Periodes des Varietes Abeliennes a Multiplication Complexe

Author(s): Pierre Colmez

Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/2946559
Accessed: 03/12/2013 05:57

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Périodes des variétés abéliennes à multiplication complexe

Par Pierre Colmez*

Table Des Matières

Introduction
I. Périodes des groupes formels à multiplication formelle
 1. Généralités sur les groupes formels
 2. Périodes des groupes de Lubin–Tate
 3. Groupes formels à multiplication formelle
II. Périodes des variétés abéliennes à multiplication complexe
 1. Résultats p-adiques
 2. Formule du produit
III. Périodes des courbes de Fermat et formule de Chowla–Selberg
 1. Développement de Taylor à l’origine des fonctions L de Dirichlet
 2. Courbes de Fermat
 3. La formule de Chowla–Selberg

Introduction

Cet article a pour origine la question suivante: existe-t-il une formule du produit pour les périodes des variétés algébriques analogue à celle que l’on a pour les nombres algébriques? La réponse est probablement non en général, mais il semble qu’une telle formule existe effectivement dans le cas des périodes des variétés abéliennes à multiplication complexe. La difficulté essentielle pour donner un sens à une telle formule est de calculer précisément les valuations p-adiques de ces périodes. Une fois effectué, ce calcul permet de préciser les relations monomiales entre périodes trouvées par Shimura [Sm] et Deligne [De]: on obtient des égalités entre nombres réels au lieu d’égalités à un nombre algébrique ou rationnel près; en particulier on retrouve par voie “géométrique” une démonstration de la formule exacte de Chowla–Selberg, précisant ainsi un résultat de Gross [Gr]. D’autre part ce calcul permet

*Je voudrais remercier Jean-Marc Fontaine pour m’avoir introduit aux beautés des périodes p-adiques, et le Max–Planck Institut für Mathematik pour son hospitalité pendant la rédaction d’une première version de cet article.
aussi de réinterpréter la formule du produit (et donc de lui donner un sens précis) en une relation (conjecturale en général) entre hauteurs de Faltings des variétés abéliennes à multiplication complexe et dérivées logarithmiques de fonctions L d’Artin en $s = 0$, généralisant ainsi (conjecturalement) un théorème d’Anderson [An1]. Cette relation se réduit dans le cas le plus simple, à la formule classique $\zeta'(0)/\zeta(0) = \log 2\pi$, qui s’interprète donc comme la formule du produit pour $2i\pi$. Les principaux résultats de cet article ont été annoncés dans [Cz2] et [Cz4]; une première version moins précise a circulé sous forme de preprint [Cz1].

0.1. La formule du produit: motivations. Nous allons maintenant préciser un petit peu les énoncés précédents et, en particulier, ce que nous entendons par formule du produit. Soit \overline{Q} la fermeture algébrique de Q dans \mathbb{C} et, si p est un nombre premier, fixons une fois pour toutes un plongement de \overline{Q} dans \overline{Q}_p. Notons $| |_\infty$ la norme usuelle sur \mathbb{C} et $| |_p$ la norme p-adique sur \overline{Q}_p normalisée par $|p|_p = p^{-1}$. Soit \mathbb{C}_p le complété de \overline{Q}_p pour cette norme. Soit $\mathcal{P} = \{\infty\} \cup \{p \text{ premier}\}$ l’ensemble des places de \mathbb{Q}. Si K est une extension finie de \mathbb{Q} et $\alpha \in K^*$, la formule du produit pour α s’écrit

$$\prod_{p \in \mathcal{P}} \prod_{\sigma \in \text{Hom}(K, \overline{Q})} |\sigma(\alpha)|_p = 1.$$

Les périodes p-adiques ne vivent pas dans \overline{Q}_p (ni même dans \mathbb{C}_p), mais dans son complété \mathbb{B}_p pour une certaine topologie (c’est l’anneau $\mathbb{B}_{DR}^+(\overline{Q}_p/\mathbb{Q}_p)$ construit par Fontaine [Fo2] et que l’on peut voir comme étant l’épaississement infinitésimal universel de \mathbb{C}_p; [Fo4]). On peut étendre $| |_p$ à \mathbb{B}_p de manière naturelle, mais $| |_p$ n’est plus une norme (l’inégalité triangulaire n’est plus vérifiée); c’est seulement une application multiplicative de $\mathbb{B}_p - \{0\}$ dans \mathbb{R}^*. Soit alors X une variété algébrique définie sur une extension finie K de \mathbb{Q}. Pour tout $\sigma \in \text{Hom}(K, \overline{Q})$ on obtient par extension des scalaires une variété X^σ sur \mathbb{C} et \overline{Q}_p. Les théorèmes de comparaison entre les différentes cohomologies (Betti–de Rham, Betti-étale p-adique, étale p-adique-de Rham; [FoMe] et [Fa]) permettent de définir des accouplements périodes de $H_{DR}^i(X) \times H_i(X^\sigma(\mathbb{C}), Z) \rightarrow \mathbb{B}_p$, qui à (ω, u) associent $\langle \omega^\sigma, u \rangle_p$ pour tout $i \in \mathbb{N}$, tout $\sigma \in \text{Hom}(K, \overline{Q})$ et tout $p \in \mathcal{P}$ (on a posé $\mathbb{B}_\infty = \mathbb{C}$). Choisissons maintenant $\omega \in H_{DR}^i(X)$ non-nul et pour tout $\sigma \in \text{Hom}(K, \overline{Q})$ un élément non-nul u_σ de $H_i(X^\sigma(\mathbb{C}), Z)$; on peut se demander si le produit

$$\prod_{p \in \mathcal{P}} \prod_{\sigma \in \text{Hom}(K, \overline{Q})} |\langle \omega^\sigma, u_\sigma \rangle_p |_p \quad (0.1)$$

a un sens et, si oui, quelle est sa valeur.

On se heurte alors à trois difficultés. La première et la plus sérieuse est que $|\langle \omega, u_\sigma \rangle_p |_p$ dépend en général du plongement de \overline{Q} dans \overline{Q}_p que l’on a choisi. On
peut même (cf. [Aé]), dans certains cas où X a mauvaise réduction en p, trouver des plongements pour lesquels on a $\langle \omega, u_\sigma \rangle_p = 0$ alors que $\langle \omega, u_\sigma \rangle_\infty \neq 0$. Dans le cas général, la formule du produit (si elle existe) doit donc faire intervenir tous les plongements de $\overline{\mathbb{Q}}$ dans $\overline{\mathbb{Q}}_p$, ce qui est un petit peu inquiétant. Un cas où $|\langle \omega, u_\sigma \rangle_p|_p$ ne dépend pas du choix du plongement de $\overline{\mathbb{Q}}$ dans $\overline{\mathbb{Q}}_p$ est celui où X est une variété abélienne à multiplication complexe et où ω est un vecteur propre pour cette multiplication complexe. Plus généralement tout motif à multiplication complexe ferait l'affaire, mais comme ceux-ci s’obtiennent (au moins conjecturalement) à partir des H^1 des variétés abéliennes à multiplication complexe, on ne gagne pas grand chose en se plaçant dans ce cadre plus général.

0.2. La formule du produit: le cas de $2i\pi$. Avant de considérer la formule du produit pour les périodes des variétés abéliennes à multiplication complexe, regardons ce qui se passe dans le cas de \mathbb{G}_m ($H^1(\mathbb{G}_m)$ est à multiplication complexe par \mathbb{Q}; on peut donc espérer quelque chose dans ce cas). Soit $\omega = dx/x \in H^1_{\text{DR}}(\mathbb{G}_m)$ et soit $u \in H_1(\mathbb{G}_m(\mathbb{C}), \mathbb{Z})$ le cercle unité parcouru dans le sens trigonométrique. Posons $t_p = \langle \omega, u \rangle_p$. On a alors $t_\infty = 2i\pi$, et un calcul facile nous donne $\log |t_p|_p = -(1/(p-1)) \log p$. Contrairement à ce que l’on pourrait croire, le $1/(p-1)$ qui apparaît ne provient pas de ce que, si ϵ est une racine primitive p-ième de l’unité, alors $v_p(\epsilon - 1) = 1/(p-1)$; mais du fait que si a et c sont dans le module des différentielles de Kähler de l’anneau des entiers de $\overline{\mathbb{Q}}_p$ sur \mathbb{Z}_p, alors on a $v_p(\alpha) \geq 1-1/(p-1)$. Le produit (0.1), ou plutôt son logarithme s’écrit alors

$$\log |2\pi|_\infty - \sum_{p<\infty} \frac{\log p}{p-1}. \quad (0.2)$$

Le second problème auquel on est confronté est que contrairement au cas des nombres algébriques où on n’a affaire qu’à des produits et des sommes finies, la série (0.2) n’est pas convergente. On remarquera tout de même que, formellement, la somme sur $p < \infty$ est égale à $\zeta'(1)/\zeta(1)$ si ζ désigne la fonction zêta de Riemann. On va alors utiliser l’équation fonctionnelle de ζ pour renormaliser la série (0.2) (cf. Convention 0 ci-dessous).

Soient $\mathcal{G}_Q = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, $\mathcal{G}_p = \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ et, pour $L = \mathbb{Q}$ ou \mathbb{Q}_p, soit $\mathcal{C}(\mathcal{G}_L, \mathbb{Q})$ (resp. $\mathcal{C}^0(\mathcal{G}_L, \mathbb{Q})$) le \mathbb{Q}-espace vectoriel des fonctions (resp. fonctions centrales) localement constantes de \mathcal{G}_L dans \mathbb{Q}. Soit $\mathbb{Q}^{cm} \subset \overline{\mathbb{Q}}$ le composé de toutes les extensions CM de \mathbb{Q} et $\mathbb{Q}^{ab} \subset \overline{\mathbb{Q}}$ le composé de toutes les extensions abéliennes de \mathbb{Q}. Alors $\mathbb{Q}^{ab} \subset \mathbb{Q}^{cm}$ sont deux extensions galoisiennes de \mathbb{Q}. Soit $c \in \mathcal{G}_Q$ la conjugaison complexe et soit $\mathcal{C} \mathcal{M}$ (resp. $\mathcal{C} \mathcal{M}^{ab}$) le sous-espace des fonctions $a \in \mathcal{C}(\mathcal{G}_Q, \mathbb{Q})$ se factorisant à travers $\text{Gal}(\mathbb{Q}^{cm}/\mathbb{Q})$ (resp. $\text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q})$) et telles que $a(g) + a(c g)$ ne dépende pas de $g \in \mathcal{G}_Q$.

This content downloaded from 134.157.55.166 on Tue, 3 Dec 2013 05:57:47 AM
All use subject to JSTOR Terms and Conditions
On montre facilement que $C^0(\mathcal{G}_Q, \mathbb{Q}) \otimes \mathbb{C}$ (resp. $C^0 \mathcal{M} \otimes \mathbb{C}$, resp. $C^0 \mathcal{M}_{ab} \otimes \mathbb{C}$) admet comme base les caractères d’Artin (resp. les caractères d’Artin, resp. les caractères de Dirichlet (vus comme caractères d’Artin), dont la fonction L ne s’annule pas en 0).

Si $s \in \mathbb{C}$, soit $Z(\cdot, s)$ (resp. μ_{Art}) l’application \mathbb{C}-linéaire de $C^0(\mathcal{G}_Q, \mathbb{Q}) \otimes \mathbb{C}$ dans \mathbb{C} définie par $Z(\chi, s) = L'(\chi, s)/L(\chi, s)$ (resp. $\mu_{\text{Art}}(\chi) = \log f_{\chi}$, où f_{χ} est le conducteur de χ) si χ est un caractère d’Artin. L’inclusion de \mathbb{Q} dans \mathbb{Q}_p permet de considérer \mathcal{G}_{Q_p} comme un sous-groupe de \mathcal{G}_Q et la restriction d’un élément a de $C(\mathcal{G}_Q, \mathbb{Q})$ à \mathcal{G}_{Q_p} nous définit un élément de $C(\mathcal{G}_{Q_p}, \mathbb{Q})$ que nous noterons encore a. Les applications $Z(\cdot, s)$ pour $R(s) > 1$ et μ_{Art} se décomposent alors naturellement sous la forme

$$
\mu_{\text{Art}} = \sum_{p < \infty} \mu_{\text{Art}, p} \log p \quad \text{et} \quad Z(\cdot, s) = -\sum_{p < \infty} Z_p(\cdot, s) \log p,
$$

où $Z_p(\cdot, s)$ (resp. $\mu_{\text{Art}, p}$) est une application \mathbb{Q}-linéaire de $C(\mathcal{G}_{Q_p}, \mathbb{Q})$ à valeurs dans $\mathbb{Q}(p^{-s})$ (resp. \mathbb{Q}). Notons que la décomposition de $Z(\cdot, s)$ ne converge plus pour $s = 1$. Ceci nous permet de faire la convention suivante:

Convention 0. Soit $\Sigma = \sum_{p < \infty} x_p$ une série. On suppose qu’il existe $a \in \mathcal{M}^0$ tel que $x_p = -Z_p(a, 1) \log p$ pour tout p sauf un nombre fini. Soit $a^* \in \mathcal{M}^0$ définie par $a^*(g) = a(g^{-1})$. On donnera alors à Σ la valeur

$$
-Z(a^*, 0) - \mu_{\text{Art}}(a) + \sum_{p < \infty} (x_p + Z_p(a, 1) \log p),
$$

valeur obtenue en évaluant formellement la série et en utilisant l’équation fonctionnelle reliant $Z(a, s)$ à $Z(a^*, 1 - s)$ débarrassée de ses facteurs Γ'/Γ et $\log \pi$.

Avec cette convention on obtient

$$
\log |2\pi|_\infty - \sum_{p < \infty} \log p \frac{\log p}{p - 1} = \log |2\pi|_\infty - \sum_{p < \infty} (\log p) Z_p(1, 1)
$$

$$
= \log |2\pi|_\infty - \frac{\zeta'(0)}{\zeta(0)} = 0,
$$

car $\zeta(0) = -1/2$ et $\zeta'(0) = -(1/2) \log |2\pi|_\infty$. Donc, dans le cas de \mathbb{G}_m, le produit (0.1) vaut 1 comme dans le cas des nombres algébriques.

0.3. **La formule du produit: cas d’une variété abélienne à multiplication complexe.** Passons maintenant au cas d’une variété abélienne à multiplication complexe. Si K est un corps de nombres, on note \mathcal{O}_K son anneau d’entiers, Δ_K son discriminant et $\text{Hom}(K, \mathbb{Q})$. Si E est un corps CM et $\Phi \subset \text{H}_E$ est un type CM, on dit qu’une variété abélienne X définie sur un corps L
(qui sera soit un corps de nombres, soit $\overline{\mathbb{Q}}$, soit $\overline{\mathbb{Q}_p}$) est de type (E, Φ) (resp. (\mathcal{O}_E, Φ)), si X est de dimension $d = (1/2)[E: \mathbb{Q}]$, si on a une injection de E (resp. \mathcal{O}_E) dans $\text{End}_{\mathbb{Q}}(X) \otimes \mathbb{Q}$ (resp. $\text{End}_{\mathbb{Q}}(X)$) et si le type CM de X est Φ.

Soit E un corps CM, Φ un type CM de E, $K \subset \overline{\mathbb{Q}}$ une extension finie de \mathbb{Q} et X une variété abélienne de type (E, Φ) définie sur K. Si $\tau \in H_E$, soit ω_τ un générateur du sous-K-espace vectoriel de $H^1_{\text{DR}}(X)$ sur lequel $\alpha \in E$ agit par multiplication par $\tau(\alpha)$. Si $\sigma \in H_K$, notons X^σ et ω^σ_τ les objets déduits de X, et ω_τ par extension des scalaires. La conjugaison complexe c induit un isomorphisme topologique de $X^\sigma(\mathbb{C})$ sur $X^{c\sigma}(\mathbb{C})$ et donc un isomorphisme encore noté c de $H_1(X^\sigma(\mathbb{C}), \mathbb{Q})$ sur $H_1(X^{c\sigma}(\mathbb{C}), \mathbb{Q})$. Notons que si $\alpha \in E$, on a $c(\alpha.u) = \alpha.c(u)$. Choisissons, pour chaque $\sigma \in H_K$, un élément non-nul u_σ de $H_1(X^\sigma(\mathbb{C}), \mathbb{Q})$, de telle sorte que l'on ait $u_{c\sigma} = c(u_\sigma)$ (en particulier, si σ est un plongement réel, on veut $u_\sigma \in H_1(X^\sigma(\mathbb{R}), \mathbb{Q})$).

On est maintenant confronté au troisième problème: à savoir, le produit

$$\prod_{p \in \mathcal{P}} \prod_{\sigma \in H_K} |(\omega^\sigma_\tau, u_\sigma)_p|_p$$

dépend du choix des u_σ. Pour remédier à cet inconvénient, posons

$$\langle \omega^\sigma_\tau, \omega^\sigma_{c\tau}, u_\sigma \rangle_p = \left(\frac{\langle \omega^\sigma_\tau, u_\sigma \rangle_p \cdot t_p}{\langle \omega^\sigma_{c\tau}, u_\sigma \rangle_p} \right)^{1/2}.$$

Le quotient de $\langle \omega^\sigma_\tau, \omega^\sigma_{c\tau}, u_\sigma \rangle_p^2$ par $\langle \omega^\sigma_\tau, u_\sigma \rangle_p^2$ est un élément de K^* indépendant de $p \in \mathcal{P}$ (mais pas de σ): c’est une conséquence des formules de Riemann. L’intérêt de remplacer $\langle \omega^\sigma_\tau, u_\sigma \rangle_p$ par $\langle \omega^\sigma_\tau, \omega^\sigma_{c\tau}, u_\sigma \rangle_p$ est que $\langle \omega^\sigma_\tau, \omega^\sigma_{c\tau}, u_\sigma \rangle_p \times \langle \omega^\sigma_{c\tau}, \omega^\sigma_{c\tau}, u_{c\sigma} \rangle_p$ est indépendant du choix de u_σ. On peut alors formuler la conjecture suivante:

Conjecture 0.1 (formule du produit).

$$\prod_{p \in \mathcal{P}} \prod_{\sigma \in H_K} |\omega^\sigma_\tau, \omega^\sigma_{c\tau}, u_\sigma \rangle_p|_p = 1.$$

Remarques. (i) Comme dans le cas de \mathbf{G}_m, le produit dans le membre de gauche de la formule du produit n’est pas convergent; on le renormalise en utilisant la Convention 0 ci-dessus et le corollaire du Théorème 0.2.

(ii) Énoncée comme ceci, la conjecture est un petit peu vide; son principal intérêt réside dans sa réinterprétation en une relation entre périodes de variétés abéliennes à multiplication complexe et dérivées de fonctions L d’Artin en $s = 0$. Elle fournit néanmoins un cadre très utile pour interpréter et utiliser les résultats qui vont suivre (sans parler de l’aide qu’elle a apportée à leur
formulation). En particulier elle permet de calculer les périodes pour $p = \infty$
en ne connaissant que les normes des périodes en toutes les places finies. Un
des résultats principaux de cet article étant justement le calcul de cette norme
(Théorème 0.2), ceci nous permet de donner une forme un peu plus respectable
à la conjecture (Conjecture 0.4).

(iii) On peut, comme le referee, trouver la Convention 0 un peu violente et
préférer donner un sens à $Z(a, 1)$ en regardant la valeur en $s = 1$ directement
(ou plutôt le terme constant dans le développement de Laurent en $s = 1$
plutôt que d’utiliser l’équation fonctionnelle. Si on fait cela, la formule du
produit devient un petit peu moins esthétique: au lieu d’obtenir 1 comme
dans le cas des nombres algébriques, on obtient une expression faisant intervenir
des puissances de π et de $\exp(\gamma)$, où γ est la constante d’Euler. Cela peut
peut-être permettre de donner une interprétation de la constante d’Euler et
(revons un peu) de ses généralisations (termé constant dans le développement
de Laurent en $s = 1$ des fonctions zêta de Dedekind des corps de
bromes).

0.4. Résultats p-adiques. Si E est un corps CM, Φ est un type CM de E,
$\tau \in H_E$ et $K \subset \overline{\mathbb{Q}}$ une extension finie de \mathbb{Q} contenant tous les conjugués de E,
soit $a_{E, \tau, \phi}$ (resp. $a^0_{E, \tau, \phi}$) l’élément de $\mathcal{C}M$ (resp. $\mathcal{C}M^0$) donné par la formule

$$a_{E, \tau, \phi}(g) = \begin{cases} 1 & \text{si } g \tau \in \Phi, \\ 0 & \text{sinon} \end{cases}$$

(resp. $a^0_{E, \tau, \phi} = (1/|K : \mathbb{Q}|) \sum_{\sigma \in H_K} a_{E, \sigma \tau, \sigma \phi}$). On montre facilement que les
$a_{E, \tau, \phi}$ (resp. les $a^0_{E, \tau, \phi}$), où E décrit les corps CM, τ les éléments de H_E et
Φ les types CM de E, forment une famille génératrice de $\mathcal{C}M$ (resp. $\mathcal{C}M^0$).
Finalement posons $A_{E, \Phi} = \sum_{\tau \in \Phi} a_{E, \tau, \phi}$ et $A^0_{E, \Phi} = \sum_{\tau \in \Phi} a^0_{E, \tau, \phi}$.

Soit X une variété abélienne de dimension d de type (\mathcal{O}_E, Φ) définie sur
$\overline{\mathbb{Q}}_p$. Soit \mathcal{X} un modèle de X sur l’anneau \mathcal{O}_p des entiers de $\overline{\mathbb{Q}}_p$
antant bonne réduction modulo l’idéal maximal de \mathcal{O}_p (un tel modèle existe toujours). Si
$\tau \in H_E$, soit $H^\tau(X)$ le sous \mathcal{O}_p-espace vectoriel de $H^1_{DR}(X)$ sur lequel $\alpha \in \mathcal{O}_E$
agit par multiplication par $\tau(\alpha)$. On peut identifier $H^1_{DR}(\mathcal{X})$ (resp. $H^0(\mathcal{X}, \Omega^d_X)$) à
un réseau de $H^1_{DR}(X)$ (resp. $H^0(X, \Omega^d_X)$) et on pose $H^\tau(\mathcal{X}) = H^\tau(X) \cap
H^1_{DR}(\mathcal{X})$. On définit alors $v_p(\omega)$ si $\omega \in H^\tau(X)$ (resp. $\omega \in H^0(X, \Omega^d_X)$) par
$v_p(\omega) = 0$ si ω est un générateur du \mathcal{O}_p-module $H^\tau(\mathcal{X})$ (resp. $H^0(\mathcal{X}, \Omega^d_X)$)
drang 1 et $v_p(x\omega) = v_p(x) + v_p(\omega)$ si $x \in \overline{\mathbb{Q}}_p$.

Théorème 0.2. Si $\tau \in H_E$, $\omega_\tau \in H^\tau(X)$ et u est un générateur du
$\mathcal{O}_E \otimes \mathbb{Z}_p$-module $T_p(X)$, alors

(i) $v_p(\langle \omega_\tau, u \rangle_p) = v_p(\omega_\tau) + Z_p(a_{E, \tau, \phi}, 1) - \mu_{Art, p}(a_{E, \tau, \phi});$

(ii) $\omega_\Phi = \pm L_{\tau \in \Phi} \omega_\tau \in H^0(X, \Omega^d_X)$ et $v_p(\omega_\Phi) = \sum_{\tau \in \Phi} v_p(\omega_\tau) +$
$(1/4)v_p(\Delta_E) - (1/2)\mu_{Art, p}(A_{E, \Phi})$.

This content downloaded from 134.157.55.166 on Tue, 3 Dec 2013 05:57:47 AM
All use subject to JSTOR Terms and Conditions
COROLLAIRE. Soit K un corps de nombres et X une variété abélienne de type (E, Φ). Alors, pour tout $p < \infty$ sauf pour un nombre fini,

$$
\frac{1}{[K : \mathbb{Q}]} \sum_{\sigma \in \text{Gal}(K/\mathbb{Q})} \log(|\langle \omega_\tau^\sigma, \omega_c^\sigma, u_\sigma \rangle|_p) = -Z_p(a_{E,\tau,\Phi}^0, 1) \log p.
$$

En particulier la Convention 0 permet de donner un sens au produit dans le membre de droite de la Conjecture 0.1.

On ramène la démonstration de ce théorème à l’étude des groupes p-divisibles à multiplication formelle dont un cas particulier particulièrement maniable est celui des groupes de Lubin–Tate. On utilise les renseignements fournis par ce cas particulier et un théorème de Fontaine [Fo1] donnant une recette pour reconstruire (presque) un groupe formel à partir de son module de Dieudonné, pour traiter le cas général.

0.5. Réinterprétation de la formule du produit. La formule du produit peut se réinterpréter comme une égalité entre deux applications \mathbb{Q}-linéaires de \mathcal{CM}^0 dans \mathbb{R} construites de manières complètement différentes. La première est construite à base de dérivées logarithmiques de fonctions L d’Artin en $s = 0$ et la seconde est fournie par le théorème suivant:

Théorème 0.3. (i) Il existe une unique application \mathbb{Q}-linéaire notée ht de \mathcal{CM}^0 dans \mathbb{R} telle que, si E est un corps CM, $\tau \in \text{Gal}(E/\mathbb{Q})$ et Φ est un type CM de E, alors

$$
ht(a_{E,\tau,\Phi}^0) = \frac{1}{[K : \mathbb{Q}]} \sum_{\sigma \in \text{Gal}(K/\mathbb{Q})} \left(\log(|\langle \omega_\tau^\sigma, \omega_c^\sigma, u_\sigma \rangle|_\infty) - \frac{1}{2} \sum_{p < \infty} \log p(v_p(\omega_\tau^\sigma) - v_p(\omega_c^\sigma)) \right),
$$

où ω_τ et u_σ ont les mêmes significations que dans la formule du produit.

(ii) Soit X une variété abélienne de type (\mathcal{O}_E, Φ) définie sur $\overline{\mathbb{Q}}$; sa hauteur de Faltings est donnée par la formule

$$
h_{\text{Fal}}(X) = -ht(A_{E,\Phi}^0) - \frac{1}{2} \mu_{\text{Art}}(A_{E,\Phi}^0).
$$

L’unicité est claire car les $a_{E,\tau,\Phi}^0$ engendrent \mathcal{CM}^0; l’existence est une conséquence des relations monomiales entre les périodes prouvées par Shimura [Sm] et Deligne [De] dans le cas $p = \infty$ et par Blasius (cf. [Og]), Gillard [Gi] et Wintenberger [Wi] dans le cas $p < \infty$, et du (i) du Théorème 0.2, qui permet de contrôler les nombres rationnels apparaissant naturellement quand on compare les valeurs de $ht(a)$ obtenues à partir de deux décompositions différentes de a comme combinaison linéaire de $a_{E,\tau,\Phi}^0$. Le (ii) suit alors du (ii) du Théorème 0.2.
Remarques. (i) Ce théorème répond à une question soulevée par Schappacher [Sc], p. 125.
(ii) Le signe dans le (ii) de ce théorème est l’opposé de celui que l’on peut trouver dans [Cz4]; c’est dû à une erreur de signe dans la définition de la hauteur de Faltings utilisée dans [Cz4].

Conjecture 0.4. On a $ht(a) = Z(a^*, 0)$ pour tout $a \in CM^0$.

Utilisant le Théorème 0.3, on montre que cette conjecture est équivalente à la formule du produit pour toutes les périodes des variétés abéliennes à multiplication complexe. Notons que la Conjecture 0.4 permet d’exprimer une partie des périodes des variétés abéliennes à multiplication complexe en termes de dérivées logarithmiques de fonctions L d’Artin en $s = 0$. Lue dans l’autre sens, elle prédit le second terme du développement de Taylor en $s = 0$ des fonctions L d’Artin, dans le cas où celles-ci ne s’annulent pas, complémentant ainsi les conjectures de Stark (cf. [Ta2]). Le résultat principal dans la direction de cette conjecture est le théorème suivant, qui précise un théorème d’Anderson [An1]:

Théorème 0.5. La Conjecture 0.4 est vérifiée (à un multiple rationnel de log 2 près) pour tout $a \in CM^{ab}$. Autrement dit, la formule du produit est vraie (à une puissance de 2 près) pour les périodes des variétés abéliennes à multiplication complexe par une extension abélienne de \mathbb{Q}.

La démonstration se fait en calculant $ht(a)$ et $Z(a^*, 0)$ séparément et en comparant les résultats ainsi obtenus. Le calcul de $ht(a)$ utilise les jacobienes des courbes de Fermat et, en particulier, les calculs de Coleman [Cn] sur la matrice de Frobenius des courbes de Fermat; ces calculs ne sont pas valables pour $p = 2$ dans le cas de mauvaise réduction, ce qui explique la relative imprécision du Théorème 0.5 (pour un énoncé plus précis, voir le Théorème III.2.9). Le calcul de $Z(a^*, 0)$, quant à lui, utilise la formule de Lerch (voir [We], Ch. VII, §9, (23)).

0.6. La formule de Chowla–Selberg. Les Théorèmes 0.3 et 0.5 permettent de donner une démonstration “géométrique” de la formule de Chowla–Selberg, précisant ainsi un théorème de Gross [Gr]. Soit $E = \mathbb{Q}(\sqrt{-D}) \subset \mathbb{Q}$ un corps quadratique imaginaire de discriminant $-D$ et soit χ le caractère quadratique modulo D associé à l’extension E/\mathbb{Q}. Soient a_1, \ldots, a_h des représentants du groupe des classes d’idéaux fractionnaires de E que l’on considérera comme des réseaux de \mathbb{C} et soit w le nombre de racines de l’unité dans E. Soit Δ la forme modulaire de poids 12 habituelle. La formule de Chowla–Selberg se lit
(cf. [We], Ch. IX, §4, (7)):
\[
\prod_{i=1}^{h} \Delta(a_i)\Delta(a_i^{-1}) = \left(\frac{2\pi}{D}\right)^{12h} \prod_{x=1}^{D-1} \Gamma\left(\frac{x}{D}\right)^{6w(x)}.
\]
Notons \(\chi_{\text{Art}} \in \mathcal{CM}^{ab}\) le caractère d’Artin associé à \(\chi\) et soit \(X\) une courbe elliptique à multiplication complexe par \(\mathcal{O}_E\) définie sur \(\mathbb{Q}\). On a alors les égalités suivantes:
\[
\frac{\zeta'(0)}{\zeta(0)} = \frac{1}{12h} \sum_{i=1}^{h} \log(\Delta(a_i)\Delta(a_i^{-1})) = -2h \text{Fal}(X) + \frac{1}{2} \log D.
\]
\[
\frac{\zeta''(0)}{\zeta(0)} + \frac{L'(\chi,0)}{L(\chi,0)} = \log 2\pi - \log D + \frac{w}{2h} \sum_{x=1}^{D-1} \chi(x) \log \Gamma\left(\frac{x}{D}\right) = ht(1 + \chi_{\text{Art}}).
\]
On obtient alors deux démonstrations de la formule de Chowla–Selberg: l’une “analytique” en passant par la gauche du diagramme et qui utilise la formule limite de Kronecker ([We], Ch. VIII, §8, (16)) et la formule de Lerch, l’autre “géométrique” en passant par la droite du diagramme et qui utilise la définition de la hauteur de Faltings, le Théorème 0.3 et des calculs sur les courbes de Fermat (on peut éliminer le multiple de \(\log 2\) qui apparaît si on applique le Théorème 0.5, en traitant directement les courbes elliptiques à multiplication complexe par \(\mathbb{Z}[\sqrt{-1}]\) et \(\mathbb{Z}[\sqrt{-2}]\), et en utilisant la partie des calculs de Coleman qui continue à marcher pour \(p = 2\)).

0.7. Remarques diverses. Les points suivants ne sont pas détaillés dans cet article, mais nous espérons les développer dans un article ultérieur.

- Si \(a \in \mathcal{CM}^{0}\), alors, utilisant la théorie de Brauer, on peut écrire \(Z(a, s) = \sum_{\chi} c_{\chi} Z(\chi, s)\), où les \(\chi\) sont des caractères abéliens de corps totalement réels. Un résultat de Shintani [Sh] (voir aussi [Mo]) permet alors d’exprimer \(Z(a, 0)\) en termes de logarithmes de fonctions \(\Gamma\) multiples attachées à des cones des corps totalement réels en question. Les conjectures de Stark et la Conjecture 0.4 semblent donc indiquer que ces fonctions \(\Gamma\) multiples jouent pour l’arithmétique des corps totalement réels le même rôle que la fonction \(\Gamma\) d’Euler joue pour l’arithmétique de \(\mathbb{Q}\).

- La Conjecture 0.4 devrait avoir un analogue \(p\)-adique permettant d’exprimer l’action de Frobenius sur les périodes des variétés abéliennes à multiplication complexe en termes de dérivées de fonctions \(L\) \(p\)-adiques en \(s = 0\), et donc, utilisant des résultats de Cassou-Noguès [C-N], en termes de fonctions \(\Gamma\) multiples \(p\)-adiques. On devrait retrouver ainsi la formule de Gross–Koblitz [GrKo] comme cas particulier, ainsi que la conjecture de Gross sur le premier terme du développement de Taylor des fonctions \(L\) \(p\)-adiques en \(s = 0\) (mais uniquement dans le cas où la fonction \(L\) a un zéro simple en \(s = 0\)).
Les deux précédentes remarques font penser qu'il devrait exister pour chaque corps totalement réel un motif ultérieur (voir [An2]) dont les (logarithmes des) périodes seraient données par les dérivées des fonctions zêta partielles en \(s = 0 \), les poids de Hodge par les valeurs en \(s = 0 \) des fonctions zêta partielles et l'action du (logarithme du) Frobenius en \(p \) sur les réalisations \(l \)-adiques par les dérivées en \(s = 0 \) des fonctions zêta partielles \(p \)-adiques; et à partir duquel, on obtienne, par des procédés d'algèbre linéaire, tous les motifs à multiplication complexe par une extension abélienne du corps totalement réels et qui sont définis sur \(\mathbb{Q} \). La restriction "défini sur \(\mathbb{Q} \)" vient de ce que l'on ne peut retrouver qu'une partie des périodes à partir des valeurs de \(Z(a, 0) \), où \(a \) décrit \(\mathcal{CM}^0 \); il faudrait être capable de définir un équivalent de \(Z(a, s) \) pour tout \(a \in \mathcal{CM} \), mais il n'y a pas de candidat naturel évident.

Soient \(E \) un corps CM, \(E_+ \) le sous-corps réel maximal de \(E \) et \(\chi \) le caractère quadratique de \(E_+ \) associé à l'extension \(E / E_+ \). Notons \(\Phi(E) \) l'ensemble des types CM de \(E \) et, si \(\Phi \in \Phi(E) \), soit \(X_\Phi \) une variété abélienne de type \((\mathcal{O}_E, \Phi) \) définie sur \(\overline{\mathbb{Q}} \). La Conjecture 0.4 nous donne alors

\[
\frac{1}{2[E_+ : \mathbb{Q}]} \sum_{\Phi \in \Phi(E)} h_{Fal}(X_\Phi) = - \frac{[E_+ : \mathbb{Q}]}{2} \left(\frac{L'(\chi, 0)}{L(\chi, 0)} + \frac{1}{2} \log f_\chi + \log 2\pi \right),
\]

et le second membre s'exprime à l'aide de la formule limite de Kronecker pour \(E_+ \) (cf. [Mo]). La Conjecture 0.4 laisse donc penser que la forme modulaire de Hilbert apparaissant dans la formule limite de Kronecker pour un corps totalement réel a des propriétés arithmétiques, au moins aux points CM, tout à fait similaires à celles de la classique fonction \(\log |\Delta| \), fonction qui apparaît dans la formule limite de Kronecker pour \(\mathbb{Q} \). D'autre part cette fonction se coupe naturellement en \(2[E_+ : \mathbb{Q}] \) morceaux suivant l'holomorphie et l'antiholomorphie par rapport à chacune des variables et on peut se demander si cette décomposition correspond à la décomposition du membre de gauche de (3) et donc si chacun des morceaux a une signification arithmétique. Remarquons tout de même que chacun des morceaux a une loi de transformation sous l'action de \(\text{SL}_2(\mathcal{O}_E) \), qui est extrêmement compliquée (cf. [GoTo]).

Les résultats du présent article recouvrent ceux de [Cz1] à l'exception du résultat de transcendance suivant:

Théorème 0.6. Soit \(E \) une extension finie galoisienne de type CM de \(\mathbb{Q} \). Soient \(E_+ \) le sous-corps réel maximal de \(E \), \(p \) un nombre premier et \(p = (p_1 \cdots p_r)^e \) la décomposition de \(p \) en idéaux premiers de \(E_+ \). Soit \(\text{CM}_p(E) \) le sous-corps de \(\text{Frac}(\mathcal{B}_p) \) engendré par les périodes des variétés abéliennes à multiplication complexe par \(E \) définie sur \(\overline{\mathbb{Q}} \). Le degré de transcendance \(d_p(E) \)
sur \overline{Q}_p du corps engendré par Q_p et $CM_p(E)$ est donné par la formule

$$d_p(E) = \begin{cases} 1 + \frac{|E_+ : \mathbb{Q}|}{r} & \text{si } p_1 \text{ est inerte ou ramifié dans } E, \\ r + \frac{|E_+ : \mathbb{Q}|}{r} & \text{si } p_1 \text{ est décomposé dans } E. \end{cases}$$

La démonstration de ce théorème est élémentaire et repose sur la remarque suivante: Un élément de $CM_p(E)$ s'exprime en termes de périodes de formes différentielles propres pour l'action de E. D'autre part une telle période est élément de $K \otimes B^+_{\text{cris}}$, où K est une extension finie de Q_p et est un vecteur propre pour l'action de $\text{Gal}(\overline{Q}/K)$ et pour l'action du Frobenius relatif à K opérant sur $K \otimes B^+_{\text{cris}}$; elle nous définit donc un caractère de $\text{Gal}(\overline{Q}/K) \times \mathbb{Z}$, caractère qui est complètement décrit par la théorie de la multiplication complexe. Il suffit alors d'utiliser l'indépendance linéaire des caractères pour conclure. La même remarque permet d'ailleurs de donner une démonstration élémentaire des relations de Blasius et Winterberger modulo Q_p^*. \[\text{Remarque.} \text{ Si on note } \delta_p(E) \text{ le degré de transcendance sur } \overline{Q} \text{ de } CM_p(E), \text{ alors on a } d_p(E) \leq \delta_p(E) \leq 1 + |E_+ : \mathbb{Q}|, \text{ la dernière inégalité découlant des relations de Shimura, Deligne, Blasius et Winterberger. D'autre part on conjecture que } \delta_p(E) = 1 + |E_+ : \mathbb{Q}| \text{ pour tout } p \in P \text{ (en particulier } \delta_p(E) \text{ devrait être indépendant de } p). \text{ Le théorème précédent nous permet de démontrer cette conjecture si } p \text{ est totalement décomposé dans } E, \text{ ce qui arrive infiniment souvent. Remarquons aussi que l'indépendance de } \delta_p(E) \text{ par rapport à } p, \text{ impliquerait en considérant le cas } E = Q(\mu_m), \text{ l'indépendance algébrique des nombres } 2i\pi \text{ et } \Gamma(a/m), \text{ avec } (a, m) = 1 \text{ et } 0 < a < m/2, \text{ résultat qui n'est connu que pour } m = 2, 3 \text{ ou } 4.\]

I. Périodes des groupes formels à multiplication formelle

Cette partie est consacrée au calcul du “volume” d’un groupe formel à multiplication formelle, calcul qui nous servira pour évaluer la contribution locale en chaque nombre premier dans la formule du produit pour les périodes des variétés abéliennes à multiplication complexe. Il nous faut pour mener à bien ce calcul expliciter des logarithmes pour ces groupes formels, ce que nous faisons en utilisant un théorème de Fontaine [Fo1], qui nous dit comment retrouver un groupe formel à partir de son module de Dieudonné. Nous utilisons aussi le fait que les groupes formels à multiplication formelle se déduisent des groupes formels de Lubin–Tate, qui en sont des cas particuliers très maniables. La partie est organisée de la manière suivante: dans le §1, nous rappelons sans démonstration les résultats que nous aurons à utiliser sur les groupes formels (en particulier le théorème de Fontaine auquel il a été fait allusion plus haut). Le §2 est consacré à l’étude des groupes de Lubin–Tate et
le §3, qui contient l’essentiel du travail, est consacré au cas général. Le résultat principal que l’on utilisera par la suite est le Théorème I.3.15.

Notation. Soient p un nombre premier, \mathbb{Q}_p le complété de \mathbb{Q} pour la topologie p-adique, $\overline{\mathbb{Q}}_p$ une clôture algébrique de \mathbb{Q}_p et $\mathbb{Q}_p^{nr} \subset \overline{\mathbb{Q}}_p$ l’extension maximale non-ramifiée de \mathbb{Q}_p. On note \mathcal{O}_p l’anneau des entiers de $\overline{\mathbb{Q}}_p$ et \mathfrak{m}_p l’idéal maximal de \mathcal{O}_p. Soient $k_p = \mathcal{O}_p/\mathfrak{m}_p$ et φ_p le Frobenius absolu agissant sur k_p et \mathbb{Q}_p^{nr}.

Si $K \subset \overline{\mathbb{Q}}_p$ est une extension finie de \mathbb{Q}_p, on note $K_0 = K \cap \mathbb{Q}_p^{nr}$ l’extension non-ramifiée de \mathbb{Q}_p maximale incluse dans K ; $e_K = [K : K_0]$ l’indice de ramification absolue de K ; $f_K = [K_0 : \mathbb{Q}_p]$ son indice d’inertie absolue : $H_K = \text{Hom}(K, \overline{\mathbb{Q}}_p)$; $h_K = e_Kf_K = \text{card}(H_K)$; \mathcal{O}_K son anneau d’entier, \mathcal{D}_K sa différente absolue ; \mathfrak{m}_K l’idéal maximal de \mathcal{O}_K ; τ_K un générateur \mathfrak{m}_K ; $k_K = \mathcal{O}_K/\mathfrak{m}_K$ le corps résiduel de \mathcal{O}_K ; et $W(k_K) = \mathcal{O}_K k_0$ l’anneau des vecteurs de Witt à coefficients dans k_K. Si $i \in \mathbb{Z}/f_K \mathbb{Z}$, notons $H_{K,i}$ l’ensemble des $\sigma \in H_K$ dont la restriction à K_0 coïncide avec φ_p^i et, si $\sigma \in H_K$, on note $i(\sigma)$ l’élément de $\mathbb{Z}/f_K \mathbb{Z}$ tel que $\sigma \in H_{K,i(\sigma)}$. Si σ et τ sont deux éléments de H_K, on note $i(\sigma, \tau)$ le représentant de $i(\tau) - i(\sigma)$ dans $\{0, 1, \ldots, f_K - 1\}$.

Si K est une extension finie de \mathbb{Q}_p incluse dans $\overline{\mathbb{Q}}_p$, on pose $G_K = \text{Gal}(\overline{\mathbb{Q}}_p/K)$ et on note \mathcal{I}_K le sous-groupe d’inertie de G_K. On note χ_K le caractère de \mathcal{I}_K à valeurs dans \mathcal{O}_K^* donné par la théorie du corps de classe. Ce caractère n’étant défini qu’au signe près, nous fixerons le signe par la formule

$$g(\varepsilon) = e^{\chi_K(g)} \text{ si } g \in \mathcal{I}_\mathbb{Q}_p \text{ et } e^{n} = 1.$$

Soit W_p le groupe des éléments g de $\mathbb{G}_{\mathbb{Q}_p}$ agissant sur k_p par une puissance entière (que nous noterons $n(g)$) de φ_p. Si K est une extension finie et galoisienne de \mathbb{Q}_p, soit G_K (resp. W_K) le groupe de Galois de K sur \mathbb{Q}_p (resp. le quotient de W_p par \mathcal{I}_K) et, si $n \in \mathbb{Z}$, soit $W_p^n = \{g \in W_K \mid n(g) = n\}$.

Soit \mathbb{C}_p le complété de $\overline{\mathbb{Q}}_p$ pour la topologie p-adique et soit $\hat{\mathbb{O}}_p$ son anneau d’entiers. Soit v_p la valuation de \mathbb{C}_p normalisée par $v_p(p) = 1$. Soient $B_p = B_{\text{DR},p}$ l’épaississement infinitésimal universel de \mathbb{C}_p^* et θ le morphisme canonique de \mathbb{B}_p sur \mathbb{C}_p. Alors B_p est un anneau de valuation discrète de corps résiduel \mathbb{C}_p et d’idéal maximal ker θ. On définit une filtration décroissante sur B_p en posant $\text{Fil}^i(B_p) = (\ker \theta)^i$, si $i \in \mathbb{N}$, et on définit $v_p(x)$ pour $x \in B_p - \{0\}$ par $v_p(x) = i$, si $x \in \text{Fil}^i(B_p) - \text{Fil}^{i+1}(B_p)$. Soit $A_{\inf} \subset B_p$ l’épaississement infinitésimal universel de \mathcal{O}_p. Alors A_{\inf} contient l’anneau $W(k_p)$ des vecteurs de Witt à coefficients dans k_p, anneau qui n’est rien d’autre que le complété pour la topologie p-adique de l’anneau des entiers de \mathbb{Q}_p^{nr} et $A_{\inf} \cap \ker \theta$ est un idéal principal de A_{\inf}, soit \hat{p} un générateur de cet idéal et soit A_{cris} le complété

Voir [Fo2] et [Fo4] pour les définitions et la démonstration de la Proposition I.0.1 ci-dessous.
dans B_p de la sous-A_{inf}-algèbre de B_p engendrée par les $\tilde{p}^n/n!$. Finalement, si K est une extension finie galoisienne de Q_p, soient $B_{\text{cris},K}^+ = K \otimes_{O_K} A_{\text{cris}}$ la sous-algèbre de B_p engendrée par K et A_{cris} et \tilde{K} la sous-algèbre de $B_{\text{cris},K}^+$ engendrée par K et $W(k_p)$. Notons encore φ_p le Frobenius absolu agissant sur $W(k_p)$, A_{inf} et A_{cris}.

Proposition I.0.1. (i) G_{Q_p} agit continuellement sur B_p, C_p et $B_{\text{cris},K}^+$ (muni de la topologie du produit tensoriel qui est plus fine que celle induite par B_p). L’action de G_{Q_p} commute à θ, et si I est un sous-groupe d’indice fini de I_K, alors $(B_{\text{cris},K}^+)^I = \tilde{K}$.

(ii) Faisons agir $g \in W_p$ sur $B_{\text{cris},K}^+$ par g (considéré comme élément de G_K) sur K et par $\varphi_p^n(g)$ sur A_{cris}. L’action de W_p ainsi définie est continue, se factorise à travers W_K, commute à celle de G_K et, donc, $(B_{\text{cris},K}^+)^{W_K} = Q_p$. □

Soit $\Omega_p = \Omega_{O_p}/Z_p$ le module des formes différentielles de Kähler de O_p sur Z_p. C’est le O_p module commutatif engendré par les symboles $d\alpha$ pour $\alpha \in O_p$ avec les relations $d(\alpha + \beta) = d\alpha + d\beta$, $d(\alpha \beta) = \alpha d\beta + \beta d\alpha$ et $d\alpha = 0$ si $\alpha \in Z_p$. On sait que Ω_p est un module de p-torsion, p-divisible (voir [Fo3]). D’autre part, si $\omega \in \Omega_p$, l’ensemble des $\alpha \in O_p$ vérifiant $\alpha \omega = 0$ est un idéal principal de O_p caractérisé par la valuation de l’un quelconque de ses générateurs; nous définirons $v_p(x)$ comme l’opposé de cette valuation. Par exemple, si K est une extension finie de Q_p et π est une uniformisante de K et $P \in K_0[X]$ est le polynôme minimal de π sur K_0, on a $v_p(\pi) = -v_p(P'(\pi))$ (i.e., $P'(\pi)$ est un générateur de l’idéal anneulateur de $d\pi$ [Se1],III-14). De plus on a $v_p(\alpha \omega) = v_p(\alpha) + v_p(\omega)$ si $\alpha \omega \neq 0$, ce qui, connaissant $v_p(\pi)$ pour une uniformisante, permet de calculer $v_p(\omega)$ pour tout $\omega \in \Omega_p$.

Si $x \in B_p - \{0\}$, la quantité $v_p(\theta(x\tilde{p}^{-n}v_p(x)))$ ne dépend pas du choix du générateur \tilde{p} de $A_{\text{inf}} \cap \ker \theta$; nous la noterons $v_p(x)$.

Proposition I.0.2. (i) Les deux définitions de $v_p(x)$ pour $x \in \overline{Q}_p$ coïncident.

(ii) Si x et y sont deux éléments non-nuls de B_p, alors $v_p(xy) = v_p(x) + v_p(y)$.

(iii) Si x_n est une suite d’éléments de B_p convergeant vers $x \in B_p - \{0\}$ et si la suite $v_p(x_n)$ est bornée, alors elle converge, et $v_p(x) = \lim_{n \to \infty} v_p(x_n)$.

(iv) Soit $\alpha \in O_p$ vérifiant $d\alpha \neq 0$ et soit $\tilde{\alpha} \in A_{\text{inf}}$ vérifiant $\theta(\tilde{\alpha}) = \alpha$. Alors $v_p(\tilde{\alpha} - \alpha) = 1$ et $v_p(\tilde{\alpha} - \alpha) = v_p(d\alpha)$.

Démonstration. Les (i), (ii) et (iii) sont évidents; le (iv) provient de l’isomorphisme canonique entre Ω_p et $\text{Fil}^1(B_p)/(\text{Fil}^1(B_p) \cap A_{\text{inf}}) + \text{Fil}^2(B_p)$ obtenu en envoyant $d\alpha$ sur l’image de $\alpha - \tilde{\alpha}$. □
Remarque. On peut aussi utiliser la densité (cf. [Cz3] ou [Fo4]) de \(\mathbb{Q}_p \) dans \(B_p \) pour définir \(v_p \). Définissons par récurrence une suite de sous-anneaux \(O_p^{(n)} \) de \(O_p \) et une suite de \(O_p \)-modules \(\Omega_p^{(n)} \) de la manière suivante: on pose \(O_p^{(0)} = O_p \), \(\Omega_p^{(n+1)} = O_p \otimes_{O_p^{(n)}} \Omega_p^{(n)}/z_p \) (et donc \(\Omega_p^{(1)} = \Omega_p \)) et, alors, \(O_p^{(n+1)} \) est le noyau de l’application canonique \(d^{(n+1)} \) de \(O_p^{(n)} \) dans \(\Omega_p^{(n+1)} \). On définit \(v_p(\omega) \) pour \(\omega \in \Omega_p^{(n)} \) de la même manière que précédemment. On sait que \(B_p \) est le complété de \(\mathbb{Q}_p \) pour la topologie obtenue en prenant les \(p^k O_p^{(n)} \), pour \(k \) et \(n \) décrivant \(\mathbb{N} \), comme base de voisinages de 0. Soient donc \(x \in B_p - \{0\} \) et \((x_m)_{m \in \mathbb{N}} \) une suite d’éléments de \(\mathbb{Q}_p \) convergant vers \(x \). Soit \(m = v_p(x) \).

Si \(m = 0 \), la suite \(x_m \) converge \(p \)-adiquement vers un élément non-nul et donc la suite \(v_p(x_m) \) est stationnaire et \(v_p(x) \) est la limite. Si \(m \geq 1 \), alors pour tout \(k \in \mathbb{N} \), il existe \(M(k) \) tel que \(x_{M(k)} \in p^k O_p^{(m-1)} \) et \(x_n - x_{M(k)} \in p^k O_p^{(m)} \) si \(n \geq M(k) \). Alors la suite \(k + v_p(d^{(m)}(p^{-k}x_{M(k)})) \) est stationnaire et \(v_p(x) \) en est la limite. Comme on a des formules explicites permettant de calculer \(d^{(n)}(\alpha) \) pour \(\alpha \in O_p^{n-1} \), cela donne une manière (assez peu pratique) de calculer \(v_p(x) \). Nous ne l’utiliserons pas dans la suite; cette remarque n’est là que pour justifier le cote “naturel” de \(v_p \).

1. Généralités sur les groupes formels

Module de Dieudonné (voir [Fo1] pour les démonstrations). Soit \(K \) une extension galoisienne finie de \(\mathbb{Q}_p \). On appelle module de Dieudonné tout triplet \((V, \phi, \Fil) \), où \(V \) est un \(K \)-espace vectoriel de dimension \(h \), \(\phi \) est un endomorphisme \(\varphi_p \)-semilinéaire injectif et topologiquement nilpotent de \(V \) vérifiant de plus que si \(M \) est un réseau de \(V \) stable par \(\phi \) (il en existe car \(\phi \) est topologiquement nilpotent), alors on a \(pM \subset \phi M \). Le troisième élément du triplet \(\Fil \) est une filtration décroissante sur \(V_K = K \otimes_{K_0} V \) vérifiant \(\Fil^0(V_K) = V_K \), \(\Fil^1(V_K) = 0 \) et \(\Fil^1(V_K) \) est un \(K \)-espace vectoriel de dimension la dimension de \(M/\phi M \) comme \(K \)-espace vectoriel. Si \(D_1 = (V_1, \phi_1, \Fil) \) et \(D_2 = (V_2, \phi_2, \Fil) \) sont deux modules de Dieudonné, les morphismes de \(D_1 \) vers \(D_2 \) sont par définition les applications \(K \)-linéaires \(f \) de \(V_1 \) dans \(V_2 \) vérifiant \(f \circ \phi_1 = \phi_2 \circ f \) et \(f(\Fil^1(V_{1,K})) \subset \Fil^1(V_{2,K}) \).

Soit \(\Gamma \) un groupe formel commutatif défini sur \(\mathcal{O}_K \), de dimension \(d \) et de hauteur finie \(h \). À un tel groupe formel, on associe un module de Dieudonné de la manière suivante: Soit \(\mathcal{O}_K[[X]] = \mathcal{O}_K[[X_1, \ldots, X_d]] \), l’algèbre affine de \(\Gamma \) et notons \(\otimes \) la loi de groupe formel. Si \(\omega = \sum_{i=1}^d \alpha_i(X_1, \ldots, X_d) dX_i \) où \(\alpha_i(X) \in K[[X]] \) est une forme différentielle fermée, notons \(F_\omega \) l’unique élément de \(K[[X]] \) vérifiant \(dF_\omega = \omega \) et \(F_\omega(0) = 0 \) et soit \(F^2_\omega \subset K[[X, Y]] \) la série formelle donnée par la formule \(F^2_\omega(X, Y) = F_\omega(X + Y) - F_\omega(X) - F_\omega(Y) \). Une forme différentielle fermée \(\omega \) sera dite exacte si \(F_\omega \) est à coefficients bornés, de
seconde espèce si F_2^t est à coefficients bornés et invariante si $F_2^t = 0$. Notons Ω_Γ le K-espace vectoriel des formes différentielles invariantes; c'est un K-espace vectoriel de dimension d. Notons $K[[X]]_0$ le sous-espace de $K[[X]]$ des séries formelles F vérifiant $F(0) = 0$. Un élément de $K[[X]]_0$ tel que $dF \in \Omega_\Gamma$ sera appelée un logarithme de Γ. Notons $H^1_{DR}(\Gamma)$ le K-espace vectoriel quotient de l'espace des formes différentielles de seconde espèce par celui des formes différentielles exactes; c'est un K-espace vectoriel de dimension h muni de la filtration $\text{Fil}^0(H^1_{DR}(\Gamma)) = H^1_{DR}(\Gamma)$, $\text{Fil}^1(H^1_{DR}(\Gamma)) = \Omega_\Gamma$, $\text{Fil}^2(H^1_{DR}(\Gamma)) = 0$. Soit $V(\Gamma)$ le sous-K_0-espace vectoriel de $H^1_{DR}(\Gamma)$ engendré par les formes différentielles ω à coefficients dans K_0 muni de l'endomorphisme ϕ obtenu en conjuguant les coefficients de ω par φ et en élevant les variables X_i à la puissance p. Le triplet $D(\Gamma) = (V(\Gamma), \phi, \text{Fil})$, où Fil est la filtration sur $V(\Gamma)_K = H^1_{DR}(\Gamma)$ introduite plus haut, est un module de Dieudonné, que l'on appellera module de Dieudonné de Γ. Remarquons que $H^1_{DR}(\Gamma)$ est muni d'une action de W_K, donnée par la formule $g(x \otimes \omega) = g(x) \otimes \phi^n(g)(\omega)$, si $\omega \in V(\Gamma)$. Si Γ_1 et Γ_2 sont deux groupes formels définis sur \mathcal{O}_K et si $f : \Gamma_1 \to \Gamma_2$ est un morphisme de groupes formels défini sur \mathcal{O}_K, alors l'application $f^* : D(\Gamma_2) \to D(\Gamma_1)$, qui à ω associe $f^*\omega$, est un morphisme de modules de Dieudonné, et l'application, qui à ω associe $f^*\omega$, est injectif et permet d'identifier $\text{Hom}_{\mathcal{O}_K}(\Gamma_1, \Gamma_2)$ à un réseau de $\text{Hom}(D(\Gamma_2), D(\Gamma_1))$. En particulier deux groupes formels définis sur \mathcal{O}_K sont isogènes si et seulement si ils ont des modules de Dieudonné isomorphes.

Réciproquement, à partir d'un module de Dieudonné D, on peut construire un groupe formel Γ_D tel que $D(\Gamma_D) = D$. Soit donc $D = (V, \phi, \text{Fil})$ un module de Dieudonné. Soit M un réseau de V stable par ϕ. Soit $d \geq 1$ la dimension de $M/\phi M$ comme k_K-espace vectoriel. Soit $\lambda : V \to K_0[[X]]_0$ une application K_0-linéaire vérifiant les conditions suivantes:

(i) L'application composée de V dans $K_0[[X]]_0/\mathcal{O}_K[[X]]_0 \otimes K_0$ est injective; autrement dit, $\lambda(v)$ est à coefficients bornés si et seulement si $v = 0$.

(ii) L'application composée de V dans $K_0X_1 \oplus \cdots \oplus K_0 X_d$, obtenue en ne gardant que le terme linéaire de $\lambda(x)$, envoie M sur $\mathcal{O}_KX_1 \oplus \cdots \oplus \mathcal{O}_KX_d$.

(iii) λ “commute” à l'action de ϕ, c'est-à-dire:

$$\lambda(\phi(x)) - \phi(\lambda(x)) \in p\mathcal{O}_K[[X_1, \ldots, X_d]] \quad \text{si} \ x \in M.$$

Une telle application peut d'ailleurs se construire explicitement à partir d'une base de M (cf. [F01], V.2.4). Soit finalement e_1, \ldots, e_d une base sur K de $\text{Fil}^1(V_K)$.

Proposition I.1.1. Il existe alors des séries formelles μ_i à coefficients bornés telles que si l'on pose $L = (L_1, \ldots, L_d)$, avec $L_i = \mu_i + \lambda(e_i)$, alors $L^{-1}(L(X) + L(Y))$ est une loi de groupe formelle définie sur \mathcal{O}_K et le groupe formel Γ_D ainsi construit admet D comme module de Dieudonné. \[\square\]
Nous aurons besoin d’une forme un peu plus précise de cette proposition. Pour cela nous allons munir $D(\Gamma)$ d’une (et même plusieurs) structure entière. Notons $H_{\text{DR}}^1(\Gamma/O_K)$ le réseau de $H_{\text{DR}}(\Gamma)$ obtenu en prenant le quotient de $\{\omega \in \Omega^1_{O_K[[X]]/O_K} \mid F_\omega \in \Omega^1_{K[[X],[Y]]}\}$ par $d\Omega^1_{K[[X]]/O_K}$ et $\Omega_{\Gamma/O_K} = \Omega_{\Gamma} \cap \Omega^1_{O_K[[X]]/O_K}$. D’autre part, il existe un groupe formel Γ_0 défini sur O_K et dont nous noterons \oplus_0 la loi de groupe formel, tel que \oplus et \oplus_0 aient la même réduction modulo m_K. Nous noterons $H_{\text{cris}}^1(\Gamma)$ (resp. $M(\Gamma)$) le sous O_{K_0}-module de $H_{\text{DR}}^1(\Gamma)$ image de l’ensemble des $\omega \in \Omega^1_{O_K[[X]]/O_K}$ vérifiant $F_\omega(X \oplus_0 Y) = F_\omega(X) - F_\omega(Y) \in O_{K_0}(X,Y)$ (resp. $\in pO_{K_0}(X,Y)$). En fait $H_{\text{cris}}^1(\Gamma)$ et $M(\Gamma)$ ne dépendent que de la réduction modulo m_K de Γ, et on a $M(\Gamma) = p^{-1}H_{\text{cris}}^1(\Gamma)$. La relation entre $H_{\text{DR}}^1(\Gamma/O_K)$ et $O_K \otimes H_{\text{cris}}^1(\Gamma)$ est peu claire en général, mais on montre facilement que l’on a $H_{\text{DR}}^1(\Gamma/O_K) = O_K \otimes H_{\text{cris}}^1(\Gamma)$ si $e \leq p - 1$ et, que dans le cas général, on a

$$\Omega_{\Gamma/O_K} + m_K H_{\text{DR}}^1(\Gamma/O_K) \subset M(\Gamma) + \sum_{n=0}^{+\infty} \frac{m_K^n}{p^n} \otimes \phi^n M(\Gamma).$$

Reprenons les hypothèses et notation de la Proposition I.1.1. Supposons de plus que l’on soit donné des éléments f_1, \ldots, f_d de M dont les images dans $M/\phi M$ forment une base de $M/\phi M$ sur k_K et qui vérifient la condition:

(iv) $f_i - e_i \in \sum_{n=0}^{+\infty} \left(\frac{m_K^n}{p^n}\right) \otimes \phi^n M$.

Proposition I.1.2. Les μ_i de la Proposition I.1.1 peuvent être choisis de telle sorte que $dL_i \equiv d\lambda(f_i) [m_K]$ et alors $M(\Gamma_D)$ s’identifie de manière naturelle à M et dL_1, \ldots, dL_d forment une base sur O_K de Ω_{Γ_D/O_K}. □

Module de Tate [Ta1] et périodes [Cz5]. Soit $T_p(\Gamma) = \lim_{\rightarrow} \Gamma_n \cong \mathbb{Z}_p$ désigne le sous-groupe des points de p^n-torsion de $\Gamma(m_K)$, le module de Tate de Γ; c’est un \mathbb{Z}_p-module de rang h muni d’une action continue de $\text{Gal}(K/K)$. Soit $V_p(\Gamma) = T_p(\Gamma) \otimes \mathbb{Q}_p$. Si $f : \Gamma_1 \rightarrow \Gamma_2$ est un morphisme de groupes formels défini sur O_K, alors f induit des morphismes de $T_p(\Gamma_1)$ dans $T_p(\Gamma_2)$ et de $V_p(\Gamma_1)$ dans $V_p(\Gamma_2)$ commutant à l’action de Galois. De plus, $\text{Hom}_{O_K}(\Gamma_1,\Gamma_2)$ s’identifie à un réseau de $\text{Hom}_{\text{Gal}(K/K)}(V_p(\Gamma_1),V_p(\Gamma_2))$. □

Proposition I.1.3. Deux groupes formels définis sur O_K sont isomorphes sur O_K (resp. O_K) si et seulement si leurs modules de Tate sont isomorphes comme $\mathbb{Z}_p[\text{Gal}(K/K)]$-modules (resp. $\mathbb{Z}_p[I_K]$-modules). □

Proposition I.1.4. Soient ω une forme différentielle de seconde espèce, $u = (0, \ldots, u_n, \ldots) \in T_p(\Gamma)$ et $\hat{u}_n \in (A_{\inf,K})^d$ tel que $\theta(\hat{u}_n) = u_n$. Alors

(i) la suite $-p^n F_\omega(\hat{u}_n)$ converge dans $B_{\text{cris},K}^+$ vers une limite qui ne dépend que de u et de l’image de ω dans $H_{\text{DR}}^1(\Gamma)$. □
(ii) L'application période \((\omega, u) \rightarrow \int_u \omega\) de \(H^1_{DR}(\Gamma) \times T_p(\Gamma)\) dans \(B^+_{\text{cris},K}\) ainsi définie est bilinéaire, respecte les filtrations et commute à l'action de \(\text{Gal}(\overline{K}/K)\). De plus \(\int_u \omega = 0\) pour tout \(u \in T_p(\Gamma)\) si et seulement si l'image de \(\omega\) dans \(H^1_{DR}(\Gamma)\) est nulle.

(iii) Si \(\omega \in H^1_{DR}(\Gamma)\) et \(g \in W_K\), alors \(g(\int_u \omega) = \int_u g(\omega)\).

(iv) Soient \(\Gamma_1\) et \(\Gamma_2\) deux groupes formels définis sur \(\mathcal{O}_K\) et \(f \in \text{Hom}_{\mathcal{O}_K}(\Gamma_1, \Gamma_2)\). Alors \(\int_u f^* \omega = \int_{f(u)} \omega\).

2. Périodes des groupes de Lubin–Tate

Soient \(E \subset \overline{Q}_p\) une extension finie de \(Q_p\) et \(K \subset \overline{Q}_p\) une extension finie galoisienne de \(Q_p\) contenant tous les conjugués de \(E\). Si \(\tau \in H_E\), soit \(\chi_\tau\) le caractère de \(\mathcal{I}_K\) à valeurs dans \(\mathcal{O}_E^*\) donné par la formule \(\chi_\tau(g) = \tau^{-1}(N_{K/\tau(E)}(\chi_K(g)))\), où, par abus de notation, \(\tau^{-1}\) est l'isomorphisme de \(\tau(E)\) sur \(E\) inverse de \(\tau\). Pour alléger les formules nous écrirons \(e, f, h, \pi\) au lieu de \(e_E, f_E, h_E, \pi_E\).

Théorème I.2.1. Si \(\sigma, \tau \in H_E\), il existe un élément (non-nul) \(\Omega(E, \sigma, \tau)\) de \(B^+_{\text{cris},K}\) bien défini à multiplication par un élément de \(\mathcal{O}_K^*\) près vérifiant les deux conditions suivantes:

(i) si \(g \in \mathcal{I}_K\), alors \(\Omega(E, \sigma, \tau)^{g^{-1}} = \tau(\chi_\sigma(g))\).

(ii)

\[
\nu_p(\Omega(E, \sigma, \tau)) = \begin{cases}
\frac{1}{e(p^{-1})} - \nu_p(\mathcal{D}_\sigma(E)/Q_p) & \text{si } \tau = \sigma, \\
\frac{1}{e(p^{-1})} + \nu_p(\tau(\pi) - \sigma(\pi)) & \text{si } i(\sigma, \tau) = 0, \tau \neq \sigma, \\
\frac{p^{i(\sigma, \tau)}}{e(p^{-1})} & \text{si } i(\sigma, \tau) \neq 0.
\end{cases}
\]

De plus

(iii) \(\nu_p(\Omega(E, \sigma, \tau)) = 1\) si \(\tau = \sigma\) et \(\nu_p(\Omega(E, \sigma, \tau)) = 0\) si \(\tau \neq \sigma\).

(iv) Si \(g \in W_K\), l'entier \([i(\sigma, \tau) + n(g) - 1/f] - [i(\sigma, \tau) - 1/f]\) sera noté \(n(g, \sigma, \tau)\) ([\(x\] désignant la partie entière du nombre réel \(x\)). Alors

\[
g(\Omega(E, \sigma, \tau)) / \Omega(E, \sigma, g\tau)^{n(g, \sigma, \tau)} \in \mathcal{O}_K^*.
\]

Démonstration. Nous allons utiliser les groupes de Lubin–Tate pour construire \(\Omega(E, \sigma, \tau)\). Soit \(\sigma \in H_E\). Si \(\tau \in H_E\), soit \(\omega_\tau = dl_\tau\), où \(l_\tau \in K[\tau(X)]\) est la série formelle donnée par la formule

\[
l_\tau(X) = \begin{cases}
\sum_{n=0}^{\infty} \frac{X^n}{\tau(\pi)^n} & \text{si } i(\sigma, \tau) = 0, \\
\sum_{n=0}^{\infty} \frac{X^{n+n+1}}{\tau(\pi)^{n+1}} & \text{si } i(\sigma, \tau) \neq 0.
\end{cases}
\]
Alors \(l^{-1}_\sigma(l_\sigma(X) + l_\sigma(Y)) \) est une loi de groupe formel définie sur \(\mathcal{O}_K \) (et même \(\mathcal{O}_{\sigma(E)} \)) et le groupe formel \(\Gamma \) ainsi obtenu est isomorphe sur \(\mathcal{O}_K \) au groupe de Lubin-Tate pour \(\sigma(E) \) associé à l’uniformisante \(\tau(\pi) \) (cf. [Ca] ou [Ho]). En particulier il est de hauteur \(h \) et \(\text{End}_{\mathcal{O}_E}(\Gamma) \cong \mathcal{O}_E \). On notera \(\alpha.x \) l’endomorphisme de \(\Gamma \) correspondant à \(\alpha \in \mathcal{O}_E \). Par construction on a
\[\Omega = K\omega_\sigma \text{ et } \alpha^*\omega_\sigma = \sigma(\alpha)\omega_\sigma \text{ si } \alpha \in \mathcal{O}_E. \]

Lemme 1.2.2. Le \(K \)-espace vectoriel \(H^1_{\text{DR}}(\Gamma) \) est la somme directe des \(K\omega_\tau \) pour \(\tau \) dans \(H_E \). De plus \(k\omega_\tau \) est un espace propre pour l’action de \(\mathcal{O}_E \); plus précisément, si \(\alpha \in \mathcal{O}_E \), alors \(\alpha^*\omega_\tau = \tau(\alpha)\omega_\tau \).

Démonstration. Soient \(g \in W_K \) et \(\tau \in H_E \). On vérifie sans peine que
\[g(l_\tau) - g\tau(\pi)^n(g,\sigma,\tau)l_\tau \text{ est à coefficients bornés (c’est en fait un polynôme).} \]
Comme \(H^1_{\text{DR}}(\Gamma) \) est stable par \(W_K \), on en tire que si \(\omega_\tau \in H^1_{\text{DR}}(\Gamma) \), alors
\[\omega_\tau \in H^1_{\text{DR}}(\Gamma) \text{ et que l’on a} \]
\[(1.2.2.1) \quad g(\omega_\tau) = g\tau(\pi)^n(g,\sigma,\tau)\omega_\tau. \]
Comme \(\omega_\tau \in H^1_{\text{DR}}(\Gamma) \) et que si \(\tau \in H_E \), on peut choisir \(g_\tau \in W_K \) tel que
\[g_\tau(\sigma) = \tau, \text{ en déduit que } \omega_\tau \in H^1_{\text{DR}}(\Gamma). \]
De plus l’action de \(\mathcal{O}_E \) commutant avec celle de \(W_K \), on déduit du fait que \(\alpha^*\omega_\tau = \sigma(\alpha)\omega_\tau \) si \(\alpha \in \mathcal{O}_E \), le fait que pour tout \(\tau \in H_E \) on a \(\alpha^*\omega_\tau = \tau(\alpha)\omega_\tau \). On déduit alors de l’indépendance des caractères le fait que les \(\omega_\tau \) sont linéairement indépendants dans \(H^1_{\text{DR}}(\Gamma) \), qui est de dimension \(h \) et donc qu’ils en forment une base, ce qui termine la démonstration du lemme. \(\square \)

Le module \(T_p(\Gamma) \) est un \(\mathcal{O}_E \)-module de rang 1 sur lequel \(g \in \mathcal{I}_K \) agit par multiplication par \(\chi_\sigma(g) \) (cf., par exemple, [Se2]). Soit \(u = (0, \ldots, \hat{u}, \ldots) \) un générateur de ce module; nous allons montrer que l’on peut poser
\[\Omega(E, \sigma, \tau) = \int_u \omega_\tau. \]
Il s’agit de montrer que \(\int_u \omega_\tau \) vérifie les propriétés (i) et (ii) du Théorème I.2.1. Soit donc \(g \in \mathcal{I}_K \); on a
\[g\left(\int_u \omega_\tau \right) = \int_{g(u)} \omega_\tau = \int_{\chi_\sigma(g).u} \omega_\tau = \int_u \chi_\sigma(g)^*\omega_\tau = \tau(\chi_\sigma(g)) \int_u \omega_\tau, \]
ce qui montre le résultat pour (i). Avant de calculer \(v_p(\int_u \omega_\tau) \), remarquons que (iv) suit directement de la formule (I.2.2.1) et que (iii) est une conséquence des faits suivants:
• \(T_p(\Gamma) \) est un \(\mathcal{O}_E \)-module de rang 1,
• \(\omega_\tau \) est le vecteur propre pour l’action de \(\mathcal{O}_E \),
• \(\omega_\sigma \in \text{Fil}^1(H^1_{\text{DR}}(\Gamma)) - \text{Fil}^2(H^1_{\text{DR}}(\Gamma)) \) et \(\omega_\tau \in \text{Fil}^0(H^1_{\text{DR}}(\Gamma)) - \text{Fil}^1(H^1_{\text{DR}}(\Gamma)) \) si \(\tau \neq \sigma \).
LEMME 1.2.3. Si \(u = (0, \ldots, u_n, \ldots) \) est un générateur de \(T_p(\Gamma) \), alors

\[
v_p(u_n) = \frac{1}{e(p^f - 1)p^{(ne-1)f}},
\]

\[
v_p(du_n) = \frac{1}{e(p^f - 1) - n} - v_p(\mathcal{O}_{\sigma(E)}/\mathbb{Q}_p).
\]

Déémonstration. On peut remplacer \(\Gamma \) par le groupe de Lubin–Tate associé à \(\tau(\pi) \), et \(T_p(\Gamma) \) par \(T_\pi(\Gamma) \). Soit \(v = (0, \ldots, v_n, \ldots) \) un générateur de \(T_\pi(\Gamma) \); on a alors \(v_n = \tau(\pi)v_{n+1} + (v_{n+1})^{p^f} \) et on démontre facilement par récurrence les égalités

\[
v_p(v_n) = \frac{1}{e(p^f - 1)p^{(n-1)f}},
\]

\[
v_p(du_n) = \frac{1}{e(p^f - 1)} - \frac{n}{e} - v_p(\mathcal{O}_{\sigma(E)}/\mathbb{Q}_p),
\]

ce qui implique le lemme car \(u_n = \alpha v_{ne} \) avec \(\alpha \in \mathcal{O}_E^* \).

Nous allons déduire de ce lemme la valeur de \(v_p(\int_u \omega_\tau) \). Soit \(\hat{u}_n \in A_{\text{inf}} \) vérifiant \(\theta(\hat{u}_n) = u_n \).

Premier cas. \(\tau = \sigma \). On peut écrire

\[
l_\sigma(\hat{u}_n) = \sum_{i=0}^{\infty} \frac{l_\sigma^{(i)}(u_n)}{i!}(\hat{u}_n - u_n)^i,
\]

et comme \(l_\sigma(u_n) = 0 \) et \(v_p(du_n) < 0 \), on obtient, utilisant la Proposition I.0.2,

\[
v_p(l_\sigma(\hat{u}_n)) = v_p(l'_\sigma(u_n)) + v_p(\hat{u}_n - u_n) = v_p(du_n).
\]

Comme, par définition, on a \(\int_u \omega_\sigma = -\lim_{n \to \infty} p^n l_\sigma(\hat{u}_n) \), on obtient

\[
v_p\left(\int_u \omega_\sigma\right) = \lim_{n \to \infty} (n + v_p(du_n)) = \frac{1}{e(p^f - 1) - v_p(\mathcal{O}_{\sigma(E)}/\mathbb{Q}_p)}.
\]

Notons que ce calcul est essentiellement le même que celui effectué par Fontaine dans [Fo3], p. 387.

Deuxième cas. \(i(\sigma, \tau) = 0 \) et \(\tau \neq \sigma \). Notons que ces conditions impliquent \(\tau(\pi) \neq \sigma(\pi) \). Soit

\[
F_n(X) = \frac{\tau(\pi)ne l_\tau(X) - \sigma(\pi)ne l_\sigma(X)}{\tau(\pi) - \sigma(\pi)} = \sum_{i=1}^{\infty} a_i X^{p^f}.
\]

On a \(a_{ne} = 0 \), \(a_{ne-1} = 1 \) et \(v_p(a_i) \geq n - ((i + 1)/e) \). On en déduit que
$v_p(a_i u_n^{p^i})$ atteint son minimum une seule fois en $i = ne - 1$ et donc que
$v_p(F_n(u_n)) = 1/(e(p^f - 1))$. On en tire

$$
v_p \left(\int_u \omega_\tau \right) = \lim_{n \to \infty} (n + v_p(l_\tau(u_n)))
= \lim_{n \to \infty} (n + v_p(F_n(u_n)) - v_p(\tau(\pi)^{ne}) + v_p(\tau(\pi) - \sigma(\pi)))
= \frac{1}{e(p^f - 1)} + v_p(\tau(\pi) - \sigma(\pi)).
$$

Troisième cas. $i(\sigma, \tau) \neq 0$. Dans ce cas,

$$v_p \left(\int_u \omega_\tau \right) = \lim_{n \to \infty} (n + v_p(l_\tau(u_n))) = \frac{p^{i(\sigma, \tau)}}{e(p^f - 1)}.$$

Ce qui nous donne

$$v_p \left(\int_u \omega_\tau \right) = \lim_{n \to \infty} (n + v_p(l_\tau(u_n))) = \frac{p^{i(\sigma, \tau)}}{e(p^f - 1)}.$$

Ceci montre que $\int_u \omega_\tau$ vérifie bien dans tous les cas, la propriété (ii) du Théorème I.2.1 et met fin à la démonstration du dit théorème.

On peut donner une formule uniforme pour $v_p(\Omega(E, \sigma, \tau))$, en introduisant certaines mesures sur G_{Q_p}. Soit $C(G_{Q_p}, Q)$ le Q-espace vectoriel des fonctions localement constantes de G_{Q_p} dans Q. Si L est une extension finie de Q_p et $\sigma, \tau \in H_L$, soit $a_{L, \sigma, \tau} \in C(G_{Q_p}, Q)$ la fonction donnée par la formule

$$a_{L, \sigma, \tau}(g) = \begin{cases} 1 & \text{si } g\sigma = \tau, \\ 0 & \text{sinon.} \end{cases}$$

Si $K \subset \overline{Q_p}$ est une extension galoisienne finie de Q_p, soit $\mu_K \in C(G_{Q_p}, Q)$ la fonction donnée par la formule

$$\mu_K(g) = \begin{cases} 0 & \text{si } g \not\in T_{Q_p}, \\ -v_p(g(\pi_K) - \pi_K) & \text{si } g \in T_{Q_p} \text{ et } g(\pi_K) \neq \pi_K, \\ v_p(\mathcal{D}_K) & \text{si } g \in T_{Q_p} \text{ et } g(\pi_K) = \pi_K, \end{cases}$$

où π_K est une uniformisante de K.

LEMME I.2.4. Soient L une extension finie de Q_p, $K \subset \overline{Q_p}$ une extension galoisienne finie de Q_p contenant tous les conjugués de L et $\sigma, \tau \in H_L$. La fonction $a_{L, \sigma, \tau}$ est constante modulo G_K et peut donc être considérée comme une fonction sur G_K. Alors

(I.2.4.1)

$$\sum_{g \in G_K} a_{L, \sigma, \tau}(g) \mu_K(g) = \begin{cases} 0 & \text{si } i(\sigma) \neq i(\tau), \\ v_p(\mathcal{D}_{\tau(L)}) & \text{si } \tau = \sigma, \\ -v_p(\tau(\pi_L) - \sigma(\pi_L)) & \text{si } i(\tau) = i(\sigma) \text{ et } \sigma \neq \tau, \end{cases}$$
et

\begin{equation}
(1.2.4.2) \quad \frac{1}{e_K} \sum_{n=1}^{+\infty} \sum_{g \in W^n_K} a_{L,\sigma,\tau}(g) p_{ns} = \frac{1}{e_L} \frac{p^i(\tau,\sigma)s}{p^{f_L}s} - 1 \quad \text{si } \Re(s) > 0.
\end{equation}

\textbf{Démonstration.} Commençons par démontrer la formule (1.2.4.1). Si \(i(\sigma) \neq i(\tau) \), alors \(a_{L,\sigma,\tau}(g) = 0 \) dès que \(g\tau = \sigma \), d'où le résultat dans ce cas là. Si \(\sigma = \tau \), la somme à évaluer devient

\[v_p(\mathcal{D}_K) - \sum_{g \in \text{Gal}(K/K_0) \atop g \neq 1} v_p(g(\pi_K) - \pi_K) = v_p(\mathcal{D}_K) - v_p(\mathcal{D}_{K/\tau(L)}) \]

\[= v_p(\mathcal{D}_{\tau(L)}). \]

Supposons maintenant que \(i(\sigma) = i(\tau) \) et \(\sigma \neq \tau \). Soit \(P(X, Y) \in \mathcal{O}_{K_0}[X, Y] \) tel que \(P(X, \sigma(\pi_L)) \) soit le polynôme minimal de \(\pi_K \) sur \(K_0\sigma(L) \). Un calcul immédiat montre que

\[P(X, \tau(\pi_L)) = \prod_{g\sigma=\tau} X - g(\pi_K). \]

D’autre part \(P(X, \sigma(\pi_L)) - P(X, \tau(\pi_L)) \) est divisible par \(\tau(\pi_L) - \sigma(\pi_L) \); on en tire

\[\sum_{g \in G_K} a_{L,\sigma,\tau}(g) \mu_K(g) = - \sum_{g \in I_K \atop g\sigma=\tau} v_p(g(\pi_K) - \pi_K) \]

\[= -v_p\left(P(\pi_K, \tau(\pi_L)) \right) \]

\[= -v_p\left(P(\pi_K, \tau(\pi_L)) - P(\pi_K, \sigma(\pi_L)) \right) \]

\[\leq -v_p(\tau(\pi_L) - \sigma(\pi_L)). \]

Finalement, si on fixe \(\sigma \) et si on fait la somme pour \(\tau \) décrivant \(H_L \) de chacun des membres de l’identité (1.2.4.1), on trouve 0 dans les deux cas, ce qui n’est possible que si l’inégalité que l’on vient de démontrer est une égalité dans tous les cas. Ceci permet de terminer la vérification de la formule (1.2.4.1). \(\square \)

Passons maintenant à la formule (1.2.4.2). On vérifie facilement que l’équation \(g\sigma = \tau \) avec \(g \in W^n_K \), a des solutions si et seulement si \(n \equiv -i(\tau, \sigma) \mod f_L \), auquel cas elle en a \(e_K/e_L \). La formule s’en déduit alors immédiatement.

\textbf{Corollaire 1.2.5.} \textit{Les membres de gauche des formules (1.2.4.1) et (1.2.4.2) sont indépendants du choix de \(K \).}

Les \(a_{L,\sigma,\tau} \) formant une famille génératrice de \(C(G_{Q_p}, Q) \), on en tire la proposition suivante:

\[\text{This content downloaded from 134.157.55.166 on Tue, 3 Dec 2013 05:57:47 AM} \]
\[\text{All use subject to JSTOR Terms and Conditions} \]
Proposition I.2.6. Il existe des applications \mathbb{Q}-linéaires $\mu_{\text{Art},p} : C(G_{Q_p},\mathbb{Q}) \to \mathbb{Q}$ et $Z_p(\cdot,s) : C(G_{Q_p},\mathbb{Q}) \to \mathbb{C}$ si $s \in \mathbb{C}$ définies par les formules suivantes: si $a \in C(G_{Q_p},\mathbb{Q})$ et si $K \subset \overline{Q}_p$ une extension galoisienne finie de Q_p telle que a soit constante modulo G_K, alors

$$\mu_{\text{Art},p}(a) = \sum_{g \in G_K} a(g)\mu_K(g)$$

et $Z_p(a,s)$ est obtenu par prolongement méromorphe à partir de la formule suivante, valable pour $\Re(s) > 0$:

$$Z_p(a,s) = \frac{1}{e_K} \sum_{n=1}^{+\infty} \sum_{g \in W_K} a(g) p^{ns}.$$

\[\square \]

Remarque. Si V est un \mathbb{C}-espace vectoriel de dimension finie, si $\rho : G_{Q_p} \to \text{Aut}(V)$ est une représentation continue de G_{Q_p} et si $\chi \in C(G_{Q_p},\mathbb{Q}) \otimes \mathbb{C}$ est le caractère de ρ, alors $\mu_{\text{Art},p}(\chi)$ n'est autre que le conducteur de χ (cf. [Se1], pp. 107, 110, où $\mu_{\text{Art},p}(\chi)$ est dénoté par $f(\chi)$) et si W est le sous-espace vectoriel de V stable par \mathcal{I}_{Q_p}, on a (cf. [Ta2], §4)

$$Z_p(\chi,s) \log p = -\frac{d}{ds} \log(\det(1 - p^{-s}\text{Frob}_{| W})^{-1}).$$

On voit donc que les applications linéaires $\mu_{\text{Art},p}$ et $Z_p(\cdot,s)$ coïncident avec les applications portant les mêmes noms définies dans l'Introduction (cf. Convention 0).

Si on met ensemble le (ii) du Théorème I.2.1 avec le Lemme I.2.4, on obtient la proposition suivante:

Proposition I.2.7. $v_p(\Omega(E,\sigma,\tau)) = Z_p(a_{E,\tau,\sigma},1) - \mu_{\text{Art},p}(a_{E,\tau,\sigma}).$ \[\square \]

3. Groupes formels à multiplication formelle

Soient E,K,e,f,h,π comme dans le paragraphe précédent. Un groupe formel Γ, défini sur O_K, sera dit avoir multiplication formelle par E si il est de hauteur h et si on a une injection de E dans $\text{End}_{O_K}(\Gamma) \otimes \mathbb{Q}_p$. Il sera dit avoir multiplication formelle par O_E si on a une injection de O_E dans $\text{End}_{O_K}(\Gamma)$. Un groupe formel Γ a multiplication formelle par E si et seulement si $V_p(\Gamma)$ est un E-module de rang 1 et alors l'action de G_K sur $V_p(\Gamma)$ définit un caractère continu χ_Γ de G_K à valeurs dans E^* (et même dans O_E^* car G_K est compact).
Soit Φ une partie non-vide de H_E. Un module de Dieudonné $D = (V, \phi, \text{Fil})$ sera dit à multiplication par E, de type* FM Φ, si V est de dimension h, E s'injecte dans $\text{End}(D)$ et alors V_K est un $K \otimes E$-module de rang 1 et $\text{Fil}^1(V_K) = \bigoplus_{\tau \in \Phi} V_\tau$, où V_τ est un K-espace vectoriel de dimension 1 sur lequel $\alpha \in E$ agit par multiplication par $\tau(\alpha)$. Un groupe formel est à multiplication formelle par E si et seulement si son module de Dieudonné est à multiplication par E; on notera $\Phi(\Gamma)$ le type FM de $D(\Gamma)$.

Proposition 1.3.1. Si $g \in I_K$, alors $\chi_{\Gamma}(g) = \prod_{\tau \in \Phi(\Gamma)} \chi_{\tau}(g)$.

Démonstration. La représentation de G_K sur $T_p(\Gamma)$ étant de Hodge–Tate, on sait ([Se2], Cor. de ch. III, A5, Th. 2) qu'il existe un sous-groupe ouvert I de I_K et des entiers a_τ tels que l'on ait pour tout $g \in I$

$$\chi_{\tau}(g) = \prod_{\tau \in H_E} (\chi_{\tau}(g))^{a_\tau}.$$

Soient ω_σ un générateur de V_σ et u un élément non-nul de $T_p(\Gamma)$. Alors

$$\left(\int_u \omega_\sigma\right) \prod_{\tau \in H_E} \Omega(E, \tau, \sigma)^{-a_\tau}$$

est un élément de $B_{\text{cris}, K}$ stable par I et donc appartient à \tilde{K} (Proposition I.0.1). On en déduit que la formule est valable pour $g \in I_K$ et pas seulement pour $g \in I$. De plus on a d'une part $\nu_p(\int_u \omega_\sigma) = a_\sigma$ d'après le (iii) du Théorème I.2.1 et, d'autre part, $\nu_p(\int_u \omega_\sigma)$ vaut 1 si $\sigma \in \Phi(\Gamma)$ et vaut 0 sinon; ce qui permet de conclure.

Soit $\Phi \neq H_E$, un type FM (la raison pour laquelle on exclut le cas $\Phi = H_E$ est qu'une des étapes de la démonstration qui suit ne marche pas dans ce cas là (cf. Lemme I.3.8); mais de toute façon, un groupe formel à multiplication formelle par O_E, dont le type FM est H_E, est isomorphe sur $O_{\overline{K}}$ à G_m^h et peut donc se traiter directement). Si $i \in \mathbb{Z}/f\mathbb{Z}$, soit $\Phi_i = \Phi \cap H_{E,i}$ et soit d_i le cardinal de Φ_i. Notons $K[[X_\Phi]]$ l'algèbre des séries formelles à coefficients dans K en les variables $X_{i,j}$ avec $i \in \mathbb{Z}/f\mathbb{Z}$ et $0 \leq j \leq d_i - 1$. Si $\tau \in H_{E,i}$, soit l_τ l'élément de $K[[X_\Phi]]$ donné par la formule

$$l_\tau(X_\Phi) = \sum_{n=0}^{\infty} \sum_{j=0}^{d_i-n-1} \tau(\pi)^{j-(d_i+d_{i-1}+\cdots+d_{i-n-1})} (X_{i-n,j})^{p^n}.$$

On dit "type FM" (pour formal multiplication) par analogie avec la terminologie "type CM" pour une variété abélienne à multiplication complexe.
Théorème 1.3.2. (i) Il existe des séries formelles μ_τ à coefficients bornés, telles que, si l’on pose $L_\tau = l_\tau + \mu_\tau$ et $L = (L_\tau)_{\tau \in \Phi}$ pour $\tau \in \Phi$, alors $L^{-1}(L(X_\Phi) + L(Y_\Phi))$ est une loi de groupe formelle définie sur \mathcal{O}_K et le groupe formel Γ_Φ ainsi obtenu est un groupe formel à multiplication formelle par \mathcal{O}_E, dont le type FM est Φ.

(ii) Tout groupe formel défini sur \mathcal{O}_K à multiplication formelle par \mathcal{O}_E, dont le type FM est Φ, est isomorphe à Γ_Φ sur \mathcal{O}_K.

Démonstration. Le (ii) est immédiat car la donnée de Φ détermine complètement la structure de $T_p(\Gamma)$ en tant que $\mathcal{O}_E[\Gamma_K]$-module (Proposition 1.3.1); il suffit alors d’utiliser la Proposition I.1.3 pour conclure. La démonstration du (i) se fait en plusieurs étapes (et nécessite l’utilisation d’un certain nombre des lemmes et de propositions). On commence par vérifier que les l_τ se comportent suffisamment bien sous l’action de Frobenius pour être presque les logarithmes d’un groupe formel Γ_Φ défini sur \mathcal{O}_K (Lemme I.3.3-Corollaire I.3.7). On vérifie facilement que $\text{End}_{\mathcal{O}_K}(D(\Gamma_\Phi))$ admet \mathcal{O}_E comme sous-anneau et on en déduit que $V_p(\Gamma)$ est un E-module de rang 1. Pour terminer la démonstration il ne reste alors plus qu’à déterminer explicitement le résidu $T_p(\Gamma)$ de $V_p(\Gamma)$ et à montrer que c’est un \mathcal{O}_E-module de rang 1 (Lemme I.3.8-Lemme I.3.14).

Si $i \in \mathbb{Z}/f\mathbb{Z}$, posons $V_i = K_0 \otimes_{E_0} E$, E_0 étant plongé dans K_0 par φ^e_0 et soit $V = \bigoplus_{i \in \mathbb{Z}/f\mathbb{Z}} V_i = K_0 \otimes_{\mathcal{O}_p} E$. Chacun des V_i (et donc aussi V) est muni d’une action K_0-linéaire naturelle de E. Si $k \in \mathbb{Z}$, on note sh_k l’application φ^k-semi-linéaire de V dans V, qui envoie $x \otimes \alpha \in V_i$ sur $\varphi^k(x) \otimes \alpha \in V_{i+k}$. On munit V d’une action de Frobenius en posant $\phi(x) = sh_1(\pi^{d_i}.x) = \pi^{d_i}.sh_1(x)$ si $x \in V_i$. L’action de E sur $V_K = K \otimes_{K_0} V$ se diagonalise, et on a $V_K = \bigoplus_{\tau \in H_E} V_\tau$, où V_τ est un K-espace vectoriel de dimension 1 sur lequel $\alpha \in E$ agit par multiplication par $\tau(\alpha)$. On munit V_K d’une filtration en posant $\text{Fil}^0 = V_K$, $\text{Fil}^1 = \bigoplus_{\tau \in \Phi} V_\tau$ et $\text{Fil}^2 = 0$.

Lemme I.3.3. $D_\Phi = (V, \phi, \text{Fil})$ est un module de Dieudonné à multiplication par E, dont le type FM est Φ.

Démonstration. Soit a un idéal fractionnaire de E. Notons $M(a)$ le résidu $\mathcal{O}_{K_0} \otimes_{\mathbb{Z}_p} a$ de V. Si on note $M(a)_i$ l’intersection de $M(a)$ avec V_i, alors $M(a)_i$ s’identifie à $\mathcal{O}_{K_0} \otimes_{\mathcal{O}_{E_0}} a$, et on a $M(a) = \bigoplus_{i \in \mathbb{Z}/f\mathbb{Z}} M(a)_i$. De plus, sh_k induit un isomorphisme de $M(a)_i$ sur $M(a)_{i+k}$. On a alors $\phi M(a) = \bigoplus_{i \in \mathbb{Z}/f\mathbb{Z}} M(\pi^{d_i}a)_{i+1} \subset M(a)$ et $p^{\phi^{-1}} M(a) = \bigoplus_{i \in \mathbb{Z}/f\mathbb{Z}} M(p \pi^{-d_i}a)_i \subset M(a)$ car $d_i \leq e$. D’autre part ϕ^{f_k} agit comme $\pi^{d_k/f}$, qui est de manière évidente...
topologiquement nilpotent, et l’on a
\[M(a)/\phi M(a) \cong \bigoplus_{i \in \mathbb{Z}/f\mathbb{Z}} \mathcal{O}_{K_i} \otimes \mathcal{O}_{E_0} \mathcal{O}_E/\pi^{d_i}, \]
qui est un k_K-espace vectoriel de dimension $\sum_{i \in \mathbb{Z}/f\mathbb{Z}} d_i = d$. Ceci finit de montrer que D_Φ est un module de Dieudonné. D’autre part il est clair que l’action de E sur V respecte la filtration, que V_K est un $K \otimes E$-module de rang 1 et que, par construction de la filtration, le type FM est égal à Φ. Finalement on vérifie aisément que l’action de E commute avec celle de ϕ et donc que E s’injecte dans les morphismes de D_Φ.

Soit \mathcal{D}_E la différente absolue de E et soit $M = p \phi^{-1}M(\mathcal{D}_E^{(-1)})$. Soit f_0, \ldots, f_{e-1} la base de E duale de $1, \ldots, \pi^{e-1}$ pour la forme bilinéaire $\text{tr}_{E/E_0}(x y)$. C’est une base de $\mathcal{D}_E^{(-1)}$ sur \mathcal{O}_{K_0}. On vérifie facilement que l’on peut prendre $f_0, \ldots, f_{d_i-1}, pf_{d_i}, \ldots, pf_{e-1}$ comme base de $p \pi^{-d_i} \mathcal{D}_E^{(-1)}$ sur \mathcal{O}_K. Notons $f_{i,j}$ l’élément $1 \otimes f_j$ de V_i et, si $\tau \in H_{E,i}$, posons $e_{\tau} = \sum_{j=0}^{e-1} \tau(\pi)^j f_{i,j}$. On vérifie facilement que l’on peut prendre les $f_{i,j}$, avec $i \in \mathbb{Z}/f\mathbb{Z}$ et $0 \leq j \leq d_i - 1$ et les $pf_{i,j}$, avec $d_i \leq j \leq e - 1$, comme base de M sur \mathcal{O}_{K_0} et que e_{τ} est un générateur de V_{τ}.

Lemme I.3.4. Soient $r \in \mathbb{N} - 0$, $x = (x_1, \ldots, x_r) \in (K^*)^r$ tel que $x_i \neq x_j$ si $i \neq j$. Si $n \in \mathbb{Z}$, notons x^n le vecteur (x_1^n, \ldots, x_r^n). Avec les hypothèses faites sur x, les vecteurs x^0, \ldots, x^{r-1} forment une base de K^n. Il existe des polynômes $P_{n,i}^r \in \mathbb{Z}[X_1, X_1^{-1}, \ldots, X_r, X_r^{-1}]$ tels que $x^n = \sum_{i=0}^{r-1} P_{n,i}^r(x)x^i$; de plus

\[
P_{n,i}^r = \begin{cases}
1 & \text{si } 0 \leq n \leq r - 1 \text{ et } i = n, \\
0 & \text{si } 0 \leq n \leq r - 1 \text{ et } i \neq n, \\
polynôme symétrique homogène de degré $n - i$ & \text{si } n \notin [0, r - 1], \\
(-1)^{r-1}(X_1 \ldots X_r)^{-1} & \text{si } n = -1 \text{ et } i = r - 1.
\end{cases}
\]

Démonstration. Tout est plus ou moins immédiat une fois qu’on a écrit $P_{n,i}^r(x)$ comme le quotient de $\det(x^0, \ldots, x^{i-1}, x^n, x^{i+1}, \ldots, x^{r-1})$ par $\det(x^0, \ldots, x^{r-1})$.

Si $i \in \mathbb{Z}/f\mathbb{Z}$, posons $\Phi_i(\pi) = (\ldots, \sigma(\pi), \ldots)$, σ décrivant les éléments de Φ_i. Si $0 \leq j \leq d_i - 1$, posons

\[
e_{i,j} = f_{i,j} + \sum_{k=d_i}^{e-1} P_{k,j}^{d_i}(\Phi_i(\pi)).
\]
LEMME I.3.5. (i) Les $e_{i,j}$, avec $i \in \mathbb{Z}/f\mathbb{Z}$ et $0 \leq j \leq d_i - 1$, forment une base de $\text{Fil}^1(V_K)$.

(ii) Les (images des) $f_{i,j}$, avec $i \in \mathbb{Z}/f\mathbb{Z}$ et $0 \leq j \leq d_i - 1$, forment une base de $M/\phi M$ sur k_K et $e_{i,j} - f_{i,j} \in p^{-1}m_K \otimes \phi M$.

Démonstration. (i) Un calcul immédiat utilisant la définition des $P_{n,i}$ nous donne $e_\tau = \sum_{j=0}^{d_i-1} \tau(\pi)^j e_{i,j}$ si $\tau \in \phi_i$, et le résultat suit de ce que les e_τ pour $\tau \in \Phi$ forment une base de $\text{Fil}^1(V_K)$.

(ii) Nous voyons que $\phi M = pM(D_E^{-1})$ admet comme base sur O_{K_0} les $pf_{i,j}$, avec $i \in \mathbb{Z}/f\mathbb{Z}$ et $0 \leq j \leq e - 1$, et le résultat découle du fait que $P_{k,j}(\Phi_i(\pi)) \in m_K$.

On va maintenant utiliser la Proposition I.1.2 pour écrire “explicitement” les logarithmes de Γ_{D_0}. Soit $\lambda : V \rightarrow K[[X_\Phi]]$ l'application linéaire qui à $x \otimes \alpha \in V_i$ associe $x \sum_{\tau \in E_i} \tau(\alpha) l_\tau$. L'image de V par λ est un sous-K_0-espace vectoriel de $K_0[[X_\Phi]]$ que l'on munit d'une action K_0-linéaire de E en posant $\alpha.l_\tau = \tau(\alpha) l_\tau$.

LEMME I.3.6. (i) Si $\alpha \in E$ et $x \in V$, alors $\alpha.\lambda(x) = \lambda(\alpha.x)$.

(ii) Si $x \in M$, alors $\lambda(x) = 0$.

(iii) $\lambda(x)$ est à coefficients bornés si et seulement si $x = 0$.

(iv) $\lambda(x)$ est linéaire sur M.

Démonstration. Le (i) est immédiat. D'autre part on vérifie facilement que si $x = 1 \otimes \alpha \in V_i$, alors

$$\phi(\lambda(x)) = \lambda(\phi(x)) - \sum_{j=0}^{d_i+1-1} \varphi^{i+1}(\text{tr}_{E/0}(\pi^{d_i+j} \alpha)) X_{i+1,j}.$$

On termine la démonstration du (ii) en remarquant que $M = \bigoplus_{i \in \mathbb{Z}/f\mathbb{Z}} M(p\pi^{-d_i}D_E^{-1})$ et que $\text{tr}_{E/0}(\pi^{d_i+j} \alpha) \in pO_{E_0}$, si $\alpha \in p\pi^{-d_i}D_0^{-1}$.

Le (iii) est immédiat.

(iv) Le terme linéaire de $\lambda(f_{i,j})$ est égal à $X_{i,j}$, ce qui implique le résultat.

COROLLAIRE I.3.7. (i) Il existe des séries μ_τ à coefficients bornées telles que les $L_\tau = l_\tau + \mu_\tau$ pour $\tau \in \Phi$ forment une base des logarithmes d'un groupe formel Γ_Φ défini sur O_K ayant D comme module de Dieudonné.

(ii) Plus précisément les μ_τ peuvent être choisis de telle sorte que les $\lambda(e_{i,j})$, avec $i \in \mathbb{Z}/f\mathbb{Z}$ et $0 \leq j \leq d_i - 1$, forment une base de Ω_{Γ_Φ}/O_K sur O_K.

Démonstration. Étendons λ en une application K-linéaire de V_K dans $K[[X_\Phi]]$. On vérifie que l'on a $\lambda(e_\tau) = l_\tau$ et donc que les l_τ, avec $\tau \in \Phi$,
formen une base de $\lambda(\text{Fil}^1(V_K))$; le résultat suit alors immédiatement de la Proposition I.1.1. et le (ii) est une conséquence de la Proposition I.1.2 et du Lemme I.3.5. On peut alors, si $\tau \in \Phi_i$, écrire μ_τ sous la forme $\sum_{j=0}^{d_i-1} \tau(\pi)\mu_{i,j}$, où $\mu_{i,j}$ est une série à coefficients bornés vérifiant de plus $d_{\mu_{i,j}} \equiv 0 [m_K]$. □

On sait déjà que Γ_Φ est à multiplication formelle par E, il nous reste à vérifier qu’il est à multiplication formelle par \mathcal{O}_E. Renumérotions les variables en posant $X_{i,j} = Y_k$, où $k \in \mathbb{Z}/d\mathbb{Z}$ est donné par $k = d_1 + \cdots + d_i - j - 1$. Si $\tau \in \mathbb{H}_{E,i}$, on peut réécrire l_τ sous la forme

$$l_\tau(Y) = \sum_{k=0}^{+\infty} \tau(\pi)^{d_i-1-k}(Y_{d_1+\cdots+d_i-k})^{p_0(-k)},$$

où $a_i(k) = a(d_1 + \cdots + d_i + k) + i$ et $a : \mathbb{Z} \rightarrow \mathbb{Z}$ est la fonction définie par

$$a(k) = \begin{cases} -1 & \text{si } 1 \leq k \leq d_1, \\ -2 & \text{si } 1 + d_1 \leq k \leq d_1 + d_2, \\ \cdots & \\ -r & \text{si } 1 + d_1 + \cdots + d_{r-1} \leq k \leq d_1 + \cdots + d_r, \end{cases}$$

que l’on prolonge à \mathbb{Z} tout entier en utilisant l’équation fonctionnelle $a(k-d) = a(k) + f$.

La fin de la démonstration du Théorème I.3.2 repose sur les deux lemmes suivants:

Lemme I.3.8. Soit $\tau \in \mathbb{H}_{E} - \Phi$. Le groupe formel Γ_Φ est à multiplication formelle par \mathcal{O}_E si et seulement si il existe une constante C telle que, pour n assez grand, l’équation $L(y) = 0$ ait exactement $p^{nf} - p^{(n-1)f}$ solutions vérifiant $v_p(l_\tau(y)) = C - (n/e)$.

Lemme I.3.9. Soit $\tau \in \mathbb{H}_{E,i} - \Phi_i$. L’équation $L(y) = 0$ a exactement $p^{nf} - p^{(n-1)f}$ solutions vérifiant

$$v_p(l_\tau(y)) = -\frac{n}{e} + \sum_{\sigma \in \Phi_i} v_p(\tau(\pi) - \sigma(\pi)) + \frac{1}{e} \sum_{m=1}^{+\infty} p^{a_i(m)}.$$

Démonstration du Lemme I.3.8. On sait que $T_p(\Gamma)$ est un réseau de $V_p(\Gamma)$, qui est un E-module de rang 1. Choisissons un générateur u de $V_p(\Gamma)$ vérifiant $u \in T_p(\Gamma)$ et $T_p(\Gamma) \subset \mathcal{O}_E.u$ et soit $M = \{ \alpha \in E \mid \alpha.u \in T_p(\Gamma) \}$. Il s’agit de prouver que l’on a en fait $M = \mathcal{O}_E$. Les modules $\Gamma_\text{Tor}, V_p(\Gamma)/T_p(\Gamma)$ et E/M sont isomorphes. Si $\alpha \in E$, notons $\tilde{\alpha}$ son image dans Γ_Tor. Il existe alors $k \in \mathbb{Z}$ indépendant de α tel que $v_p(l_\tau(\tilde{\alpha}) - \tau(\alpha)\theta(\int u \omega_\tau)) \geq k$. Posons $C = v_p(\int u \omega_\tau)$. On déduit de l’égalité précédente que si $\alpha \in \pi^{-n}\mathcal{O}_E^*$ et $n > -ke$,
alors \(v_p(l_\tau(\tilde{\alpha})) = C - (n/e) \). L’hypothèse faite dans le lemme implique donc que
\[
|\pi^{-n}O^*_E/M| = p^{nf} - p^{(n-1)f} = |\pi^{-n}O^*_E/O_E|
\]
si \(n \) est assez grand. Comme \(M \) est inclus dans \(O_E \), on en tire \(M = O_E \), ce qui termine la démonstration. \(\square \)

L’étape principale dans la démonstration du Lemme I.3.9 est le calcul de la valuation des solutions de l’équation \(L(y) = 0 \) (en fait de calcul, il s’agit plutôt de deviner le résultat et de le vérifier).

Proposition I.3.10. Si \(n \) est assez grand, l’équation \(L(y) = 0 \) a \(p^{nf} \) solutions vérifiant
\[
v_p(y_l) \geq \frac{1}{e} \sum_{m=l+n}^{+\infty} p^{a(m)-a(l)} \quad \text{si } l \in \mathbb{Z}/d\mathbb{Z},
\]
parmi lesquelles \(p^{nf} - p^{(n-1)f} \) vérifient
\[
v_p(y_{d_1+\ldots+d_i+1-n}) = \frac{1}{e} \sum_{m=1}^{+\infty} p^{a(m)-a(i-1)} \quad \text{si } i \in \mathbb{Z}/f\mathbb{Z}.
\]

Démonstration. Nous aurons besoin d’un certain nombre de lemmes. Si \(n \in \mathbb{N} \), posons
\[
F^n_{i,j}(Y) = \sum_{k=0}^{+\infty} P_{k-n,j}^{d_i}(\Phi_i(\pi)^{-1})(Y_{d_1+\ldots+d_i-k})^n
\]
\[
\quad + \sum_{r=0}^{d_i-1} P_{r-n,j}^{d_i}(\Phi_i(\pi)^{-1})^{\mu_{i,r}}(Y).
\]
Un calcul immédiat utilisant la définition de \(P^n_{r,i} \) et celle de \(\Phi_i(\pi) \), nous donne
\[
\sum_{j=0}^{d_i-1} \tau(\pi)^{d_i-j-1} F^n_{i,j}(Y) = \tau(\pi)^n L_\tau(Y),
\]
et donc, résoudre l’équation \(L(y) = 0 \) est équivalent au fait de résoudre le système d’équations \(F^n_{i,j}(y) = 0 \) pour \(i \in \mathbb{Z}/f\mathbb{Z} \) et \(0 \leq j \leq d_i - 1 \).

Posons \(Y_i = \alpha_{n,i} Y_{n,i} \), où \(\alpha_{n,i} \) est un élément de \(O_K \) vérifiant
\[
v_p(\alpha_{n,i}) = \frac{1}{e} \sum_{m=l+n}^{+\infty} p^{a(m)-a(l)}.
\]
Notons que l’équation fonctionnelle \(a(k + d) = a(k) - f \) assure que la série converge vers un nombre rationnel et donc que \(\alpha_{n,i} \) existe.
Posons
\[\beta_{i,j,k,n} = P_{k-n,j}^{d_i}(\Phi_i(\pi)^{-1})(\alpha_{n,d_1+\ldots+d_i-k})^{p_i^{(k)}}. \]

Lemme 1.3.11. (i) i, j et n étant fixes, \(v_p(\beta_{i,j,k,n}) \) atteint son minimum en \(k = n + j \).
(ii) \(v_p(\beta_{i,j,n+j,n}) \) implique \(k = n + j \) ou \(k = n - 1 \).
(iii) \(v_p(\beta_{i,d_i-1,n-1,n}) = v_p(\beta_{i,i,n+j,n}) \).

Démonstration. Pour ne pas introduire des \(1/e \) partout dans les formules nous travaillerons avec \(v_\pi \) au lieu de \(v_p \). On a
\[v_\pi(\beta_{i,j,k,n}) = v_\pi(P_{k-n,j}^{d_i}(\Phi_i(\pi)^{-1})) + p^{a_i(-k)}v_\pi(\alpha_{n,d_1+\ldots+d_i-k}). \]
Or on a \(\varepsilon_{k-n,j}(\Phi_i(\pi)^{-1}) \geq j + n - k, \) avec égalité si \(k = n+j \) ou si \(k = n-1 \) et \(j = d_i - 1, \) et inégalité stricte si \(n \leq k \leq n + d_i - 1 \) et \(k \neq n + j \) (cf. Lemme I.3.4). D’autre part un calcul immédiat nous donne
\[p^{a_i(-k)}v_\pi(\alpha_{n,d_1+\ldots+d_i-k}) = \sum_{m=-n-k}^{+\infty} p^{a_i(m)}. \]
On obtient donc \(v_\pi(\beta_{i,j,k,n}) \geq j + f_i(k-n), \) avec égalité si \(k = n + j \) ou si \(k = n - 1 \) et \(j = d_i - 1, \) et inégalité stricte si \(n \leq k \leq n + d_i - 1 \) et \(k \neq n + j \) et où l’on a posé
\[f_i(k) = -k + \sum_{m=-n-k}^{+\infty} p^{a_i(m)}. \]

Lemme 1.3.12. La fonction \(f_i \) est strictement décroissante de \(-\infty \) à \(-1, \) constante entre \(-1 \) et \(d_i - 1 \) et strictement croissante de \(d_i - 1 \) à \(+\infty.\)

Démonstration. On a \(f_i(k) - f_i(k-1) = -1 + p^{a_i(-k)}. \) Or \(a_i(-k) \) est nul si \(0 \leq k \leq d_i - 1, \) strictement positif si \(k \geq d_i \) et strictement négatif si \(k < 0, \) ce qui implique le Lemme 1.3.12 et permet de terminer la démonstration du Lemme 1.3.11. \(\square \)

Notons \(\Lambda_n \) l’algèbre de Tate des séries \(\sum_k a_k \prod_{i \in \mathbb{Z}/d_i \mathbb{Z}} Y_{n,i}^{k_i}, \) où \(a_k \) est une suite d’éléments de l’anneau des entiers de \(K_n = K(\ldots, \alpha_{n,i}, \ldots) \) tendant vers 0 quand \(k \) tend vers l’infini. Posons \(G_{i,j}^n(\ldots, Y_{n,i}, \ldots) = (\beta_{i,j,n+j,n})^{-1} F_{i,j}^n(\ldots, \alpha_{n,i} Y_{n,i}, \ldots). \)

Lemme 1.3.13. Si \(n \) est assez grand, les \(G_{i,j}^n \) sont éléments de \(\Lambda_n. \) De plus, modulo \(m_{K_n}, \)
\[G_{i,j}^n(\ldots, Y_{n,i}, \ldots) = (Y_{n,d_1+\ldots+d_i-n})^{p^{a_i(-j-n)}} - \gamma_{i,j,n}(Y_{n,d_1+\ldots+d_i+1-n})^{p^{a_i(1-n)}}, \]
où \(\gamma_{i,j,n} \) est une unité si \(j = d_i - 1. \)
Démonstration. En utilisant le fait que $v_p(\alpha_{n,l}) > 0$, on montre facilement que $G^n_{i,j} \in K_n \otimes \Lambda_n$. Il n’y a donc qu’à vérifier que $G^n_{i,j}$ est à coefficients entiers pour montrer qu’il est élément de Λ_n. On a
\[
G^n_{i,j}(\ldots, Y_{n,l}, \ldots) = \sum_{k=0}^{+\infty} \frac{\beta_{i,j,k,n}}{\beta_{i,j,n+j,n}} (Y_{n,d_i+\ldots+d_i+k})^{\mu_{i,r}} + \sum_{r=0}^{d_i-1} \frac{p_{d_i}^{r} \Phi_{i}(\pi)^{-1}}{\beta_{i,j,n+j,n}} \mu_{i,r}(\ldots, \alpha_{n,l} Y_{n,l}, \ldots).
\]
De plus $v_p(\beta_{i,j,n+j,n}) = j + f_i(j)$ est indépendant de n. Comme $\mu_{i,r}$ est à coefficients bornés et que $v_p(p_{r-n,j}(\Phi_{i}(\pi)^{-1})) \geq n + j - r$, on en déduit que si n est assez grand, la somme faisant intervenir les $\mu_{i,r}$ est à coefficients entiers et même à coefficients dans m_{K_n}. Le lemme découle alors immédiatement du Lemme I.3.11.

On est maintenant en position de conclure la démonstration de la Proposition I.3.10. En effet celle-ci peut se réécrire sous la forme: Si n est assez grand, le système d’équations $G^n_{i,j}(\ldots, Y_{n,l}, \ldots)$ a p^{nf} solutions vérifiant $v_p(Y_{n,l}) \geq 0$ si $l \in \mathbb{Z}/d\mathbb{Z}$, parmi lesquelles $p_{n}^{nf} - p_{n-1}^{nf}$ vérifient $v_p(Y_{n,d_i+\ldots+d_i+1-n}) = 0$. Le Lemme I.3.13 montre que $G^n_{i,j}$ sont régulières en $Y_{n,d_i+\ldots+d_i+1-n-j}$ de degré $p^{a_j(-j-n)}$. On en déduit que $\Lambda_n/ \cdots G^n_{i,j} \cdots > 1$ est une O_{K_n}-algèbre de dimension $\prod_{i,j} p^{a_j(-j-n)}$ et donc que le système d’équations $G^n_{i,j} = 0$ a $\prod_{i,j} p^{a_j(-j-n)}$ solutions vérifiant $v_p(Y_{n,l}) \geq 0$. D’autre part le nombre de solutions vérifiant $v_p(Y_{n,d_i+\ldots+d_i+1-n}) = 0$ si $i \in \mathbb{Z}/f\mathbb{Z}$ ne dépend que de la réduction modulo m_{K_n} des $G^n_{i,j}$ et on peut donc faire le calcul en supposant que
\[
G^n_{i,j}(\ldots, Y_{n,l}, \ldots) = (Y_{n,d_i+\ldots+d_i+1-n-j})^{p^{a_j(-j-n)}},
\]
ou $\gamma_{i,j,n}$ est une unité si $j = d_i - 1$. Ce système se résout très facilement, et on voit que si il existe i tel que $v_p(Y_{n,d_i+\ldots+d_i+1-n}) > 0$, alors on a $Y_{n,l} = 0$ pour tout $l \in \mathbb{Z}/d\mathbb{Z}$. D’autre part la multiplicité de la solution $(0, \ldots, 0)$ est égale à
\[
\prod_{i \in \mathbb{Z}/f\mathbb{Z}, 0 \leq j < d_i-1} p^{a_j(-j-n)} \prod_{i \in \mathbb{Z}/f\mathbb{Z}, 0 \leq j \leq d_i-1} p^{a_i(-j-(n-1))}.
\]
Il ne reste donc plus qu’à démontrer le lemme suivant:

Lemme I.3.14. $\sum_{i \in \mathbb{Z}/f\mathbb{Z}} \sum_{0 \leq j \leq d_i-1} a_i(-j-n) = nf$.\[\]
Démonstration. La démonstration se fait par récurrence. On a $a_{i}(-j) = 0$ si $0 \leq j \leq d_{i} - 1$ et le résultat est donc vrai pour $n = 0$. D’autre part on a

$$
\sum_{i \in \mathbb{Z}/fZ, 0 \leq j \leq d_{i} - 1} (a_{i}(-j - n) - a_{i}(-j - (n - 1)))
$$

$$
= \sum_{i \in \mathbb{Z}/fZ} a_{i}(1 - d_{i} - n) - a_{i}(1 - n)
$$

$$
= \sum_{i=1}^{f} a(d_{1} + \cdots + d_{i-1} + 1 - n) - a(d_{1} + \cdots + d_{i} + 1 - n)
$$

$$
= a(1 - n) - a(d + 1 - n) = f,
$$

ce qui permet de conclure. \qed

Nous allons maintenant déduire le Lemme I.3.9 de la Proposition I.3.10. Soit $\tau \in H_{E} - \Phi$. Soit $i \in \mathbb{Z}/fZ$ tel que $\tau \in H_{E,i}$ et soient $\Psi = \Phi_{i} \cup \{\tau\}$ et $\Psi(\pi) = (\ldots, \sigma(\pi), \ldots) \in K^{d_{i}+1}$, σ décrivant les éléments de Ψ. Posons

$$
F_{n}(Y) = \sum_{k=0}^{+\infty} P_{k+1-n,0}^{d_{i}+1}(\Psi(\pi)^{-1})(Y_{d_{1}+\cdots+d_{i}-k})p_{\sigma}^{{(k)}}
$$

$$
= \sum_{\sigma \in \Psi} \sigma(\pi)^{n}l_{\sigma}(Y) \prod_{\sigma' \in \Psi, \sigma' \neq \sigma} \frac{1}{\sigma(\pi) - \sigma'(\pi)},
$$

la deuxième égalité s’obtenant en écrivant $P_{k+1-n,0}^{d_{i}+1}(\Psi(\pi)^{-1})$ comme le quotient de $\det(1, \Psi(\pi), \ldots, \Psi(\pi)^{d_{i}+1})$ par $\det(1, \Psi(\pi), \ldots, \Psi(\pi)^{d_{i}})$. Prenons n assez grand, et soit Y une solution de l’équation $L(Y) = 0$ décrite à la Proposition I.3.10, c’est-à-dire, vérifiant $v_{\tau}(Y) \geq \sum_{m=1}^{+\infty} p_{a(m)-a(l)}^{m}$, avec égalité si $l = d_{1} + \cdots + d_{i} + 1 - n$. Des calculs similaires à ceux effectués au Lemme I.3.11 montrent que

$$
v_{p}\left(P_{k+1-n,0}^{d_{i}+1}(\Psi(\pi)^{-1})(Y_{d_{1}+\cdots+d_{i}-k})p_{\sigma}^{{(k)}}\right)
$$

admet un minimum strict pour $k = n - 1$, qui vaut d’ailleurs $(1/e) \sum_{m=1}^{+\infty} p_{a(m)}^{m}$. On en déduit que $v_{p}(F_{n}(Y)) = (1/e) \sum_{m=1}^{+\infty} p_{a(m)}^{m}$; en particulier $v_{p}(F_{n}(Y))$ ne dépend pas de n. D’autre part, si $\sigma \in \Phi_{i}$, l_{σ} ne diffère de L_{σ} que par une série bornée et comme $L_{\sigma}(Y) = 0$, on en déduit que quand n est assez grand, on a

$$
v_{p}(F_{n}(Y)) = v_{p}\left(\sigma(\pi)^{n}l_{\sigma}(Y) \prod_{\sigma' \in \Psi, \sigma' \neq \tau} \frac{1}{\tau(\pi) - \sigma'(\pi)}\right),
$$
d’où l’on tire
\[v_p(l_\tau(Y)) = -\frac{n}{e} + \sum_{\sigma \in \Phi} v_p(\tau(\pi) - \sigma(\pi)) + \frac{1}{e} \sum_{m=1}^{+\infty} p^{a_i(m)}, \]

ce qui permet de terminer la démonstration du Lemme I.3.9 et donc du Théorème I.3.2. \(\square\)

Si \(\Phi \subset \mathcal{H}_E\) et \(\tau \in \mathcal{H}_E\), soient \(a_{E,\tau,\Phi}\) et \(A_{E,\Phi}\) les éléments de \(\mathcal{C}(\mathcal{G}_p, \mathbb{Q})\) donnés par les formules
\[
\begin{align*}
 a_{E,\tau,\Phi}(g) &= \sum_{\sigma \in \Phi} a_{E,\tau,\sigma}(g) = \begin{cases} 1 & \text{si } g \circ \tau \in \Phi, \\ 0 & \text{sinon}, \end{cases} \\
 A_{E,\Phi}(g) &= \sum_{\sigma, \tau \in \Phi} a_{E,\tau,\sigma}(g) = |g\Phi \cap \Phi|.
\end{align*}
\]

Soit \(\Gamma\) un groupe formel défini sur \(\mathcal{O}_K\), à multiplication formelle par \(\mathcal{O}_E\), dont le type FM est \(\Phi\); soit \(u\) un générateur de \(T_p(\Gamma)\) en tant que \(\mathcal{O}_E\)-module; et si \(\tau \in \Phi\), soit \(\omega_\tau\) un générateur du sous-\(\mathcal{O}_K\)-module \(\Omega^\tau_{/\mathcal{O}_K}\) de \(\Omega_{/\mathcal{O}_K}\) sur lequel \(\alpha \in \mathcal{O}_E\) agit par multiplication par \(\tau(\alpha)\). Notons \(d\) la dimension de \(\Gamma\). Alors \(\Omega^d_{/\mathcal{O}_K}\) est un \(K\)-espace vectoriel de dimension 1 admettant \(\Omega^d_{/\mathcal{O}_K} = \Lambda^d \Omega^\tau_{/\mathcal{O}_K}\) comme sous-\(\mathcal{O}_K\)-réseau, et on définit \(v_p(\omega)\) pour \(\omega \in \Omega^d_{/\mathcal{O}_K}\) par les règles \(v_p(x\omega) = v_p(x) + v_p(\omega)\), si \(x \in K\) et \(\omega \in \Omega^d_{/\mathcal{O}_K}\), et \(v_p(\omega) = 0\) si \(\omega\) est un générateur de \(\Omega^d_{/\mathcal{O}_K}\).

Théorème I.3.15. (i) \(\pm \wedge_{\tau \in \Phi} \omega_\tau\) est élément de \(\Omega^d_{/\mathcal{O}_K}\) et \(v_p(\pm \wedge_{\tau \in \Phi} \omega_\tau) = -(1/2)\mu_{\text{Art},p}(A_{E,\Phi}) + (1/2)\sum_{\tau \in \Phi} v_p(\mathcal{D}_\tau(E)).\)

(ii) \(v_p(\int_u \omega_\tau) = Z_p(a_{E,\tau,\Phi}, 1) - \mu_{\text{Art},p}(a_{E,\tau,\Phi}).\)

Démonstration. Il est clair que le résultat est le même si on remplace \(\Gamma\) par un groupe formel isomorphe sur \(\mathcal{O}_K\). Distinguons deux cas.

Premier cas. \(\Phi = \mathcal{H}_E\). Dans ce cas, \(\Gamma\) est isomorphe sur \(\mathcal{O}_K\) à \(\mathcal{G}_m = \mathcal{O}_E\otimes_{\mathcal{O}_K} \mathbb{Z}_p\). Soit \(x\) un générateur de \(\mathcal{O}_E\) en tant que \(\mathcal{O}_p\)-algèbre et soit \((f_1, \ldots, f_h)\) la base de \(E\) sur \(\mathbb{Q}_p\) duale de \((1, x, \ldots, x^{h-1})\) pour la forme bilinéaire \(tr_{E/\mathbb{Q}_p}(\alpha \beta)\). On a un isomorphisme entre \(\mathcal{D}_E^{-1}\) et \(\mathbb{Z}_p^h\), qui à \(\alpha \in \mathcal{D}_E^{-1}\) associe ses coordonnées dans la base \((f_1, \ldots, f_h)\). Ceci permet d’écrire \(\Omega_{/\mathcal{O}_K} = \mathcal{O}_K \otimes_{\mathbb{Z}_p} \mathcal{D}_E^{-1}\), l’action de \(\mathcal{O}_E\) sur \(\Omega_{/\mathcal{O}_K}\) étant donnée par \(\alpha \beta\). On peut choisir un générateur de \(T_p(\Gamma)\) de telle sorte que l’on ait
\[
\int_{a,u} a \otimes \beta = a tr_{E/\mathbb{Q}_p}(\alpha \beta)t_p
\]
et on peut prendre $\omega_\tau = \sum_{i=1}^h \tau(x)^{-1} \otimes f_i$ comme générateur de $\Omega^r_{T/\mathcal{O}_K}$. On a alors
\[
v_p\left(\int_u \omega_\tau\right) = v_p(t_p) = \frac{1}{p-1},
\]
\[
v_p(\pm \wedge_{\tau \in \Phi}) = v_p(\det(\tau(x)^{-1})) = \frac{1}{2} \sum_{\sigma \neq \tau} v_p(\sigma(\pi) - \tau(\pi)) = \frac{h}{2} v_p(\mathcal{D}_E),
\]
et comme $A_{E,\Phi} = h$ et $a_{E,\tau,\Phi} = 1$, on a
\[
\mu_{\text{Art},p}(A_{E,\Phi}) = \mu_{\text{Art},p}(a_{E,\tau,\Phi}) = 0,
\]
\[
Z_p(a_{E,\tau,\Phi}) = \sum_{n=1}^{+\infty} \frac{1}{p^n} = \frac{1}{p-1},
\]
d'où le résultat dans le cas $\Phi = H_E$.

Deuxième cas. $\Phi \neq H_E$. On peut faire les calculs avec le groupe Γ_Φ dont le Théorème I.3.2 affirme l’existence. Posons $\omega_\tau = dL_\tau$, si $\tau \in \Phi$, et $\omega_\tau = dl_\tau$, si $\tau \in H_E - \Phi$. Le (ii) du Corollaire I.3.7 et la formule reliant e_τ aux $e_{i,j}$ (cf. Lemme I.3.5) impliquent alors que ω_τ est un générateur de $\Omega^r_{T/\mathcal{O}_K}$ si $\tau \in \Phi$ et que l’on a de plus
\[
v_p(\wedge_{\tau \in \Phi} \omega_\tau) = \frac{1}{2} \sum_{i \in \mathbb{Z}/\mathbb{Z}} \sum_{\sigma, \tau \in \Phi, \sigma \neq \tau} v_p(\sigma(\pi) - \sigma(\pi)).
\]
Le Lemme I.2.4 et la Proposition I.2.6 permettent de réécrire la somme apparaissant dans le second membre sous la forme
\[
- \sum_{\tau, \sigma \in \Phi, \tau \neq \sigma} \mu_{\text{Art},p}(a_{E,\tau,\sigma}) = - \sum_{\tau, \sigma \in \Phi} \mu_{\text{Art},p}(a_{E,\tau,\sigma}) + \sum_{\tau \in \Phi} \mu_{\text{Art},p}(a_{E,\tau,\tau})
\]
\[
= - \mu_{\text{Art},p}(A_{E,\Phi}) + \sum_{\tau \in \Phi} v_p(\mathcal{D}_{\tau}(E)),
\]
ce qui nous donne déjà le (i). Le (ii) est une conséquence immédiate du Théorème I.2.1 et du lemme suivant.

Lemme I.3.16. Si u est le générateur de $T_p(\Gamma_\Phi)$ et $\tau \in H_E$, alors
\[
\int_u \omega_\tau = \prod_{\sigma \in \Phi} \Omega(E, \sigma, \tau),
\]
à un élément de \mathcal{O}_K^* près.

Démonstration. Soit $g \in \mathcal{I}_K$. On a
\[
g\left(\int_u \omega_\tau\right) = \int_{g(u)} \omega_\tau = \int_{\chi_{\Phi}(g)u} \omega_\tau = \int_u \chi_{\Phi}(g)^* \omega_\tau = \tau(\chi_{\Phi}(g)) \int_u \omega_\tau.
\]
Utilisant la Proposition I.3.1, on en déduit l'égalité cherchée à un élément de \overline{K} près ; il suffit donc de montrer que les deux membres ont la même valuation pour conclure. D'autre part, si $g \in W_K$ et si $\tau \in H_{E,i}$, on a

$$g(\omega_\tau) = g(\tau(\pi)^{d_i+d_{i+1}+\ldots+d_{i+n(g)-1}} \omega_{g\tau}$$

dans $H_{DR}^1(\Gamma_\Phi)$. Or $d_i + d_{i+1} + \ldots + d_{i+n(g)-1}$ s'interprète de manière plus sympathique comme $\sum_{\sigma \in \Phi} n(g, \sigma, \tau)$, et utilisant le (iv) du Théorème I.2.1, on voit qu'il suffit de démontrer l'égalité pour un seul $\tau \in H_E$. Prenons donc $i \in \mathbb{Z}/f\mathbb{Z}$ de telle sorte que $\Phi_i \neq H_{E,i}$ et soit $\tau \in H_{E,i} - \Phi_i$. La démonstration des Lemmes I.3.8 et I.3.9 nous donnent

$$v_p\left(\int_u \omega_\tau\right) = \sum_{\sigma \in \Phi_i} v_p(\tau(\pi) - \sigma(\pi)) + \frac{1}{e} \sum_{m=1}^{+\infty} p^{a_i(m)},$$

to comparer avec

$$\sum_{\sigma \in \Phi_i} v_p(\tau(\pi) - \sigma(\pi)) + \frac{1}{e} \sum_{\sigma \in \Phi} p^{i(\sigma, \tau)}.$$

On peut réécrire la dernière partie de la somme sous la forme

$$\frac{1}{e} \sum_{k=0}^{f-1} \frac{d_{i+k}^k}{p^f - 1} = \frac{1}{e} \sum_{k=0}^{f-1} d_{i+k} \sum_{n=1}^{+\infty} p^{k-nf} = \frac{1}{e} \sum_{n=1}^{+\infty} d_{i+n} p^{-1} = \frac{1}{e} \sum_{m=1}^{+\infty} p^{a_i(m)},$$

ce qui permet de conclure. \hfill \Box

II. Périodes des variétés abéliennes à multiplication complexe

Cette partie est consacrée à la démonstration des Théorèmes 0.2 et 0.3 énoncés dans l’Introduction. Dans le premier paragraphe on utilise le Théorème I.3.15 pour calculer la valuation p-adique des périodes des variétés abéliennes à multiplication complexe. Le deuxième paragraphe est consacré à la formule du produit et à sa réinterprétation en terme de la fonction ht.

\textit{Notation.} La plupart des notions dont nous aurons besoin dans cette partie ont été définies dans l’Introduction. Nous allons juste préciser certaines d’entre elles.

Un corps E sera dit un corps CM si c’est une extension quadratique totalement imaginaire d’une extension finie totalement réelle E_+ de \mathbb{Q}. On notera $\alpha \rightarrow \overline{\alpha}$ l’automorphisme non-trivial de E laissant fixe E_+. Notons que si $\tau \in H_E$, alors on a $\tau(\overline{\alpha}) = c\tau(\alpha)$. Un type CM de E est par définition un système de représentants de $H_{E,v}$ dans H_E, ou autrement dit, c’est une partie Φ de H_E vérifiant $\Phi \cap c\Phi = \emptyset$ et $\Phi \cup c\Phi = H_E$. Si Φ est un type CM de E et
\(\tau \in H_E \), soient \(a_{E, \tau, \Phi} \) et \(A_{E, \Phi} \) (resp. \(a^0_{E, \tau, \Phi} \) et \(A^0_{E, \Phi} \)) les éléments de \(\mathcal{C} \mathcal{M} \) (resp. \(\mathcal{C} \mathcal{M}^0 \)) définis dans l’Introduction.

Soient \(L \) un corps de caractéristique 0 et \(\overline{L} \) la clôture algébrique de \(L \). Fixons un plongement de \(\overline{Q} \) dans \(\overline{L} \). Soit \(E \) un corps CM. Une variété abélienne \(X \) sera dite avoir multiplication complexe par \(E \) (resp. \(\mathcal{O}_E \)) si elle est de dimension \(d = [E_+: \overline{Q}] \) et si on a une injection de \(E \) dans \(\mathcal{O}_E \) (resp. \(\text{End}_\mathbb{F}(X) \)). L’action de \(E \) sur \(\overline{L} \otimes H^0(X, \Omega^1_X) \) se diagonalise, et nous fournit une décomposition \(H^0(X, \Omega^1_X) = \bigoplus_{\tau \in \Phi(X)} H^\tau(X) \), où \(\Phi(X) \subset H_E \) est un type CM de \(E \) appelé type CM de \(X \) et, si \(\tau \in \Phi(X) \), alors \(H^\tau(X) \) est un \(\overline{L} \)-espace vectoriel de dimension 1 sur lequel \(\alpha \in E \) agit par multiplication par \(\tau(\alpha) \). Si \(\Phi \) est un type CM de \(E \), une variété abélienne sera dite de type \((E, \Phi) \) (resp. \((\mathcal{O}_E, \Phi) \)), si elle est à multiplication complexe par \(E \) (resp. \(\mathcal{O}_E \)) et si son type CM est \(\Phi \).

Si \(X \) est une variété abélienne définie sur \(\overline{Q} \) (resp. \(\overline{Q}_p \)), on notera \(\langle \omega, u \rangle_\infty \) (resp. \(\langle \omega, u \rangle_p \)) l’accouplement périodes entre \(H^1_{\text{DR}}(X) \) et \(H_1(X(\overline{C}), \overline{Q}) \) (resp. \(T_p(X) \)) à valeurs dans \(C \) (resp. \(B_p \)). Une description de cet accouplement peut se trouver dans [Cz5]. Dans le cas où il n’y a aucune ambiguïté, on supprimera l’indice \(p \) ou \(\infty \); par exemple, on écrira \(v_p(\langle \omega, u \rangle) \) au lieu de \(v_p(\langle \omega, u \rangle_p) \).

1. Périodes \(p \)-adiques des variétés abéliennes à multiplication complexe

Soient \(E \) un corps CM, \(X \) une variété abélienne de type \((\mathcal{O}_E, \Phi) \) définie sur \(\overline{Q}_p \) et \(d = [E_+: \overline{Q}] \). Soit \(\mathcal{X} \) un modèle de \(X \) sur \(\mathcal{O}_p \) ayant bonne réduction modulo \(m_p \) (un tel modèle existe toujours). Si \(\tau \in H_E \), soit \(H^\tau(X) \) le sous \(\overline{Q}_p \)-espace vectoriel de \(H^1_{\text{DR}}(X) \) sur lequel \(\alpha \in \mathcal{O}_E \) agit par multiplication par \(\tau(\alpha) \). On peut identifier \(H^1_{\text{DR}}(\mathcal{X}) \) (resp. \(H^0(\mathcal{X}, \Omega^d X) \)) à un réseau de \(H^1_{\text{DR}}(X) \) (resp. \(H^0(X, \Omega^d X) \)) et on pose \(H^\tau(X) = H^\tau(X) \cap H^1_{\text{DR}}(X) \). On définit alors \(v_p(\omega) \) si \(\omega \in H^\tau(X) \) (resp. \(\omega \in H^0(X, \Omega^d X) \)) par \(v_p(\omega) = 0 \) si \(\omega \) est un générateur du \(\mathcal{O}_p \)-module \(H^\tau(X) \) (resp. \(H^0(X, \Omega^d X) \)) et \(v_p(x\omega) = v_p(x) + v_p(\omega) \) si \(x \in \overline{Q}_p \).

Théorème II.1.1. Si \(\tau \in H_E \), \(\omega_\tau \in H^\tau(X) \) et \(u \) est un générateur du \(\mathcal{O}_E \otimes \mathbb{Z}_p \)-module \(T_p(X) \), alors

(i) \(v_p(\langle \omega_\tau, u \rangle) = v_p(\omega_\tau) + Z_p(a_{E, \tau, \Phi}, 1) - \mu_{\mathbb{Art}, p}(a_{E, \tau, \Phi}). \)

(ii) \(\omega_\Phi = \pm \sum_{\tau \in \Phi} \omega_\tau \in \mathbb{H}^0(\mathcal{X}, \Omega^d X) \) et \(v_p(\omega_\Phi) = \sum_{\tau \in \Phi} v_p(\omega_\tau) + (1/4)v_p(\Delta_E) - (1/2)\mu_{\mathbb{Art}, p}(A_{E, \Phi}). \)

(iii) Si \(g \in W_p \) et \(\tau \in H_E \), alors \(g(\omega_\tau) \in H^{s^\tau}(X) \) et \(v_p(g(\omega_\tau)) = v_p(\omega_\tau) + (1/e_k) \sum_{i=0}^{n(g)-1} \sum_{h \in W_K^*} a_{E, \tau, \Phi}(g) \). En particulier, si \(n(g) = 0 \) (i.e., \(g \in \mathcal{I}_{Q_p} \)), alors \(v_p(g(\omega_\tau)) = v_p(\omega_\tau) \).

Remarque. Les seconds membres des égalités sont indépendants des choix de \(X \) et \(\mathcal{X} \); cela peut se voir directement en remarquant que si \(\mathcal{X}_1 \) et \(\mathcal{X}_2 \) sont...
deux schémas abéliens de type O_E, et Φ, alors il existe une O_E-isogénie de X_1 sur X_2 de degré premier à p. Cette isogénie induit alors des isomorphismes entre $H^1_{DJ}(X_1/O_p)$ et $H^1_{DJ}(X_2/O_p)$ (resp. $T_p(X_1)$ et $T_p(X_2)$) en tant que $O_p \otimes O_E$-modules.

$Démonstration$. Notons $p(E)$ l'ensemble des places de E au-dessus de p. Si $\tau \in H_E$, soit $p(\tau)$ l'élément de $p(E)$ déterminé par τ (il ne faut pas oublier que l'on a choisi un plongement de \overline{Q} dans \overline{Q}_p). Si $p \in p(E)$, notons E_p le complété p-adique de E et alors H_{E_p} s'identifie à un sous-ensemble de H_E. On pose $\Phi_p = \Phi \cap H_{E_p}$ et soit $p(\Phi) = \{p \in p(E) \mid \Phi_p \neq \emptyset\}$.

Soit K une extension finie de Q_p contenant tous les conjugués de E et telle que X soit défini sur O_K et ait bonne réduction modulo m_K. Soit \tilde{X} le groupe formel défini sur O_K donné par l'addition sur X. Les modules $H^0(X, \mathcal{O}_X)$ et $\Omega_{\tilde{X}/O_K}$ sont canoniquement isomorphes et l'action de O_E permet de décomposer \tilde{X} sous la forme $\prod_{p \in p(\Phi)} \tilde{X}_p$, où \tilde{X}_p est un groupe formel à multiplication formelle par O_{E_p} et dont le type FM est Φ_p. L'action de O_E permet aussi de décomposer $T_p(X)$ et l'image d'un générateur de $T_p(X)$ (en tant que $Z_p \otimes O_E$-module) dans $T_p(\tilde{X})$ est un générateur de $T_p(\tilde{X})$ (en tant que O_{E_p}-module). Utilisant alors le (ii) du Théorème I.3.15 et le fait que si $\tau \in \Phi_p$, alors la restriction de $a_{E,\tau,\Phi}$ à G_{Q_p} est égale à a_{E_p,τ,Φ_p}, on en déduit le (i) si $\tau \in \Phi$. Compte tenu du fait que $\tau \notin \Phi$ équivaut à $\tau \notin \Phi$, pour vérifier le (i) pour $\tau \notin \Phi$, il suffit d'exhiber un schéma abélien X' de type (O_E, Φ) et de vérifier que si w_{τ} (resp. $w'_{\tau'}$) est une base de $H^1(X')$ (resp. $H^1(X')$) et si u (resp. u') est un générateur de $T_p(X)$ (resp. $T_p(X')$), alors on a $v_p(\langle w_{\tau}, u \rangle) + v_p(\langle w'_{\tau'}, u' \rangle) = Z_p(a_{E,\tau,\Phi,1}) + Z_p(a_{E,\tau',\Phi,1}) = Z_p(1,1)$. Nous aurons besoin pour cela du lemme suivant:

Lemme II.1.2. $H^1_{DJ}(X/O_K)$ est un $O_K \otimes O_E$-module libre de rang 1.

$Démonstration$. La seule chose non-evidente est que $H^1_{DJ}(X/O_K)$ est un module libre. Pour démontrer cela il suffit de vérifier que

$$k_K \otimes O_K H^1_{DJ}(X/O_K) \cong H^1_{DJ}(\tilde{X}/k_K)$$

est un $k_K \otimes O_E$-module libre (\tilde{X} désigne la réduction de X modulo m_K). Mais $H^1_{DJ}(\tilde{X}/k_K)$ est isomorphe à $k_K \otimes W(k_K) H^1_{cris}(X/W(k_K))$, et comme $W(k_K) \otimes O_E$ est un anneau principal, $H^1_{cris}(X/W(k_K))$ est un $W(k_K) \otimes O_E$-module libre, d'où le lemme.

Soit X^* le dual de X; c'est un schéma abélien de type (O_E, Φ). On a des accouplements parfaits canoniques

$$\langle , \rangle_{Weil} : T_p(X) \times T_p(X^*) \to Z_p t_p$$

$$\langle , \rangle_{DR} : H^1_{DJ}(X/O_K) \times H^1_{DJ}(X^*/O_K) \to O_K,$$
reliés par la formule

\[\langle u, v \rangle_{\text{Weil}} = \sum_{i=1}^{h_E} \langle \omega_i, u \rangle_p \langle \eta_i, v \rangle_p, \]

où \((\omega_i)\) et \((\eta_i)\) sont des bases de \(H^1_{\text{DR}}(\mathcal{X}/\mathcal{O}_K)\) et \(H^1_{\text{DR}}(\mathcal{X}^*/\mathcal{O}_K)\), respectivement, duales l’une de l’autre. D’autre part, si \(* = \text{Weil}, \text{DR} \) et si \(\alpha \in \mathcal{O}_E\), on a \(\langle \alpha.x, y \rangle_* = \langle x, \alpha.y \rangle_*\). Donc, si on identifie \(T_p(\mathcal{X}^*)\) (resp. \(H^1_{\text{DR}}(\mathcal{X}/\mathcal{O}_K)\)) à \(\mathbb{Z}_p \otimes \mathcal{O}_E \) (resp. \(\mathcal{O}_K \otimes \mathcal{O}_E\)), alors \(T_p(\mathcal{X})\) (resp. \(H^1_{\text{DR}}(\mathcal{X}^*/\mathcal{O}_K)\)) s’identifie à \(\mathbb{Z}_p \otimes \mathcal{D}_E^{-1}\) (resp. \(\mathcal{O}_K \otimes \mathcal{D}_E^{-1}\)) et les formes \(\langle \cdot \rangle_{\text{Weil}}\) et \(\langle \cdot \rangle_{\text{DR}}\) s’obtiennent par extension des scalaires à partir de la forme \((x, y) \rightarrow \text{tr}_{E/Q}(xy)\). Soient \(e_1, \ldots, e_{2d}\) une base de \(\mathcal{O}_E\) sur \(\mathbb{Z}\) et \(f_1, \ldots, f_{2d}\) la base de \(\mathcal{D}_E^{-1}\) sur \(\mathbb{Z}\) duale de \(e_1, \ldots, e_{2d}\) pour la forme bilinéaire \(\text{tr}_{E/Q}(xy)\). Si \(\tau \in H_E\), soit \(\omega_\tau = \sum_{i=1}^{2d} \tau(f_i) \otimes e_i \in H^1_{\text{DR}}(\mathcal{X}/K)\) et \(\eta_\tau = \sum_{i=1}^{2d} \tau(e_i) \otimes f_i \in H^1_{\text{DR}}(\mathcal{X}^*/K)\). On vérifie facilement que les bases \((\omega_\tau)_{\tau \in H_E}\) et \((\eta_\tau)_{\tau \in H_E}\) sont duales l’une de l’autre pour l’accouplement \(\langle \cdot \rangle_{\text{DR}}\) et que \(\eta_\tau\) est une base de \(H^r(\mathcal{X}^*)\) sur \(\mathcal{O}_K\).

Soit \(\delta \in \mathcal{D}_E\) tel que l’idéal \((\delta)\mathcal{D}_E^{-1}\) soit premier à \(p\). Alors \(1 \otimes \delta^{-1}\) est un générateur de \(T_p(\mathcal{X})\) et \(T_p(\mathcal{X}) \otimes (\delta) = \delta^r T_p(\mathcal{X})\) s’identifie à une base de \(H^r(\mathcal{X})\). Posons alors \(\Omega_\tau = \langle \delta^r \omega_\tau, 1 \otimes \delta^{-1} \rangle_p = \langle \omega_\tau, 1 \otimes 1 \rangle_p\) et \(\Omega_\tau^* = \langle \eta_\tau, 1 \otimes 1 \rangle_p\).

LEMME II.1.3. Si \(\tau \in H_E\), alors \(\Omega_\tau \Omega_\tau^* = t_p\).

Démonstration. Si \(\alpha \in \mathcal{D}_E^{-1}\) et \(\beta \in \mathcal{O}_E\), alors on a

\[t_p \sum_{\tau \in H_E} \tau(\alpha) c_\tau(\beta) = \langle 1 \otimes \alpha, 1 \otimes \beta \rangle_{\text{Weil}} = \sum_{\tau \in H_E} \langle \omega_\tau, 1 \otimes \alpha \rangle_p \langle \eta_\tau, 1 \otimes \beta \eta_\tau \rangle_p = \sum_{\tau \in H_E} \Omega_\tau \Omega_\tau^* \tau(\alpha) c_\tau(\beta), \]

d’où le résultat. Comme \(v_p(t_p) = Z_p(1,1)\), ceci permet de terminer la démonstration du (i) du Théorème II.1.1.

Le (ii) du théorème est une conséquence du (i) du Théorème I.3.15 et des identités

\[\pm \wedge_{\tau \in \Phi} \omega_\tau = \pm \wedge_{\Phi \in \Phi(\Phi)} \wedge_{\tau \in \Phi} \omega_\tau, \]

\[A_{E,\Phi}(g) = \sum_{\Phi \in \Phi(\Phi)} A_{E,\Phi}(g) \quad \text{si} \ g \in \mathcal{G}_{Q_p}. \]

Pour démontrer le (iii) du Théorème II.1.1, remarquons d’abord que le (i) admet le corollaire suivant:
COROLLAIRE II.1.4. Si X est un schéma abélien de type (\mathcal{O}_E, Φ) défini sur \mathcal{O}_K, ayant bonne réduction modulo \mathfrak{m}_K, si u est un générateur de $T_p(X)$ et si ω_τ est une base de $H^r(X)$, alors $\langle \omega_\tau, u \rangle_p = \prod_{\sigma \in \Phi(p)} \Omega(E_{p(\sigma)}, \sigma, \tau)$.

Le (iii) du théorème suit alors du (iv) du Théorème I.2.1 si l'on remarque que $v_p(\pi^n(g, \sigma, \tau))$ (cf. notation de ce théorème) peut se réécrire sous la forme $(1/e_K) \sum_{i=0}^{n(g)} \sum_{h \in W_K} a_{E, \tau, \sigma}(h)$. Ceci termine la démonstration du Théorème II.1.1.

2. Formule du produit

Soient E un corps CM, Φ un type CM de E, $K \subset \overline{Q}$ une extension finie de \mathbb{Q} et X une variété abélienne de type (E, Φ) définie sur K. On suppose que les $H^r(X)$ pour $\tau \in H_E$ sont définis sur K (c'est le cas en particulier si K contient tous les conjugués de E, mais cette condition n'est pas nécessaire comme le montre le cas des jacobienne des courbes de Fermat). Soit ω_τ une base du K-espace vectoriel $H^r(X)$. Si $\sigma \in H_K$, notons X^σ et ω_τ^σ les objets déduits de X et ω_τ par extension des scalaires. Notons que X^σ est aussi à multiplication complexe par E, mais que le type CM de X^σ ne dépend pas que de σ et Φ: c'est dû au fait que l'action de E n'est pas définie sur K; il faut donc choisir $g_\sigma \in G_Q$ dont la restriction à K est égale à σ et alors le type CM de X^σ est égal à $g_\sigma \Phi$ et $\omega_\tau^\sigma \in H^{d_\tau}(X)$. Par contre la fonction $a_{E, g_\sigma \tau, g_\sigma \Phi}$ ne dépend que de σ, τ et Φ. La conjugaison complexe induit un isomorphisme topologique de $X^\sigma(\mathbb{C})$ sur $X^{c_\sigma}(\mathbb{C})$ et donc un isomorphisme encore noté c de $H_1(X^\sigma(\mathbb{C}), \mathbb{Q})$ sur $H_1(X^{c_\sigma}(\mathbb{C}), \mathbb{Q})$. Notons que si on a choisi les g_σ de telle sorte que $g_{c_\sigma} = c g_\sigma$ (ce que nous supposerons avoir fait), alors on a $c(\alpha, u) = \alpha c(u)$ si $\alpha \in E$. Choisissons, pour chaque $\sigma \in H_K$, un élément non-nul u_σ de $H_1(X^\sigma(\mathbb{C}), \mathbb{Q})$, de telle sorte que l'on ait $u_{c_\sigma} = c(u_\sigma)$ (si σ est un plongement réel, cette condition signifie $u_\sigma \in H_1(X^\sigma(\mathbb{R}), \mathbb{Q})$). Posons alors

$$\langle \omega_\tau^\sigma, \omega_{c_\tau}^\sigma, u_\sigma \rangle_p = \left(\langle \omega_\tau^\sigma, u_\sigma \rangle_p \frac{t_p}{\langle \omega_{c_\tau}^\sigma, u_\sigma \rangle_p} \right)^{\frac{1}{2}}.$$

Remarque. Les formules de Riemann et leurs analogues p-adiques montrent que $\langle \omega_\tau^\sigma, \omega_{c_\tau}^\sigma, u_\sigma \rangle_p^2$ ne diffère de $\langle \omega_\tau^\sigma, u_\sigma \rangle_p^2$ que par un élément de K^* indépendant de $p \in \mathcal{P}$. L'avantage de considérer $\langle \omega_\tau^\sigma, \omega_{c_\tau}^\sigma, u_\sigma \rangle_p$ au lieu de $\langle \omega_\tau^\sigma, u_\sigma \rangle_p$ réside dans le lemme suivant:
LEMME II.2.1. (i) Si σ est un plongement réel, alors $\langle \omega^\sigma_T, \omega^\sigma_{cr}, u_\sigma \rangle_p$ ne dépend pas du choix de u_σ.

(ii) Si σ est un plongement complexe, alors $\langle \omega^\sigma_T, \omega^\sigma_{cr}, u_\sigma \rangle_p \langle \omega^\sigma_{cr}, \omega^\sigma_T, u_\sigma \rangle_p$ ne dépend pas du choix de u_σ.

Démonstration. (i) Si σ est réel, on ne peut remplacer u_σ que par αu_σ, avec $\alpha \in E^*_+$. Mais alors $\langle \omega^\sigma_T, u_\sigma \rangle_p$ est multiplié par $g_\sigma(\tau(\alpha))$ et $\langle \omega^\sigma_{cr}, u_\sigma \rangle_p$ est multiplié par $g_\sigma(c_T(\alpha)) = g_\sigma(\tau(\alpha)) = g_\sigma(\tau(\alpha))$, d'où le résultat.

(ii) Si on remplace u_σ par αu_σ, avec $\alpha \in E^*$, alors u_σ est remplacé par αu_σ. Mais alors $\langle \omega^\sigma_T, u_\sigma \rangle_p$ est multiplié par $g_\sigma(\tau(\alpha))$, $\langle \omega^\sigma_{cr}, u_\sigma \rangle_p$ est multiplié par $g_\sigma(\tau(\alpha))$, $\langle \omega^\sigma_{cr}, u_\sigma \rangle_p$ est multiplié par $c_\sigma(c_T(\alpha)) = g_\sigma(\tau(\alpha))$; on en tire le résultat (la conjuguaison complexe commute à tout car α est un élément d’un corps CM).

Conjecture II.2.2 (formule du produit).

$$
\prod_{p \in \mathcal{P}} \prod_{\sigma \in \text{Gal}(K/F)} \langle \omega^\sigma_T, \omega^\sigma_{cr}, u_\sigma \rangle_p = 1
$$

Remarque. (i) Le produit dans le membre de gauche de la formule du produit n’est pas convergent; on le renormalise en utilisant le Corollaire II.2.5 ci-dessous et la Convention 0 (cf. Introduction).

(ii) La conjecture ne dépend en fait que du type CM de X. De manière plus précise, on a la proposition suivante:

PROPOSITION II.2.3. La quantité

$$
(\text{II.2.3.1}) \quad \frac{1}{h_K} \sum_{p \in \mathcal{P}} \sum_{\sigma \in \text{Gal}(K/F)} \log \langle \omega^\sigma_T, \omega^\sigma_{cr}, u_\sigma \rangle_p
$$

ne dépend que de E, τ, Φ et pas des choix de X, K, ω_T ou u_σ.

Démonstration. Le Lemme II.2.1 implique l’indépendance de (II.2.3.1) par rapport au choix des u_σ. Comme d’autre part, on ne peut changer ω_T qu’en le multipliant par un élément de K^*, l’indépendance de (II.2.3.1) par rapport au choix des ω_T est une conséquence directe de la formule du produit pour les nombres algébriques. L’indépendance de (II.2.3.1) par rapport au choix de K est une évidence. Finalement soient K' une extension finie de Q et X' une autre variété abélienne à multiplication complexe par E, définie sur K' et de même type CM que X. Il existe alors une extension finie F de Q contenant K et K' sur laquelle X et X' sont isogènes. Soit $i : X' \to X$ une telle isogénie. Si $\tau \in \text{Gal}(E)$, posons $\omega^\tau_T = i^* \omega_T$, choisissons, pour chaque $\sigma \in \text{Gal}(E)$, un élément non-nul u_σ de $H_1(X^\sigma(C),\mathbb{Z})$ de telle sorte que l’on ait $u_\sigma^\sigma = c(u_\sigma^\tau)$ et posons $u_\sigma = i^\sigma(u_\sigma^\tau)$. On alors $\langle (\omega^\sigma_T)^\sigma, u_\sigma \rangle_p = \langle \omega^\sigma_T, u_\sigma \rangle_p$ pour tout $p \in \mathcal{P}$ et
toute $\sigma \in H_F$; on en tire l’indépendance de (II.2.3.1) par rapport au choix de X. \hfill \Box

Lemme II.2.4. Soient E un corps CM, Φ un type CM de E et X une variété abélienne de type (E, Φ) définie sur \mathbb{Q}. Soient u un élément non-nul de $H_1(X(C), \mathbb{Q})$ et ω_τ une base de $H^\tau(X)$. Alors, pour presque tout p fini (i.e., à un nombre fini d’exceptions près),

$$v_p(\langle \omega_\tau, u \rangle) = Z_p(a_{E, \tau, \Phi}, 1).$$

Démonstration. Cela suit du (i) du Théorème II.1.1 et du fait que X est isogène sur \mathbb{Q} à une variété de type (O_E, Φ). \hfill \Box

Corollaire II.2.5. Pour presque tout p fini,

$$\prod_{\sigma \in H_K} |\langle \omega_\tau^\sigma, \omega_\tau^\sigma, u_\sigma \rangle|_p = \exp(h_K Z_p(a_{E, \tau, \Phi}^0, 1) \log p).$$

Démonstration. C’est une conséquence immédiate du lemme précédent et de l’identité $h_K a_{E, \tau, \Phi}^0 = \sum_{\sigma \in H_K} a_{E, g_\tau g_\sigma, \Phi}$. \hfill \Box

Corollaire II.2.6. Si \sim désigne une égalité modulo \mathbb{Q}^*, la convention 0 donne

$$\prod_{p \in \mathcal{P}} \prod_{\sigma \in H_K} |\langle \omega_\tau^\sigma, \omega_\tau^\sigma, u_\sigma \rangle|_p \sim \prod_{\sigma \in H_K} |\langle \omega_\tau^\sigma, \omega_\tau^\sigma, u_\sigma \rangle|_{\infty} \exp(-h_K Z(a_{E, \tau, \Phi}^0, 0)).$$

Proposition II.2.7. Il existe une unique application \mathbb{Q}-linéaire Ω_∞ de \mathcal{CM} dans $\mathbb{C}^*/\mathbb{Q}^*$ vérifiant $\Omega_\infty(a_{E, \tau, \Phi}) \sim \langle \omega_\tau, u \rangle_{\infty} \sim \langle \omega_\tau, \omega_\tau, u \rangle_{\infty} \sim |\langle \omega_\tau, \omega_\tau, u \rangle|_{\infty}$, où u et ω_τ ont la même signification qu’au Lemme II.2.4.

Remarques. L’unicité est claire et l’existence est équivalente aux relations démontrées par Shimura (cf. [Sm], [De] et [An1]) et la dernière égalité est due au fait que Ω_∞ prend en fait ses valeurs dans $\mathbb{R}^*/\mathbb{Q}^*$.

Conjecture II.2.8. Si $a \in \mathcal{CM}$, alors on a $\Omega_\infty(a) \sim \exp(Z(a^*, 0)).$

Remarque. (i) Enoncé sous cette forme, cette conjecture est un théorème d’Anderson [An1] si $a \in \mathcal{CM}^{ab}$.

(ii) La formule du produit pour E, τ, Φ implique $\Omega_\infty(a_{E, \tau, \Phi}^0) \sim \exp(Z((a_{E, \tau, \Phi}^0)^*, 0))$ comme on peut le voir en remplaçant $\prod_{\sigma \in H_K}$ dans le Corollaire II.2.6 par $\Omega_\infty(h_K a_{E, \tau, \Phi}^0)$. La conjecture précédente est une forme vraiment très faible de la formule du produit. Nous allons en donner une forme plus précise. Reprenons toutes les hypothèses et la notation de la formule du produit et supposons de plus que X est de type (O_E, Φ).
LEMME II.2.9. La quantité

\[(II.2.9.1) \quad \frac{1}{h_K} \sum_{\sigma \in \mathbb{H}_K} \left(\log |\langle \omega^\sigma_\tau, \omega^\sigma_{cr}, u_\sigma \rangle|_\infty - \frac{1}{2} \sum_{p < \infty} \log p (v_p(\omega^\sigma_\tau) - v_p(\omega^\sigma_{cr})) \right) \]

ne dépend que de \(E, \tau, \Phi \) et pas des choix de \(X, K, \omega_\tau, \omega_{cr} \) ou \(u_\sigma \); elle sera notée \(ht(E, \tau, \Phi) \).

\[\text{Démonstration. Le Théorème II.1.1 permet de réécrire la formule (II.2.9.1) sous la forme}\]

\[\frac{1}{h_K} \left(\sum_{p \in \mathcal{P}} \sum_{\sigma \in \mathbb{H}_K} \log |\langle \omega^\sigma_\tau, \omega^\sigma_{cr}, u_\sigma \rangle|_p \right) + \sum_{p < \infty} (Z_p(a^0_{E,\tau,\Phi}, 1) - \mu_{\mathbb{A}, p}(a^0_{E,\tau,\Phi})) \log p,\]

ou encore, via la Convention 0, sous la forme

\[(II.2.9.2) \quad \frac{1}{h_K} \left(\sum_{p \in \mathcal{P}} \sum_{\sigma \in \mathbb{H}_K} \log |\langle \omega^\sigma_\tau, \omega^\sigma_{cr}, u_\sigma \rangle|_p \right) + Z((a^0_{E,\tau,\Phi})^*, 0).\]

Le lemme se déduit alors immédiatement de la Proposition II.2.3. \(\square \)

THÉORÈME II.2.10. (i) Il existe une unique application \(\mathbb{Q} \)-linéaire, notée \(ht \), de \(\mathcal{C} \mathcal{M}^0 \) dans \(\mathbb{R} \) telle que, si \(E \) est un corps CM, \(\tau \in \mathbb{H}_E \) et \(\Phi \) est un type CM de \(E \), alors \(ht(a^0_{E,\tau,\Phi}) = ht(E, \tau, \Phi) \).

(ii) Si \(X \) est une variété abélienne de type \((O_E, \Phi) \), sa hauteur de Faltings est donnée par la formule

\[h_{\text{Fal}}(X) = -ht(A^0_{E,\Phi}) - \frac{1}{2} \mu_{\mathbb{A}}(A^0_{E,\Phi}).\]

Conjecture II.2.11. (i) On a \(ht(a) = Z(a^*, 0) \) pour tout \(a \in \mathcal{C} \mathcal{M}^0 \).

(ii) Si \(X \) est une variété abélienne de type \((O_E, \Phi) \), sa hauteur de Faltings est donnée par \(h_{\text{Fal}}(X_{E,\Phi}) = -Z(A^0_{E,\Phi}, 0) - (1/2) \mu_{\mathbb{A}}(A^0_{E,\Phi}).\)

THÉORÈME II.2.12. (i) Le (ii) de la conjecture est une conséquence du (i).

(ii) La formule du produit pour \(E, \tau, \Phi \) est équivalente à l'égalité \(ht(a^0_{E,\tau,\Phi}) = Z((a^0_{E,\tau,\Phi})^*, 0) \).

(iii) La Conjecture II.2.11 est équivalente à la formule du produit pour toutes les périodes de toutes les variétés abéliennes à multiplication complexe.

\[\text{Démonstration. Le (i) du Théorème II.2.12 suit du (ii) du Théorème II.2.10; le (iii) est une conséquence du (ii) et le (ii) suit de la formule (II.2.9.2).} \quad \square \]

Revenons à la démonstration du (i) du Théorème II.2.10. L'unicité est évidente car les \(a^0_{E,\tau,\Phi} \) forment une famille génératrice de \(\mathcal{C} \mathcal{M}^0 \). Pour montrer
l’existence il faut montrer que si \(a \in CM^0 \), alors \(ht(a) \) ne dépend pas de l’écriture de \(a \) sous la forme \(\sum \lambda_i a_{E,i,\tau,\Phi_i} \).

(a) Remarquons pour commencer que si \(g \in G_\mathbb{Q} \), alors on a \(a_{E,g,t,\Phi}^0 = a_{E,\tau,\Phi}^0 \). Il faut donc vérifier que l’on a bien \(ht(E,g,t,\Phi) = ht(E,\tau,\Phi) \); mais c’est clair, car si on fait le calcul de \(ht(E,\tau,\Phi) \) sur une variété abélienne \(X \), on peut faire le calcul de \(ht(E,g,t,\Phi) \) sur \(X^g \) et comme les conjugués de \(X^g \) sont les mêmes que ceux de \(X \), il est clair que l’on obtient le même résultat.

(b) On a \(a_{E,\tau,\Phi}^0 + a_{E,\tau,c,\Phi}^0 = 1 \); il faut donc vérifier que \(ht(E,\tau,\Phi) + ht(E,\tau,c,\Phi) \) ne dépend pas du choix des \(E,\tau \) et \(\Phi \). D’après la remarque précédente, on a \(ht(E,\tau,c,\Phi) = ht(E,ct,\Phi) \), et si on revient à la définition, on obtient \(ht(E,\tau,\Phi) + ht(E,ct,\Phi) = \log(2\pi) \).

(c) Soient \(E \subset F \) deux corps CM, \(\tau \in H_F \) et \(\Phi \) un type CM de \(E \). Notons \(\Phi_F \) le type CM de \(F \) constitué des \(\tau \in H_F \) dont la restriction à \(E \) appartient à \(\Phi \). On a alors \(a_{F,\tau,\Phi_F}^0 = a_{E,\tau,\Phi}^0 \). L'identité \(ht(F,\tau,\Phi_F) = ht(E,\tau,\Phi) \) qu'il faut vérifier provient de ce que, si \(X \) est une variété abélienne à multiplication complexe par \(\mathcal{O}_E \) dont le type CM est \(\Phi \), alors \(X^{[F:E]} \) est une variété abélienne à multiplication complexe par \(\mathcal{O}_F \) dont le type CM est \(\Phi_F \).

(d) Passons maintenant au cas général. Soient \(I_1 \) et \(I_2 \) deux ensembles finis, et si \(i \in I_1 \cup I_2 \), soit \(\lambda_i \in \mathbb{Q} \), \(E_i \) un corps CM, \(\tau_i \in H_{E_i} \) et \(\Phi_i \) un type CM de \(E_i \). On suppose que l’on a \(\sum_{i \in I_1} \lambda_i a_{E_i,\tau_i,\Phi_i}^0 = \sum_{i \in I_2} \lambda_i a_{E_i,\tau_i,\Phi_i}^0 \) et on veut en déduire \(\sum_{i \in I_1} \lambda_i ht(E_i,\tau_i,\Phi_i) = \sum_{i \in I_2} \lambda_i ht(E_i,\tau_i,\Phi_i) \). Quitte à tout multiplier par un entier, on peut supposer que les \(\lambda_i \) sont dans \(\mathbb{Z} \). Quitte à rajouter une constante de chaque côté sous la forme \(\sum (a_{E_i,\tau_i,\Phi_i}^0 + a_{E_i,\tau_i,c,\Phi_i}^0) \), on peut, utilisant le (b), supposer que les \(\lambda_i \) sont des entiers positifs que nous noterons \(n_i \). Utilisant le (c), et prenant un corps CM \(E_i \) qui contient tous les \(E_i \), on peut supposer que les \(E_i \) sont tous égaux à \(E \), et utilisant le (a), on peut supposer que les \(\tau_i \) sont tous égaux à un élément \(\tau \) de \(H_E \). Si \(i \in I_1 \cup I_2 \), soit \(X_i \) une variété abélienne à multiplication complexe par \(\mathcal{O}_E \) définie sur \(\overline{\mathbb{Q}} \) et de type CM \(\Phi_i \). Soit \(K \subset \mathbb{Q} \) une extension finie de \(\mathbb{Q} \) sur laquelle les \(X_i \) sont toutes définies. Un théorème de Deligne [De] nous dit qu’alors les motifs \(\bigotimes_{i \in I_1} X_i^{\otimes n_i} \) et \(\bigotimes_{i \in I_2} X_i^{\otimes n_i} \) deviennent isomorphes sur une extension finie \(F \) de \(K \) (le produit tensoriel étant pris sur \(E \), dans la sous-catégorie des motifs à coefficients dans \(E \) engendrée par les variétés abéliennes). Si \(i \in I_1 \cup I_2 \), soit \(\omega_i,\tau \) une base de \(H^*(X_i) \) et \(u_i,\sigma \) un élément non-nul de \(H_2(X_i^\tau(C),\mathbb{Z}) \). Le théorème de Deligne, complété par des raffinements \(p \)-adiques dus à Blasius (voir [Og]) et Wintenberger [Wi], implique l’existence de \(\beta_\tau \in F^* \) pour \(\tau \in H_E \) et \(\alpha_\sigma \in E^* \) pour \(\sigma \in H_F \) tels que l’on ait, pour tout \(p \in \mathcal{P} \),

\[
\prod_{i \in I_1} \langle \omega_{i,\tau}^\sigma, u_{i,\sigma} \rangle_{p}^{m_i} = \sigma(\beta_\tau)\sigma(\alpha_\sigma) \prod_{i \in I_2} \langle \omega_{i,\tau}^\sigma, u_{i,\sigma} \rangle_{p}^{n_i}.
\]
Si l'on a choisi les \(u_{i,\sigma} \) de telle sorte que \(u_{i,\sigma} = c(u_{i,\sigma}) \), alors \(\alpha_{\sigma} = \alpha \) et
\[
\prod_{\sigma \in H_F} \frac{\sigma(\beta_T)\sigma(\alpha)}{\sigma(\beta_T)\sigma(\alpha)} = \frac{N_F/Q(\beta_T)}{N_F/Q(\beta_T)} = q \in \mathbb{Q}^*.
\]
On a alors, pour tout \(p \in \mathcal{P} \),
\[
\prod_{i \in I_1} \prod_{\sigma \in H_F} \langle \omega_{i,1}^{\sigma}, \omega_{i,\sigma}^{\sigma}, u_{i,\sigma} \rangle_{\mathcal{P}}^{n_i} = q \prod_{i \in I_2} \prod_{\sigma \in H_F} \langle \omega_{i,1}^{\sigma}, \omega_{i,\sigma}^{\sigma}, u_{i,\sigma} \rangle_{\mathcal{P}}^{n_i},
\]
et la formule cherchée suit immédiatement de la formule (II.2.9.2) et de la formule du produit pour les nombres algébriques.

Passons maintenant à la démonstration du (ii) du Théorème II.2.10. Commençons par rappeler la définition de \(h_{\text{Fal}}(X) \). Si \(X \) est une variété abélienne à multiplication complexe par \(E \) définie sur \(\overline{\mathbb{Q}} \), si \(K \subset \overline{\mathbb{Q}} \) est une extension finie de \(\mathbb{Q} \) sur laquelle \(X \) est définie et si \(\omega \) est une base \(H^0(X, \Omega^d_X) \), où \(d = [E_+ : \mathbb{Q}] = \dim(X) \), alors la quantité
\[
(II.2.12.1) \quad -\frac{1}{h_K} \left(\sum_{\sigma \in H_K} \frac{1}{2} \log \left(\int_{X^\sigma(\mathbb{C})} \left| \omega^\sigma \wedge \omega^\sigma \right| \right) \right) - \sum_{p<\infty} \sum_{\sigma \in H_K} v_p(\omega^\sigma) \log p
\]
ne dépend que de la classe d'isomorphisme de \(X \) sur \(\overline{\mathbb{Q}} \) et pas des choix de \(K \) ou \(\omega \). On l'appellera hauteur de Faltings de \(X \) et on la notera \(h_{\text{Fal}}(X) \).

Supposons alors \(X \) de type \((\mathcal{O}_E, \Phi) \). On peut élargir \(K \) de telle sorte qu'il contienne tous les conjugués de \(E \) (ça a l'avantage de donner un sens au produit \(\sigma \tau \) si \(\sigma \in H_K \) et \(\tau \in H_E \)). Choisissons pour chaque \(\sigma \in H_K \) un élément non-nul \(u_{\sigma} \) de \(H_1(X^\sigma(\mathbb{C}), \mathbb{Z}) \) de telle sorte que l'on ait \(u_{\sigma} = c(u_{\sigma}) \). Il existe alors un idéal fractionnaire \(a_{\sigma} \) de \(E \) tel que l'on ait \(H_1(X^\sigma(\mathbb{C}), \mathbb{Z}) = a_{\sigma} u_{\sigma} \). Si \(\tau \in \Phi \), soit \(\omega_{\tau} \) un générateur de \(H^1(X) \). Soit \(\omega_\Phi = \pm \wedge_{\tau \in \Phi} \); c'est un générateur de \(H^0(X, \Omega^d_X) \). Si \(\sigma \in H_K \), on a
\[
\log \left(\int_{X^\sigma(\mathbb{C})} \left| \omega^\sigma \wedge \omega^\sigma \right| \right) = \log \left(\int_{X^\sigma(\mathbb{C})} \left| \omega^{\sigma} \wedge \overline{\omega^{\sigma}} \right| \right)
\]
\[
(II.2.12.2) \quad = \log N(a_{\sigma}) + \frac{1}{2} \log |\Delta_E|_{\infty} + 2 \sum_{\tau \in \Phi} \log |\omega_{\tau}, u_{\sigma}|_{\infty}.
\]
D'autre part on a
\[
v_p(\omega_{\Phi}^\sigma) = \sum_{\tau \in \Phi} v_p(\omega_{\tau}^\sigma) - \frac{1}{2} \mu_{\text{Art}, p}(A_{E, \sigma \Phi}) + \frac{1}{4} v_p(\Delta_E),
\]
et donc

\[
\frac{1}{h_K} \sum_{\sigma \in \Phi_K} v_p(\omega^\sigma_{\Phi}) = \frac{1}{h_K} \sum_{\sigma \in \Phi_K} \sum_{\tau \in \Phi} v_p(\omega^\sigma_{\tau}) - \frac{1}{2} \mu_{\text{Art},p}(A_{E,\Phi}) \]

\[+ \frac{1}{4} v_p(\Delta_E). \]

(II.2.12.3)

LEMME II.2.13. (i) Il existe \(\beta_{\sigma,\tau} \in K^* \) indépendant de \(p \in \mathcal{P} \) tel que
\(\langle \omega^\sigma_{\tau}, u_{\sigma} \rangle_p \langle \omega^\sigma_{\tau}, u_{\sigma} \rangle_p = \sigma(\beta_{\sigma,\tau})t_p \) pour tout \(p \in \mathcal{P} \).

(ii) \(v_p(\sigma(\beta_{\sigma,\tau})) = v_p(\omega^\sigma_{\tau}) + v_p(\omega^\sigma_{\tau} - \tau(\sigma(a_{\tau}))) - v_p(\sigma(\tau(a_{\tau}))) \).

(iii) Soit \(\beta = \prod_{\sigma \in \Phi_K} \prod_{\tau \in \Phi} \sigma(\beta_{\sigma,\tau}) \); alors \(\beta^2 \in Q^* \).

Démonstration. Il existe \(\gamma_\tau \) pour \(\tau \in \Phi \) tel que \(\eta = \sum_{\tau \in \Phi} \gamma_\tau \omega_\tau \wedge \omega_\tau \) soit l'image dans \(H^2_{DR}(X) \) d'un diviseur \(D \) défini sur \(K \). Soit \(E_{D,\sigma,p} \) la forme de Riemann associée (sur \(H_1(X^\sigma, \mathbb{Q}) \), à valeurs dans \(\mathbb{B}_p \)). La forme bilinéaire sur \(E \times E \), donnée par la formule

\[
\langle \alpha, \beta \rangle = \frac{1}{t_p} E_{D,\sigma,p}(\alpha, u_{\sigma}, \beta, u_{\sigma}) = \sum_{\tau \in \Phi} \sigma(\gamma_\tau) \frac{\langle \omega^\sigma_{\tau}, u_{\sigma} \rangle_p \langle \omega^\sigma_{\tau}, u_{\sigma} \rangle_p}{t_p} \sigma\tau(\alpha \beta - \beta \alpha),
\]

ne dépend pas de \(p \in \mathcal{P} \) et prend ses valeurs dans \(\mathbb{Q} \). On en déduit l’existence de \(\delta_{\sigma} \in E - E_+ \) dont le carré est dans \(E_+ \) tel que l’on ait

\[
\sigma(\gamma_\tau) \langle \omega^\sigma_{\tau}, u_{\sigma} \rangle_p \langle \omega^\sigma_{\tau}, u_{\sigma} \rangle_p = \sigma\tau(\delta_{\sigma})t_p,
\]

pour tout \(p \in \mathcal{P} \) et tout \(\tau \in \Phi \). On pose alors \(\beta_{\sigma,\tau} = \gamma_\tau^{-1} \delta_{\sigma} \).

Soient \(p \in \mathcal{P} \) fini et \(\alpha_{\sigma,p} \in a_{\sigma} \) tel que l’idéal \((\alpha_{\sigma,p})a_{\sigma}^{-1} \) soit premier à \(p \). Alors \(u_{\sigma,p} = a_{\sigma,p}u_{\sigma} \) est un générateur de \(T_p(X) \) et donc, utilisant le (i) du Théorème II.1.1, on obtient

\[
v_p(\langle \omega^\sigma_{\tau}, u_{\sigma} \rangle) = v_p(\sigma\tau(a_{\sigma,p}^{-1})) + v_p(\langle \omega^\sigma_{\tau}, u_{\sigma,p} \rangle)
\]

\[
= -v_p(\sigma\tau(a_{\sigma})) + v_p(\omega^\sigma_{\tau}) + Z_p(a_{E,\sigma,\tau,\Phi}, 1)
\]

\[- \mu_{\text{Art},p}(a_{E,\sigma,\tau,\Phi}).
\]

Le (ii) s’en déduit aisément. Finalement on a

\[
\prod_{\sigma \in \Phi_K} \prod_{\tau \in \Phi} \sigma(\beta_{\sigma,\tau})^2 = \prod_{\sigma \in \Phi_K} N_{E_+/(\delta_{\sigma}^2)} \prod_{\tau \in \Phi} N_{K/\mathbb{Q}}(\gamma_\tau)^{-2} \in \mathbb{Q}^*;
\]

ce qui termine la démonstration du lemme. \(\square \)
COROLLAIRES II.2.14.

$$\sum_{\sigma \in H_K} \log |\langle \omega_\tau^\sigma, u_\sigma \rangle|_\infty = \sum_{\sigma \in H_K} \left(\log |\langle \omega_\tau^\sigma, \omega_{cr}^\sigma, u_\sigma \rangle|_\infty \right. \left. + \frac{1}{2} \sum_{p < \infty} \left(v_p(\omega_\tau^\sigma) + v_p(\omega_{cr}^\sigma) \right) \log p \right)$$

$$-\frac{1}{2} \sum_{\sigma \in H_K} \log |N(a_\sigma)|_\infty.$$

\textit{Démonstration.} On déduit le corollaire du lemme, en utilisant la relation

$$\langle \omega_\tau^\sigma, u_\sigma \rangle^\sigma = \sigma(\beta_{\sigma, \tau}) \langle \omega_\tau^\sigma, \omega_{cr}^\sigma, u_\sigma \rangle^\sigma.$$

Si on injecte les formules (II.2.12.2), (II.2.12.3) et (II.2.14.1) dans (II.2.12.1) et que l'on utilise la formule du produit pour les nombres rationnels pour supprimer les termes faisant apparaître Δ_E, on obtient

$$h_{\text{Fal}}(X) = -\sum_{\tau \in \Phi} h_t(E, \tau, \Phi) - \frac{1}{2} \mu_{\text{Art}}(A_E^0, \Phi)$$

$$= -h_t(A_E^0, \Phi) - \frac{1}{2} \mu_{\text{Art}}(A_E^0, \Phi);$$

ce qui permet de terminer la démonstration du Théorème II.2.10. \hfill \Box

III. Périodes des courbes de Fermat
et formule de Chowla–Selberg

Cette partie est consacrée à la comparaison entre $Z(a^*, 0)$ et $ht(a)$ si $a \in CM_{\text{ab}}$. On commence par introduire une troisième application linéaire de CM_{ab} dans \mathbb{R} que l'on note $l\Gamma_Q$ et qui est donnée principalement par les valeurs de la fonction Γ d'Euler en des points rationnels. Dans le premier paragraphe on utilise la formule de Lerch pour comparer $Z(a^*, 0)$ et $l\Gamma_Q(a)$ et dans le deuxième paragraphe on utilise des calculs sur les courbes de Fermat pour comparer $ht(a)$ et $l\Gamma_Q(a)$. Les résultats obtenus sont résumés dans le Théorème III.2.9. Enfin dans le troisième paragraphe on utilise ces résultats pour donner une démonstration de la formule de Chowla–Selberg.

1. Développement de Taylor à l'origine
des fonctions L de Dirichlet

Si $r \in \mathbb{Q}/\mathbb{Z}$, notons $\langle r \rangle$ son représentant dans l'intervalle $[0, 1[$. Identifions \mathbb{Q}/\mathbb{Z} au sous-groupe μ_∞ des racines de l'unité de $\overline{\mathbb{Q}}^*$ par l'application qui à $r \in \mathbb{Q}/\mathbb{Z}$ associe $\exp(2i\pi \langle r \rangle)$; ceci munit \mathbb{Q}/\mathbb{Z} d'une action de $G_\mathbb{Q}$. Si p est un
nombre premier et \(r \in \mathbb{Q}/\mathbb{Z} \), posons \(v_p(r) = \inf(v_p(\langle r \rangle)), 0 \) et soit \(\mathbb{Q}/\mathbb{Z}_{(p)} \) le sous-groupe des éléments \(r \) de \(\mathbb{Q}/\mathbb{Z} \) vérifiant \(v_p(r) \geq 0 \). Le Frobenius \(\varphi_p \) agit alors sur \(\mathbb{Q}/\mathbb{Z}_{(p)} \) par multiplication par \(p \). Si \(r \in \mathbb{Q}/\mathbb{Z} \), soit \(a_r \) l'élément de \(\mathcal{CM}_{ab} \) donné par la formule
\[
a_r(g) = \langle gr \rangle - \frac{1}{2}.
\]
Notre but est de calculer \(Z(a^*_r, 0) \). Pour cela posons
\[
\begin{align*}
r(p) &= \begin{cases} r & \text{si } r \in \mathbb{Q}/\mathbb{Z}_{(p)}, \\ p^{-v_p(r)} r & \text{sinon,} \end{cases} \\
V_p(r) &= \begin{cases} 0 & \text{si } r \in \mathbb{Q}/\mathbb{Z}_{(p)}, \\
 a_r(1) v_p(r) - \frac{1}{(p-1)p^{-v_p(r)-1}} a^*_r (\varphi_p) & \text{sinon,} \end{cases} \\
F(r) &= \log \frac{\Gamma(1-\langle r \rangle)}{\sqrt{2\pi}} + \sum_{p<\infty} V_p(r) \log p;
\end{align*}
\]
soit \(\eta_r \) l'élément de \(\mathbb{R}^*_+ \) dont le logarithme vaut 0 (resp. \(\log(2 \sin(\langle r \rangle \pi)) \)) (resp. \(\log(2 \sin(\langle r \rangle \pi)) - (1/(p-1))p^{-v_p(r)-1} \log p \)) si \(r = 0 \) (resp. s'il y a \(2 \) nombres premiers distincts vérifiant \(v_p(r) < 0 \)) (resp. si \(p \) est le seul nombre premier tel que \(v_p(r) < 0 \)).

\textbf{Remarque.} En fait \(\eta_r \) est une unité de \(\mathcal{O}_\mathbb{Q} \).

\textbf{Proposition III.1.1.} Il existe une unique application \(\mathbb{Q} \)-linéaire de \(\mathcal{CM}_{ab} \) dans \(\mathbb{R} \) notée \(\Gamma_{\mathbb{Q}} \) telle qu'il y a \(\Gamma_{\mathbb{Q}}(a_r) = F(r) + (1/2) \log \eta_r \). (Elle est notée \(l \Gamma \) pour rappeler qu'elle est donnée principalement par des logarithmes de la fonction \(\Gamma \) et le \(\mathbb{Q} \) en indice est là pour suggérer la possibilité de la généraliser à un corps totalement réel quelconque.)

\textbf{Démonstration.} On sait (c'est une conséquence de la non-annulation des fonctions \(L \) de Dirichlet en \(s = 1 \)) que \(\mathcal{CM}_{ab} \) est engendré par les \(a_r \) et que les relations entre les \(a_r \) sont engendrées par les relations de la forme
\[
\begin{align*}
(1) & \ a_r + a_{-r} = 0 \text{ si } r \neq 0, \\
(2) & \ \sum_{i=0}^{m-1} a_r + (i/m) = a_{mr}.
\end{align*}
\]
Il s'agit donc de vérifier les relations
\[
\begin{align*}
(3) & \ F(r) + F(-r) + \log \eta_r = 0 \text{ si } r \neq 0, \\
(4) & \ \sum_{i=0}^{m-1} F(r + (i/m)) = F(mr).
\end{align*}
\]
La relation (iii) est une conséquence de la formule \(\Gamma(\langle r \rangle) \Gamma(1-\langle r \rangle) = \pi/\sin(\langle r \rangle \pi) \), et la relation (iv) provient de l'identité
\[
\prod_{i=0}^{m-1} \frac{\Gamma(1-\langle r + \frac{i}{m} \rangle)}{\sqrt{2\pi}} = \frac{\Gamma(1-\langle mr \rangle)}{\sqrt{2\pi}} m^{\frac{1}{2} - \langle mr \rangle}.
\]
Remarque. La relation (iii) permet d’écrire

\[l\Gamma_Q(a_r) = (1/2)(F(r) - F(-r)) \]

si \(r \neq 0 \).

Proposition III.1.2. Si \(a \in \mathcal{C}\mathcal{M}^{ab} \), alors \(Z(a^*, 0) = l\Gamma_Q(a) \).

Démonstration. Il suffit bien évidemment de le démontrer pour \(a = a_r \) pour tout \(r \in \mathbb{Q}/\mathbb{Z} \). Commençons par rappeler quelques formules classiques concernant la fonction zêta de Hurwitz. Si \(x \in \mathbb{R}_+^* \), la fonction

\[\zeta(x, s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} \]

definie pour \(\Re s > 1 \) possède un prolongement méromorphe à tout le plan complexe, et on a

\[\zeta(x, s) = \left(\frac{1}{2} - x \right) + \left(\log \frac{\Gamma(x)}{\sqrt{2\pi}} \right)s + O(s^2) \]

au voisinage de \(s = 0 \). Si \(\chi \) est un caractère de Dirichlet modulo \(d \), alors, utilisant l’identité

\[L(\chi, s) = d^{-s} \sum_{x \in (\mathbb{Z}/d\mathbb{Z})^*} \chi(x)\zeta\left(\left\langle \frac{x}{d} \right\rangle, s \right), \]

et la formule (III.1.2.1), on obtient

\[L(\chi, 0) = \sum_{x \in (\mathbb{Z}/d\mathbb{Z})^*} \chi(x) \left(\frac{1}{2} - \left\langle \frac{x}{d} \right\rangle \right), \]

(III.1.2.2)

\[L'(\chi, 0) = \sum_{x \in (\mathbb{Z}/d\mathbb{Z})^*} \chi(x) \left(\log \frac{\Gamma\left(\left\langle \frac{x}{d} \right\rangle \right)}{\sqrt{2\pi}} - \left(\frac{1}{2} - \left\langle \frac{x}{d} \right\rangle \right) \log d \right). \]

La formule à démontrer est claire si \(r = 0 \) (il suffit d’utiliser (III.1.2.1) avec \(x = 1 \)). Supposons donc dorénavant \(r \neq 0 \) et écrivons \(\langle r \rangle = c/d \) avec \((c, d) = 1 \). Alors \(a_r^* \) se factorise à travers \(\text{Gal}(\mathbb{Q}(\mu_d)/\mathbb{Q}) \), groupe qui s’identifie canoniquement à \((\mathbb{Z}/d\mathbb{Z})^* \). On peut donc décomposer \(a_r^* \) sous la forme \(a_r^* = \sum \chi c_\chi \chi \), où \(\chi \) parcourt les caractères de Dirichlet modulo \(d \) et \(c_\chi \) s’obtient par inversion.
de Fourier sur \((\mathbb{Z}/d\mathbb{Z})^*\), c'est-à-dire
\[
c_\chi = \frac{1}{\varphi(d)} \sum_{u \in (\mathbb{Z}/d\mathbb{Z})^*} \chi^{-1}(u) a^*_\chi(u)
\]
\[
(\text{III.1.2.3})
\]
\[
= \frac{1}{\varphi(d)} \sum_{u \in (\mathbb{Z}/d\mathbb{Z})^*} \chi(u) \left(\langle ur \rangle - \frac{1}{2} \right)
\]
\[
= -\frac{1}{\varphi(d)} \chi^{-1}(c)L(\chi, 0).
\]
Notons que l'on a, comme il se doit \(c_\chi = 0\) si \(\chi\) est pair (i.e., \(\chi(-1) = 1\)), car dans ce cas, \(L(\chi, 0) = 0\).

Si \(\chi\) est un caractère de Dirichlet modulo \(d\), notons \(\chi_{\text{Prim}}\) le caractère primitif associé; on a alors
\[
L(\chi, s) = L(\chi_{\text{Prim}}, s) \prod_{p|d} (1 - \chi_{\text{Prim}}(p)p^{-s}),
\]
d'où l'on tire
\[
(\text{III.1.2.4})
\]
\[
\frac{L'(\chi, s)}{L(\chi, s)} = Z(\chi_{\text{Prim}}, s) + \sum_{p|d} \frac{\chi_{\text{Prim}}(p)p^{-s}}{1 - \chi_{\text{Prim}}(p)p^{-s}} \log p.
\]
D'autre part, par définition, on a \(Z(a^*_\chi, 0) = \sum_{\chi \text{ impaire} \mod d} c_\chi Z(\chi_{\text{Prim}}, 0)\). On obtient donc, utilisant les formules (III.1.2.3) et (III.1.2.4),
\[
Z(a^*_\chi, 0) = -\frac{1}{\varphi(d)} \sum_{\chi \text{ impaire} \mod d} \chi^{-1}(c)L(\chi, 0)Z(\chi_{\text{Prim}}, 0)
\]
\[
= -\frac{1}{\varphi(d)} \sum_{\chi \text{ impaire} \mod d} \left(\chi^{-1}(c)L'(\chi, 0)
\]
\[
- \sum_{p|d} (\log p) \chi_{\text{Prim}}(p)p^{-s} \chi^{-1}(c) \left. \left(\frac{L(\chi, s)}{1 - \chi_{\text{Prim}}(p)p^{-s}} \right) \right|_{s=0} \right).
\]
Si \(\chi_{\text{Prim}}(p) \neq 0\), alors \(\chi\) provient d'un caractère \(\chi(p)\) modulo \(d(p) = p^{-v_p(d)}d\). L'application qui à \(\chi\) associe \(\chi(p)\) induit une bijection de l'ensemble des caractères de Dirichlet modulo \(d\), qui sont impairs et vérifient \(\chi_{\text{Prim}}(p) \neq 0\) sur l'ensemble des caractères de Dirichlet modulo \(d(p)\), qui sont impairs. On a de plus
\[
\frac{L(\chi, s)}{1 - \chi_{\text{Prim}}(p)p^{-s}} = L(\chi(p), s),
\]
ce qui nous donne

\[Z(a^*_r, 0) = -\frac{1}{\varphi(d)} \left(\sum_{\chi \text{ impair } \chi \bmod d} \chi^{-1}(c) L'(\chi, 0) \right) \]

\[- \sum_{p|d} \log p \sum_{\chi \text{ impair } \chi \bmod d(p)} \chi(p) \chi^{-1}(c) L(\chi, 0) \).

Écrivant \(\chi^{-1}(c) \chi(p) = \chi^{-1}(c'(p)) \), \(c'(p) \) étant l’unique solution modulo \(d(p) \) de l’équation \(px = c \), utilisant les formules (III.1.2.2) et l’identité

\[\sum_{\chi \text{ impair } \chi \bmod d} \chi(x) = \begin{cases} 0 & \text{si } x \notin \{-1, 1\}, \\ \frac{\varphi(d)}{2} & \text{si } x = 1, \\ -\frac{\varphi(d)}{2} & \text{si } x = -1, \end{cases} \]

on obtient \(Z(a^*_r, 0) = -(1/\varphi(d))(G_d(c) - G_d(-c)) \), avec

\[G_d(c) = \frac{\varphi(d)}{2} \left(-\log \frac{\Gamma(1 - (c/d))}{\sqrt{2\pi}} + \left(\frac{c}{d} - \frac{1}{2} \right) \log d \right) \]

\[+ \sum_{p|d} \frac{\varphi(d(p))}{2} \left(\left\lfloor \frac{c'(p)}{d(p)} \right\rfloor - \frac{1}{2} \right) \log p. \]

La proposition s’obtient via les formules

\[\frac{c}{d(p)} = r(p), \quad \text{d’où } \left\lfloor \frac{c'(p)}{d(p)} \right\rfloor - \frac{1}{2} = a^*_r(p) \varphi(p), \]

\[\varphi(d) = (p - 1)p^{-v_p(r)} \varphi(d(p)), \]

\[\log d = -\sum_{p<\infty} v_p(r) \log p, \]

d’où l’on tire

\[G_d(c) = -\frac{\varphi(d)}{2} F(r). \]

\[\square \]

2. Courbes de Fermat

Notre but dans ce paragraphe est de calculer \(ht(a) \) si \(a \in \mathcal{CM}^{ab} \). Le calcul utilise les courbes de Fermat et en particulier le calcul de la matrice de Frobenius d’une telle courbe. Ce calcul a été effectué par Coleman, mais malheureusement il manque le cas \(p = 2 \), ce qui fait que, en général, nous ne pouvons calculer \(ht(a) \) qu’à un multiple rationnel de \(\log 2 \).

Commençons par rappeler un certain nombre de résultats connus sur les courbes de Fermat et leur jacobienne. Soit \(m \geq 3 \) un entier et soient \(F_m \)
(resp. J_m) la courbe de Fermat de degré m d’équation homogène $x_0^m + x_1^m + x_2^m = 0$ ou d’équation affine $x^m + y^m + 1 = 0$ (resp. sa jacobienne). Nous identifierons $H_1(F_m(C), \mathbb{Z})$ avec $H_1(J_m(C), \mathbb{Z})$ et $H_{DR}^1(F_m)$ avec $H_{DR}^1(J_m)$. Le groupe μ_m^2 se réalise de manière évidente comme un sous-groupe du groupe des automorphismes de F_m (et donc de J_m) définis sur $\overline{\mathbb{Q}}$ et $\mathbb{Z}[\mu_m^2]$ agit sur $H_1(J_m(C), \mathbb{Z})$; nous noterons A_m le quotient de $\mathbb{Z}[\mu_m^2]$ à travers lequel celui-ci agit sur $H_1(J_m(C), \mathbb{Z})$. Alors $H_1(J_m(C), \mathbb{Z})$ est un A_m-module libre de rang 1 admettant un générateur P_m canonique, à savoir le contour de Pochhammer (cf. [Ro]), et J_m est à multiplication complexe par $A_m \otimes \mathbb{Q}$.

Soit $I = \{(r, s, t) \in (\mathbb{Q}/\mathbb{Z})^3 \mid r + s + t = 0, r \neq 0, s \neq 0, t \neq 0\}$, et si p est un nombre premier, soit $I_p = I \cap (\mathbb{Q}/\mathbb{Z}(p))^3$. Si $q \in I$, on pose

$$b_q = a_r + a_s + a_t, \quad V_p(q) = V_p(r) + V_p(s) + V_p(t), \quad F(q) = F(r) + F(s) + F(t).$$

Si $q = (r, s, t) \in I$, soit $m \in \mathbb{N}$ tel que mr, ms et mt soient entiers. Soit $\omega_{m,q}$ l’image dans $H_{DR}^1(J_m)$ de la forme différentielle de seconde espèce (cf. [Cu] pour les normalisations)

$$m(r + s)^{b_q(1) + (1/2)} x^m y^s z^t \frac{d}{x} \left(\frac{x}{y} \right).$$

Alors $\omega_{m,q}$ est un vecteur propre pour l’action de A_m et on définit le caractère $\tau_{m,q}$ de A_m par $\alpha^* \omega_{m,q} = \tau_{m,q}(\alpha) \omega_{m,q}$ si $\alpha \in A_m$. Si $g \in \mathcal{G}_Q$, on a $g \tau_{m,q} = \tau_{m,q}^g$. Soit $A_{m,q}$ l’idéal de A_m des $\alpha \in A_m$ vérifiant $\tau_{m,q}(\alpha) = 0$ et soit $J_{m,q}$ la sous-variété abélienne de J_m engendrée par les $\alpha(J_m)$ pour $\alpha \in A_{m,q}$. Le quotient J_q de J_m par $J_{m,q}$ est une variété abélienne définie sur $\overline{\mathbb{Q}}$, indépendante de m, à multiplication complexe sur $\overline{\mathbb{Q}}$ par \mathcal{O}_q l’anneau des entiers de $E_q = \mathbb{Q}(\mu_{d_q})$, où d_q est le plus petit entier tel que $d_q r, d_q s$ et $d_q t$ soient entiers. De plus l’image P_q de P_m dans $H_1(J_q(C), \mathbb{Z})$ est indépendante de m et est un générateur de $H_1(J_q(C), \mathbb{Z})$ comme \mathcal{O}_q-module. Notons $\mathcal{O}(q)$ l’orbite de q sous l’action de $\mathcal{G}_{\mathbb{Q}}$. Si $q' \in \mathcal{O}(q)$, alors $\omega_{m,q'}$ est l’image inverse d’un élément $\omega_{q'}$ de $H_{DR}^1(J_q)$, qui ne dépend pas de m et les $\omega_{q'}$ pour $q' \in \mathcal{O}(q)$ forment une base sur \mathbb{Q} de $H_{DR}^1(J_q)$ constituée de vecteur propres pour l’action de \mathcal{O}_q. Si $q' \in \mathcal{O}(q)$, soit $\tau_{q'}$ le caractère de \mathcal{O}_q donné par la formule $\alpha^* \omega_{q'} = \tau_{q'}(\alpha) \omega_{q'}$. On a $\tau_{q,q} = g \tau_{q,q}$ si $g \in \mathcal{G}_Q$, et si $\Phi_q \subset \text{Hom}(\mathcal{O}_q, \overline{\mathbb{Q}})$ désigne le type CM de J_q, on a $\tau_{q,q} \in \Phi_q$ (resp. $\not\in \Phi_q$) si et seulement si $b_q(g) = -1/2$ (resp. $b_q(g) = 1/2$). On en tire

$$a_{E_q, \tau_q, \Phi_q} = \frac{1}{2} - b_q,$$
et donc

\[ht(b_q) = \frac{1}{2} ht(1) - ht(E_q, \tau_q, \Phi_q) \]
\[= \frac{1}{2} \log 2\pi - \frac{1}{2} \left(\log 2\pi + \log \left(\frac{\langle \omega_q, P_q \rangle_{\infty}}{\langle \omega_q, P_q \rangle_{\infty}} \right) \right) \]
\[- \sum_{p < \infty} \log p (v_p(\omega_q) - v_p(\omega_q)) \right). \]

LEMME III.2.1.

\[\frac{\langle \omega_q, P_q \rangle_{\infty}}{\langle \omega_q, P_q \rangle_{\infty}} = \exp(-2\Gamma_Q(b_q)) \prod_{p < \infty} p^{V_p(q) - V_p(-q)}. \]

Démonstration. Si \(m \in \mathbb{N} \) est tel que \(mr, ms \) et \(mt \) sont entiers, alors on a (cf. [Og])

\[\langle \omega_q, P_q \rangle_{\infty} = \langle \omega_{m,q}, P_m \rangle_{\infty} = \frac{(2i\pi)^2}{\Gamma((-r))\Gamma((-s))\Gamma((-t))}, \]

et le lemme découle de la définition de \(\Gamma_Q \).

COROLLAIRE III.2.2. Il existe une (unique) application \(\mathbb{Q} \)-linéaire \(w_p \) de \(\mathcal{CM}^{ab} \) dans \(\mathbb{Q} \) telle que \(w_p(b_q) = v_p(\omega_q) - V_p(q) \).

Démonstration. Le lemme précédent permet d'écrire

\[ht(b_q) - \Gamma_Q(b_q) = \frac{1}{2} \sum_{p < \infty} (v_p(\omega_q) - V_p(q) - v_p(\omega_q) + V_p(-q)) \log p. \]

Comme \(ht \) et \(\Gamma_Q \) sont des applications \(\mathbb{Q} \)-linéaires de \(\mathcal{CM}^{ab} \) dans \(\mathbb{R} \) et que les \(\log p \) sont linéairement indépendants sur \(\mathbb{Q} \), on en déduit l'existence d'une application \(\mathbb{Q} \)-linéaire de \(\mathcal{CM}^{ab} \) dans \(\mathbb{Q} \) prenant la valeur \((v_p(\omega_q) - V_p(q) - v_p(\omega_q) + V_p(-q)) \) sur \(b_q \). Le corollaire se déduit alors du lemme suivant:

LEMME III.2.3. \(v_p(\omega_q) + v_p(\omega_{-q}) = V_p(q) + V_p(-q) \).

Démonstration. Utilisant le Théorème II.1.1, on obtient

\[v_p(\omega_q) + v_p(\omega_{-q}) \]
\[= v_p \left(\frac{\langle \omega_q, P_p \rangle_{\infty} \langle \omega_{-q}, P_q \rangle_{\infty}}{2i\pi} \right) \]
\[= v_p \left(\frac{(2i\pi)^3}{\Gamma((-r))\Gamma((-s))\Gamma((-t))\Gamma((-t))} \right), \]
ce qui, utilisant l’identité $\Gamma((r)) = 2i\pi/(\epsilon_r - \epsilon_r^{-1})$, où $\epsilon_r = \exp i\pi(r)$, nous donne

$$v_p(\omega_q) + v_p(\omega_{-q}) = v_p(\epsilon_r - \epsilon_r^{-1})v_p(\epsilon_s - \epsilon_s^{-1})v_p(\epsilon_t - \epsilon_t^{-1}) .$$

Maintenant on a

$$v_p(\epsilon_r - \epsilon_r^{-1}) = \begin{cases} 0 & \text{si } r(p) \neq 0, \\ \frac{1}{(p-1)p^{-\epsilon_p(r)-1}} & \text{sinon.} \end{cases}$$

Il est alors facile de voir que l’on a toujours $V_p(r) + V_p(-r) = v_p(\epsilon_r - \epsilon_r^{-1})$; ce qui permet de terminer la démonstration du lemme et du corollaire.

\textbf{Remarque.} On a, pour tout $a \in \mathcal{CM}^{ab}$,

$$ht(a) = \frac{1}{2} \Gamma_Q(a) - \sum_{p<\infty} w_p(a) \log p .$$

Faisons agir G_Q sur \mathcal{CM}^{ab} en posant $ga(h) = a(gh)$. Remarquons que le sous-espace vectoriel de \mathcal{CM}^{ab} engendré par les b_q pour $q \in I(p)$ peut aussi se décrire comme le sous-espace vectoriel de \mathcal{CM}^{ab} fixé par l’action de $I_{Q_p} \subset G_Q$. Plus généralement l’action de I_{Q_p} sur \mathcal{CM}^{ab} se factorise à travers un quotient, qui est canoniquement isomorphe à \mathbb{Z}^*. On notera $\mathcal{CM}^{ab)(p)}$ le sous-espace vectoriel fixé par l’action de $1 + p^{n-1}Z_p$ (avec la convention $1 + p^0Z_p = \mathbb{Z}^*$); c’est aussi le sous-$Q$-espace vectoriel de \mathcal{CM}^{ab} engendré par les a_r, avec $v_p(r) \geq 1 - n$.

\textbf{Lemme III.2.4.} Si $a \in \mathcal{CM}^{ab)(p)}$, alors $w_p(a) = 0$.

\textbf{Démonstration.} On peut écrire a comme combinaison linéaire de b_q avec $q \in I(p)$. Mais alors on a $V_p(q) = V_p(-q) = 0$ et $v_p(\omega_q) = v_p(\omega_{-q}) = 0$, car J_q a bonne réduction modulo p et les ω_q pour $q' \in \text{Orb}(q)$ forment une base de $H^1_{DR}(J_q)$ sur \mathbb{Z}. Si $g \in I_{Q_p}$ et $r \in Q/Z$, posons $w_{p,g}(r) = w_p(a_r) - w_p(a_{gr}) = w_p(a_r) - w_p(ga_r)$.

\textbf{Lemme III.2.5.} Soit $(r, s, t) \in (Q/Z)^3$ tel que $r + s + t = 0$. Alors $w_{p,g}(r) + w_{p,g}(s) + w_{p,g}(t) = 0$ dans chacun des cas suivants:

(i) $p \geq 5$;
(ii) $p = 2$ ou 3 et $\{r, s, t\} \cap Q/Z(p) \neq \emptyset$;
(iii) $p = 3$ et $v_p(r) = v_p(s) = v_p(t)$.

\textbf{Démonstration.} Si r, s ou t est nul, le lemme est évident. Sinon, soit $q = (r, s, t)$. Alors J_q acquiert bonne réduction sur une extension finie K de Q_p. On a donc une action semi-linéaire de W_p sur $H^1_{DR}(J_q, K)$ et donc, en particulier, une action de I_{Q_p}. De plus ω_q étant vecteur propre pour l’action
de O_q (via τ_q), $g(\omega_q)$ sera aussi vecteur propre pour l’action de O_q (via τ_{gq} cette fois). Il existe donc $\beta_g(q) \in K^*$ tel que l’on ait $g(\omega_q) = \beta_g(q)\omega_{gq}$. D’autre part on a $v_p(g(\omega_q)) = v_p(\omega_q)$ si $g \in I_{Q_p}$ (cf. Théorème II.1.1); on en déduit
\[v_p(\omega_q) - v_p(\omega_{gq}) = v_p(\beta_g(q)). \]
Le lemme n’est alors qu’une réécriture des résultats de Coleman ([Cn], Prop. 6.2 et Cor. 7.6). (Attention au fait que notre $\beta_g(q)$ est $\beta_g(gq)$ pour Coleman et que notre t et celui de Coleman diffèrent par un signe.)

LEMME III.2.6. (i) Si $p \geq 3$, alors $w_{p,q}(r) = 0$.
(ii) Si $p = 2$ et $r - s \in \mathbb{Q}/\mathbb{Z}(2)$, alors $w_{p,q}(r) = w_{p,q}(s)$.

Démonstration. Si $p \geq 5$, c’est une conséquence directe du (i) du lemme précédent.

Si $p = 2$, cela suit du (ii) du lemme précédent appliqué à $(r, r - s, -s)$ et de l’imparité de $w_{p,g}$.

Si $p = 3$, l’argument utilisé pour $p = 2$ prouve que l’on a $w_{3,q}(r) = w_{3,q}(s)$ si $r - s \in \mathbb{Q}/\mathbb{Z}(3)$. Il suffit donc de prouver que l’on a $w_{3,q}(r) = 0$ si r est de la forme $m/3^n$. Or, appliquant (iii) à $(r, r, -2r)$, on obtient $w_{3,q}(2r) = 2w_{3,q}(r)$ et donc $w_{3,q}(2^k r) = 2^k w_{3,q}(r)$ pour tout $k \in \mathbb{N}$. Prenant alors $k \in \mathbb{N} - \{0\}$ tel que $2^k \equiv 1 \mod 3^n$ (par exemple, $k = 2.3^{n-1}$), on a $2^k r = r$ dans \mathbb{Q}/\mathbb{Z}, d’où l’on tire $(2^k - 1)w_{3,q}(r) = 0$; ce qui permet de conclure.

COROLLAIRE III.2.7. Si $p \geq 3$, la forme linéaire w_p est identiquement nulle.

Démonstration. Soit $a \in CM_{ab}$ et soit $I_{Q_p}(a)$ le sous-groupe de I_{Q_p} laissant a fixe. Alors $\sum_{g \in I_{Q_p}/I_{Q_p}(a)} ga$ est fixe par I_{Q_p} et donc
\[\sum_{g \in I_{Q_p}/I_{Q_p}(a)} w_p(ga) = 0; \]
d’autre part le (i) du lemme précédent implique $w_p(ga) = w_p(a)$ si $g \in I_{Q_p}$, ce qui permet de conclure.

LEMME III.2.8. Si $a \in CM_{(16)}$, alors $w_2(a) = 0$.

Démonstration. L’argument utilisé pour le corollaire précédent montre qu’il suffit de prouver que $w_{2,q}$ est identiquement nul sur CM_{ab} si $g \in I_{Q_2}$. D’autre part $CM_{ab}^{(16)}$ est engendré par les a_r pour $r \in \mathbb{Q}/\mathbb{Z}$, vérifiant $v_2(r) \geq -3$, et le (ii) du Lemme III.2.6 montre qu’il suffit de vérifier que l’on a $w_{2,q}(r) = 0$ si $r \in \left\{ \frac{1}{2}, \frac{1}{4}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8} \right\}$. Finalement l’espace vectoriel engendré
par les a_r pour $r \in \{\frac{1}{2}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\}$ est un \mathbb{Q}-espace vectoriel de dimension 2 stable par I_{Q_2} et admettant $b_{\frac{1}{4}, \frac{1}{2}}, b_{\frac{3}{8}, \frac{3}{4}}$ comme base. On est donc ramené à démontrer que l'on a $w_2(\frac{1}{4}, \frac{1}{2}) = w_2(\frac{3}{8}, \frac{3}{4}) = 0$. Pour calculer $w_2(\frac{1}{4}, \frac{1}{2})$ considérons la courbe elliptique d'équation $y^2 = x^3 - x$, qui est isomorphe sur \mathbb{Q} à $J_{\frac{1}{4}, \frac{1}{2}}$. De manière générale, si X est une courbe elliptique définie sur \mathbb{Q} ayant bonne réduction modulo p, si ω est un générateur de $H^0(X, \Omega_X^1)$ et si Δ est le discriminant d'un modèle de Weierstrass associé à ω, on a $v_p(\omega) = -(1/12)v_p(\Delta)$ (c'est dû au fait que Δ est une forme modulaire de poids 12). Dans le cas qui nous intéresse, $y^2 = x^3 - x$ est un modèle de Weierstrass de discriminant 64 associé à la forme holomorphe $(dx/2y)$. On en tire $v_2(dx/y) = 1/2$. D'autre part $\omega = (dx/y)$ a comme période fondamentale

$$2 \int_1^{+\infty} \frac{dx}{y} = \frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{2})}{\Gamma(\frac{3}{4})}.$$

Comme l'intégrale de $\omega_{\frac{1}{4}, \frac{1}{2}}$ sur le contour de Pochhammer vaut

$$(2i\pi)^2/\Gamma(3/4)^2\Gamma(1/2),$$

on obtient

$$v_2(\omega_{\frac{1}{4}, \frac{1}{2}}) - v_2(\omega) = v_2\left(\frac{(2i\pi)^2}{\Gamma(3/4)^2\Gamma(1/2)}\frac{\Gamma(3/4)}{\Gamma(1/4)\Gamma(3/2)}\right) = v_2\left(\frac{4}{\sin \frac{\pi}{4}\sin \frac{\pi}{2}}\right) = \frac{3}{2}.$$

On en tire $v_2(\omega_{\frac{1}{4}, \frac{1}{2}}) = 2$. Finalement on a $V_2(1/4) = ((1/4) - (1/2)) \cdot (-2) - (0 - (1/2)) \cdot ((1/2)) = (3/4)$ et $V_2(1/2) = 0 \cdot (-1) - (0 - (1/2)) \cdot 1 = (1/2)$, d'où l'on tire $v_2(\omega_{\frac{1}{4}, \frac{1}{2}}) = 0$.

Pour calculer $v_2(\omega_{\frac{1}{8}, \frac{3}{4}})$ considérons la courbe $v^2 = y^8 + 1$, ou plutôt son quotient $y^2 = z^4 - 4z^2 + 2$ obtenu en posant $z = x + x^{-1}$ et $y = x^{-2}v$. Soit $\epsilon = \exp(i\pi/8)$ une racine primitive 16-ième de l'unité. Les racines de $z^4 - 4z^2 + 2 = 0$ sont les α_i, pour $i \in \{1, 3, 5, 7\}$, avec $\alpha_i = \epsilon^i + \epsilon^{-i}$. Posons $z = \alpha_1 + t^{-1}$ et $y = 2(\epsilon - \epsilon^{-1})\sqrt{\alpha_1}t^{-2}u$. Le point (u, t) se trouve sur la courbe elliptique X d'équation $u^2 = (t - r_3)(t - r_5)(t - r_7)$, où, si $i \in \{3, 5, 7\}$, alors

$$r_i = \frac{1}{\epsilon^i + \epsilon^{-i} - \epsilon - \epsilon^{-1}} = \frac{1}{(\epsilon^i - \epsilon)(1 - \epsilon^{-i-1})},$$

$$r_i - r_j = \frac{(\epsilon^i - \epsilon^j)(1 - \epsilon^{-i-j})}{(\epsilon^i - \epsilon)(1 - \epsilon^{-i-1})(\epsilon^j - \epsilon)(1 - \epsilon^{-j-1})}.$$
Le discriminant \(\Delta \) de \(X \) est donné par la formule \(\Delta = 16(r_3-r_5)^2(r_5-r_7)^2(r_7-r_3)^2 \), et comme \(v_2(e^a - e^b) = (v_2(a - b)/8) \) si \(v_2(a - b) \leq 3 \), on obtient

\[
v_2(\Delta) = 4 + \frac{1}{4} \sum_{i,j \in \{3,5,7\}} (v_2(i + j) + v_2(i - j))
\]

\[
- \frac{1}{2} \sum_{i \in \{3,5,7\}} (v_2(i - 1) + v_2(i + 1)) = \frac{3}{2},
\]

et donc \(v_2(dt/2u) = -1/8 \). Le réseau des périodes de \(\omega = dt/2u \) est engendré par \(2 \int_{r_3}^{+\infty} \omega \) et \(2 \int_{r_5} r_3 \omega \). D’autre part les changements de variables précédents nous donnent \(\omega = -(\epsilon - \epsilon^{-1})\sqrt{\alpha_1(\alpha z/\gamma)} = -(\epsilon - \epsilon^{-1})\sqrt{\alpha_1(x^3 - x/v)}(dx/x) \). On obtient

\[
\int_{r_3}^{+\infty} \omega = (\epsilon - \epsilon^{-1})\sqrt{\alpha_1} \int_0^1 \frac{x^3 - x}{x^8 + 1} \frac{dx}{x} \frac{dx}{x} ,
\]

\[
\int_{r_5} r_3 = (\epsilon - \epsilon^{-1})\sqrt{\alpha_1} \int_0^1 \frac{x^3 - x}{x^8 + 1} \frac{dx}{x} ,
\]

l’intégrale étant prise sur l’arc de cercle allant de \(\exp(i\pi/8) \) à \(\exp(3i\pi/8) \) (resp. de \(\exp(3i\pi/8) \) à \(\exp(5i\pi/8) \)). Pour calculer cette intégrale il est plus simple de la décomposer en deux segments passant par 0. Soit donc \(\eta \) une racine 8-ième de –1, et posons \(x = \eta w^{1/8} \), on obtient

\[
\int_0^1 \frac{x^3 - x}{x^8 + 1} \frac{dx}{x} = \frac{1}{8} \int_0^1 \frac{\eta^3 w^{3/8} - \eta w^{1/8} dw}{\sqrt{1-w} w} = \frac{1}{8} \left(\eta^3 \frac{\Gamma(3/8)\Gamma(1/2)}{\Gamma(7/8)} - \eta \frac{\Gamma(1/8)\Gamma(1/2)}{\Gamma(5/8)} \right).
\]

On peut simplifier cette expression en utilisant les formules

\[
\Gamma\left(\frac{1}{8}\right) = \frac{2i\pi}{(\epsilon - \epsilon^{-1})\Gamma(\frac{7}{8})} \quad \text{et} \quad \Gamma\left(\frac{3}{8}\right) = \frac{2i\pi}{(\epsilon^3 - \epsilon^{-3})\Gamma(\frac{5}{8})}.
\]

On obtient alors

\[
\int_\epsilon^e \frac{x^3 - x}{x^8 + 1} \frac{dx}{x} = \frac{1}{8} \left(\frac{2i\pi\Gamma(1/2)}{\Gamma(5/8)\Gamma(3/8)} \right) \left(\frac{e^9}{e^3 - \epsilon^3} - \frac{e^3}{\epsilon - \epsilon^{-1}} - \frac{e^3}{\epsilon^3 - \epsilon^{-3}} + \frac{\epsilon}{\epsilon - \epsilon^{-1}} \right)
\]

\[
= \frac{1}{8} \left(\epsilon^6 - \epsilon^2 \right) \left(\frac{2i\pi\Gamma(1/2)}{\Gamma(5/8)\Gamma(3/8)} \right)
\]

\[
\int_{e^3}^{e^5} \frac{x^3 - x}{x^8 + 1} \frac{dx}{x} = \frac{1}{8} \left(\frac{2i\pi\Gamma(1/2)}{\Gamma(5/8)\Gamma(3/8)} \right) \left(\frac{e^{15}}{e^3 - \epsilon^3} - \frac{e^5}{\epsilon - \epsilon^{-1}} - \frac{e^9}{\epsilon^3 - \epsilon^{-3}} + \frac{\epsilon^3}{\epsilon - \epsilon^{-1}} \right)
\]

\[
= \frac{1}{8} \left(\epsilon^{12} - \epsilon^4 \right) \left(\frac{2i\pi\Gamma(1/2)}{\Gamma(5/8)\Gamma(3/8)} \right),
\]

This content downloaded from 134.157.55.166 on Tue, 3 Dec 2013 05:57:47 AM
All use subject to JSTOR Terms and Conditions
et comme $\epsilon^{12} - \epsilon^4 = \sqrt{-2}(\epsilon^6 - \epsilon^2)$, on voit que X est une courbe elliptique à multiplication complexe par $\mathbb{Z}[(\sqrt{-2})]$ et que ω admet $(1/4)(\epsilon - \epsilon^{-1})\sqrt{\alpha_1}(\epsilon^6 - \epsilon^2)(2i\pi\Gamma(1/2)/\Gamma(5/8)\Gamma(7/8))$ pour période fondamentale.

On tire de là l'égalité

$$v_2(\omega_{1, \frac{3}{4}, \frac{1}{2}}) - v_2(\omega) = v_2\left(\frac{(2i\pi)^2}{\Gamma(\frac{5}{8})\Gamma(\frac{7}{8})\Gamma(\frac{1}{2})} \frac{4\Gamma(\frac{5}{8})\Gamma(\frac{7}{8})}{2i\pi\Gamma(\frac{1}{2})(\epsilon - \epsilon^{-1})\sqrt{\alpha_1}(\epsilon^6 - \epsilon^2)}\right)$$

$$= 3 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} = 2 + \frac{1}{8}.$$

On calcule $v_2(\sqrt{\alpha_1})$ en remarquant que l'on a $\alpha_1 = \epsilon - \epsilon^{-1} + 2\epsilon^{-1}$, d'où l'on tire $v_2(\alpha_1) = 1/4$. On obtient finalement $v_2(\omega_{1, \frac{3}{4}, \frac{1}{2}}) = 2 + (1/4)$, d'où l'on tire facilement $v_2(\omega_{1, \frac{3}{4}, \frac{1}{2}}) = 0$.

On peut résumer les résultats obtenus dans ce paragraphe de la manière suivante:

Théorème III.2.9. (i) Si $a \in \mathcal{CM}^{ab}_{(16)}$, alors $ht(a) = l\Gamma_Q(a) = Z(a^*, 0)$.

(ii) Si $a \in \mathcal{CM}^{ab}$, alors $ht(a)$ et $Z(a^*, 0) = l\Gamma_Q(a)$ ne diffèrent au plus que par un multiple rationnel de $\log 2$.

Remarque. Ce théorème permet de donner une formule explicite, en termes de la fonction Γ, pour les hauteurs des variétés abéliennes à multiplication complexe par une extension abélienne de \mathbb{Q}. Par exemple, si X est la jacobienne de la courbe hyperelliptique d'équation $y^2 = x^5 + 1$, on obtient

$$h_{Fal}(X) = -l\Gamma_Q(1) + 3l\Gamma_Q(a_{\frac{1}{5}}) + l\Gamma_Q(a_{\frac{3}{5}}) - \frac{1}{2} \log 5$$

$$= \log 2\pi - \frac{1}{2} \log \left(\Gamma\left(\frac{1}{5}\right)\Gamma\left(\frac{2}{5}\right)\Gamma\left(\frac{3}{5}\right)\Gamma\left(\frac{4}{5}\right)^{-1}\right).$$

On retrouve ainsi un résultat de Bost, Mestre et Moret-Bailly [BMM-B] à $\log 2$ près, la différence venant de ce que les métriques utilisées ne sont pas les mêmes. C'est d'ailleurs la comparaison de ma formule avec la leur, qui m'a révélé mon erreur de signe dans la définition de la hauteur de Faltings.

3. La formule de Chowla–Selberg

Soit $E = K(\sqrt{-D})$ un corps quadratique imaginaire de discriminant $-D$ et soit K son corps de Hilbert. Soit X une courbe elliptique définie sur K à multiplication complexe par \mathcal{O}_E. Soit $j(X)$ son invariant. On a alors $K = E(j(X))$. Fixons un plongement i de E dans \mathbb{Q} et des représentants a_1, \ldots, a_h du groupe des classes d'idéaux de E. Soit $j(a_i)$ l'invariant j de a_i considéré comme réseau de \mathbb{C}. Alors la théorie de la multiplication complexe permet
d’écrire H_K sous la forme $\{\sigma_1, \ldots, \sigma_h, c\sigma_1, \ldots, c\sigma_h\}$, ou σ_i est le plongement de K au dessus de ν vérifiant $\sigma_i(j(X)) = j(a_i^{-1})$. Soit ω un générateur de $H^0(X, \Omega_X^1)$ et Δ le discriminant du modèle de Weierstrass de X associé à ω. On a alors $v_p(\omega^\sigma) = -(1/12)v_p(\Delta^\sigma)$. D’autre part l’image de $H_1(X^\sigma(\mathbb{C}), \mathbb{Z})$ par l’application $u \rightarrow \int_u \omega^\sigma$ est de la forme $\Omega_{\sigma}a_\sigma$, où $\Omega_{\sigma} \in \mathbb{C}$ est bien déterminé à une racine de l’unité dans E près et $a_\sigma = a_i^{-1}$ (resp. a_i) si $\sigma = \sigma_i$ (resp. $c\sigma_i$). On a donc $\sigma(\Delta) = \Delta(\Omega_{\sigma}a_\sigma) = \Omega_{\sigma}^{-12}\Delta(a_\sigma)$ et $\int_{X^\sigma(\mathbb{C})} |\omega^\sigma \wedge \omega^{\sigma\sigma}| = \sqrt{D}|\Omega_{\sigma}|^2_N(a_\sigma)$. On en tire (cf. formule (II.2.12.1))

$$h_{Fal}(X) = -\frac{1}{2h}\left(\sum_{i=1}^{h} \left(\frac{1}{2} \log D + \log |\Omega_{\sigma_i}\Omega_{c\sigma_i}|_\infty\right) + \frac{1}{12} \sum_{p<\infty} \sum_{\sigma \in H_K} v_p(\sigma(\Delta)) \log p\right).$$

Utilisant alors la formule du produit pour les nombres algébriques, on peut écrire

$$\sum_{p<\infty} \sum_{\sigma \in H_K} v_p(\sigma(\Delta)) \log p = \sum_{\sigma \in H_K} \log |\sigma(\Delta)|_\infty$$

$$= -12 \sum_{i=1}^{h} \log |\Omega_{\sigma_i}\Omega_{c\sigma_i}|_\infty + \sum_{i=1}^{h} \log |\Delta(a_i)\Delta(a_i^{-1})|_\infty,$$

d'où l'on tire

$$h_{Fal}(X) = -\frac{1}{4} \log D - \frac{1}{24h} \sum_{i=1}^{h} \log |\Delta(a_i)\Delta(a_i^{-1})|_\infty.$$

Soit maintenant $\chi \in CM^{ab}$ le caractère quadratique associé à l’extension E/\mathbb{Q}. On a alors $A_{E,\chi}^0 = (1/2)(1 + \chi)$ et le Théorème II.2.10 nous donne $h_{Fal}(X) = -(1/2)(ht(1) + ht(\chi)) - (1/4)\mu_{Art}(\chi)$. On a $\mu_{Art}(\chi) = \log D$. D’autre part χ se factorise à travers $\text{Gal}(\mathbb{Q}(\mu_D)/\mathbb{Q})$, qui est canoniquement isomorphe à $(\mathbb{Z}/D\mathbb{Z})^*$. On note encore χ le caractère de Dirichlet (primitif) modulo D ainsi obtenu et on a $\sum_{x=1}^{D-1} \chi(x)a_x/D = -L(\chi, 0)\chi$. Comme $v_2(D) \leq 3$, on en tire $\chi \in CM^{ab}_{(16)}$. On peut donc utiliser le Théorème III.2.9 pour calculer $h_{Fal}(X)$ et on obtient une expression pour $h_{Fal}(X)$ en termes de la fonction Γ. La comparaison des 2 expressions obtenues pour $h_{Fal}(X)$ nous fournit alors une démonstration géométrique de la formule de Chowla–Selberg rappelée dans l’Introduction.

Ecole Normale Supérieure, C.N.R.S., Paris, France
REFERENCES

[Ro] D. Rohrlich, Appendice à [Gr].

(Received December 30, 1991)