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0. Introduction

Let K be a quadratic imaginary field. Let K be its algebraic closure and fix an
embedding of K into C and Cp for all primes p. Let F be an extension of degree n
of K. A Hecke character 03C8 of F will be called K-admissible if there exist k(03C8) E N

and j(03C8) ~ N - {0} such that 03C8((03B1)) = NF/K(03B1)k(03C8)NF/K(03B1)-j(03C8) for all a E F* congru-
ent to 1 modulo the conductor m03C8 of 03C8. If 03C8 is a K-admissible Hecke character of
F, we set ^(03C8) = 0393(j(03C8))n(203C0i)-nj(03C8)L(03C8, 0), where L(03C8, s) is the Hecke L-function
attached to 03C8. A conjecture of Deligne [D] proved by Harder [H-S] predicts the
value of ^(03C8) up to an algebraic number. The aim of this paper is the study of the
p-adic behavior of ̂ (03C8) as 03C8 varies.

Let p ~ 2, 3 be a prime splitting in K. Let p be the prime of K induced by the
embedding of K into Cp and p the other prime of K above p. As observed by
Weil [Wl], any Hecke character of F of type A o (thus any K-admissible Hecke
character of F) gives rise to a unique continuous character 03C8(p) of Gal(Fab/F)
with values in C*p. If m is an ideal of the ring of integers of F, let |m| be the set of
places of F dividing m, and if S is a finite set of places of F not dividing (p), let

JF,S,p (resp. GF,S,p) be the Galois group over F of the union of all abelian
extensions of level m such that |m| c Su l(p)1 (resp. |m| c Su |p|). If 03C8 is a K-
admissible Hecke character of F of conductor m,, then t/J(p) factors through
WF,S,P for all S such that Im",1 c S ~ |(p)| and even through WF,S,P if k(03C8) = 0 and
Im",1 ~ S ~ 1 pl. Finally, let F v be the complex conjugate of F and if 03C8 is a Hecke
character of F, let t/J v be the Hecke character of FV defined by
03C8^(a) = N(a)-103C8-1(a) for all fractional ideals a of FV.
Our main result can be stated as follows:

THEOREM. (i) There exists a unique measure lis on cgF,S,P such that for all K-
admissible Hecke characters 03C8 of F such that t/J(p) factors through GF,S,p (and with
the additional assumption that k(03C8) = 0 or j(03C8) = 1 if n  3), we have:
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(ii) There exists a unique pseudo-measure Às (which is a measure if S * QS) such
that for all K-admissible Hecke characters 03C8 of F such that 03C8(p) factors through
GF,S,p, we have:

where if T is a finite set of places, ET(03C8) is the Euler factor above T (at s = 0) of the
L-function attached to 03C8 and Wp(03C8) is a local root number.

REMARK. Stated like this the theorem does not really make sense because in
each equality, the left-hand side belongs to Cp and the right-hand side to C. So,
to make sense of these equalities, we choose an elliptic curve E defined over K
with complex multiplication by K; then H’,(E) splits canonically as

H°(E, Qi) E9 H’(E, (9E) where both terms are stable under the action of End E.
Now, as we have fixed embeddings of K into C and Cp, if we choose a generator
~ of H 1 (E, (9E) and a generator y of the 1-dimensional K vector space

H1(E(C), Q), we can define a p-adic period ’1p= Jy ’1 and a complex period
~~ = 03B3~ (cf. III §2). The fields K(~~) and K(~p) as well as the isomorphism
between them sending ~~ to ~p are independent of the choices of E, ’1 and y and
all equalities take place in K(~~) ~ K(’1p).
Such measures have been previously constructed in the case n = 1 by Manin-

Vishik [M-V] and Katz [K]. Using ideas of Coates-Wiles [C-W], Yager [Yal],
[Ya2] and Tilouine [T] (see also de Shalit [d Sh]) obtained a much more
elementary construction of this measure (still in the case n = 1).
We obtain our theorem in the following way. Using a method developed in

[Col], similar to Shintani’s method [Sh] in the totally real case, we can define a
value ^?(03C8) explicitly given as a polynomial in Kronecker-Eisenstein series
attached to lattices in K and a priori depending on various auxiliary choices
(mainly the choice of ’Shintani decomposition’) which is formally (i.e. without
worrying about convergence problems) equal to ^(03C8). To prove that

?(03C8) = ^(03C8) in general turned out to be beyond our capacities, but by a suitable
modification of the methods of [Col], we were able to prove the desired equality
whenever n = 1, 2 or n  3 and k(03C8) = 0 or j(03C8) = 1. As is well-known, the
existence of a measure is equivalent to the integrality of a certain power series
and our explicit formulae for (03C8) in terms of Eisenstein-Kronecker series
allowed us to deduce the necessary integrality results from the corresponding
results for the case n =1, i.e. for the Eisenstein-Kronecker series themselves,
which are more or less well-known (more or less because the results in the
literature are not stated in a way that we can use, which means that we have to

reprove them in a form more suitable for our purposes). A by-product of the
existence of this measure is that (03C8) is independent of all choices.
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If x is a continuous C;-valued character of GF,S,p (resp. GF,S,p), we set

Lp,S(~) = GF,S,p X dJ.ls (resp. Lp,s(X) = F,S,p X dÀs). We can then make the preceding
theorem more precise as follows: 

MAIN THEOREM. (i) Lp.s(X) is a holomorphic (and even Iwasawa) function of x.
(ii) If ik is an admissible Hecke character of F such that 03C8(p) factors through

GF,s,p, then

(iii) If the conductor of X is divisible by all the elements of S, then there exists a
p-adic unit W(P)(X) such that W(p)(~)Lp,S(~) = Lp,S(~V) where X v is the character of
GF V,9,p obtained from X in the same way as v was obtained from 03C8 for 03C8 a Hecke
character of F.

(iv) Lp,s(X) is a meromorphic function of x, holomorphic except for a simple pole
at X = 1 if S = QS, of residue hRpEp, where as usual h is the class number of F, Rp is
the p-adic regulator of the group of units of the ring of integers of F and Ep is a
certain Euler factor.

(v) If 03C8 is an admissible Hecke character of F such that 03C8(p) factors through
GF,S,p then Lp,S(03C8(p)) = E.
COROLLARY. Lp,0 has a pole at X = 1, or equivalently, À0 is not a measure, if
and only if Leopoldt’s conjecture is true for (F, p). If this is the case then Leopoldt’s
conjecture is true for (F, p).

This paper is organized as follows. In Section 1 we introduce the basic

notations and recall some basic facts about Fourier transforms of functions on

adeles. In Section II we present a slight modification of the Shintani-like method
developed in [Col]. In Section III, we prove the existence of p-adic measures
attached to n-dimensional generalizations of Eisenstein-Kronecker series at-
tached to lattices in K. As a consequence of the existence of these measures, we

derive the fact that all choices that we had to make in Section II lead to the same

result. In Section IV we prove a number of functional equations satisfied by A(tf¡)
and apply the results of the two preceding sections to give a formula for (03C8) in
terms of polynomials in Eisenstein-Kronecker series. Finally, Section V is

devoted to the construction of ,us and Às using the measures constructed in
Section III and to the study of the p-adic L-functions Lp,s and Lp,s .

1. Notations and Definitions

Let K be a quadratic imaginary field. Let a - a denote the non-trivial

automorphism of K. Let F ~ K [X]/P(X), for P an irreducible polynomial of
degree n, be an extension of degree n of K. Let FV = K[X]/P(X). We still write
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03B1 ~ (X for the antilinear isomorphism from F to F v sending X to X. We shall use
H to denote either F or F" so H" will be F" (resp. F) if H = F (resp. H = F").
We write

OH for the ring of integers of H,
UH for the group of units of OH,
I(H) for the group of fractional ideals of H,
I+(H) c I(H) for the set of ideals of OH,
Cl(OH) for the group of ideal classes,
C(H) c I+(H) for the set of ideals a of OH such that OH/a is cyclic as an abelian

group,

C°(H) for the set of principal ideals of C(H),
P(H) for the set of prime ideals of OH,
,9(H) for the set of finite subsets of P(H),
AH for the ring of adeles of H,
AH for the ring of finite adeles of H, and
dH for the absolute different of OH .

If V is a subgroup of UH let VV = {v|v E V} be the corresponding subgroup of
UHV.
If a ~ I(H), let a = {03B1
If m~I(H), let Iml = (q E P(H) 1 Vq (m) i= 01 E Y(H) and if S E Y(H), let

Is(H) = {a ~ I(H) liai n S = Ø}.
Let OH,S (resp. O’H,S) be the subring of H defined by x E OH,S (resp. 0’ H s) if and

only if vq(x)  0 if q E S (resp. q e S).
Fix an embedding of the algebraic closure K of K into C. Let

YH,~ = H~Q C ~ Yi x Y2, where Y1 = H~KC and Y2 = H 0,C. Let 03C41, ..., 03C4n
be the n embeddings of H into K; we obtain an isomorphism of Yi (resp. Y2) with
C" sending oc 0 1 to (L 1 (a), ... , in (a)) (resp. to (03C41(03B1), ..., 03C4n(03B1))). With these
identifications, H and HV become dense K-vector subspaces of Cn and a e I(H)
becomes a lattice in C". If y = (y1, ..., yj and z = (z1, ..., zj belong to C", let

and

If B is a basis of H over K, we let B’ be the basis of HV over K dual to B with

respect to |&#x3E; and if é3 is a finite set of bases of H over K, we let
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Bv = {BV|B~ B}. If a E I(H), let a" be the dual lattice of a with respect to |&#x3E;.
Then, a V ~I(HV) and we have a V =a.

If q E P(H), let HQ be its completion at q and Oq be the ring of integers of Hq. If
SEf?JJ(H), let HS = 03A0q~SHq and OS = 03A0q~SOq. We can describe AH as the set of
x = (... , xq, ...) such that Xq E Hq for all q E P(H) and xq E Oq for almost all

q E P(H). We can define a pairing (I)H on AH x AH with values in the group of
roots of unity of K * c C* in the following way. The above defined pairing |&#x3E;
on C" x C" induces a pairing on H x H v with values in Q which we can extend to
a pairing on AH x AfHv with values in AQ, and using the canonical isomorphism
between A6/TIpZp and Q/Z, we set  where x|y&#x3E; is
the image of x|y&#x3E; in Q/Z. This pairing induces local pairings )s on Hs x HS
and we have (x|y)H = 1-IqeP(H)(Xq 1 Yq)lql
Using these pairings, we can define the (local and global) Fourier transform.

Let S,H be the space of K-valued locally constant compactly supported
functions on HS. If a c b are two fractional ideals of HS and 0 ~ JS,H is constant
modulo a and zero outside b, we define its Fourier transform JS(~) ~ JS,H by:

where a" is the ideal of H/dual to a with respect to (|)S and Ns(a) is the norm of
a as a fractional ideal of Hs. It is an exercise to verify that this definition does not

depend on the choices of a and b and that =~(-y).
Let (H) be the space of K-valued locally constant compactly supported

functions on AH. The fractional ideals of AH are in 1-to-1 correspondence with
elements of I(H). So if a c b are elements of I(H) and 0 E (H) is constant
modulo a and zero outside of b, we define its Fourier transform H(~) by the
same formula as before (with the subscript S replaced by H) and we have

57H - (H(~))(y) = ~(- y).
If S ~ (H), let Ys (H) be the subspace of (H) of functions of the form

~S(xS) rqes 1Oq(xq), where ~S ~ 19’S,H and lOq is the characteristic function of Oq.
There is an obvious isomorphism between JS,H and i7s(H) and

Y(H) = ~S~P(H) JS(H). If S n S’ = QS and ~ = ~S(xS) 03A0q~S 1 oq (xq) E JS(H) and
~’ ~ JS’,H, we define ~’*~ E!7 sus,(H) by ~’ * ~(x) = ~’(xS’)~S(xS) 03C0q~S~S’ 1Oq(xq).
Finally, if b E I(H), define bbE J|b|,H by àb = 1O|b| - lb where lb is the characteristic
function of b considered as an Hlbl fractional ideal, and if b E I(HV), let bb E |b|,H
be defined by ô b 101bl- N(b)-11b-1. Let y be a generator of the fractional ideal
of H|b| generated by dH . Then we have
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II. Shintani’s method

Let k E N, j E N - {0}, and let v be a subgroup of finite index in UH . Let Jk,j,V(H)
be the subspace of i7(H) of functions satisfying:

This expression is independent of the choice of V and converges for Re(s) » 0.
By a theorem of Hecke, A(k, j, 4J, s) admits an analytic continuation to the whole

complex plane and a functional equation relating it to A(j-1, k+1, FH(~), - s).
We set

and the functional equation gives

The aim of this section is to obtain a finite expression for A(k, j, 4» in terms of
elliptic functions attached to lattices in K. To this end, we shall (briefly) recall the
methods developed in [Col] and improve on them a little bit.
From now on, V will be a torsion free subgroup of finite index of the subgroup

of UH of elements of norm 1 over K. Let 8l(V) be the set of finite sets of bases of
H over K satisfying:

for all z ~ (C*)n such that the right-hand side converges, where if

B = ( fi,B, ... , fn,B) is a basis of H over K, we set

REMARK. This condition is an ’algebraic’ version of Shintani’s condition [Sh]
(in the totally real case), that the union over B ~ B of the cones generated by
f1,B,..., fn,B be a fundamental domain of (R*+)n modulo the action of K
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LEMMA 1. (i) B(V) is not empty. (ii) If B ~ B(V), then 8lV E81(VV).
Proof. We shall use Theorem 1 of [Col] to construct explicit elements of

8l(V). By a theorem of Dirichlet, V is of rank n-1. Let us choose a basis

~1, ..., ~n-1 of V, and for each 03C3 ~ Sn-1, let f1,03C3=1 and fi,03C3 = 03A0ji ~03C3(j) for

2  i  n. Write 03B5(03C3) for the signature of a and suppose that (f1,03C3, ..., !n,a) is a
basis of H over K for all 03C3 e Sn -1 (we can always find ri 1, ... , ~n-1 such that this
is true). Then there exists a sign 03C9 = 03C9(~1, ..., ~n-1) such that, if

B03C3 = (f1,03C3, ..., fn,03C3) when 03C903B5(03C3)=1 and B03C3 = (fn,03C3, f2,03C3,..., fn-1,03C3, f1,03C3) when
03C903B5(03C3) = -1, then B = {B03C3|03C3~Sn-1}~B(V). Part (ii) of the lemma follows by
taking the Fourier transform of both sides of (5) and using the fact that the
Fourier transform of fB(z) with respect to (|)~ is infBV(z).

Let zi = (zi,1, ... , zi,n) for i = 1,2 be variables in Yi ~ C". Let

Vi = rn= 1 (-). We deduce from (5) and the fact that Vi 0 v = Vi if v ~ V,
that whenever the right-hand side converges and B ~ B(V), we have

If A is a finite set of bases of H over K and ~ ~ J(H), we set

This series is absolutely convergent for Re(s) &#x3E; 1/2 and can be expressed as a
polynomial in Kronecker-Eisenstein series attached to lattices in K (cf. [Col]
or III §3 of this paper). This implies that K(z,, z,, ~, B, s) can be analytically
continued to the whole complex plane and we set:

If 0 E Jk,j,V and 81 E 8I(V), we set

Now, plugging (7) into (2) with s = 0 yields the following formal identity:
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The main problem with (10) is that F(zl, z,, ~, B) is in general not regular at
zl = z2 = 0. In fact, we have the following lemma:

LEMMA 2. The singularities of K(zl, Z2, ~, B) are simple poles situated on the
hyperplanes Tr(fi,B(03B2+z1)) = 0 (resp. Tr(fi,B(03B2+z2))=0 where 03B2 runs through
elements of H (resp. H V) such that ~(03B2) ~ 0 (resp. H(~)(03B2) ~ 0), B runs through
elements of B and 1  i  n.

Proof. The proof results from the expression of K(z1, z2, 0, B) in terms of
elliptic functions.

REMARK. The poles on the hyperplanes of equation Tr(fi,B(03B2 + z1)) are already
apparent in formula (8); the others appear if we use the following functional
equation which is a direct consequence of the Poisson summation formula:

We shall say that (~, B) satisfies the condition (*) if K(z1, z2, ~, B) has no
singularity at z1=z1=0. This is equivalent to

(1) ~(x) ~ 0 ~ Tr(fi,B~) ~ 0 for all x ~ H, B ~ B and 1  i  n.

(2) H(~)(x) ~ 0~Tr(fi,B V x) ~ 0 for all XE HV, B ~ B and 1  i  n.

We shall say that (~, f!4) satisfies (**) if it satisfies (*) and if we have moreover

(3) 0(x) * 0 =&#x3E; Tr(fx) :0 0 for all x ~ H and f E G(f!4),
(4) FH(~)(x) ~ 0 - Tr(fx) ~ 0 for all x ~ H v and f E (Bv),

where 6(é3) (resp. G(f!4 V)) is a finite subset of H (resp. H V) which will appear in
the proof of Theorem 3.

If (~, B)~k,j,V(H) B(V) satisfies condition (*), we set

and

Let g be a Coo compactly supported function on C equal to 1 in a neighborhood

of 0. Let s &#x3E; 0 and pds) = 1  and set

THEOREM 3. (i) (k,j, ~, s) is a meromorphic function of s E C and the locus of
its poles is independent of e.
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(ii) When B goes to 0, (k,j, cp, s) converges uniformly (outside the poles) to
A(k, j, cp, s) on each compact subset of Re(s) &#x3E; k 2+1.

(iii) For all BE 0, we have (k, j, ~, 0) = (k, j, ~).
(iv) There exists a constant Bn &#x3E; 0 such that, if (~, B) satisfies condition (**),

then (k, j, cp, s) converges uniformly (outside the poles) on each compact subset
of Re(s) &#x3E; k 2 - 03B5n (resp. C), if n  3 (resp. n = 1, 2).

(v) (k,j, ~)=(-1) k+1, FH(~)).

COROLLARY. If (~, B) satisfies condition (**), we have (k, j, ~)=(k,j, cp) if
n=1, 2 or if n  3 and k=0 or j=1.

Proof of Theorem 3. (v) is an immediate consequence of formula (11). Using the
same method as in [Co1, p. 198], we see that A(k, j, cp, s) is a finite combination of
the functions studied in [Col, II]. Granting this, (i) follows from [Col, II

Lemma 8], (ii) from [Col, II Lemma 9] and (iii) from [Col, II, §6]. The only
thing which is new is (iv), which will allow us to remove from [Co1, Th. 5 and 6]
the meaningless condition about embeddings of F into K. This improvement is
made possible by replacing Lemma 1 of [Col, III] by the following stronger
theorem of Schmidt:

LEMMA 4 (Schmidt’s subspace theorem). Let b &#x3E; 0 and {(Li,1, ..., Li,n)| i ~ I} be
a finite set of families of n linearly independent linear forms with algebraic
coefficients. Then there exists a finite set E of elements of H such that for all
~~J(H), the set of elements of H v satisfying

(i) ~(x) ~ 0,
(ii) there exists ïe7 such that  ~x~-03B4

is contained in the union of the hyperplanes of equation Tr( fx) = 0 for f e é up to a
finite- set.

This lemma is a direct consequence of [Sch, Ch. VIII, Th. 7A]. Let us go back
to the proof of (iv). A slight modification of the proof of [Col, II, Lemma 10]
shows that there exists a finite set  = {(Li,1, ..., Li,n)| i ~ I} of families of n
linearly independent linear forms with algebraic coefficients (they are the NI,j of
[Co1, Th. 2]) and bn, Bn &#x3E; 0 such that if, for all fe7. the set of x ~ H such that

~ 0 and  pxp -an is finite, then (k,j, ~, s) converges
uniformly (outside the poles) on each compact subset of Re(s) &#x3E; k 2 - 03B5n (resp. C) if
n  3 (resp. n=1,2). To finish with the proof, we just have to take  (resp.

of condition (**) to be the set é associated to  (resp.  and

b=bn in Lemma 4.
When (~,B) does not satisfy condition (*), we cannot define (k,j,~) by

formula (12). As the singularities of F(z1, z2, cp, B) are simple enough, we could
give a meaning to (12) by taking a suitable finite part as in [Co1, II, §6], but here
we shall use the standard technique of replacing cp by a suitable linear
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combination to eliminate the poles (cf. [Ca]). If S E P(H), let

and if S e P(K), let SH = {q e P(H)| 13p E S such that q|p} e P(H).

LEMMA 5. Let E be a finite subset of H*; then there exists S(E)~P(H) such that

for all S~P(H), all b E C(H) satisfying |b| n (S() ~ (SK)H) = 0 and all f ~ E, we
have : if x~b-1O’H,S-O’H,S, then Tr(fx)~O’K,SK and in particular Tr( fx) is
non-zero.

Proof Let S’=|dH|~|(f)| and S(E)=(S’K)H. Let b E C(H) be such that
and x~b-1O’H,S-O’H,S. There exists q ~ |b| such that

vq(x)  0. As OH/b is cyclic, q is of degree 1 and if p = q n OK and q’ ~ |p| - {q},
then q’~|b|, hence vq’(x)  0; and this implies, as q~S’, that vp(Tr(fx))=vq(x)
which implies Tr(fx)~O’K,SK.

If S EgJJ(H) and S’~P(H), let

and if T E &#x26;(H), let

Also let C°(S, S’) (resp. C0T(S, S’)) be the intersection of C(S, S’) (resp. CT(S, S’))
with C0(H) C0(H). If ~~(H), and b1 ~I(H), b2 ~I(H), set ~b1,b2 =
bb - 1 * 03B4 * ~, whenever this is defined.

LEMMA 6. Let B be a finite set of bases of H over K. Then there exist
S = S1(B) e P(H) and S’ = S’1(B) e P(H) such that, for all T e P(N), all ~ e JT(H)
and all (bl, b2) E CT(S, S’), the conditions (*) and (**) are satisfied by (~b1,b2, B).

Proof. ~b1,b2(x)~0 implies  and  implies
. Hence, the result is an immediate consequence of

Lemma 5.

Let O*T act on JH,T by ~ ~ ~°03B3 where ~°03B3(x) = ~(03B3x). Any ~~JH,T has a
unique decomposition ~=03A3~~~ where ~~=0 for almost all x, x running
through the locally constant characters of O*T, and ~~° y = ~(03B3)~~ for all y e O*S.
Now, using the identification between JH,T and JT(H), we can decompose any
~~JT(H) as 03A3~~~ and if ~ belongs to k,j,V(H) then so does ~~. Let

(b1, b2)~C0T(S1(B), S’1(B)) and 03B21 ~ H be a generator of b 1 and P2 EHV be a
generator of b2. If 03B3~H* and ~~J(H), let ~03B3~J(H) be defined by
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but as

we obtain

where

To be coherent with formula (17), we set, if
and (bl, b2)=«Pl)’ (fl2»E C T (S 1 (-q), S’1(B)),

and the right-hand side is well-defined by Lemma 6.

REMARK. We expect that , ~) = A(k, j, ~) and by the corollary to
Theorem 3, this equality is true if n = 1, 2 or if n  3 and k = 0 or j = 1. Moreover,
we shall prove using p-adic methods (cf. III §4 of this paper) that, to a large
extent, (k, j, ~) does not depend on the auxiliary choices of (JI, Pl and 03B22.

III. Construction of the basic measure

1. p-Adic measures

Let p * 2, 3 be a prime which splits in K. Fix an embedding of K into Cp (and
keep the previous embedding of K into C). Let p be the prime ideal of 0,
determined by this embedding, Op be the completion of OK at p and p the other
prime ideal of OK above p. Let
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where

We can also describe Yi (resp. Y2) as the topological closure of OH (resp. OH)
into Cnp via the map 03B1~(03C41(03B1), ..., 03C4n(03B1)) (resp. (03C41(03B1),...,03C4n(03B1))). With this
description, we can write Yi ~ Yi as (yi,1, ... , yi,n). If z e Cp, we set Tr(z) = 03A3ni=1 Zi
and N(z) = ni=1 zi. If 1 is a prime ideal of OK’ let dH,1 be the part of dH above 1. Fix
a basis B = (f1,..., fn) of dH,pOH,p over OK,p. Let B* = (g1, ..., gn) be the basis of
H over K dual to B with respect to the bilinear form TrH/K(xy) and
BV = (f1,..., fn) and (B*) =(g1,..., gnV) be the bases of HV over K dual to B
and B* with respect to |&#x3E;. Then B* is a basis of d-1H,pOH,p over OK,p, B is a
basis of d over OK,p and (B*) is a basis of d over °K,p.

If yi ~ Yi, we set xi = (xi,1, ..., xi,n), where x1,j=Tr(gjy1) and x2,j=Tr(gjy2).
The map Yi ~ Xi induces an isomorphism of Op-modules between Yi and
Onp ~ Z p. If zi = (zi,1, ..., zi,n) for i =1, 2 is sufficiently close to zero in Cp, we set

Let A be a closed subring of O the ring of integers of Cp . A A-valued measure
on a compact and totally disconnected topological space X is a continuous (for
the supremum norm) linear map on the space of continuous functions on X with
values in Cp whose values on characteristic functions of compact open subsets of
X are in A. If 03BC is a A-valued measure on YH,p, we define its Fourier-Laplace
transform by

where 03BBB is the measure on z;n deduced from pu via the map (Yi’ y2)~(x1, X2).

LEMMA 7. If 03BC is a A-valued measure on YH,p, then F03BC(z1, Z2) is given by a power
series in a neighborhood of zero, and reciprocally, if F(z1, Z2) is a power series, then
for F(zl, z2) to be the Fourier-Laplace transform of a A-valued measure, it is

necessary and sufficient that F(zl, Z2) expressed in wl, W2 is a power series with
coefficients in A.

Proof. The general case reduces easily to the case n = 1 which is well-known.

We shall write WB,03BC(w1, W2) for the Fourier-Laplace transform of il expressed
in WI, W2. If y ~ H/d-1H,pOH,p, we define a locally constant character Xy of Y,
identified with OH Q90K Op by the formula ~03B3(y1) = (03B3 |y1)|p| (cf. 1), and if

03B3~H/d-1HOH,p, we define a locally constant character Xy of Y2 ~ OH~OKOp
by the formula Xy(Y2) = (y2 |03B3)|p|. The map y ~ Xy induces an isomorphism from
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H/d-1H,pOH,p (resp. HV/d-1H,pOH,p) to the group of locally constant characters on
Yl (resp. Y2).

LEMMA 8. Let j, k ~ N and 03B31~H/d-1H,pOH,p and 03B32 ~ H/d-1H,pOH,p. Then
(i)  =Z2 =0, where, if cP is

a continuous function on YH,p then ~03BC is the measure defined by
d(~03BC) = YH,p ~03C8 dJ.l, and

(ii) F~03B31~03B3203BC(z1, Z2)= WB,03BC(..., 03B5i,j(1 + wi,j)-1,...),
where the 03B5i,j are p°°th roots of unity defined by 03B51,j=~03B31(fj) and 03B52,j=~03B32(fj).

Proof. (i) follows by developing exp( - Tr(ylzl + y2z2)) as a power series and
(ii) is evident if we remark that ~03B3i(yi) = 03A0nj=1 03B5xi,ji,j, which gives

Our aim in the rest of this section will be to prove that under suitable

conditions, the holomorphic part of K(z1, z2, ~, B) is the Fourier-Laplace
transform of a measure on YH,,. We shall first consider the case H = K, and this
will involve the study of the p-adic behavior of Eisenstein-Kronecker series.
This is the aim of the next paragraph, and in the paragraph after that we shall
reduce the general case to the case H = K.

2. p-Adic properties of Eisenstein-Kronecker series

As stated at the end of the last paragraph, this paragraph deals with the case
F = K. Our aim is to obtain integrality results for Eisenstein-Kronecker series
attached to lattices in K. Although these results are more or less equivalent to
those obtained by Yager or de Shalit, there does not seem to exist in the
literature a formulation of them suitable for our purposes. Therefore, we
develop a method giving naturally the desired formulation.

Let us begin by recalling the definitions and some basic facts about

Eisenstein-Kronecker series. We refer to [W2] for the proofs. Let L be a lattice
in C and A(L)=n-1Vol(L). If u, z E C, we set

If k  1 is an integer, we define for Re(s) » 1 the function Hk(s, z, u, L) by the
formula
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This function has an analytic continuation to the whole complex plane and
satisfies the functional equations

if L is a sublattice of L’, and

From (23) and (24) one deduces that if u ~ QL and b E C is an endomorphism of L
such that bu E L,

If j is an integer such that 1  j and k E N, we define

and

E1(z, L) has the following Laurent expansion in a neighborhood of 0:

and E,,j(z, L) - ()k  is real analytic in a neighborhood of 0.

PROPOSITION 9. There exists a (non-unique) polynomial Pk,j with rational
coefficients in the variables E(z, L) = {E1(z,L),...,Ej(z,L),...} and a(L)=
{a1(L),..., aj(L),...} such that Pk,j(E(z, L), a(L)) = E,,j(z, L) for z e L.

REMARK. If k  j, there is a stronger statement proved in [W2, Ch. VI (11)]:
the variables a(L) are unnecessary and Pk,j has coefficients in Z[].
Proof The proof is by induction. The statement is trivial for k = 0 and j  1.

Moreover, as d dz Ek,j(z,L)= -Ek,j+1(z,L), if the statement is true for (k, j) it is



157

true for (k, j + 1). Thus the problem is to show the existence of Pn+ 1,1 assuming
the existence of Pk,j for k  n and j  1. If we write down a Laurent expansion

for En+1,1(z,L)+1 n+2 E1(z,L)n+2 in a neighborhood of 0, we obtain

where the Qn,k,j are polynomials with rational coefficients and Rn(z) is real

analytic in a neighborhood of 0. From this we deduce that

is a doubly periodic real analytic function annihilated by a power of 2013 ) and
hence a constant. Using the fact that En+1,1(0,L)=an+2(L) we find that this
constant can be expressed as a polynomial in the aj(L) with rational coefficients,
which concludes the proof.

Let E be an elliptic curve with Weierstrass model y2 = 4x3 - g2x - g3, defined
over OK with complex multiplication by OK and with good ordinary reduction
at p. Let L be the period lattice of w = dx/y. Choose a basis (yi, y2) of H1(E(C), Z):
then 03C9 = 03C4 03B31 03C9 for some i E K, and a = Z + Z03C4 is a fractional ideal of K. We
assume that we have chosen our basis (03B31, 03B32) in such a way that vp(a) = vp(a) = 0.
Let ’1 = (x + a2(L))w. Then (03C9, ’1) is a basis of H1DR(E) and if a E 0,, then a*ce = occo
and a*’1 = 03B1~ in HDR(E). Set Woo = 03B31 ce and ~~ = 03B31 ~. Using Legendre’s relation,
we obtain A(L) = -03C9~/~~. If a E K, we let 03B1 = 03B103C9~ E QL, and if P is a torsion
point on E, we let z(P) E K be any element such that z(P) = w ooz(P) corresponds
to P via the isomorphism C/L ~ E(C). Of course, z(P) is only determined up to
an element in a.

Let t = - 2x/y = - 2 be the parameter of the formal group
Ê which is the kernel of reduction mod p, 03BB(t) be the power series giving z in
terms of t (it is the logarithm of Ê and we have d03BB(t) = co(t», and ~ denote the
formal group law on Ê. Let Ip c Ô be the ring of integers of the completion of
the maximal unramified extension of Qp and M = Qp(g2, g3). The formal groups
Ê and G. are then isomorphic over Ip,E def Ip(g2,g3). We shall fix an isomorph-
ism 1 from Ê to G. by requiring that the following condition holds. Let Q be a
point of poo-division on E. Then we want 1 + i(t(Q)) = z(Q), 1&#x3E;L where the left-
hand side is a pOOth root of unity in Cp and the right-hand side is a p-th root of
unity in C. We will write 03B5(Q) for this p°°th root of unity. For reasons to become
obvious later, we write -’1p for the coefficient of t in i ~ Ip,E[t] (i has no constant
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term), and extend the isomorphism from K c= C to K c: Cp to an isomorphism
from K(~~) to K(~p) sending ~~ to ~p. Note that this is possible because ~~ is
transcendent due to a theorem of Cudnovskii (cf. [Wa]) and ~p also in a more
trivial way.

Suppose G(z1, ..., zn) is locally real analytic around 0. We define the

holomorphic part of G to be (G(z1,...,zn), the power series in z1,...,zn
obtained by equating z1,...,zn to 0 in the formal Taylor series expansion
of G in z1,..., zn, z1,...,zn. If H(zl, ... 1 Zn) is locally of the form

F(zi,..., zn)/G(z1,..., Zn), where F is real analytic around 0 and G holomorphic,
we define the holomorphic part of H, (H(z1, ..., by
(H)=(F)/G. If moreover JP(F) and G have coefficients in K(’1 (0)’ we shall
also view JP(H) as an element of Cp((z1,..., z.».

PROPOSITION 10. Let 03B1~(K-p-~a) u a, which means that the division point
P(a) corresponding to oc is either 0 or does not belong to E. Then if la is the
characteristic function of a, we have:

(i) (E1(+03BB(t), L)) = 1.(,Y)t + E1(03B1, L) + ~n=1 bn(03B1)tn def G1(03B1, t), where b n (P)
is in the ring of integers of M(P(03B1)).

(ii) Ei(&#x26;, L) == -al, (mod O).
(iii) If Q is a p~-division point, then Gl(ot, t(Q)) (which converges by (i)) is equal to

E1(03B1+(Q),L).

Proof. Let 4J(z, u) = E1(z + u, L) - E1(z, L) - E1(u, L). Then 0 is a meromorphic
function in u and z and hence an algebraic function on E x E. Moreover,
it is easily seen to belong to M(E x E) and to have a well-defined reduction

mod p in fact . Now, if , then

, is an algebraic function on E

without singularities on Ê and whose reduction mod p is defined, and so is given
on Ê by a power series in t with coefficients in the ring of integers of M(P(03B1)).
Hence, to prove (i) and (iii) for any a, it suffices to prove them for a= 0.

Let fi ~ 0, such that fi is prime to p. By the same arguments as before, one sees
that Ye(E 1 (PÂ(t), L)-03B2E1(03BB(t), L))+03B2-1(N(03B2)-1)t-1 is an algebraic function on
E with no singularities on Ê, and so is given on Ê by a power series G03B2(t) with
coefficients in the ring of integers of M. Now take fin ~ OK satisfying fin ~ 1
(mod p") and fin == 0 (mod pn). Let n tend to + ce. Then G03B2,n(t) obviously tends to
E1(03BB(t))-t-1 which concludes the proof of (i). To prove (iii), suppose Q is a pm-
torsion point. Then if n a m, we have 03B2nQ=Q and so G03B2n(t(Q))=
(1 - 03B2n)E1((Q), L) -fin 1(N(03B2n)-1)t(Q)-1 (as Go. is an algebraic function, one can
evaluate it at a point defined over K using complex arguments). But when n
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tends to +~, Gpn(t(Q)) tends to G1(0, t(Q)) - t(Q)-1 and the right-hand side
tends to E1((Q), L) - t(Q)-l which concludes the proof of (iii).

It remains to prove (ii). First note that if a E a, there is nothing to prove as
E1(03B1,L)=0. So suppose 03B1 ~ a and write 03B1 = 03B10 + 03B11 where 03B11 ~ p-~a and

vp(03B10)  0. Then, using (i) and (iii) with a = ao and Q corresponding to &#x26;1’ we
deduce that if (ii) is true for ao then it is true for a and we are reduced to the case
when afta and vp(03B1)  0. Now, if 03B2 ~ OK, then F03B2(z) = E1(03B2z, L) - 03B2E1(z, L) is an
algebraic function on E whose reduction mod p is defined, so if z corresponds to
a point defined over K which does not reduce to a fi-division point mod p, then

Fa (z) E Ô. One deduces from this that if (ii) is true for a it is true for 03B203B1, and if Pis
prime to p and (ii) is true for a then it is true for 03B2-103B1. Now let h be the class
number of K and let n be a generator of ph. By the previous reductions, it suffices
to verify (ii) for 03B1=03C0-n and n  1. Let k ~ Z and 03B1n = 03C0-n. Then

Let e = 03B3,1&#x3E;L. Then using the isomorphism i, we see that

So

But as tG1(0, i-1(t)) ~ -p+tIp,E[t], we obtain the desired result by applying the
following obvious identities:

COROLLARY. ilp = limn~~ pnE1(p-n03C9~, L).

Thus ’1p appears as the p-adic period of the differential form ’1 = (x + a2(L))(dx/y)
integrated along the cycle y 1 viewed in Tp(E) in the obvious way (cf. [P-R],
[de S]). Using this remark, it is easy to show that the isomorphism between
K(~~) and K(’1) does not depend on the choice of E or y i; it depends only on the
embeddings of K into C and Cp.
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(i) Gk,j(03B1, t) E O[t] ~ Q p.
(ii) If Q is a poo-division point, then Gk,j(03B1, t(Q)) = Ek,j( + z(Q), L).

Proof. If k = 0, then (i) follows from Proposition 10 and the fact that

where

and (ii) follows from the fact that Eo,j is a rational function on E. The general
case follows then from the existence of Pk,j (Proposition 9).

PROPOSITION 12. Let a E K, vp(03B1)  0. Let 039403B1(z) = z,03B1&#x3E;L. Then

(i) H(039403B1(03BB(t))) ~ Q[t].
(ii) If Q is a poo-division point, then H(039403B1(03BB(t))) evaluated at t = t(Q) is equal to

039403B1(z(Q)) where z(Q) has to be chosen so that az(Q) E p- ~a (this restriction being due
to the fact that 039403B1(z) is not periodic of period L in z).

Proof. Everything is obvious once we have proved that  = (1 + i(t))03B1.
But we have  So using the identity
A(L) = - 03C9~~~ 1 we obtain: (039403B1(z)) = exp( - ~~03B1z), and p-adically, (039403B1(03BB(t)))
= exp(-~p03B103BB(t)). As À is an isomorphism from Ê to Ga, we find that z(t)=
exp(u03BB(t)) - 1 for some UECp. Equating terms of degree 1 in t gives u= -’1p
which allows us to conclude.

PROPOSITION 13. Let 03B1~K-p-~a and 03B2~K such that vp(03B2)  0. Then for
1  j  k we have:

(i) (Hk(j, 03B1 + 03BB(t), 03B2, L)) ~ O[t]~Qp.
(ii) If Q is a p°°-division point then the previous series evaluated at t = t(Q) is

equal to Hk( j, â + z(Q), 03B2, L), where z(Q) has to be chosen in such a way that
03B2z(Q) E p - ooa.

Proof. Choose b E OK satisfying (b, p) = 1 and b03B2 E a. Then formula (25) gives:
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Since b is prime to p, b-1 is an endomorphism of Ê and b-103BB(t) = 03BB([b-1]t). Then
(i) follows directly from Proposition 11(i).
Now let Q be a p"-division point and let b* E OK be such that b*b ~ 1 (mod p").

Then [b-1]t(Q) = t(b*Q) and so by Proposition 11(ii), we obtain that

H(Hk(j, â + 2(t), 1, L)) evaluated at t = t(Q) is equal to

which allows us to conclude.

PROPOSITION 14. Let a E K be such that vp(03B1)  0 and 03B2~K - p-~a. Then for
1  j  k

(i) (Hk(j, 03B1, 03B2 + Î(t), L)) E Ô[t] (D Qp.
(ii) If Q is a poo-division point, then the previous series evaluated at t = t(Q) is

equal to Hk( j, a, 03B2+ z(Q), L).

Proof. Everything follows easily from the previous proposition and the
functional equation for Hk(j, u, z, L) which says that

Note however that Proposition 13(ii) would give some restrictions as to the
possible value of z(Q) which makes (ii) work, but since Hk( j, u, z, L) is periodic of
period L in z this restriction is unnecessary.

PROPOSITION 15. Let 03B1, 03B2~K - a. Let k, l~N and Gk,l,03B1,03B2(t1,t2) be the power
series defined by

If 03B1, 03B2 ~ OK,p, then

(i) Gk,l,03B1,03B2(t1, t2)~Ip,E[t1,t2].
(ii) If Q1, Q2 are poo-division points, then

where z(Q 1 ) has been chosen so that z(Q1)(03B2+z(Q2))~p- OOa.

The proof of this proposition will need several lemmas (as well as the

preceding propositions). First, call a power series H(t1, t2) = 03A3i,jai,jti1tj2 ’almost
bounded’ if, when is fixed, ai,j is bounded as j varies and if Q is a poo-division
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point, then H(tl, t(Q)), which converges because of what precedes, is a bounded
power series in ti. If H is almost bounded, then if Qi and Q2 are p’-division
points we can define H(t(Q1), t(Q2)) as the value of H(t 1, t(Q2)) at t 1= t(Q 1 ).

LEMMA 16. If H is an almost bounded power series satisfying H(t(Q1), t(Q2)) = 0
whenever Q, and Q2 are poo-division points, then H is identically equal to 0.

Proof. If you fix Q2, then the series H(tl, t(Q2)) is bounded and is equal to 0 if
t1 = t(Q) where Q is a poo-division point. This implies that H(tl, t(Q2)) is equal to 0
as a power series in ti, hence for all i  0, £ §i= o ai,j(t(Q2))j = 0. But this is true for
all poo-division points Q2, so ai,j = 0 for all i and j.
LEMMA 17. Gk,l,03B1,03B2 is almost bounded.

Proof. We have

By Proposition 14(i) and the fact that 03BB(t) has no constant term, we obtain that
when i is fixed, ai,j is bounded as j varies. Moreover, by Proposition 14(ii), if Q2 is
a poo-division point then:

Then Proposition 13(i) allows us to conclude. But in addition, Proposition 13(ii)
gives (ii) of Proposition 15.

LEMMA 18. Let ô E OK,p, d~ OK satisfy db E a and (d, p) = 1. Let n be a generator
of ph and bo E a satisfy bo ~ b (mod nn) . Then

Proof We have

But
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The result follows easily using formula (24). Note that the above formal

computations can be justified by analytic continuation.

LEMMA 19. Let a, b E Z, and set G03B1,03B2 = G0,1,03B1,03B2. Then we have, for a, fi E 0,,P:

where Po E a and 03B20 ~ fi (mod nm), and -(Q) is the p°°th root of unity defined
together with ’1 p.

Proof. Using Lemma 18 with 03B4 = 03B40 = b, d =1 and the value of G03B1,03B2(t(Q1),
t(Q2)), we obtain

Let d’ e OK verify (d’, p) = 1 and d’03B2 e a. By Proposition 15(ii), we have to choose

z(Q1) for Q1 in EnTn so that z(Q1)(03B2 + z(Q2))~p- OOa. This means that we can take
the z(Q 1 ) in n-mnnd’a and the 03C0-nz(Q1) will run through a set of representatives
of 03C0-md’a/d’a. So, writing 03B2,z(Q1)&#x3E;L=03C0n03B2,  and 03B5(Q1)-a=
, we can apply Lemma 18 again with 03B4=03C0n(a+03B2), 03B40=03C0n(03B1+03B20),
d = d’, u = 03C0-n(03B1 - b) and z = 03C0n03B2, to find that La,b,n,m is equal to

The result follows from the functional equation of H,.

LEMMA 20. Let 03B3, 03B4 ~ K - a verify vp(03B3)  0, vp(03B4)  0, vp(03B3) + vp(03B4)  p. Then

H,(1, 03B3, 03B4, L) E 1 p,E.
Proof. Choose d E OK such that vp(d)=sup(0, -vp(03B4)), vp(d) = 0 and d03B4 ~ a. By

formula (25), H1(1, 03B3, 03B4, L) =(1/d)  Writing
(d) = pkd where d is prime to p, we can write y E d-1 L/L in a unique way as Zo + z 1
where Zo E d -1 a/a and z 1 E P -ka/a. Set c5’ = dc5 and y’ = d-ly. We obtain
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By Proposition 10, we can write

But G1(03B3’ + zo, t) E M(P(y’ + z0)) [t] and with the exception of the constant term
has integral coefficients. As 03B3’ + z0 ~ OK,p, P(y’ + zo) is defined over the maximal
unramified extension of M which implies that

But we also have

so we see that

As 03A303B5pk = 1 (e -1)i8b’ E Z and is congruent to 0 (mod pk), we finally obtain

which gives the result, since (pk/d) E I p,E and LYEd-1L/L y, 03B4’&#x3E;L = 0 when ô e a.

COROLLARY.
Define a measure 03BC03B1,03B2 on YK,p = Op x Op by

This is an Ip,E-valued measure. Let

then H(t1, t2)~Ip,E[t1,t2] and if Q,, Q2 are poo-division points, then by
construction of 03BC03B1,03B2, H(t(Q1), t(Q2)) = G,,,,fl (t(Q 1), t(Q2)) and so H = G03B1,03B2 by virtue
of Lemma 16.

This concludes the proof of Proposition 15 for k = 0 and 1 = 1. The general case
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follows from the following identity:

which yields

PROPOSITION 21. If Q1 and Q2 are poo-division points, then

G03B1,03B2(t1 e t(Q1), t2 e t(Q2)) = (1 +  t2).

where z(Qi) has to be chosen so that z(Q1)(03B2 + z(Q2))~p- ooa.
Proof Set G’k,j,03B1,03B2(t1, t2) = ( 1 + l(t2))-03B1Gk,j,03B1,03B1(t1, t2). Then formula (30) becomes:

so that, as power series, we get

Now, let w, = t(Q1) and w2 = t(Q2). Using Proposition 15(ii) and Proposition 12,
we obtain:

But using (30) replacing tl, t2 by 0, a by a + z(Q1) and 03B2 by 03B2 + z(Q,), we find that:
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is the Taylor expansion in -03BB(t1), - À(t2) of

which concludes the proof.

If a is a fractional ideal of K, let K(z1,z2,a) = . If 1a is
the characteristic function of a, then we have K(zl, z2, a) = K(zl, Z2, la, (1)) in the
notations of Section II. Let i E C with Im(1) &#x3E; 0 be such that OK = Z E9 Zi. Then,
we have (y|1 z)oo = y, (i - 03C4)N(a)z&#x3E;a and formally:

This formal computation can be justified, as usual, using analytic continuation.
Set wi = exp(-zi) -1 for i = 1, 2.

PROPOSITION 22. Let 03B4~K, P1EK-bOK and 03B22~K-(03B4OK). Then

where l is a representative of Yi in p-~03B4OK and 03B32 a representative of y2 in
p-~(03B4OK+(03B21)+(03B31)).

Proof. Part (iv) is obvious. To prove (i), (ii) and (iii), let us introduce an elliptic
curve E with Weierstrass model defined over the ring of integers of the Hilbert
class field of K with good reduction at all places above p and j-invariant equal to

j(O,). This implies that the period lattice of E has the form ccy(E)OK for some
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Then, we have ~~(E) = and ~p(E)~I*p. Now, straightfor-
ward computation yields

Hence, as i-1(wi)=03BB-1(-~-1p log(1+wi))=03BB-1(~-1pzi), we obtain

where i is the isomorphism between Ê and Gm and [03B2] is the endomorphism of Ê

associated to p, a = -03B403B22 and 03B12 = 03B21· Now (i), (ii) and (iii) are just

reinterpretations of Propositions 15 and 21.

3. Construction of p-adic measures attached to generalized Eisenstein-
Kronecker series

If 0 E T(H) where T n l(p)1 = QS, set ~ = op *~ where

~p = N(dH,p)-1/21d-1H ~ 

is the Fourier transform of the characteristic function of Olpi considered as an
element of . Let 1 p,H be the ring of integers of the completion of the
maximal unramified extension of the field generated over Qp by all conjugates of
H and . The aim of this paragraph is to prove the following theorem:

THEOREM 23. Let A be a finite set of bases of H over K. Then there exists
S=S2(ÉI)E&#x26;P(H) and S’=S’2(B)~(Hv) such that for all T~P(H) satisfying
T n 1(P)1 = Ø, all 0 ~ JT(H), all (bb b2) E CT~|(p)|(S, S’), we have :

(i) (203C0i)-nK ( ~b1,b2, B)) ~, z2] and is the Fourier-

Laplace transform of an 1 p,H-ualued measure 03BCb1,b2,~,B on YH,p.
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(ii) Let ~1 be a locally constant function on Yi which can also be considered as an
element of |p|,H v, and CP2 a locally constant function on Y2 also considered as an
element of |p|,H. Then the Fourier-Laplace transform of ~1~203BCb1,b2,~,B is

LEMMA 24. Let A be a principal ideal domain having only a finite number of
prime ideals and let K be its field of fractions. Let v1, ... , Vn E An be a basis of K n
over K but not of A" over A; then there exists w ~ An such that for all 1  i  n,

det(v1, ..., vi-1, w, vi+1, ..., v") is either 0 or a strict divisor of det(v1, ..., vn).
Proof. Choose w1 = 03A3ni=1 aivi with ai ~ K, belonging to A" but not to the

submodule of An spanned by the vi’s. If ai E A, set bi = ai. If ai 0 A, we can write
ai = cildi, with ci, di E A relatively prime; let bi E A be relatively prime to ci and be
divisible by all prime ideals of A not dividing ci. Then ei = ci - bidi is a unit in A
and w = 03A3ni=1(ai - bi)vi obviously answers the question.

If M E Mn (K), we set

LEMMA 25. Let A be as in Lemma 24 and M E GLn(K). We can find a finite family
X of elements of GLn(A) such that

Proof. First note that fM(z) does not change if M is multiplied by a scalar; so
we may suppose that M ~ Mn(A). Let vs, ... , v,, be the rows of this matrix. Then
either v 1, ... , v,, generate An in which case Me GLn(A) and there is nothing to
prove, or we can find w as in the preceding lemma. Let vi,j (resp. wj) for 1  j  n
be the coordinates of vi (resp. of w) and Mn+1(z) = 03A3ni=1 wjzj. Let Ni be the matrix
whose j th row is equal to Vj if j ~ i and w if j = i. We obtain:

where the first equality is obtained remarking that the last column is a linear
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combination of the others, and the second is obtained by developing the
determinant with respect to the last column. Now, removing from the Ni those
with determinant 0, we obtain fM(Z) = 03A3NfN(z), where the det(N) are strict

divisors of det(M). We just go on with this process until we reach the desired
result.

COROLLARY. Let B be a basis of H over K. We can find afinitefamily W(B) of
bases of dH,1 pOH,p over 0 K,p such that, for all 0 E Y(H), we have

Proof. Choose a basis Co of d1H,pOH,p over °K,p; then there exists M E GLn(K)
such that B = MCo. We just apply Lemma 25 to this M and A = OK,p (which has
only two prime ideals) to conclude.

REMARK 1. The above computation should be first performed for

K(zl, Z2, 4J, é3, s) and then evaluated at s = 0. As this does not create any problem,
we shall content ourselves with formal computations in the rest of this

paragraph.

REMARK 2. Replacing B in Theorem 23 by UBEélrc(B), we see that we can
suppose that all elements of B are bases of dH,1 pOH,p over OK,p. On the other hand
if B1 and 92 are finite sets of bases of H over K satisfying Theorem 23, then
setting S2(B1 ~ B2) = S2(B1) U S2(B2) and S’2(Al U B2)=S’2(B1) U S’2(B2), we
see that A, U B2 also satisfies Theorem 23. Hence, it is enough to treat the case
where B = B and B = ( fl, ... , fn) is a basis of dH,pOH,p over OK,p which we can
take to be the B used in III, §1.

If ae7(N), set à = d-1H,pa. If 0 belongs to T(H) with T n l(p)1 = QS, then ~ is
constant modulo à for some a E 1(H) satisfying lai c T; so by linearity, we are
reduced to the case where ~ is the characteristic function of 03B1 + ã, where |a| c T
and a E dH,pOH,T. Let gB: C’ -+ C" be defined by g, (z) = (Tr( flz), ... , Tr(fnz)). As B
is a basis of d-1H,pOH,p over 0,,,, the image of d-1H,p by gB is a lattice L contained in
(OK, p)" such that °K,pL = (OK,p)n and so contains (03B4BOK)n for some 03B4B ~ OK
relatively prime to p. There exists 03B4a ~ K* with |(03B4a)| c T. such that a contains
03B4aOH. Hence, if we set ba,B=babB, we have l(ba,B)1 ~ T, u |(03B4B)| and 9B(â) contains
(ba,BOK)n. Let Y be a set of representatives of 9B(â) modulo (ba,BOK)n. Using the
identity (z1 Z2)oo = ll?= 1 (Tr fiz1| Tr fi z2)~, we obtain 
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On the other hand, a straightforward computation yields

Now, by Lemma 5, we can find S(B)~(H) and S’(B)~P(HV) such that if

(bl, b2) E CT~|(p)|(S(B), S’(B)), then for all a E I(H) with lai c T, all a in d-1H,pO’H,T, all
03B21, 03B22 as above, we have

On the other hand Tr(fi(03B1+03B21)) and Tr fi03B22 belong to OK,p, so putting
together formulae (31) and (32) we see that K(zl, z2, ($bl,b2’ B) can be expressed in
terms of the functions studied in Proposition 22. Thus part (i) of Theorem 23 is a
direct consequence of (i) and (ii) of this proposition. To prove (ii), we can restrict
ourselves to the case ~1 = ~03B31 and ~2 = X721 since the Xy form a basis of the space
of locally constant functions. Now, using Proposition 22(iii) along with formulae
(31) and (32), we obtain that the Fourier-Laplace transform of ~03B31~03B3203BCb1,b2,~,B is:

where Yi is a representative of y 1 in p-~ab2 and Y2 is a representative of 1’2 in
p-~b1(a+(03B1) + (03B31) + dH), from which we can deduce the result after a

straightforward computation (the main ingredient being the fact that if

WEYl + a + b-11ã, then XY2(W) = (Y21 |03C9)~).

4. Complements to Shintani’s method

In this paragraph, we shall use the results of the preceding paragraph to prove
that Affl,Pd32(k, j, ~) does not really depend on the choice of -4, 03B21 or P 2.

THEOREM 26. Let 0 E f/k,j,v(H). We can define a number A?(k,j, ~) such that

(i) For all ec-,4(V), there exists S(B) ~ P(H) and S’(B)~(HV) such that

, ~) = (k,j, ~) for all 0 E f/ T(H) and all ((03B21), (P2)) E C0T(S(B), S’(B)),
(ii) A?(k, j, 1» = A(k, j, 1» if either n = 1, 2 or n  3 and k = 0 or j = 1,
(iii) A?(k, j, ~ 0 y) = N H/K(y)j N H/K(Y) -k A?(k, j, ~),
(iv) A?(k, j, O) =  1, k + 1, FH(~)).

REMARK. Of course, we expect that (k, j, 1» is always equal to A(k, j, 0). In



171

this direction, (iii) and (iv) are functional equations also satisfied by A(k, j, ~)
(formulae (4) and (16)).

Proof. Suppose ~~YT(H). By linearity, we can restrict ourselves to the case
~ = ox for some locally constant character x of Ote Choose a prime p splitting in
K such that T n 1(P)1 = 0 and |dH| n l(P)l = 0. Let B~B(V) and let

where S1(B) and S’1(B) are defined in Lemma 6 and S2(B) and S’2(B) are defined
in Theorem 23.

If J.l is a measure on YH,p and y e O*H,p, we define a measure 03BC° y on YH,p and a
measure n(J.l) on YK,p = Op x Op by the following formulae:

LEMMA 27. If (bl, b2)~C0T(S(B), S’(B)) and 03B3~O+H,p satisfies

,

then

Proof. To prove that two measures pi and J.l2 on Y,,, are equal, it is sufficient
to verify that f YK, p xi103C8(x2)d03BC1= xi103C8(x2)d03BC2 for all i E N and all locally
constant functions ’" on Op. But we have

and by Lemma 8, this is equal to Vi applied to the Fourier-Laplace transform of
and evaluated at z1=z2=0. Now, as 03C8°N is locally

constant, we can use Theorem 23(ii) to obtain (cf. formula (12))
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The same computation gives

where tjJ’(Y2) = 03C8(N(03B3-1y2)).
Let ~’ = (03C8’ * ~)b1,b2. Then tjJ 0 N * (~° y)b,,b2 is neither more nor less than cjJ’ 0 y.

Now, using the corollary to Theorem 3, we obtain (0, i + 1, ~’) = A(O, i + 1, ~’)
and  and the desired equality follows from
formula (16).

COROLLARY 1. Under the same hypothesis as in Lemma 27, we have

Proof. By the very definition of (k, j, ~) (cf. (19)) and of 03BCb1,b2,~,B, we
obtain, using Lemma 8,

and the result is an immediate consequence of Lemma 27.

COROLLARY 2. Let «fi,), (03B22)) and ((03B2’1), (03B2’2)) belong to C0T(S(B), S’(B)). Then

Proof Up to introducing an auxiliary ((03B2"1), (03B2"2))~C0T(S(B), S’(B)), we may
suppose

As

we have
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hence by formula (39) we have

We obtain the result using formula (15) and the previous corollary.

COROLLARY 3. (k, j, 4» does not depend on the choice of «fil), (fl2» E C0T(S(B),
S’(B)).

It remains to check that (k, j, 4» is independent of the choice of 4 and this
follows from the following lemma whose proof is identical to that of Lemma 27.

LEMMA 28. Let PlI, A2 E -4(V) and S = S(fIJ 1) u S(B2), S’ = S’(B1) ~ S’(B2). If
~~JT(H) and (Pl)’ (03B22)) E COT(S, S’) then 03C0(03BC(03B21),(03B22),~,B1) = .

This concludes the proof of (i). Now (ii) is a consequence of the corollary of
Theorem 3, while (iii) follows from Corollary 1 of Lemma 27 and (iv) from
Theorem 3(v).

IV. Special values of Hecke L-functions.

Let 03C8 be a Hecke character of H (i.e. a continuous C*-valued character of
A1i/H*). Let m, be the conductor of 03C8. We can associate to 03C8 a character of

Im.p(H), still denoted by 03C8, by the formula: if qGP(H)-lm,1, then

03C8(q) = 03C8((1,..., 1, wq 1, 1,..., 1)), where wq is a uniformizing parameter of Oq. if
is a Hecke character of H, let 03C8V be the Hecke character of H v defined by
03C8V(a) = N(a)-103C8(a-1) if a ~ Imv(Hv).
A Hecke character of H will be called K-admissible if there exists k(03C8) E N and

j(03C8) E N - {0} such that for all a ~ 1 (mod m03C8),

In particular, a K-admissible Hecke character is of type Ao and critical in the
sense of Deligne (cf. [D]). If 03C8 is K-admissible, so is 03C8v and we have

k(03C8V) = j(03C8)-1 and j(03C8V) = k(03C8) + 1.
If 03C8 is a Hecke character of H and S~P(H) contains lm,, 1, we set
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and if à E Cl(OH), we set

These two series converge for Re(s) » 0 and define functions of s possessing
meromorphic continuations to the whole s-plane, holomorphic if t/1 is K-

admissible. If 03C8 is a K-admissible Hecke character, we set

and if S = lm* 1, we drop it from the notations.
If q E P(H), let 03C8q E Y,ql,H be defined by

Hence, if q ft |m03C8|, we have t/Jq = bq. Let Wq be a uniformizing parameter of Oq and
aq = vq(m03C8dH). Let us view H*q as a subgroup of AH in the obvious way, so that
03C8(03C9q) has a well defined meaning.
LEMMA 29. (i) There exists a constant Wq(03C8) (the local root number of 03C8 at q)
independent of the choice of Wq such that

Moreover, we have

Proof. Everything follows from standard computations (cf. [L]).

The following observation is an easy consequence of the weak approximation
theorem for the multiplicative group.

OBSERVATION. Let 8(k,j, .): !/H -+ C be a map satisfying formula (16). Let
S E P(H) contain |m03C8| and ~S ~ JS,H satisfy ~S°b = 03C8(b)~S for all b E O*S. For
a ~ IS(H) set ~S,a(x) = ~S(xS)03A0q~S laq-1(xq) where 1aq-1 is the characteristic function
of the fractional ideal of Hq generated by a -1. Finally, if A c I s (H) is a set of
representatives for CI(OH) set ~S,A = LaEA 03C8(a)~S,a. Then we have:
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(i) 0398(k(03C8), j(03C8), ~S,A) is independent of the choice of A.
(ii) 0398(k(03C8), j(03C8), ~S,A° b) = 03C8(b)0398(k(03C8), j(03C8), ~S,A) for all b E (AH)*.
Whenever it is defined, we have, with obvious notations

from which we deduce, using the fact that multiplication by an ideal induces a
bijection on Cl(OH), that we have

whenever everything is defined.
If T c P(H), we define the Euler factor of 03C8 above T by

the local root number of 03C8 above T by

and

If S~P(N) contains |m03C8|, let 03C8S~JS,H be defined by . We
have t/Js 0 b = 03C8(b)03C8s for all b e O*S, so we choose a set A e Is(H) of representatives
for Cl(OH) and we set 0398S(03C8)=0398(k(03C8), j(03C8), 03C8S,A), 0398(03C8) = 0398|m03C8|(03C8). As everything
we said about 8(k, j,.) applies to the map A(k, j, ·), we get two différent

definitions for S(03C8) (cf. formula (42)). But, if a E 1 s(H) is in the ideal class à,
writing b~I+S(H) n â in the form b = (03B2)a, where 03B2~a-1 is uniquely determined
modulo UH, we see that S(03C8,a) is neither more nor less than 03C8(a)(k(03C8),
j(03C8), 03C8S,a), which means that the two definitions coincide.

If So c S, we define 03C8S,So~S,H by
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LEMMA 30. (i) 0398S(03C8) = ES(03C8)0398(03C8).
(ii) We have 03C8S,S0°b=03C8(b)03C8S,S0 for all b E OS and if A ~ IS(H) is a set of

representatives for Cl(OH), then

Proof. (i) We have t/lS,A = *q~S-|m03C8| 03B4q * 03C8m03C8,A, so the result is an immediate
consequence of formula (45).

(ii) Using Lemma 29, we obtain

from which everything follows easily using formula (45).

Let us define the global root number W(03C8) by

Suppose that 8(k, j, .) satisfies the following functional equation:

for all j  1, k  0 and all ~ ~ Y(H). Then we have

LEMMA 31. W(03C8)0398(03C8) = i-n0398(03C8).
Proof. Let a~i|m03C8dH|(H). Using Lemma 29, we obtain

from which we obtain, with obvious notations

The lemma follows easily, using formula (51).
This lemma applied to A(k,j,.) is nothing else than Hecke’s functional

equation. But, we can also apply everything to A7(k, j, .). The results that we
obtain in this way are summarized in the following proposition.

PROPOSITION 32. (i) If a EIs(H), we set , a) = , 03C8S,a). Then
S(03C8, a) depends only on the image of a in Cl(OH).

If A c Is(H) is a set of representatives of CI(OH), set (03C8) = LaEA (03C8, a). Then
we have:
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(ii) .
(iii) , 03C8S,S0,a) = (03A0q~S0 .
(iv) 
(v)  if n=1, 2 or n  3 and k(03C8) = 0 or j(03C8) =1.

V. p-Adic measures on Galois groups and p-adic L-functions

1. Preliminary constructions

Let 03C8 be a Hecke character of H of type Ao and conductor m03C8. We can associate
to V1 a unique continuous character 03C8(p) with values in C*p satisfying 03C8(p)(a) = 03C8(a)
for any a e Im03C8(p)(H) (cf. [Wl]). But, as 03C8(p) is trivial on the connected component
of 1 of AH/H*, it can be interpreted as a character of Gal(Hab/H). In fact V1(P)
factors through H,m,p=Gal(Hm(p)~/H). where m is the prime-to-p part of m03C8
and Hm(p)~ is the union of all abelian extensions of H of level m(p)k for k  0. We
shall say that V1 is p-admissible if it is K-admissible and 03C8(p) factors through

(note that this is equivalent to k(03C8) = 0 and 03C8p = 1 on O).
Let us choose a set A c I|m(p)|(H) of representatives of Cl(OH). We have the
following isomorphisms of topological spaces:

and

where UH denotes the topological closure of UH in the space considered. If f is a
function on H,m,p (resp. on H,m,p), let 1 be the function on A x (OH/m)* x Y*H,p
(resp. A x (0,/m)* x YS,p) obtained by composing with the projection
modulo UH.
Choose a torsion free subgroup V of finite index of the subgroup of UH of

elements of norm 1 over K and (V). Let TE f!lJ(H) contain |m|, |(p)| and Jal
for all a E A. If a E (0 H,lml)* and a E A, let 10,,,a c- T(H) be the function defined by

where ~03B1,|m|(x|m|) = 1 if Xlml E a + mOlml and 0 otherwise, and ~p is the function
defined in III §3.
For all (bl, b2) ~ CT(S(B), S(A», where S(e) and S’(B) are as defined in

Theorem 26 we define a measure 03BBb1,b2,m on GH,m,p and a measure 03BCb1,b2,m on
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qj H,m,p by the formulae:

where 03BCb1,b2,~,B is the measure constructed in Theorem 23, and if ju is a measure
on Y*1 x Y2, then 03BC is the measure defined by

PROPOSITION 33. (i) Àbl,b2,m is the unique measure on GH,m,p such that

for all p-admissible Hecke characters of H of conductor dividing mp°°.
(ii) J.lbl,b2,m is the unique measure on GH,m,p such that

for all K-admissible Hecke characters of H of conductor dividing m(p)~ satisfying
k(03C8) = 0 or j(03C8) = 1.

(iii) Moreover, if we do not assume k(03C8) = 0 or j(03C8) = 1, then

COROLLARY. If one can prove by any other method ( for example using.
refinements of Harder’s proof) that there exists a measure satisfying (ii) for all K-
admissible 03C8, then (03C8) = (03C8) in all cases. (If H is a CM field, Katz [K] has
constructed such a measure, but we have not checked the compatibility of his results
with ours.)

Proof. Let 03C8 be a K-admissible Hecke character. By definition of 03BCb1,b2,m, we
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have

where

Now, using Theorem 23(ii) and formula (48), we obtain that the Fourier-
Laplace transform of

is

and we can deduce (iii) from Lemma 8 and Proposition 32(ii). Then (ii) follows
from the fact that (03C8) = (03C8) if k(03C8) = 0 or j(03C8) = 1 and (i) is obtained in exactly
the same way as (iii). The unicity of 03BBb1,b2,m and J.lbltb2,m is due to the fact that the
subspace of the space of continuous functions on GH,m,p (resp. GH,m,p) generated
by the 03C8(p) with k(03C8) = 0 and j(03C8) = 1 is dense (we are allowed to multiply by any
locally constant character).

2. Measures and pseudo-measures on profinite abelian groups

In order to put the results of the preceding paragraph in a more satisfactory
form, we shall shift to the language of pseudo-measures. In this paragraph, we
shall collect from [Se] the definitions and some basic facts about pseudo-
measures.

Let G be a profinite abelian group and A be a closed subring of Ô. We define
the Iwasawa algebra [G] of G as lp [G/H] where H runs through the open
subgroups of G. Then [G] is a dense subalgebra of [G] and we have a
canonical isomorphism between A[G] and the algebra of A-valued measures on
G, the multiplication in [G] corresponding to convolution of measures. This
will enable us to view a A-valued measure on G as an element of [G]. For
example, the measure associated to g E G is the Dirac measure at g.
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Let X(G) be the group of continuous C*p-valued homomorphisms of G
endowed with the topology of uniform convergence. If ~~ X(G) and 03BC e [G], we
write ~, J.l) instead of JG x d03BC and let ~03BC e [G] be defined by 03C8, ~03BC&#x3E; = 03C8~, J.l).
Then we have  and .
Suppose from now on that G has a quotient isomorphic to Zp and let r c G

be a lifting of Zp. Let [G] be the total fraction ring of [G] (i.e. the ring of
03B1-103B2 where a, pare elements of [G] and a is not a zero divisor). If

À = a - 1 P e ’[G] and x E X(G) satisfies ~,03B1&#x3E; ~ 0, we set ~, 03BB&#x3E; = ~, 03B1&#x3E;-1 ~, 03B2&#x3E;
and this depends only on À, not on the particular decomposition of À in the form
a-1P. The map x - ~, À) is defined on a dense open subset of X(G). If 03BB~[G]
and ~~X(G) we can still define ~03BB~’[G] and we still have ~(03BB03BC)=(~03BB)(~03BC). An
element ~~[[G]] will be called a ’pseudo-measure’ if (1-g)03BB~[G] for all
g~G. We shall write [G] for the space of pseudo-measures.

Let Te: G’ ~ G be a surjective morphism of profinite abelian groups. Then
induces a surjective morphism from A[G’] to A[G] which can be prolonged in a
unique way to a morphism from [G’] to [G] in the following way. If 9 E G,
then 9 - 1 is a zero divisor if and only if the topological closure of the subgroup
generated by 9 in G has a finite p-Sylow subgroup; in particular if the image of g
in Zp is non-zero, then 9 - 1 is not a zero divisor and the set of g e G such that
g -1 is a zero divisor is contained in a closed subset with empty interior. So take

03BB~[G] and 9 E G’ such that 03C0(g)-1 is not a zero divisor and set

03C0(03BB)=(03C0(g)-1)-103C0((g-1)03BB). This clearly does not depend on the choice of 9 and
defines a pseudo-measure on G.

LEMMA 34. (i) If the p-Sylow subgroup of G/r is infinite, then Â[G] = A[ G], or
otherwise stated, all pseudo-measures are measures.

(ii) If n: G’ ~ G is a surjective morphism of profinite abelian groups and À is a

pseudo-measure on G’ such that 03C0(03BB) is a measure, then À itself is a measure.

Proof. This follows easily from the structure of À[G] given in Th. 1.15 of [Se].

COROLLARY. Suppose G has a quotient isomorphic to Z;. Let

~1, ..., ~n ~ X(G) and À E A’[G] be such that ~(g1, ..., gn) ~ Gn,
03BB03A0ni=1(1-~i(gi)gi)~[G], then À is a measure.
Proof An immediate induction reduces the study to the case n=1. So let

XEX(G) and 03BB~[G] be such that (1- ~(g)g)03BB~[G] for all g E G. We then find
that ~-1((1-~(g)g)03BB)=(1-g)(~-103BB) is a measure for all g~G. As G has a

quotient isomorphic to Z; this implies by (i) that ~-103BB is a measure, hence À also.

3. p-Adic L- functions

If S~P(H) satisfies Sn l(p)1 = 0, let GH,S,p (resp. GH,S,p) be the Galois group
over H of the union of all abelian extensions of H of level m with Iml c 5’ u l(p)1
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(resp. Iml c 5’ u |p|). If p denotes the complex conjugation on K induced by the
embedding of K into C, the map 03C3 ~ 03C3 defined by 6(x) = p(cr(p(x))) induces a
(canonical) isomorphism between H,S,p and . If , let
6x E Gal(Hab/H) be its Artin symbol. If b~IS~|(p)|(H), let 6b ~ GH,S,p (resp. GH,S,p) be
the Artin symbol of the idele (..., xq, ...), where vq(xq)=-vq(b), Xq=l, if

q E S u 1(P)1 and a -1 ~H,S,p be the Artin symbol of (.... , xq, ...) where Xq = -1 if
q ~|1 pl and Xq = 1 otherwise. If b~IS~|(p)|(H), we have 03C3b = 03C3b in H ,s,p . Let N be
the cyclotomic character of H,S,p defined by N(6b) = N(b) and if x is a C*p-valued
continuous character of H,S,p, let X v be the character of defined by
.

If (bl, b2) E CT(S(B), S’(B)), we let  and 

be the respective projective limits of the J.lbl,b2,m and 03BBb1,b2,m defined in Proposition
33. If x is a continuous C*p-valued character of GH,S,p (resp. GH,S,p), we set

and

Lp,s and Lp,s are independent of the choice of (bl, b2) as can easily be deduced
from Proposition 33. We can now state our main result:

THEOREM 35. (i) Lp,s(X) is an Iwasawa function of x, i.e. there exists a (unique)
measure Ils on H,S,p such that Lp,s(X) = H,S,p X dys.

(ii) If 03C8 is a K-admissible Hecke character of conductor m03C8 satisfying
|m03C8|~ S~|(p)|, then Lp,S(03C8(p)) = .

(iii) If the conductor of X is divisible by all elements of S, then there exists a p-
adic unit W(p)(X) such that

Moreover, if t/1 is an admissible Hecke character, then

(iv) There exists a (unique) pseudo-measure Às on !eH,S,p such that
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and Âs is a measure if S :0 Ø or if the p-adic regulator Rp of UH is equal to 0. If

Rp * 0, Lp,o has a simple pole at ~ = 1 
hRp 

~q~|p| 1 - 1 
where h = card(Cl(OH)) is the class number of H.

(v) If g/ is a p-admissible Hecke character of H of conductor m03C8 satisfying
|m03C8| ~ Su |p|, then Lp,S(03C8(p)) = E|p|(03C8)W|p|(03C8)ES(03C8)(03C8).

Proof. (i) First note that H,S,p has a quotient isomorphic to Zp, namely
Gal(HK~/H), where K~ is the union of all Zp-extensions of K, and that the
image of CT(S(B), S’(B)) by the Artin map is dense in GH,S,p  H,S,p by
Tchebotarev’s density theorem. Hence, there exists a subset C of CT(S(B), S’(-4»
dense in H,S,p X eH V,9,p such that the quotient of J.lbl,b2,S by
(1-03C3-1b1)(1-N(b2)03C3b2) is well-defined. An immediate consequence of Proposi-
tion 33 is that this quotient is independent of the choice of (bl, b2) E C. We shall
denote it by ,us. We see that (1 -03C3-1b1)(1 - N(b2)03C3b2)03BCS is a measure on W H,S,p for
all (b1, b2)~C. As C is dense in H,S,p  H,S,p, this implies that

(1-03C31)(1-N(03C32)03C32)03BCS is a measure for aIll11’ U2 C- WH,S,p; hence, ps is a measure
by virtue of the corollary of Lemma 34.

(ii) and (v) These are immediate consequences of Proposition 33.
(iii) Let 03C8 be an admissible Hecke character of conductor m, satisfying

S ~ |m03C8| c SU j(p)l. We have:

from which the formula for W(P)( tf¡(p») follows immediately. The fact that

W(p)(03C8(p)) is a p-adic unit is a consequence of the fact that Wq(03C8) is a unit at all
places prime to N(q). The general case can be deduced from this case as in
[d Sh, II, § 6].

(iv) The definition of 03BBS is about the same as that of ,us . The quotient of

03BBb1,b2,S by (1-03C3-1b1)(1-N(b2)03C3b2) does not depend on the choice of

(bl, b2) E CT(S(B), S’(B)) and will be denoted by 03BBS. The difference with (a) is that
now, N(b2) is not a continuous function of Ub2 and the image of CT(S(B), S’(B)) in
(H,S,p)2 x 0* by the map (bi, bl) ~ (03C3b-11, 03C3b2, N(b2)) is dense. This implies that



183

(1-03C31)(1-03B103C32)03BBS is a measure for all 03C31, 03C32 E r:g H,S,p and a E O*p. Hence

is a measure. But (1-p03C32)-1= is a measure and so (1- 0" I)ÂS is a
measure for all Q 1 ~ H,S,p, which means that 03BBS is a pseudo-measure.

Now, if S ~ 0, take q E S and let S’ = S - q. Let be the projection from GH,S,p
to H,S’,p. Then we have 03C0(03BBS)=(1-03C3q)03BBS, and thus 03C0(03BBS) is a measure which

implies by Lemma 34(b) that Âs is a measure if S ~ 0. The fact that Â0 is a
measure if Rp = 0 could be obtained by the same method as in [Se], but we shall
deduce it from the formula giving the residue.

4. Calculation of the residue

If F(z1) is a function of z1=(z1,1,...,Z1,n) ~ Cn with reasonable singularities (e.g.
simple poles situated on hyperplanes), we define ~j1(F)z1=0 to be:

where 0 is any C~ compactly supported function on C" equal to 1 in a

neighborhood of 0. Of course, if F is COO in a neighborhood of zi = 0, the two
definitions of ~j1(F)z1=0 coincide.

Let V be a subgroup of finite index in the subgroup UH of elements of norm 1
over K, B~B(V) and ~~0,j,V(H). Write A(j,1» instead of A(0,j,~) and
suppose that 0 satisfies conditions (2) and (4) of conditions (*) and (**) (cf. II), so
that in particular, F(zl, z2, ~, B) is regular at Z2 = 0.

LEMMA 36. A( j, ~)=~(j-1)1(F(z1, 0, ~, B))z1=0.
Proof. First note that this definition of ~(j-1)1 allows us to extend formula (7)

to the case where fl belongs to some of the hyperplanes of equation Tr(fi,Bvz) = 0,
as can be seen by rearranging the terms as in [Col, I, Lemma 4]. Thus the proof
of Theorem 3 can be applied unchanged (but with the new meaning of vÿ - 1) in
formula (13)).

REMARK. The advantage of using this new ~(i)1 is that it dispenses us from
introducing an auxiliary bl which has the disagreeable effect of multiplying all
the results by 1-03C8(b-11) and removing the pole at 03C8=1. The drawback is that
the formulae become much more complicated.
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If a E I|(p)|(H) and y E (OH,|(p)|)*, let ~a,03B3 E f/(H) be the function defined by

where 103B3 E  is the characteristic function of 03B3 + pO|p|.

LEMMA 37. Let 03C8 be an unramified p-admissible Hecke character of H,
A c I(p)(H) be a set of representatives of Cl(OH) and C c (OH,|(p)|)* be a set of
representatives of (OH/p)*. Then

Proof. Note that . Thus,  (see
formula (48)). Since ~a(03B3),1(x) = ~a,03B3-1(03B3x), we apply formula (16) to obtain:

and the result follows from Lemma 30 and Theorem 35(v).

LEMMA 38. (i) Let T, B, S’2(B) and ~ be as in Theorem 23. Then for all

B = (f1,B, ..., fn,B)~B, all cjJ E f/ T(H) and all b2 E C(H V) satisfying
Ib21 n (S’2(B)~ T~ l(p)1) = 0,

is the Fourier-Laplace transform of a p-adic distribution Tb2,~,B on YH,p (cf.
[Co2, §4]).

(ii) If ~1 is a locally constant function on YH,p viewed as an element of |p|,H,
the Fourier-Laplace transform of ~1Tb2,~,B is given by

Proof. The proof is about the same as that of Theorem 23 except that we need
Proposition 10 to understand what happens at z1=0.

COROLLARY. (i) Let B~B(V), A and C be as in Lemma 37 and let T~P(H)
contain l(p)l, alliai for a E A and alll(y)1 for y E C. Then for alllb2IEC(HV)
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satisfying |b2|~(S’2(B)~ T) = 0, all a E A, all y E C and all B~B,

is the Fourier-Laplace transform of a p-adic distribution 1b2,a,y,B on YH,p whose
support is in 1 + p YH,p.

(ii) We have

where if LB is the family of linear forms (Tr(fl,Bz),... , Tr(fn,Bz)) and k E N, Pk,B is
the polynomial which was called Pk,YB in [Co2, Corollaire du Lemme 4.8].

Proof. Using Lemma 38, we see that Tb2,a,03B3,B = ~1Tb2,1a-1(03B3-1),B, where 0 1 is the
characteristic function of 1 + p YH,p. This proves (i). The proof of (ii) is a

consequence of the definition of Pk,B of [Co2]. The (-1)n appears because of the
difference between this article and [Co2] in sign convention for the Fourier-
Laplace transform.

If t E N, let t/J be the unramified p-admissible Hecke character of H defined by
03C8t(a) = NH/K(03B1)(p-1)pt if a E I(H) and a is a generator of the principal ideal ah. We
have j(03C8t) = h(p - 1)pt and 03C8(p)t tends to 1 as t tends to + oc. When we say that

Lp,0(X) has a simple pole at x =1 of residue R we mean explicitly: VU E r;g H,0,p’

where logp is the p-adic logarithm. Note that this limit exists and is equal to
d«a-l)A0). Since the limit exists, we can compute it by using .pt and

letting t tend to + oo . Then the fact that Lp,0(X) has a simple pole of residue R at
x = 1 is equivalent to

We indicate briefly how to compute this limit using the results of [Co2, §5].
Let ~1, ..., ~n-1 be elements of UH satisfying ~i ~ 1 (mod p), NH/K(~i)=1 and
generating a subgroup of finite index of UH. If r E N, let ’1i.r = ’1fr. Let V, be the
subgroup of UH generated by ’11,r’...’ ’1n-l,r and if 03C3 ~ Sn-1, let fl,a,r= 1 and
fi,03C3,r = 03A0ji~03C3(j),r. Let 03C9 = ±1 be the sign of det(1,log |~1|,...,log |~n-1|) where
log l’1il is the vector of R" whose jth coordinate is log |03C4j(~i)|. Set
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Rp=Rp(UH)=, logp ~n-1), where log,ili is the

vector of C" whose jth coordinate is logp 03C4j(~i). Also let Br =
{B03C3,r|03C3~Sn-1}~B(Vr), where B03C3,r = (f1,03C3,r, ..., fn,03C3,r) if 03C9. 03B5(03C3) = 1 and

B03C3,r = (fn,03C3,r, f2,a,r..., fn-1,03C3,r, f1,03C3,r) if 03C9.03B5(03C3)=-1 and choose b2,rEC(HV)
satisfying Ib2,rl n (T u S’2(Br)) = Ø.

LEMMA 39. The constant term of the Fourier-Laplace transform of Tb2,r,a,03B3,B03C3,r is

equal to 
1 1 

(1- N(b2,r)) det B03C3,r.

Proof. Straightforward.

Thus, using [Co2, Corollaire du Lemme 4.8] while letting t tend to + oo in
formula (71) and then letting r tend to + oo as in [Co2, §5], we obtain

where Rp appears as

and

where the ( -1)" comes from formula (71) and (-1)n-1 from [Co2, Corol-
laire du Lemme 4.8]. The term (1-N(b2,r)) disappears because

limt~~(1-03C8t(b-12,r))=1-N(b2,r). The extra terms in [Co2, Corollaire du

Lemme 4.8] disappear in the same way as in [Co2,§5]; namely, Ai=Ai(LB03C3,r)
tends to 1 and Fi(LB,03C3,r) to 1/(n-1)! This concludes the proof of Theorem 35.
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