
TOPOLOGICAL VECTOR SPACES

PIERRE COLMEZ AND WIESŁAWA NIZIOŁ

Abstract. Motivated by applications to duality theorems for p-adic pro-étale cohomology of
rigid analytic spaces, we study the category of Topological Vector Spaces in the setting of con-
densed mathematics. We prove that it contains, as full subcategories, both the category of
(topologically) bounded algebraic Vector Spaces and the category of perfect complexes on the
Fargues-Fontaine curve. Vector Spaces coming from p-adic pro-étale cohomology of smooth par-
tially proper rigid analytic varieties are examples of sheaves belonging to the former category.
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1. Introduction

Let p be a prime and let K be a complete discrete valuation field with a perfect residue field, of
mixed characteristic. Let K be an algebraic closure of K and let C = K̂ be the p-adic completion
of K.

Topological Vector Spaces (TVS, for short) were introduced in [12] to geometrize p-adic period
morphisms for rigid analytic varieties, i.e., to make them vary over the category of perfectoid affi-
noids over C. Once geometrized these period morphisms acquire rigidity that could be exploited to
extract actual comparison theorems from the long exact sequence provided by the basic comparison
theorems of [11]. Topological Vector Spaces were defined as enriched presheaves on sympathetic
spaces over C with values in locally convex vector spaces over Qp (abelianized appropriately). The
enrichment condition meant that we consider only presheaves with restriction maps sensitive to
the topology on the mapping spaces between sympathetic spaces.

In this paper we study the condensed version of this category. This was mostly motivated by
the application to duality results in [10], where the main examples of Topological Vector Spaces
come from cohomology of quasi-coherent sheaves on the Fargues-Fontaine curve hence live in the
condensed universe. In the condensed version, locally convex topological vector spaces are replaced
by condensed (or solid) Qp-modules and the sympathetic spaces are replaced by strictly totally
disconnected spaces. Roughly, this means that instead of imposing that the étale cohomology of
these spaces with values in Qp is trivial in degrees ≥ 1 we impose this triviality for any étale sheaf.
The enrichment condition puts us in the setting of topologically enriched presheaves once we equip
mapping spaces with a natural condensed structure. The key point of enrichment in this language
is the enriched Yoneda Lemma (see Section 3.1.5), which allows us to work homologically with
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topologically enriched presheaves in a way akin to algebraic presheaves. We note that this fails for
non-enriched topological presheaves.

Topological Vector Spaces are targets of two natural functors: one from Vector Spaces1 (VS, for
short) and the other one from quasi-coherent sheaves on the Fargues-Fontaine curve. The main
result of the paper is the following theorem (see Section 4 for the notation):

Theorem 1.1. Let S ∈ sPerfC .
(1) (Enriched fully-faithfulness) The canonical functor from Vector Spaces to Topological Vec-

tor Spaces
Rπ∗ ∶ D(Sproét,Qp) → D(S,Qp)

tends to be fully faithful. More precisely, let F ∈ Db(Sproét,Qp) be such that Rπ∗F ∈
Db(S,Qp) and let G ∈ D+(Sproét,Qp). Then the canonical morphism in D(S,Qp)

Rπ∗RHomS(F ,G) → RHomStop(Rπ∗F ,Rπ∗G)
is a quasi-isomorphism.

(2) (Fargues-Fontaine fully-faithfulness) The functor

Rτ∗ ∶ QCoh(XFF,S♭) → D(S,Qp)
is fully faithful when restricted to perfect complexes. That is, for F ,G ∈ Perf(XFF,S♭), the
natural map in D(Modcond

Q
p
(S))

RHomQCoh(XFF,S♭)(F ,G) → RHomS,Qp
(Rτ∗F ,Rτ∗G)

is a quasi-isomorphism.
(3) (Compatibility of the algebraic and topological projections) The functor

Rτ ′∗ ∶ QCoh(XFF,S♭) → D(Sproét,Qp)
is compatible with the functor Rτ∗ when restricted to nuclear sheaves. That is, the following
diagram commutes

Nuc(XFF,S♭)
Rτ ′

∗ //

Rτ∗

((

D(Sproét,Qp)

Rπ∗

��
D(S,Qp).

The first claim of the theorem states that the canonical functor from Vector Spaces to Topological
Vector Spaces is fully faithful (in the enriched sense) once one imposes certain finiteness conditions.
This follows from the fact that algebraic Yoneda sheaves associated to strictly totally disconnected
spaces map to the topological ones and we have Yoneda Lemmas in both settings. The second
claim is a topological analog of a result of Anschütz-Le Bras from [3] and follows from the latter,
the third claim of the theorem, and the following immediate corollary of the first claim of the
theorem:

Corollary 1.2. Let F ,G ∈ {Ga,Qp
}. Then we have a natural quasi-isomorphism

Rπ∗RHomS,Qp(F ,G)
∼→ RHomStop,Qp

(F ,G).

Remark 1.3. (1) The above theorem and corollary mean that we can compute extensions of
Banach-Colmez spaces or on the Fargues-Fontaine curve, or in VS’s, or in TVS’s. Hence, in
D(S,Qp):

RHomStop,Qp
(Qp,Qp)

∼←Qp, RHomStop,Qp
(Qp,Ga)

∼← Ga,
RHomStop,Qp

(Ga,Ga) ≃ Ga ⊕Ga[−1], RHomStop,Qp
(Ga,Qp) ≃ Ga(−1)[−1].

1That is, Q
p
-sheaves on PerfC,proét, the pro-étale site of perfectoid affinoids over C.
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More generally, the first claim of the theorem can be applied to complexes of VS’s representing
pro-étale cohomology of smooth partially proper rigid analytic varieties (see Corollary 4.8).

(2) The second claim of the theorem holds in greater generality than stated though we did not
find a clean general statement.

(3) In the applications to geometric dualities in [10] we work mostly with the solid version of
TVS’s, which allows us to do computations objectwise in the category of solid Qp-vector spaces.

(4) There is also a solid version of VS’s introduced by Fargues-Scholze in [13] (see also [4]).
Certainly, there is a close relationship between these versions of VS’s and TVS’s but we do not
study it here.

Organization of the paper. We discuss three categories of (pre)sheaves on the category of perfec-
toid affinoids over C that expand the category of Banach-Colmez spaces in various directions, by
removing finiteness conditions:

– The VS–category (where VS stands for Vector Spaces), whose objects are sheaves of Q
p
-vector

spaces (thus without topology) on perfectoid affinoids over C equipped with pro-étale topology.
This topology "encodes" a topology on the VS’s.

– The NTVS–category (where NTVS stands for Naive Topological Vector Spaces), whose objects
are (pre)sheaves of topological Q

p
-vector spaces; ("topological" in the sense of Clausen-Scholze) on

the category of perfectoid affinoids over C equipped with pro-étale topology. There is a canonical
projection from the VS-category to the NTVS-category: the objectwise topology is induced from
the topology encoded by the pro-étale site.

– The TVS–category (where TVS stands for Topological Vector Spaces), which is the topolog-
ically enriched category of presheaves NTVS’s: we use the natural topology on the Hom-spaces
between perfectoid spaces to impose a continuity property on the presheaf functors. To make
this work we need to restrict perfectoid affinoids to the strictly totally disconnected ones. There
is a canonical projection from the VS-category to the TVS-category: the objectwise topology is
induced from the topology encoded by the pro-étale site and such objects are canonically enriched.

The key point to keep in mind is that the categories VS and TVS have Yoneda Lemmas and
suitable generating (projective) Yoneda objects correspond under the canonical projection from
VS to TVS.

The category VS was studied before; here we introduce the categories NTVS and TVS. This is
done at a rather pedestrian pace allowing us to get familiar with these new objects. Section 2 is
devoted to VS’s and NTVS’s, Section 3 to TVS’s, and Section 4 to fully-faitfulness.

Acknowledgments. We are immensely grateful to Akhil Mathew for many hours of discussions on the
constructions presented in this paper. We would also like to thank Johannes Anschütz for helpful
comments on a draft of this paper and Ko Aoki, Guido Bosco, Juan Esteban Rodriguez Camargo,
Dustin Clausen, David Hansen, Shizhang Li, Zhenghui Li, Lucas Mann, Emanuel Reinecke, Peter
Scholze, and Bogdan Zavyalov for discussions concerning the content of this paper.

Parts of this paper were written during the authors’ stay at the Hausdorff Research Institute
for Mathematics in Bonn, in the Summer of 2023, and at IAS at Princeton in the Spring 2024. We
would like to thank these Institutes for their support and hospitality.

Notation and conventions. Let p be a fixed prime, Qp – the p-adic rational numbers. Let K be
a complete discrete valuation field with a perfect residue field, of mixed characteristic. Let K
be an algebraic closure of K and let C = K̂ be the p-adic completion of K. We will denote by
Bcr,Bst,BdR the crystalline, semistable, and de Rham period rings of Fontaine.

The category of affinoid perfectoid spaces over an affinoid perfectoid space S over C will be
denoted by PerfS . The pro-étale site of S will be the category PerfS endowed with the quasi-pro-
étale topology and will be denoted by Sproét.
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We denote by Cond, CondAb, Solid the condensed sets, condensed abelian groups, and solid
abelian groups, respectively. To simplify arguments, we fix a cut-off cardinal κ and assume that
perfectoid spaces and condensed sets are κ-small.

2. Naive Topological Vector Spaces

We introduce and study here the category of Naive Topological Vector Spaces. This is a category
of topological sheaves, a simpler version of the category of Topological Vector Spaces that we
are mostly interested in retaining however many of its properties hence allowing us a gentler
introduction to our main object of study.

We start with the introduction of topological pro-étale site and examples of sheaves on it. Then
we introduce the NTVS-category of sheaves with values in condensed and solid abelian groups.
We prove that they form Grothendieck abelian categories, study their ∞-derived categories, the
solidification functors, and monoidal structures. Finally, we extend all of this to the categories of
Q
p
-modules.

2.1. Topological pro-étale site. In this section, we introduce pro-étale topological sheaves.

2.1.1. Totally disconnected spaces. This brief review is based on [26, Sec. 7] and [20].

● A perfectoid space X is totally disconnected (see [26, Def. 7.1, Lemma 7.2, Lemma 7.3]) if
it is qcqs and every open cover splits. Equivalently, if all connected components of X are
of the form Spa(K,K+) for some perfectoid field K with an open and bounded valuation
subring K+ ⊂ K. Also equivalently, if for all sheaves of abelian groups F on X , one has
Hi(X,F) = 0, for i > 0. By [26, Lemma 7.5], a totally disconnected space X is always an
affinoid.

A perfectoid space X is w-local (see [26, Def. 7.4]) if it is totally disconnected and the
subset Xc ⊂X of closed points is closed.

● A perfectoid space X is strictly totally disconnected (see [26, Def. 7.15]) if it is qcqs
and every étale cover splits. Equivalently, if every connected component is of the form
Spa(K,K+), where K is algebraically closed. We note that every profinite set T is strictly
totally disconnected and that, by [26, Lemma 7.19], the product X ×T of a strictly totally
disconnected space and a profinite set is strictly totally disconnected.

More generally (see [26, Def. 7.17], a w-strictly local perfectoid space is a w-local
perfectoid space X such that for all x ∈X, the completed residue field K(x) is algebraically
closed.

● A w-contractible space (see [20, Def. 1.1]) is a w-strictly local perfectoid space X such
that π0(X) is extremally disconnected. By [20, Lemma 1.2], if X is a diamond, the w-
contractible spaces inXproét form a basis ofXproét. Moreover, if U ∈Xproét is w-contractible
then every pro-étale cover of U admits a section. In particular, for any sheaf F of abelian
groups on Xproét we have Hi(Uproét,F) = 0, for i > 0, and Xproét is replete.

2.1.2. Topological pro-étale site. Let S be an affinoid perfectoid over C. Let Stop
proét ∶= Sproét×∗proét

be the topological pro-étale site of S: its objects are pairs (Y,T ), where Y ∈ PerfS , and T is a
profinite set, and pro-étale coverings are given by maps (Y ′, T ′) → (Y,T ), where Y ′ → Y is a
pro-étale covering and T ′ → T is a surjective map. We note that sheaves of sets on Stop

proét form
the category Sh(Sproét,Cond) of sheaves on Sproét with values in Cond. Similarly for sheaves of
abelian groups: we get the category Sh(Sproét,CondAb).

We have maps of sites
Sproét

πÐÐ→Stop
proét

ηÐÐ→Sproét

given by Y ×T̂ ↤ (Y,T ), (Y,∗) ↤ Y , respectively. We note that ηπ = Id. Here T̂ = Spa(C(T,C),C(T,OC))
is the adic space (an affinoid perfectoid) associated to T . (We will drop the hat from T if
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this does not cause confusion). We define the following pushforward functors π∗ ∶ Sh(Sproét) →
Sh(Stop

proét), η∗ ∶ Sh(Stop
proét) → Sh(Sproét):

π∗F ∶ {(Y,T ) ↦ F(Y × T )}, F ∈ Sh(Sproét);
η∗F ∶ {Y ↦ F(Y,∗)}, F ∈ Sh(Stop

proét).
We have η∗π∗ = Id∗. Thus the functor π∗ is faithful.

If X is a topological space, we use the standard notation X to denote the associated condensed
set, i.e., the sheaf T ↦ C(T,X) on ∗proét.

Example 2.1. We present some examples of topological sheaves on S ∈ PerfC .
(1) The constant sheaf Q

p
. Recall that the constant sheaf Q

p
on Sproét is defined via

Q
p
∶ {Y ↦ C(∣Y ∣,Qp)}.

One can see that, a priori just a presheaf, it is actually a sheaf (see [20, Lemma 3.14]). We define
the presheaf on Stop

proét

Q
p
∶ {Y ↦ C(∣Y ∣,Qp)},

where C(∣Y ∣,Qp) is equipped with the compact open topology. We claim that π∗Qp
≃ Q

p
(as

presheaves for now). Indeed, we compute:

π∗Qp
∶ {(Y,T ) ↦Q

p
(Y × T ) = C(∣Y × T ∣,Qp)},

Q
p
∶ {(Y,T ) ↦ C(T,C(∣Y ∣,Qp))}.

But, since ∣Y ∣ × T ∼→ ∣Y × T ∣, the natural map

C(∣Y × T ∣,Qp) → C(T,C(∣Y ∣,Qp))
is a bijection2. It follows that Q

p
is a sheaf (since so is π∗Qp

).
We note that the value Q

p
(Y ) ∈ Solid. Indeed, if Y is a strictly totally disconnected3 perfectoid

space then we have (see the proof of [20, Cor. 3.15] for an argument)

Q
p
(Y ) = C(∣Y ∣,Qp)

∼← C(π0(Y ),Qp),

a Banach space since π0(Y ) is profinite. Our claim now follows because solid abelian groups are
closed under taking kernels.

If W is a Hausdorff locally convex topological vector space over Qp, we can analogously define
constant sheaves W on Stop

proét. We have that W (Y ) ∈ Solid. In what follows, if this does not cause
confusion, we simply write W in place of W . Similarly, on Sproét and Stop

proét , if W is profinite, we
have the constant sheaf W ; on Sproét it is represented by the affinoid perfectoid space Ŵ .

(2) The sheaf Ga. On Sproét and Stop
proét we have the presheaves

Ga ∶ {Y = Spa(RY ,R+
Y ) ↦ RY }, Gtop

a ∶ {Y = Spa(RY ,R+
Y ) ↦ RY },

respectively, where RY is equipped with its natural Banach topology. The first presheaf is a sheaf
by [26, Th. 8.7]. We claim that π∗(Ga) ≃ Gtop

a (as presheaves). Indeed, we have

π∗Ga ∶ {(Y,T ) ↦ Ga(Y × T )}, Gtop
a ∶ {(Y,T ) ↦ C(T,RY )}.

But, since RY is a Banach space, by [22, Cor. 10.5.4], we have a natural isomorphism

C(T,RY ) ∼← Ga(Y × T ) = RY ⊗2
Qp
C(T,Qp).

It follows that Gtop
a on Stop

proét is a sheaf (as so is π∗Ga). We will skip the superscript (−)top if this
does not cause confusion.

2Since Qp is Hausdorff, the exponential law of mapping space with compact-open topology holds for locally
compact (not necessary Hausdorff spaces).

3Recall that this means that any étale covering has a section.
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(3) Period sheaves. For i ≥ 0, on Stop
proét we have the presheaves

(2.2) B+dR/ti ∶ {Y ↦ B+
dR(Y )/ti}, B+,ϕ=p

i

cr ∶ {Y ↦ B+,ϕ=pi
cr (Y )},

where the (objectwise) period rings are equipped with their canonical topologies. These are sheaves
of (solid) abelian groups. Indeed, for the first presheaf this follows, by dévissage on i, from the
second example discussed above; for the second one – from the exact sequence of presheaves

(2.3) 0→Q
p
(i) → B+,ϕ=p

i

cr → B+dR/ti → 0

and the two examples above.
Similarly, we have period sheaves B+dR/ti and B+,ϕ=p

i

cr on Sproét (by forgetting the topology on
the period rings in (2.2)). We claim that there are natural isomorphisms

(2.4) π∗B+dR/ti ∼← B+dR/ti, π∗B+,ϕ=p
i

cr

∼← B+,ϕ=p
i

cr .

Indeed, we have

π∗(B+dR/ti) = {(Y,T ) ↦ B+dR(Y × T )/ti}, π∗B+,ϕ=p
i

cr = {(Y,T ) ↦ B+cr(Y × T )ϕ=p
i

}

and the first map in (2.4) can be defined as the composition

B+dR(Y × T )/ti = B+dR(RY ×T )/ti
∼→ B+dR(C(T,RY ))/ti ∼→ C(T,B+dR(RY )/ti) = C(T,B+dR(Y )/ti).

Here the third map is constructed by going back to the definitions of period rings; it is seen to be
an isomorphism by dévissage reducing it to the case of i = 1, which was shown above. We argue
similarly for B+,ϕ=p

i

cr .

The following lemma shows that the sheaves Q
p
,Ga and the period sheaves B+dR/ti, B+,ϕ=picr are

acyclic for the functor π∗:

Lemma 2.5. Let F ∈ {Q
p
,Ga,B+dR/ti,B+,ϕ=picr } be a sheaf on Sproét. We have Riπ∗F = 0, for i > 0.

In particular, we have a natural quasi-isomorphism π∗F
∼→ Rπ∗F in D(Sproét,CondAb).

Proof. It suffices to show that

(2.6) Hi
proét(Y × T,F) = 0, i > 0,

for a strictly totally disconnected perfectoid space Y over C and a profinite set T . (We note that
Y × T is a strictly totally disconnected perfectoid.)

If F = Ga (2.6) follows from Tate acyclicity for perfectoid affinoid spaces for pro-étale topology
(see [26, Prop. 8.8]). By dévissage it yields the result for B+dR/ti.

If F =Q
p
, we compute (set Z ∶= Y × T ):

RΓproét(Z,Qp
) ∼← RΓproét(Z,Zp)[1/p], RΓproét(Z,Zp)

∼→ R lim
n

RΓproét(Z,Z/pn),

RΓproét(Z,Z/pn) ∼← RΓét(Z,Z/pn).

The first quasi-isomorphism holds because Y is quasi-compact; the third quasi-isomorphism fol-
lows from [26, Prop. 14.7, Prop. 14.8]. And Hi

ét(Z,Z/pn), i > 0, because Z is strictly totally
disconnected. This yields (2.6).

Combining the above with the fundamental exact sequence (2.3), we get the claim of the lemma
for B+,ϕ=p

i

cr . �

2.2. Naive Topological Vector Spaces. We will discuss here the topological sheaves on Sproét,
for S ∈ PerfC , in the condensed and solid settings.
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2.2.1. Condensed and solid modules. For the convenience of the reader we will recall briefly the
basic properties of condensed and solid modules.

Proposition 2.7. (Clausen-Scholze [8, Prop. 7.5]) Let A be an analytic ring with an underlying
condensed ring A.

(1) The full subcategory of solid A-modules (inside the category of condensed A-modules)

(2.8) Modsolid
A ⊂ Modcond

A

is a Grothendieck abelian subcategory, stable under all limits, colimits, and extensions. The
inclusion (2.8) admits a left adjoint

(2.9) Modcond
A →Modsolid

A ∶ M ↦M ⊗A A,

which preserves all colimits and is symmetric monoidal.
(2) The canonical functor

(2.10) D(Modsolid
A ) → D(Modcond

A )

is fully faithful. It preserves all limits and colimits. A complex M ∈ D(Modcond
A ) is in

D(Modsolid
A ) if and only if Hi(M) is in Modsolid

A , for all i. The functor (2.10) admits a
left adjoint

(2.11) D(Modcond
A ) → D(Modsolid

A ) ∶M ↦M ⊗L
A A,

which is the left derived functor of (2.9). It is symmetric monoidal.
(3) For M,N ∈ D(Modsolid

A ), we have the derived internal Hom

RHomA(M,N) ∈ D(Modsolid
A ).

The natural map RHomA(M,N) → RHomA(M,N) is a quasi-isomorphism.

Remark 2.12. In the context of the above proposition, we set M2 ∶=M ⊗A A, for M ∈ Modcond
A ,

and ML2 ∶=M ⊗L
A A, for M ∈ D(Modcond

A ).

2.2.2. Condensed sheaves. We list here properties of topological sheaves with values in condensed
abelian groups.

(●) Sheaves of condensed abelian groups. Consider first the category Sh(Sproét,CondAb) ≃
Sh(Stop

proét,Ab) of sheaves with values in condensed abelian groups. It is a Grothendieck abelian
category, which inherits a closed symmetric monoidal structure from that of CondAb: For F ,G ∈
Sh(Sproét,CondAb), their tensor product F⊗G is defined by sheafifying the presheaf tensor product

{Y ↦ F(Y ) ⊗ G(Y ) ∈ CondAb}, Y ∈ Sproét.

The internal Hom, HomStop(F ,G), can be defined as a presheaf by

{Y ↦ HomY top(FY ,GY ) ∈ CondAb}, Y ∈ Sproét,

where we set

(2.13) HomY top(FY ,GY ) ∶= ker ( ∏
Y1→Y

Hom(F(Y1),G(Y1)) → ∏
Y2→Y1

Hom(F(Y1),G(Y2))).

It is actually a sheaf (see [25, Prop. 2.2.14]). It is the (internal) right adjoint of the tensor product
[25, Prop. 2.2.16].

By Remark 3.9 and Lemma 3.24 below, the category Sh(Sproét,CondAb) is generated by the
set

(2.14) {Z[hδY ] ⊗Z[T ]}, Y ∈ PerfS , T − profinite set.

Here the sheaf hδY is defined by Y1 ↦ HomS(Y1, Y ), where the Hom is given discrete topology.
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Lemma 2.15. The set (2.14) for w-contractible Y ’s and extremally disconnected T ’s generates
Sh(Sproét,CondAb). Moreover, these generators are compact and projective.

Proof. Take Z[hδY ] ⊗ Z[T ] as in (2.14). For compactness we need to show that the functor
HomStop(Z[hδY ] ⊗Z[T ],−) commutes with filtered colimits. But

HomStop(Z[hδY ] ⊗Z[T ],F) ≃ HomStop(Z[hδY ], [Z[T ],F]) ≃ [Z[T ],F](Y )(∗) ≃ [Z[T ],F(Y )](∗)
(2.16)

≃ Hom(Z[T ],F(Y )),

where we wrote [Z[T ],F] for the sheaf Y1 ↦ Hom(Z[T ],F(Y1)) and the second isomorphism
follows from the enriched Yoneda Lemma (see Section 3.1.5). But Γ(Y,−) commutes with colimits
since both Y and Z[T ] are quasi-compact.

For projectvity, take a surjection F1 → F2 → 0. We need to show that the induced map

HomStop(Z[hδY ] ⊗Z[T ],F1) → HomStop(Z[hδY ] ⊗Z[T ],F2)

is surjective as well. But, using (2.16), this map can be written as

Hom(Z[T ],F1(Y )) → Hom(Z[T ],F2(Y ))

and this is surjective by projectivity of Z[T ] since the map F1(Y ) → F2(Y ) is surjective as Y is
w-contractible. �

(●) Sheaves of condensed Q
p
-modules. We will denote by Sh(Sproét,Modcond

Q
p

) the subcategory of

Sh(Sproét,CondAb) of Q
p
-modules. It is again a Grothendieck abelian category (as the category of

modules on a ringed site). Since we have Sh(Sproét,Modcond
Q

p
) ≃ Sh(Stop

proét,Qp
), the classical theory

of tensor products and internal Homs of sheaves on ringed sites (see [29, Tag 03A4]) yields the
condensed tensor product and internal Hom: For F ,G ∈ Sh(Sproét,Modcond

Q
p

) their tensor product
F ⊗Q

p
G is defined by sheafifying the presheaf tensor product

{Y ↦ F(Y ) ⊗Q
p
(Y ) G(Y ) ∈ Modcond

Qp(Y )}, Y ∈ Sproét.

The internal Hom, HomStop,Q
p
(F ,G), can be defined as a presheaf by

{Y ↦ HomY top,Q
p

(FY ,GY ) ∈ Modcond
Qp(Y )}, Y ∈ Sproét,

where we set
(2.17)
HomY top,Q

p

(FY ,GY ) ∶= ker ( ∏
Y1→Y

HomQp(Y1)(F(Y1),G(Y1)) → ∏
Y2→Y1

HomQp(Y1)(F(Y1),G(Y2))).

It is actually a sheaf [29, Tag 03EM] and it is the (internal) right adjoint of the tensor product [29,
Tag 03EO].

The category Sh(Sproét,Modcond
Q

p
) is generated by the set

{Q
p
[hδY ] ⊗Q

p
Q
p
[T ]}, Y ∈ PerfS , T − profinite set.

And we have an analog of Lemma 2.15 in this setting.

(●) Derived picture. We have an analogous derived picture, which, again, follows from the
classical story (see [29, 01FQ]). Namely, the existence of K-flat resolutions4 yields the derived
tensor product F ⊗L

Q
p

G, for F ,G ∈ D(Sproét,Modcond
Q

p
) (see [29, Tag 06YU]). The internal Hom,

4Recall that K-flatness, and the related notion of K-injectivity, for unbounded complexes (originally of modules
over a ring R) were introduced by Spaltenstein in [28] as an analogue of the classical notion of flatness (and
injectivity) of modules.
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RHomStop,Q
p
(F ,G), is defined using the existence of K-injective resolutions. It is the right (inter-

nal) adjoint of the derived tensor product [29, Tag 08J9].
We have analogous definitions and properties for sheaves with values in CondAb.

Remark 2.18. For F ∈ D(Sproét,Ab), we have in D(Ab)

RΓ(Y top
proét,Rπ∗F)(T ) ≃ RΓproét(Y × T,F).

This can be easily seen for Y , which are w-contractible and by pro-étale descent in Y -variable in
general. In particular, RΓ(Y top

proét,Rπ∗F)(∗) ≃ RΓproét(Y,F). Similarly for Q
p
-sheaves.

2.2.3. Solid sheaves. We pass now to topological sheaves with values in solid abelian groups.

(●) Sheaves of solid abelian groups. Recall (see Proposition 2.7) that the category Solid of
solid abelian groups is a Grothendieck abelian category, which is stable under limits, colimits, and
extensions in CondAb. It is also compactly generated. It follows that the category Sh(Sproét,Solid)
behaves as expected: it is a Grothendieck abelian category. Moreover, it is generated by the set

(2.19) {Z[hδY ] ⊗2 Z[T ]}, Y ∈ PerfS , T − profinite set.

And we have an analog of Lemma 2.15 in this setting.
For F ,G ∈ Sh(Sproét,Solid), we define Hom2

S(F ,G) ∈ Solid via the end definition as in (2.13).
The set Hom2

S(F ,G)(∗) is the usual Hom-set in the category Sh(Sproét,Solid). The two categories
of topological sheaves Sh(Sproét,CondAb) and Sh(Sproét,Solid) are related:

Lemma 2.20. The canonical forgetful functor Sh(Sproét,Solid) → Sh(Sproét,CondAb) is (topolog-
ically) fully faithful and has a (topological) left adjoint F ↦ F2 given by the sheafification of the
presheaf5:

F2,psh ∶ {Y ↦ F(Y )2}, Y ∈ Sproét.

It commutes with all colimits.

Proof. For the first claim, we need to show that, for F ,G ∈ Sh(Sproét,Solid), the canonical map in
CondAb

Hom2
S(F ,G) → HomStop(F ,G)

is an isomorphism. But using the end definition of both sides this reduces to the fully-faithfulness
of the category Solid in CondAb.

For the second claim, note that, from definitions, we get a natural maps (of presheaves on Sv
with values in CondAb):

F → F2.

We need to show that, for F ∈ Sh(Sproét,CondAb), G ∈ Sh(Sproét,Solid), the induced morphism in
CondAb

Hom2
S(F2,G) ∼→ HomStop(F2,G) → HomStop(F ,G)

is an isomorphism. By adjointness of the sheafification functor, we can pass from sheaves to
presheaves and use the presheaf F2,psh in place of F2. Using the end definition, this reduces to
showing that

Hom2(F(Y1)2,G(Y2)) ≃ Hom(F(Y1),G(Y2)), Y1, Y2 ∈ Sproét,

which is clear. �

The category Sh(Sproét,Solid) inherits a closed symmetric monoidal structure from that of Solid:
For presheaves F ,G ∈ PSh(Sproét,Solid), their tensor product F ⊗2,psh G is defined as the presheaf

{Y ↦ F(Y ) ⊗2 G(Y ) ∈ Solid}, Y ∈ Sproét.

5The sheafification is necessary because the solidification functor 2 is not left exact.
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For sheaves F ,G ∈ Sh(Sproét,Solid), their tensor product F ⊗2 G is defined as the sheafification of
the presheaf tensor product F ⊗2,psh G:

F ⊗2 G ∶= (F ⊗2,psh G)♯.

We have the expected relations:

Lemma 2.21. (1) For F ,G ∈ PSh(Sproét,Solid), we have a canonical isomorphism in Sh(Sproét,Solid)

F ♯ ⊗2 G♯ ≃ (F ⊗2,psh G)♯.

(2) For F ,G ∈ PSh(Sproét,CondAb), we have a canonical isomorphism in Sh(Sproét,Solid)

(F ♯ ⊗ G♯)2 ≃ ((F ⊗psh G)2,psh)♯.

Proof. We will reduce to universal properties of the terms of the isomorphisms. ForH ∈ Sh(Sproét,Solid),
we have

Hom2
S((F ⊗2,psh G)♯,H) ≃ Hompsh(F ⊗2,psh G,H) ≃ Hompsh(F ,HomStop(G,H))

≃ Hompsh(F ♯,HomStop(G,H)) ≃ Hompsh(F ♯ ⊗2,psh G,H).

Here we wrote Hompsh(−,−) for the sets of morphisms in PSh(Sproét,Solid). Repeating this com-
putation with G in place of F yields claim (1) of the lemma.

The proof of the second claim of the lemma is similar. �

The solid tensor product of sheaves inherits many properties from the solid tensor product of
modules. In particular, it commutes with all colimits (since the sheafification functor does). The
internal Hom, Hom2

S(F ,G), can be defined as a presheaf by

{Y ↦ Hom2
Y (FY ,GY ) ∈ Solid}, Y ∈ Sproét.

It is actually a sheaf by [25, Prop. 2.2.14]. Moreover, the image of the sheaf Hom2
S(F ,G) by the

embedding functor Sh(Sproét,Solid) ↪ Sh(Sproét,CondAb) is the sheaf HomStop(F ,G). We have
the usual adjointness property:

Lemma 2.22. If F1,F2,F3 ∈ Sh(Sproét,Solid), there is a canonical functorial isomorphism in
Sh(Sproét,Solid)

Hom2
S(F1 ⊗2 F2,F3)

∼→Hom2
S(F1,Hom2

S(F2,F3)).

In particular, we have a canonical functorial isomorphism in Solid

Hom2
S(F1 ⊗2 F2,F3) ≃ Hom2

S(F1,Hom2
S(F2,F3)).

Proof. This can be checked in Sh(Sproét,CondAb), where it is known. �

(●) Sheaves of solid Q
p
-modules. Let Sh(Sproét,Qp,2

) denote the subcategory of Sh(Sproét,Solid)
of Q

p
-modules.

Lemma 2.23. The category Sh(Sproét,Qp,2
) is a Grothendieck abelian category.

Proof. We need to check that the category Sh(Sproét,Qp,2
) admits a generator and small colimits

such that small filtered colimits are exact. But the colimits can be inherited from Sh(Sproét,Solid)
and they have the required properties (use the fact that the solid tensor product of solid abelian
sheaves commutes with direct sums). Moreover, if X is a generator of Sh(Sproét,Solid) then
Q
p
⊗2 X is a generator of Sh(Sproét,Qp,2

) as easily follows, again, from the fact that the solid
tensor product of solid abelian sheaves commutes with direct sums. This finishes our argument. �
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The categories of Qp(Y )2-modules, Y ∈ Sproét, being closed symmetric monoidal, the category
Sh(Sproét,Qp,2

) is equipped with tensor product and internal Hom: For F ,G ∈ Sh(Sproét,Qp,2
),

their tensor product F ⊗2
Q

p

G is defined by sheafifying the presheaf tensor product

{Y ↦ F(Y ) ⊗2
Q

p
(Y ) G(Y )}, Y ∈ Sproét.

We have an analog of Lemma 2.21 in this setting. The internal Hom, Hom2
S,Q

p
(F ,G), can be

defined as a presheaf by

{Y ↦ Hom2
Y,Q

p

(FY ,GY ) ∈ Modsolid
Qp(Y )}, Y ∈ Sproét,

where we set
(2.24)

Hom2
Y,Q

p

(FY ,GY ) ∶= ker ( ∏
Y1→Y

Hom2
Qp(Y1)(F(Y1),G(Y1)) → ∏

Y2→Y1

Hom2
Qp(Y1)(F(Y1),G(Y2))).

It is actually a sheaf (compare with the condensed definition). Moreover, the image of the
sheaf Hom2

S,Q
p
(F ,G) by the forgetful functor Sh(Sproét,Qp,2

) → Sh(Stop
proét,Qp

) is the sheaf

HomStop,Q
p
(F ,G). In particular, the forgetful functor Sh(Sproét,Qp,2

) → Sh(Stop
proét,Qp

) is (topo-
logically) fully faithful. We have the usual adjointness property:

Lemma 2.25. If F1,F2,F3 ∈ Sh(Sproét,Qp,2
), there is a canonical functorial isomorphism in

Sh(Sproét,Qp,2
)

Hom2
S,Q

p
(F1 ⊗2

Q
p
F2,F3)

∼→Hom2
S,Q

p
(F1,Hom2

S,Q
p
(F2,F3)).

In particular, we have a canonical functorial isomorphism in Modsolid
Qp(S)

Hom2
S,Q

p

(F1 ⊗2
Q

p
F2,F3) ≃ Hom2

S,Q
p

(F1,Hom2
S,Q

p
(F2,F3)).

Proof. Reduce to the condensed adjointness as in the proof of Lemma 2.22. �

The category Sh(Sproét,Qp,2
) is generated by the set

(2.26) {Qp[hδY ] ⊗2
Z Z[T ]}, Y ∈ PerfS , T − profinite set.

And we have an analog of Lemma 2.15 in this setting.

(●) Derived picture. Again, we have an analogous derived picture. We start with the category
D(Sproét,Solid). Since Sh(Sproét,Solid) is a Grothendieck abelian category, the internal Hom,
RHom2

S(F ,G), for F ,G ∈ D(Sproét,Solid), is defined using the existence of K-injective resolutions
(which is a classical result, see [24], [29, Tag 079I]).

The existence of K-flat resolutions, which follows from the existence of flat generators from 2.19,
yields the derived tensor product F ⊗L2 G, for F ,G ∈ D(Sproét,Solid). By the usual argument ([29,
Tag 08J9]), the derived tensor product is the left (interior) adjoint to the derived interior Hom.

We pass now to the category D(Sproét,Qp,2
). The existence of K-injective resolutions follows

from the fact that the category Sh(Sproét,Qp,2
) is Grothendieck abelian (see Lemma 2.23). The

existence of K-flat resolutions follows from the existence of flat generators of Sh(Sproét,Qp,2
) (see

(2.26)). Hence we have the derived tensor product F⊗L2

Q
p

G, for F ,G ∈ D(Sproét,Qp,2
), the internal

Hom, RHom2
S,Q

p
(F ,G), which are (internal) adjoints to each other.
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2.2.4. Constant sheaves and monoidal structures. Let W ∈ K2 be a flat module and let6 F ∈
Sh(Sproét,K2). We define sheaves W ⊗L2

K F ,W ⊗2
K F as presheaves by setting

W ⊗L2

K F ∶= {Y ↦W ⊗L2

K F(Y )},
W ⊗2

K F ∶= {Y ↦W ⊗2
K F(Y )}.

These are sheaves because W is a flat module. We will need the following computations:

Lemma 2.27. Let W ∈Qp,2 be a Fréchet or of compact type. Let F ∈ Sh(Sproét,Qp,2
).

(1) There is a canonical quasi-isomorphism in D(Sproét,Qp,2)

(2.28) W ⊗L2

Qp
F ∼→W ⊗L2

Qp
F .

(2) There is a natural isomorphism in Qp,2

Hom2
S,Qp

(W,F) ∼→ Hom2
Qp

(W,F(S)).

(3) There is a natural quasi-isomorphism in D(Qp,2)

RHom2
S,Qp

(W,F) ≃ RHomQp,2
(W,RΓ(Stop

proét,F)).

(4) If W is of compact type then there is a natural quasi-isomorphism in D(Qp,2)

RHom2
S,Qp

(W,F) ≃W ∗ ⊗L2

Qp
RΓ(Stop

proét,F).

Proof. We start with the first claim. As presheaves both sides of (2.28) are given by

{Y ↦W ⊗L2

Qp
F(Y )}, {Y ↦W (Y ) ⊗L2

Qp(Y ) F(Y )},

respectively. For Y strictly totally disconnected, we compute

W (Y ) ⊗L2

Qp(Y ) F(Y ) = C(π0(Y ),W ) ⊗L2

Qp(Y ) F(Y ) ≃W⊗2
Qp
C(π0(Y ),Qp) ⊗L2

Qp(Y ) F(Y )

≃W ⊗L2

Qp
F(Y )

Here, the second quasi-isomorphism holds by [22, Cor. 10.5.4]. Our claim follows.
For the second claim, we use the end description

Hom2
S,Qp

(W,F) ∼→ Hom2
S,Qp

(W ⊗2
Qp

Q
p
,F) = ∫

Y
HomQp(Y )(W ⊗2

Qp
Qp(Y ),F(Y ))

≃ ∫
Y

HomQp
(W,F(Y )) ≃ HomQp

(W,∫
Y
F(Y )) ≃ HomQp

(W,F(S)).

Here, the first isomorphism follows from the first claim of the lemma.
The last two claims of the lemma follow from the first two ones by applying them to an injective

resolution of F . �

2.2.5. Condensed versus solid sheaves. The following result is a sheaf version of Proposition 2.7.

Proposition 2.29. (1) The forgetful functor

(2.30) Sh(Sproét,Solid) → Sh(Sproét,CondAb)

is (topologically) fully faithful. The essential image is stable under all limits, colimits,
and extensions. Moreover, the inclusion (2.30) admits a (topological) left adjoint, the
solidification functor,

(2.31) Sh(Sproét,CondAb) → Sh(Sproét,Solid) ∶ F ↦ F2,

which preserves all colimits and is symmetric monoidal. We have analogous claims for the
forgetful functor Sh(Sproét,Qp,2) → Sh(Stop

proét,Qp).

6The definition and properties of the category Sh(Sproét,K2) is analogous to those of the category
Sh(Sproét,Qp,2).
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(2) The forgetful functor

(2.32) D(Sproét,Solid) → D(Sproét,CondAb)

is (topologically) fully faithful. It preserves all limits and colimits.
(3) The functor (2.32) admits a left adjoint

F ↦ FL2 ∶ D(Sproét,CondAb) → D(Sproét,Solid),

which is the (topological) left derived functor of the solidification functor (−)2. It is sym-
metric monoidal. We have analogous claims for the forgetful functor D(Sproét,Qp,2

) →
D(Stop

proét,Qp
).

(4) For F1,F2 ∈ D(Sproét,Solid), the natural map

RHom2
S(F1,F2) → RHomStop(F1,F2)

is a quasi-isomorphism. We have an analogous claim for the Q
p
-sheaves.

Proof. We start with the first claim. The fully-faitfulness was shown above, in Section 2.2.3 (see
Lemma 2.20). Limits of solid sheaves in the condensed setting are solid because this is true for
presheaves; for colimits – this holds on the level of presheaves and condensed sheafification is
compatible with solid sheafification. For extensions: If 0 → F1 → F2 → F3 → 0 is an extension of
condensed sheaves such that F1,F3 are solid then, on every Y ∈ Sproét, we have an exact sequence
in CondAb

0→ F1(Y ) → F2(Y ) → F3(Y ) f→H1
proét(Y,F1).

The cohomology group H1
proét(Y,F1) is solid (because so is F1), hence so is the kernel of the map f .

Thus, by Proposition 2.7, F2(Y ) is solid, as wanted. The claim about solidification follows from
Lemma 2.20, Lemma 2.21, and Proposition 2.7.

We turn now to the second claim of the proposition. For fully-faitfulness, for F ,G ∈ D(Sproét,Solid),
we need to show that the canonical map

RHom2
S(F ,G) → RHomStop(F ,G)

is a quasi-isomorphism. We will need the following fact:

Lemma 2.33. If W is a prodiscrete condensed set (i.e. a cofiltered limit of discrete condensed
sets) then Z[W ]L2

∼→ Z[W ]2. Similalry with Q
p
(S)-coefficients, for S ∈ PerfC .

Proof. Recall that every prodiscrete set can be written as a filtered colimit of profinite sets. So let
us write W = colimi Ti, a filtered colimit of profinite sets. We have

Z[W ]L2 = Z[colimi Ti]L2 ≃ (colimiZ[Ti])L2 ≃ colimiZ[Ti]L2
∼→ colimiZ[Ti]2 ≃ Z[W ]2,

which is what we wanted.
The Qp-case follows from the fact that Z[T ] is a flat solid abelian group. �

This implies that if we take a resolution of F in Sh(Sproét,CondAb)

⋯ → P1 → P0 → F → 0,

where Pj = ⊕j(Z[hδYj
] ⊗Z[Tj]) for a w-contractible Yj over S, an extremally diconnected Tj , the

solidification
⋯ → P2

1 → P2
0 → F → 0

is also exact. Indeed, it suffices to show that

⋯ → P1(X)2 → P0(X)2 → F(X)2 → 0,

is exact for a w-contractible X over S. But this follows from the quasi-isomorphism F(X)L2
∼→

F(X)2, since F(X) is solid, and Lemma 2.33.
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Using that the Pi’s above are projective in Sh(Sproét,CondAb) and their solidifications are
projective in Sh(Sproét,Solid), the fully faithfulness claim is reduced to the fact that the map

(2.34) Hom2
S(Z[hδY ] ⊗2 Z[T ],G) → HomStop(Z[hδY ] ⊗Z[T ],G)

is an isomorphism for a w-contractible Y over S, an extremally diconnected T , and a solid sheaf
G. But this follows from the first claim of the proposition. The topological version can be derived
by the same argument applied to the tensor products F ⊗2 Z[T ]’s.

This also proves the fourth claim of the proposition. The statement about colimits in claim (2)
follows by evaluating sheaves on w-contractible perfectoids. For limits – we use the fact that in
both categories we have, for Y over S w-contractible, we have (R limi∈I Fi)(Y ) ≃ R limi∈I Fi(Y )
and, by Proposition 2.7, the latter limits are the same in the solid and condensed categories.

For claim (3), since we have enough projectives, the left derived functor (−)L2 of (−)2 exists
and it remains to show that it is the left adjoint of the map (2.30). But this can be checked on
Hom’s and for projectives Z[hδY ] ⊗ Z[T ] as in (2.34) and then we can use claim (1). This also
implies inner left adjointness, which, in turn, implies compatibility with monoidal structures via
the following computation: We want to show that, for F1,F2 ∈ D(Sproét,CondAb), we have

(2.35) (F1 ⊗L F2)L2 ≃ FL2

1 ⊗L2 FL2

2

in D(Sproét,Solid). But, for G ∈ D(Sproét,Solid), by the already proven adjointness properties and
claim (4) of our proposition, we have the following quasi-isomorphims

RHom2
S((F1 ⊗L F2)L2 ,G) ≃ RHomStop(F1 ⊗L F2,G) ≃ RHomStop(F1,RHomStop(F2,G))

∼← RHomStop(F1,RHom2
S(FL2

2 ,G)) ≃ RHom2
S(FL2

1 ,RHom2
S(FL2

2 ,G))
≃ RHom2

S(FL2

1 ⊗L2 FL2

2 ,G),

as wanted.
Claim (3) for Q

p
-coefficients follows by the same argument as in the abelian case. �

Remark 2.36. Recall that sheaves of Q
p
-modules on Spa(C)proét are called Vector Spaces (VS for

short). Following this, we will call sheaves from Sh(Spa(C)proét,Qp,2
) Naive Topological Vector

Spaces (NTVS for short).

2.2.6. Étale Naive Topological Vector Spaces. The constructions from Section 2.1 and Section 2.2
have étale versions though one needs to be a bit careful so that all of them go through.

Let S be a strictly totally disconnected affinoid perfectoid over C. Denote by sPerfS the category
of strictly totally disconnected affinoid perfectoid spaces over S. Proceeding as in Section 2.1.2
we can define the topological étale site Stop

ét based on the category sPerfS equipped with étale
topology. The constructions from Section 2.1 and Section 2.2 go through with two exceptions: we
do not have the map η from Section 2.1.2 and in Lemma 2.15 we can take all Y ’s.

In fact, later on, we will go even further and often drop the topology altogether (but still work
with the category sPerfS).

3. Topological Vector Spaces

We pass now to our main object of study: the categories of topologically enriched presheaves.
We start with the definition and properties of topology on mapping spaces between perfectoid
affinoids over C. Then we define topologically enriched presheaves with values in condensed and
solid abelian groups, discuss examples and the Enriched Yoneda Lemma. After that we prove that
topologically enriched presheaves form Grothendieck abelian categories, study their ∞-derived
categories, the solidification functors, and monoidal structures. Finally, we extend all of this to
the categories of Q

p
-modules.
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3.1. Topologically enriched presheaves. Many of the topological presheaves we will be working
with will be canonically enriched.

Remark 3.1. The main technical tool that we need that convinced us to use topologically enriched
presheaves is the enriched Yoneda Lemma that is needed in the proof of Theorem 4.1 and Theorem
4.25 (used to relate topological RHom’s to the algebraic ones and the ones for perfect complexes
on the Fargues-Fontaine curve). The consideration of topologically enriched presheaves is not new:

(1) It appears implicitly in the original definition of Banach-Colmez spaces in [9] (Banach-
Colmez spaces are presheaves valued in Banach spaces and are topologically enriched) and
also explicitly7 in the definition of qBC’s in [12].

(2) Topologically enriched functors in the context of the theory of Banach spaces were studied
for a while: see, for example, [15], [21]. They are called "strong functors" there. More
generally, the papers [6], [7] survey the categorical approach to the theory of Banach spaces.

Our main references for enriched categories and enriched functors are [18], [14], [16, App. C].

3.1.1. Topologized mapping space. Let S ∈ PerfC . We will enrich the category PerfS in Cond. For
Y1, Y2 ∈ PerfS , we set:

HomS(Y1, Y2) ∶ {T ↦ HomS(Y1 × T,Y2)}.
For every Y ∈ PerfS , the identity map iX ∶ {∗} → HomS(Y,Y ) sends {∗} to Id. For every triple
Y1, Y2, Y3 ∈ PerfS , the composition map

HomS(Y2, Y3) ⊗HomS(Y1, Y2) → HomS(Y1, Y3)
is defined by compatible compositions, for profinite sets T ,

HomS(Y2 × T,Y3) ⊗HomS(Y1 × T,Y2) → HomS(Y1 × T,Y3),
which send the pair (f2, f1) to the composition

f2f1 ∶ Y1 × T
Id×∆ÐÐ→Y1 × T × T f1×IdÐÐ→Y2 × T

f2ÐÐ→Y3.

The associativity and unit axioms (see [18, (1.3), (1.4)]) are easily checked to hold.

Lemma 3.2. The condensed set HomS(Y1, Y2) is prodiscrete.

Proof. Set R+
1 ∶= R+

Y1
,R+

2 ∶= R+
Y2
,R+

S ∶= R+
S . These are prodiscrete sets. We claim that there is an

isomorphism of condensed sets

HomS(Y1, Y2) ≃ HomAlg
R+

S
(R+

2 ,R
+
1),

where the second Hom is taken in R+
S-algebras. To see this we start with showing that there is an

isomorphism of condensed sets

HomS(Y1, Y2) ≃ HomAlg
R+

S
(R+

2 ,R
+
1),

where HomAlg
R+

S
(R+

2 ,R
+
1) is equipped with the compact-open topology. For that, we compute:

HomS(Y1 × T,Y2) = HomAlg
R+

S
(R+

2 ,R
+
1 ⊗̂C(T,OC)) ≃ HomAlg

R+

S
(R+

2 ,C(T,R+
1))

≃ C(T,HomAlg
R+

S
(R+

2 ,R
+
1)),

where the last isomorphism follows from the exponential law since T,R+
1 ,R

+
2 are compactly gen-

erated (since they are colimits of profinite sets) and Hausdorff. By [8, Prop. 4.2], we have the
natural isomorphism of condensed sets

HomAlg
R+

S
(R+

2 ,R
+
1)

∼→ HomAlg
R+

S
(R+

2 ,R
+
1).

7Though at the time of writing [12] the authors were not aware that the extra continuity property they have
imposed amounts to the notion of enrichment in category theory.
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It suffices now to show that HomAlg
R+

S
(R+

2 ,R
+
1) is prodiscrete. But this is a closed condensed

subset of HomOC
(R+

2 ,R
+
1) hence, by [30], it suffices to show that HomOC

(R+
2 ,R

+
1) is prodiscrete.

For that, we compute

HomOC
(R+

2 ,R
+
1) ≃ lim

n
HomOC,n

(R+
2,n,R

+
1,n) ≃ lim

n
HomOC,n

(colimiR
+
2,n,i,R

+
1,n)

≃ lim
n

lim
i

HomOC,n
(R+

2,n,i,R
+
1,n),

where R+
2,n,i ⊂ R+

2,n are finitely generated OC,n-modules. Getting what we wanted. �

3.1.2. Topologically enriched presheaves. Let C be a bicomplete, locally finitely presentable, closed
symmetric monoidal category (for example, Cond, CondAb, Solid). Such a category C is canon-
ically C-enriched (C-category, for short) and we assume that it is a Cond-subcategory of Cond.
We will denote by HomC(−,−) and HomC(−,−) its Hom-set and C-Hom, respectively. We have
HomC(−,−)(∗) ≃ HomC(−,−). If C = Cond we will skip the subscripts.

Let S ∈ PerfC . A C-enriched presheaf (or C-presheaf for short) F ∶ Perfop
S → C consists of a

function

F ∶ PerfS ↦ ObC

together with, for Y1, Y2 ∈ PerfS , a map of condensed sets

(3.3) FY1,Y2
∶ HomS(Y1, Y2) → HomC(F(Y2),F(Y1))

in a manner compatible with compositions and identities (see [18, (1.5), (1.6)]). For C-presheaves
F ,G, a C-natural transformation f ∶ F → G is a PerfS-indexed family of maps in C:

fY ∶ F(Y ) → G(Y )

satisfying a C-naturality condition (see [18, (1.7)], [14, (4.30)]): the following diagram commutes
in Cond

HomS(Y,Y1)
FY,Y1 //

G
Y,Y1

��

HomC(F(Y1),F(Y ))

f∗,Y

��
HomC(G(Y1),G(Y ))

f∗Y1 // HomC(F(Y1),G(Y )).

We will write HomC(F ,G) for the set of C-natural transformations.
We will denote the category of such presheaves by PSh(S,C)0 and, in the case C = Cond, we

will simply write PSh(S)0.

Example 3.4. (1) The topological sheaves that come from Sproét are canonically enriched:

Lemma 3.5. Let F ∈ Sh(Sproét). The sheaf π∗F ∈ Sh(Sproét,Cond) is canonically enriched.

Proof. We need to define, compatible in T , maps

(3.6) HomS(Y1 ×T,Y2) → Hom(π∗F(Y2)×T,π∗F(Y1)) = {T1 ∶ F(Y2 ×T1)×T (T1) → F(Y1 ×T1)}.

We induce them by the following transformation of maps over S

(Y1 × T
f→ Y2) × (T1

g→ T ) ↦ (Y1 × T1
fgÐ→ Y2) ↦ (Y1 × T1

(fg,Id)Ð→ Y2 × T1).

Clearly, evaluating (3.6) on ∗ yields the structure map (3.10). Commutativity of the composition
and the identities diagrams [18, (1.5), (1.6)] is easy (if tedious) to check. �

(2) Lemma 3.5 combined with Example 2.1 yield that the sheaves Qp,Ga ∈ Sh(Sproét,Cond) are
canonically enriched and so are the period sheaves B+dR/ti and B+,ϕ=p

i

cr , i ≥ 0.
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3.1.3. The Cond-category of topologically enriched presheaves. Assume moreover that C is a bi-
complete C-category: C is bicomplete in the usual set-based sense and the tensors and cotensors:

c⊗W, [W,c], c,W ∈ C,

satisfy the C-adjunctions

HomC(c1 ⊗W,c2) ≃ [W,HomC(c1, c2)] ≃ HomC(c1, [W,c2]).

(Here [−,−] = HomC(−,−) but below we will need to separate these two operations.) This will be
our standard assumption on C from now on.

The category PSh(S,C)0 is the underlying category of the C-category PSh(S,C), where the
Hom-object in PSh(S,C) is defined as the enriched end:

(3.7) HomC(F ,G) = ∫
Y ∈PerfS

HomC(F(Y ),G(Y ))

computed as an ordinary limit in C. More precisely, it is the equalizer in C given by the diagram

∏Y ∈PerfS HomC(F(Y ),G(Y )) //
// ∏Y,Y1∈PerfS HomC(HomS(Y1, Y ) ⊗ F(Y ),G(Y1)),

where the parallel arrows are defined via the evaluation maps

HomS(Y1, Y ) ⊗ F(Y ) → F(Y1), HomS(Y1, Y ) ⊗ G(Y ) → G(Y1)

of the C-presheaves F ,G. We have HomC(F ,G)(∗) = HomC(F ,G).
The category PSh(S,C) is a bicomplete C-category [18, Sec. 3.3] with limits and colimits com-

puted objectwise. Hence it is tensored and cotensored over C: we have the tensor functor

(−) ⊗ (−) ∶ C ×PSh(S,C) → PSh(S,C),
W ⊗F = {Y ↦W ⊗F(Y )},

and the cotensor functor

[−,−] ∶ Cop ×PSh(S,C) → PSh(S,C),
[W,F] = {Y ↦ HomC(W,F(Y ))},

such that, for each W ∈ C, there is a natural isomorphim

(3.8) HomC(W,HomC(F ,G)) ≃ HomC(F , [W,G]).

Moreover, for each W ∈ C, there is a natural isomorphim

HomC(W ⊗F ,G) ≃ HomC(W,HomC(F ,G)).

Remark 3.9. (Topological presheaves) The presheaves studied in Section 2, which we called "topo-
logical presheaves", also form a C-category. We will call such C-categories PSh(S,C). Their under-
lying categories8 PSh(S,C)0 are defined as in Section 3.1.2 but with the trivial enrichment on the
mapping spaces, i.e., in the structure maps (3.3), instead of HomS(Y1, Y2) we take HomS(Y1, Y2),
where HomS(Y1, Y2) is given the discrete topology. Hence they are canonically induced by structure
maps of the form

(3.10) FY1,Y2 ∶ HomS(Y1, Y2) → HomC(F(Y2),F(Y1)).

The Hom-object is defined as in (3.7).
We have the forgetful functor

(−)cl ∶ PSh(S,C) → PSh(S,C)

given by evaluating the structure map (3.3) on ∗ to yield the structure map (3.10).

8For an enriched category A, we denote by A0 the underlying category.
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3.1.4. Alternative description of topologically enriched presheaves. We keep assuming that the
Cond-category C is bicomplete. In that case the category PSh(S,C)0 has an alternative description,
which will allow us to understand it better. We want to think of a Cond-presheaf F ∶ Perfop

S → C
as a function

F ∶ Perfop
S ↦ ObC

plus a compatible collection of (structure) maps in C

(3.11) FY,T ∶ F(Y × T ) ⊗ T → F(Y ), Y ∈ PerfS , T ∈ ProFin.

Equivalently, we can use the adjoints of the structure maps (3.11)

F ′Y,T ∶ F(Y × T ) → [T,F(Y )]

and the compatibility condition corresponds to commutative diagrams

(3.12) F(Y × T )
F ′

Y,T //

(f×g)∗

��

[T,F(Y )]

(g∗,f∗)
��

F(Y1 × T1)
F ′

Y,T // [T1,F(Y1)],

for all maps f ∶ Y1 → Y, g ∶ T1 → T , together with a composition rule.
A Cond-natural transformation f ∶ F → G between two such functions F , G is given by maps in

C
fY ∶ F(Y ) → G(Y ), Y ∈ PerfS ,

which are compatible with the structure maps (3.11). We will write HomC(F ,G)0 for the set of
Cond-natural transformations.

We will call the category of such data PSh′(S,C)0. We obtain the Cond-category PSh′(S,C)
(whose underlying category is PSh′(S,C)0) by enriching in Cond the Hom-sets HomC(F ,G)0:

HomC(F ,G) ∶= {T ↦ HomC(F ⊗ T,G)0}, F ,G ∈ PSh′(S,C)0.

(We note that F ⊗ T ∈ PSh′(S,C)0). We clearly have HomC(F ,G)(∗) = HomC(F ,G)0.

Lemma 3.13. The Cond-categories PSh(S,C) and PSh′(S,C) are equivalent.

Proof. We start with defining a Cond-functor

F ∶ PSh(S,C) → PSh′(S,C),

which we will show later to be an equivalence. Let F ∈ PSh(S,C). We define F (F) as being given
by the same function on Perfop

S as F . To define the structure maps FY,T for F (F), we start with
the structure maps for F

FY,Y1
∶ HomS(Y,Y1) → HomC(F(Y1),F(Y )).

Evaluated at T ∈ ProFin, they yield a compatible collection (indexed by T ) of maps of sets

FY,Y1,T
∶ HomS(Y × T,Y1) → HomC(F(Y1) ⊗ T,F(Y )).

Setting Y1 = Y × T in the above and taking the image of the identity by the map FY,Y1,T
, we get

a compatible, in Y and T , family of maps in C

F(Y × T ) ⊗ T → F(Y ),

as wanted. This defines a function

F ∶ Ob PSh(S,C) → Ob PSh′(S,C).

It remains to define, for each pair F ,G ∈ PSh(S,C), a map

FF,G ∶ HomC(F ,G) → HomC(F (F), F (G))
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compatible with the composition and the identity (see [18, (1.5), (1.6)]). This amounts to defining,
indexed by T ∈ ProFin, a compatible family of maps

FF,G(T ) ∶ HomC(F ⊗ T,G)0 → HomC(F (F) ⊗ T,F (G))0.

But, by the definition of F (F), F (G), these two sets can be canonically identified.
The above proves that the Cond-functor F is in fact fully faithful. It remains thus to show that

it is essentially surjective on objects. For that we will define the quasi-inverse G to F on objects:
G is given by the same function on Perfop

S as F and to define the structure maps FY1,Y2
for G(F):

FY1,Y2
∶ HomS(Y1, Y2) → HomC(G(F)(Y2),G(F)(Y1))

we need to define, a compatible in T , family of maps of sets

FY1,Y2,T
∶ HomS(Y1 × T,Y2) → HomC(F(Y2) ⊗ T,F(Y1)).

To do that, we map a map f ∶ Y1 × T → Y2 to the composition

F(Y2) ⊗ T
f⊗IdÐÐ→F(Y1 × T ) ⊗ T

FY1,TÐÐ→F(Y1).

It is easy to check that FG = Id and GF = Id, hence F is essentially surjective, as wanted. �

Example 3.14. (Rigid topologically enriched presheaves) We will distinguish a subcategory of
topologically enriched presheaves.

Definition 3.15. A topologically enriched presheaf F ∈ PSh(S,C) is called rigid if the structure
maps from (3.12)

F ′Y,T ∶ F(Y × T ) → [T,F(Y )]
are isomorphisms in C, for all Y ∈ PerfS , T ∈ ProFin. Equivalently, if the maps

F ′Y,T (∗) ∶ F(Y × T,∗) → F(Y,T )

are isomorphisms of sets, for all Y ∈ PerfS and T ∈ ProFin. The full subcategory of rigid presheaves
in PSh(S,C) will be denoted by PShrig(S,C). We will denote by Shrig(S,C) its full subcategory of
rigid sheaves: a rigid presheaf F is a sheaf if the pro-étale presheaf η∗F is a sheaf.

We note that the equivalence in the above definition follows from the commutative diagram

F(Y × T × T1,∗)
F ′

Y,T×T1
(∗)

**
F ′

Y ×T,T1
(∗)
��

F(Y × T,T1)
F ′

Y,T (T1)
// F(Y,T × T1),

which is just a rewriting of the composition commutative diagram

F(Y × T × T1)(∗)
F ′

Y,T×T1
(∗)

,,
F ′

Y ×T,T1
(∗)
��

[T1,F(Y × T )](∗)
[T1,F ′

Y,T ]
// [T1, [T,F(Y )]](∗) = [T1 × T,F(Y )](∗).

Lemma 3.16. Let F ∈ PSh(Sproét). The topologically enriched presheaf π∗F ∈ PSh(S) is a rigid
sheaf. Moreover, the functor

πrig
∗ ∶ Sh(Sproét) → Shrig(Sproét)0

is an equivalence of categories.

Remark 3.17. The above lemma is also valid for the pair Ab,CondAb (in place of the pair
Set,Cond). With the same proof.
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Proof. By Lemma 3.5, the presheaf π∗F is topologically enriched. To see that it is rigid we need
to show that the structure maps

(3.18) (π∗F)′Y,T (∗) ∶ π∗F(Y × T,∗) → π∗F(Y,T )
are isomorphisms of sets. But this is clear since they are isomorphic to the identity maps

Id ∶ F(Y × T ) → F(Y × T ).
Moreover, we have η∗π∗F ≃ F hence π∗F is a sheaf.

Concerning the second claim of the lemma, let us start with essential surjectivity of the functor
π∗. Take a rigid sheaf F . We have the structure maps

(3.19) F ′Y,T (∗) ∶ F(Y × T,∗) → F(Y,T ),
of sets satisfying certain compatibilities. In the language of Section 2.2.1, they give a natural
transformation of topologically enriched presheaves9

π∗η∗F → F .
Since these maps are isomorphisms by assumption, we get the essential surjectivity.

It remains to show that the functor π∗ is fully faithful. Faithfulness is clear. Let F ,G ∈ Sh(Sproét)
and take a map of topologically enriched presheaves f ∶ π∗F → π∗G. Define a map f̃ ∶ F → G by
setting f̃Y = fY (∗). We need to show that that f = π∗f̃ . But this can be seen, after unwiding the
definitions, from the following commutative diagram (for all Y ∈ PerfS , T ∈ ProFin)

π∗F(Y,T )
fY (T ) // π∗F(Y,T )

F(Y × T,∗)
fY ×T (∗)//

F ′

Y,T (∗)

OO

G(Y × T,∗)

G′
Y,T

(∗)

OO

Here, the vertical maps, after identification of the source and the target, are just identities. �

Remark 3.20. It follows from Lemma 3.16 that a rigid presheaf F is a sheaf if and only if the
topological presheaf Fcl is a sheaf.

3.1.5. Enriched Yoneda Lemma. Recall the following classical construction from [18, Sec. 2.4]. Let
S ∈ PerfC , Y ∈ PerfS . We define the functor

htop
Y ∶ Perfop

S → Cond, X ↦ HomS(X,Y ).
It is easy to check that

(3.21) htop
Y ≃ π∗hY ,

where π ∶ Sproét → Stop
proét is the canonical projection. In particular, since the pro-étale site is

subcanonical and thus the presheaf hY is a sheaf, same is true of htop
Y . Moreover, by Lemma 3.5,

this sheaf is canonically Cond-enriched.
Let F ∈ PSh(S). The Cond-enriched Yoneda Lemma yields an existence of a Cond-natural

isomorphism

Hom(htop
Y ,F) = ∫

Y1∈PerfS
Hom(HomS(Y1, Y ),F(Y1))

∼← F(Y )(3.22)

induced by the maps
ϕY ∶ F(Y ) → Hom(HomS(Y1, Y ),F(Y1))

obtained, via the adjunction Hom(x,Hom(y, z)) ≃ Hom(y,Hom(x, z)), x, y, z ∈ Cond, from the
structure maps

FY1,Y
∶ HomS(Y1, Y ) → Hom(F(Y ),F(Y1)).

9The fact that this is a natural transformation follows from the coherence of the structure maps (3.19).
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The special case of (3.22) with F = htop
Y1
, Y1 ∈ PerfS , proves that the functor htop

∗ is fully faithful.
Moreover, we have htop

Y1×SY2
≃ htop

Y1
× htop

Y2
.

Equivalently, we can formulate an enriched co-Yoneda Lemma as a Cond-natural isomorphism

∫
Y1∈PerfS

HomS(Y,Y1) ⊗ F(Y1)
∼→ F(Y )

induced by the morphisms
HomS(Y,Y1) ⊗ F(Y1) → F(Y ),

which are adjoints to the structure maps FY,Y1 . Here ∫
Y1∈PerfS HomS(Y,Y1)⊗F(Y1) is the enriched

coend: the coequalizer given by the diagram

∐Y1∈PerfS HomS(Y,Y1) ⊗ F(Y1) ∐Y1,Y2∈PerfS HomS(Y,Y1) ⊗HomS(Y1, Y2) ⊗ F(Y2),oo
oo

where the parallel arrows are induced by the composition and the evaluation maps

HomS(Y,Y1) ⊗HomS(Y1, Y2) → HomS(Y,Y2), HomS(Y1, Y2) ⊗ F(Y2) → F(Y1).

3.1.6. Monoidal structures. Let S ∈ PerfC and let C = Cond. We will use the same notation for
tensor products and internal Hom’s of Cond-presheaves on the category PerfS as in Section 2.2.2
and Section 2.2.3.

(●) Tensor product. The tensor products of presheaves are defined objectwise and the structure
maps are modified in a canonical way.

(●) Internal Hom. For two Cond-presheaves F ,G, we set

HomStop(F ,G) ∶= {Y ↦ HomStop(htop
Y ⊗F ,G)}

= {Y ↦ ∫
Y1∈PerfS

Hom(HomS(Y1, Y ) ⊗ F(Y1),G(Y1))}.

This is a Cond-presheaf (with values in Cond).

(●) Adjunction. We have the usual tensor-hom adjunction:

Lemma 3.23. Let F1,F2,F3 ∈ PSh(S). We have functorial isomorphisms in Cond and PSh(S),
respectively:

HomStop(F1 ⊗F2,F3) ≃ HomStop(F1,HomStop(F2,F3)),
HomStop(F1 ⊗F2,F3) ≃ HomStop(F1,HomStop(F2,F3)).

Proof. For the first isomorphism, the computation is standard: We have the following sequence of
functorial isomorphisms in Cond

HomStop(F1,HomStop(F2,F3))

≃ ∫
Y ∈PerfS

Hom(F1(Y ),∫
Y1∈PerfS

Hom(HomS(Y1, Y ) ⊗ F2(Y1),F3(Y1)))

≃ ∫
Y ∈PerfS

∫
Y1∈PerfS

Hom(F1(Y ),Hom(HomS(Y1, Y ) ⊗ F2(Y1),F3(Y1)))

≃ ∫
Y ∈PerfS

∫
Y1∈PerfS

Hom(F1(Y ) ⊗HomS(Y1, Y ) ⊗ F2(Y1),F3(Y1))

≃ ∫
Y1∈PerfS

∫
Y ∈PerfS

Hom(F1(Y ) ⊗HomS(Y1, Y ) ⊗ F2(Y1),F3(Y1))

≃ ∫
Y1∈PerfS

Hom((∫
Y ∈PerfS

F1(Y ) ⊗HomS(Y1, Y )) ⊗ F2(Y1),F3(Y1))

≃ ∫
Y1∈PerfS

Hom(F1(Y1) ⊗ F2(Y1),F3(Y1))

≃ HomStop(F1 ⊗F2,F3).
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Here, the second and the fifth isomorphisms hold because internal Hom in Cond commutes with
limits and colimits in the second and the first variable, respectively; the third one – by adjunction
in Cond; the fourth one – by the Fubini theorem for ends; the sixth one – by co-Yoneda Lemma.

For the second isomorphism of the lemma, evaluating on Y ∈ PerfS , it suffices to show that we
have a natural isomorphism in Cond

HomStop(htop
Y ⊗F1 ⊗F2,F3) ≃ HomStop(htop

Y ⊗F1,HomStop(F2,F3)).

But this follows from the first isomorphism of the lemma. �

(●) Generators. The above implies the following:

Lemma 3.24. The category of Cond-presheaves PSh(S) is generated by the family {htop
Y ⊗Wi}, i ∈

I, Y ∈ PerfS, where {Wi}, i ∈ I is a family of generators of Cond.

Proof. We follow the argument in the proof of [17, Th. 4.2]. Let α1, α2 ∶ F → G be two maps
in PSh(S) such that α1 ≠ α2. We want to show that there is i ∈ I, Y ∈ PerfS , and a map
β ∶ htop

Y ⊗Wi → F such that α1β ≠ α2β.
Since α1 ≠ α2, there exists Y ∈ PerfS such that α1,Y ≠ α2,Y ∶ F(Y ) → G(Y ) in Cond. We fix

such a Y . Since {Wi}, i ∈ I, are generators of Cond, there exists a map β ∶Wi → F(Y ) such that
α1,Y β ≠ α2,Y β. But, for any non-zero presheaf F ∈ PSh(S), we have natural isomorphisms

HomStop(htop
Y ⊗Wi,F) ≃ Hom(Wi,HomStop(htop

Y ,F)) ≃ Hom(Wi,F(Y ));

the second one by the enriched Yoneda Lemma. Hence we can find a unique map β ∶ htop
Y ⊗Wi → F

corresponding to β. Now α1,Y β ≠ α2,Y β implies that α1β ≠ α2β, as wanted. �

Remark 3.25. (1) Everything in Section 3.1 outside of the definition of rigid sheaves works as well
with the category PerfC replaced by the category sPerfC of strictly totally disconnected affinoids
S ∈ PerfC . We note that we do have an analog of Lemma 3.5 by restricted the sheaves π∗F to the
category sPerfC .

(2) It is possible to define a notion of a topologically enriched sheaf as a finite-products pre-
serving enriched functor. Such objects form a full reflective subcategory of topologically enriched
presheaves in the sense of [5], [23] (the key point being that the naive sheafification of a topolog-
ically enriched presheaf is canonically enriched). In fact in the first draft of this paper we have
worked in this setting only later realizing that this does not add anything (besides extra layer of
complexity) to the applications we had in mind. It might be however useful in the future.

(3) We will call presheaves from PSh(Spa(C),Q
p,2

) Topological Vector Spaces (TVS for short).
We will also use this term for the derived category of TVS’s (see below) and sometimes, abusively,
for the analogous categories with values in condensed Abelian groups, etc.

3.2. Derived version. We study here the ∞-derived category of topologically enriched sheaves,
show that it admits a canonical Cond-enrichment, and compare it with the category of Cond-
enriched presheaves with values in corresponding ∞-derived Cond-categories.

3.2.1. Derived categories of topologically enriched presheaves. We start with the derived categories
of topologically enriched presheaves:

PSh(S,CondAb)0, PSh(S,Solid)0,(3.26)

PSh(S,Q
p
)0, PSh(S,Q

p,2
)0.

These are Grothendieck abelian with compact, projective generators. Hence we have K-injective
as well as K-flat resolutions. This yields derived (internal) Hom’s, derived tensor products, and



TOPOLOGICAL VECTOR SPACES 23

the (internal) tensor-hom adjunctions in the corresponding derived ∞-categories

D(S,CondAb), D(S,Solid),
D(S,Q

p
), D(S,Q

p,2
).

These categories are defined by taking derived ∞-categories of the corresponding (−)0 categories
from (3.26) and then canonically enriching them via the global sections of the derived internal
Hom’s. The enriched tensor-hom adjunctions are inherited from the internal ones.

We have the following result concerning the relationship between constant sheaves and monoidal
structures:

Lemma 3.27. The enriched analog of Lemma 2.27 holds.

Proof. Claim (1) of Lemma 2.27 has the same proof in this setting. For the second claim, we use
the enriched end description

Hom2
S,Qp

(W,F) ∼→ Hom2
S,Qp

(W ⊗Qp,2 Q
p
,F) = ∫

Y ∈sPerfS
HomQp(Y )(W ⊗Qp,2 Qp(Y ),F(Y ))

≃ ∫
Y ∈sPerfS

HomQp
(W,F(Y )) ≃ HomQp

(W,∫
Y ∈sPerfS

F(Y )) ≃ HomQp
(W,F(S)).

Here, we wrote ∫Y ∈sPerfS
F(Y ) for the equalizer

∏Y ∈sPerfS F(Y ) //
// ∏Y,Y1∈sPerfS Hom(HomS(Y1, Y ),F(Y1))

and the first isomorphism follows from the first claim of the lemma.
The third claim of the lemma is the same as the second one and the fourth one follows from the

third one. �

3.2.2. Condensed vs solid topologically enriched sheaves. The following result is an enriched version
of Proposition 2.29.

Proposition 3.28. (1) The forgetful functor

(3.29) PSh(S,Solid) → PSh(S,CondAb)

is (topologically) fully faithful. The essential image is stable under all limits, colimits,
and extensions. Moreover, the inclusion (3.29) admits a (topological) left adjoint, the
solidification functor,

(3.30) PSh(S,CondAb) → PSh(S,Solid) ∶ F ↦ F2,

which preserves all colimits and is symmetric monoidal. We have analogous claims for the
forgetful functor PSh(S,Qp,2) → PSh(Stop,Qp).

(2) The forgetful functor

(3.31) D(S,Solid) → D(S,CondAb)

is (topologically) fully faithful. It preserves all limits and colimits.
(3) The functor (3.31) admits a left adjoint

F ↦ FL2 ∶ D(S,CondAb) → D(S,Solid),

which is the (topological) left derived functor of the solidification functor (−)2. It is
symmetric monoidal. We have analogous claims for the forgetful functor D(S,Q

p,2
) →

D(S,Q
p
).

(4) For F1,F2 ∈ D(S,Solid), the natural map

RHom2
S(F1,F2) → RHomStop(F1,F2)

is a quasi-isomorphism. We have an analogous claim for the Q
p
-sheaves.
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Proof. The proof of Proposition 2.29 goes through almost verbatim (we just need to replace hδY
with htop

Y ) since we have Lemma 3.2 (for the second claim). �

4. Fully-faithfulness results

Topological Vector Spaces are closely related to Vector Spaces as well as perfect complexes on
the Fargues-Fontaine curve. In this section we prove two relevant fully-faithfulness results.

4.1. Vector Spaces and Topological Vector Spaces. The algebraic pro-étale and the topo-
logical presheaves are closely related assuming that we enrich the latter. Let S ∈ sPerfC .

Theorem 4.1. (Enriched fully-faithfulness) Let F ∈ Db(Sproét,Ab) be such that Rπ∗F ∈ Db(S,CondAb)0

and let G ∈ D+(Sproét,Ab). The canonical morphism in D(S,CondAb)

(4.2) Rπ∗RHomS(F ,G) → RHomStop(Rπ∗F ,Rπ∗G)

is a quasi-isomorphism. We have analogous claims for Q
p
-sheaves.

Remark 4.3. The map (4.2) is constructed in the usual way: By adjointness, it suffices to construct
a map

Rπ∗RHomS(F ,G) ⊗L Rπ∗F → Rπ∗G.
For this, we will use the composition

Rπ∗RHomS(F ,G) ⊗L Rπ∗F → Rπ∗(RHomS(F ,G) ⊗L F) → Rπ∗G,

where the second arrow is Rπ∗ applied to the canonical map

RHomS(F ,G) ⊗L F → G

and the first arrow is the relative cup product defined in the following way. For G1,G2 ∈ D(Sproét,Ab),
the relative cup product map in D(S,CondAb)

Rπ∗G1 ⊗L Rπ∗G2 → Rπ∗(G1 ⊗L G2)

is induced by the functorial maps in D(Ab), for Y ∈ sPerfS , profinite set T :

(4.4) RΓproét(Y × T,G1) ⊗L RΓproét(Y × T,G2) → RΓproét(Y × T,G1 ⊗L G2).

These maps are compatible with the enriched structure maps as the latter are just induced by the
identity maps (see the proof of Lemma 3.16).

4.1.1. Proof of Theorem 4.1. We start with a reduction. For F : we may assume that F is repre-
sented by a bounded complex, then we can take an injective resolution and truncate it to replace F
with a bounded complex F ′ such that Rπ∗F ′ ≃ π∗F ′, and, finally, do dévissage. For G: we replace
G by a bounded below complex of injectives, then by a limit argument and a dévissage pass to a
single injective. We end up with needing to show that

Rπ∗RHomS(F ,G)
∼→ RHomStop(π∗F , π∗G)

for F ,G ∈ Sh(Sproét,Ab) and G injective.

Step 1. Passage to presheaves. We will factor the functor π∗ in the following way:

π∗ ∶ Sh(Sproét,Ab) ε∗ÐÐ→Sh(Sstd
proét,Ab) ι∗ÐÐ→PSh(sPerfS ,Ab)

πpsh
∗ÐÐ→PSh(S,CondAb)0.

Here, the site Sstd
proét is the category sPerfS equipped with the pro-étale topology. The functor ε∗

is an equivalence of categories. The functor πpsh
∗ involves sheafification in the T -direction10; it is

10This amounts to forcing the additivity property for presheaves on extremally totally disconnected profinite
sets and it is easy to see that this sheafification process preserves enrichment.
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exact. It is well-defined because, for Y ∈ sPerfS and a profinite set T , the affinoid perfectoid Y ×T
is strictly totally disconnected. For F ,G ∈ Sh(Sproét,Ab), we have

Rι∗RHomS(F ,G)
∼→ RHomS(Rι∗F ,Rι∗G).

This follows from the adjunction

Rι∗RHomS(ι∗Rι∗F ,G)
∼→ RHomS(Rι∗F ,Rι∗G)

and the fact that ι∗Rι∗F ≃ F . If moreover G is injective, since ι∗ι∗F ≃ F , similar adjunction yields

Rι∗RHomS(F ,G)
∼→ RHomS(ι∗F , ι∗G).

Step 2. Enriched presheaves fully-faithfulness. Hence it suffices to show that the natural map

Rπpsh
∗ RHomS(F ,G) → RHomStop(πpsh

∗ F , πpsh
∗ G)

is a quasi-isomorphism for F ,G ∈ PSh(sPerfS ,Ab), with G an injective sheaf. Or that:

πpsh
∗ HomS(F ,G)

∼→HomStop(πpsh
∗ F , πpsh

∗ G),(4.5)

RiHomStop(πpsh
∗ F , πpsh

∗ G) = 0, i > 0.

We write F = colimiZ[hZi], for Zi ∈ sPerfS . The presheaves Z[hZi] are projective. To prove the
first isomorphism above, since the functor πpsh

∗ commutes with limits, it suffices to show that, for
Z ∈ sPerfS , we have

πpsh
∗ HomS(Z[hZ],G)

∼→HomStop(Z[htop
Z ], πpsh

∗ G).
Evaluating both sides on (Y,T ), we see that we need to show that

HomS(Z[hZ] ⊗Z[hY ×T ],G)
∼→ HomStop(Z[htop

Z ] ⊗Z[htop
Y ] ⊗Z[T ], πpsh

∗ G).
Or, rewriting, that

HomS(Z[hZ×SY ] ⊗Z[hT ],G)
∼→ HomStop(Z[htop

Z×SY
] ⊗Z[T ], πpsh

∗ G).

We note that the above map is induced by the canonical isomorphism Z[htop
Y ×SZ

] ∼→ πpsh
∗ Z[hY ×SZ]

and the morphism Z[T ] → πpsh
∗ Z[hT ], which factor through the canonical isomorphism Z[htop

T ] ∼→
πpsh
∗ Z[hT ] (and corresponds to the identity in Hom(T,T )).
Writing Z[hZ×SY ] = colimiZ[hZi], for Zi ∈ sPerfS , we reduce to showing that, for Z ∈ sPerfS ,

we have

(4.6) HomS(Z[hZ] ⊗Z[hT ],G)
∼→ HomStop(Z[htop

Z ] ⊗Z[T ], πpsh
∗ G)

But, by the classical and enriched Yoneda Lemmas, respectively, we have

HomS(Z[hZ] ⊗Z[hT ],G) ≃ HomS(Z[hZ×T ],G) ≃ G(Z × T ),
HomStop(Z[htop

Z ] ⊗Z[T ], πpsh
∗ G) ≃ HomStop(Z[htop

Z ], πpsh
∗ G)(T ) ≃ πpsh

∗ G(Z)(T ) ≃ G(Z × T ).
This yields the isomorphism (4.6).

To finish the proof of our theorem we need to show that

RHomStop(πpsh
∗ F , πpsh

∗ G)
is concentrated in degree 0. Or that so are its values on Y :

RHomStop(πpsh
∗ F ⊗L Z[htop

Y ], πpsh
∗ G).

For that, writing F = colimiZ[hZi], for Zi ∈ sPerfS , and then each Z[hZi×SY ] as a colimit of
Z[hZ], for Z ∈ sPerfS , we compute in D(CondAb):

RHomStop(πpsh
∗ F ⊗L Z[htop

Y ], π∗G) ≃ R lim
i

RHomStop(Z[htop
Zi×SY

], πpsh
∗ G)

≃ R lim
j

RHomStop(Z[htop
Zj

], πpsh
∗ G) ≃ R lim

j
πpsh
∗ G(Zj).
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Here the last quasi-isomorphism follows from the enriched Yoneda Lemma. Evaluating now the
above on extremally disconnected T , we get

R lim
j
πpsh
∗ G(Zj)(T ) ≃ R lim

j
G(Zj × T ) ≃ R lim

j
RHomS(Z[hZj×T ],G)

≃ RHomS(colimiZ[hZj×T ],G) ≃ HomS(colimiZ[hZj×T ],G).
Here we used that G is injective. Since, clearly, HomS(colimiZ[hZj×T ],G) is concentrated in degree
0, we are done.

The arguments for Qp-sheaves are analogous using the fact that πpsh
∗ Q

p
[hY ]psh ≃Q

p
[htop
Y ]psh.

4.1.2. Applications of Theorem 4.1. We list now two applications of Theorem 4.1.

Corollary 4.7. Let F ,G ∈ {Ga,Qp
}. Then we have a natural quasi-isomorphism

Rπ∗RHomS,Qp(F ,G)
∼→ RHomStop,Qp

(F ,G).

Proof. This follows immediately from Theorem 4.1 because both F and G are π∗-acyclic. �

Let K be a complete discrete valuation field of mixed characteristic (0, p) and a perfect residue
field. Let X be a smooth partially proper rigid analytic variety over K. Let Ralg

proét,∗(XC ,Qp),
∗ ∈ {∅, c}, be the Vector Space representing pro-étale cohomology:

S ↦ RΓproét,∗(XS ,Qp).

Corollary 4.8. We have a natural quasi-isomorphism

Rπ∗RHomS,Qp(R
alg
proét,∗(XC ,Qp),Qp)

∼→ RHomStop,Qp
(Rπ∗Ralg

proét,∗(XC ,Qp(r)),Qp).

Proof. Since the geometrized p-adic comparison theorems (see [11], [1]) imply that Rπ∗Ralg
proét,∗(XC ,Qp(r))

has a finite amplitude, this follows from Theorem 4.1. �

Remark 4.9. (1) Theorem 4.1 stays valid (with the same proof) if we take S ∈ PerfC , F – a
bounded complex of sheaves, and replace Rπ∗F with π∗F .

(2) Corollary 4.7 is the reason why we work with strictly totally disconnected spaces in the def-
inition of TVS’s: we need vanishing of pro-étale cohomology of Ga and Q

p
in nontrivial degrees11.

(3) We note however that we can not go "higher", that is, we can not replace strictly totally
disconnected spaces Y with w-contractible spaces. This is because in the proof of Theorem 4.1
we need that Y remains strictly totally disconnected after base change to T and an analogous
permanence property does not hold for w-contractible Y .

4.2. Perfect complexes on the Fargues-Fontaine curve and Topological Vector Spaces.
Here we will prove a fully-faithfulness result between perfect complexes on the Fargues-Fontaine
curve and Topological Vector Spaces. Via Theorem 4.1 we will reduce it to an analogous result for
Vector Spaces (proved by Anschütz-Le Bras in [3]).

4.2.1. Quasi-coherent sheaves on the Fargues-Fontaine curve. Recall the definition of the relative
Fargues-Fontaine curve (see [27, Lecture 12]). Let S = Spa(R,R+) be an affinoid perfectoid space
over the finite field Fp. Let

YFF,S ∶= Spa(W (R+),W (R+)) ∖ V (p[p♭])
be the relative mixed characteristic punctured unit disc. It is an analytic adic space over Qp. The
Frobenius on R+ induces the Witt vector Frobenius and hence a Frobenius ϕ on YFF,S with free
and totally discontinuous action. The Fargues-Fontaine curve relative to S (and Qp) is defined as

XFF,S ∶= YFF,S/ϕZ.

11Since the pro-étale cohomology of Ga vanishes in degrees ≥ 1 on any perfectoid affinoid and the pro-étale
cohomology of Q

p
vanishes on sympathetic perfectoids, we could have also used here sympathetic spaces.



TOPOLOGICAL VECTOR SPACES 27

For an interval I = [s, r] ⊂ (0,∞) with rational endpoints, we have the open subset

YFF,S,I ∶= {∣ ⋅ ∣ ∶ ∣p∣r ≤ ∣[p♭]∣ ≤ ∣p∣s} ⊂ YFF,S .

It is a rational open subset of Spa(W (R+),W (R+)) hence an affinoid space,

YFF,S,I ∶= Spa(BS,I ,B
+
S,I).

One can form XFF,S as the quotient of YFF,S,[1,p] via the identification ϕ ∶ YFF,S,[1,1]
∼→ YFF,S,[p,p].

Let Y be an analytic adic space over Qp. We denote by QCoh(Y ) the ∞-category of (solid)
quasi-coherent sheaves on Y , and by Nuc(Y ) the full ∞-subcategory of solid nuclear sheaves on Y .
For Y = Spa(R,R+) over Qp, we have QCoh(Y ) ≃ D(Ran

2 ), where we wrote Ran
2 for the analytic

ring (R,R+)2. See [2] for more properties of the category QCoh(Y ).

4.2.2. Topological projection functor. For S ∈ sPerfC , we have the functor

Rτ∗ ∶ QCoh(XFF,S♭) → D(S,Qp,2),(4.10)

F ↦ {(fY ∶ Y → S) → RΓ(XFF,Y ♭ ,Lf∗Y F)}.

Note that, clearly, we have RΓ(XFF,Y ♭ ,Lf∗Y F) ∈ D(Qp(Y )2). We claim that formula (4.10)
actually defines a solid enriched presheaf.

Lemma 4.11. The functor Rτ∗ factors canonically via the ∞-derived category D(S,Qp,2)0. That
is, we have a functor

Rτ∗ ∶ QCoh(XFF,S♭) → D(S,Qp,2)0(4.12)

that fits into a commutative diagram

QCoh(XFF,S♭)
Rτ∗ //

Rτ∗

((

D(S,Qp,2)0

(−)cl

��
D(S,Qp,2)

Remark 4.13. (1) The natural definition of the functor Rτ∗ should proceed along the following
lines. We take the formula from (4.10). We need to explain why this formula can be upgraded to
define an enriched presheaf. That is, we need to define structure maps

(4.14) F ′Y,T ∶ RΓ(XFF,(Y ×T )♭ ,Lf
∗
Y ×TF) → RHomQp,2

(Qp[T ]2,RΓ(XFF,Y ♭ ,Lf∗Y F)),

for Y ∈ sPerfS and a profinite set T . That this can be done follows (working on the YFF-curve and
then taking ϕ-eigenspaces) from the fact that, for a stably uniform analytic adic space Spa(R,R+)
over C and any M ∈ D(Ran

2 ), we have

RHomRan
T,2

(Ran
T,2,M ⊗L

Ran
2
Ran
T,2) ≃ RHomRan

T,2
(Ran

T,2,C(T,R) ⊗L
Ran

2
M)(4.15)

δÐÐ→RHomRan
T,2

(Ran
T,2,RHomRan

2
(Ran

2 [T ],M)) ≃ RHomRan
2
(Ran

2 [T ],M)

≃ RHomRan
2
(Qp[T ]2 ⊗L

Qp,2
Ran

2 ,M),

where we wrote (RT ,R+
T ) for the cordinate Huber pair of the product Spa(R,R+) × T .

However this approach would require us to work in the context of enriched ∞-presheaves and
since we would like to avoid this we present a more down to earth definition in the proof below.

(2) If F is nuclear, by [2, Prop. 5.35], the map δ above is a quasi-isomorphism hence so are the
structure maps (4.14).

Proof. (Proof of Lemma 4.11) We start with defining the functors

(4.16) RτI,∗ ∶ QCoh(YFF,S♭,I) → D(S,Qp,2)0,
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for intervals I ⊂ (0,∞) with rational endpoints. For F ∈ QCoh(YS♭,I), we take a K-projective
resolution P(F) ∼→ F such that all terms of P(F) are direct sums of projective generators from
the set {Ban

S♭,I,2[T ]}, where the T ’s are extremally disconnected profinite sets. We note that these
resolutions are K-flat with flat terms. We define the presheaf

(4.17) RτI,∗(F) ∶= {(f ∶ Y → S) ↦ Γ(YFF,Y ♭,I , f
∗P(F))}.

Its value on Y → S is in complexes of Q
p
(Y )2-modules.

We claim that the complex of presheaves (4.17) is naturally enriched. Indeed, for that we can
just use a nonderived version of (4.15) (we set here Ran

2 = (R,R+)2 ∶= Ban
Y ♭,I,2 to simplify the

notation): for any M ∈ Ran
2 , we have the enriching structure maps

M ′
Y,T ∶ M ⊗Ran

2
Ran
T,2 ≃ C(T,R) ⊗Ran

2
M

δY,TÐÐ→HomRan
2
(Ran

2 [T ],M)(4.18)

≃ HomRan
2
(Qp[T ]2 ⊗Qp,2 R

an
2 ,M).

These maps are clearly functorial in M and f giving us what we want. That is, we have defined
the functor (4.16).

Set now I = [1, p], I ′ = [1,1]. Let F ∈ QCoh(XFF,S♭) and identify it functorially with a pair
(FI , ϕF), where ϕF ∶ ϕ∗FI ≃ j∗FI is a quasi-isomorphism. Here j ∶ YFF,S♭,I′ ↪ YFF,S♭,I is the
canonical open immersion and

ϕ ∶ YFF,S♭,[1,1] ↪ YFF,S♭,[1/p,1]
ϕÐÐ→YFF,S♭,[1,p]

is the canonical open immersion followed by Frobenius. Set FI′ ∶= j∗FI and consider the induced
maps

j∗ ∶ RτI,∗(FI) → RτI′,∗(FI′), ϕ∗ ∶ RτI,∗(FI) → RτI′,∗(FI′).

They are easily seen to be in D(S,Qp,2)0. Hence we get an object in D(S,Qp,2)0

(4.19) Rτ∗(F) ∶= [RτI,∗(FI)
j∗−ϕ∗ÐÐ→RτI′,∗(FI′)]

yielding a functor (4.12) wanted in the lemma. Also, we clearly have a natural transformation

Rτ∗(−)cl ≃ Rτ∗(−),

as wanted. �

4.2.3. Topological vs algebraic projection functors. Let S ∈ sPerfC . Consider the morphism of sites

τ ′ ∶ (XFF,S♭)proét → Sproét.

induced by sending Y ∈ sPerfS to XFF,Y ♭ . It yields the pushforward functor

Rτ ′∗ ∶ QCoh(XFF,S♭) → D(Sproét,Qp), F ↦ {Y → RΓ(XFF,Y ♭ ,Lf∗F)∣f ∶ Y → S}.(4.20)

Here the cohomology is seen in the derived ∞-category D(Qp(Y )) of Qp(Y )-modules. Rτ ′∗(F) is
a sheaf: use the pro-étale descent for period sheaves.

We will need the following fact:

Lemma 4.21. The following diagram commutes

Nuc(XFF,S♭)
Rτ ′

∗ //

Rτ∗

((

D(Sproét,Qp)

Rπ∗

��
D(S,Qp)0.



TOPOLOGICAL VECTOR SPACES 29

Proof. We have the functors from QCoh(XFF,S♭) to D(S,Qp) given by sending F ∈ QCoh(XFF,S♭)
to the topological presheaves:

(Rπ∗Rτ ′∗)clF ∶ {(Y,T ) ↦ RΓ(XFF,(Y ×T )♭ ,Lf
∗
Y ×TF)},

Rτ∗F ∶ {(Y,T ) ↦ RHomQp(Qp[T ],RΓ(XFF,Y ♭ ,Lf∗Y F))}.

Moreover, we have a natural transformation

(4.22) (Rπ∗Rτ ′∗)cl → Rτ∗

given by analytic descent from the structure morphisms F ′Y,T described in (4.14). By Remark 4.13,
they are quasi-isomorphisms when restricted to Nuc(XFF,S♭).

Both sides of (4.22) are enriched and it suffices now to show that the natural transformation
(4.22) preserves this enrichment. That is, that it lifts to a natural transformation

Rπ∗Rτ ′∗ → Rτ∗

For that we can pass via the mapping fiber (4.19) and its algebraic analog to showing that the
natural transformation

(Rπ∗Rτ ′I,∗)cl → Rτ I,∗

is strictly compatible with enrichment on the level of a projective module M ∈ Ran
2 = (RY ,R+

Y )an
2 .

(We use the notation from (4.18).) After unwiding the definitions, this boils down to the fact that
we have the identifications

C(T ′,RY ×T ) ≃ C(T ′,C(T,RY )) ≃ C(T ′ × T,RY )

and, via them, we have
δY,T δY ×T,T ′ = δY,T×T ′ .

�

4.2.4. Topological fully-faithfulness for perfect complexes. Let S ∈ sPerfC . For F1,F2 ∈ QCoh(XFF,S♭),
we have a natural map in D(S,Qp,2):

(4.23) Rτ∗RHomQCoh(XFF,S♭)(F1,F2) → RHom2
S,Qp

(Rτ∗F1,Rτ∗F2),

which is constructed in the usual way: By adjointness, it suffices to construct a map

Rτ∗RHomQCoh(XFF,S♭)(F1,F2) ⊗L2

Qp
Rτ∗F1 → Rτ∗F2.

For this, we use the composition

Rτ∗RHomQCoh(XFF,S♭)(F1,F2) ⊗L2

Qp
Rτ∗F1 → Rτ∗(RHomQCoh(XFF,S♭)(F1,F2) ⊗L

O F1) → Rτ∗F2,

where the second arrow is Rτ∗ applied to the canonical map

RHomQCoh(XFF,S♭)(F1,F2) ⊗L
O F1 → F2

and the first arrow is the relative cup product defined in the following way. For G1,G2 ∈ QCoh(XFF,S♭),
the relative cup product map in D(S,Qp,2)

(4.24) Rτ∗G1 ⊗L2

Qp
Rτ∗G2 → Rτ∗(G1 ⊗L

O G2)

is induced by the functorial maps in D(S,Qp,2):

RτI,∗G1 ⊗L2

Qp
RτI,∗G2 → RτI,∗(G1 ⊗L

O G2),

where RτI,∗ is the functor from (4.16). And the latter comes from the identifications

f∗Y G1 ⊗O f∗Y G2
∼→ f∗Y (G1 ⊗O G2)

on the level of K-projective resolutions of the type considered in the proof of Lemma 4.11.
The following result is a topological version of [3, Cor. 3.10], which proved fully-faithfulness for

Rτ ′∗ and follows fromTheorem 4.1.
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Corollary 4.25. Let S ∈ sPerfC . The functor

Rτ∗ ∶ Perf(XFF,S♭) → D(S,Qp,2)

is fully faithful. That is, for F1,F2 ∈ Perf(XFF,S♭), the natural map in D(Qp(S)2)

RHomQCoh(XFF,S♭)(F1,F2) → RHom2
S,Qp

(Rτ∗F1,Rτ∗F2)

is a quasi-isomorphism.

Proof. We may pass to the condensed setting, that is, we want to show that the natural map in
D(Modcond

Qp(S))

(4.26) RHomQCoh(XFF,S♭)(F1,F2) → RHomStop,Qp
(Rτ∗F1,Rτ∗F2)

is a quasi-isomorphism. Let F1,F2 ∈ Perf(XFF,S♭). The map (4.26) is constructed by taking global
sections of the map (4.23) (we note that RHomQCoh(XFF,S♭)(F1,F2) ∈ Perf(XFF,S♭)):

Rτ∗RHomQCoh(XFF,S♭)(F1,F2) → RHomStop,Qp
(Rτ∗F1,Rτ∗F2).

It suffices thus to show that this map is a quasi-isomorphism. Consider its factorization:

Rπ∗Rτ ′∗RHomQCoh(XFF,S♭)(F1,F2)
∼→ Rπ∗RHomS,Qp(Rτ ′∗F1,Rτ

′
∗F2)

→ RHomStop,Qp
(Rτ∗F1,Rτ∗F2).

The first morphism is a quasi-isomorphism by [3, Cor. 3.10]. It remains to show that the map

(4.27) Rπ∗RHomS,Qp(Rτ ′∗F1,Rτ
′
∗F2) → RHomStop,Qp

(Rτ∗F1,Rτ∗F2)

is a quasi-isomorphism.
By [3, Prop. 2.6], both F1 and F2 are strictly perfect. Hence, by dévissage, we may assume that

they are both vector bundles on XFF,S♭ . We can in fact assume that both are line bundles: If E is
a vector bundle on XFF,S♭ , up to étale localization on S (which we are allowed to do), applying [13,
Prop. II.3.1] to a twist of E and using [13, Cor. II.2.20]), we may assume that E ∈ {L ⊗L

Qp
O(s)},

for a pro-étale Qp-local system L on S♭ and s ∈ Z. By [19, Prop. 8.4.7], we may assume that L
admits a Zp-lattice hence, by the assumption on S, is trivial.

Thus we have E ∈ {O(s)}, s ∈ Z. Then we can reduce to E ∈ {O,O(1)} by using twists of the
Euler sequence

0→ O → O(1)2 → O(2) → 0

and then, by using the exact sequence

0→ O → O(1) → i∞,∗RS → 0,

we may assume that E ∈ {O, i∞,∗RS}.
We claim that

Rτ ′∗(O) ≃Qp, Rτ ′∗(i∞,∗RS) = Ga.
Indeed, the second quasi-isomorphism is clear. The first one follows from [13, Prop. II.2.5 (ii)],
which yields that Rτ ′∗(O) ≃ RΓproét(Y ×T,Qp) and the fact that RΓproét(Y ×T,Qp) ≃Q

p
(Y ×T ).

It suffices now to invoke Corollary 4.7 to finish the proof of our corollary. �

Example 4.28. Recall that, by [13, Prop. II.2.5], we have the following quasi-isomorphisms in
QCoh(XFF,S♭):

RHomQCoh(XFF,S♭)(O,O) ≃ O,
RHomQCoh(XFF,S♭)(O, i∞,∗RS) ≃ i∞,∗RS ,
RHomQCoh(XFF,S♭)(i∞,∗RS , i∞,∗RS) ≃ i∞,∗RS ⊕ i∞,∗RS[−1],
RHomQCoh(XFF,S♭)(i∞,∗RS ,O) ≃ i∞,∗RS(−1)[−1].
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Via Corollary 4.25, this can be transferred to the following quasi-isomorphisms in D(S,Qp,2):

RHom2
S,Qp

(Qp,Qp)
∼←Qp, RHom2

S,Qp
(Qp,Ga)

∼← Ga,
RHom2

S,Qp
(Ga,Ga) ≃ Ga ⊕Ga[−1], RHom2

S,Qp
(Ga,Qp) ≃ Ga(−1)[−1].
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