FONCTIONS LOCALEMENT ANALYTIQUES SUR \mathbf{Z}_p

par

Pierre Colmez & Shanwen Wang

Résumé. — Nous donnons une preuve par dualité du théorème d'Amice sur les coefficients de Mahler des fonctions localement analytiques sur \mathbf{Z}_p .

Abstract. — We give a proof by duality of Amice's result on Mahler coefficients of locally analytic functions on \mathbf{Z}_p .

1. Transformée d'Amice et théorème de Mahler

Soit L une extension finie de \mathbf{Q}_p . Soit \mathscr{C} l'espace des $\phi: \mathbf{Z}_p \to L$ continues. On munit \mathscr{C} de la valuation $v_{\mathscr{C}}$ définie par $v_{\mathscr{C}}(\phi) = \inf_{x \in \mathbf{Z}_p} v_p(\phi)$ (c'est une valuation car \mathbf{Z}_p est compact); cela fait de \mathscr{C} un L-banach. On note Mes son dual que l'on munit de la topologie en faisant un L-smith (i.e. la boule unité Mes₀ de Mes est munie de la topologie de la convergence faible et Mes $= \varinjlim p^{-n} \mathrm{Mes_0}$ est muni de la topologie de la limite inductive) de telle sorte que le dual de Mes est \mathscr{C} .

Comme \mathbf{Z}_p est profini, l'espace LC des fonctions localement constantes est dense dans \mathscr{C} . Il s'ensuit que Mes_0 est aussi $\mathrm{Hom}(\mathrm{LC}_0,\mathscr{O}_L)$, où LC_0 est la boule unité de LC. Mais $\mathrm{LC} = \varinjlim_h \mathrm{LC}^{(h)}$, où $\mathrm{LC}^{(h)} = \mathscr{C}(\mathbf{Z}/p^h)$, et donc le dual de $\mathrm{LC}^{(h)}$ est $L[\mathbf{Z}/p^h] \cong L[T]/((1+T)^{p^h}-1)$ où $a\in\mathbf{Z}$ s'envoie sur $(1+T)^a$; la boule unité correspondant à $\mathscr{O}_L[T]/((1+T)^{p^h}-1)$. En passant à la limite, on en déduit un isomorphisme $\mathrm{Mes}_0 \cong \mathscr{O}_L[[T]]$, la masse de Dirac δ_a en $a\in\mathbf{Z}_p$ s'envoyant sur $(1+T)^a=\sum_{n\geq 0}\binom{a}{n}T^n$. Si $\mu\in\mathrm{Mes}$, on note A_μ son image dans $\mathscr{O}_L[[T]]\left[\frac{1}{p}\right]$; c'est la $transformée\ d'Amice\ de\ \mu$. Mais $\binom{a}{n}=\int_{\mathbf{Z}_p}\binom{x}{n}\delta_a$, et donc $A_{\delta_a}=\sum_{n\geq 0}\left(\int_{\mathbf{Z}_p}\binom{x}{n}\delta_a\right)T^n$ et, comme l'espace engendré par les masses de Dirac est dense dans Mes, la formule ci-dessus est valable

$$A_{\mu} = \sum_{n>0} \left(\int_{\mathbf{Z}_p} {x \choose n} \mu \right) T^n$$

pour tout μ :

Or T^n correspond à $(\delta_1 - \delta_0)^{*n}$, et donc les $(\delta_1 - \delta_0)^{*n}$ forment une base orthonormale de Mes. La relation $\binom{x+1}{n} - \binom{x}{n} = \binom{x}{n-1}$ permet de montrer que la base orthonormale de $\mathscr C$, duale de la base des $(\delta_1 - \delta_0)^{*n}$, est constituée des $\binom{x}{n}$. Si $\phi \in \mathscr C$, on a alors $\phi = \sum_{n \geq 0} \left(\int_{\mathbf{Z}_p} \phi(\delta_1 - \delta_0)^{*n} \right) \binom{x}{n}$. Si on définit les coefficients de Mahler de ϕ par :

$$a_n(\phi) := \int_{\mathbf{Z}_p} \phi (\delta_1 - \delta_0)^{*n} = \sum_{k=0}^n (-1)^k \binom{n}{k} \phi(n-k)$$

on obtient le théorème de Mahler [4] :

Théorème 1. — (Mahler) $Si \ \phi \in \mathcal{C}$, alors $a_n(\phi) \underset{n \to \infty}{\longrightarrow} 0$, $\phi = \sum_{n \ge 0} a_n(\phi) \binom{x}{n}$ et $\phi \mapsto (a_n(\phi))_n$ est une isométrie de \mathcal{C} sur⁽¹⁾ $\ell_0^{\infty}(\mathbf{N})$.

Exemple 2. — (i) Si $v_p(z) > 0$, alors $x \mapsto (1+z)^x := \sum_{n \geq 0} z^n \binom{x}{n}$ est un caractère continu de \mathbb{Z}_p ; ses coefficients de Mahler sont $(z^n)_n$.

(ii) Si $z = \zeta - 1$, avec $\zeta \in \boldsymbol{\mu}_{p^{\infty}}$, le caractère $x \mapsto (1 + z)^x = \zeta^x$ est localement constant, et les $x \mapsto \zeta^x$ pour $\zeta \in \boldsymbol{\mu}_{p^{\infty}}$ forment une base de l'espace des fonctions localement constantes. Par exemple, $\mathbf{1}_{i+p^n\mathbf{Z}_p}(x) = \frac{1}{p^n} \sum_{\zeta \in \boldsymbol{\mu}_{n^n}} \zeta^{-i} \zeta^x$.

Remarque 3. — On dispose d'un certain nombre d'actions naturelles sur l'espace de mesures. Par transport de structure, celles-ci induisent des actions sur $\mathcal{O}_L[[T]]$.

• $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \begin{pmatrix} \mathbf{Z}_p \setminus \{0\} & \mathbf{Z}_p \\ 0 & 1 \end{pmatrix}$ agit par $\int_{\mathbf{Z}_p} \phi \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mu = \int_{\mathbf{Z}_p} \phi(ax+b) \mu(x)$. Si $\lambda = \begin{pmatrix} p^k a & b \\ 0 & 1 \end{pmatrix} \mu$, avec $k \geq 0$ et $a \in \mathbf{Z}_p^*$, on a $A_{\lambda} = (1+T)^b \varphi^k(\sigma_a(A_{\mu}))$, avec

$$(\varphi(F))(T) = F((1+T)^p - 1)$$
 et $(\sigma_a(F))(T) = F((1+T)^a - 1)$

• On définit $\psi(\mu)$ par $\int_{\mathbf{Z}_p} \phi \, \psi(\mu) := \int_{p\mathbf{Z}_p} \phi(p^{-1}x)\mu$. Comme $\mathbf{1}_{p\mathbf{Z}_p}(x) = \frac{1}{p} \sum_{\zeta \in \boldsymbol{\mu}_p} \zeta^x$, on a

$$A_{\psi(\mu)} = \psi(A_{\mu}), \text{ avec } (\psi(F))(T) := \varphi^{-1} \left(\frac{1}{p} \sum_{\zeta \in \boldsymbol{\mu}_p} F((1+T)\zeta - 1)\right)$$

Si $\lambda = \operatorname{Res}_{i+p^h\mathbf{Z}_p}\mu$, avec $h \geq 1$ et $i \in \mathbf{Z}_p$, on a :

$$A_{\lambda} = (1+T)^{i} \varphi^{h} \left(\psi^{h} ((1+T)^{-i} A_{\mu}) \right)$$

Notons que l'action de $\binom{\mathbf{Z}_p \setminus \{0\}}{0} \frac{\mathbf{Z}_p}{1}$ s'étend à L[[T]] mais que celle de ψ ne s'étend qu'au sous-anneau des fonctions convergeant sur la boule fermée $\{z,\ v_p(z) \geq \frac{1}{p-1}\}$ car $v_p(\zeta-1) = \frac{1}{p-1}$ si $\zeta^p = 1$ et $\zeta \neq 1$.

2. Le théorème d'Amice

Si $h \geq 0$, soit LA^(h) l'espace des $\phi : \mathbf{Z}_p \to L$, analytiques sur $i + p^h \mathbf{Z}_p$ pour tout $i \in \mathbf{Z}_p$ (ou, de manière équivalente, pour $i \in \{0, 1, \dots, p^h - 1\}$). En particulier, LA⁽⁰⁾ est l'espace des fonctions de la forme $\phi(x) = \sum_{n \geq 0} a_n x^n$, avec $a_n \to 0$ quand $n \to \infty$; muni de la valuation $v^{(0)}$ définie par $v^{(0)}(\phi) = \inf_{n \geq 0} v_p(a_n)$, LA⁽⁰⁾ est un banach, et

^{1.} Espace des suites d'éléments de ${\cal L}$ tendant vers 0.

les x^n , pour $n \ge 0$, en forment une base orthonormale. Comme la matrice de passage des $n!\binom{x}{n}$ aux x^n est à coefficients dans \mathbf{Z}_p , triangulaire avec des 1 sur la diagonale, les $n!\binom{x}{n}$ forment aussi une base orthonormale de $\mathrm{LA}^{(0)}$. Le th. 5 ci-dessous généralise ce résultat à $\mathrm{LA}^{(h)}$.

Exemple 4. — (i) Si
$$v_p(z) > \frac{1}{p-1}$$
, alors $x \mapsto (1+z)^x$ est élément de LA⁽⁰⁾. (ii) Si $h \ge 1$ et si $v_p(z) > \frac{1}{(n-1)p^h}$, alors $x \mapsto (1+z)^x$ est élément de LA^(h).

Démonstration. — On a $(1+z)^x = \sum_{n\geq 0} \frac{z^n}{n!} \, n! \binom{x}{n}$ et le (i) résulte de ce que les $n! \binom{x}{n}$ forment une base orthonormale de $\mathrm{LA}^{(0)}$ et $^{(2)} v_p (\frac{z^n}{n!}) \geq (v_p(z) - \frac{1}{p-1})n \to +\infty$ quand $n \to +\infty$.

Pour prouver le (ii), il suffit de prouver que la restriction de $x \mapsto (1+a)^x$ est analytique sur $p^h \mathbf{Z}_p$ (l'analyticité de sa restriction à $i+p^h \mathbf{Z}_p$ en découle immédiatement). Ceci est équivalent à ce que $x \mapsto (1+a)^{p^h x}$ soit analytique sur \mathbf{Z}_p . Or cela suit du (i) et de ce que $v_p((1+a)^{p^h}-1) \geq \inf(1,p^h v_p(a)) > \frac{1}{p-1}$ si $v_p(a) > \frac{1}{(p-1)p^h}$.

Maintenant, $\phi \in LA^{(h)}$ s'écrit, de manière unique, $\phi(x) = \sum_{i=0}^{p^h-1} \mathbf{1}_{i+p^h \mathbf{Z}_p} \phi_i(\frac{x-i}{p^h})$, avec $\phi_i \in LA^{(0)}$. On en déduit un isomorphisme $(LA^{(0)})^{\oplus p^h} \overset{\sim}{\to} LA^{(h)}$, et on munit $LA^{(h)}$ de la valuation $v^{(h)}$ telle que cet isomorphisme soit une isométrie. Alors $LA^{(h)}$, muni de $v^{(h)}$ est un L-banach; notons $\mathscr{D}^{(h)}$ son L-dual et notons $\mathscr{D}^{(h)}_0$ la boule unité de ce L-smith.

Notre but est de donner une preuve du résultat suivant d'Amice [1, 2], par dualité; une démonstration directe peut se trouver dans [3].

Théorème 5. — (Amice) Les $\lfloor \frac{n}{p^h} \rfloor ! \binom{x}{n}$ forment une base orthonormale de LA^(h).

 $D\acute{e}monstration$. — Comme expliqué ci-dessus, le résultat est immédiat pour h=0. Si $h\geq 0$, soit $\mathscr{O}_L[T]^{(h)}\subset L[[T]]$ l'ensemble des $\sum_{n\geq 0}a_n\frac{T^n}{\lfloor n/p^h\rfloor!}$, avec $a_n\in\mathscr{O}_L$ pour tout n. Alors $\mathscr{O}_L[T]^{(h)}$ est un sous-anneau ⁽³⁾ de L[[T]]. Par dualité, l'énoncé du théorème équivaut à ce que la transformée d'Amice induit un isomorphisme $\mathscr{D}_0^{(h)}\cong\mathscr{O}_L[T]^{(h)}$.

L'isomorphisme $(LA^{(0)})^{\oplus p^h} \stackrel{\sim}{\to} LA^{(h)}$ induit, par dualité, une décomposition de A_{μ} pour $\mu \in \mathcal{D}^{(h)}$, de manière unique, sous la forme

$$A_{\mu} = \sum_{i=0}^{p^h - 1} (1 + T)^i \varphi^h(A_{\mu_i}), \quad \text{avec } \mu_i \in \mathscr{D}^{(0)}.$$

Il résulte du lemme 7 que $A_{\mu_i} = \psi^h((1+T)^{-i}A_{\mu})$, et on cherche à prouver que

$$A_{\mu} \in \mathscr{O}_L[T]^{(h)} \iff A_{\mu_i} \in \mathscr{O}_L[T]^{(0)}$$
 pour tout i .

^{2.} Si $N = a_0 + pa_1 + \dots + p^r a_r$ avec $a_i \in \{0, 1, \dots, p-1\}$, on a $v_p(N!) = \frac{N-S(N)}{p-1}$, avec $S(N) := a_0 + a_1 + \dots + a_r$.

^{3.} Complété de l'anneau des puissances divisées partielles relativement à l'idéal (p,T) de $\mathcal{O}_L[T]$.

L'implication ← resulte du lemme 6 et l'implication ⇒ (plus délicate) fait l'objet du lemme 10 (pour n = h dans les notations de ce lemme).

3. Estimées pour l'action de ψ

Lemme 6. — Si $f \in L[[T]]$ et si $h \ge 0$, les conditions suivantes sont équivalentes :

- $f \in \mathscr{O}_L[T]^{(h)}$,
- $\varphi(f) \in \mathscr{O}_L[T]^{(h+1)}$.

Démonstration. — Les deux conditions sont équivalentes à $f(T^p) \in \mathscr{O}_L[T]^{(h+1)}$: évident pour la première et, pour la seconde, résulte de ce que $\varphi(T)-T^p\in p\mathscr{O}_L[T]$. \square

Si $s \geq 0$, notons $\mathcal{O}(s) \subset L[[T]]$ l'anneau des séries convergeant sur B(0,s) := $\{z, v_p(z) \ge s\}.$

Lemme 7. — Soit $r \leq \frac{p}{p-1}$.

- (i) Si $F \in \mathcal{O}(p^{-1}r)$, il existe $\psi(F) \in \mathcal{O}(r)$, unique, telle que $\frac{1}{p} \sum_{\zeta^p = 1} F((1+T)\zeta - 1) = \psi(F)((1+T)^p - 1) \left[= \left(\varphi(\psi(F))\right)(T) \right]$
- (ii) Si $F \in \mathcal{O}(p^{-1}r)$, il existe $G_i \in \mathcal{O}(r)$ pour $0 \leq i \leq p-1$, uniques, tels que $F = \sum_{i=0}^{p-1} (1+T)^i \varphi(G_i), \text{ et on a } G_i = \psi((1+T)^{-i}F).$ (iii) $Si \ F \in \mathcal{O}(p^{-h}r) \text{ avec } h \geq 1, \text{ et si } G_i \in \mathcal{O}(r) \text{ pour } 0 \leq i \leq p^h - 1 \text{ sont telles}$
- que $F = \sum_{i=0}^{p^h-1} (1+T)^i \varphi^h(G_i)$, alors $G_i = \psi^h((1+T)^{-i}F)$.

Démonstration. — $x \mapsto (1+x)^p - 1$ fait de $B(0, p^{-1}r)$ un revêtement étale de B(0, r), de groupe de Galois μ_p , l'action de $\zeta \in \mu_p$ étant $z \mapsto (1+z)\zeta - 1$. D'où le (i).

Pour le (ii), l'unicité des G_i et la formule découlent du fait que $(1+T)^i$ est vecteur propre de μ_n pour le caractère $\zeta \mapsto \zeta^i$.

Enfin, le (iii) se déduit du (ii) par une récurrence facile.

Lemme 8. — $Si \ n \ge 0$, et si

$$\sum_{k>0} a_{n,k} \frac{T^k}{k!} = \frac{1}{p} \sum_{C_{p=1}} \frac{(\zeta(1+T)-1)^n}{n!} \left[= \varphi\left(\psi\left(\frac{T^n}{n!}\right)\right) \right]$$

alors $a_{n,k} \in \mathbf{Z}_p$ pour tout $k \geq 0$.

Démonstration. — On a $a_{n,k} = 0$ si k > n et $a_{n,k} = \frac{1}{p} \sum_{\zeta^p = 1} \frac{(\zeta - 1)^{n-k}}{(n-k)!} \zeta^k$ si $k \le n$. Si k = n, on a $a_{n,k} = 1$; si k < n le terme pour $\zeta = 1$ est 0 et les autres sont les conjugués d'un élément de $\mathbf{Z}_p[\boldsymbol{\mu}_p]$ de valuation

$$(n-k)v_p(\zeta_p-1)-v_p((n-k)!) = \frac{n-k}{p-1} - \frac{(n-k)-S(n-k)}{p-1} = \frac{S(n-k)}{p-1} > 0$$

Il s'ensuit que la somme Σ appartient à \mathbf{Z}_p et $v_p(\Sigma) > 0$, et donc $a_{n,k} = \frac{1}{p}\Sigma \in \mathbf{Z}_p$, ce que l'on cherchait à établir

Lemme 9. — Si k < n, alors

$$v_p\left(\frac{k!}{\lfloor k/p^h \rfloor!}\right) \le v_p\left(\frac{n!}{\lfloor n/p^h \rfloor!}\right)$$

Démonstration. — On utilise la formule de la note 2. Soient $a_0 + pa_1 + \cdots p^r a_r$ et $b_0 + pb_1 + \cdots p^r b_r$ les développements de n et k en base p (on ne suppose pas $a_r \neq 0$ ou $b_r \neq 0$). Comme k < n, il existe s maximal avec $a_s \neq b_s$ et alors $b_s < a_s$.

Le développement de $\lfloor n/p^h \rfloor$ est $a_h + pa_{h+1} + \cdots + p^{r-h}a_r$; on en déduit l'identité

$$(p-1)v_p\left(\frac{n!}{|n/p^h|!}\right) = (p-1)a_1 + \dots + (p^{h-1}-1)a_{h-1} + (p^h-1)(a_h + \dots + p^{r-h}a_r)$$

et on a la même formule pour $(p-1)v_p\left(\frac{k!}{\lfloor k/p^h\rfloor!}\right)$ en remplaçant a_i par b_i . Il en résulte que la différence $D:=(p-1)\left(v_p\left(\frac{n!}{\lfloor n/p^h\rfloor!}\right)-v_p\left(\frac{k!}{\lfloor k/p^h\rfloor!}\right)\right)$ est minimale pour $a_s=b_s+1$, $a_i=0$ et $b_i=p-1$ pour i< s, auquel cas cette différence vaut

$$(p^{h}-1)p^{s-h}-(p-1)((p-1)+\cdots+(p^{h-1}-1)+(p^{h}-1)(1+\cdots+p^{s-h-1}))$$

= $(p^{h}-1)p^{s-h}-((p^{h}-1)-h(p-1)+(p^{h}-1)(p^{s-h}-1))=(p-1)h \ge 0$

(Ce calcul est valable pour $s \geq h$; si s < h, on obtient (p-1)s au lieu de (p-1)h.) \square

Lemme 10. — Si
$$h \ge n \ge 1$$
, alors $\psi^n(\mathscr{O}_L[T]^{(h)}) \subset \mathscr{O}_L[T]^{(h-n)}$.

Démonstration. — Le cas général se déduit du cas n=1 par une récurrence immédiate, et le cas n=1 est une conséquence des lemmes 8 et 9 qui permettent de prouver que $\varphi(\psi(\mathcal{O}_L[T]^{(h)})) \subset \mathcal{O}_L[T]^{(h)}$, et du lemme 6.

Références

- [1] Y. Amice, Interpolation *p*-adique, Bull. SMF **92** (1964), 117–180. 3
- [2] Y. AMICE, Duals. Proc. of a conf. on p-adic analysis (Nijmegen 1978), 1-15, Nijmegen, Math. Institut Katholische Univ., 1978. 3
- [3] P. Colmez, Fonctions d'une variable p-adique, Astérisque 330 (2010), 13-59. 3
- [4] K. Mahler, An interpolation series for continuous functions of a *p*-adic variable, J. reine angew. Math. **199** (1958), 23–34. 2

PIERRE COLMEZ, C.N.R.S., IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75005 Paris, France E-mail: pierre.colmez@imj-prg.fr

Shanwen Wang, School of mathematics, Renmin University of China, 59 ZhongGuanCun Street, 100872 Beijing, P.R. China • E-mail: s_wang@ruc.edu.cn