indicates smooth induction. Let Π the universal unitary completion
of κ(m) ⊗AV

c-IndGK V . Since the action of G on Π(P ) is unitary, the universal
property of Π implies that

(9) HomG(κ(m)⊗AV
c-IndGK V,Π(P )) ∼= Homcont

G (Π,Π(P ))
(6)∼= m(Π).

It is proved in [52, prop. 2.10], using results of Berger–Breuil [5] as the main input,
that Π is an admissible finite length κ(m)-Banach representation of G. Moreover,
if Π is non-zero then Π

ss
is either irreducible supersingular, or Π

ss ⊆ π{χ1, χ2} for
some smooth characters χ1, χ2 : Q×

p → k×κ(m). Lemma 2.14 implies that π ⊗k kκ(m)

can occur in Π
ss

with multiplicity at most d(π). Hence, if Θ is an open, bounded
and G-invariant lattice in Π, then π can occur as a subquotient of Θ/($) with
multiplicity at most [κ(m) : L]d(π). Proposition 2.1 (ii) yields dimL m(Π) ≤ [κ(m) :
L]d(π). The result follows from (9). �

Corollary 2.17. For all V ∈ Alg(G) and all maximal ideals m of AV we have

dimκ(m) Homcont
OJKK(P, V

∗)[m] ≤ d(π).
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Proof. By (7) we have Homcont
OJKK(P, V

∗)[m] ∼= HomK(V,Π(P ))[m]. On the other
hand, Frobenius reciprocity gives an isomorphism

HomK(V,Π(P ))[m] ∼= HomG(c-IndGK V,Π(P ))[m]
∼= HomG(κ(m)⊗AV

c-IndGK V,Π(P )).
(10)

The result follows therefore from proposition 2.16. �

2.6. Proof of theorem 1.4.

Proposition 2.18. Let ϕ : P � M be a quotient in C(O), such that M is of finite
length. Then ϕ factors through ψ : P → N in C(O), such that N is a finitely
generated projective OJKK-module.

Proof. We claim that there exists a surjection θ : N � M in C(O) with N a
finitely generated projective OJKK-module. The claim implies the assertion, since
the projectivity of P implies that there exists ψ : P → N , such that θ ◦ ψ = ϕ.
The proof of the claim is a variation of the construction, which first appeared in
[47], and then was generalized in [12] and [36]. Let G0 = {g ∈ G : det g ∈ Z×p }
and let G+ = ZG0, where Z is the centre of G. Since M∨ is of finite length in
Modl.adm

G (O), M∨ is admissible. It follows from [36, Thm.3.4] that there exists an
injection M∨ ↪→ Ω in Modadm

G0 (O), such that M∨|K ↪→ Ω|K is an injective envelope
of M∨ in Modsm

K (O) and Ω ∼= Ωc, where Ωc denotes the action of G0 twisted by
conjugation with an element

(
0 1
p 0

)
. Dually we obtain a continuous, G0-equivariant

surjection θ0 : Ω∨ � M , such that its restriction to K is a projective envelope of
M in Modpro

K (O).
We let A := O[t, t−1] act on M by letting t act as the matrix

( p 0
0 p

)
. Since M is

a quotient of P , its cosocle in C(O) is isomorphic to π∨, and hence is irreducible.
This implies thatM is indecomposable. Moreover, M is finite length by assumption.
The argument of [36, cor. 3.9] shows that there exists a monic polynomial f ∈ O[t]
and a natural number n, such that ($, f) is a maximal ideal of A, and the action
of A on M factors through A/(fn). Since f is monic A/(fn) is a free O-module
of finite rank. Hence, the restriction of N+ := A/(fn) ⊗O Ω∨ to K is a finite
direct sum of copies of Ω∨, which implies that N+ is a finitely generated projective
OJKK-module. We put an action of G+ on N+ by using G+ =

( p 0
0 p

)Z × G0.
The map t ⊗ v 7→ θ0(

( p 0
0 p

)
v) induces a G+-equivariant surjection θ+ : N+ � M .

Let N := IndGG+ N+, then by Frobenius reciprocity we obtain a surjective map
θ : N � M . Since G+ is of index 2 in G, and

(
0 1
p 0

)
is a representative of the

non-trivial coset, we have N |G+ ∼= N+ ⊕ (N+)c ∼= N+ ⊕N+, where the subscript
c indicates that the action of G+ is twisted by conjugation with

(
0 1
p 0

)
, and the

last isomorphism follows from Ω ∼= Ωc. Hence, N satisfies the conditions of the
claim. �

If V is a continuous representation of K on a finite dimensional L–vector space
and if Θ is an open, bounded and K-invariant lattice in V , let | � | be the norm
on V ∗ given by |`| := supv∈Θ |`(v)|, so that Θd = HomO(Θ,O) is the unit ball in
V ∗ with respect to | � |. The topology on Homcont

OJKK(P, V
∗) is given by the norm

‖φ‖ := supv∈P |φ(v)|, and Homcont
OJKK(P,Θ

d) is the unit ball in this Banach space.

Proposition 2.19. For all V as above the submodule

Homcont
OJKK(P, V

∗)l.fin := {φ ∈ Homcont
OJKK(P, V

∗) : `AV
(AV φ) <∞}
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is dense in Homcont
OJKK(P, V

∗), where `AV
(AV φ) is the length of AV φ as an AV -

module.

Proof. Let A = AV . It is enough to show that for each φ ∈ Homcont
OJKK(P,Θ

d) and
each n ≥ 1 there exists ψn ∈ Homcont

OJKK(P,Θ
d) such that the A-submodule generated

by ψn is of finite length, and φ ≡ ψn (mod $n).

Let φn be the composition P
φ→ Θd � Θd/($n). Dually we obtain a map

φ∨n : (Θd/($n))∨ → P∨. Let τ be the G-subrepresentation of P∨ generated by the
image of φ∨n . Since P∨ is in Modl.adm

G (O) any finitely generated G-subrepresentation
is of finite length. Since (Θd/($n))∨ is a finite O-module, we deduce that τ is
of finite length. Thus φn factors through P � τ∨ in C(O), with τ∨ of finite
length. Proposition 2.18 implies that this map factors through ψ : P → N with
N finitely generated and projective OJKK-module. Since N is projective, using

the exact sequence 0 → Θd $n

→ Θd → Θd/($n) → 0, we deduce that there
exists θn ∈ Homcont

OJKK(N,Θ
d), which maps to φn ∈ Homcont

OJKK(N,Θ
d/($n)). Let

ψn = θn ◦ ψ. Then by construction φ ≡ ψn (mod $n). Since ψ is G-equivariant,

Homcont
OJKK(N,V

∗)
◦ψ→ Homcont

OJKK(P, V
∗) is a map of A-modules, which contains ψn

in the image. Since N is a finitely generated OJKK-module, Homcont
OJKK(N,V

∗) is
a finite dimensional L-vector space, thus the A-submodule generated by ψn is of
finite length. �

Corollary 2.20. For V as above, let aV be the E[1/p]-annihilator of Homcont
OJKK(P, V

∗).
Then E[1/p]/aV satisfies the standard identity s2d(π) (see definition 2.13 for d(π)).

Proof. Since the action of E preserves the unit ball in Homcont
OJKK(P, V

∗), E[1/p] acts
by continuous endomorphisms, which commute with the action of AV . It follows
from proposition 2.19 that E[1/p]/aV injects into EndAV

(Homcont
OJKK(P, V

∗)l.fin). It
follows from proposition 2.16 and lemma 2.17 that

dimκ(m) Homcont
OJKK(P, V

∗)l.fin[m] ≤ d(π),

for every maximal ideal m of AV . The assertion follows from lemma 2.5. �

Theorem 2.21. Let Π be a unitary admissible absolutely irreducible L-Banach
space representation of G and let Θ be an open bounded G-invariant lattice in Π.
Then π occurs with multiplicity ≤ d(π) as a subquotient of Θ⊗O k.

Proof. Let d = d(π), then it is enough to prove that dimL m(Π) ≤ d by proposi-
tion 2.1 (ii). It follows from propositions 2.15 and 2.12 that Alg(G) captures P , and
lemma 2.7 (ii) implies that

⋂
V ∈Alg(G) aV = 0, where aV is defined in corollary 2.20.

We deduce from corollary 2.20 and remark 2.3 that E[1/p] satisfies the standard
identity s2d. Thus, if E is the image of E[1/p] in EndL(m(Π)), then E satisfies the
standard identity s2d.

Since Π is irreducible, it follows from proposition 2.1(iii)a) that m(Π) is an
irreducible E -module, which is clearly faithful. Proposition 2.1(iii)b) shows that
EndE (m(Π)) = Endcont

G (Π)op. On the other hand, since Π is absolutely irreducible,
Schur’s lemma [27, Thm.1.1.1] yields Endcont

G (Π) = L, hence EndE (m(Π)) = L.
A theorem of Kaplansky, see [56, Thm.II.1.1] and [56, cor. II.1.2], implies that
dimL m(Π) ≤ d, which is the desired result. �
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Corollary 2.22. Let π be an absolutely irreducible smooth representation and let
P � π∨ be a projective envelope of π∨ in C(O), where C(O) is the Pontryagin dual
of Modl.adm

G (O). If one of the following holds:

(i) π is supersingular;
(ii) π ∼= (IndGB χ1 ⊗ χ2ω

−1)sm and χ1χ
−1
2 6= ω±1, 1;

(iii) π ∼= (IndGB χω ⊗ χω−1)sm and p ≥ 5;
(iv) π ∼= Sp⊗χ ◦ det and p ≥ 3;
(v) π ∼= χ ◦ det and p ≥ 3;

then the ring E := EndC(O)(P ) is commutative.

Proof. In these cases d(π) = 1, and the assertion follows from the proof of theo-
rem 2.21 and remark 2.3. �

Corollary 2.23. Let Π be a unitary admissible absolutely irreducible L-Banach
space representation of G and let Θ be an open bounded G-invariant lattice in Π.
Then Θ⊗O k is of finite length. Moreover, one of the following holds:

(i) Θ⊗O k is absolutely irreducible supersingular;
(ii) Θ⊗O k is irreducible and

Θ⊗O l ∼= (IndGP χ⊗ χσω−1)sm ⊕ (IndGP χ
σ ⊗ χω−1)sm

where l is a quadratic extension of k, χ : Q×
p → l× a smooth character and

χσ is a conjugate of χ by the non-trivial element in Gal(l/k);
(iii) (Θ⊗O k)ss ⊆ π{χ1, χ2} for some smooth characters χ1, χ2 : Q×

p → k×.

Proof. Let π be an irreducible subquotient of Θ ⊗O k. If π′ is another irreducible
subquotient of Θ⊗O k then π and π′ lie in the same block by [54, prop. 5.36], which
means that there exist irreducible smooth k-representations π = π0, . . . , πn = π′,
such that for all 0 ≤ i < n either Ext1G(πi, πi+1) 6= 0 or Ext1G(πi+1, πi) 6= 0. The
blocks containing an absolutely irreducible representation have been determined in
[52], and consist of either a single supersingular representation, or of all irreducible
subquotients of π{χ1, χ2} for some smooth characters χ1, χ2 : Q×

p → k×. These
irreducible subquotients are listed explicitly in lemma 2.14. If π is absolutely irre-
ducible, it follows from theorem 2.21 that if π is supersingular then (i) holds, if π
is not supersingular then the multiplicity with which π occurs as a subquotient of
Θ⊗O k is less or equal to the multiplicity with which π occurs in π{χ1, χ2}, which
implies that (iii) holds. If π is not absolutely irreducible, then arguing as in the
proof of corollary 5.44 of [54] we deduce that (ii) holds. �

3. Injectivity of the functor Π 7→ V(Π)

In this chapter we prove theorems 1.8 and 1.9 as well as their consequences
stated in the introduction. After a few preliminaries devoted to the theory of
(ϕ,Γ)-modules and various constructions involved in the p-adic local Langlands
correspondence [20], we give a detailed overview of the (rather technical) proofs.
We then go on and supply the technical details of the proofs.

3.1. Preliminaries.
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3.1.1. (ϕ,Γ)-modules. Let OE be the p-adic completion of O[[T ]][T−1], E = OE [p−1]
the field of fractions of OE and let R be the Robba ring, consisting of those Laurent
series

∑
n∈Z anT

n ∈ L[[T, T−1]] which converge on some annulus 0 < vp(T ) ≤ r,
where r > 0 depends on the series.

Let ΦΓet(E ) be the category of étale (ϕ,Γ)-modules over E . These are finite
dimensional E -vector spaces D endowed with semi-linear10 and commuting actions
of ϕ and Γ = Gal(Qp(µp∞)/Qp) ∼= Z×p such that the action of ϕ is étale11. Each
D ∈ ΦΓet(E ) is naturally endowed with an operator ψ, which is left-inverse to ϕ
and commutes with Γ.

The category ΦΓet(E ) is equivalent [41] to the category RepL(GQp) of continuous
finite dimensional L-representations of GQp

. Cartier duality12 on RepL(GQp) induces
a Cartier duality D → Ď on ΦΓet(E ). All these constructions have integral and
torsion analogues, which will be used without further comment.

The category ΦΓet(E ) is equivalent, by [16, 6] and [42], to the category of (ϕ,Γ)-
modules of slope 0 on R. For D ∈ ΦΓet(E ) we let Drig be the associated (ϕ,Γ)-
module over R.

3.1.2. Analytic operations on (ϕ,Γ)-modules. The monoid P+ =
( Zp−{0} Zp

0 1

)
acts

naturally on Zp by ( a b0 1 )x = ax+ b. Any D ∈ ΦΓet(E ) carries a P+ action, defined
by (

pka b
0 1

)
z = (1 + T )bϕk ◦ σa(z)

for a ∈ Z×p , b ∈ Zp and k ∈ N.
D also gives rise to a P+-equivariant sheaf U 7→ D � U on Zp, whose sections

on i + pkZp are
(
pk i
0 1

)
D ⊂ D = D � Zp and for which the restriction map

Resi+pkZp
: D � Zp → D � (i+ pkZp) is given by ( 1 i

0 1 ) ◦ ϕk ◦ ψk ◦
(

1 −i
0 1

)
.

Let U be an open compact subset of Zp and let φ : U → L be a continuous
function. By [19, prop. V.2.1], the limit

mφ(z) = lim
N→∞

∑
i∈IN (U)

φ(i)Resi+pN Zp
(z)

exists for all z ∈ D � U , and it is independent of the system of representatives
IN (U) of U mod pN . Moreover, the resulting map mφ : D�U → D�U is L-linear
and continuous.

In the same vein [19, prop. V.1.3], if U, V are compact open subsets of Zp and
if f : U → V is a local diffeomorphism, there is a direct image operator

f∗ : D � U → D � V, f∗(z) = lim
N→∞

∑
i∈IN (U)

(
f ′(i) f(i)

0 1

)
RespnZp(

(
1 −i
0 1

)
z).

The following result (see § V.1 and V.2 in [19]) summarizes the main properties of
these operators (which also have integral and torsion versions, see loc.cit.).

Proposition 3.1. Let U, V be compact open subsets of Zp.
a) For all continuous maps φ1, φ2 : U → L we have mφ1 ◦mφ2 = mφ1φ2 .

10The rings OE , E , R are endowed with a Frobenius ϕ and an action of Γ defined by ϕ(T ) =

(1 + T )p − 1 and γ(T ) = (1 + T )ε(γ) − 1.
11This means that the matrix of ϕ in some basis of D belongs to GLd(OE ), where d = dimE (D).
12Sending V to V̌ := V ∗ ⊗ ε, where V ∗ is the L-dual of V .
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b) If f : U → V is a local diffeomorphism and φ : V → L is continuous, then

f∗ ◦mφ◦f = mφ ◦ f∗.
c) If f : U → V and g : V →W are local diffeomorphisms, then g∗◦f∗ = (g◦f)∗.
d) If φ : U → L is a continuous map and V ⊂ U , then mφ commutes with ResV .
e) If φ : Z×p → L is constant on a+ pnZp for all a ∈ Z×p , then

mφ =
∑

i∈(Z/pnZ)×

φ(i)Resi+pnZp
.

3.1.3. From GL2(Qp) to Gal(Qp/Qp)-representations and back. Let G = GL2(Qp).
We refer the reader to the introduction for the definition of the category RepL(G),
and to [20, ch. IV] (or to [23, § III.2] for a summary) for the construction and
study of an exact and contravariant functor D : RepL(G)→ ΦΓet(E ). Composing
this functor with Fontaine’s [41] equivalence of categories and Cartier duality, we
obtain an exact covariant functor Π 7→ V(Π) from RepL(G) to RepL(GQp). We
will actually work with the functor D, even though some results will be stated in
terms of the more familiar functor V.

In the opposite direction, δ being fixed, there is a functor from ΦΓet(E ) to the
category of G-equivariant sheaves of topological L-vector spaces on P1 = P1(Qp)
(the space of sections on an open set U of P1 of the sheaf associated to D is denoted
by D �δ U). If D ∈ ΦΓet(E ), then the restriction to Zp of the sheaf U 7→ D �δ U
is the P+-equivariant sheaf attached to D as in no 3.1.2 (in particular it does not
depend on δ). The space D�δ P1 of global sections of the sheaf attached to D and
δ is naturally a topological G-module.

Definition 3.2. If δ : Q×
p → O× is a unitary character then we let RepL(δ) be the

full subcategory of RepL(G) consisting of representations with central character δ
and we let MF (δ) be the essential image of D|RepL(δ).

The following result follows by combining the main results of [23, chap. III].

Proposition 3.3. If δ : Q×
p → O× is a unitary character then there is a functor

MF (δ−1)→ RepL(δ), D 7→ Πδ(D)

such that for all D ∈MF (δ−1), we have:
(i) If η is a unitary character, then13 D(η) ∈MF (η−2δ−1) and

Πη2δ(D(η)) ∼= Πδ(D)⊗ (η ◦ det).

(ii) Ď ∈MF (δ) and there is an exact sequence14

0→ Πδ−1(Ď)∗ → D �δ P1 → Πδ(D)→ 0.

(iii) There is a canonical isomorphism D(Πδ(D)) ∼= Ď.
(iv) If dim(D) ≥ 2, then D is irreducible if and only if Πδ(D) is irreducible.

All these constructions have natural integral and torsion variants, which will
be used without further comment: for instance, if D0 is an OE -lattice in D ∈
MF (δ−1) which is stable by ϕ and Γ, then Πδ(D0) is an open, bounded and
G-invariant lattice in Πδ(D).

13Here D(η) is the (ϕ, Γ)-module obtained by twisting the action of ϕ and Γ by η.
14Of topological G-modules, where Πδ−1 (Ď)∗ is the weak dual of Πδ−1 (Ď).



18 PIERRE COLMEZ, GABRIEL DOSPINESCU, AND VYTAUTAS PAŠKŪNAS

The next result is the main ingredient for the proof of the surjectivity of the
p-adic Langlands correspondence for G (cf. § 1.3). Note that if D ∈ ΦΓet(E ), then
detD corresponds by Fontaine’s equivalence of categories to a continuous character
of GQp , which in turn can be seen as a unitary character detD : Q×

p → O× by local
class field theory. We define

δD : Q×
p → O×, δD = ε−1 detD.

Proposition 3.4. If D ∈ ΦΓet(E ) is 2-dimensional, then D ∈MF (δ−1
D ).

Proof. This is a restatement of [24, prop. 10.1]. �

3.2. Uniqueness of the central character. In this § we explain the steps of the
proof of the following theorem, which is the main result of this chapter.

Theorem 3.5. Let D ∈ ΦΓet(E ) be absolutely irreducible, 2-dimensional.
If D ∈MF (δ−1) for some unitary character δ, then δ = δD.

For the rest of this § we let D ∈ ΦΓet(E ) be as in theorem 3.5. Let D+ be the
set of z ∈ D such that the sequence (ϕn(z))n≥0 is bounded in D. The module D+

is the largest finitely generated E +-submodule of D, stable under ϕ and Γ. We say
that D is of finite height if D+ spans D as E -vector space or, equivalently (since
D is irreducible) if D+ 6= {0}. The classification of representations of finite height
given in [3] shows that if D is of finite height, then D is trianguline15, so it suffices
to treat the cases “D trianguline” and “D+ = {0}”.

3.2.1. The trianguline case. Suppose that D is trianguline and recall that δD =
ε−1 detD is seen as a unitary character of Q×

p . Suppose that D ∈ MF (δ−1) for
some unitary character δ. Let Π = Πδ(D) and define η = δ−1

D δ. Also, let Πan

be the space of locally analytic vectors of Π, for which we refer the reader to [58]
and [33].

We first prove that η is locally constant. The argument works for a much
more general class of (ϕ,Γ)-modules, namely those corresponding to representa-
tions which are not Cp-admissible16 up to a twist (this condition is automatically
satisfied by irreducible trianguline (ϕ,Γ)-modules [17, prop. 4.6]). The proof uses
two ingredients
• By [23, chap. VI] and the hypothesis D ∈MF (δ−1), there is a G-equivariant

sheaf of locally analytic representations U 7→ Drig �δ U attached to (Drig, δ).
• Using [29, 30], one can describe the action of Lie(GL2(Qp)) on the space

Drig �δ P1 of global sections of this sheaf. The fact that η is locally constant
follows easily.

The second part of the proof in the trianguline case consists in analyzing the
module Drig �δ P1. More precisely, we prove (lemma 3.20) that if 0 → R(δ1) →
Drig → R(δ2) → 0 is a triangulation of Drig, then this exact sequence extends to
an exact sequence of topological G-modules

0→ R(δ1) �δ P1 → Drig �δ P1 → R(δ2) �δ P1 → 0.

Actually, once we know that η is locally constant, the arguments of [21, 28] (where
the case η = 1 is treated) go through without any change.

15Actually, more is true but will not be needed in the sequel: D is of finite height if and only
if D ∈ S cris

∗ , where S cris
∗ is defined in no 3.3.1.

16That is, de Rham with Hodge-Tate weights equal to 0.
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Using the description [21] of the Jordan-Hölder components of R(δ1) �δ P1, we
deduce (lemma 3.21) the existence of a morphism with finite dimensional kernel
Ban(δ1, ηδ2) → Πan, where Ban(δ1, ηδ2) is the locally analytic parabolic induction
of the character ηδ2 ⊗ ε−1δ1. Finally, using universal completions, we prove that
the morphism Ban(δ1, ηδ2) → Πan induces a nonzero morphism Πδ(D′) → Π for
some G-compatible pair (D′, δ), where D′ is a trianguline (ϕ,Γ)-module having a
triangulation

0→ R(δ1)→ D′
rig → R(ηδ2)→ 0.

This is the most technical part of the proof and uses results from [18, 21, 5] (and [48]
suitably extended for p = 2). Since D and D′ are irreducible, the representations
Πδ(D′) and Π are admissible and topologically irreducible, hence the morphism
Πδ(D′)→ Π must be an isomorphism. Using parts (iii) and (iv) of proposition 3.3,
we deduce that D′ ∼= D. In particular detDrig = detD′

rig, which yields δ1δ2 =
δ1δ2η, hence η = 1, and finishes the proof in the trianguline case.

3.2.2. The case D+ = {0}. Let us assume now that D ∈ ΦΓet(E ) is 2-dimensional
and satisfies D+ = {0} (then D is automatically absolutely irreducible). For each
α ∈ O× let

C α = (1− αϕ)Dψ=α.

If D ∈MF (χ−1) for some character χ : Q×
p → O×, then setting Π̌ = Πχ−1(Ď) we

have Π̌∗ ⊂ D �χ P1 (proposition 3.3), and there is [23, rem.V.14(ii)] a canonical
isomorphism of O[[Γ]][1/p]-modules

(11) ResZ×p ((Π̌∗)
“
p 0
0 1

”
=α−1

) ∼= C α.

Suppose now that D ∈ MF (δ−1) and let η = δ−1
D δ. Unravelling the isomor-

phism (11) for χ = δD and χ = δ, we obtain the following key fact

Proposition 3.6. For all α ∈ O× we have mη(C α) = C αη(p).

Proof. If χ ∈ {δD, δ}, let wχ be the restriction to Dψ=0 = D �χ Z×p of the action
of w = ( 0 1

1 0 ) on Πχ−1(Ď)∗ ⊂ D �χ P1. Proposition V.12 of [23] shows that
wχ(C α) = C

1
αχ(p) for all α ∈ O×. On the other hand, remark II.1.3 of [20] and

part b) of proposition 3.1 yield wχ = w∗ ◦mχ and

wδD
◦ wδ = w∗ ◦mδD

◦ w∗ ◦mδ = mδ−1
D
◦ w∗ ◦ w∗ ◦mδ = mδ−1

D δ = mη,

as w∗ ◦ w∗ = (w ◦ w)∗ = id. The result follows. �

In view of proposition 3.4, theorem 3.5, in the case D+ = 0, is equivalent to the
following statement.

Proposition 3.7. We have η = 1.

Proof. Let µ(Qp) be the set of roots of unity in Qp and let

T̂ 0(L) = Homcont(Q×
p /µ(Qp), 1 + mL)

be the set of continuous characters χ : Q×
p → 1 + mL trivial on µ(Qp), and let

H = {χ ∈ T̂ 0(L)|mχ(C α) = C αχ(p) ∀α ∈ 1 + mL}.

Proposition 3.31 below shows that H is a Zariski closed subgroup of T̂ 0(L) and
it follows from corollary 3.35 that H is either trivial or it contains a nontrivial
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character of finite order (this may require replacing L by a finite extension, which
we are allowed to do). We haven’t used so far the hypothesis D+ = {0}, but only
the fact that D is absolutely irreducible of dimension ≥ 2. When D+ = {0}, we
prove (corollary 3.26) that H cannot contain nontrivial locally constant characters.
We conclude thatH = {1}, which implies that η is of finite order (since any power of
η which belongs to T̂ 0(L) actually belongs to H by proposition 3.6). We conclude
that η = 1 using again corollary 3.26. �

Remark 3.8. Assume that the Sen operator on D is not scalar17. Proposition 3.16
shows that η is locally constant, and proposition 3.6 and corollary 3.26 yield directly
the desired result η = 1. The key proposition 3.16 does not work if the Sen operator
is scalar, which explains the more indirect approach presented above.

3.2.3. Consequences of theorem 3.5. Before embarking on the proof of theorem 3.5,
we give a certain number of consequences of theorems 1.4 and 3.5.

If D ∈ ΦΓet(E ), we let D
ss

be the semi-simplification of D0 ⊗O k, where D0 is
any OE -lattice in D which is stable under ϕ and Γ.

The functor Π 7→ V(Π) has integral and torsion versions, and if Θ is an open,
bounded and G-invariant lattice in Π ∈ RepL(G), then V(Θ) = lim←−nV(Θ/$n)
and V(Θ)/$n ∼= V(Θ/$n) for all n ≥ 1. The following result follows from [20, th.
0.10] (see the introduction for the definition of π{χ1, χ2}).

Lemma 3.9. If π is either supersingular or π{χ1, χ2} for some smooth charac-
ters χ1, χ2 : Q×

p → k×, then dimk V(π) = 2. Moreover, if π is an irreducible
subrepresentation of π{χ1, χ2}, then dimk V(π) ≤ 1.

We will also need to following compatibility between the p-adic and mod p Lang-
lands correspondences. This was first proved (in a slightly different form) in [4].
We will use the following version, taken from [23, prop. III.55, rem. III.56].

Proposition 3.10. If D ∈ ΦΓet(E ) is 2-dimensional and if δ = δD, there is an
isomorphism Πδ(D)

ss ∼= Πδ(D
ss

) and (possibly after replacing L with its quadratic
unramified extension) this representation is either absolutely irreducible supersin-
gular or isomorphic to π{χ1, χ2} for some smooth characters χ1, χ2 : Q×

p → k×.

Proposition 3.11. Let Π ∈ RepL(δ) be absolutely irreducible and let D = D(Π).
Then dimE D ≤ 2 and D is absolutely irreducible. Moreover, dimD = 2 if and only
if Π is non-ordinary.

Proof. The functor D being exact, there is a natural isomorphism D
ss ∼= D(Π

ss
).

Combined with theorem 1.4 and lemma 3.9, this yields dimD ≤ 2.
Next, if Π is ordinary, then Π

ss
is a subquotient of a smooth parabolic induction

and using lemma 3.9 again we conclude that dimD ≤ 1. In particular, D is
absolutely irreducible. If Π is not ordinary, we deduce from [23, cor. III.47] and
the first paragraph that D is absolutely irreducible and 2-dimensional. The result
follows. �

Corollary 3.12. If Π ∈ RepL(δ) is absolutely irreducible non-ordinary, then δ =
δD(Π). Thus detV(Π) = εδ.

17By Sen’s theorem, this is equivalent to saying that inertia does not have finite image on the
Galois representation associated to D.
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Proof. This follows directly from proposition 3.11 and theorem 3.5. �

Theorem 3.13. Let Π ∈ RepL(δ) be absolutely irreducible and let D = D(Π). The
following assertions are equivalent

(i) Π is non-ordinary.
(ii) dimE D = 2.
(iii) After possibly replacing L by its quadratic unramified extension, Π

ss
is either

absolutely irreducible supersingular or isomorphic to some π{χ1, χ2}.
If these assertions hold, then there is a canonical isomorphism Π ∼= Πδ(Ď).

Proof. (i) and (ii) are equivalent by proposition 3.11. Suppose that (iii) holds. Then
D

ss ∼= D(Π
ss

) is 2-dimensional by lemma 3.9 and so dimD = 2, that is (ii) holds.
Finally, suppose that (i) holds. Then [23, cor. III.47] yields a canonical isomorphism
Π ∼= Πδ(Ď) and we conclude that (iii) holds using proposition 3.10. �

Theorem 3.14. Let Π1,Π2 ∈ RepL(G) be absolutely irreducible, non-ordinary.
(i) If V(Π1) ∼= V(Π2), then Π1

∼= Π2.
(ii) We have Homcont

L[P ](Π1,Π2) = Homcont
L[G](Π1,Π2), where P is the mirabolic

subgroup of G.

Proof. If V(Π1) ∼= V(Π2) = V , then corollary 3.12 shows that Π1 and Π2 have the
same central character δ and theorem 3.13 yields Π1

∼= Π2
∼= Πδ(D(V̌ )).

Let f : Π1 → Π2 be a P -equivariant linear continuous map and let Dj =
D(Πj). Since the functor D uses only the restriction to P , f induces a morphism
D(f) : D2 → D1 in ΦΓet(E ). Since D1 and D2 are absolutely irreducible (propo-
sition 3.11), D(f) is either 0 or an isomorphism. If D(f) is an isomorphism, then
δ1 = δ2 by part (i), and we conclude that f is G-equivariant using the following
diagram, in which the vertical maps are the isomorphisms given by theorem 3.13
and the map Πδ1(Ď1) → Πδ1(Ď2) is G-equivariant since induced by functoriality
from the transpose of D(f)

Π1
f //

∼=
��

Π2

∼=
��

Πδ1(Ď1)
D(f∗) // Πδ1(Ď2).

The case D(f) = 0 is slightly trickier, since we can no longer use part (i) of
the theorem to deduce that Π1 and Π2 have the same central character. We will
prove that f = 0. Let Θj be the unit ball in Πj and let Xj = ResZp(Θd

j ), where
we use the inclusions Π∗j ⊂ Dj �δ−1

j
P1 (proposition 3.3). It follows from [23,

cor. III.25] that the restriction of ResQp : Dj �δ−1
j

P1 → Dj �δ−1
j

Qp to Π∗j induces
a P -equivariant isomorphism of topological vector spaces Π∗j ∼= (lim←−ψXj)⊗ L. We
have a commutative diagram

Π∗2 //

��

Π∗1

��
(lim←−ψX2)⊗ L // (lim←−ψX1)⊗ L
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in which the top horizontal map is the transpose f∗ of f , the vertical maps are the
isomorphisms explained above and the horizontal map on the bottom is induced by
D(f) = 0, and thus it is the zero map. We conclude that f∗ = 0 and thus f = 0,
which finishes the proof of theorem 1.8. �

The remaining sections will be devoted to the proof of theorem 3.5 in the case
D trianguline (see proposition 3.24), and to the proof of the statements (namely
proposition 3.31 and corollaries 3.26 and 3.35) that were used in the proof of propo-
sition 3.7 which, as we remarked, is equivalent to theorem 3.5 in the case D+ = 0.

3.3. Trianguline representations.

3.3.1. Preliminaries. If δ : Q×
p → L× is a continuous character (not necessarily

unitary), let R(δ) be the (ϕ,Γ)-module obtained by twisting the action of ϕ and
Γ on R by δ. It has a canonical basis e = 1 ⊗ δ for which ϕ(e) = δ(p)e and
σa(e) = δ(a)e for a ∈ Z×p , where σa ∈ Γ satisfies σa(ζ) = ζa for all ζ ∈ µp∞ , so
that ε(σa) = a. Let R+ be the ring of analytic functions on the open unit disk, so
that R+ = R ∩ L[[T ]]. We define R+(δ) as the R+-sumodule of R(δ) generated
by e. We let κ(δ) be the derivative of δ at 1 or, equivalently (if δ is unitary), the
generalized Hodge–Tate weight of the Galois character corresponding to δ by class
field theory.

By18 [21, prop. 0.2], Ext1(R(δ2),R(δ1)) has dimension 1 when δ1δ
−1
2 is not

of the form x−i or εxi for some i ≥ 0, and dimension 2 in the remaining cases.
Moreover, if Ext1(R(δ2),R(δ1)) is 2-dimensional, then the associated projective
space is naturally isomorphic to P1(L). Let S be the set of triples (δ1, δ2,L ), where
δ1, δ2 : Q×

p → L× are continuous characters and L ∈ Proj(Ext1(R(δ2),R(δ1))) (if
Ext1(R(δ2),R(δ1)) is 1-dimensional, we have L = ∞). Each s ∈ S gives rise to
an extension 0→ R(δ1)→ ∆(s)→ R(δ2)→ 0, classified up to isomorphism by L .

Let S∗ be the subset of S consisting of those s = (δ1, δ2,L ) for which vp(δ1(p))+
vp(δ2(p)) = 0 and vp(δ1(p)) > 0. For each s ∈ S∗ let

u(s) = vp(δ1(p)), κ(s) = κ(δ1)− κ(δ2).

Let S cris
∗ (resp. S st

∗ ) be the set of s ∈ S∗ for which κ(s) ∈ N∗, u(s) < κ(s) and
L = ∞ (resp. L 6= ∞). Let S ng

∗ be the set of s ∈ S∗ for which κ(s) /∈ N∗ and
finally let

Sirr = S cris
∗

∐
S st
∗

∐
S ng
∗ .

We say that D ∈ ΦΓet(E ) is trianguline (of rank 2) if Drig is an extension of two
(ϕ,Γ)-modules of rank 1 over R. These are described by the following result ([21,
prop. 0.3] or [17, th. 0.5]).

Proposition 3.15. a) For any s ∈ Sirr there is a unique D(s) ∈ ΦΓet(E ) such
that ∆(s) = D(s)rig, and D(s) is absolutely irreducible. Moreover, if D ∈ ΦΓet(E )
is trianguline and absolutely irreducible, there exists s ∈ Sirr such that D ∼= D(s).

b) If s = (δ1, δ2,L ) and s′ = (δ′1, δ
′
2,L

′) are elements of Sirr, then D(s) ∼= D(s′)
if and only if s, s′ ∈ S cris

∗ and δ′1 = xκ(s)δ2, δ′2 = x−κ(s)δ1.

18Contrary to [17], all results of [21] are proved for all primes p.



THE p-ADIC LOCAL LANGLANDS CORRESPONDENCE 23

3.3.2. Infinitesimal study of the module Drig �δP1. In this § we let D be any object
of MF (δ−1) for some unitary character δ.

Recall (see section 2.5 of [30] for a summary) that Sen’s theory associates to D a
finite free L⊗Qp

Qp(µp∞)-module DSen endowed with a Sen operator ΘSen, whose
eigenvalues are the generalized Hodge-Tate weights of D.

Proposition 3.16. If D ∈MF (δ−1) is absolutely irreducible, 2-dimensional and
if ΘSen is not a scalar operator on DSen, then δδ−1

D is locally constant.

Proof. By [23, chap. VI], the G-equivariant sheaf U 7→ D �δ U induces a G-
equivariant sheaf U 7→ Drig�δU on P1(Qp). We letDrig�δP1 be the space of global
sections of this sheaf. This is naturally an LF space and G acts continuously on
it. Moreover, this action extends to a structure of topological D(GL2(Zp))-module
on Drig �δ P1, where D(GL2(Zp)) is the Fréchet-Stein algebra [58] of L-valued
distributions on GL2(Zp). In particular, the enveloping algebra of gl2 = Lie(G)
acts on Drig �δ P1.

Consider the Casimir element

C = u+u− + u−u+ +
1
2
h2 ∈ U(gl2),

where h =
(

1 0
0 −1

)
, u+ = ( 0 1

0 0 ) and u− = ( 0 0
1 0 ). The action of C on Drig �δ P1

preserves Drig = Drig �δZp, viewed as a sub-module of Drig �δP1 via the extension
by 0. By theorem 3.1 and remark 3.2 of [29] the operator C acts by a scalar c on
Drig and we have an equality of operators on DSen

(12) (2ΘSen − (1 + κ(δ)))2 = 1 + 2c.

Let a and b be the generalized Hodge-Tate weights of D. By Cayley-Hamilton we
have (ΘSen − a)(ΘSen − b) = 0 as endomorphisms of DSen. Combining this relation
with (12) yields

4(a+ b− 1− κ(δ))ΘSen + (1 + κ(δ))2 − 4ab = 1 + 2c.

Since ΘSen is not scalar, the previous relation forces a + b − 1 = κ(δ) and, as
a+ b− 1 = κ(δD), this gives κ(δδ−1

D ) = 0. The result follows. �

Remark 3.17. If D is trianguline, 2-dimensional and irreducible, then ΘSen is not
scalar, see proposition 4.6 of [17].

3.3.3. Dévissage of Drig �δ P1. If η1, η2 : Q×
p → L× are continuous characters, let

Ban(η1, η2) = (IndGBη2 ⊗ ε−1η1)an

be the locally analytic parabolic induction of the character η2 ⊗ ε−1η1. The recipe
giving rise to the sheaf U 7→ D �δ U for D ∈ ΦΓet(E ) can be used [28, § 3.1]
to create a G-equivariant sheaf U 7→ R(η1) �δ U on P1, attached to the pair
(R(η1), δ). We will only be interested in the space R(η1)�δP1 of its global sections,
which is described by the following proposition, whose proof is easily deduced from
remark 3.7 of [28]. Let

R+(η1) �δ P1 = {z ∈ R(η1) �δ P1, ResZpz ∈ R+(η1), ResZpw · z ∈ R+(η1)}.

Proposition 3.18. If ε−1η1η2 = δ for some continuous characters η1, η2, δ, then
there is an exact sequence of topological G-modules

0→ Ban(η2, η1)∗ ⊗ δ → R(η1) �δ P1 → Ban(η1, η2)→ 0
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and a G-equivariant isomorphism Ban(η2, η1)∗ ⊗ δ ∼= R+(η1) �δ P1 of topological
vector spaces.

From now on we suppose that D = D(s) ∈MF (δ−1) for some s = (δ1, δ2,L ) ∈
Sirr and some unitary character δ : Q×

p → O∗
L, and we let η = δδ−1

D . By proposi-
tion 3.3 we have Ď ∈MF (δ) and we let Π̌ = Πδ−1(Ď). Since dimD = 2, there is
a natural isomorphism Ď ∼= D ⊗ δ−1

D . Combining these observations with part (i)
of proposition 3.3 and with corollary VI.12 of [23], we obtain the following result.

Lemma 3.19. We have D ∈ MF (ηδ−1
D ) and there is a natural isomorphism

Π̌ ∼= ΠδDη−1(D)⊗ δ−1
D as well as an exact sequence of topological G-modules

0→ (Π̌an)∗ → Drig �δ P1 → Πan → 0.

Lemma 3.20. There is an exact sequence of topological G-modules

0→ R(δ1) �δ P1 → Drig �δ P1 → R(δ2) �δ P1 → 0.

Proof. Since κ(δ) = κ(δD) by remark 3.17, the desired result is proved in the
same way as corollary 3.6 of [28]. For the reader’s convenience, we sketch the
argument. Let a, b be the Hodge-Tate weights of D. Extension by 0 allows to view
Drig = Drig �δ Zp as a subspace of Drig �δ P1 and any element of Drig �δ P1 can
be written as z1 + w · z2 with z1, z2 ∈ Drig. The equality κ(δ) = κ(δD) combined
with theorem 3.1 in [29] yields

u+(z1) = tz1, u+(w · z2) = −w · (∇− a)(∇− b)z2
t

, where t = log(1 + T ).

We deduce that X := (Drig �δ P1)u
+=0 is isomorphic as an L-vector space to the

space of solutions of the equation (∇ − a)(∇ − b)z = 0 on Drig. Proposition 2.1
of [28] shows that X is finite dimensional and lemma 2.6 of loc.cit implies that all
elements of X are invariant under the action of the upper unipotent subgroup U
of G. In particular, if e1 is a basis of R(δ1) which is an eigenvector of ϕ and Γ,
then (0, e1) ∈ X is U -invariant. Then the arguments in § 3.2 of [28] go through by
replacing δD by δ. The result follows. �

Lemma 3.21. There is a morphism Ban(δ1, ηδ2)→ Πan with a finite dimensional
kernel.

Proof. Consider the inclusions R+(δ1) �δ P1 ⊂ Drig �δ P1 given by lemma 3.20
and (Π̌an)∗ ⊂ Drig �δ P1 given by lemma 3.19. It follows from [23, cor. VI.14] that
R+(δ1) �δ P1 ⊂ (Π̌an)∗, hence there is a morphism

(R(δ1) �δ P1)/(R+(δ1) �δ P1)→ (Drig �δ P1)/(Π̌an)∗.

The left hand-side is isomorphic to Ban(δ1, ηδ2) by proposition 3.18 and the right
hand-side is isomorphic to Πan by lemma 3.19. Consequently, we obtain a morphism
Ban(δ1, ηδ2)→ Πan, whose kernel is a closed subspace of Ban(δ1, ηδ2), thus a space
of compact type. On the other hand, the kernel is isomorphic to the quotient of
(Π̌an)∗∩ (R(δ1)�δP1) by the closed subspace R+(δ1)�δP1. Let σ : Drig → R(δ2)
be the natural projection. Then

(Π̌an)∗ ∩ (R(δ1) �δ P1) = {z ∈ (Π̌an)∗|σ(ResZp(z)) = σ(ResZp(wz)) = 0}

is closed in the Fréchet space (Π̌an)∗, thus it is itself a Fréchet space. Since a
Fréchet space which is also a space of compact type is finite dimensional, the result
follows. �
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Remark 3.22. Combining lemmas 3.19 and 3.21, we also obtain the existence of
a morphism Ban(δ1, η−1δ2)→ ΠδDη−1(D)an with a finite dimensional kernel.

3.3.4. Universal unitary completions and completion of the proof. The next theorem
requires some preliminaries. We say that s = (δ1, δ2,L ) ∈ Sirr is
• exceptional if κ(s) ∈ N∗ and δ1 = xκ(s)δ2 (in particular, s ∈ S cris

∗ ).
• special if κ(s) ∈ N∗ and δ1 = xκ(s)−1εδ2 (this includes s ∈ S st

∗ ).
If s is special, then setting W (δ1, δ2) = Symκ(s)−1(L2)⊗L δ2 there is [21, th. 2.7,

rem. 2.11] a natural isomorphism

Ext1G(W (δ1, δ2), Ban(δ1, δ2)/W (δ1, δ2)) ∼= Ext1(R(δ2),R(δ1)).

The extension D(s)rig of R(δ2) by R(δ1) associated to s gives therefore rise to an
extension EL of W (δ1, δ2) by Ban(δ1, δ2)/W (δ1, δ2) (these extensions were intro-
duced and studied by Breuil [9, 11]).

If s = (δ1, δ2,L ) ∈ Sirr we have D(s) ∈ MF (δ−1
D(s)) by proposition 3.4. We

write Π(s) instead of ΠδD(s)(D(s)). Propositions 3.15 and 3.3(iv) imply that Π(s)
is in RepL(δD(s)) and is absolutely irreducible.

If π is a representation of G on a locally convex L-vector space, we let π̂ be the
universal unitary completion of π (if it exists).

Theorem 3.23. If s = (δ1, δ2,L ) ∈ Sirr then the following hold:
a) If s ∈ S cris

∗ is not special, then19 Π(s) = ̂Balg(δ1, δ2) = ̂Ban(δ1, δ2).
b) If s ∈ S ng

∗ , then Π(s) = ̂Ban(δ1, δ2).
c) If s is special (which includes the case s ∈ S st

∗ ), then Π(s) = ÊL .

Proof. Assume first that s is not exceptional. Let B(s) be the space of functions
φ : Qp → L of class C u(s), such that x 7→ (δ1δ−1

2 ε−1)(x)φ(1/x) extends to a
function of class C u(s). By results of Berger, Breuil and Emerton20 one can express

̂Balg(δ1, δ2), ̂Ban(δ1, δ2) and ÊL (according to whether s ∈ S cris
∗ ,S ng

∗ or s special)
as a quotient Πaut(s) of B(s). Theorem IV.4.12 of [20] (which builds on [5], [18],
[17]) shows that D(s) ∈ MF (δ−1

D(s)) and that Πaut(s) = Π(s), which finishes the
proof in this case.

It remains to deal with the exceptional case21. Let Π = Π(s). The description of
Π(s)an given by [21, prop. 4.11] shows that there is an injection Balg(δ1, δ2)→ Π. If
X = ̂Balg(δ1, δ2), we obtain a morphism X → Π and an injection Balg(δ1, δ2)→ X.
In particular X 6= 0, and then the second paragraph of the proof of prop. 2.10 in
[52] shows that we can find a non-exceptional point s′ ∈ S cris

∗ and lattices Θ1,Θ2

in Balg(δ1, δ2) and Π(s′)alg, both finitely generated as O[G]-modules and such that
Θ1/$ ∼= Θ2/$.

Since Θ1,Θ2 are finitely generated over O[G], their p-adic completions are open,
bounded, G-stable lattices in X and Π(s′) = Π̂(s′)alg, respectively. As s′ is not
exceptional, we know (by the first paragraph) that Θ2/$ is admissible, of finite
length, thus X is admissible, of finite length as Banach representation and X

ss ∼=
Π(s′)

ss
. In particular, the image of the morphism X → Π is closed [57]. Since Π is

irreducible we obtain an exact sequence 0 → K → X → Π → 0 in Banadm
G (L). It

19Balg(δ1, δ2) is the space of SL2(Qp) locally algebraic vectors in Ban(δ1, δ2).
20See [5, th. 4.3.1], [32, prop. 2.5], [9, cor. 3.2.3, 3.3.4].
21 This problem is solved in [48] for p > 2.
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follows from [51, lem.5.5] that this induces an exact sequence 0 → K
ss → X

ss →
Π

ss → 0. Thus we have a surjection Π(s′)
ss
→ Π(s)

ss
. Compatibility of p-adic and

mod p local Langlands ([4] or proposition 3.10) implies that this surjection must
be an isomorphism, which in turn shows that K

ss
= 0, hence K = 0. We conclude

that X ∼= Π and we are done. �

Proposition 3.24. If D ∈ Sirr and D ∈MF (δ−1) for some unitary character δ,
then δ = δD.

Proof. Write s = (δ1, δ2,L ) ∈ Sirr and δ = δDη (note that δD = ε−1δ1δ2). We
will prove that η = 1.

We start by proving that η = η−1. Suppose that this is not the case and let
s′ = (δ1, ηδ2,L ) and s′′ = (δ1, η−1δ2,L ). Since η is locally constant and unitary,
we have s′, s′′ ∈ Sirr and s, s′, s′′ are pairwise distinct. At least one of s′, s′′ is
not special, and replacing22 η by η−1 we may assume that s′ has this property.
Lemma 3.21 gives a nonzero morphism Ban(δ1, ηδ2) → Π. Applying theorem 3.23
(to this morphism or to its restriction to Balg(δ1, ηδ2)) yields a nonzero morphism
Π(s′) → Π. This must be an isomorphism since both the source and target are
topologically irreducible and admissible by proposition 3.3. Applying the functor
Π 7→ V(Π) and using proposition 3.3 again yields D(s) ∼= D(s′), contradicting
proposition 3.15. Thus η = η−1, and the proof also shows that if s′ is not special,
then η = 1.

Assume that s′ is special. Since η2 = 1, we have ΠδDη−1(D) = Π and the exact
sequence in proposition 3.19 becomes

0→ (Πan)∗ ⊗ δD → Drig �δ P1 → Πan → 0.

Proposition 3.18 also gives exact sequences

0→ Ban(δ2, ηδ1)∗ ⊗ δD → R(δ1) �δ P1 → Ban(δ1, ηδ2)→ 0,

0→ Ban(δ1, ηδ2)∗ ⊗ δD → R(δ2) �δ P1 → Ban(δ2, ηδ1)→ 0

We are now exactly in the context of the proof of prop. 4.11, part ii) of [21], which
shows that Πan contains an extension EL ′ ofW (δ1, ηδ2) byBan(δ1, ηδ2)/W (δ1, ηδ2).
This extension is necessarily non split since Πan does not contain any finite dimen-
sional G-invariant subspace. If s′′ = (δ1, ηδ2,L ′), then the inclusion EL ′ → Πan in-
duces via theorem 3.23 a nonzero morphism Π(s′′)→ Π. Arguing as in the previous
paragraph, we obtain D(s′′) ∼= D(s) and we conclude using proposition 3.15. �

3.4. Representations of infinite height.

3.4.1. (ϕ,Γ)-modules of infinite height. In this § we fix a character δ : Q×
p → O×

and an absolutely irreducible D ∈MF (δ−1) such that D+ = {0}. Let Π = Πδ(D)
and Π̌ = Πδ−1(Ď). By proposition 3.3 we have an inclusion Π̌∗ ⊂ D �δ P1. We
will use several times the inclusion Dψ=α ⊂ ResZp(Π̌∗) for all α ∈ O×, see the
discussion in remark V.14 of [23]. Recall that C α = (1− αϕ)Dψ=α.

Proposition 3.25. a) Resa+pnZp : Π̌∗ → D is injective for a ∈ Zp and n ≥ 0.
b) C α ∩ C β = {0} for all distinct α, β ∈ O×.

22This uses lemma 3.19.
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Proof. a) Resa+pnZp(z) = 0 is equivalent to ResZp(
(
p−n 0
0 1

)(
1 −a
0 1

)
z) = 0, so it

suffices to prove that ResZp
: Π̌∗ → D is injective. Let D0 be a stable lattice in D

and let Π0 = Πδ(D0) and Π̌0 = Πδ−1(Ď0). Then Π0 and Π̌0 are open, bounded
and G-invariant lattices in Π and Π̌. Suppose that z ∈ Π̌∗ satisfies ResZp

(z) = 0.
Multiplying z by a power of p, we may assume that z ∈ Π̌∗0. If w =

(
0 1
1 0

)
, then(

pn 0
0 1

)
wz ∈ D0 ∩ Π̌∗0 for all n ≥ 1, thus ϕn(wz) = ResZp(

(
pn 0
0 1

)
wz) ∈ ResZp(Π̌∗0).

Since ResZp
(Π̌∗0) is compact (because Π̌∗0 is compact and ResZp

is continuous), we
deduce that wz ∈ D+

0 = {0} and so z = 0.
b) Let x ∈ Dψ=α and y ∈ Dψ=β be such that (1 − αϕ)x = (1 − βϕ)y. Then

x− y = ϕ(αx− βy), so Res1+pZp(x− y) = 0. Since Dψ=α, Dψ=β ⊂ ResZp(Π̌∗), we
can write x − y = ResZp(z) for some z ∈ Π̌∗. Then Res1+pZp(z) = 0, and part a)
shows that z = 0, thus x = y. But then αx = βy and so x = y = 0. The result
follows. �

Corollary 3.26. Let η : Q×
p → O× be a locally constant character and let α, β ∈

O×. If mη(C α) ∩ C β 6= {0}, then η|Z×p = 1 and α = β.

Proof. Suppose that z ∈ C α and y ∈ C β are nonzero and satisfy mη(z) = y.
Choose z̃, ỹ ∈ Π̌∗ such that z = ResZ×p (z̃) and y = ResZ×p (ỹ) (this uses the fact that
Dψ=α, Dψ=β ⊂ ResZp

(Π̌∗)). The hypothesis and part e) of proposition 3.1 yield
the existence of n ≥ 1 such that

mη =
∑

i∈(Z/pnZ)×

η(i)Resi+pnZp
.

For i ∈ (Z/pnZ)×, applying Resi+pnZp
to the equality mη(z) = y (and using part

d) of proposition 3.1) gives

η(i)Resi+pnZp(z̃) = Resi+pnZp
(ỹ),

hence (proposition 3.25) η(i)z̃ = ỹ. Since this holds for all i ∈ (Z/pnZ)× and
since z̃ 6= 0, we infer that η|Z×p = 1. But then mη is the identity map and so the
hypothesis becomes C α∩C β 6= {0}. Proposition 3.25 shows that α = β and finishes
the proof. �

3.4.2. A family of unramified twists of D. In this § we let V be any absolutely
irreducible L-representation of GQp of dimension ≥ 2 and we let V0 be a GQp-stable
O-lattice in V . Let S = O[[X]] and let δnr : GQp → S× be the unramified character
sending a geometric Frobenius to 1 + X. Then V0,un = S ⊗O V0 becomes a GQp

module for the diagonal action.
Let D0 (resp. D0,un) be the étale (ϕ,Γ)-module associated to V0 (resp. V0,un) by

Fontaine’s [41] equivalence of categories and its version for families [25]. Concretely,
D0,un = OE ,S ⊗OE D0, where 23

OE ,S = S⊗̂OOE = {
∑
n∈Z

anT
n, an ∈ S, lim

n→−∞
an = 0},

γ ∈ Γ and ϕ acting by γ ⊗ γ and ϕ(λ⊗ z) = ((1 +X)ϕ(λ))⊗ ϕ(z).

23The limit is taken for the mS = ($, X)-adic topology.
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For α ∈ 1 + mL, there is a surjective specialization map spα : S → O, sending
X to α− 1, with kernel ℘α = (X − α+ 1). The induced map

spα : OE ,S → OE , sα(
∑
n∈Z

anT
n) =

∑
n∈Z

an(α− 1)Tn

gives rise to a specialization map spα : D0,un → D0, which in turn induces an
isomorphism of (ϕ,Γ)-modules D0,un/℘α ∼= D0 ⊗ αvp . In particular, spα : D0,un →
D0 induces a Γ-equivariant morphism spα : Dψ=1

0,un → Dψ=α
0 . Let Dun = L⊗O D0,un

and D = L⊗O D0.

Proposition 3.27. For all α ∈ 1+mL the map spα : Dψ=1
un → Dψ=α is surjective.

Proof. Let Dn = D0,un/℘
n
α. It suffices to prove that the cokernel of the natural

map Dψ=1
0,un → Dψ=1

1 is O-torsion. The snake lemma applied to the sequence 0 →
Dn−1 → Dn → D1 → 0 mapped to itself by ψ − 1 yields an exact sequence of
O-modules

0→ Dψ=1
n−1 → Dψ=1

n → Dψ=1
1 → Dn−1

ψ − 1
→ Dn

ψ − 1
→ D1

ψ − 1
→ 0.

All modules appearing in the exact sequence are compact [19, prop. II.5.5, II.5.6]
and we have a natural isomorphism lim←−nD

ψ=1
n = Dψ=1

0,un (as D0,un = lim←−nDn).
Passing to the limit we obtain therefore an exact sequence

0→ Dψ=1
0,un → Dψ=1

0,un → Dψ=1
1 →M →M → D1

ψ − 1
→ 0,

where M = lim←−n
Dn

ψ−1 . It is thus enough to prove that M is a torsion O-module.
Let W̌n be the Galois representation associated to Ďn, namely the Cartier dual

of Wn := V0,un/℘
n
α. It follows from [19, remarque II.5.10] that there is an isomor-

phism24

Dn

ψ − 1
∼= [(Qp/Zp ⊗Zp Ďn)ϕ=1]∨ = [(Qp/Zp ⊗Zp W̌n)H ]∨,

hence it suffices to check that (Qp/Zp⊗Zp W̌n)H are O-torsion modules of bounded
exponent (as n varies).

Let H = Gal(Qp/Qab
p ). Since V̌0 is absolutely irreducible of dimension ≥ 2,

there is N ≥ 1 such that pN kills (Qp/Zp ⊗Zp V̌0)H . As V0,un
∼= S ⊗O V0, with H

acting trivially on S, and since S/℘nα is a finite free O-module, we have

(Qp/Zp ⊗Zp W̌n)H ⊂ (Qp/Zp ⊗Zp W̌n)H = (S/℘nα ⊗O (L/O ⊗O V̌0))H

= S/℘nα ⊗O (L/O ⊗O V̌0)H

and the last module is killed by pN . The result follows. �

3.4.3. Analytic variation in the universal family. Recall that for α ∈ O× we denote
C α = (1− αϕ)Dψ=α. We recall that there is [19, prop. I.2.3] a ϕ and Γ-invariant
perfect pairing { , } : Ď×D → L, under which ϕ and ψ are adjoints. The following
result follows from the proof of [19, lemme VI.1.1].

Lemma 3.28. C α is the orthogonal (for the pairing { , }) of Ďψ=1/α inside Dψ=0.

24Here H = Ker(ε) = Gal(Qp/Qp(µp∞ )) and X∨ is the Pontryagin dual of X.
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Let q = p if p > 2 and q = 4 if p = 2. Fix a topological generator γ of 1 + qZp
and define a map ` : Z×p → Zp by

` : Z×p ∼= µ(Qp)× (1 + qZp)→ 1 + qZp = γZp ∼= Zp,
the second map being the natural projection and the last map sending γx to x.

Lemma 3.29. For all η ∈ T̂ 0(L) there is an equality of operators on D � Z×p

mη =
∑
n≥0

(η(γ)− 1)nm(`
n)

and m(`
n)(D0 � Z×p ) ⊂ D0 � Z×p .

Proof. For all η ∈ T̂ 0(L) and x ∈ Z×p we have∑
n≥0

(η(γ)− 1)n
(
`(x)
n

)
= η(γ)`(x) = η(γ`(x)) = η(x),

the last equality being a consequence of the fact that x−1 · γ`(x) ∈ µ(Qp). Hence

η|Z×p =
∑
n≥0

(η(γ)− 1)n
(
`

n

)
,

the series being uniformly convergent on Z×p . This yields the first part. The second
part is a consequence of the fact that

(
`
n

)
∈ Zp. �

We are now ready to prove a key technical ingredient in the proof of theorem 3.5.
We identify T̂ 0(L) and (1 + mL)× (1 + mL) via the map η 7→ (η(γ), η(p)).

Definition 3.30. A subset S of (1 + mL)× (1 + mL) is called Zariski closed if it is
defined by a system of equations of the form f(x−1, y−1) = 0, with f ∈ O[[X,Y ]].

Proposition 3.31. The set

H = {η ∈ T̂ 0(L)| mη(C α) = C αη(p) ∀α ∈ 1 + mL}

is a Zariski closed subgroup of T̂ 0(L).

Proof. Since T̂ 0(L) → AutL(Dψ=0), η 7→ mη is a morphism of groups, H is a
subgroup of T̂ 0(L). To conclude, it suffices to check that

Hα = {η ∈ T̂ 0(L)|mη(C α) ⊂ C αη(p)}
is Zariski closed for all α ∈ 1 + mL.

Let us fix α ∈ 1 + mL and denote Cun = (1− ϕ)Dψ=1
0,un and Čun = (1− ϕ)Ďψ=1

0,un ,
where D0,un and Ď0,un were defined in no 3.4.2. If η ∈ T̂ 0(L), it follows from
proposition 3.27 that the specialization maps induce surjections Cun ⊗O L → C α

and Čun ⊗O L → Č 1/αη(p). Since C αη(p) is the orthogonal of Č 1/αη(p) in Dψ=0

(lemma 3.28), it follows that

Hα = {η ∈ T̂ 0(L)| {sp1/αη(p)(ž),mη(spα(z))} = 0 ∀ž ∈ Čun, z ∈ Cun}.

Fix ž ∈ Čun and z ∈ Cun. We can write ž =
∑
k≥0X

kžk with žk ∈ Ď0. By
definition

sp1/αη(p)(ž) =
∑
k≥0

(
1

αη(p)
− 1)kžk.
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Combining this relation and lemma 3.29, we obtain

{sp1/αη(p)(ž),mη(spα(z))} =
∑
k,n≥0

(
1

αη(p)
− 1)k(η(γ)− 1)n{žk,m(`

n)(spα(z))}

and the last expression is the evaluation at (η(γ) − 1, η(p) − 1) of an element of
O[[X,Y ]]. Thus Hα is a Zariski closed subset of (1+mL)2, which finishes the proof
of proposition 3.31. �

3.4.4. The Zariski closure of (an, bn)n≥1. We refer the reader to definition 3.30 for
the notion of Zariski closed subset of (1 + mL)× (1 + mL).

Proposition 3.32. Let a, b ∈ 1 + mL. The Zariski closure of {(an, bn)|n ≥ 1} is
• A finite subgroup of µp∞ × µp∞ if log a = log b = 0.
• The set {(x, xs)|x ∈ 1+mL} (respectively {(xs, x)|x ∈ 1+mL}) if log b = s log a

(respectively log a = s log b), s ∈ Zp and (log a, log b) 6= (0, 0).
• (1 + mL)× (1 + mL) if log a and log b are linearly independent over Qp.

Proof. The first two cases are immediate, so assume that log a and log b are linearly
independent over Qp. Suppose that f ∈ O[[X,Y ]] satisfies f(an− 1, bn− 1) = 0 for
all n ≥ 1. We will prove that f = 0. We may assume that b = as, with s ∈ O −Zp.
For n ≥ 1 we have

vp

((
s

n

))
≥ −vp(n!) > − n

p− 1
,

hence xs =
∑
n≥0

(
s
n

)
(x − 1)n is well-defined for vp(x − 1) > 1

p−1 and x 7→ xs is
analytic in this ball, with values in 1+mL. Thus x 7→ f(x, (1+x)s−1) is analytic on
the ball vp(x) > 1

p−1 and vanishes at an−1 for all n ≥ 1. Since log a 6= 0, it follows
that f(x, (1+x)s−1) = 0 for all vp(x) > 1

p−1 , consequently f(T, (1+T )s−1) = 0 in
L[[T ]]. Proposition 3.33 below combined with the formal Weierstrass preparation
theorem yield f = 0, which is the desired result. �

Proposition 3.33. If s ∈ O −Zp, then (1 + T )s is transcendental over Frac(E +).

Proof. Denote f = (1 + T )s and assume that f is algebraic over K := Frac(E +).
We need the following elementary result [31, prop. 7.3].

Lemma 3.34. (1 + T )s ∈ R+ if and only if s ∈ Zp.

We start with the case f ∈ K. Since a nonzero element of E + generates the same
ideal in E + as a nonzero polynomial, we have K ⊂ R, thus f ∈ R ∩ L[[T ]] = R+

and we are done by the previous lemma.
Next, assume that f is algebraic over K and f /∈ K. Let P = Xn+an−1X

n−1 +
... + a0 ∈ K[X] be its minimal polynomial over K, with n > 1. Consider the
differential operator ∂ = (1 + T ) d

dT and observe that ∂f = sf . The equality
∂(P (f))− nsP (f) = 0 can also be written as

n−1∑
k=0

(∂ak + s(k − n)ak)fk = 0.

By minimality of n we deduce that ∂ak+ s(k−n)ak = 0 for all k < n, in particular
∂(a0 · (1+T )−sn) = 0, hence a0 = c · (1+T )sn for some c ∈ L∗. Thus (1+T )sn ∈ K
and by the previous paragraph this gives sn ∈ Zp, which combined with s ∈ O
yields s ∈ Zp, a contradiction. The result follows. �
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The following result follows immediately from proposition 3.32.

Corollary 3.35. If µp ⊂ L, then any nontrivial Zariski closed subgroup of T̂ 0(L)
contains a nontrivial character of finite order.

Remark 3.36. The conclusion of proposition 3.32 fails if we work with unbounded
analytic functions instead of elements of L⊗O O[[X,Y ]] when defining the Zariski
closure: if a, b ∈ 1 + mL satisfy (log a, log b) 6= (0, 0), then log b · log(1 +X)− log a ·
log(1 + Y ) vanishes at (an − 1, bn − 1) for all n ≥ 1.
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[54] V. Paškūnas, The image of Colmez’s Montreal functor, Publ. IHES 2013, DOI

10.1007/s10240-013-0049-y.
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