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Abstract. We prove that p-adic geometric pro-étale cohomology of smooth partially proper
rigid analytic varieties over p-adic fields seen in the category of Topological Vector Spaces satisfies
a Poincaré duality as we have conjectured. This duality descends, via fully-faithfulness results of
Colmez-Nizioł, from a Poincaré duality for solid quasi-coherent sheaves on the Fargues-Fontaine
curve representing this cohomology. The latter duality is proved by passing, via comparison
theorems, to analogous sheaves representing syntomic cohomology and then reducing to Poincaré
duality for B+

st-twisted Hyodo-Kato and filtered B+
dR-cohomologies that, in turn, reduce to Serre

duality for smooth Stein varieties – a classical result.
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1. Introduction

Let p be a prime and let K be a discrete p-adic field with perfect residue field. Let K be an
algebraic closure of K and let C = K̂ be the p-adic completion of K.

1.1. Duality Conjecture. In [15, 16], the authors showed that (a part of) the p-adic local Lang-
lands correspondence for GL2(Qp) can be realized in the p-adic (pro-)étale cohomology of the
Drinfeld tower in dimension 1. It involved the duals of the unitary representations of GL2(Qp)

provided by the p-adic local Langlands correspondence and not the representations themselves. In
contrast, the classical local Langlands correspondence (not its dual) is realized in the compactly
supported `-adic cohomology rather than the usual one; this brought us to consider a possibility
of duality for p-adic pro-étale cohomology.

The reason the authors of loc. cit. worked with the usual cohomology was mainly due to their
newly acquired competence with comparison theorems for analytic varieties [20]. In retrospect, this
was a lucky choice since the description of geometric pro-étale cohomology with compact support
is not as transparent as that of usual cohomology. The compactly supported cohomology (even
in dimension 1) was not defined at that time, but we did some heuristic computations assuming
that it could be defined similarly to de Rham cohomology with compact support [33], and that
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(derived) comparison theorems would work for it as expected. The first results did not look very
promising.

Here is the simplest of them. Let D be the open disc of dimension 1 over K. Using syntomic
methods, we obtain that the only nontrivial cohomology groups are as follows:

H0
proét(DC ,Qp(1)) ' Qp(1), H1

proét(DC ,Qp(1)) ' O(DC)/C, (1.1) sing4

H2
proét,c(DC ,Qp(1)) ' Qp ⊕O(∂DC)/O(DC),

where ∂DC denotes the "boundary of DC". Since we have the isomorphisms (of topological C-
vector spaces)

O(DC)/C
∼→ Ω1(DC), O(∂DC)/O(DC)

∼→ H1
c (DC ,O),

we see in (1.1) a Serre duality (of topological C-vector spaces)

Ω1(DC) ' H1
c (DC ,O)∗

as well as a simpleQp-duality (betweenH0
proét(DC ,Qp(1)) and theQp appearing inH2

proét,c(DC ,Qp(1)))
but they do not fit together into a simple Poincaré duality (since the degrees do not match, and
the C-duality cannot be turned into a Qp-duality as [C : Qp] =∞).

However, we realized (after quite a while) that, if we couple the above with the following
computations1 in the category of Banach-Colmez spaces (BC’s for short) and assume that the
results remain valid in the bigger category of Topological Vector Spaces (TVS’s for short):

HomTVS(Qp,Qp(1)) ' Qp(1), Ext1
TVS(Qp,Qp(1)) = 0, (1.2) BC

HomTVS(Ga,Qp(1)) = 0, Ext1
TVS(Ga,Qp(1)) ' Ga,

ExtiTVS(M,N) = 0, i ≥ 2, M,N ∈ BC,

as well as that Ext-groups of tensor products with constant objects behave as if everything was
finite dimensional, we get abstract isomorphisms (with Hi

? := Hi
?(DC ,Qp(1)))

H0
proét ' HomTVS(H2

proét,c,Qp(1)) H1
proét ' Ext1

TVS(H2
proét,c,Qp(1)) (1.3) dua1

and an abstract exact sequence

0→ Ext1
TVS(H1

proét,Qp(1))→ H2
proét,c → HomTVS(H0

proét,Qp(1))→ 0, (1.4) dua2

which suggest a (derived) duality, both ways.
These examples brought us to formulate the following conjecture (see [13], [17]):

conj-main Conjecture 1.5. Let X be a smooth partially proper rigid analytic variety over K of dimension d.
In the category of Topological Vector Spaces we have a natural quasi-isomorphism

Rproét(XC ,Qp) ' RHomTVS(Rproét,c(XC ,Qp(d))[2d],Qp).

Here:

(1) TVS’s are Q
p
-modules in the category of topologically enriched2 presheaves on strictly

totally disconnected spaces over C, denoted sPerfC , with values in solid abelian groups.
(2) Rproét(XC ,Qp) is a TVS defined by S 7→ RΓproét(XS ,Qp); the topology on RΓproét(XS ,Qp)

is canonically inherited from the pro-étale site.

1In (1.2) the last nontrivial Ext group is generated by the fundamental exact sequence

0→ Qp(1)→ B+,ϕ=p
cr → Ga → 0,

where B+,ϕ=p
cr is the TVS corresponding to B+,ϕ=p

cr .
2For the sake of the introduction we invite the reader to ignore the issue of enrichment and think of TVS’s as

just topological presheaves. See [19] for precise definitions.
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(3) Pro-étale cohomology with compact support Rproét,c(XC ,Qp) is defined by S 7→ RΓproét,c(XS ,Qp),
where, for an exhaustive covering {Un}, Un b Un+1, by quasi-compact open spaces, we set

RΓproét,c(XS ,Qp) := [RΓproét(XS ,Qp)→ RΓproét(∂XS ,Qp)],

RΓproét(∂XS ,Qp) := colimn RΓproét(XS K Un,S ,Qp),

with the induced topology. By [1], we have RΓproét,c(XC ,Qp) := RΓét,c,Hu(XC ,Qp), the
Huber p-adic étale cohomology.

Remark 1.6. We state the duality only one way because of potential pathologies for extensions
of Fréchet (or Banach) spaces in the condensed world, but (1.3) and (1.4) suggest strongly that
there should be a duality both ways, at least in reasonnable cases.

1.2. The main result. The main result of this paper is the following:

main-1 Theorem 1.7. Conjecture 1.5 holds.

Our strategy for the proof of Theorem 1.7 follows the heuristic computations we have done on
examples. The foundational results needed to do that mentioned in the previous section were proven
in a series of papers by the authors and Piotr Achinger: Hyodo-Kato cohomology of rigid analytic
and dagger varieties was defined and studied in [21], p-adic comparison theorems were proven in
[21], [22], [25], compactly supported p-adic pro-étale cohomology and Hyodo-Kato dualities were
studied in [1], the properties of Topological Vector Spaces were studied in [19] (that they satisfy
the expected duality for BC’s was derived there from a result of the same type due to Anschütz-Le
Bras in the category of Vector Spaces3 [4]).

To prove Theorem 1.7, we start with passing from pro-étale cohomology to syntomic cohomology.
Recall that the latter is built from the Hyodo-Kato part, that records the mod p information, and
the de filtered Rham part that records the characteristic zero information; the two parts are
connected via the Hyodo-Kato morphism. It is part of the standard yoga of p-adic Hodge theory
for algebraic varieties that, when dealing with syntomic cohomology one should work as long as
possible separately with the Hyodo-Kato and the de Rham parts and glue them together only
at the last moment.4 In the perfectoid world this separation can be obtained geometrically by
representing syntomic cohomology by a quasi-coherent sheaf on the Fargues-Fontaine curve. This
sheaf will have (completed) stalks equal to twisted Hyodo-Kato cohomology at all points outside of
∞ and at ∞ it will be equal to the filtered B+

dR-cohomology. Now Hyodo-Kato duality (inherited
itself from de Rham duality) and filtered de Rham duality (see [1]) yield a duality on the Fargues-
Fontaine curve. Taking derived global sections of this duality, via fully-faithfulness results from
[19], yields a duality on the level of TVS’s.

before
1.3. A Corollary. Before reviewing our proof of Theorem 1.7 we will state an implication and
sketch its proof. It contains many of the essential elements of the proof of the main theorem.

main-cor Corollary 1.8. Let i ≥ 0. There is a natural short exact sequence of TVS’s

0→ Ext1TVS(H2d−i+1
proét,c (XC ,Qp(d)),Qp)→ Hiproét(XC ,Qp)→ HomTVS(H2d−i

proét,c(XC ,Qp(d)),Qp)→ 0

We note that the term on right is almost constant (see the computations (1.2)). Since we have
the internal RHom spectral sequence, it suffices to show that

ExtaTVS(Hbproét,c(XC ,Qp),Qp) = 0, a ≥ 2. (1.9) vanishing-0

3That is ∞-derived category of Q
p
-modules on the site of perfectoid affinoids over C equipped with pro-étale

topology.
4A technique inherited from Beilinson-Deligne cohomology (see [7]). For how this works for syntomic cohomology

in the algebraic setting see [6], [23].
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Using syntomic comparison theorems we can trivialize the TVS-structure on pro-étale cohomology.
That is, for r ≥ 2d, we have a long exact sequence of TVS’s

· · · → DRb−1
c (XC , r)→ Hbproét,c(XC ,Qp(r))→ HKbc(XC , r)→ DRbc(XC , r)→ · · · ,

where we set

HKbc(XC , r) := (Hb
HK,c(XC)⊗L2

C̆
B+

cr)
ϕ=pr (1.10) hk-dr

DRbc(XC , r) := lim(· · · → Hd
c (X,Ωj)⊗L2

K (B+
dR/t

r)→ Hd
c (X,Ωj+1)⊗L2

K (B+
dR/t

r−1)→ · · · )[−d]

Here C̆ = Frac(W (k)), where k is the residue field of K. We note that the TVS’s structure in
(1.10) comes solely from the period presheaves.

To show (1.9), modulo a boundary case, it suffices to show it for the Hyodo-Kato and de
Rham parts separately. For the Hyodo-Kato part, passing via a limit argument to overconvergent
quasi-compact opens, we may assume that the ranks of Hyodo-Kato groups are finite. But then
(Hb

HK,c(XC) ⊗L2

C̆
B+

cr)
ϕ=pr is a BC and we know that the Ext-groups for those vanish in degrees

higher than 2. So far there was no functional analytic difficulties. They appear when we need to
show that

ExtaTVS(Hd
c (X,Ωi)⊗2

K Ga,Qp) = 0, a ≥ 2.

But now the space Hd
c (X,Ωi) is of compact type thus, assuming K = Qp for simplicity, we have

ExtaTVS(Hd
c (X,Ωi)⊗2

K Ga,Qp) ' Hd
c (X,Ωi)∗ ⊗2

Qp
ExtaTVS(Ga,Qp),

which vanishes in the required range (by the BC computations), as wanted.

1.4. Duality for p-adic geometric pro-étale cohomology on the Fargues-Fontaine curve.
We show in this paper that the p-adic geometric pro-étale cohomology seen as living on the Fargues-
Fontaine curve satisfies a Poincaré duality. Recall that the p-adic geometric pro-étale cohomology
of a smooth partially proper rigid analytic variety X over K can be represented by a solid quasi-
coherent sheaf on the Fargues-Fontaine curve, i.e., the pro-étale cohomology can be computed
as

RΓproét(XC ,Qp) ' RΓ(XFF, Eproét(XC ,Qp)),

for a (nuclear) solid quasi-coherent sheaf Eproét(XC ,Qp) on the Fargues-Fontaine curve XFF :=

XFF,C[ defined using relative period sheaves. Similarly, geometric compactly supported pro-étale
cohomology RΓproét,c(XC ,Qp) can be represented by solid quasi-coherent sheaf Eproét,c(XC ,Qp)

on XFF. See Section 4.1.2 for the definitions.
Via comparison theorems, we see that, if ? ∈ {−, c},

Eproét,?(XC ,Qp(r)) ' Esyn,?(XC ,Qp(r)), r ≥ 2d,

where d is the dimension of X and Esyn,?(XC ,Qp(r)) is the syntomic cohomology sheaf (a solid
quasi-coherent sheaf on the Fargues-Fontaine curve representing syntomic cohomology; see Section
3.3 for a definition). This is equivalent to proving a comparison theorem between corresponding
Frobenius equivariant sheaves on the Fargues-Fontaine curve YFF, which amounts to untwisting
Frobenius from classical comparison theorems. Luckily for us, the proofs of comparison theorems
in [21] and [1] do actually (implicitly) prove the untwisted versions we want (see Corollary 4.9 for
the notation):

Theorem 1.11. (BI -comparison theorem) Let X be a smooth partially proper variety over K.
Let r ≥ 0 and let I ⊂ (0,∞) be a compact interval with rational endpoints5. We have a natural,
functorial in S, compatible with Frobenius, quasi-isomorphism in D(BI

S[,2
):

τ≤rRΓproét,?(XS ,BI)(r) ' τ≤r[RΓIHK,?(XS , r)
ιIHK−−→RΓIdR,?(XS , r)].

5Containing the fixed intervals from Section 2.2.2
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Recall that classical syntomic cohomology is built from (ϕ,N)-eigenspaces ofB+
st-twisted Hyodo-

Kato cohomology and from filtered B+
dR-cohomology. Representing it (in a stable range) by the

sheaf Esyn,?(XC ,Qp(r)) on the Fargues-Fontaine curve separates these terms: heuristically speak-
ing, the (completed) stalks of Esyn,?(XC ,Qp(r)) at points outside ∞ are N -eigenspaces of B+

st-
twisted Hyodo-Kato cohomology and the (completed) stalk at ∞ is the r-th filtration level of
B+

dR-cohomology.
Now, the stalk cohomology sheaves satisfy Poincaré duality: Poincaré duality for Hyodo-Kato

cohomology reduces, via the Hyodo-Kato isomorphism, to that for de Rham cohomology and
Poincaré duality for filtered de Rham cohomology, in turn, reduces to Serre duality for smooth
Stein varieties – a classical result (see [1] and Section 5.1 for details). These dualities are inherited
by the sheaves Esyn,?(XC ,Qp(r)), for r ≥ 2d, and then by the sheaves Eproét,?(XC ,Qp(r)) yielding
the second main result of this paper:

Theorem 1.12. (Poincaré duality for pro-étale sheaves) We have a natural, Galois equivariant,first1
quasi-isomorphim in QCoh(XFF)

Eproét(XC ,Qp)
∼→ RHomQCoh(XFF)(Eproét,c(XC ,Qp(d))[2d],O). (1.13) first

The proof of the theorem does not proceed as sketched above though, due to the difficulties of
passing to stalks in the theory of solid quasi-coherent sheaves. Instead we argue in a similar vein
with ϕ-modules on the YFF-curve. In a side remark, we sketch an alternative proof of Theorem
1.12 that, instead of passing to the YFF-curve, uses dual modifications.

Analogous argument, with splitting into Hyodo-Kato and de Rham terms, yields a Künneth
formula:

Theorem 1.14. (Künneth formula) Let X,Y be smooth partially proper varieties over K. Thenfirst2
the canonical map

κ : Eproét(XC ,Qp)⊗L
O Eproét(YC ,Qp)→ Eproét((X ×K Y )C ,Qp)

is a quasi-isomorphism in QCoh(XFF).

Remark 1.15. In Theorem 1.12 and Theorem 1.14, we can replace C, functorially, with any
affinoid perfectoid over C.

1.5. Descend to TVS’s. Finally, to prove Theorem 1.7, we need to descend the duality (1.13) to
the "real" world, which for us is the world of Topological Vector Spaces. We apply the projection
functor

Rτ∗ : QCoh(XFF)→ TVS,

the derived global section functor from [19], to the duality on the Fargues-Fontaine curve (1.13)
and, since

Rτ∗Eproét,?(XC ,Qp) ' Rproét,?(XC ,Qp), Rτ∗O ' Qp,

we reduce to showing that the canonical map

Rτ∗RHomQCoh(XFF)(Eproét,c(XC ,Qp),O)→RHomTVS(Rτ∗Eproét,c,Rτ∗O).

is a quasi-isomorphism. But this fully-faithfulness result can be reduced by an argument similar
to the one used in the proof of the Corollary 1.8 to fully-faithfulness for perfect complexes on the
Fargues-Fontaine curve and this was proven in [19].

rks Remark 1.16. (1)(Algebraic Poincaré Duality) The duality in Conjecture (1.5) has an algebraic
version in the category of Vector Spaces (see Corollary 6.19 for the statement). It is deduced from
Theorem 1.7 via fully-faithfulness results from [19].

(2) (Arithmetic Duality) Our Conjecture 1.5 has an arithmetic version, i.e., for p-adic arithmetic
pro-étale cohomology (see [13], [17]). The statement is much simpler: it is a Poincaré duality in
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the category of topological spaces that yields a nonderived version working in "both directions".
In [17, Th. 1.1], we have proved this conjecture for dagger curves over K via relatively down to
earth techniques (p-adic comparison theorems, Serre duality, reciprocity laws via (ϕ,Γ)-modules).
The general case was derived from Theorem 1.12 via Galois descent by Zhenghui Li in [28].

1.6. The story of this paper and related work. The proof of duality presented in this paper
is quite simple. But a lot of foundational work went into setting up the right formalism for this to
be the case. Here is the story how this developed.

We started working on this project in the spring of 2020 when the computations for the open ball
suggested that there could be a Poincaré duality for p-adic geometric pro-étale cohomology of rigid
analytic spaces provided one could mix the degrees of cohomology and combine Qp-duality and
C-duality. This suggested that there could be a duality in the BC-category, by using RHom(−,Qp)

instead of Hom(−,Qp); for this to work one needed the vanishing of Exti’s for i ≥ 2 in the BC-
category (and in fact in a bigger category containing the TVS’s appearing in our comparison
theorems with syntomic cohomology). We discussed this with Fargues and Le Bras in Oberwolfach
at the first post-covid conference in July 2020. The required vanishing in the VS-category were
proved the following year by Anschütz and Le Bras [4] by a reduction to a theorem of Breen (we
realized, more recently, that these vanishings are elementary in the BC-category itself). We needed
a version of this result for TVS’s but it was a strong indication that what we wanted could be true.

We were at the time in the middle of writing [21, 22] which contained part of the foundational
tools needed for a Poincaré duality (definition of geometric Hyodo-Kato cohomology, geometriza-
tion of p-adic comparison theorems for usual cohomology), and we started considering their compact
support avatars [1]. Concurrently, we did some extra computations for analytifications of algebraic
curves, which again pointed strongly towards the existence of a Poincaré duality in the geometric
and arithmetic cases (the computations were more involved in the arithmetic case, but the groups
that were appearing looked much more manageable, belonging to the usual world of Qp-topological
vector spaces). By the time of the workshop "Non-Archimedean Geometry and Applications" of
February 2022, in Oberwolfach, we had a conjecture [13] and a strategy that seemed to work
well in examples, starting from our geometrized comparison theorem, and reinterpreting syntomic
cohomology as quasi-coherent ϕ-equivariant cohomology on the Fargues-Fontaine Y -curve. We
presented these results at the workshop and were quite excited to discover that there were two
other talks dealing with Poincaré duality: one by Zavyalov establishing [34] Poincaré duality for
proper analytic varieties over C, and one by Mann, developing [29] a 6-functors formalism for
O+/p-local systems from which he could also deduce Poincaré duality for proper analytic varieties
over C (note that, for proper varieties, the pro-étale cohomology groups – for constant coefficients
– are finite dimensional Qp-vector spaces, and there is no need to consider BC-duality).

Since arithmetic duality only involved familiar objects, we decided that it would be wise to start
by the proof of our conjecture for arithmetic duality for curves [17], but in the end we had to use
the condensed formalism to handle functional analytic questions arising in topological dualities.
For the geometric duality almost all the tools we needed were at hand: luckily for us, Andreychev
[2] developed the theory of solid quasi-coherent sheaves that created a framework in which to
express the duality on the Fargues-Fontaine curve that we envisaged. That was sufficient to prove
a duality on the Fargues-Fontaine curve. What was missing to carry out our strategy in full was
a condensed version of TVS’s from [22] and the Ext-vanishing we mentioned above. That took
us longer than expected mostly because we have experimented with various possible definitions
settling in the end on almost verbatim translation. And, finally, in [19], we deduced the vanishing
in TVS’s from the one in VS’s via a fully-faithfulness result. In the meantime, Zhenghui Li [28]
proved in his thesis, much to our surprise6, that the duality at the level of the Fargues-Fontaine

6We were rather expecting a Galois descent from TVS’s.
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curve was enough to deduce the existence of an arithmetic duality in general, which prompted us
to put out [18], a preliminary version of this paper.

1.6.1. Related work. In a related work, Anschütz, Le Bras, and Mann (see [5]) followed a different
path towards the proof of Conjecture 1.5 in the VS-form (see Remark 1.16). They also proceed
in two steps: the first step is a duality on the Fargues-Fontaine curve, which is a byproduct of
the 6-functor formalism for solid quasi-coherent sheaves on the Fargues-Fontaine curve they have
developed; the second step is a descend to the world of VS’s. Their first step is very different in
nature and techniques from ours and includes coefficients. On the other hand, the second step,
while it passes through solid sheaves of Fargues-Scholze instead of our TVS’s, is very similar to
ours: it relies on the Hyodo-Kato comparison theorems – the deepest part of the p-adic comparison
theorems via syntomic cohomology of [20, 14, 21, 22] (or their versions using cohomology of period
sheaves of [10]) – for dagger varieties and properties of their Hyodo-Kato cohomology (and filtered
B+

dR-cohomology) to control the functional analytic properties of pro-étale cohomology sheaves on
the Fargues-Fontaine curve to be able to apply fully-faithfulness results (akin to the arguments
sketched in Section 1.3).

Finally, we would like to mention a different approach to duality theorems developed recently
by Shizhang Li, Reinecke, and Zavyalov (see [26]), which works for proper smooth rigid analytic
varieties (and their relative incarnations) and, after some modifications, can be transferred to the
Fargues-Fontaine curve yielding, after descending to VS’s, a version of duality allowing Qp-local
systems (see [27]).

Acknowledgments. We have profited from mathematical generosity of many of our colleagues while
writing this paper. In particular we would like to thank Piotr Achinger, Johannes Anschütz, Guido
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would like to thank the MPIM of Bonn and the IAS of Princeton for their support and hospitality
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Notation
Notation and conventions. Let p be a prime and let K be a complete discrete valuation field with
a perfect residue field, of mixed characteristic. Let OK be the ring of integers in K, and k be
its residue field. Let W (k) be the ring of Witt vectors of k and let F be its fraction field (i.e.,
W (k) = OF ).

Let K be an algebraic closure of K and let OK denote the integral closure of OK in K. Let

C = K̂ be the p-adic completion of K. Set GK = Gal(K/K) and let ϕ be the absolute Frobenius
on W (k). Let C̆ = Frac(W (k)).

We will denote by Bcr,Bst,BdR the crystalline, semistable, and de Rham period rings of
Fontaine.

All rigid analytic spaces and dagger spaces considered will be over K or C; we assume that they
are separated, taut, and countable at infinity. Huber pairs will always be sheafy. The category of
affinoid perfectoid spaces over an affinoid perfectoid space S over C will be denoted by PerfS .

We will use condensed mathematics as developed in [11], [12]. We fix an implicit cut-off cardinal
κ (in the sense of [31, Sec. 4]), and assume all our perfectoid spaces, and condensed sets to be κ-
small.

If L = Qp,K,C, we will denote by CL the category of locally convex topological vector spaces
over L.
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We will use the bracket notation for certain limits: [C1
f→ C2] denotes the mapping fiber of f

and we set  C1
f1 //

��

K1

��
C2

f2 // K2

 :=
[
[C1

f1−→ K1]→ [C2
f2−→ K2]

]
.

2. Quasi-coherent sheaves on the Fargues-Fontaine curve

Here, we will review briefly basic facts concerning quasi-coherent sheaves on the Fargues-
Fontaine curve. This is partly based on [2], [3], and [10, Sec. 6.2].

2.1. Fargues-Fontaine curve. Recall the definition of the relative Fargues-Fontaine curve (see
[32, Lecture 12]). Let S = Spa(R,R+) be an affinoid perfectoid space over the finite field Fp. Let

YFF,S := Spa(W (R+),W (R+)) K V (p[p[])

be the relative mixed characteristic punctured unit disc. It is an analytic adic space over Qp. The
Frobenius on R+ induces the Witt vector Frobenius and hence a Frobenius ϕ on YFF,S with free
and totally discontinuous action. The Fargues-Fontaine curve relative to S (and Qp) is defined as

XFF,S := YFF,S/ϕ
Z.

For an interval I = [s, r] ⊂ (0,∞) with rational endpoints, we have the open subset

Y IFF,S := {| · | : |p|r ≤ |[p[]| ≤ |p|s} ⊂ YFF,S .

It is a rational open subset of Spa(W (R+),W (R+)) hence an affinoid space,

Y IFF,S := Spa(BI
S ,B

I,+
S ).

One can form XFF,S as the quotient of Y [1,p]
FF,S via the identification ϕ : Y

[1,1]
FF,S

∼→ Y
[p,p]
FF,S . If S =

Spa(C[,OC[), we will write YFF, XFF, Y
I
FF,B

I ,BI,+.
We will denote by x∞ the (C,OC)-point of the curve XFF corresponding to Fontaine’s map

θ : W (OC) → OC , by y∞ – the corresponding point on YFF, and by ι∞ : Spa(C,OC) → TFF,
T = X,Y , the corresponding closed immersions. More generally, if S is the tilt of a perfectoid
space S] over Spa(Qp), there is an induced closed immersion θ : S] ↪→ YFF,S which is locally given
by Fontaine’s map θ : W (R+) → R],+. We will denote by ι∞ : S]

θ→ TFF,S the induced closed
immersions and by y∞, x∞, the corresponding divisors.

We set
BS := lim

I⊂(0,∞)
BI
S ,

where I varies over all the compact intervals of (0,∞) with rational endpoints. We will denote
by BS,log the log-crystalline period ring (see [24, Sec. 10.3.1]). We have BS [U ]

∼→ BS,log, U 7→
log([p[]/p), with ϕ(U) = pU, σ(U) = U + log[σ(p[)/p[], for σ ∈ GK , and N = −d/dU . We define
BI
S,log in a similar manner.

2.2. Quasi-coherent sheaves on the Farges-Fontaine curve. We will present now quasi-
coherent sheaves on XFF as ϕ-modules on a convenient chart of YFF.

2.2.1. Solid quasi-coherent sheaves. We start with a brief survey of solid quasi-coherent sheaves.
Let Y be an analytic adic space over Qp. We denote by QCoh(Y ) the ∞-category of solid quasi-
coherent sheaves on Y , and by Nuc(Y ) the full ∞-subcategory of solid nuclear sheaves on Y . See
[2], [3] for the definitions of these categories and their basic properties. We will often drop the
word "solid" if this does not cause confusion. If Y = Spa(R,R+), then we have an equivalence [2,
Th. 1.6]

QCoh(Y ) ' D((R,R+)2), (2.1) eq1
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where the latter is the derived category of solid (R,R+)-modules, i.e., modules over the analytic
ring (R,R+)2. In what follows, if this does not confusion, we will write

Ran := (R,R+)2

For a general Y , the category QCoh(Y ) is obtained by gluing the categories D((R,R+)2) in the
analytic topology.

By Perf(Y ), we denote the full ∞-subcategory of perfect sheaves on Y ; that is, complexes which
locally for the analytic topology are quasi-isomorphic to a bounded complex of finite, locally free
OY -modules. If Y = Spa(R,R+) is affinoid, then the natural functor

Perf(R)→ Perf(Y )

is an equivalence, where the left-hand side denotes the ∞-category of perfect complexes of R-
modules (i.e., bounded complexes of finite projective R-modules).

The categories QCoh(Y ), Nuc(Y ), and Perf(Y ) are (compatibly) symmetric monoidal. In the
definition of the∞-category QCoh(Y ) we will bound everything by a fixed uncountable cardinal so
that the category is presentable; it is then also closed symmetric monoidal. The∞-category Nuc(Y )

is as well presentable and closed symmetric monoidal. Similarly for the ∞-category Perf(Y ).

Remark 2.2. The categories QCoh(Y ), Nuc(Y ), and Perf(Y ) can be defined in a more general
setting, where Y = Spa(R,R+) is a pair such that R is a complete Huber ring and R+ ⊂ R0 is an
arbitrary subring (see [2, Sec. 3.3] for details). We will most often use the case when R+ = Z.

fixed
2.2.2. Quasi-coherent ϕ-sheaves on YFF. The ∞-category of quasi-coherent ϕ-equivariant sheaves
over YFF,S (in short: ϕ-sheaves over YFF,S) is the equalizer

QCoh(YFF,S)ϕ := eq
(

QCoh(YFF,S)
Id
//

ϕ∗ //
QCoh(YFF,S)

)
.

It is the∞-category of pairs (E , ϕE), where E is a quasi-coherent sheaf on YFF,S and ϕE : ϕ∗E ∼→ E
is a quasi-isomorphism7. The category Nuc(YFF,S)ϕ (resp. Perf(YFF,S)ϕ) is the full∞-subcategory
of QCoh(YFF,S)ϕ spanned by the pairs (E , ϕE), where E is a nuclear (resp. perfect) sheaf on YFF,S .

In what follows we will set

u = (p− 1)/p, v = p− 1 if p 6= 2; for p = 2 we take u = 3/4, v = 3/2.

If S is the tilt of a perfectoid space S\ over Spa(Qp), this choice of u, v ensures that the divisor on
Y

[u,v]
FF,S associated to t is y∞ and t is a unit in B

[u,v/p]
S , i.e., if S\ = Spa(R,R+), then B

[u,v]
S /t = R

and B
[u,v/p]
S /t = 0.

Via analytic descent, we like to describe the above categories of ϕ-equivariant sheaves using the
chart Y [u,v]

FF,S (via Frobenius we have ϕ : Y
[u/p,v/p]
FF,S

∼→ Y
[u,v]
FF,S):

QCoh(YFF,S)ϕ ' eq
(

QCoh(Y
[u,v]
FF,S)

j∗
//

ϕ∗ //
QCoh(Y

[u,v/p]
FF,S )

)
.

We wrote here ϕ, j for the Frobenius and the open embedding maps from Y
[u,v/p]
FF,S to Y [u,v]

FF,S , respec-
tively. That is, QCoh(YFF,S)ϕ is the ∞-category of pairs (E , ϕE), where E is a quasi-coherent
sheaf on Y

[u,v]
FF,S and ϕE : ϕ∗E ∼→ j∗E is a quasi-isomorphism. The categories Nuc(YFF,S)ϕ,

Perf(YFF,S)ϕcan be described in an analogous way.

7We will call isomorphisms in the∞-categories QCoh(−) quasi-isomorphisms to be compatible with more classical
set-ups.
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We note that, since we have the equivalence (2.1), we can also write8

QCoh(YFF,S)ϕ ' D(BFF
S,2)ϕ := eq

(
D(B

[u,v]
S,an)

j∗
//

ϕ∗ // D(B
[u,v/p]
S,an )

)
.

(Frobenius ϕ maps B
[u,v]
S,an to B

[u,v/p]
S,an .) It is the ∞-category of pairs M = (M [u,v], ϕM ), where

M [u,v] is a complex of B[u,v]
S,an-modules and the Frobenius ϕM is a quasi-isomorphism of complexes

of B[u,v/p]
S,an -modules

ϕM : ϕ∗M [u,v] ∼→M [u,v/p] := M [u,v] ⊗L

B
[u,v]
S,an

B
[u,v/p]
S,an .

52 Remark 2.3. In what follows it will be convenient to consider the following variant D(BFF
S )ϕ (in

which we drop the “an”, i.e., we consider (R,Z)2 instead of (R,R+)2) of the∞-category D(BFF
S,2)ϕ:

D(BFF
S )ϕ := eq

(
D(B

[u,v]
S,2 )

j∗
//

ϕ∗ // D(B
[u,v/p]
S,2 )

)
.

It is the ∞-category of pairs M = (M [u,v], ϕM ), where M [u,v] is a complex of solid B
[u,v]
S -modules

and the Frobenius ϕM is a quasi-isomorphism of complexes of solid B
[u,v/p]
S -modules

ϕM : ϕ∗M [u,v] ∼→M [u,v/p] := M [u,v] ⊗L

B
[u,v]
S,an

B
[u,v/p]
S .

We call D(BFF
S )ϕ the category of ϕ-complexes of BFF

S -modules. Since we have the equivalences of
symmetric monoidal categories D((BI

S ,Z)2) = D(BI
S,an) (see [9, Lemma A.16]), this corresponds

to using the analytic structure with respect to Z in place of BI,+
S . In particular, we have a canonical

monoidal functor D(BFF
S )ϕ → D(BFF

S,2)ϕ.
monoidal

2.2.3. Monoidal structure on quasi-coherent sheaves on YFF. The category QCoh(YFF,S)ϕ is closed
symmetric monoidal. We will now present how the closed symmetric monoidal structure can be seen
on the level of the category D(BFF

S,2)ϕ. In what follows we have set B1 := B
[u,v]
S,an, B2 := B

[u,v/p]
S,an .

The (derived) tensor product in D(BFF
S,2)ϕ, denoted by (−)⊗L

BFF
S,2

(−), is inherited from the one

of the category D(B1). More precisely, for (M,ϕM ), (N,ϕN ) ∈ D(BFF
S,2)ϕ, their tensor product is

defined by:

M ⊗L
BFF

S,2
N := (M [u,v] ⊗L

B1
N [u,v], ϕM⊗N ),

ϕM⊗N = ϕM ⊗ ϕN : (M [u,v] ⊗L
B1
N [u,v])⊗L

B1,ϕ B2 → (M [u,v] ⊗L
B1
N [u,v])⊗L

B1
B2 = (M [u,v/p] ⊗L

B2
N [u,v/p]).

Frobenius ϕM⊗N is a quasi-isomorphism because so are Frobeniuses ϕM and ϕN .
The internal RHom, denoted by RHomBFF

S,2
(−,−), in the category D(BFF

S,2)ϕ is defined by:

RHomBFF
S,2

(M,N) := (RHomB1
(M [u,v], N [u,v]), ϕM,N ),

ϕM,N := (ϕ−1
M , ϕN ) : RHomB1

(M [u,v], N [u,v])⊗L
B1,ϕ B2 → RHomB1

(M [u,v], N [u,v])⊗L
B1

B2.

In the definition of Frobenius ϕM,N we have used the following (non-obvious9) fact:

fun1-kol Lemma 2.4. The canonical maps

RHomB1
(M [u,v], N [u,v])⊗L

B1,ϕ B2 → RHomB2
(M [u,v] ⊗L

B1,ϕ B2, N
[u,v] ⊗L

B1,ϕ B2),

RHomB1
(M [u,v], N [u,v])⊗L

B1
B2 → RHomB2

(M [u,v/p], N [u,v/p])

are quasi-isomorphisms.

8We stress here that D(BFF
S,2) and BFF

S,2 is just a notation; the ring BFF
S does not exist.

9One usually needs some finiteness condition for this kind of statements to hold.
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Proof. To start, note that, since the first map is induced by the composition of the maps

ϕ : B
[u,v]
S,an→B

[u/p,v/p]
S,an , can : B

[u/p,v/p]
S,an → B

[u,v/p]
S,an

where the first map is an isomorphism, it suffices to argue for the second quasi-isomorphism in the
lemma.

Write M [u,v] = colimi∈IM
[u,v]
i as a colimit of compact projective objects {M [u,v]

i = B1[Ti]},
i ∈ I, for extremally disconnected sets Ti’s. Then

RHomB1
(M [u,v], N [u,v]) = RHomB1

(colimi∈IM
[u,v]
i , N [u,v])

' RlimIRHomB1
(M

[u,v]
i , N [u,v])

and similarly for [u, v/p] (we set M [u,v/p]
i := M

[u,v]
i ⊗L

B1
B2 ' B2[Ti]). It follows that it suffices to

show that

(RlimIRHomB1
(M

[u,v]
i , N [u,v]))⊗L

B1
B2

∼→ RlimIRHomB2
(M

[u,v/p]
i , N [u,v/p]).

But, by [2, Prop. 5.38], we have

RHomB1
(M

[u,v]
i , N [u,v])⊗L

B1
B2

∼→ RHomB2
(M

[u,v/p]
i , N [u,v/p]).

Hence it suffices to show that

(RlimIRHomB1
(M

[u,v]
i , N [u,v]))⊗L

B1
B2

∼→ RlimI(RHomB1
(M

[u,v]
i , N [u,v])⊗L

B1
B2).

That is, that the functor (−)⊗L
B1

B2 commutes with derived limits.
To show this write B

[u,v/p]
S = B

[u,v]
S 〈f〉, where f = (p/[p[]p/v) ∈ B

[u,v]
S . By [2, Prop. 4.11], we

have

(−)⊗L
B1

B2 ' (−)⊗L
(Z[T ],Z)2

(Z[T ],Z[T ])2, (2.5) fun1

where the map (Z[T ],Z)2 → (B
[u,v]
S ,B

[u,v],+
S )2 is induced by T 7→ f . But, by [2, Prop. 3.12], for

M ∈ D((Z[T ],Z)2), we have

M ⊗L
(Z[T ],Z)2

(Z[T ],Z[T ])2 ' RHomR(R∞/R,M)[1],

where R = Z[T ], R∞ = Z((T−1)). It follows that the functor (−)⊗L
B1

B2 commutes with derived
limits, as wanted. �

Finally, we note that Frobenius ϕM,N is a quasi-isomorphism because so are Frobeniuses ϕM
and ϕN .

zet1 Remark 2.6. (1) The tensor product computations above are valid for the category D(BFF
S )ϕ.

For the internal Hom, they go through as well if one assumes that (M,ϕM ), (N,ϕN ) are nuclear
and so is the internal Hom between them (see [28, Lemma 4.7] for a proof of an analog of Lemma
2.4 in this setting). In this paper we will always be in this setting.

(2) Let M,N ∈ D((R,Z)2). We note that the natural map

RHom(R,Z)2(M,N)⊗L
(R,Z)2

(R,R+)2 → RHom(R,R+)2(M ⊗L
(R,Z)2

(R,R+)2, N ⊗L
(R,Z)2

(R,R+)2)

is a quasi-isomorphism in the case N is (R,R+)2-complete. It follows that RHom(R,Z)2(M,N) is
then also (R,R+)2-complete. For example, this is the case when N is nuclear.
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2.2.4. Quasi-coherent ϕ-sheaves on YFF and ϕ-modules. We will now describe the categories Nuc(YFF,S)ϕ

and Perf(YFF,S)ϕ using complexes of (usual) solid modules.
Recall that the natural maps of analytic rings (BI

S ,Z)2 → (BI
S ,B

I,+
S )2 induce base change

functors
(−)⊗L

(BI
S ,Z)2

(BI
S ,B

I,+
S )2 : D((BI

S ,Z)2)→ D((BI
S ,B

I,+
S )2). (2.7) mpr1

By [10, (6.13)], the functors (2.7) induce equivalences on the full subcategories of nuclear and
perfect complexes:

Nuc(BI
S) := Nuc((BI

S ,Z)2)
∼→ Nuc((BI

S ,B
I,+
S )2), (2.8) kawa1

Perf(BI
S) ' Perf((BI

S ,Z)2)
∼→ Perf((BI

S ,B
I,+
S )2).

We define the category Nuc(BFF
S )ϕ (resp. Perf(BFF

S )ϕ) as the full ∞-subcategory of D(BFF
S )ϕ

spanned by the pairs (M [u,v], ϕM ), where M [u,v] is a nuclear (resp. perfect) complex over B
[u,v]
S .

That is, the ∞-category Nuc(BFF
S )ϕ of nuclear ϕ-complexes of BFF

S -modules, is defined as the
equalizer:

Nuc(BFF
S )ϕ := eq

(
Nuc(B

[u,v]
S )

can
//

ϕ∗ //
Nuc(B

[u,v/p]
S )

)
.

Similarly, for the category Perf(BFF
S )ϕ of ϕ-complexes of perfect BFF

S -modules.
We have the following simple fact:

simple1 Lemma 2.9. The canonical functor

D(BFF
S )ϕ → QCoh(YFF,S)

induces equivalences of ∞-categories:

Nuc(BFF
S )ϕ

∼→ Nuc(YFF,S)ϕ, Perf(BFF
S )ϕ

∼→ Perf(YFF,S)ϕ. (2.10) mor1

Proof. Our claim follows from equivalences (2.8). �

The categories Nuc(BFF
S )ϕ, and Perf(BFF

S )ϕ are symmetric monoidal: the (derived) tensor
products (denoted by (−)⊗L

BFF
S

(−)) are inherited from the ones of the categories Nuc(B
[u,v]
S ), and

Perf(B
[u,v]
S ), respectively. The canonical functor to the category D(BFF

S )ϕ is symmetric monoidal.
The functors in Lemma 2.9 are compatible with these structures.

2.2.5. Quasi-coherent sheaves on XFF. The action of ϕ on YFF,S being free and totally discon-
tinuous, by the analytic descent for solid quasi-coherent sheaves, we obtain an equivalence of
∞-categories

EFF,S : QCoh(YFF,S)ϕ
∼→ QCoh(YFF,S/ϕ

Z) = QCoh(XFF,S).

Similarly, we get equivalences of closed symmetric monoidal ∞-categories

Nuc(YFF,S)ϕ
∼→ Nuc(XFF,S), Perf(YFF,S)ϕ

∼→ Perf(XFF,S). (2.11) mor2

By Lemma 2.9, this yields a functor

EFF,S : D(BFF
S )ϕ → QCoh(XFF,S). (2.12) functor1

We will often skip the subscript S from EFF,S if this does not cause confusion. Restricting to
nuclear or perfect complexes we get the following result (see [10, Th. 6.8] for a similar statement):

leje1 Proposition 2.13. (1) The functor EFF,S, from (2.12), induces equivalences of ∞-categories

Nuc(BFF
S )ϕ

∼→ Nuc(XFF,S), Perf(BS)ϕ
∼→ Perf(XFF,S). (2.14) nuceq

(2) Let E ∈ Nuc(XFF,S). Let (M(E)[u,v], ϕM ) be the nuclear ϕ-complex of BFF
S -modules corre-

sponding to E via (2.14). Then, there is a natural quasi-isomorphism in D(Qp(S)2)

RΓ(XFF,S , E) ' [M(E)[u,v] ϕ−1−−→M(E)[u,v/p]].
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Proof. The first claim is a combination of (2.10) and (2.11). For the second claim, we compute

RΓ(XFF,S , E) ' RΓ(ϕZ,RΓ(YFF, E|YFF
)) ' [Γ(Y

[u,v]
FF,S , E|YFF

)
ϕ−1−−→Γ(Y

[u,v/p]
FF,S , E|YFF

)]

' [M(E)[u,v] ϕ−1−−→M(E)[u,v/p]].

�

3. Syntomic complexes on the Fargues-Fontaine curve

In this section we define quasi-coherent sheaves on the Fargues-Fontaine curve representing
various cohomologies of smooth partially proper rigid analytic varieties: de Rham (Proposition 3.1),
Hyodo-Kato (Proposition 3.6), and syntomic (Formula 3.22) and Proposition 3.23). We will do the
same for pro-étale cohomology in the next chapter (Proposition 4.3).

3.1. de Rham cohomology. We start with the cohomologies of de Rham type. We use [1, Sec. 3,
Sec. 4, Sec. 5] as the basic reference.

3.1.1. B+
dR-cohomology. Let X be a partially proper rigid analytic variety over K. We have the

(filtered) de Rham complexes in D(K2) and (filtered) B+
dR-cohomology complexes in D(B+

dR,2),
respectively:

F rRΓdR,?(X), F rRΓdR,?(XC/B
+
dR), r ∈ N, ? = −, c

as well as the quotients

RΓdR,?(XC , r) := RΓdR,?(X/B+
dR)/F r.

The latter complexes can be represented by quasi-coherent sheaves on XFF. For r ∈ N, we
define the de Rham modules

RΓ
[u,v]
dR,?(XC , r) := RΓdR,?(XC , r).

Since B[u,v]/t
i = B+

dR/t
i, these are B[u,v]-modules. They are nuclear: for the usual cohomology, in

the Stein case this follows from Section 3.1.2 below; in general case – by the fact that nuclearity is
preserved by countable products. For the cohomology with compact support: we use the Stein case
again and then pass to a colimit which preserves nuclearity. Since RΓ

[u,v]
dR,?(XC , r)⊗L2

B[u,v]
B[u,v/p] = 0

(recall that t is invertible in B[u,v/p]), these complexes taken as pairs

RΓB
dR,?(XC , r) = (RΓ

[u,v]
dR,?(XC , r), 0)

define nuclear ϕ-complexes over BFF (see Remark 2.3).
We denote by

EdR,?(XC , r) := EFF(RΓB
dR,?(XC , r))

the corresponding nuclear quasi-coherent sheaves on XFF. We will call them de Rham sheaves. We
record the following simple fact:

nyc1 Proposition 3.1. Let r ∈ N. We have a natural quasi-isomorphism in QCoh(XFF)

EdR,?(XC , r) ' i∞,∗RΓdR,?(XC , r).

For S ∈ PerfC , by replacing B,B+
dR, XFF with BS[ ,B+

dR(S), XFF,S[ in the above, we obtain de
Rham modules and sheaves on XFF,S[ : RΓB

dR,?(XS , r), EdR,?(XS , r). These are functors on PerfC .
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kwak-kwak
3.1.2. Stein varieties. Let X be a smooth Stein rigid analytic variety over K. In this case the
above cohomology complexes can be made more explicit.

(•) De Rham cohomology. Let r ∈ N. Since coherent cohomology of X is trivial in nonzero
degrees and we have Serre duality, the (filtered) de Rham cohomology of X can be computed by
the following complexes in D(K2):

F rRΓdR(X) ' (Ωr(X)→ · · · → Ωd(X))[−r],

F rRΓdR,c(X) ' (Hd
c (X,Ωr)→ Hd

c (X,Ωr+1)→ · · · → Hd
c (X,Ωd))[−d− r].

The second quasi-isomorphism follows from the fact that Hi
c(X,Ω

j) = 0, for i 6= d. The terms of
the first complex are nuclear Fréchet over K and those of the second complex are of compact type
over K (in classical terminology).

(•) B+
dR-cohomology. Let r ∈ N. The (filtered) B+

dR-cohomology of X can be computed by the
following complexes in D(B+

dR,2):

F rRΓdR(XC/B
+
dR) ' O(X)⊗2

K trB+
dR → Ω1(X)⊗2

K tr−1B+
dR → · · · → Ωd(X)⊗2

K tr−dB+
dR,

(3.2) kolobrzeg1

F rRΓdR,c(XC/B
+
dR) ' (Hd

c (X,O)⊗2
K trB+

dR → Hd
c (X,Ω1)⊗2

K tr−1B+
dR → · · · → Hd

c (X,Ωd)⊗2
K tr−dB+

dR)[−d].

The tensor products are actually derived because B+
dR is Fréchet hence flat.

This yields the quasi-isomorphisms in D(B+
dR,2):

RΓdR(XC , r) ' O(X)⊗2
K (B+

dR/t
r)→ Ω1(X)⊗2

K (B+
dR/t

r−1)→ · · · → Ωd(X)⊗2
K (B+

dR/t
r−d),

(3.3) kolobrzeg1a

RΓdR,c(XC , r) ' (Hd
c (X,O)⊗2

K (B+
dR/t

r)→ Hd
c (X,Ω1)⊗2

K (B+
dR/t

r−1)→ · · · → Hd
c (X,Ωd)⊗2

K (B+
dR/t

r−d))[−d].

We will denote the respective cohomology groups by Hi
dR(X, r) and Hi

dR,c(X, r).
For i ≥ 0, we have short exact sequences in D(B+

dR,2) (see [14, Example 3.30], [1, Lemma 3.14])

0→ Ωi(XC)/Im d→Hi
dR(XC , r)→ Hi

dR(X)⊗2
K (B+

dR/F
r−i−1)→ 0,

(3.4) kolo10

0→ (Hd
c (X,Ωi−d)/Im d)⊗2

K grr−i+d−1
F B+

dR →H
i
dR,c(XC , r)→ Hi

dR,c(X)⊗2
K (B+

dR/F
r−i+d−1)→ 0.

3.2. Hyodo-Kato cohomology. LetX be a smooth rigid analytic variety over C. Let RΓHK(X) ∈
Dϕ,N,GK (C̆2) be the Hyodo-Kato cohomology defined in [21, Sec. 4] (see also [10, Sec. 3]). Here
Dϕ,N,GK (C̆2) is the derived ∞-category of solid (ϕ,N,GK)-modules over C̆.

3.2.1. Hyodo-Kato cohomology on the Fargues-Fontaine curve. Let r ∈ Z. Consider the twisted
Hyodo-Kato cohomology in Dϕ,GK (C̆2)

RΓIHK(XC , r) := [RΓHK(XC){r} ⊗L2

C̆
BI

log]N=0,

where the twist {r} means Frobenius divided by pr and I ⊂ (0,∞) is a compact interval with
rational endpoints. We define RΓB

HK(XC , r) in a similar way. We claim that, for compact intervals
I ⊂ J ⊂ (0,∞) with rational endpoints, we have the canonical quasi-isomorphism

RΓJHK(XC , r)⊗L2

BJ BI ∼→ RΓIHK(XC , r).

Indeed, for that, it suffices to show that the canonical map

RΓHK(XC){r} ⊗L2

C̆
BJ

log ⊗
L2

BJ BI → RΓHK(XC){r} ⊗L2

C̆
BI

log

is a quasi-isomorphism. But this is clear since the solid tensor product commutes with direct sums.
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We define the pair10

RΓB
HK(XC , r) := (RΓ

[u,v]
HK (XC , r), ϕ), ϕ : RΓ

[u,v]
HK (XC , r)→ RΓ

[u,v/p]
HK (XC , r),

where the Frobenius ϕ is induced from the Hyodo-Kato Frobenius and the Frobenius ϕ : B[u,v] →
B[u,v/p]. It yields a quasi-isomorphism in D(B

[u,v/p]
2 )

ϕ : RΓ
[u,v]
HK (XC , r)⊗L2

B[u,v],ϕ
B[u,v/p] ∼→ RΓ

[u,v/p]
HK (XC , r).

The pair RΓB
HK(XC , r) defines a nuclear ϕ-complex (actually (ϕ,GK)-complex) over BFF, which

we will call Hyodo-Kato module.
We define Hyodo-Kato sheaves on XFF as

EHK(XC , r) := EFF(RΓB
HK(XC , r)).

By Proposition 2.13, these are nuclear quasi-coherent sheaves on XFF. If the cohomology groups
of RΓHK(XC) are of finite rank over C̆ then the sheaf EHK(XC , r) is perfect. By Proposition 2.13
and [10, Th. 6.3], we have natural quasi-isomorphisms in D(Qp,2)

RΓ(XFF, EHK(XC , r)) ' [RΓHK(XC){r} ⊗L2

C̆
B

[u,v]
log ]N=0,ϕ=1 (3.5) sobota1

∼← [RΓHK(XC){r} ⊗L2

C̆
Blog]N=0,ϕ=1

where we set, for M = RΓHK(XC){r} ⊗L2

C̆
B

[u,v]
log or RΓHK(X){r} ⊗L2

C̆
Blog,

[M ]N=0,ϕ=1 :=

 M ϕ−1 //

N��

M

N��
M

pϕ−1 // M


For S ∈ PerfC , by changing B,BI ,BI

log to BS[ ,BI
S[ ,B

I
S[,log

, we obtain Hyodo-Kato modules
and sheaves:

RΓB
HK(XS , r), EHK(XS , r).

These are functors on PerfC . In the case X is partially proper, we have analogs RΓB
HK,c(XS , r),

EHK,c(XS , r) for Hyodo-Kato cohomology with compact support11 and the following analog of
quasi-isomorphism (3.5):

sobota12 Proposition 3.6. Let r ∈ Z. We have a natural quasi-isomorphism in D(Qp(S)2)

RΓ(XFF,S[ , EHK,?(XS , r)) ' [RΓB
HK,?(XS , r)]

ϕ=1.

3.2.2. Hyodo-Kato map. Let X be a smooth partially proper rigid analytic variety over K. Recall
that we have the natural Hyodo-Kato maps (see [21, Sec. 4]) in D(C̆2) and D(B+

dR,2), respectively:

ιHK : RΓHK(XC)→ RΓdR(XC/B
+
dR), ιHK : RΓHK(XC)⊗L2

C̆
B+

dR
∼→ RΓdR(XC/B

+
dR).

Combined with the canonical map ι : B
[u,v]
log → B[u,v]/ti, it defines a map between complexes of

solid B[u,v]-modules:

ιHK : RΓ
[u,v]
HK (XC , r) = [RΓHK(XC){r} ⊗L2

C̆
B

[u,v]
log ]N=0 → RΓ

[u,v]
dR (XC , r). (3.7) sobota11

Since we have a commutative diagram

RΓ
[u,v]
HK (XC , r)

ιHK��

ϕ⊗ϕ // RΓ
[u,v/p]
HK (XC , r)

��
RΓ

[u,v]
dR (XC , r) // 0

(3.8) tiger2

10There is a certain doubling of notation with the previous paragraph but we hope that this will not cause
confusion in what follows.

11See [1, Sec. 3, Sec. 4, Sec. 5] for the definition and basic properties of compactly supported Hyodo-Kato
cohomology.
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the map (3.7) clearly lifts to a map of ϕ-modules over BFF:

ιHK : RΓB
HK(XC , r)→ RΓB

dR(XC , r).

This Hyodo-Kato map descends to the level of nuclear quasi-coherent sheaves on XFF:

ιHK : EHK(XC , r)→ EdR(XC , r).

Everything above has a version for compactly supported cohomologies (see [1, Sec. 3.2.2] for Hyodo-
Kato morphisms), as well as for S-cohomologies, for S ∈ PerfC (varying functorially in S).

sing2
3.3. Syntomic cohomology. We pass now to syntomic cohomology.

3.3.1. Classical syntomic cohomology. Let X be a smooth partially proper rigid analytic variety
overK. Let r ∈ N. Consider the classical syntomic cohomology (ala Bloch-Kato) (see [21, Sec. 5.4])

RΓ
B+

cr

syn,?(XC ,Qp(r)) :=
[
[RΓHK,?(XC)⊗L2

C̆
B+

st]
N=0,ϕ=pr ιHK⊗ι−−→RΓdR,?(XC/B

+
dR)/F r

]
.

It satisfies the following comparison theorem:

comp0 Theorem 3.9. (Period isomorphism, [21, Th. 6.9])
Let r ∈ N. There is a natural quasi-isomorphism in D(Qp,2)

αr : τ≤rRΓ
B+

cr

syn,?(XC ,Qp(r)) ' τ≤rRΓproét,?(XC ,Qp(r)). (3.10) tea1

Moreover, it yields a natural quasi-isomorphism in D(Qp,2)

αr : RΓ
B+

cr

syn,?(XC ,Qp(r)) ' RΓproét,?(XC ,Qp(r)), r ≥ 2d.

Proof. Only the second claim requires justification. For the usual cohomology, this follows from
quasi-isomorphism (3.10) and the fact that the complexes RΓ

B+
cr

syn (XC ,Qp(r)), RΓproét(XC ,Qp(r))

live in the [0, 2d]-range. To see the latter fact in the case X is Stein, note that using (3.3) we get
H

B+
cr,i

syn (XC ,Qp(r)) = 0, for i ≥ d+ 1. From this and (3.10) we get that Hi
proét(XC ,Qp(d+ j)) = 0,

for d + j ≥ i ≥ d + 1, j ≥ 1, and then, by twisting, that Hi
proét(XC ,Qp(r)) = 0, for i ≥ d + 1,

as wanted. Now, for a general partially proper X, we need to add d for the analytic dimension of
cohomology yielding the range [0, 2d], as wanted.

For the cohomology with compact support, we argue similarly but using (3.4) instead of (3.3) in
the case X is Stein. The case of partially proper X follows from that by a (co)-Čech argument. �

The above has a version in families. Let S ∈ PerfC and let r ∈ N. We have the classical
(crystalline) syntomic cohomology in D(Qp(S)2):

RΓ
B+

cr

syn,?(XS ,Qp(r)) :=
[
[RΓHK,?(XC)⊗L2

C̆
B+

st(S)]N=0,ϕ=pr ιHK⊗ι−−→RΓdR,?(XC/B
+
dR(S))/F r

]
(3.11) kawa2

It satisfies the following comparison theorem:

comp01 Theorem 3.12. (Period isomorphism in families, [21, Cor. 7.37], [1, Prop. 6.16])
Let r ∈ N. There is a natural, functorial in S, quasi-isomorphism in D(Qp(S)2)

αr : τ≤rRΓ
B+

cr

syn,?(XS ,Qp(r)) ' τ≤rRΓproét,?(XS ,Qp(r)). (3.13) tea2

Moreover, it yields a natural, functorial in S, quasi-isomorphism in D(Qp(S)2)

αr : RΓ
B+

cr

syn,?(XS ,Qp(r)) ' RΓproét,?(XS ,Qp(r)), r ≥ 2d.

Proof. The argument is analogous to the one used in the proof of Theorem 3.9. �
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3.3.2. Variants of syntomic cohomology. We will need the following variant of syntomic cohomology
in D(Qp(S)2):

RΓB[u,v]

syn,? (XS ,Qp(r)) :=
[
[RΓ

[u,v]
HK,?(XS , r)]

ϕ=1 ιHK−−→RΓ
[u,v]
dR,?(XS , r)

]
, r ∈ N. (3.14) kawa11

grey1 Lemma 3.15. Let r ∈ N. There is a natural, functorial in S, quasi-isomorphism in D(Qp(S)2):

τ≤rRΓB[u,v]

syn,? (XS ,Qp(r)) ' τ≤rRΓ
B+

cr

syn,?(XS ,Qp(r)). (3.16) change1

Moreover, it yields a quasi-isomorphism in D(Qp(S)2):

RΓB[u,v]

syn,? (XS ,Qp(r)) ' RΓ
B+

cr

syn,?(XS ,Qp(r)), r ≥ d.

Proof. Let B
[u,∞]

S[ := W (R[,+)〈[p[]/pu〉[1/p]. Define yet another variant of syntomic cohomology
in D(Qp(S)2):

RΓB[u,∞]

syn,? (XS ,Qp(r)) :=
[
[RΓ

[u,∞]
HK,? (XS , r)]

ϕ=1 ιHK−−→RΓdR,?(XS , r)
]
.

The three different variants of syntomic cohomology introduced above are linked via maps

RΓ
B+

cr

syn,?(XS ,Qp(r))
f1 // RΓB[u,∞]

syn,? (XS ,Qp(r))
f2 // RΓB[u,v]

syn,? (XS ,Qp(r))

induced by canonical maps B+
cr(S) → B

[u,∞]

S[ , B
[u,∞]

S[ → B
[u,v]

S[ , and B
[u,∞]

S[ → B
[u,v/p]

S[ (see
[20, Sec. 2.4.2]). We claim that the map f1 is a quasi-isomorphism and the map f2 is a quasi-
isomorphism after truncation τ≤r. To show that, it suffices to prove that the related maps

f ′1 : [RΓHK,?(XC)⊗L2

C̆
B+

st(S)]N=0,ϕ=pr → [RΓ
[u,∞]
HK,? (XS , r)]

ϕ=1,

f ′2 : [RΓ
[u,∞]
HK,? (XS , r)]

ϕ=1 → [RΓ
[u,v]
HK,?(XS , r)]

ϕ=1

are quasi-isomorphisms in the wanted ranges. Or, first dropping (naively) N = 0 and then log on
both sides, that so are the maps

f ′1 : [RΓHK,?(XC)⊗L2

C̆
B+

cr(S)]ϕ=pj → [RΓHK,?(XC)⊗L2

C̆
B

[u,∞]

S[ ]ϕ=pj , j ∈ Z;

f ′2 : τ≤r[RΓHK,?(XC)⊗L2

C̆
B

[u,∞]

S[ ]ϕ=ps → τ≤r[RΓHK,?(XC)⊗L2

C̆
B

[u,v]

S[ ]ϕ=ps , s = r − 1, r.

Let us first look at the map f ′1. Taking cohomologies in degree i ≥ 0, we get maps

f ′1 : (Hi
HK,?(XC)⊗L2

C̆
B+

cr(S))ϕ=pj → (Hi
HK,?(XC)⊗L2

C̆
B

[u,∞]

S[ )ϕ=pj .

We used here [21, Prop. 5.8]. Since Hi
HK(XC) and Hi

HK,c(XC) are a countable limit, resp. colimit,
of finite rank ϕ-isocrystals over C̆, we may assume that the Hyodo-Kato cohomology groups are
finite rank. But then, since ϕ(B

[u,∞]

S[ ) ⊂ B+
cr(S) ⊂ B

[u,∞]

S[ , it is clear that f ′1 is an isomorphism, as
wanted.

Concerning the map f ′2, we first pass to cohomology in degree i and then assume that the
Hyodo-Kato cohomology has finite rank as above. Let j ∈ N. We then claim that the map

Hi
HK(XC){j} ⊗L2

C̆
B

[u,v]

S[

1−ϕ−−→Hi
HK(XC){j} ⊗L2

C̆
B

[u,v/p]

S[ (3.17) deszcz1

is surjective for i ≤ j. Indeed, by Proposition 2.13, the complex (3.17) computes the cohomology
of the vector bundle Ei on XFF,S[ associated to Hi

HK(XC){j}. Our claim now follows from the fact
that the slopes of Frobenius on Hi

HK(XC) are ≤ i (see [21, proof of Prop. 5.20]) hence the slopes
of Ei are ≥ 0 and H1(XFF,S[ , Ei) = 0, as wanted.

Similarly, we see that the map

Hi
HK,c(XC){j} ⊗L2

C̆
B

[u,v]

S[

1−ϕ−−→Hi
HK,c(XC){j} ⊗L2

C̆
B

[u,v/p]

S[ (3.18) deszcz11

is surjective for j ≥ d using the fact that the slopes of Frobenius on Hi
HK,c(XC) are in the [i−d, d]

range (use Poincaré duality for Hyodo-Kato cohomology to flip to the usual cohomology).
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Now, it suffices to show that, for i ∈ N, j ≥ −1, the map

f ′2 : (Hi
HK,?(XC)⊗L2

C̆
B

[u,∞]

S[ )ϕ=pj → (Hi
HK,?(XC)⊗L2

C̆
B

[u,v]

S[ )ϕ=pj

is an isomorphism. But in the case S = C this follows from [8, Prop. 3.2] and the general case
reduces to that one using the fact that all our algebras are spectral.

The above arguments prove the quasi-isomorphism in (3.16) for the usual cohomology and we
get the statement for the compactly supported cohomology from the case of usual cohomology by a
colim argument. Concerning the last sentence of our lemma, the above argument shows the case of
compactly supported cohomology. For the usual cohomology, since the complex RΓ

B+
cr

syn (XS ,Qp(r))

lives in the [0, 2d] range (see the proof of Theorem 3.9) it suffices to show that so does the complex
RΓB[u,v]

syn (XS ,Qp(r)). But here we can use the same argument as in the proof of Theorem 3.9. �

Remark 3.19. Bosco in [10, Th. 6.3] considered the following variant of syntomic cohomology in
D(Qp(S)2):

RΓFF
syn(XS ,Qp(r)) :=

[
[RΓB

HK(XS , r)]
ϕ=1 ιHK−−→RΓdR(XS , r)

]
, r ∈ N.

Lemma 3.20. The canonical map BS[ → B
[u,v]

S[ induces a morphism in D(Qp(S)2)

RΓFF
syn(XS ,Qp(r))→ RΓB[u,v]

syn (XS ,Qp(r)).

This is a quasi-isomorphism.

Proof. Arguing as in the proof of Lemma 3.15, it suffices to show that the induced morphism

[Hi
HK(XC){r}⊗L2

C̆
BS[

1−ϕ−−→Hi
HK(XC){r}⊗L2

C̆
BS[ ]→ [Hi

HK(XC){r}⊗L2

C̆
B

[u,v]

S[

1−ϕ−−→Hi
HK(XC){r}⊗L2

C̆
B

[u,v/p]

S[ ]

is a quasi-isomorphism in the case Hi
HK(XC) is of finite rank. But this follows from Proposition

3.6. �
tiger1

3.3.3. Syntomic ϕ-modules over BFF. Let X be a smooth partially proper rigid analytic variety
over K.

Definition 3.21. Let r ∈ N. Let S ∈ PerfC .

(1) Set
RΓB

syn,?(XS ,Qp(r)) := [RΓB
HK,?(XS , r)

ιHK−−→RΓB
dR,?(XS , r)].

This is a nuclear ϕ-module over BFF
S[ . We call it a syntomic module. We have

RΓB
syn,?(XS ,Qp(r)) = (RΓ

[u,v]
syn,?(XS ,Qp(r)), ϕ),

where
RΓ

[u,v]
syn,?(XS ,Qp(r)) := [RΓ

[u,v]
HK,?(XS , r)

ιHK−−→RΓ
[u,v]
dR,?(XS , r)].

(2) The (nuclear) syntomic sheaves on XFF,S are defined by

Esyn,?(XS ,Qp(r)) := EFF(RΓB
syn,?(XS ,Qp(r))).

We have a distinguished triangle in QCoh(XFF,S[)

Esyn,?(XS ,Qp(r))→ EHK,?(XS , r)
ιHK−−→EdR,?(XS , r). (3.22) def1

comp2 Proposition 3.23. Let r ≥ 2d. We have natural, functorial in S, quasi-isomorphisms in D(Qp(S)2):

RΓ(XFF,S[ , Esyn,?(XS ,Qp(r))) ' RΓ
[u,v]
syn,?(XS ,Qp(r)),

RΓ(XFF,S[ , Esyn,?(XS ,Qp(r))) ' RΓproét,?(XS ,Qp(r)).

Proof. The first quasi-isomorphism follows from Proposition 2.13. The second quasi-isomorphism
follows from the first one, the quasi-isomorphism (3.16), and Theorem 3.12. �
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4. Pro-étale complexes on the Fargues-Fontaine curve

In this section we define quasi-coherent sheaves on the Fargues-Fontaine curve representing p-
adic (geometric) pro-étale cohomology (with Qp(r)-coefficients) of smooth partially proper rigid
analytic varieties (Proposition 4.3) and prove a comparison theorem with the quasi-coherent sheaves
representing syntomic cohomology (Proposition 4.4). This follows from a comparison theorem
(Theorem 4.7 and Corollary 4.9) for the B-period sheaf, which amounts to a comparison theorem
on YFF instead of XFF, i.e., to untangling comparison theorems from the action of ϕ (that this
could be done with no much pain came to us as a surprise).

4.1. Definitions. We start with definitions.

4.1.1. Twisted coefficients. Let S ∈ PerfC . Let n, k ≥ 0. Define the line bundle O(n, k) on XFF,S[

by the exact sequence of OFF,S[ -modules

0→ O(n, k)→ O(n)→ i∞,∗(O/tk)→ 0,

where the first map is an inclusion. The sheafO(n, n) will be the target of our trace maps. Note that
O(n, k) is just O(n− k) with (Galois-)Tate twist k; in particular, we have H0(XFF,S[ ,O(n, n)) =

Qp(S)(n).
On the level of ϕ-modules over BFF

S[ , the sheaf O(n, k) is the module BS[{n, k} represented by
the module B

[u,v]

S[ {n, k} defined by the exact sequence

0→ B
[u,v]

S[ {n, k} → B
[u,v]

S[ {n} → B
[u,v]

S[ {n}/tk → 0, (4.1) alter3

where the first map is an inclusion. We have B[u,v]

S[ {n, k} ' B
[u,v]

S[ {n−k}(k) as a Frobenius, Galois
module. Note that the Frobenius map:

ϕ : B
[u,v]

S[ {n, k} ⊗L2

B
[u,v]

S[
,ϕ

B
[u,v/p]

S[ → B
[u,v]

S[ {n, k} ⊗L2

B
[u,v]

S[

B
[u,v/p]

S[

is an isomorphism because it is isomorphic to the Frobenius on B
[u,v/p]

S[ {n− k}.
sing1

4.1.2. Pro-étale modules and sheaves. Let X be a smooth partially proper dagger variety over K.
For r ∈ N, v′ = v, v/p, and S ∈ PerfC , we set

RΓ
[u,v′]
proét,?(XS ,Qp(r)) := RΓproét,?(XS ,B[u,v′])(r),

where B[u,v′] denotes the relative period sheaf corresponding to B[u,v′] (see [10, Sec. 2.3.1] for a
description of condensed structure on these modules). We will need the following fact.

Lemma 4.2. The canonical map

RΓproét,?(XS ,B[u,v])⊗L2

B
[u,v]

S[

B
[u,v/p]

S[ →RΓproét,?(XS ,B[u,v/p])

is a quasi-isomorphism.

Proof. By pro-étale descent, it suffices to show that, for a set of perfectoid affinoids {Si}, i ∈ I,
the canonical map

(
∏
I

B
[u,v]

S[
i

)⊗L2

B
[u,v]

S[

B
[u,v/p]

S[ →
∏
I

B
[u,v/p]

S[
i

is a quasi-isomorphism. (We used here the fact that RΓproét,?(Si,BJ) ' BJ
S[ .) But this follows

from the fact that this tensor product commutes with derived limits (see the proof of Lemma 2.4)
and the canonical map

B
[u,v]

S[
i

⊗L2

B
[u,v]

S[

B
[u,v/p]

S[ → B
[u,v/p]

S[
i

is an isomorphism. To see the last claim, we compute

B
[u,v]

S[
i

⊗L2

B
[u,v]

S[

B
[u,v/p]

S[ ' B
[u,v]

S[
i

⊗L
(Z[T ],Z)2

(Z[T ],Z[T ])2 ' B
[u,v/p]

S[
i

,
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where we wrote B
[u,v/p]

S[ ' B
[u,v]

S[ 〈f〉 for f = (p/[p[]p/v) ∈ B
[u,v]

S[ . �

We define the pro-étale modules as the pairs

RΓB
proét,?(XS ,Qp(r)) := (RΓ

[u,v]
proét,?(XS ,Qp(r)), ϕ),

ϕ : RΓ
[u,v]
proét,?(XS ,Qp(r))→ RΓ

[u,v/p]
proét,?(XS ,Qp(r)),

where the Frobenius ϕ is induced by the Frobenius ϕ : B[u,v] → B[u,v/p]. It yields a quasi-
isomorphism in D(B

[u,v/p]

S[,2
)

ϕ : RΓ
[u,v]
proét,?(XS ,Qp(r))⊗L2

B
[u,v]

S[
,ϕ

B
[u,v/p]

S[

∼→ RΓ
[u,v/p]
proét,?(XS ,Qp(r)).

Indeed, it suffices to show that the Frobenius map

ϕ : RΓproét,?(XS ,B[u,v])⊗L2

B
[u,v]

S[
,ϕ

B
[u,v/p]

S[

∼→ RΓproét,?(XS ,B[u,v′])

is a quasi-isomorphism. But this follows directly from [10, Lemma 4.8].
The pairs RΓB

proét,?(XS ,Qp(r)) defines nuclear ϕ-complexes (actually (ϕ,GK)-complexes) over
BFF
S[ , which we will call pro-étale modules. For the nuclear property use [10, Lemma 6.15] plus

preservation of nuclearity by countable products and finite limits for the usual cohomology. The
case of cohomology with compact support follows since colimits preserve nuclearity. We will denote
by

Eproét,?(XS ,Qp(r)) := EFF(RΓB
proét,?(XS ,Qp(r)))

the corresponding nuclear quasi-coherent sheaves on XFF,S[ . We will call them pro-étale sheaves.
Pro-étale modules and sheaves are functors on PerfC .

comp2b Proposition 4.3. We have a natural, functorial in S, quasi-isomorphism in D(Qp(S)2):

RΓ(XFF,S[ , Eproét,?(XS ,Qp(r))) ' RΓproét,?(XS ,Qp(r)).

Proof. By Proposition 2.13 we have natural, functorial in S, quasi-isomorphisms

RΓ(XFF,S[ , Eproét,?(XS ,Qp(r))) ' [RΓ
[u,v]
proét,?(XS ,Qp(r))

ϕ−1−−→RΓ
[u,v/p]
proét,?(XS ,Qp(r))]

' [RΓproét,?(XS ,B[u,v])(r)
ϕ−1−−→RΓproét,?(XS ,B[u,v/p])(r)]

∼← RΓproét,?(XS ,Qp(r)).

Here, in the last quasi-isomorphism, we have used the exact sequence (see [20, Lemma 2.23])

0→ Qp → B[u,v] ϕ−1−−→B[u,v/p] → 0 �

4.2. Comparison theorems on the Fargues-Fontaine curve. Wemove now to the comparison
theorems on the two curves of Fargues-Fontaine.

4.2.1. Comparison theorem on the XFF-curve. W start with the "bottom" curve. Let X be a
smooth partially proper variety over K, of dimension d.

china1 Proposition 4.4. Let r ≥ 2d. There is a natural, functorial in S, quasi-isomorphism in QCoh(XFF,S[):

αr : Esyn,?(XS ,Qp(r)) ' Eproét,?(XS ,Qp(r)). (4.5) hot11

Proof. It suffices to construct a natural quasi-isomorphism of ϕ-modules over BFF
S[

RΓB
syn,?(XS ,Qp(r)) ' RΓB

proét,?(XS ,Qp(r)).

That is, a natural quasi-isomorphism of pairs

(RΓ
[u,v]
syn,?(XS ,Qp(r)), ϕ) ' (RΓ

[u,v]
proét,?(XS ,Qp(r)), ϕ).

But this follows from a "Frobenius untwisted" version of Theorem 3.12 presented in Theorem 4.7
below. We just have to argue that we can drop truncations in 4.8: but this follows from the fact
that both sides live in degrees [0, 2d], which can be seen as in the proof of Theorem (3.9)). �
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Remark 4.6. We did not list the truncated version of Theorem 3.12 in Proposition 4.4 because
the issue of truncation vis a vis localization is a subtle one.

4.2.2. Comparison theorem on the YFF-curve. We pass now to the "top" curve.

Theorem 4.7. (Comparison theorem on the YFF-curve) Let X be a smooth partially proper varietyhot1
over K. Let r ≥ 0. We have natural, functorial in S, and compatible with Frobenius quasi-
isomorphisms in D(B

[u,v]

S[,2
) and D(B

[u,v/p]

S[,2
), respectively:

τ≤rRΓproét,?(XS ,B[u,v])(r) ' τ≤r[RΓ
[u,v]
HK,?(XS , r)

ιHK−−→RΓ
[u,v]
dR,?(XS , r)], (4.8) kin1

RΓproét,?(XS ,B[u,v/p])(r) ' RΓ
[u,v/p]
HK,? (XS , r).

Proof. For v′ = v, v/p, we define F rB[u,v′] := trB[u,v′]. We clearly have the isomorphism tr :

B[u,v′](r)
∼→ F rB[u,v′]{r}. We want to construct natural, functorial in S and compatible with

Frobenius, quasi-isomorphisms in D(B
[u,v]

S[,2
) and D(B

[u,v/p]

S[,2
), respectively:

τ≤rRΓproét,?(XS , F
rB[u,v]){r} ' τ≤r[RΓ

[u,v]
HK,?(XS , r)→ RΓ

[u,v]
dR,?(XS , r)],

RΓproét,?(XS , F
rB[u,v/p]){r} ' RΓ

[u,v/p]
HK,? (XS , r).

For the usual cohomology, these quasi-isomorphisms were constructed in [21, Sec. 7]. They
are not explicitly stated there because we almost always carry through the constructions the
eigenspaces of Frobenius but, in fact, the latter can be dropped as they are only used to pass
between various period rings and here we work with one fixed period ring. For the gist of the
construction the interested reader should consult the diagram (7.16) (with the top row moved
a step lower and with added [u, v]-decoration), its refinement (7.31), Section 7.4 in general, and
diagram (7.36) (with decoration changed again to [u, v]) in particular.

The case of compactly supported cohomology follows now easily from the case of usual coho-
mology by taking colimits and finite limits. �

The following result follows easily from the above theorem though it will not be used in this
paper.

Corollary 4.9. (B-comparison theorem) Let X be a smooth partially proper variety over K. Lethot1K
r ≥ 0 .

(1) Let I = [u, v] ⊂ (0,∞) be a compact interval with rational endpoints containing the fixed
intervals from Section 2.2.2. We have a natural, functorial in S, quasi-isomorphism in
D(BI

S[,2
):

τ≤rRΓproét,?(XS ,BI)(r) ' τ≤r[RΓIHK,?(XS , r)
ιIHK−−→RΓIdR,?(XS , r)].

This quasi-isomorpism is also compatible with Frobenius, i.e., the following diagram com-
mutes (we set u′ = u/p, v′ = v/p)

τ≤rRΓproét,?(XS ,B[u,v])(r)
∼ //

ϕo
��

τ≤r[RΓ
[u,v]
HK,?(XS , r)

ι
[u,v]
HK−−→RΓ

[u,v]
dR,?(XS , r)]

ϕo ��

τ≤rRΓproét,?(XS ,B[u′,v′])(r)
∼ // τ≤r[RΓ

[u′,v′]
HK,? (XS , r)

ι
[u′,v′]
HK−−→RΓ

[u′,v′]
dR,? (XS , r)].

(2) We have a natural, functorial in S, and compatible with Frobenius quasi-isomorphism in
D(BS[,2):

τ≤rRΓproét(XS ,B)(r) ' τ≤r[RΓB
HK(XS , r)

ιBHK−−→RΓB
dR(XS , r)]

For r ≥ 2d, this yields a quasi-isomorphism

RΓproét(XS ,B)(r) ' [RΓB
HK(XS , r)

ιBHK−−→
∏
I

RΓB
dR(XS , r)]. (4.10) bosco-thesis



22 PIERRE COLMEZ, SALLY GILLES, AND WIESŁAWA NIZIOŁ

Remark 4.11. (1) In claim (1) above, we have set

RΓIdR,?(XS , r) :=
⊕
Z(I)

(RΓdR,?(X)⊗L2

K B+
dR(S))/F r,

where Z(I) := {n ∈ Z|ϕn(y∞) ∈ Y I
FF,S[}. The Hyodo-Kato morphism ιIHK in degree n ∈ Z(I) is

defined by precomposing the usual Hyodo-Kato morphism ιHK with ϕ−n. It is B[u,v](S)-linear via
the composition

B[u,v](S)
ϕ−n

−−→B[pnu,pnv](S)→ B[pnu,pnv](S)/ξr∞ ' B+
dR(S)/tr,

where ξ∞ is a generator of the ideal defining y∞.
(2) In claim (2) above, we have set

RΓB
dR(XS , r) :=

∏
Z

((RΓdR,?(X)⊗L2

K B+
dR(S))/F r),

RΓB
HK(XS , r) := [RΓHK(XC){r} ⊗L2

C̆
Blog(S)]N=0.

Proof. The first quasi-isomorphism is proven in the same way as Theorem 4.7. The second one
follows from the first one by passing to limits (we use here heavily that we may assume the
Hyodo-Kato cohomology to be of finite rank) once we know that Ri limI⊂(0,∞) BI(S) = 0, i > 0,
where the limit is taken over compact intervals I with rational endpoints (recall that we have
limI⊂(0,∞) BI(S) ' B(S)). But this was checked in [10, proof of Lemma 2.41]. �

Remark 4.12. (1) For r ≥ 2d, as an immediate consequence of (4.10), we get the quasi-
isomorphism :

RΓproét(XS ,B)(r)[1/t] ' RΓB
HK(XS , r)[1/t].

(2) Bosco in [10] proved a version of the comparison quasi-isomorphism (4.10), where the torsion
on the right-hand side is incorporated to the left-hand side via the L ηt operator.

5. Poincaré dualities on the Fargues-Fontaine curve

We are now ready to state and prove pro-étale duality on the Fargues-Fontaine curve. The same
techniques allow us to prove also pro-étale Künneth formula.

sing3
5.1. Hyodo-Kato and de Rham dualities. Let X be a smooth partially proper rigid analytic
variety over K, of dimension d.

5.1.1. De Rham dualities. Recall the following dualities (see [1, Cor. 5.18, Th. 5.23, Cor. 5.26]).

derhamduality Proposition 5.1. Let L = K,C.

(1) (Serre duality) There is a trace map of solid L-modules

Trcoh : RΓc(XL,Ω
d)[d]→ L.

The pairing

RΓ(XL,Ω
j)⊗L2

L RΓc(XL,Ω
d−j)[d]→ RΓc(XL,Ω

d)[d]
Trcoh−−→L

is perfect, i.e., it yields the quasi-isomorphism in D(L2):

RΓ(XL,Ω
j) ' RHomL2

(RΓc(XL,Ω
d−j)[d], L).

(2) (Filtered de Rham duality) There are natural trace maps in D(L2) and L2, respectively:

TrdR : RΓdR,c(XL)[2d]→ L, TrdR : H2d
dR,c(XL)→ L.
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(a) The pairing in D(L2)

RΓdR(XL)⊗L2

L RΓdR,c(XL)[2d]→ RΓdR,c(XL)[2d]
TrdR−−−→ L

is a perfect duality, i.e., we have induced quasi-isomorphism in D(L2)

RΓdR(XL)
∼→ RHomL2

(RΓdR,c(XL)[2d], L).

(b) More generally, let r, r′ ∈ N, r + r′ = d. The pairing in D(L2)

(RΓdR(XL)/F r
′+1)⊗L2

L F rRΓdR,c(XL)[2d]→ RΓdR,c(XL)[2d]
TrdR−−−→ L

is a perfect duality, i.e., we have induced quasi-isomorphisms in D(L2)

RΓdR(XL)/F r
′+1 ∼→ RHomL2

(F rRΓdR,c(X)[2d], L),

F r
′+1RΓdR(XL)

∼→ RHomL2
(RΓdR,c(X)/F r[2d], L).

5.1.2. B+
dR-dualities. The duality for B+

dR-cohomology has a slightly different form. For r ≥ d, a
natural trace map in D(B+

dR,2) can be defined by the composition

TrB+
dR

: F rRΓdR(XC/B
+
dR)[2d]→ RΓc(X,Ω

d)⊗L2

K F r−dB+
dR

Trcoh⊗Id−−−−→F r−dB+
dR.

Corollary 5.2. (Filtered B+
dR-duality [1, Cor. 5.27]) Let r, r′ ≥ d, s = r + r′ − d. The pairing inbdrduality

D(B+
dR,2)

F r
′
RΓdR(XC/B

+
dR)⊗L2

B+
dR

F rRΓdR,c(XC/B
+
dR)[2d]→ F r

′+rRΓdR,c(XC/B
+
dR)[2d]

Tr
B

+
dR−−−−→ F sB+

dR

is a perfect duality, i.e., we have an induced quasi-isomorphism in D(B+
dR,2)

F r
′
RΓdR(XC/B

+
dR)

∼→ RHomB+
dR,2

(F rRΓdR,c(XC/B
+
dR)[2d], F sB+

dR).

We will need a variant of the above result. To state it, take r, r′ ≥ d, s = r+ r′− d and consider
the pairing in D(B+

dR,2)

(RΓdR(XC/B
+
dR)/F r

′
)⊗L2

B+
dR

(F rRΓdR,c(XC/B
+
dR)/ts)[2d− 1]→ F sB+

dR (5.3) ias223

defined as the composition

(RΓdR(XC/B
+
dR)/F r

′
)⊗L2

B+
dR

(F rRΓdR,c(XC/B
+
dR)/ts)[2d− 1]

∪→ F rRΓdR,c(XC/B
+
dR)/ts[2d− 1]

→ RΓc(XC ,Ω
d)⊗L2

K (F r−dB+
dR/t

s)[−1]
∂→ RΓc(XC ,Ω

d)⊗L2

K F sB+
dR

Trcoh⊗Id−−−−→F sB+
dR

Here the third morphism is the boundary map induced by the exact sequence

0→ F sB+
dR

can−−→F r−dB+
dR → F r−dB+

dR/t
s → 0

bdrduality1 Corollary 5.4. The pairing (5.3) is a perfect duality, i.e., we have an induced quasi-isomorphism
in D(B+

dR,2)

γ : RΓdR(XC/B
+
dR)/F r

′ ∼→ RHomB+
dR,2

(F rRΓdR,c(XC/B
+
dR)/ts[2d− 1], F sB+

dR). (5.5) niedziela1

Proof. Consider the following map of distinguished triangles

F r
′
RΓdR(XC/B

+
dR)

��

∼ // RHomB+
dR,2

(F rRΓdR,c(XC/B
+
dR)[2d], F sB+

dR)

��
RΓdR(XC/B

+
dR)

��

∼ // RHomB+
dR,2

(tsRΓdR,c(XC/B
+
dR)[2d], F sB+

dR)

��
RΓdR(XC/B

+
dR)/F r

′ γ // RHomB+
dR,2

(F rRΓdR,c(XC/B
+
dR)/ts[2d− 1], F sB+

dR)
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where the middle arrow is the de Rham duality map (B+
dR-linearized) and the top arrow is the

B+
dR-duality map from Corollary 5.2. Both are quasi-isomorphisms (see Proposition 5.1). Hence

so is the bottom duality map, as wanted. �

The duality map (5.5) can be lifted to the Fargues-Fontaine curve: the pairing (5.3) induces a
pairing of B[u,v]

S[ -modules

RΓ
[u,v]
dR (XS , r)⊗L2

B
[u,v]

S[

(F r
′
RΓ

[u,v]
dR,c(XS)/ts)→ B

[u,v]

S[ {s, s}[−2d+ 1],

which, in turn, induces a pairing of nuclear ϕ-modules over BFF
S[

RΓB
dR(XS , r)⊗L

BFF

S[
(F r

′
RΓB

dR,c(XS)/ts)→ BS[{s, s}[−2d+ 1],

where we set F r
′
RΓB

dR,c(XS)/ts := (F r
′
RΓ

[u,v]
dR,c(XS)/ts, 0). This descends to a pairing on XFF,S[ :

EdR(XS , r)⊗L
O i∞,∗(F

r′RΓdR,c(XS/B
+
dR)/ts)→ O(s, s)[−2d+ 1], (5.6) niedziela5

where we set RΓdR,c(XS/B
+
dR) := RΓdR,c(XK) ⊗L2

K B+
dR(S). The pairing (5.6) induces a duality

map in QCoh(XFF,S[):

γXS
: EdR(XS , r)→D(i∞,∗(F

r′RΓdR,c(XS/B
+
dR)/ts)[2d− 1],O(s, s)), (5.7) niedziela3

where we set
D(−,−) := RHomQCoh(X

FF,S[ )(−,−).

kolobrzeg5a Lemma 5.8. The duality map (5.7) is a quasi-isomorphism.

Proof. We need to show that the duality map

γFF
XS

: RΓB
dR(XS , r)→RHomBFF

S[
(F r

′
RΓB

dR,c(XS)/ts[2d− 1],BS[{s, s})

is a quasi-isomorphism in D(BFF
S[ ). Or, passing to solid B′ := B

[u,v]

S[ -modules, that the duality map

γXS
: RΓ

[u,v]
dR (XS , r)→RHomB′2

(F r
′
RΓ

[u,v]
dR,c(XS)/ts[2d− 1],B′)

is a quasi-isomorphism in D(B′2). But this is Corollary 5.4 (strictly speaking, its S-version but it
holds by the same arguments). �

5.1.3. Hyodo-Kato duality. This is based on [1, Sec. 5.4]. There exists a natural trace map in
Dϕ,N,GK (C̆2):

TrX : RΓHK,c(XC)→ C̆{−d}[−2d].

The pairing in Dϕ,N,GK (C̆2) (s = r + r′ − d)

RΓHK(XC){r} ⊗L2

C̆
RΓHK,c(XC){r′} → RΓHK,c(XC){r + r′} TrX−−→C̆{s}[−2d] (5.9) ias22

is perfect, i.e., it induces a quasi-isomorphism in Dϕ,N,GK (C̆2)

RΓHK(XC){r} ' RHomDϕ,N,GK (C̆2)(RΓHK,c(XC){r′}, C̆{s}[−2d]), (5.10) HKduality

where the internal Hom is just RHomC̆2
(RΓHK,c(XC), C̆[−2d]) – the internal Hom in D(C̆2) –

equipped with (ϕ,N,GK)-actions via RΓHK,c(XC){r′ − s}.
The above duality can be lifted to the Fargues-Fontaine curve: the pairing (5.9) induces a pairing

of B[u,v]

S[ -modules

RΓ
[u,v]
HK (XS , r)⊗L2

B
[u,v]

S[

RΓ
[u,v]
HK,c(XS , r

′)→ C̆{s} ⊗L2

C̆
B

[u,v]

S[ [−2d],

which, in turn, induces a pairing of nuclear ϕ-modules over BFF
S[

RΓB
HK(XS , r)⊗L

BFF

S[
RΓB

HK,c(XS , r
′)→ BS[{s}[−2d].
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This descends to a pairing on XFF,S[ :

EHK(XS , r)⊗L
O EHK(XS , r

′)→ O(s)[−2d],

which induces a duality map in QCoh(XFF,S[):

γXS
: EHK(XS , r)→D(EHK,c(XS , r

′)[2d],O(s)). (5.11) niedziela11

kolobrzeg4a Lemma 5.12. The map γXS
above is a quasi-isomorphism in QCoh(XFF,S[).

Proof. Since B
[u,v]

S[ is B
[u,v]

S[,an
-complete (see [2, Lemma 3.24]), by Remark 2.6, we may pass from

B
[u,v],+

S[ to Z, i.e., to BFF
S[ -modules. Hence we need to show that the duality map

γFF
XS

: RΓB
HK(XS , r)→RHomBFF

S[
(RΓB

HK,c(XS , r
′)[2d],BS[{s})

is a quasi-isomorphism in D(BFF
S[ ). Or, passing to solid B′ := B

[u,v]

S[ -modules, that the duality map

γXS
: RΓ

[u,v]
HK (XS , r)→RHomB′2

(RΓ
[u,v]
HK,c(XS , r

′)[2d],B′) (5.13) ias23

is a quasi-isomorphism in D(B′2). We claim that, for that, it suffices to check that, for j ∈ N, the
duality map on cohomology groups level

γjXS
: H

[u,v],j
HK (XS , r)→HomB′2

(H
[u,v],2d−j
HK,c (XS , r

′),B′) (5.14) ias231

is an isomorphism in B′2. Indeed, passing to cohomology in (5.13), we need to check that the
duality map

γjXS
: H

[u,v],j
HK (XS , r)→Hj(RHomB′2

(RΓ
[u,v]
HK,c(XS , r

′)[2d],B′))

is an isomorphism in B′2. But Hi
HK,c(XC) is a direct sum of copies of C̆ hence we have

Hj(RHomB′2
(RΓ

[u,v]
HK,c(XS , r

′)[2d],B′)) ' HomB′2
(H

[u,v],2d−j
HK,c (XS , r

′),B′),

as wanted.
To prove (5.14), we observe that, for i ∈ Z, we have the natural isomorphisms12

H
[u,v],j
HK,? (XS , i) ' (Hj

HK,?(XC){i} ⊗2

C̆
B′log)N=0 ∼← Hj

HK,?(XC){i} ⊗2

C̆
B′. (5.15) evening1

Here the second quasi-isomorphism is defined by the map exp(NU) (this makes sense because
the monodromy operator on the Hyodo-Kato cohomology Hj

HK,?(XC) is nilpotent). For the first
quasi-isomorphism

H
[u,v],j
HK,? (XS , i) = Hj([RΓHK,?(XC){i} ⊗L2

C̆
B′log]N=0) ' (Hj

HK,?(XC){i} ⊗2

C̆
B′log)N=0

we used the fact that

Hj(RΓ
[u,v]
HK,?(XC){i} ⊗L2

C̆
B′log) ' H [u,v],j

HK,? (XC){i} ⊗2

C̆
B′log,

that N is nilpotent on H
[u,v],j
HK,? (XC) (so we can do devissage by the kernels of the action of N),

and that B′ ∼→ [B′log]N=0.
It is easy to check that the maps in (5.15) are compatible with products. Hence we can write

the duality map (5.14) as the Hyodo-Kato pairing

γjXS
: Hj

HK(XC)⊗2

C̆
B′→HomB′2

(H2d−j
HK,c (XC)⊗2

C̆
B′,B′).

To show that it is an isomorphism in B′2 it suffices thus to evoke the Hyodo-Kato duality (5.10)
and to show that the natural map

HomC̆2
(H2d−j

HK,c (XC), C̆)⊗2

C̆
B′→HomC̆2

(H2d−j
HK,c (XC),B′)

is an isomorphism in B′2. But this is an isomorphism by [30, Th. 3.40] since B′ is a Banach space
over C̆. �

12We can ignore the Galois action here.
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5.2. Syntomic duality. Let X be a smooth partially proper rigid analytic variety over K of
dimension d. Let S ∈ PerfC . Recall that syntomic ϕ-modules over BFF

S[ are defined as (see Sec.
3.3.3)

RΓB
syn,?(XS ,Qp(r)) := [RΓB

HK,?(XS , r)
ιHK−−→RΓB

dR,?(XS , r)],

where the Hyodo-Kato map is described by diagram (3.8). The Hyodo-Kato and de Rham cup
products are compatible with this diagram hence yield a cup product on the syntomic ϕ-modules:

RΓB
syn(XS ,Qp(r))⊗L2

BFF

S[

RΓB
syn,c(XS ,Qp(r

′))→ RΓB
syn,c(XS ,Qp(r + r′)).

This product can be described by an analogous product on the B′ := B
[u,v]

S[ -chart:

RΓ[u,v]
syn (XS ,Qp(r))⊗L2

B′ RΓ[u,v]
syn,c(XS ,Qp(r

′))→ RΓ[u,v]
syn,c(XS ,Qp(r + r′)). (5.16) cup11

It is compatible with the products on RΓ
[u,v]
HK,?(XS , i) and F iRΓB

dR,?(XS/B
′). Here we defined

F iRΓdR,?(XS/B
′) as F iRΓdR,?(XC/B

+
dR) with B+

dR replaced by B′.
Let s ≥ d. There is a trace map

TrX : RΓB
syn,c(XS ,Qp(s))→ BFF

S[ {s− d, s− d}[−2d]

defined on the B′-chart via the trace map

Tr
[u,v]
X : RΓ[u,v]

syn,c(XS ,Qp(s))→ B′{s− d, s− d}[−2d], (5.17) trace11

which is compatible with the Hyodo-Kato and de Rham trace maps. The map Tr
[u,v]
X is defined

using the exact sequence

H [u,v],2d
syn,c (XS ,Qp(s))→ H2d

HK,c(XS , s)
ιHK−−→H2d

dR,c(XS , s),

which can be written more explicitly as the exact sequence

H [u,v],2d
syn,c (XS ,Qp(s))→ (H2d

HK,c(XC){s}⊗L2

C̆
B′log)N=0 ιHK−−→H2d

dR,c(X)⊗L2

K (B′{s−d}/F s−d). (5.18) lunch1

Using the (compatible) Hyodo-Kato and de Rham trace maps

TrX : H2d
HK,c(XC){s} ∼→ C̆{s− d}, TrX : H2d

dR,c(X)
∼→ K,

(5.18) yields a map

H [u,v],2d
syn,c (XS ,Qp(s− d))→ Ker(B′{s− d} → B′{s− d}/F s−d) = B′{s− d, s− d},

hence the trace (5.17), as wanted.
For s := r + r′ − d, the above can be lifted to the Fargues-Fontaine curve: the cup product

(5.16) and trace map (5.17) induce a pairing of B′-modules

RΓ[u,v]
syn (XS ,Qp(r))⊗L2

B′ RΓ[u,v]
syn,c(XS ,Qp(r

′))
∪−−→RΓ[u,v]

syn,c(XS ,Qp(r + r′))
Tr

[u,v]
X−−→B′{s, s}[−2d],

which, in turn, induces a pairing of nuclear ϕ-modules over BFF
S[

RΓB
syn(XS ,Qp(r))⊗L

BFF

S[
RΓB

syn,c(XS ,Qp(r
′))

∪−−→RΓB
syn,c(XS ,Qp(r + r′))

TrX−−→BS[{s, s}[−2d].

This descends to a pairing in QCoh(XFF,S[):

Esyn(XS ,Qp(r))⊗L
O Esyn,c(XS ,Qp(r

′))
∪−−→Esyn,c(XS ,Qp(r + r′))

TrX−−→O(s, s)[−2d],

which induces a natural map QCoh(XFF,S[)

γXS
: Esyn(XS ,Qp(r))→ D(Esyn,c(XS ,Qp(r

′))[2d],O(s, s)). (5.19) niedziela10

Theorem 5.20. (Syntomic Poincaré duality on the Fargues-Fontaine curve)curve-duality
Let r, r′ ≥ 2d, s := r + r′ − d. The map γXS

is a quasi-isomorphism in QCoh(XFF,S[).
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Proof. It is enough to show this in ϕ-modules over BFF
S[ for the corresponding map

γXS
: RΓB

syn(XS ,Qp(r))→ RHomBFF

S[
(RΓB

syn,c(XS ,Qp(r
′))[2d],BS[{s, s}). (5.21) kolobrzeg3

Or in D(B
[u,v]

S[,2
) for the induced map

γ
[u,v]
XS

: RΓ[u,v]
syn (XS ,Qp(r))→ RHomB′2

(RΓ[u,v]
syn,c(XS ,Qp(r

′))[2d],B′(s)).

But for that, it is enough to check that base changes of γ[u,v]
XS

to both B′[1/t] and B′/t are quasi-
isomorphisms in D(B′2). This last claim requires a bit of justification. We have the exact sequence
of solid B′-modules

0→ B′ → B′[1/t]→ B′[1/t]/B′ → 0.

Hence it suffices to check that base changes of γ[u,v]
XS

to both B′[1/t] and B′[1/t]/B′ are quasi-
isomorphisms. Writing B′[1/t]/B′ = colimn(B′/tn) and using the fact that the tensor products
commute with filtered colimits, we see that it suffices to check that base changes of γ[u,v]

XS
to both

B′[1/t] and B′[1/t]/ti are quasi-isomorphisms. Finally, by devissage, we can drop i to 1, as wanted.
For the first base change, we have quasi-isomorphisms in D(B′2)

RΓ[u,v]
syn (XS ,Qp(r))[1/t]

∼→ RΓ
[u,v]
HK (XS , r)[1/t],

RHomB′2
(RΓ[u,v]

syn,c(XS ,Qp(r
′))[2d],B′)[1/t]

∼← RHomB′2
(RΓ

[u,v]
HK,c(XS , r

′)[2d],B′(s))[1/t].

And γ[u,v]
XS

is just the canonical map

γXS
: RΓ

[u,v]
HK (XS , r)[1/t]→ RHomB′2

(RΓ
[u,v]
HK,c(XS , r

′),B′)[1/t]

induced by the Hyodo-Kato pairing (5.9). Since it is compatible with t-action, it suffices to show
that the canonical map

γXS
: RΓ

[u,v]
HK (XS , r)→ RHomB′2

(RΓ
[u,v]
HK,c(XS , r

′),B′)

is a quasi-isomorphism in D(B′2). But this was shown in (5.13), in the proof of Lemma 5.12.
For the base change to B′/t, write S = Spa(R,R+); then B′/t = R. We claim that we have a

compatible with product quasi-isomorphism in D(B′2)

RΓ
[u,v]
syn,?(XS ,Qp(r))⊗L2

B′ R ' F
rRΓdR,?(XS/B

′)⊗L2

B′ R. (5.22) morning1

To show (5.22) we compute:

RΓ
[u,v]
syn,?(XS ,Qp(r))⊗L2

B′ R = [RΓ
[u,v]
HK,?(XS , r)

ιHK−−→RΓ
[u,v]
dR,?(XS , r)]⊗L2

B′ R

∼→ [RΓ
[u,v]
HK,?(XS , r)⊗L2

B′ R
ιHK⊗Id−−−−→RΓ

[u,v]
dR,?(XS , r)⊗L2

B′ R]

Then we use the following commutative diagram

RΓ
[u,v]
HK,?(XS , r)⊗L2

B′ R
//

ιHKo ��

RΓ
[u,v]
dR,?(XS , r)⊗L2

B′ R

RΓdR,?(XS/B
′)⊗L2

B′ R
// RΓ

[u,v]
dR,?(XS , r)⊗L2

B′ R

F rRΓdR,?(XS/B
′)⊗L2

B′ R
//

OO

0

OO

It defines quasi-isomorphisms between the mapping fibers of the rows yielding (5.22). The quasi-
isomorphism in the above diagram needs a justification: take the composition

(RΓ
[u,v]
HK,?(XC){s} ⊗L2

C̆
B′)⊗L2

B′ R
∼→ RΓ

[u,v]
HK,?(XS , r)⊗L2

B′ R
ιHK−−→RΓdR,?(XS/B

′)⊗L2

B′ R

It is equal to ιHK hence a quasi-isomorphism, as wanted.
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From (5.22), we get the quasi-isomorphisms in D(B′2)

RHomB′2
(RΓ[u,v]

syn,c(XS ,Qp(r
′))[2d],B′)⊗L2

B′ R ' RHomB′2
(RΓ[u,v]

syn,c(XS ,Qp(r
′))[2d], R)

' RHomB′2
(F r

′
RΓdR,c(XS/B

′)[2d], R).

We have quasi-isomorphisms in D(B′2) compatible with products (see [1, Prop. 3.6, Prop. 3.10])

F rRΓdR(XS/B
′)⊗L2

B′ R
∼−−→
βX

d⊕
i=0

RΓ(X,Ωi)⊗L2

K R(r − i)[−i], (5.23) morning2

F r
′
RΓdR,c(XS/B

′)⊗L2

B′ R
∼−−→
βX

d⊕
i=0

RΓc(X,Ω
i)⊗L2

K R(r′ − i)[−i].

Putting (5.22) and (5.23) together, we get quasi-isomorphisms in D(B′2) compatible with products

RΓ[u,v]
syn (XS ,Qp(r))⊗L2

B′ R '
d⊕
i=0

RΓ(X,Ωi)⊗L2

K R(r − i)[−i],

RHomB′2
(RΓ[u,v]

syn,c(XS ,Qp(r
′))[2d],B′)⊗L2

B′ R ' RHomR2
(⊕di=0RΓc(X,Ω

i)⊗L2

K R(r′ − i)[2d− i], R).

And our result follows from Serre duality13 (see Proposition 5.1) which yields the quasi-isomorphisms
in D(R2),

RΓ(X,Ωi)⊗L2

K R
∼→ RHomK2

(RΓc(X,Ω
d−i)[d],K)⊗L2

K R
∼→ RHomR2

(RΓc(X,Ω
d−i)⊗L2

K R[d], R).

The second quasi-isomorphism holds by the same argument as the one used at the end of the proof
of Lemma 5.12. �

5.3. Syntomic duality: an alternative argument. We present here an alternative proof of
Theorem 5.20 (conditional on the unchecked tedious compatibilities in Lemma 5.27 below). It uses
dual modifications to inverse the arrows in the defining syntomic distinguished triangles (3.22).

More precisely, let j ≥ i ≥ 0. We will construct a distinguished triangle in QCoh(XFF,S[)

EHK,c(XS , i)⊗L
O O(0, j)→ Esyn,c(XS ,Qp(i))→ i∞,∗F

iRΓdR,c(XS/B
+
dR)/tj , (5.24) alter1

which is a twisted version of (3.22). To do that, consider the following map of distinguished
triangles

EHK,c(XS , i)⊗L
O O(0, j) //

��

EHK,c(XS , i)
ιHK // i∞,∗RΓdR,c(XS/B

+
dR)/tj

can��
Esyn,c(XS ,Qp(i)) // EHK,c(XS , i)

ιHK // EdR,c(XS , i)

(5.25) alter2

Here, the bottom distinguished triangle is (3.22); the top one is induced from the distinguished
triangle

RΓ
[u,v]
HK (XS , i)⊗L2

B
S[,[u,v]

B
[u,v]

S[ {0, j} → RΓ
[u,v]
HK (XS , i)

ιHK−−→RΓ
[u,v]
dR (XS , i)/t

j

obtained by tensoring the exact sequence (4.1) for 0, j with RΓ
[u,v]
HK (XS , i). (Recall that RΓ

[u,v]
HK (XC , r) =

[RΓHK(XC){r}⊗L2

C̆
B

[u,v]

S[,log
]N=0). The dashed arrow in diagram (5.25) is defined to make the dia-

gram a map of distinguished triangles. The diagram yields quasi-isomorphisms

[EHK,c(XS , i)⊗L
O O(0, j)→ Esyn,c(XS ,Qp(i))][1]

∼← [i∞,∗RΓdR,c(XS/B
+
dR)/tj → EdR,c(XS , i)]

∼→ i∞,∗F
iRΓdR,c(XS/B

+
dR)/tj .

That is, we get a distinguished triangle (5.24), as wanted.

13Apply it in degree i.
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Now, let r, r′ ≥ 2d, s = r + r′ − d. Consider the following diagram in QCoh(XFF,S[) (note that
s ≥ r′) whose columns are distinguished triangles

Esyn(XS ,Qp(r))
γsyn
XS //

��

D(Esyn,c(XS ,Qp(r
′))[2d],O(s, s))

��
EHK(XS , r)

��

γHK
XS

∼
//// D(EHK,c(XS , r

′)⊗L
O O(0, s)[2d],O(s, s))

��
EdR(XS , r)

γdR
XS

∼
// D(i∞,∗F

r′RΓdR,c(XS/B
+
dR)/ts[2d− 1],O(s, s))

(5.26) alter4

where the horizontal maps are defined by the syntomic, Hyodo-Kato, andB+
dR-pairings, respectively

(see (5.19), (5.11), (5.7)).
Let us assume Lemma 5.27 below. To prove that the top horizontal arrow in diagram 5.26 is

a quasi-isomorphism it suffices to show that so are the two lower arrows. But this follows from
Lemma 5.12 (we used the isomorphism O(0, s)⊗L

O O(s) ' O(s, s)) and Lemma 5.8.

tedious1 Lemma 5.27. Diagram (5.26) above is a map of distinguished triangles.

5.4. Pro-étale duality. Let X be a smooth partially proper rigid analytic variety over K of
dimension d. Let S ∈ PerfC . We define a cup product on the pro-étale ϕ-modules:

RΓB
proét(XS ,Qp(r))⊗L2

BFF

S[

RΓB
proét,c(XS ,Qp(r

′))→ RΓB
proét,c(XS ,Qp(r + r′)) (5.28) cup11et

via the cup product on the B′ := B
[u,v]

S[ -charts:

RΓproét(XS ,B[u,v](r))⊗L2

B′ RΓproét,c(XS ,B[u,v](r′))→ RΓproét,c(XS ,B[u,v](r + r′))

induced by the cup product on pro-étale cohomology. This product is compatible with the syntomic
product (via the comparison quasi-isomorphism from Theorem 4.7): to see this it suffices to argue
for the usual cohomology and locally, where the comparison map is known to be compatible with
products.

Let s ≥ 2d. We define a trace map

TrX : RΓB
proét,c(XS ,Qp(s))→ BFF

S[ {s− d, s− d}[−2d] (5.29) trace11et

as the composition

RΓB
proét,c(XS ,Qp(s)) ' RΓB

syn,c(XS ,Qp(s))
TrX−−→BFF

S[ {s− d, s− d}[−2d].

By [1, Prop. 7.17], for S = Spa(C,OC), this map is compatible with Huber’s trace map.
For r, r′ ≥ d, s := r + r′ − d, the above can be lifted to the Fargues-Fontaine curve: the cup

product (5.28) and trace map (5.29) induce a pairing of nuclear ϕ-modules over BFF
S[

RΓB
proét(XS ,Qp(r))⊗L

BFF

S[
RΓB

proét,c(XS ,Qp(r
′))

∪−−→RΓB
proét,c(XS ,Qp(r+ r′))

TrX−−→BS[{s, s}[−2d].

This descends to a pairing in QCoh(XFF,S[):

Eproét(XS ,Qp(r))⊗L
O Eproét,c(XS ,Qp(r

′))
∪−−→Eproét,c(XS ,Qp(r + r′))

TrX−−→O(s, s)[−2d],

which induces a natural map QCoh(XFF,S[)

γXS
: Eproét(XS ,Qp(r))→ D(Eproét,c(XS ,Qp(r

′))[2d],O(s, s)). (5.30) niedziela10-etale

By an abuse of notation, we will write

γXS
: Eproét(XS ,Qp)→ D(Eproét,c(XS ,Qp(d))[2d],O). (5.31) niedziela10-etale1

for the Tate-untwisted version of the map (5.30).

curve-duality-etale Corollary 5.32. (Pro-étale Poincaré duality on the Fargues-Fontaine curve)
The map γXS

from (5.31) is a quasi-isomorphism in QCoh(XFF,S[).
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Proof. Choose r, r′ ≥ 2d and set s := r + r′ − d. It suffices to prove that the Tate twisted map
(5.30) is a quasi-isomorphism. This follows immediately from the syntomic duality from Theorem
5.20 and the comparison result from Proposition 4.4. �

5.5. Künneth formula. Let X,Y be smooth Stein rigid analytic varieties over K. The simple
observation that we have a quasi-isomorphism in D(K2)(

Ω(X)⊗L2

K O(Y )
)
⊕
(
O(X)⊗L2

K Ω(Y )
) ∼→ Ω(X ×K Y ), (5.33) tu1

which implies the Künneth formula for de Rham cohomology

RΓdR(X)⊗L2

K RΓdR(Y )
∼→ RΓdR(X ×K Y )

leads to the syntomic Künneth formula in QCoh(XFF) and hence the pro-étale as well:

Theorem 5.34. (Künneth formula) Let X,Y be smooth partially proper rigid analytic varieties
over K. Let d be larger than the dimension of X ×K Y and let r, r′ ≥ 2d. Let S ∈ PerfC . The
natural maps

κ : Esyn(XS ,Qp(r))⊗L
O Esyn(YS ,Qp(r

′))→ Esyn((X ×K Y )S ,Qp(r + r′)),

κ : Eproét(XS ,Qp)⊗L
O Eproét(YS ,Qp)→ Eproét((X ×K Y )S ,Qp)

are quasi-isomorphisms in QCoh(XFF,S[).

Proof. The pro-étale case follows from the syntomic one via the comparison quasi-isomorphism
from Proposition 4.4.

For the syntomic case, it is enough to show that on the level of ϕ-modules over BFF
S[ the

corresponding map

κ : RΓB
syn(XS ,Qp(r))⊗L

BFF

S[
RΓB

syn(YS ,Qp(r
′))→ RΓB

syn((X ×K Y )S ,Qp(r + r′))

is a quasi-isomorphism. Or that in D(B′2), for B′ := B
[u,v]

S[ , the induced map

κ[u,v] : RΓ[u,v]
syn (XS ,Qp(r))⊗L2

B′ RΓ[u,v]
syn (YS ,Qp(r

′))→ RΓ[u,v]
syn ((X ×K Y )S ,Qp(r + r′))

is a quasi-isomorphism. But for that, as in the proof of Theorem 5.20, it is enough to check that
the base changes of κ[u,v] to B′[1/t] and to B′/t are quasi-isomorphisms.

For the first base change, we use the quasi-isomorphism in D(B′2)

RΓ[u,v]
syn (XS ,Qp(r))[1/t]

∼→ RΓ
[u,v]
HK (XS , r)[1/t]

to write

κ[u,v][1/t] : (RΓ
[u,v]
HK (XS , r)⊗L2

B′ RΓ
[u,v]
HK (YS , r

′))[1/t]→ RΓ
[u,v]
HK ((X ×K Y )S , r + r′)[1/t].

This map is induced by the Hyodo-Kato pairing

κ
[u,v]
HK : RΓ

[u,v]
HK (XS , r)⊗L2

B′ RΓ
[u,v]
HK (YS , r

′)→ RΓ
[u,v]
HK ((X ×K Y )S , r + r′).

To check that this is a quasi-isomorphism we may pass to cohomology. Since Hj
HK(XC) is Fréchet

(hence flat for the solid tensor product over C̆), this reduces to checking that the pairing
b⊕

a=0

(Ha
HK(XC)⊗L2

C̆
B′log)N=0 ⊗L2

B′ (Hj−a
HK (YC)⊗L2

C̆
B′log)N=0 → (Hj

HK((X ×K Y )C)⊗L2

C̆
B′log)N=0

is an isomorphism in B′2.
Now, using the exponential map as in the proof of Lemma 5.12, we can reduce to proving that

the pairing
b⊕

a=0

(Ha
HK(XC)⊗L2

C̆
B′)⊗L2

B′ (Hj−a
HK (XC)⊗L2

C̆
B′)→ Hj

HK(XC ×C YC)⊗L2

C̆
B′



DUALITY FOR p-ADIC GEOMETRIC PRO-ÉTALE COHOMOLOGY 31

is an isomorphism in B′2. Or, that so is the pairing in C̆2

b⊕
a=0

Ha
HK(XC)⊗L2

C̆
Hj−a

HK (YC)→ Hj
HK(XC ×C YC).

But this follows from the following:

Lemma 5.35. (Hyodo-Kato Künneth formula) Let X,Y be smooth partially proper rigid analyticSingapur1
varieties over C. Then the canonical pairing

κHK : RΓHK(X)⊗L2

C̆
RΓHK(Y )→ RΓHK(X ×C Y ).

is a quasi-isomorphism in Dϕ,N,GK (C̆2).

Proof. This follows from the comparison (via the Hyodo-Kato morphism) with the Künneth for-
mula for de Rham cohomology

κdR : RΓdR(X)⊗L2

C RΓdR(Y )
∼→ RΓdR(X ×C Y ).

The latter clearly holds if both X and Y are Stein. For a general partially proper X and Y , we
use coverings by a countable number (!) of Stein varieties, the fact that all the complexes in sight
are bounded complexes of Fréchet spaces, [9, Prop. 8.33], and the Stein case. �

For the base change to R = B′/t, we get from the proof of Theorem 5.20, compatible with
products, quasi-isomorphisms in D(B′2) (T = X,Y , s ≥ 0)

RΓ[u,v]
syn (TS ,Qp(s))⊗L2

B′ R ' F
sRΓdR(TS/B

′)⊗L2

B′ R

'
dT⊕
i=0

RΓ(T,Ωi)⊗L2

K R(s− i)[−i].

And the map κ[u,v] can be identified with the map

( dX⊕
i=0

RΓ(X,Ωi)⊗L2

K R(r − i)[−i]
)
⊗L2

R

( dY⊕
i=0

RΓ(Y,Ωi)⊗L2

K R(r′ − i)[−i]
)

→
dX+dY⊕
i=0

RΓ(X ×K Y,Ωi)⊗L2

K R(r + r′ − i)[−i].

If X,Y are Stein, this map in degree i is represented by the map

dX+dY⊕
a=0

(
Ωa(X)⊗L2

K R(r − a)
)
⊗L2

R

(
Ωi−a(Y )⊗L2

K R(r′ − i+ a)
)
→ Ωi(X ×K Y )⊗L2

K R(r + r′ − i).

And the latter map is a quasi-isomorphism in R2 by (5.33). If X,Y are general smooth partially
proper rigid analytic varieties, we can reduce to the Stein case as in the proof of Lemma 5.35. �

6. Poincaré duality for p-adic geometric pro-étale cohomology

Finally, we are ready to state and prove pro-étale duality on the level of Topological Vector
Spaces (Theorem 6.8). We descend it from the analogous Poincaré duality on the Fargues-Fontaine
curve (Corollary 5.32).
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6.1. Topological Vector Spaces. In this paper, the category of Topological Vector Spaces
(TVS’s for short) is the ∞-category of Q

p
-modules in the ∞-derived category D(Spa(C),Solid) of

topologically enriched presheaves on sPerfC – the category of strictly totally disconnected affinoids
over C – with values in solid abelian groups. We will denote it by D(Spa(C),Qp,2). This category
was defined and studied in [19]. We will denote by D(Spa(C),Qp,2) the corresponding∞-category
where we forget the enrichment; the objects of this category will be called "topological presheaves".

We list the following properties:

Proposition 6.1. ([19, Th. 1.1])recall1

(1) (Enriched fully-faithfulness) The canonical functor from Vector Spaces14 to Topological
Vector Spaces

Rπ∗ : D(Spa(C)proét,Qp)→ D(Spa(C),Qp)

tends to be fully faithful. More precisely, let F ∈ Db(Spa(C)proét,Qp) be such that Rπ∗F ∈
Db(Spa(C),Qp) and let G ∈ D+(Spa(C)proét,Qp). Then the canonical morphism in D(Spa(C),Qp)

Rπ∗RHomC(F ,G)→ RHomCtop(Rπ∗F ,Rπ∗G)

is a quasi-isomorphism.
(2) (Fargues-Fontaine fully-faithfulness) The functor

Rτ∗ : QCoh(XFF,S[)→ D(Spa(C),Qp)

is fully faithful when restricted to perfect complexes. That is, for F ,G ∈ Perf(XFF,S[), the
natural map in D(Modcond

Q
p
(C))

RHomQCoh(X
FF,C[ )(F ,G)→ RHomC,Qp

(Rτ∗F ,Rτ∗G)

is a quasi-isomorphism.
(3) (Compatibility of the algebraic and topological projections) The functor

Rτ ′∗ : QCoh(XFF,C[)→ D(Spa(C)proét,Qp)

is compatible with the functor Rτ∗ when restricted to nuclear sheaves. That is, the following
diagram commutes

Nuc(XFF,C[)
Rτ ′∗ //

Rτ∗

((

D(Spa(C)proét,Qp)

Rπ∗

��
D(Spa(C),Qp).

6.2. TVS-version of pro-étale cohomology presheaves. Let X be a smooth partially proper
rigid analytic variety over K. For ? = −, c, we define the presheaves on sPerfC with values in
D(Solid)

Rproét,?(XC ,Qp) : S → RΓproét,?(XS ,Qp).

The topology on pro-étale cohomology is induced via Čech procedure from p-adic topologies. Note
that the values of these presheaves on S are actually in D(Qp(S)2).

comp-elgin Proposition 6.2. (1) The presheaf Rproét,?(XC ,Qp) is naturally enriched:

Rproét,?(XC ,Qp) ∈ D(Spa(C),Qp,2).

14We call Vector Spaces (VS’s for short) the objects in the∞-derived category D(Spa(C)proét,Qp) ofQ
p
-modules

in the category of pro-étale sheaves on PerfC , the category of perfectoid affinoids over C.
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(2) There exists a natural quasi-isomorphism in D(Spa(C),Qp,2)

Rproét,?(XC ,Qp) ' Rπ∗Ralg
proét,?(XC ,Qp),

where the sheaf Ralg
proét,?(XC ,Qp) is the algebraic version15 of Rproét,?(XC ,Qp).

(3) Let X be a smooth Stein variety over K. There exists a natural quasi-isomorphism in
D(Spa(C),Qp,2)

Rτ∗Eproét,?(XC ,Qp) ' Rproét,?(XC ,Qp), ? = −, c. (6.3) identity2

Proof. For claim (1), consider first the usual cohomology. We want to define (a straighten version
of) structure maps

RΓproét(XS×T ,Qp)→ RHomQp,2
(Qp,2[T ],RΓproét(XS ,Qp)),

for S ∈ sPerfC and a profinite set T . By pro-étale descent, it suffices to construct, for a set
{Si}, i ∈ I, Si ∈ sPerfC , functorial structure maps∏

I

Q
p
(Si × T )→ HomQp,2

(Qp,2[T ],
∏
I

Q
p
(Si))

or functorial maps
Q
p
(Si × T )→ HomQp,2

(Qp,2[T ],Q
p
(Si))

But these maps can be identified with the canonical isomorphisms (see [19, Ex. 2.1])

C(|Si × T |,Qp)
∼→ C(T, C(|Si × T |,Qp))

To treat the compactly supported version Rproét,c(XC ,Qp), recall that

RΓproét,c(XS ,Qp) = [RΓproét(XS ,Qp(r))→ RΓproét((∂X)S ,Qp)], (6.4) kwak-kwak1

RΓproét((∂X)S ,Qp) = colimZ∈ΦX
RΓproét((X K Z)S ,Qp).

This canonically induces the enrichment on the presheaf Rproét,c(XC ,Qp).
Claim (2), from the above argument, is clear for the usual cohomology. Then it follows for

compactly supported cohomology on the level of presheaves described by the algebraic version of
(6.4) because the proof of the claim (3) below shows that these are actually sheaves.

For claim (3), by Proposition 6.1 and claim (2), it suffices to show that

Rτ ′∗Eproét,?(XC ,Qp) ' Ralg
proét,?(XC ,Qp), ? = −, c.

Note that, by definition, we have as presheaves

Rτ ′∗Eproét,?(XC ,Qp) = {S 7→ RΓ(XFF,S[ ,Lf∗SEproét,?(XC ,Qp)},

Ralg
proét,?(XC ,Qp) = {S 7→ RΓ(XFF,S[ , Eproét,?(XS ,Qp)}.

Hence it suffices to refer to Lemma 6.5 below. �

dziecko1 Lemma 6.5. On XFF,S[ we have a natural quasi-isomorphism of solid quasi-coherent sheaves

Lf∗SEproét,?(XC ,Qp) ' Eproét,?(XS ,Qp).

Proof. It suffices to show that, for a compact rational interval [u, v] ⊂ (0,∞), the canonical map

RΓproét,?(XC ,B[u,v])⊗L2

B
[u,v]

C[

B
[u,v]

S[ →RΓproét,?(XS ,B[u,v])

is a quasi-isomorphism. Since tensor product commutes with colimits it suffices to do this for the
usual cohomology.

15Defined as Rproét,?(XC ,Qp) but with discrete topology objectwise.
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By Theorem 4.7, it suffices to show the same for the twisted Hyodo-Kato and de Rham coho-
mologies. Assume thus that r ≥ 2d and let us start with the Hyodo-Kato cohomology. We want
to show that the base change map (for B′S := B

[u,v]

S[ )

RΓ
[u,v]
HK (XC , r)⊗L2

B′C
B′S → RΓ

[u,v]
HK (XS , r)

is a quasi-isomorphism. For that, we may pass to cohomology. Since Hj
HK(XC) is Fréchet (hence

flat for the solid tensor product over C̆), this reduces to checking that the base change, for b ≥ 0,

(Hb
HK(XC)⊗L2

C̆
B′C,log)N=0 ⊗L2

B′C
B′S → (Hb

HK(XC)⊗L2

C̆
B′S,log)N=0

is an isomorphism in B′S,2.
Now, using the exponential map as in the proof of Lemma 5.12, we can reduce to proving that

the base change
(Hb

HK(XC)⊗L2

C̆
B′C)⊗L2

B′C
B′S → Hb

HK(XC)⊗L2

C̆
B′S

is an isomorphism in B′S,2. But this is clear.
We pass now to the de Rham cohomology. As above it suffices to show that the base change

map
RΓ

[u,v]
dR (XC , r)⊗L2

B′C
B′S → RΓ

[u,v]
dR (XS , r)

is a quasi-isomorphism. But this reduces to showing that the base change maps

(Ωi(X)⊗2
K (B+

dR/t
s))⊗L2

B′C
B′S → Ωi(X)⊗2

K (B+
dR(S)/ts)

are isomorphisms. And this is clear. �

6.3. Topological Poincaré duality. Let X be a partially proper smooth variety over K of
dimension d. Let i, j ≥ 0. We define a pairing in D(Spa(C),Qp,2):

Rproét(XC ,Qp(i))⊗L2

Qp
Rproét,c(XC ,Qp(j))→ Qp(i+ j − d)[−2d] (6.6) kicius1

by inducing it from the compatible family of pairings in D(Qp(S)2)

RΓproét(XS ,Qp(i))⊗L2

Qp(S) RΓproét,c(XS ,Qp(j))
∪→ RΓproét,c(XS ,Qp(i+ j))

TrX−→ Qp(S)(i+ j − d)[−2d],

where the trace map comes from the trace maps (5.29) via the fundamental exact sequence. The
fact that this pairing is compatible with the enrichments follows from the fact that it is induced
by the algebraic pairing, we have Proposition 6.2, and the projection functor Rπ∗ is lax monoidal.

The pairing in (6.6) induces a duality map in D(Spa(C),Qp,2)

γXC
: Rproét(XC ,Qp)→ RHomTVS(Rproét,c(XC ,Qp(d))[2d],Qp). (6.7) bonn10

Theorem 6.8. (Pro-étale duality) Let X be a smooth partially proper rigid analytic variety overVS-duality
K of dimension d. The duality map (6.7) is a quasi-isomorphism. In particular, we have a quasi-
isomorphism in D(Qp,2)

γXC
: RΓproét(XC ,Qp)

∼→ RHomTVS(Rproét,c(XC ,Qp(d))[2d],Qp).

Proof. (•) Assume first that de Rham cohomology of X has finite rank. It suffices to show that,
for r, r′ ≥ 2d, s = r + r′ − d, the pairing in (6.6) induces a duality map in D(Spa(C),Qp,2)

γXC
: Rproét(XC ,Qp(r))→ RHomTVS(Rproét,c(XC ,Qp(r

′))[2d],Qp(s)),

which is a quasi-isomorphism. But we have the quasi-isomorphism

Rproét,?(XC ,Qp(r)) ' Rτ∗Eproét,?(XC ,Qp(r))

from Proposition 6.2 and the quasi-isomorphism Rτ∗O(i, i) ' Qp(i), i ≥ 0. Moreover, the functor
Rτ∗ is lax monoidal and compatible with pro-étale traces, hence it suffices to show that the duality
map

γXC
: Rτ∗Eproét(XC ,Qp(r))→ RHomTVS(Rτ∗Eproét,c(XC ,Qp(r

′))[2d],Rτ∗O(s, s))
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is a quasi-isomorphism.
This map factorizes as

Rτ∗Eproét(XC ,Qp(r)) //

Rτ∗γXC

∼
%%

RHomTVS(Rτ∗Eproét,c(XC ,Qp(r
′))[2d],Rτ∗O(s, s))

Rτ∗D(Eproét,c(XC ,Qp(r
′))[2d],O(s, s))

can

44

where we set
D(−,−) := RHomQCoh(X

FF,C[ )(−,−)

The left slanted map is a quasi-isomorphism by the Poincaré duality on the Fargues -Fontaine
curve from Theorem 5.20. Hence it suffices to show that the canonical morphism

Rτ∗D(Eproét,c(XC ,Qp(r
′)),O(s, s))→ RHomTVS(Rτ∗Eproét,c(XC ,Qp(r

′)),Rτ∗O(s, s))

is a quasi-isomorphism. Or, by Proposition 4.4, that so is the canonical morphism

Rτ∗D(Esyn,c(XC ,Qp(r
′)),O(s, s))→ RHomTVS(Rτ∗Esyn,c(XC ,Qp(r

′)),Rτ∗O(s, s)).

Applying Rτ∗D(−,O(s, s)) and RHomTVS(Rτ∗(−),Rτ∗O(s, s)) to the distinguished triangle

Esyn,c(X,Qp(r
′))→ EHK,c(X, r

′)→ EdR,c(X, r
′) (6.9) def11

and identifying Rτ∗O(s, s) ' Qp(s), we get compatible distinguished triangles

Rτ∗D(Esyn,c(X,Qp(r
′)),O(s, s))← Rτ∗D(EHK,c(X, r

′),O(s, s))← Rτ∗D(EdR,c(X, r
′),O(s, s)),

RHomTVS(Rτ∗Esyn,c(X,Qp(r
′)),Qp(s))← RHomTVS(Rτ∗EHK,c(X, r

′),Qp(s))← RHomTVS(Rτ∗EdR,c(X, r
′),Qp(s)).

It suffices thus to show that the canonical morphisms

Rτ∗D(EHK,c(X, r
′),O(s, s))→ RHomTVS(Rτ∗EHK,c(X, r

′),Qp(s)),

Rτ∗D(EdR,c(X, r
′),O(s, s))→ RHomTVS(Rτ∗EdR,c(X, r

′),Qp(s))

are quasi-isomorphisms.
Since the solid quasi-coherent complexes EHK,c(X, r

′) and O(s, s) are perfect, the first quasi-
isomorphism follows from Proposition 6.1. For the second quasi-isomorphism, since EdR,c(X, r

′) =

i∞,∗RΓdR,c(XC/B
+
dR)/F r

′
, it suffices to show that the natural morphism

Rτ∗D(ι∞,∗(W ⊗L2

K B+
dR/t

i),O(s, s))→ RHomTVS(Rτ∗(ι∞,∗(W ⊗L2

K B+
dR/t

i)),Rτ∗O(s, s)) (6.10) kolo241

is a quasi-isomorphism, for any space of compact type W ∈ CK . By devissage we may assume
that i = 1. Also, if we write W ' colimnWn as a compact colimit of Smith spaces Wn over K
we may assume that W is a Smith space over K. This is because W ∗ is then a compact limit of
Banach spaces and such limits commute with solid tensors with Banach spaces yielding that both
sides of (6.10) will change the colimit into a derived limit (see also the first claim in Lemma 6.12).
Moreover, assuming that W is a Smith space over K, we can write W = WQp

⊗L2

Qp
K, for a Smith

space WQp over Qp. Then we have W ∗ = W ∗Qp
⊗L2

Qp
K. Hence we may assume that K = Qp in

(6.10). To sum up, we need to show that the natural morphism

Rτ∗D(ι∞,∗(W⊗L2

Qp
C),O(s, s))→ RHomTVS(Rτ∗(ι∞,∗(W⊗L2

Qp
C)),Rτ∗O(s, s)) (6.11) kolo241a

is a quasi-isomorphism, for any Smith space W ∈ CQp
.

We will need the following computation:

frank2 Lemma 6.12. Let s ∈ N. Let W ∈ CQp be a Smith space.
(1) The canonical morphism in QCoh(XFF,C[)

f1 : W ∗⊗L2

Qp
D(ι∞,∗C,O(s, s))→ D(ι∞,∗(W⊗L2

Qp
C),O(s, s)) (6.13) comp1

is a quasi-isomorphism.
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(2) The canonical morphisms in D(C,Qp,2)

f2 : W ∗ ⊗L2

Qp
Rτ∗D(ι∞,∗C,O(s, s))→ Rτ∗(W

∗⊗L2

Qp
D(ι∞,∗C,O(s, s))),

f3 : W ⊗L2

Qp
Rτ∗ι∞,∗C → Rτ∗(W⊗L2

Qp
ι∞,∗C)

are quasi-isomorphisms.

Proof. The case of the morphism f3 is clear. The morphism f2 can be written as the following
composition of quasi-isomorphisms

Rτ∗(W
∗⊗L2

Qp
D(ι∞,∗C,O(s, s))) ' Rτ∗(W

∗⊗L2

Qp
ι∞,∗C(s− 1)[−1])

'W ∗ ⊗L2

Qp
Ga(s− 1)[−1] 'W ∗ ⊗L2

Qp
Rτ∗D(ι∞,∗C,O(s, s)).

For the morphism f1, we can pass to the category D(BFF
C[,2

). Set B′ := B
[u,v]

C[,an
. By Section

2.2.3, it suffices to show that the canonical map

W ∗⊗L
Qp,2

RHomB′(C,B
′)→ RHomB′(W⊗L

Qp,2
C,B′)

is a quasi-isomorphism in D(B′). Or, since

RHomB′(C,B
′)
∼← C(−1)[−1], (6.14) kolo242

that the composition in D(B′)

W ∗⊗L
Qp,2

C(−1)[−1]→ RHomB′(W⊗L
Qp,2

C,B′) (6.15) kolo240

is a quasi-isomorphism.
For that, we write the map (6.15) as a composition of quasi-isomorphisms in D(B′)

RHomB′(W⊗L
Qp,2

C,B′) ' RHomB′(W⊗L
Qp,2

B′,RHomB′(C,B
′))

∼← RHomB′(W⊗L
Qp,2

B′, C)(−1)[−1] ' (W ∗⊗L
Qp,2

C)(−1)[−1].

Here, the first quasi-isomorphism is the internal tensor-hom adjunction; the second quasi-isomorphism
follows from (6.14). The last quasi-isomorphism is induced by the following commutative diagram
in D(Qp,2)

RHomB′(W⊗L
Qp,2

B′, C) // HomB′(W⊗L
Qp,2

B′, C)

RHomQp,2
(W,C)

o
OO

∼ // HomQp,2
(W,C),

o
OO

(6.16) kolo243

where we have used that W is an internal projective object in solid Qp-modules, and the fact that
HomQp,2

(W,V )
∼← W ∗⊗L

Qp,2
V , for a Fréchet space V over Qp (see [30, Th. 3.40]). We note here

that the arrows in diagram (6.16) are B′-linear. This finishes the proof of the first claim of the
lemma. �

By Lemma 6.12, to show that the morphism (6.11) is a quasi-isomorphism it suffices to show
that so is the natural morphism

W ∗ ⊗L2

Qp
Rτ∗D(ι∞,∗C,O(s, s))→ RHomTVS(W ⊗L2

Qp
Ga,Qp) (6.17) frank1

is a quasi-isomorphism. But this morphism factors as the composition

W ∗ ⊗L2

Qp
Rτ∗D(ι∞,∗C,O(s, s)) //

∼

''

RHomTVS(W ⊗L2

Qp
Ga,Qp(s))

W ∗ ⊗L2

Qp
RHomTVS(Ga,Qp(s)),

f0
77

where the left quasi-isomorphism follows from Proposition 6.1. Hence it remains to show that the
morphism f0 above is a quasi-isomorphism.
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Since, by [19, Lemma 3.27], we have

RHomTVS(W ⊗L2

Qp
Ga,Qp) ' RHomTVS(W,RHomTVS(Ga,Qp)),

we can rewrite the morphism f0 (untwisted by s) as the canonical morphism

W ∗ ⊗L2

Qp
RHomTVS(Ga,Qp)→ RHomTVS(W,RHomTVS(Ga,Qp)).

Or, since RHomTVS(Ga,Qp) ' Ga(−1)[−1], as (the shift of) the canonical morphism

W ∗ ⊗L2

Qp
Ga → RHomTVS(W,Ga).

It remains thus to show that this morphism is a quasi-isomorphism.
Let S ∈ sPerfC . We have quasi-isomorphisms

W ∗ ⊗L2

Qp
Ga(S)

∼→ RHom2
Qp

(W,Ga(S)),

RHomTVS(W,Ga)(S) ' RHomTVS(W ⊗L2

Qp
Qp[h

top
S ]2,Ga) ' RHomTVS(W,RHomTVS(Qp[h

top
S ]2,Ga)).

Here the first quasi-isomorphism follows from the fact that W is a Smith space (hence an internal
projective object in solid modules). This reduces us to showing that the canonical morphism

RHom2
Qp

(W,Ga(S))→ RHomTVS(W,RHomTVS(Qp[h
top
S ]2,Ga))

is a quasi-isomorphism. But, since

RΓ(Spa(C)top,RHomTVS(Qp[h
top
S ]2,Ga)) ' RHomTVS(Qp[h

top
S ]2,Ga) ' Ga(S),

this follows from [19, Lemma 3.27].

(•) For a general smooth partially proper variety X, we cover it with Stein varieties {Xi}, i ∈ I,
such that de Rham cohomology of each Xi is of finite rank. Then we consider the associated Čech
hypercovering Y• of X and we compute in D(Spa(C),Qp,2)

Rproét(XC ,Qp) ' RlimnRproét(Yn,C ,Qp) ' RlimnRHomTVS(Rproét,c(Yn,C ,Qp(d))[2d],Qp)

' RHomTVS(colimnRproét,c(Yn,C ,Qp(d))[2d],Qp)

' RHomTVS(Rproét,c(YC ,Qp(d))[2d],Qp),

as wanted. Here, the second quasi-isomorphism follows from the case of duality already proven. �

6.4. Algebraic Poincaré duality. The topological Poincaré duality from Theorem 6.8 has an
algebraic version, which we will now present. LetX be a smooth partially proper rigid analytic vari-
ety overK. The algebraic analog of the pairing in (6.6) induces a duality map inD(Spa(C)proét,Qp)

γalg
XC

: Ralg
proét(XC ,Qp)→ RHomVS(Ralg

proét,c(XC ,Qp(d))[2d],Qp). (6.18) bonn10A

Corollary 6.19. (Algebraic pro-étale duality) Let X be a smooth partially proper rigid analyticVSS-duality
variety over K of dimension d. The duality map (6.18) is a quasi-isomorphism. In particular, we
have a quasi-isomorphism in D(Qp)

γalg
XC

: RΓproét(XC ,Qp)
∼→ RHomVS(Ralg

proét,c(XC ,Qp(d))[2d],Qp). (6.20) deszcz111
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Proof. Apply the projection functor Rπ∗ to the map (6.18). We obtain the horizontal map in the
following commutative diagram

Rπ∗Ralg
proét(XC ,Qp)

Rπ∗γ
alg
XC //

++
o

��

Rπ∗RHomVS(Ralg
proét,c(XC ,Qp(d))[2d],Qp)

o
��

Rproét(XC ,Qp)

γXC

∼
++

RHomCtop(Rπ∗Ralg
proét,c(XC ,Qp(d))[2d],Rπ∗Qp)

o
��

RHomCtop(Rproét,c(XC ,Qp(d))[2d],Qp).

The top right vertical arrow is a quasi-isomorphism by Proposition 6.1; the map γXC
is a quasi-

isomorphism by Theorem 6.8. It follows that so is the map Rπ∗γ
alg
XC

.
Now, we have a functor Rη∗ : Dpsh(sPerfC ,Modcond

Qp
) → Dpsh(sPerfC ,Qp) from topological

presheaves to algebraic presheaves ("evaluation at ∗") such that Rη∗Rπ∗ ' Rι∗, the canonical
forgetful functor from sheaves to presheaves (see [19, Sec. 2.1.2] for details). Applying Rη∗ to
Rπ∗γ

alg
XC

we get that the map Rι∗γ
alg
XC

is a quasi-isomorphism and hence so is the map γalg
XC

(after
applying the sheafification functor), as wanted. �

6.5. Verdier exact sequence. In the Stein case, the duality (6.20) takes a simple form.

rainy-day Corollary 6.21. Let X be a smooth Stein variety over K. Let i ≥ 0. There exists a short exact
sequence in TVS’s

0→ Ext1TVS(H2d−i+1
proét,c (XC ,Qp(d)),Qp)→ Hiproét(XC ,Qp)→ HomTVS(H2d−i

proét,c(XC ,Qp(d)),Qp)→ 0

In particular, there exists a short exact sequence in Qp,2

0→ Ext1
TVS(H2d−i+1

proét,c (XC ,Qp(d)),Qp)→ Hi
proét(XC ,Qp)→ HomTVS(H2d−i

proét,c(XC ,Qp(d)),Qp)→ 0

Proof. The second claim follows easily from the first claim. For the first claim, having Theorem
6.8 and the spectral sequence

Ea,b2 = ExtaTVS(H−bproét,c(XC ,Qp),Qp)⇒ Ha+b(RHomTVS(Rproét,c(XC ,Qp),Qp))

it suffices to show that

ExtaTVS(Hbproét,c(XC ,Qp),Qp) = 0, a ≥ 2. (6.22) vanishing

Let r ≥ 2d. By Proposition 4.4, we have the quasi-isomorphism

Eproét,c(XC ,Qp(r)) ' Esyn,c(XC ,Qp(r)),

which, by (3.11) and (3.3), yields an exact sequence

· · · ιb−1→ DRb−1
c (XC , r)→ Hbproét,c(XC ,Qp(r))→ HKbc(XC , r)

ιb→ DRbc(XC , r)→ · · · (6.23) presentation1

where we set

HKbc(XC , r) := (Hr
HK,c(XC)⊗2

C̆
B+

st)
N=0,ϕ=pr

DRbc(XC , r) := Hb−d(Hd
c (X,O)⊗2

K (B+
dR/t

r)→ Hd
c (X,Ω1)⊗2

K (B+
dR/t

r−1)→ · · · → Hd
c (X,Ωd)⊗2

K (B+
dR/t

r−d))

We used here the natural isomorphisms (? = −, c)

HbRτ∗EHK,?(XC , r) ' HKb?(XC , r), HbRτ∗EdR,?(XC , r) ' DRb?(XC , r),

that are compatible with the Hyodo-Kato map and which follow immediately from the computa-
tions in the proof of Proposition 6.2.
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Let i ≥ 0. We will need to understand the maps ιi from (6.23) better. We have a commutative
diagram in TVS, where we set s = r − i+ d− 1:

0 // (Hi
HK,c(XC)⊗2

C̆
tsB+

st)
N=0,ϕ=pr

ιHK��

// HKic(XC , r)

ιi��

// Hi
dR,c(X)⊗2

K (B+
dR/F

s)

0 // (Hd
c (X,Ωi−d)/Im d)⊗2

K tsGa

��

// DRic(XC , r) //

f1��

Hi
dR,c(X)⊗2

K (B+
dR/F

s) //

f3��

0

0 // Ei1
f2 //

��

Ei //

��

Ei2 // 0

0 0

(6.24) air1

Here, The middle row comes from (3.4); the top row from [1, Lemma 8.1]. We have defined
Ei := coker(ιi); Ei1 is the image of (Hd

c (X,Ωi−d)/Im d)⊗2
K tsGa under the map f1, and Ei2 is the

cokernel of the map f2. The rows are exact; so are the first and the second columns. Moreover,
the map ιHK : (Hi

HK,c(XC)⊗2

C̆
tsB+

st)
N=0,ϕ=pr → (Hd

c (X,Ωi−d)/Im d)⊗2
K tsGa factors as

(Hi
HK,c(XC)⊗2

C̆
tsB+

st)
N=0,ϕ=pr ιHK−−→Hi

dR,c(X)⊗2
K t

sGa
can−−→(Hd

c (X,Ωi−d)/Im d)⊗2
K t

sGa, (6.25) wreszcie0

where the second map is an injection with quotient (Hd
c (X,Ωi−d)/Ker d)⊗2

K tsGa. It follows that
we have an exact sequence

0→ V→ Ei1 → (Hd
c (X,Ωi−d)/Ker d)⊗2

K tsGa → 0, (6.26) wreszcie

where V is a (topological) BC.

(•) Finite rank case. Assume first that the de Rham cohomology has finite rank. Let Ai :=

ker(ιi). It is a BC: this is because the map ιi factors through de Rham cohomology, which is a BC
(see (6.25)). We have the exact sequence

ExtaTVS(Ab,Qp)→ ExtaTVS(Hbproét,c(XC ,Qp),Qp)→ ExtaTVS(Eb−1,Qp). (6.27) presentation2

Hence it suffices to show that, for a ≥ 2, we have

ExtaTVS(Ab,Qp) = 0, ExtaTVS(Eb−1,Qp) = 0. (6.28) presentation3

This is clear for Ab because it is a BC and we have [19, Ex. 4.29]. For Eb−1, we use the exact
sequence (6.26). It follows that it suffices to show that, for a ≥ 2, we have

ExtaTVS(V,Qp) = 0, ExtaTVS(W ⊗2
K Ga,Qp) = 0,

where we set W = Hd
c (X,Ωb−1−d)/Ker d. Since V is a BC, the first equality is clear. For the

second one, if K = Qp, we have in Qp,2 (see [19, Lemma 3.27])

ExtaTVS(W ⊗2
K Ga,Qp) 'W ∗ ⊗2

Qp
ExtaTVS(Ga,Qp) = 0,

as wanted. We used here that W is of compact type.
For a general K, assume first that W is a Smith space. Then we can write W = WQp

⊗L
Qp,2

K,
for a Smith space WQp

over Qp. It follows that the canonical morphism

W ∗ ⊗2
K Ext

a
TVS(Ga,Qp)→ ExtaTVS(W ⊗2

K Ga,Qp)

is an isomorphism. For a general W , write W ' colimnWn as a compact colimit of Smith spaces
Wn over K and note that

ExtaTVS(W ⊗2
K Ga,Qp) ' lim

n
ExtaTVS(Wn ⊗2

K Ga,Qp).
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This is because R1 limn Exta−1
TVS(Wn ⊗2

K Ga,Qp) = 0: this follows from the Smith case for a ≥ 3;
for a = 2, we have

R1 lim
n
Ext1TVS(Wn ⊗2

K Ga,Qp)
∼← R1 lim

n
(W ∗n ⊗2

K Ext
1
TVS(Ga,Qp))

' R1 lim
n

(W ∗n ⊗2
K Ga) ' (R1 lim

n
W ∗n)⊗2

K Ga = 0.

The last isomorphism follows from the fact that {W ∗n} is a pro-system of Banach spaces with dense
transition maps. The penultimate isomorphism follows from the following fact16:

Lemma 6.29. Let {Vn} be a set of Banach spaces over K and let V be a Banach space over K.
Then the canonical map

V ⊗2
K

∏
n

Vn →
∏
n

(V ⊗2
K Vn)

is an isomorphism.

Proof. Write V = Hom(Z[T ],K), for a profinite set T . Then

V ⊗2
K

∏
n

Vn ' Hom(Z[T ],K)⊗2
K

∏
n

Vn ' Hom(Z[T ],
∏
n

Vn)

'
∏
n

Hom(Z[T ], Vn) '
∏
n

(Hom(Z[T ],K)⊗2
K Vn) '

∏
n

(V ⊗2
K Vn).

The second isomorphism follows from the fact that the product
∏
n Vn is a nuclear K-vector space

and the penultimate one from the fact that so is every Vn. �

(•) General case. For a general smooth Stein variety X over K, we cover X with an exhaustive
sequence {Xn} of Stein varieties with finite dimensional de Rham cohomologies. We have

ExtaTVS(Hbproét,c(XC ,Qp),Qp) ' ExtaTVS(colimnHbproét,c(Xn,C ,Qp),Qp).

This yields the exact sequence

0→ R1 lim
n
Exta−1

TVS(Hbproét,c(Xn,C ,Qp),Qp)→ ExtaTVS(Hbproét,c(XC ,Qp),Qp)→ lim
n
ExtaTVS(Hbproét,c(Xn,C ,Qp),Qp)→ 0

Hence, by the above, ExtaTVS(Hbproét,c(XC ,Qp),Qp) = 0, for a ≥ 3. For a = 2, we have

R1 lim
n
Ext1TVS(Hbproét,c(Xn,C ,Qp),Qp)

∼→ Ext2TVS(Hbproét,c(XC ,Qp),Qp).

It suffices thus to show that

R1 lim
n
Ext1TVS(Hbproét,c(Xn,C ,Qp),Qp) = 0.

From the exact sequence (6.27) and isomorphisms (6.28), we get the exact sequence (for Xn)

HomTVS(Eb−1
n ,Qp)→ Ext1TVS(Abn,Qp)→ Ext1TVS(Hbproét,c(Xn,C ,Qp),Qp)→ Ext1TVS(Eb−1

n ,Qp)→ 0

This yields the exact sequence

R1 lim
n
Ext1TVS(Abn,Qp)→ R1 lim

n
Ext1TVS(Hbproét,c(Xn,C ,Qp),Qp)→ R1 lim

n
Ext1TVS(Eb−1

n ,Qp)→ 0.

Since Ext1TVS(Abn,Qp) is a BC we have R1 limn Ext1TVS(Abn,Qp) = 0 as we have Mittag-Leffler in
this setting. It suffices thus to show that R1 limn Ext1TVS(Eb−1

n ,Qp) = 0.
But from diagram (6.24), we see that it suffices to show that

R1 lim
n
Ext1TVS(Eb−1

i,n ,Qp) = 0, i = 1, 2.

16Probably well-known but we did not find a reference.
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For i = 2 this is clear because Ext1TVS(Eb−1
2,n ,Qp) is a BC (because Eb−1

2,n is the cokernel of the map
HKb−1

c (XC , r) → Hb−1
dR,c(X) ⊗2

K (B+
dR/F

s), hence a BC). It remains to treat the case i = 1. For
that we use the exact sequence (6.26). Since Vn is a BC, it suffices to show that

R1 lim
n
Ext1TVS(Wn ⊗2

K Ga,Qp) = 0,

where Wn = Hd
c (Xn,Ω

b−1−d)/Ker d. Note that Wn ↪→ Hd
c (Xn,Ω

b−d) =: W ′n. Hence we have the
surjection

Ext1TVS(W ′n ⊗2
K Ga,Qp)� Ext1TVS(Wn ⊗2

K Ga,Qp).

It suffices thus to show that

R1 lim
n
Ext1TVS(W ′n ⊗2

K Ga,Qp) = 0. (6.30) air2

We claim that the canonical morphism

W ′,∗n ⊗2
K Ext

1
TVS(Ga,Qp)→ Ext1TVS(W ′n ⊗2

K Ga,Qp)

is an isomorphism. Indeed, we can write W ′n = colimmW
′
n,m as a compact colimit of Smith spaces

and argue as above using the fact that

HomTVS(W ′n,m ⊗2
K Ga,Qp) 'W ′n,m,∗ ⊗2

K HomTVS(Ga,Qp) = 0.

Hence we have a functorial in n isomorphism

W ′,∗n ⊗2
K Ga ' Ext1TVS(W ′n ⊗2

K Ga,Qp).

Since we have W ′,∗n ' Ω2d−b(Xn), (6.30) holds because the pro-system {Ω2d−b(Xn)}, n ∈ N, is
equivalent to a pro-system of Banach spaces {Vn} with dense transition maps. �

6.6. Examples. We will discuss in some detail here dualities for Stein curves and Drinfeld spaces.

6.6.1. Proper varieties. Let X be a smooth proper rigid analytic variety over K. Then, since pro-
étale cohomology of XC is finite dimensional over Qp, Corollary 6.21 yields a duality isomorphism

Hi
proét(XC ,Qp)

∼→ H2d−i
proét(XC ,Qp(d))∗.

A result known by the work of Zavyalov [34] and Mann [29].

6.6.2. Stein curves. Let X be a geometrically connected smooth Stein curve over K. From com-
parison theorems (see [22, Th. 6.14]) we get the following isomorphism and a short exact sequence
in Qp,2

H0
proét(XC ,Qp) ' Qp, (6.31) leje1-25

0→ O(XC)/C →H1
proét(XC ,Qp(1))→ (H1

HK(XC)⊗2

C̆
B+

st)
N=0,ϕ=p → 0

They lift to TVS’s. Similarly, for compactly supported cohomology, by [1, Sec. 7.2], we get the
following isomorphism and a short exact sequence in Qp,2

H1
proét,c(XC ,Qp(1)) ' (H1

HK,c(XC)⊗2

C̆
B+

st)
N=0,ϕ=1,

→ (H1
HK,c(XC)⊗2

C̆
B+

st)
N=0,ϕ=p2 ιHK−−→H1DRc(XC , 2)→ H2

proét,c(XC ,Qp(2))→ Qp(1)→ 0,

where we set DRc(XC , 2) := RΓdR,c(XC ,B
+
dR)/F 2. We note that, if the de Rham cohomology

of X is of finite rank over K, then (H1
HK,c(XC) ⊗2

C̆
B+

st)
N=0,ϕ=1 is a finite rank Qp-vector space

because the slopes of Frobenius on H1
HK,c(XC) are ≥ 0 (see [1, Remark 7.10]). Again, everything

lifts to TVS’s.
By Corollary 6.21 we get a short exact sequence in Qp,2

0→ Ext1
TVS(H2d−i+1

proét,c (XC ,Qp(d)),Qp)→ Hi
proét(XC ,Qp)→ HomTVS(H2d−i

proét,c(XC ,Qp(d)),Qp)→ 0



Hence, using the above computations and d = 1 sinceX is a curve, we get the following isomorphism
and a short exact sequence in Qp,2

H0
proét(XC ,Qp) ' HomTVS(H2

proét,c(XC ,Qp(1)),Qp) (6.32) leje2-25

0→ Ext1
TVS(H2

proét,c(XC ,Qp(1)),Qp)→ H1
proét(XC ,Qp)→ HomTVS(H1

proét,c(XC ,Qp(1)),Qp)→ 0

It is tempting to think that the exact sequence in (6.32) recovers the exact sequence in (6.31) but
this is not the case: if the de Rham cohomology of X is of finite rank over K, the term on the
right in (6.32) is a finite rank Qp-vector space while the term on the right in (6.31) will, in general,
have a nontrivial C-part.

6.6.3. Drinfeld space. Let K be a finite extension of Qp and let d ≥ 1. Let HdK be the Drinfeld
space of dimension d over K. By [14, Th. 1.3], [1, Lemma 8.13], we have exact sequences in Qp,2

(i ≥ 0)

0→ Ωi−1(HdC)/ ker d→Hi
proét(HdC ,Qp(i))→ Spi(Qp)

∗ → 0 (6.33) leje3-25

0→ Hd
c (HdC ,Ωi−d−1)/ ker d→Hi

proét,c(HdC ,Qp(i− d))→ Sp2d−i(Qp)→ 0

Here Spi(Qp) denotes the generalized locally constant Steinberg Qp-representation of GLd+1(K)

(see [14, Sec. 5.2.1] for a definition). Hence the terms on the right in (6.33) are nuclear Fréchet and
of compact type over Qp, respectively. It follows that

HomTVS(H2d−i
proét,c(HC ,Qp(d)),Qp) ' HomTVS(Spi(Qp)(i),Qp) ' Spi(Qp)

∗(−i),

Ext1
TVS(H2d−i+1

proét,c (HC ,Qp(d)),Qp) ' Ext1
TVS((Hd

c (HdC ,Ωd−i)/ ker d)(i− 1),Qp)

' (Hd
c (HdC ,Ωd−i)/ ker d)∗(−i) ' (Ωi−1(HdC)/ ker d)(−i).

The last quasi-isomorphism uses Serre’s duality (see [1, Remark 8.11] for details).
Hence, in this example, the duality sequence from Corollary 6.21 does transfer the compact

support fundamental exact sequence into the usual fundamental exact sequence.

Remark 6.34. The case of affine spaces and tori is similar to the case of Drinfeld space but
simpler since the Hyodo-Kato terms on the right in the fundamental exact sequences are actually
finite dimensional over Qp. See [14, Prop. 4.17], [1, Sec. 7.1] for the shape of these fundamental
exact sequences.
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