SYNTOMIC COMPLEXES AND p-ADIC NEARBY CYCLES.

PIERRE COLMEZ AND WIESLAWA NIZIOL

ABSTRACT. We compute syntomic cohomology of semistable affinoids in terms of cohomology of (¢, T")-
modules which, thanks to work of Fontaine-Herr, Andreatta-lovita, and Kedlaya-Liu, is known to com-
pute Galois cohomology of these affinoids. For a semistable scheme over a mixed characteristic local ring
this implies a comparison isomorphism, up to some universal constants, between truncated sheaves of
p-adic nearby cycles and syntomic cohomology sheaves. This generalizes the comparison results of Kato,
Kurihara, and Tsuji for small Tate twists (where no constants are necessary) as well as the comparison
result of Tsuji that holds over the algebraic closure of the field. As an application, we combine this
local comparison isomorphism with the theory of finite dimensional Banach Spaces and finiteness of
étale cohomology of rigid analytic spaces proved by Scholze to prove a Semistable conjecture for formal

schemes with semistable reduction.
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1. INTRODUCTION

Let Ok be a complete discrete valuation ring with fraction field K of characteristic 0 and with perfect
residue field &k of characteristic p. Let Op = W(k) and F = ﬁp[%] so that K is a totally ramified
extension of F; let e = [K : F| be the absolute ramification index of K. Let 0% denote the integral
closure of Ok in K. Set G = Gal(K/K), and let p = Pw(x) be the absolute Frobenius on W (k). For
a log-scheme X over O, X,, will denote its reduction mod p™, X will denote its special fiber.

1.1. Statement of the main results.

1.1.1. The Fontaine-Messing map. Let X be a fine and saturated log-scheme log-smooth over &'k equipped
with the log-structure coming from the closed point. Denote by X, the locus where the log-structure is
trivial. This is an open dense subset of the generic fiber of X. For r > 0, let ., (r) x be the (log) syntomic
sheaf modulo p™ on X ¢. It can be thought of as a derived Frobenius and filtration eigenspace of crys-
talline cohomology or as a relative Fontaine functor. Fontaine-Messing [28], Kato [36] have constructed
period morphisms (i : Xo — X, j : X;, — X)

ol F(r)x = i*RLZ/p" (), T >0.

from logarithmic syntomic cohomology to logarithmic p-adic nearby cycles. Here we set Z,(r)" :=
ﬁzp(r), for r = (p—1)a(r) +b(r), 0 <b(r) <p-—1.

Assume now that X has semistable reduction over & or is a base change of a scheme with semistable
reduction over the ring of integers of a subfield of K. That is, locally, X can be written as Spec(A) for a
ring A étale over

Ok X XE Xovn, - Xavos Xavorts Xy Xav1)/(Xar1 Xar1 - Xagp —@"), 1< h<e.

If we put D := {Xqqp41---Xag = 0} C Spec(A4) then the log-structure on Spec A is associated to the

special fiber and to the divisor D. We have Spec(A)i, = Spec(Ak) \ Dx.

FM

We prove in this paper that the Fontaine-Messing period map «;.;’, after a suitable truncation, is

essentially a quasi-isomorphism. More precisely, we prove the following theorem.
Theorem 1.1. For 0 <i <r, consider the period map
(1.2) oM (S (r)x) — i*Rij*Z/p”(r)’X“.

r,n
(i) If K has enough roots of unity' then the kernel and cokernel of this map are annihilated by p™"+¢r
for a universal constant N (not depending on p, X, K, n or r) and a constant ¢, depending only on p
(and d if p=2).

(ii) In general, the kernel and cokernel of this map are annihilated by pN for an integer N = N(e,p,7),
which depends on e, r, but not on X or n.

For i <r <p—1, it is known that a stronger statement is true: the period map

(1.3) ™M NS () x) S RYGZ ™ () x, -

r,mn
is an isomorphism for X a log-scheme log-smooth over a henselian discrete valuation ring Ok of mixed
characteristic. This was proved by Kato [35, 36], Kurihara [40], and Tsuji [63, 64]. In [62] Tsuji generalized

1See Section (2.2.1) for what it means for a field to contain enough roots of unity. For any K, the field K({pn), for
n > ¢(K) + 3, where ¢(K) is the conductor of K, contains enough roots of unity.
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this result to some étale local systems. As Geisser has shown [30], in the case without log-structure, the
isomorphism (1.3) allows to approximate the (continuous) p-adic motivic cohomology (sheaves) of p-
adic varieties by their syntomic cohomology; hence to relate p-adic algebraic cycles to differential forms.
This was used to study algebraic cycles in mixed characteristic [54], geometric class field theory [41],
Beilinson’s Tate conjecture [5], variational Hodge conjecture [11], p-adic regulators and special values of
p-adic L-functions [58].

We hope that the “isomorphism” (1.2) that generalizes (1.3) will allow to extend the above mentioned
applications. Actually, (1.2) was already used to approximate motivic cohomology in mixed characteristic.
More precisely, in [24] it is shown that the result of Geisser generalizes to all Tate twists and to the ”open”
case (i.e., with a possible horizontal divisor at infinity). One gets a higher cycle class map from continuous
p-adic motivic cohomology to log-syntomic cohomology that is a quasi-isomorphism (by an application of
the p-adic Beilinson-Lichtenbaum conjectures on the special and the generic fibers). This allows to define
well-behaved integral universal Chern classes to log-syntomic cohomology [53]. Along similar lines, using
(1.2), it is shown in [51] that the p-adic K-theory sheaves localized in the log-syntomic topology coincide
with log-syntomic Tate twists (up to a direct factor). This is analogous to what happens ¢-adically
[61, 49].

As an application of Theorem 1.1, one can obtain the following generalization of the Bloch-Kato’s
exponential map [13]. Let £ be a quasi-compact formal, semistable scheme over O (for example a
semi-stable affinoid). For ¢ > 1, consider the composition

FM

arit HENZww) — H(Z, L (1) Hiy (L ir, Qp(r)).-

If X is a proper semistable scheme X over Ok, and 1 < i < r — 1, then the Gg-representation V;_; =
Hi ' (X7, Qp(r)) is finite dimensional over Q,,, Hig' (X ) is finite dimensional over K, and H' 5" (Xx) =
Dyr(Vi—1). The map a,; for the formal scheme £ associated to X is then the Bloch-Kato’s map [46]

Dar(Vie1) = HY (G, Vie1) = Hiy (Xk, Qp(r)).

Easy comparison between de Rham and syntomic cohomologies, together with Theorem 1.1, yield the
following result.

Corollary 1.4. Fori <r —1, the map
Ayt Héﬁl(f%Kttr) - Hét(f%—K,tn Qp(r»

is an isomorphism. The map o, : Hgﬁl(%K’tr) — HZ (Zk e, Qp(r)) is injective, but its cokernel can
be very large if the dimension of Xk is > 1.

P from (1.3) is an isomorphism. Under the stated
assumptions one can do dévissage and reduce to n = 1. Then one passes to the tamely ramified extension
obtained by attaching the p’th root of unity ¢,. There both sides of the period map (1.3) are invariant
under twisting by ¢ € A and ,, respectively, so one reduces to the case r = 7. This is the Milnor case:
both sides compute Milnor K-theory modulo p. To see this, one uses symbol maps from Milnor K-theory
to the groups on both sides (differential on the syntomic side and Galois on the étale side). Via these

Recall how one shows that the period map «

maps all groups can be filtered compatibly in a way similar to the filtration of the unit group of a local
field. Finally, the quotients can be computed explicitly by symbols [12], [34], [40], [62] and they turn
out to be isomorphic. This approach to the computation of p-adic nearby cycles goes back to the work
of Bloch-Kato [12] who treated the case of good reduction and whose approach was later generalized to
semistable reduction by Hyodo [34].



4 PIERRE COLMEZ AND WIESLAWA NIZIOL

1.1.2. Galois cohomology of semistable affinoid algebras. Our proof is of very different nature: we con-
struct another local (i.e., on affinoids of a special type, see below) period map, that we call a;%z. Modulo
some (¢, T')-modules theory reductions, it is a version of an integral Lazard isomorphism between Lie
algebra cohomology and continuous group cohomology. We prove directly that it is a quasi-isomorphism
and coincides with Fontaine-Messing’s map up to constants as in Theorem 1.1. The (hidden) key input
is the purity theorem of Faltings [25], Kedlaya-Liu [37], and Scholze [56]: it shows up in the computation
of Galois cohomology in terms of (,T")-modules [4, 37].
More precisely, let R be the p-adic completion of an étale algebra over

RD = ﬁF{Xitla e 7X;tl7Xa+17 e aXd+1}/(Xd+1X(l+1 o 'Xa+b - w)7

where a,b are integers and d > a + b. We equip the associated formal schemes with the log-structure
induced by the “divisor at infinity”: X, 411 -+ Xg = 0 and the special fiber. These are formal log-schemes
with semistable reduction over O .

To compute the syntomic cohomology of R, we need to choose good crystalline coordinates for R, i.e.,
we need to write it as a quotient of a log-smooth @p-algebra RE. The easiest way to do that is to add one
variable. We start with 0. Take the algebra rf := 0r[[X0]] equipped with the log-structure associated
to Xo. Sending Xy to w induces a surjective morphism rt — Ok

Let now R;)D be the completion of Or[X), Xlﬂ, XY Xty Xas ﬁ] for the (p, Xo)-
adic topology. We add Xy to the log-structure induced from Rg. Sending X, to @ induces a surjective
morphism R;.D — RO whose kernel is generated by P = P, (X). This provides a closed embedding of
Spf R into a formal log-scheme Spf R;’D that is log-smooth over Or. Let R be the unique étale lift
of R over R;D complete for the (p, P)-adic topology (which is also the (p, Xy)-adic topology). We equip
it with the log-structure induced from R;D. Sending Xy to @ induces a surjective morphism R}t — R,
whose kernel is generated by P = P (X(). We denote by REP the p-adic PD-envelope of R in RL. We
endow it with Frobenius ¢xyun, induced by X; — Xf, 0 <i < d+ 1. This is our PD-coordinate system
of R.

The syntomic cohomology of R can then be computed by the complex

(15) SyH(R, 7’) = COHE( FTQ;%PWD m; Q;%gD )[—l]7
where Qppp 1= REP ®p+ Q}DL;/@F: we have H!  (R,r) = H'(Syn(R,)).

Now, let R be the “maximal extension of R unramified outside the divisor Xotvt1---Xg = 0in
characteristic 0 (i.e., after inverting p)”. Let Gg = Gal(R/R). Modulo the identification of af™ and
afﬂ“, claim (i) of Theorem 1.1 is a consequence of the following more precise statement that relates
Galois cohomology of G (and étale cohomology of the associated rigid space) with values in Z,(r) and
syntomic cohomology in degrees < r. This is the first main result of our paper.

Theorem 1.6. If K contains enough roots of unity then the maps
a;?az : TSTSYH(R, 7") - TgrRFcont(GR7 ZP(T))7
8% . 7. Syn(R, 1), — T< Rleont(GRr, Z/p" (1)) — 7<, RT((Sp R[1/D))tr.ct, Z/p" (7))

r,n
are quasi-isomorphisms up to p™¥", for a universal constant N.

This statement is more precise than that of Theorem 1.1 because we do not require étale localization.
Claim (ii) of Theorem 1.1 follows by a simple descent argument from claim (i). The constants are very
crude and no doubt can be improved upon.

Remark 1.7. The same descent argument would allow to remove the condition “K contains enough
roots of unity” in Theorem 1.6, at the cost of introducing constants depending on K. It seems likely that
one could make the constants depend only on the valuation of the different of K and not on K itself.
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In fact, it does not seem unreasonnable to think that a statement analogous to Corollary 1.4, describing
étale cohomology in terms of differential forms, should be valid for a general affinoid algebra, smooth in
characteristic 0, with constants depending on the “defect of smoothness in mixed characteristic” (i.e., the
p-adic valuation of suitable Jacobians). The point is that one can use the purity theorems to pass to a
finite cover with very small defect of smoothness where one could try to apply the methods of this paper
(suitably modified).

We hope to come back to these questions in a future work.

1.1.3. Period isomorphisms in the semistable case. Theorem 1.1 holds also for base changes of semistable
schemes and implies that we have a quasi-isomorphism (up to p™" for a universal constant V)

(1.8) AN A Fr)x, ) = T RLZ (0, i<,

where i : X1 — Xo, j : Xz, < Xop . Hence an isomorphism
(1.9) af™: Hl(Xo,r)q = H (Xg 4, Qp(r), i<

This recovers Tsuji’s result [63, Theorem 3.3.4] that he proves by similar techniques as his results over K.
Namely, in the case when (p» € K and r = ¢, Tsuji notices that twisting the nearby cycles by (,» allows
to perform dévissage and to reduce to n = 1, where one again can use explicit computations by symbols.
This allows him to prove Theorem 1.1 in this case [63, Theorem 3.3.2] up to p?V with a constant N that
depends only on p and r. To pass to all # < r he needs to show that twisting by ¢ does not change the
syntomic cohomology sheaves. This he is able to do over K [63, Theorem 2.3.2] and up to a constant N
that depends only on p, r, and .

The isomorphism (1.9) is used traditionally to prove p-adic comparison theorems by the syntomic
method [28], [36], [63], [65], [68]. Recall how the argument goes in the case of a trivial divisor at infinity,
i.e., when Xi, = Xg. One composes the map o™ with the natural map

H'(X7, Qp(r)) — Hik(X) @F Bse{r},
where Hi(X) is the Hyodo-Kato cohomology of X, to obtain the period map
o H'(X%,Qp) ®q, Bst ~ Hijk(X) ®r Bg.

This map is shown to be compatible with Poincaré duality. Hence it is an isomorphism.

We have realized that we can prove that the period map « is an isomorphism without evoking Poincaré
duality by techniques supplied by the theory of finite dimensional Banach Spaces [20]. This reproves the
classical comparison theorem for semistable schemes via a modified syntomic method (including the
case of non-trivial divisor at infinity treated in Tsuji [65] and Yamashita-Yasuda [68]). Recall that the
semistable comparison theorem for schemes was proved also by different methods in [26], [27], [47], [48],
[9], [7] (see [50] for the proof that most of these methods yield the same period map). They all use
Poincaré duality. The only proof of a general comparison theorem that does not use Poincaré duality is
the proof of the de Rham conjecture for rigid analytic spaces by Scholze [57].

The fact that we do not need Poincaré duality anymore allows us to combine the comparison isomor-
phism (1.9) with finiteness of étale cohomology of proper rigid analytic spaces proved by Scholze [57] to
prove the second main result of this paper — a comparison theorem for semistable formal schemes.

Corollary 1.10. (Semistable conjecture) Let 2 be a proper semistable formal scheme over Ok . There
exists a natural By -linear Galois equivariant period isomorphism

Q: Hi(‘%?,trv Q) ®q, Bst ~ HIl{K(%) ®F By,
that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism

a: Hi<<%/f,tra Qp) ®Qp Bst = HQR(gK,tr) QK BdR-
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1.2. Sketch of the proofs of the main results. We will now sketch the proofs of Theorem 1.6 and
Corollary 1.10.

[u] [u,v]

1.2.1. Local computations. We will start with Theorem 1.6. If v > u > 0, let 7" (resp. 7’ ') be the ring
of analytic functions over F' convergent on the disk v,(Xo) > u/e (resp. the annulus v/e > v,(Xo) > u/e),
where e = [K : F], and let RY = r%@T;R; (resp. Rl = n“;’“]@n; RE). Our ring REP is very close

to RQ], U = p%.
Set u = == and v = p — 1 in what follows (for p = 2, one has to modify slightly the arguments and

3
49

=

P
v = %, but we will ignore this for the introduction). To define the period map

a?* . 1<, Syn(R,7) — T<;Rlcont (G r, Zy(7)),

take u =

)

using (¢, d)-modules techniques, we produce a string of “quasi-isomorphisms” (a “quasi-isomorphism’
is a map of complexes whose associated map on cohomology has kernels and cokernels killed by p©” for
some absolute constant C'). We start with quasi-isomorphisms

. yn(R,r) ~ Kum(RM, r TéTKumR[“’”],r,
1.11 Syn(R Kum(RM fu

w

where the Kummer complexes Kum(-,r) are defined by formulas analogous to (1.5). Here we are forced
to truncate the morphism Kum(Rg],T) — Kum(R[wu’v],r) because it is a quasi-isomorphism up to too
large constants in degrees > r. The second quasi-isomorphism in (1.11) is proved using the 1 operator —
left inverse to ¢ — and acyclicity of the 1) = 0 eigencomplexes.

We called the complexes in (1.11) Kummer because they are related to the Kummer extension

K(w'/?™) of K. Let us explain what we mean by that. Let E% be the tilt of R and set A% = W(E%)
Choose, inside R, elements Xf_n, for i = 1,...,d and n € N, satisfying the obvious relations (i.e.
X2 =X and (X7 =X 0> 0) i=1,....d, let 2, = (X, X}/”,...) € BL.

Sending X to ["], where w”
an embedding (xym : RE — A% which commutes with Frobenius ¢ and is compatible with filtrations

is a sequence of p’th roots of w, and X; to [z;], if i = 1,...,d, induces

(with filtration on A% by powers of the Kernel of the natural map 6 : A% — R). By continuity, this
extends to embeddings

tKum : R — A[Eu], tKum : RV — A[Eu’v]7
which commute with Frobenius and filtration.

But, if K contains enough roots of unity, the ring R%’v] can also be embedded into period rings via a
cyclotomic embedding (i.e. using the cyclotomic extension of K instead of its Kummer extension). This
will however change the Kummer Frobenius into the cyclotomic Frobenius ¢¢yc1. Let us sketch how this
is done. Let i(K) be the largest integer i such that K contains (,: and, if n € N, let K,, = K((yn+ix)).
The assumption that K contains enough roots of unity implies (thanks to the field of norms theory and
extra work [20]) the existence of mx € Az, fixed by Gal(K /K ), such that ¢(mx) = f(7k), with f(Xo)
analytic and bounded on the annulus 0 < v,(X,) < v/e, and such that modulo (p, [p"]*/?) we have
Tk = (WK, )neN € E% — a tower of uniformizers of the fields K,,. We can embed 7 into Az, sending
Xp to mx and this extends to the completion r of rE [Xal] for the p-adic topology. The image? A is
stable under the action of ¢, hence r, inherits a Frobenius that we note ¢cyc1. This Frobenius does not
preserve 71, but we have peye(Xo) € Ot
on the annulus 0 < v,(Xo) < v/e.

For a general R, first we extend ¢cyc to a Frobenius on R by setting

- the ring of analytic functions over F' with integral values

, evar (X
<;Ocycl()(i) = le, 1 § ] S d, <prC1(Xa+1)'('(')Xa+b) = (Xa-%—l)'('?xa«l»b );DS" y)l(fz]) o)

2This is the image by ¢~ %) of the usual A from the theory of (¢, I')-modules.
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Then, for n € N, we consider R,, — the subalgebra of R generated by R and O, , Xé’f" fori=1,...,d,
and ——%n — — Set Ry, = UpenR,. The ring Ro[2] is a Galois extension of R[], with Galois
(Xat1Xatp)P P P
group I'p which is the semi-direct product
1—>1—"R—>FR—>FK—>17
where
= Gal(Ru[1]/Koo - R[L)) ~ Z, Tk = Gal(Koo/K) ~ 1+ p' "7,

anda €1+ pi(K)Zp acts on Zg by multiplication by a.

We define the cyclotomic embedding® Leyel Rdeco A%eco using the embedding tcyq : pdeco A%CO
and sending X to [z;] if 1 < j < d. It is compatible with Frobenius and with filtration. We denote
by A the image of RI° by tcye;. Then, the rings Ag, A%’v],Ag’vH are stable by Gz which acts
through T'g.

Coming back to cohomology, using standard crystalline techniques, we show that change of Frobenius
does not affect syntomic cohomology. That is, we produce quasi-isomorphisms

Kum (R r) ~ Syn((RYIQRIYHPD oy @ Peyel, T') = Cycl(R%Y) 7)),

where the last complex is defined as in (1.5) using the ring R,[;L’”] and the cyclotomic Frobenius ¢eyecl.

Next, choosing a basis of Q! and using the isomorphism R[wu’v] ~ AB;’U], we change Cycl(REg’v} ,7) into
a Koszul complex:
Cycl(R%Y] r) ~ Kos(p, , F"A[Ig"v]).

Then, multiplying by suitable powers of ¢, we can get rid of the filtration (in degrees < r; this is the only
place where the truncation is absolutely necessary), which changes the derivatives into the action of the
Lie algebra of I'g, to obtain:

T<,Kos(p, 0, FTAE%W]) ~ 7<,Kos(p, LieT'g, AB;’U] (r)).
Standard analytic arguments a la Lazard change this into a Koszul complex for the group:
Kos(, Lie T g, A" (1)) =~ Kos(p, T, Ay (1)).
Then, using (¢, I')-module techniques, we get “quasi-isomorphisms”
Kos(io, I'r, Al (1) = Kos(p, T, Al (1)) = Kos(i2, ', Ar(r)).

Here we use the operator .y — the left inverse to ¢y and argue by acyclicity of the 1) = 0 eigencomplex.
Finally, general nonsense about Koszul complexes gives us a quasi-isomorphism

Kos(¢, Ts Ar(r)) = [ RTeont(Trs Ar(r)) —— RTcont Ty Ar(r)) |:

and general relative (¢, I')-module theory gives quasi-isomorphisms

[ Rleont (R, AR (1) — > RTgont (Tr, AR(r)) ] =~

1-¢

[ RFCOHt(GRvAﬁ(T)) — Rlcont (G, AE(T)) | ~ Rl cont (G, Zp(’"))~

The first quasi-isomorphism is proved by the almost étale and decompletion techniques developed in
the relative setting by Andreatta-Iovita [4] and by Kedlaya-Liu [37]; the second one follows from the

1—
relative Artin-Schreier theory (i.e. the exact sequence 0 — Z, — Agx —4 A — 0). This finishes the

definition of the quasi-isomorphism a;?** from Theorem 1.6.

3Here, and everywhere in the paper, “deco” stands for “decoration”, and is one of PD, [u], [w,v], (0,v]+, ...
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Since, by the p-adic K (m,1)-Lemma [57] and by Abkhyankar’s Lemma, we have
R cont(G'r, Z/p" (r)) = RU((Sp R[1/p))ir.ex, Z/p" (1)),
the above sequence of quasi-isomorphisms constructs a quasi-isomorphism
aZ6* s T<Syn(R,r)p = < RT((Sp R[1/p))er,6t: Z/p" (1))

1.2.2. Finite dimensional Banach Spaces and semi-stable conjecture. To prove Corollary 1.10, first we
show (this is a simplification for the sake of the introduction) that we have the long exact sequence

(1.12) — (H3 (Zkw) 0k BiR)/F" — Hi\(Zor,m)q — (Hik(2) ®p BY)#= V=0
— (Hig(Zk ) @k Big)/F" —
For i < r, the above long exact sequence yields short exact sequences
0— H!\(Zo,r)q — (Hix(2) @r BL)P™ V=0 — (Hig (Zk.u) @k BiR)/F7) — 0

To prove this, we observe that f; : (Hjjx(2) @p BE)P=P"N=0 — (Hig(Zkw) @k Big)/F") is the
evaluation on C = K of a map of finite dimensional Banach Spaces [19]. Recall that these Spaces are to
be thought of as finite dimensional C-vector spaces up to finite dimensional Q,-vector spaces, and come
equipped with a Dimension, which is a pair of numbers (a,b), a € N, b € Z, where a is the C-dimension,
and b is the Q,-dimension. Dimension is additive on short exact sequences.

But, H;fyn(%@?,r)Q, i < r, is a finite dimensional Q,-vector space: we have the quasi-isomorphism
(1.9) with étale cohomology and Scholze proved finite dimensionality of the latter [57]. This implies that
the cokernel of f;, viewed as a map of Banach Spaces, is of Dimension (0,d;). On the other hand, the
Space (Hip(Z2xk.tr) @k Blg)/F" is a successive extension of C-vector spaces. The theory of Banach
Spaces implies that the map (Héﬁl(%K,tr) QK BjR)/FT — Coker f; is zero, hence Coker f; = 0, as
wanted.

Now, since we have the Hyodo-Kato isomorphism

Hig(2) @k, K ~ HQR(%K,H),

the pair (Hfjk(2), Hig (Zk 1)) is a (¢, N)-filtered module (in the sense of Fontaine). The above short
exact sequence and a “weight” argument shows that Vg (H{;x(2), Hig( 2k tr)) =~ Hi(XKtw Q,). Here
Vst (+) is Fontaine’s functor from filtered Frobenius modules to Galois representations. The short exact
sequence and dimension count give also that tx(Hjx(2)) = tu(Hig (Zk.tr)), where tn (D) = v,(det )
and ty(D) = Y ,o,idimg(F'D/F1D). The theory of Banach Spaces and finite dimensionality of
Vi (Hiy (2), Hip (Zk.1x)) imply now that the pair (Hiy (2), Hig(2xk.1:)) is weakly admissible and
this proves Corollary 1.10.
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Liu, Shanwen Wang for helpful conversations related to the subject of this paper. Last but not least, we
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1.2.3. Notation and Conventions.

Definition 1.13. Let N € N. For a morphism f : M — M’ of Z,-modules, we say that f is pN-
injective (resp. p" -surjective) if its kernel (resp. its cockernel) is annihilated by p" and we say that
f is p™V-isomorphism if it is p™N-injective and p¥-surjective. We define in the same way the notion of

p -exact sequence or p™-acyclic complex (complex whose cohomology groups are annihilated by p~ ) as
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well as the notion of p -quasi-isomorphism (map in the derived category that induces a p-isomorphism
on cohomology).

We will use a shorthand for certain homotopy limits. Namely, if f : C — C’ is a map in the dg derived
category of an abelian category, we set

[0 T~ /] = holim(C — C" — 0).
We also set
Ch 4f> Cs

l l = [[C1 L o] — [C5 & ],

C3 e C4
where the diagram in the brackets is a commutative diagram in the dg derived category. If this diagram is
strictly commutative this simply amounts to taking the total complex of the associated double complex.
In this paper this is the case everywhere but in Section 5.

2. FORMAL LOG-SCHEMES AND PERIOD RINGS

This is a preliminary section introducing all the rings that we are going to use in the next three
sections. Most of its content consists of variations on standard techniques from the theory of (p,T)-
modules [32, 16, 20, 2, 3, 4, 37].

2.1. The implicit function theorem. Let A : A; — Ay be a continuous morphism of topological rings.
Let Af = A {Z}/(Q), where* Z = (Z1,...,Z,) and Q = (Q1,...,Qs). We would like to extend A to A};
this amounts to solving the equation Q*(Y) = 0 in Ag, where, if ' € A;{Z}, we note F* € Ay{Z} the
series obtained by applying A to the coefficients of F'.

0
Let J = (5% )1<ij<s € Mu(M{Z1,..., Z,}).
Proposition 2.1. Assume there exists:
ez € Ao,
e an ideal I of Ay such that z=2I C Ay and Ao is separated and complete with respect to the z~2I-adic

topology,
o Zx=(Z1x,...,Zs) € Ay and Hy € 27" M;(A2),
such that:
o the entries of Q*(Zy) belong to I,
e the entries of HyJ*(Zy) — 1 belong to 27 11.
Then the equation Q*(Y) = 0 has a unique solution in Zy + (z711)%.

Proof. Consider f: A3 — (As[>~1])* defined by
f(z) =2 — H\Q Nz + Z)).
We have f(0) € (z~1)*. Now, we can write f(z) — f(y) as:
(1= HxJNZ2)(z — )

—&-H,\((Q*(y +2)) = QMa+ Zy) = JMNa+ Z\)(y — ) + (JMz + Z)) — TNZN)) (y — a:)).

The hypothesis implies that, if v —y € (2711)*, then f(z)— f(y) € 2721 - (27 11)*. Hence f is contracting
n (z711)® and has a unique fixed point in this module. As z is a fixed point if and only if Q*(z+Z,) = 0,
this concludes the proof. O

f Ais a topological ring, and Z = (Z1,...,Zs), we let A{Z} design the ring of power series >, < ax Z¥, where
ax € A goes to 0 when k — oo.
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Remark 2.2. If A] is étale over A, there exists H € M (A1{Z1,...,Zs}) such that H.J —1 has its entries
in (Q1,...,Q,), hence if Q*(Z,) has coordinates in an ideal I, then H*J* — 1 has entries in I. If Ay
is separated and complete for the I-adic topology, we can take z = 1 and Hy = H*(Z,) in the above
proposition, hence the equation Q*(Y) has a unique solution in Zy + I*.

2.2. Kummer theory.

2.2.1. Local fields. Let F C K be as in the introduction, so that K is a finite, totally ramified extension
of F. Choose a uniformiser @ of K, and let P, be its minimal polynomial over F' (hence P, is an
Eisenstein polynomial of degree e = [K : F)).

Choose a compatible system ((p»)nen of roots of unity, with (0 =1, ¢, # 1, and {gn = (pn-1, and
define F,, = F((pn), and Foo = Up F,.

Let i(K) be the largest integer n such that K contains (yn. If n € N, we set K, = K((pn+ix)), 50
that Ky = K, but K is strictly contained in K, if n > 1, even if K contains some roots of unity. Set
Koo = UnenK,. Let

ok = evp(VK/F, ) € N.
We say that K contains enough roots of unity if

Vp (O /Fy ) < ﬁ - m or, equivalently, Jx + [K : Fyx)] < 55

If we fix K, then K((,») contains enough roots of unity for all n big enough (this is a restatement of the
fact that Ko, /Fo is almost étale). More precisely, by [20, Proposition 4.5], it suffices to take n > ¢(K)+2
(if p = 2, one needs n > ¢(K) + 3), where ¢(K) is the conductor of K (i.e. t > ¢(K) if and only if K is
fixed by the higher ramification subgroup G%. of G = Gal(F/F)).

2.2.2. Formal log-schemes. Let h € [1,e] be an integer (this h is the multiplicity that appears when we
base change a semi-stable scheme over O, with K’ C K, to Og; hence it is < e in applications, although
almost everywhere it could as well be arbitrary).

Let a,b,c be integers and d = a + b+ c. Set X = (X1,...,X4) and define

1 woh }
Xl "'Xa’ Xa+1"'Xa+b
= O {X, Xas1, Xara}/(Xara X1 - Xo — 1, Xay1 Xas1 -+ Xagp — ).

RO = ﬁK{X,

We endow R with the spectral norm.

Let R be the p-adic completion of an étale algebra over R, so that R provides a system of coordinates
for R (or Spf Rg a frame for Spf R). We equip the associated formal schemes with the log-structure
induced by the divisor at infinity: X, 411+ Xg = 0 and the special fiber. We obtain that way formal
log-schemes that are log-smooth over &% (in fact, both schemes have semistable reduction over O ).

2.2.3. Adding an arithmetic variable. To compute the syntomic cohomology of R, we need to write it as
a quotient of a log-smooth algebra over O (it is already log-smooth over &}). The cheapest way to do
so is to add an extra variable.

We denote by r} and 7, the algebras Op[[Xo]] and Or[[Xo]]{ X, '} with the log-structure associated
to Xo. Sending Xy to @ induces a surjective morphism rt — Ok.

Let X' = (X, X) and let R;D be the completion of Or[X’, Xlul.Xa, wa‘f’;ﬂﬁ] for the (p, Xo)-adic
topology. We add X, to the log-structure induced from Rp. Sending Xy to w induces a surjective
morphism R;,D — Rp whose kernel is generated by P = P5(Xp). This provides a closed embedding of

Spf R into a formal log-scheme Spf R;,D that is log-smooth over Op.
We can write R as

R = RD{Zl,...7Zt}/(Q1a-~-aQt)’
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with det(g%) invertible in R. Choose liftings Qj of the @;’s in R;D, and let RY be the quotient of the
completion of R; olZ1, ..., Z;] for the (p, P)-adic topology (which is also the (p, Xo)-adic topology) by

(Q1,...,Q:). We equip it with the log-structure induced from R;’D. We have that det( g%) is invertible

in Rf (since it is modulo P). Hence R is étale over R} ; and log-smooth over 0.
Sending Xy to @ induces a surjective morphism R} — R, whose kernel is generated by P = P (Xj).

2.2.4. Divided powers and localizations on smaller balls or annuli. We let REP be the p-adic completion
. k
of R;[%, k € N]. As P = X§ modulo p, we have RE[E7, k € N] = RE[X2, k € N|. We equip

N (&1
RED with the log-structure induced from RE and Xy. We have defined the following diagram of formal
log-schemes.

(2.3) Spf REP

N

Spf RS Spf R,

Spf Rp© Spf R;D

Spf O C Spfrt

Crystalline cohomology, hence syntomic cohomology, is defined by means of REP | but we will show that,

Spf ﬁp

up to absolute constants depending only on u, v, r, we can replace REP by the rings Rg] or Ri[;j’”] below.
So, if 0 < u < v, let?

[vi/e]
° R(wo’v]"" P

7 9
XO

be the p-adic completion of RL[ i € NJ, and RO = RQ’UH[%],

o R be the p-adic completion of R;r,[p[i(%iée], i € NJ,

Xi  plvi/el
p[ui/c] 9 X() )

o R he the p-adic completion of RE|

1
%

i € NJ,
e R, be the p-adic completion of RE|
We have RY RPD if 4 < % and REP C R if 4 > zﬁ' If % <u< Iﬁ then there exists a constant

C(u) such that pc(“)Rz[g] C REP.

We note v(©1, o], plv] the spectral valuations on ROV, R and R respectively.

Remark 2.4. Denote by rde° the ring R corresponding to R = 0. One can describe the rings

deco

I'e

as rings of Laurent series with coefficients satisfying growth conditions. Namely:
o rPD s the set of f = Y ieN ai%, with a; € O going to 0 when 7 — oc.

o 1 is the set of f=2ien ai%, with a; € OF going to 0 when ¢ — oo. It is the ring of analytic

ple

functions over F' with integral values on the disk v,(Xo) > u/e.

o %" i the set of f = >iez @iX{, with a; € F and v,(a;) > (—iwv)/e if i <0 and vy(a;) > (—iu)/e
if 4 > 0, and with the differences going to 400 with i — +oo. It is the ring of analytic functions over F
with integral values on the annulus % < v,(Xo) < 2.

5We will need RE;’”], with u, v satisfying a number of inequalities: p?%l <u< % <1< wv<pvg and (1 + %)u >

p%l' Forp23,wecantakeu:ijlandv:p—l. For p = 2, wecantakeu:%andv:g.
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We have 7“7[1,] C 7“1[; I and the quotient ro ] / rg] involves only negative powers of Xj.

o 701" i the set of =z @iX§, with a; € Op and vp(a;) > (—iv)/e if i <0, the differences going
to +o0o0 with ¢ — —oo. It is the ring of analytic functions over F' with integral values on the annulus
0 <wp(Xo) < 2.

e r is the set of f = ZiGZ a; X}, with a; € OF and a; — 0 when i — —occ.

Note that going from R to REP, R Rl or R_ involves only the “arithmetic” variable X, (going
from RE to R (resp. RE;’“]) amounts to localization of Xy on the disk v,(Xo) > % (resp. on the annulus
2 > vp(Xg) > 2). This can be translated into the following isomorphisms:

Rzl;D = T‘KI;D@T;R;’ Rw = Tw@r:ﬁ, R;7
RY =8, BL, ROU = r00G BL Bl =3 RE,
where the ® is the tensor product completed for the p-adic topology.

Remark 2.5. If A is a topological ring, and X = N,Z, let o(X,A) denote the space of sequences
(zn)nex of elements of A such that x,, — 0 when n — oo.
It is plain from the definitions that:
® (Tn)neN — Y nen TnX( " induces a surjection £o(N, RY) — R,
o (Zn)neN — Y nen Tnp /€1 X induces a surjection £o(N, RE) — RO
o (Tn)nez > D0 Tnd "X + 30 o map™ eI X5 induces a surjection lo(Z, RE) — R,
If N>1and u <v < %, the same is true with £ replaced by R [[%]]

’\ggf) is a unit in RE[[fr ]] with

A > 1. The above descrlptlons of Rdece allow to extend A by continuity to morphisms Ry — Rw and
ROV — ROV Rl RN ipy < v < £

Now, let A : RY — RE[[$v ]] be a continuous morphism such that

2.2.5. Filtration. We filter all the above rings S by order of vanishing at Xy = w

e If P is invertible in S[%] (this is the case if S = RQ’UH or S = RSQ’”] andv<1,orif S = RE;L’”] and
1 ¢ [u,v], or if S = R), put the trivial filtration on S (i.e. F"S = S for all r).

o If P is not invertible in S[%] (i.e. in all the cases that are not listed above), we have a natural
embedding S — R[l][[ ] = R[l][[XO — w]|| by completing S[l] for the P-adic topology (the completion
of Op[Xy, 5] for the P-adic topology is the complete discrete valuation ring K[[P]], and P or X, — w@ are
unlformlzers) We use this embedding to endow S with the natural filtration of R[[P]] (by powers of P
or, equivalently, Xy — w).

Remark 2.6. An element f € rEP (resp. f € rl ]) can be written (uniquely) in the form f fr+f
with f+ € F'rED and f~ of degree < re — 1 (this implies f~ €= 1),ﬁF[X0] resp. f~ €3 —-OF[X0)).

It follows that we can write any f € RED as f; + fo with f; € FTREP and f, € (7,_1)!Rw and we have

the same statement for f € Rg], with f; € F’"R,[g] and fy € p[}u] RE.

2.2.6. Frobenius. A Frobenius ¢ on R is a ring homomorphism lifting 2 — 2P on R, /p (in particular,
© restricts to the absolute Frobenius on €r). We say that ¢ is admissible if:

* ¢(re) C 1o,
e there exist vg > 1 such that p(Re OUOH) C RQ’UO/I)H, and v(o’vo/p](%)?) -1) > mf( L1, if
0<j<d.
(The second condition ensures that ¢(z) — 2P has divided powers if p # 2. If p = 2, it ensures that it
has higher divided powers: % is defined.) If ¢ is admissible then, for all v < vy (vg as above), we

have @(R(O UH) C R(O v/pl+ , and ¢ extends by continuity to RE;“”], for all 0 < u < v < vg. Moreover, the
above minoration is valid Wlth v(0v0/P] replaced by v/l or pl#/Pv/Pl accordingly.
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We are going to use two admissible Frobenii: ¢xum and @cyc. The two maps ¢xum and @eyel are very
similar (they differ only on the arithmetic variable). The advantage of @kum is that it is already defined
on R (which is not the case of ¢cyc1) and can be used to compute crystalline and syntomic cohomology.
The reason for considering ¢gycr is that it is the Frobenius coming from the theory of (¢, I')-modules
and it is closely related to étale cohomology (see Proposition 4.13), through the works of Herr [32] (in
dimension 0), Andreatta-Tovita [4] (in the case of good reduction and without divisor at infinity), and
Kedlaya-Liu [37] (for the general case). It is not inconceivable that one could use Breuil-Kisin modules [39]
or Caruso’s (¢, 7)-modules [15] instead of (¢, I")-modules (and hence pxyum instead of ¢gyc1) to compute
étale cohomology.

2.2.7. The Frobenius @gum and its left inverse Ykum. We define pxym, on R; 0 by Yrum(Xi) = XPif
0<:<d. As R;; is étale over R; 0y ¥Kum extends, uniquely, to R; (use Remark 2.2 with Ay = R; 0
A=Ay = RE, X = okum, I = (p) and Z) = ZP). Finally, if S = Ry, Rw, ¢kum extends, by
continuity, to ring endomorphisms of S, S¥P, S and to ring morphisms St — §lwv/pl,

If0<j<d, set

_ .0
Ocum s = X5

These are well defined on R;D, hence also on R} by étaleness. We extend them by the obvious rule on
RE[Xy '], and by linearity and continuity to R, for deco € { ,PD, [u], (0,v]+, [u,v]}. The resulting
operators commute pairwise.

If a = (ag,...,0q) €{0,...,p— 1} set

_ yva ad
UKum,a = Xg - X %
We have
_ cycl _ P
6Kum7juKum7a = @5 UKum,« and ¥ Y ('U/Kum,a) = Ukum,a-

Lemma 2.7. (i) Any x € R /p can be written uniquely as © =" ckum,a(Z), With Okum,jCkum,a(T) =
Qi CKum,a (), if 0 < j <d.

(ii) There exists a unique o € Ry /p such that ckum,o(T) = TP UKum,a-

(iif) If x € RE /p, then ckum.a(r) € RE/p, ©o € Xg " *RE /p, and x, € RE /p, if a; = 0 fori #0; in
particular, xo € RE /p.

Proof. Let S = Ry /p, ST = RE /p, and 9; = Okum,;, for 0 < j < d.

If0<j <d, then 0;(0; —1)---(0; — (p—1)) is identically 0 on R, o/p, hence also on S by étaleness.
It follows that 0; is diagonalizable for all j and, since these operators commute pairwise, that we can
decompose S and ST into the direct sum of common eigenspaces. This proves (i) as well as the the fact
that cxum,o(z) € ST if z € ST.

Now, Xo, ..., X4 is a basis of the module of differentials of R, 1/p, hence also of S, since S is obtained
as the completion of an étale algebra over R o/p. It follows from [66] that X,..., Xq is a p-basis of S
which can be rephrased by saying that any element x of S can be written uniquely as z = > 22 ukum,a-
Since 9; (22 Ukum,a) = ;2 UKum,q, this proves (ii).

Finally, (Xo- - Xqza)? = X{ - X0 “cgum,a(z) € ST, hence Xg--- Xqz, € ST (because ST is
integrally closed), which implies X(})LHXQH,H o Xgre € ST, But 7, € S = ST[X; '] and X is not a
zero divisor in ST/(Xgqpik), if 1 <k < d—a—b; hence z, € XofhflS"’, as wanted.

In the case a; = 0 if i # 0, we get (Xoz0)? = XJ™ " ckum,a(z) € ST, hence Xoz, € ST. But (Xoza)?
is actually divisible par X, since op < p — 1, hence Xpz, € XoST and z, € ST. O

Corollary 2.8. (i) Any € Ry can be written uniquely as ), PKum (Ta)Ukum,a; With To € Re.
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(ii) If x € RE, then xg € RE and, if ckum,a(T) = ©kum(Ta)UKum,as then ckum.o(T) € RE for all «
and

aKum,jCKum,a(x) - OéjCKum,a(l') € pR;; ZfO < j <d.
We define 1kum on Ry and RE by the formula:

YKum (x) = @I_{lllm (CKUYH,O (x)) :

A more conceptual definition of Yk, is as follows: RE[X; '] is an extension of degree p?*! of pxum (RE[ X ),
with basis the ukum,q’s. and since Yrum (UKum,a) = uf(um’a, we have

Pium (2) = p~ V! (Trg ) (s)(2))-

Note that tYkum is not a ring morphism; it is a left inverse to ¢kum and, more generally, we have
q/}Kum(ﬁaKum(x)y) = waum(y) We have

8Kum,i O YKum = P PKum © 6Kum,i 8Kum,i o 1pKum = p_l wKum © aKum,i if i = 0,1,..., d

I+ RO (oo

The above explicit formula for ¢k, extends, by continuity, to RQ’U and to maps Rg] — R& 7,
RE;"“] — RES,“”’ ] (surjective in all cases since Ykyum © Ykum = id). The maps & — ckum,qo(2) also extend
and lead to decompositions S = @,5,, for S = R with deco € { ,+,[ul, (0,v]+, [u,v]}. Since

q/}Kum(‘r) = (pI_(}lm(CKUHLO (I))v we have
SwKum:O — @a;ﬁOSOw
Lemma 2.9. If S = R¥ and deco € { ,+, [u], (0,v]+, [u,v]}, then Okum ; = o on Sa/pSiece.

Proof. If deco € { ,+}, this is part of Corollary 2.8. If deco € {[u], (0,v]+,[u,v]}, elements of Sdec°
are those of the form »_, ., p"* XFay, where ap € ST goes to 0 when k — oo and 7y is determined
by “deco”. Now, if z = ZkeZkaXgak7 then ckum,a(z) = > 4ecz p”‘X(’chum7(a0_k7ah___7ad)(ak), where

ap — k is to be understood as its representative modulo p between 0 and p — 1. So, if x € S,, we can
+

(vo—Fk,a1,...,q)’

that Okum,;(X§ar) — aj XEaxr € pST, which allows to conclude. O

assume that ap € S for all k. A direct computation, using the result for ST, shows then

2.3. Cyclotomic theory. Suppose that K contains enough roots of unity throughout this subsection.

2.3.1. The cyclotomic variable T'. Let
i=i(K), eo=[F:Fl=@-1p"7" f=[K:F]=2% and (=(.

As ¢ — 1 is a uniformiser of F;, we can find polynomials Ay,...,A;_1 € Op[T] with vp(4;) > 1 and
vp(Ap) = 1, such that, if

Q(Xo,T) = X{ + Ay 1(T)XJ "+ -+ + Ao(T),

then Q(Xp,¢ — 1) is the minimal polynomial of @ over F; (of course the A; are not uniquely determined
by these requirements).

Let T' € r be the solution of Q(Xo,T) = 0. Since Ag = aT'+- -+, with @ a unit in &%, and v (4;) > 1
if i > 1, one gets (by successive approximations) that T = —a_ng—i—osz X({H +--- € rt. In particular,
Xy T is a unit in rE. We have

15 = Op[[T, Xo]]/Q(X0, T) = & Op[[T]| X,

and 7, is an étale extension of Ox[[T]]{T~'}. This is a consequence of the following, more precise,
lemma.
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Lemma 2.10. Let Q'(Xo,T) = 22 (Xo,T).

(i) There exists U € Op[Xy] which is a unit in Op[[Xol]], V,W € Or[Xo,T), such that Q' (Xo,T) =
X05U +pV + Q(Xo, T)W.

(i) The image A of Q'(Xo,T) in rk is invertible in 1o and Xq °X A is a unit in Op[[Xo, X%H

0

Proof. We have v,(0k/r,) = v,(Q'(w,{ — 1)). Now, since v,(0x,p,) < 1 by assumption, we have

b = (@ (. C = 1)) = inf (for(A) + (k= 1)) = vx, (@ (Xo. 7).

where  is the reduction modulo p. Hence Q' (X, T) is an element of 7L congruent to anK mod (p, XgK‘H, Q),
where « is a unit in . The lemma follows. O

2.3.2. Filtration. The morphism r}f — O sends T to ¢ — 1. Hence the subring Op|[[T]] of 7} can be
thought of as 7“2'71 and Op[[T|[{T~'} as r¢—1. In particular, the filtrations on r} and its siblings rEP,
etc. are also given by the order of vanishing at T'= ( — 1, which means that we can use

(1+T) —1
Po= —rier——
A+T) " —1

instead of P to define the filtrations.
Set t = p'log(1+T).

Lemma 2.11. prT?l <u< % <1< and® % < u, then:
(i) t belongs to prg’v] and to prﬂf’“/”],
(ii) o — t"z induces a p"-isomorphism rl% ~ el and g p?roisomorphism rl/P o pluv/Pl
k—1_1
Proof. For (i), we start from t = >, <, M%Tk, so we have to estimate infyepy /e v/e) infr>1(i + ks —
vp(k)). The minimum is reached for s = u/e and k = p’, and is ppT“ > 1, which means that each of the

1
terms of the series belongs to prz[;f’v] (and, a fortiori, to pn[;"”/”]).

For (ii), we first check that f = (%)At does not vanish on % < v,(T) < ¥ and ¢ does
not vanish on % < v,(T') < i (this is ensured by the inequalities put on u and v, as the valuations of

zeroes of ¢ are of the form pk% for k € Z, k <i—1, or +00). This implies that f is a unit in n[;’”][%]

and ¢ is a unit in 7"1[;"”/”][%]. To conclude we need to show that f~! € pilrz[g’v] and t71 € p*2rz[;f’v/p].
Equivalently, we need to check that, if s € [u/e,v/e] (resp. s € [u/e,v/pe]), inf, (1)—s vp(f(T)™1) > -1
(resp. inf, (1)=s vp(t~1) > —2). By additivity of the valuation on a circle, this amounts to checking that
inf, (p)—s vp(f(T)) <1 (resp. inf, (1y—s vp(t) > 2).

e For t on s € [u/e,v/pe], we have to estimate max,e[y/e,v/pe] iINfr>1(7 + ks — v, (k)). The maximum
is reached for s = - and, taking k = p?, we see that it is < % < z% <2.
_ -1 1+7)P" —1 .
e For f on s € [u/e,v/e], we use the formula f = ((1+T)P DILsin STIFT DTt Again the

maximum of inf, (r)—, v, (f(T)) is obtained for s = 1% and, since 1 > % > %, we have

1+7T)P" —1
inf v, (—t D" 1
vp(T)=s p((l + T)P — 1)

=0, ifn>i+1

(the constant term, i.e. 1, has the minimum valuation because o > %), and (because 7 < 1)

- . 1
inf v, (1+T) " —1)<pls<——<1.

vp (T)=5s p—1

This allows to conclude. O

6This is an additional condition only for p = 2.
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2.3.3. Extension of morphisms. Let R?—LD = Ofp|[[T)]{X1,...,Xq}. We have
R = RE | o X0, Xar1, Xava}/ (Q(X0, T), Xa1 Xar1 - Xaro — X Xasa X1 -+ Xg — 1),
Let .# be the monoid generated by Xo, X1,..., Xqyo, and let” 65 = [571(], so that
for—90k >0 and dp+1< S—; = %(p — 1)p*~2, since K has enough roots of unity.

Proposition 2.12. Let:

o \: RZF—I,D — A, a continuous ring morphism, such that \(T)?°® divides p and A is separated and
complete for the (W)—adic topology.

o 3:.M — A, a morphism of monoids, with B(X;) = w\NX;), if 1 <i<d, B(Xo) = MT)u, where
u;, u € A*,

= rzr_l such that —U4)

XT)?°r

€ A and is topologically nilpotent in A.
Suppose that:

o \(u) divides Q(8(Xo), M(T)),

o There exists an ideal J of A, containing /\(;‘)(7{251?, such that A is separated and complete for the
J-adic topology, and such that X : R?—1 o — A/J extends to A : RE — A/ J, with Ay = 3 on A .

Then \ admits a unique extension to RE, lifting A, with \(Xo) € B(Xo) + )\?T(‘)?RA.

Proof. We will proceed in three steps, extending (uniquely) A first from 7“2_1 to rL (this boils down to
defining A\(Xy)), then from rf{Xy,..., X4} to R;D, and finally from R;D to RE.

For the first step, we use Proposition 2.1, with:

o Ay =7l A =rf (and J = Q'(Xo,T)), Ag = A,

o 2 = TP, Zy = B(Xo), Hy = JN(Zy) " = Q(B(Xo), A(T)) ", and T = (A(1).

(We have Q*(Z)) = Q(B(Xo), \(T)) € I by assumption, and HyJ*(Zy)—1 = 0, so the requirements of
that proposition are satisfied provided we show that Hy € z71A. But Hy = Q'(8(Xo), \(T"))~! and there
exists a unit U of Op[[Xo]] and V,W € Op[[Xo,T]] such that Q'(Xo,T) = Xo5U + pV + Q(Xo, T)W
(Lemma 2.10). Hence, setting o = 3(X)*® %% 4°% € A, one can write zH) as

21y = o (U(B(X0)) + o (5 V (B(X0), A(T)) + LESIXD 7 (5(x), A(1))) )

and the expression in the big parenthesis is indeed a unit in A since U(3(Xy)) is, and QUBX)AT)) 5

A(T)°R
W are divisible by /\()7‘,()‘2; — and )\(ngzéR which are assumed to be topologically nilpotent in A.) In
particular, A(Xy) € 8(Xo) + /\()‘IESQR A.

For the second step, we must (and can) extend A by setting:

AXar1) = (ED) (tagr -+ tas) " BXagr), AXirz) = (- 1a) " B(Xapa).

(Note that 3(Xy) divides A(T") by assumption, hence 28?;; el+ /\(%\)({‘JZSRA C A makes sense.)
For the third step, we use Remark 2.2 with A; = R; o Al = RE, Ao = A, Z) = (Zaa,---,2Zx4)

where Zy ; is an arbitrary lift of A (Z;), and I = J.

O

7One could consider setting 65 = [571’(] ifb=0and ég = ]'57}(] + 1if b # 0 in order to differentiate between good and

semi-stable reduction. Such a distinction would only be useful when K is unramified, so we will not bother.
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2.3.4. The Frobenius @cyc1. We endow R?—LD with the Frobenius ¢¢yc sending T' to (1+7)?-1and X;
to X7, if 1 <i <d. Then ¢eya(z) — 2P € pRY_ o, if v € RF_| . Let

vr =5 = i and RO = R (bl = Rillsghe )l RO = R[] = RE [l )

Note that vg > 1, by assumption.

Proposition 2.13. ¢cya admits a unique extension to RY such that

eyel(Xo) — X € Tp,;R R(O vr)  and Yeyal () —aP € Tp<1+5R> R Ovr) ity e RT.

Proof. This is a direct consequence of Proposition 2.12, applied to A = RSS’UR), A = Qeyels B(z) = 2P,
p— . . .
p=pand Ay (2) = 2P, J = (75 ), taking into account that ‘P“y;p(T) = (H‘;Z, L is a unit in A. (We

have Q(X},(14+T)? —1) = Q(Xo,T)? = 0 mod p, hence p divides Q(B(Xo), A(T)), which shows that the
assumptions of Proposition 2.12 are indeed fullfilled.) O

OR)

is a unit in Ry Hence we can use Remark 2.5 to extend ¢cyc1 to morphisms (still

X
Now, ch;l((p 0)
0

noted @eyel) Rw — R, RS_S’”] — R(O /P and R[uv Rﬁ/p’”/”], if u < v < vg. This Frobenius is
admissible.

Lemma 2.14. If v < pug, and if v € Ry is such that @Cycl(x) € RSS’”/p]*, then x € RES’”]*.

Proof. Write ¢ for ¢cyc1. We have RO = > RE. Now, if p(x) € ROY/PIT this implies, in
particular, that the image T of z in R /p is such that 7 € R /p; hence T € R, /p. This means that we
can find ag € R; such that z—ag € pR. But, ¢(ag) € R(O"v/’o]+ thanks to the assumption v < pvg, which
means that p(z—ag) € 3, 5, Xniz/uRJr It follows that, if we write 2 = @0+W$1, the image of p(z1)
in R /p belongs to XoRL /p (smce p([e/v]+1) — [pe/v] > 1), hence the image of z; belongs to XoRL /p,
and we can find a; € RE such that z; — Xoa; € pRe. But then p(z —ag — %al) €D n>2 %R;,

n>0 X[w/v

2
and we can iterate the process, writing = ag+ e/v] a1+ [2f/v]+1 9, and deducing that xo = Xgas +py,
0

with ay € Rf and y € R. Going to the limit, we find 2 = )~ .y a with a, € RE, for all n,

o
n‘X[[)ne. 70T »
which concludes the proof. O

2.3.5. The operator cyc1. Let
Ueyela = (1 +T)* XM - X530, ifa€{0,1,...,p— 1}

Proposition 2.15. (i) Any x € Ry can be written uniquely x = Y Ceyel,a(Z), With Ceyela(z) €
Qpcycl(Rw)ucycl,a-

(ii) If v < vg, and x € RQ’UH, then Teyel,a € X(;p‘SKRg’UH, for all .

Before turning to the proof of this proposition, let us draw some consequences. We define the left
inverse Yeycl Of Yeyel, on Ry, by the formula

Yeyal (T) = ‘P;ylcl(ccycl,o(x))-
Since @eyel(Ueyel,a) = u’c’ycl’a for all a, we have Trr_ /o, o (Ro) (Ucycl,a) = 0 if a # 0, and we can define
Yeyel, intrinsically, by the formula

—(d+1), ,—1
Yeyel =P @+ )@cycl © Ter/%ycl(Rw)'

Proposition 2.16. Ifv < pug, then:
(1) wcycl (TﬁpNRi(x?’U/p]—i_) C T*NféRRg),UH—‘
(ii) If r = [210R], then T== RO is stable by teyer.

’U]+)

(iil) If v < p, the natural map @#O@Cyd(fo‘?’ Ucyel o — (RE—S’WPH)%N:O is a pPTL-isomorphism.
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Proof. (i) follows from (ii) of Proposition 2.15, taking into account that ¥ (o(T)"Nz) = T~Ne(z), that

‘p:g) is a unit in RO/

Rg} v+ C RQ U/P]-‘r.

, and that Xo% divides T°%. (ii) is a direct consequence of (i) and the inclusion

Finally, if « € (RQ’“/IJH)%W:O, we can write, using Proposition 2.15, © = >7__;¢(aa)ua, with
V(an)uq € X(;p‘SKRSS’”/””. But u,, divides Xg(hﬂ) H?:aerH XP? hence ¢(aq) € Xg”(h“”K)RQ’”/””.
(See the proof of Lemma 2.7 for a similar argument.) This implies, thanks to Lemma 2.14, that a, €
X(;(HH‘SK)RSS’UH. This proves (iii) since XJ ™% divides pP*! in RO ash<e 6 +1< ¢, and
v < p. O

We let

and  Ocyel,i = X—i if 1 <4<d.

0
acycl,O - (]- + T)i Z@X"

oT
Then we have
aCycl,i O Ocycl,j = acycl,j O Ocycl,i and 6cycl,i O Peycl = P Peycl © 8CyCl,i7
6cycl,i © wcycl = p_l ¢cyc1 o 8Cycl,ia if 1,7 =0,1,... ,d.
—6x ,.(0,v]+ (0,v] _
Lemma 2.17. If v < 2pug, then Ocyc,0X0 € X5 ¥ rew and v (GOXO) >

Proof. Write 0y for Ogyc10. As Q(Xo,T) =0, we have (%%(XO, T)00 X0 + (XO, T)0oT = 0, hence

B 0Q ~10Q
30X0f*(1+T)(aX (Xo,T)) 8T(XO’T)
Since %(XO7 T) € rL, the result follows from Lemma 2.10. O

2.3.6. Proof of Proposition 2.15. Write ¢ for ¢y in all that follows. We will first prove the existence
of a decomposition z = ) x, as in Proposition 2.15, but with z, € ¢(Rs)Ukum,q, and then use the
relationship (Lemma 2.22) between the tkum,o’s and the ucyc1o’s to conclude.

Let I = {a+1,...,a+b,d+1},so that [[,.; X = Xb o Ifiel, let R+ O
by localizing on the polycircle where X; is a unit if j € I —{i} (hence X; is X[ times a unit). Concretely7
it S = R;’D,R;, then S; = S{Y'}/(1 YH]eI (i3 Xi). Then R;i is étale over RE 0. and Rt 0.

smooth over O (the equation [;c; X; = X{ becomes X; = Y X{}, which allows to remove X; from the
variables and the associated space is just a product of closed circles of radius 1 and unit balls).

be the rings obtained

wz’

From R+ we can construct rings Rdec" by the same process we used to construct R from RE. Note

that ¢ extends naturally to R ;, and induces morphisms R(O’p vR) Rg:vﬁ’ and R ’p UH RZ(_B”;-)H, if
v < VR.

Lemma 2.18. If x € R, the following conditions are equivalent:
(i) z € RO,
(ii) x € jo::R), forallieI.

Proof. There is only the implication (ii)=-(i) to prove. Let us first show that the divisibility of « by Xq
in R;i /p for all i € I implies its divisibility in Rt /p. Geometrically, this is equivalent to U;Z; Zariski
dense in Z, where Z; = Spec(R;i/(p, X)) and Z = Spec(RL /(p, Xo)). The same statement for R, 0
instead of R, is immediate as each irreducible component of Z contains exactly one of the Zg;’s (with
obvious notations), as a Zariski open subset. The statement for R follows by étaleness of Z — Z (Z;
is the inverse image of Z; in Z). Since Ry /p = (R /p)[X, '], one infers from the above statement that
if z € Ry, /p is such that x € R;Z/p for allz € I, then x € Rjg/p.

Choose a section s : RE /p — RE of the reduction modulo p such that s(0) = 0 and s(Xoz) = Xos(x)
so that s is continuous. If z € R, belongs to RS::R) for all ¢, then its image agp in Ry /p belongs to
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R;;’i/p7 for all 4, and hence ag € RE /p. Now, by definition of Rg)::R), if M = 2pfdg, the image a; of
X!
P
image ay of

(z — s(ag)) in Ry /p belongs to R ,/p for all 4, hence a; € RE /p. One can iterate, and get that the
X2M ’
e
us a sequence (a,)nen of elements of RYE /p, such that z =Y s(an)Xﬁ%. This concludes the proof. [

0

(x — s(ag) — XLéws(al)) belongs to RY ;/p for all i, hence ay € RY /p. This process gives

Lemma 2.19. Let S = ry, R i, and let (u;)jes be a family of elements of ST such that:
e any x € S/p can be written, uniqueley, r = Zj ¢j(x)Puj, with cj(x) € S, for all j € J,
o there exists N < 2fdp such that, if € ST /p, then ¢j(z) € XO_NSJr/p, for all 5.
Then any x € S can be written, uniquely, x = Zj o(cj(x)) uy, with cj(x) € S, and if v € SOvr) then

cj(z) € Xy NSOrvR) for all 5.

Proof. The c¢;j(z)’s are obtained by the following algorithm:

e Choose a section s : ST /p — ST of the reduction y — 7 modulo p, such that s(Xoy) = Xgy, and
extend s to S/p using this functional equation.

e Define f : SOvR)[X 1 — SOvRI X1 by f(y) = %(y—zj ©(s(cj(y))) u;) (that f exists rests upon
the fact that ¢(ST) c S®PUr) and the observation that f(p(Xo)™Vy) = ¢(Xo) " f(y) thanks to the
functional equation s(Xoy) = Xos(y)).

e Set 2o = = and let 2,11 = f(z,), if n > 0, so that z = p" Tz, 1 + > (Yo p's(c; (7)) uj.

An easy induction, using the fact that N < 2f§pr, shows that z,, € X52p”f5RS(O’UR) and s(c;(Tn)) €
XaNfznféRS(O’p”R)‘ Hence ¢;(z) = 3,50 p's(c; (7)) € Xy N SOPvr) The result follows. O

Ificl, let
Ai = {ﬁ = (ﬁ07 e aﬁd+1) S {07 1a AR 2 1}[07d+1]a Bi = O}
If e A let ujp=X;°--- Xg_ﬁl. Note that u441,8 = Ukum,(o,...,34)-

Lemma 2.20. Leti € I.
(1) An element x of Ry ; can be written uniquely x =3 5. 4 Ti,5, with x; 5 € (R i)us g for all B.
(ii) If x € Rg:fR), then x; 3 € RES:;)R) for all .

Proof. If S = R; 0.;/P, the X;’s, for j # 4, form a basis of Q4. By étaleness, this is also the case if S =
R;’i/p. Hence, according to [66], the w; g’s, for § € A;, form a basis of S over ¢(S5), if S = R;’i/p and,
as a consequence, if S = Ry ;/p. It follows that we can use Lemma 2.19 (with N = 0) to conclude. O

If 8 € Agi1,let a = (Bo, . - ., Ba) be the corresponding element of {0, . .. ,p—l}[o’d], and set T = Zd+1,3,
so that the decomposition = = ZﬁeAd+1 Tq41,3 becomes simply = )" zq.

Lemma 2.21. (i) If z € Ry, then x4 € ¢(Rx) UKum,a-
(ii) If v < vg, and if x € RS’UH, then z, € RQ’UH, for all a.

Proof. (i) is a direct consequence of the analogous statement modulo p (Lemma 2.7, we have ¢(z) = zP
modulo p). To prove (ii), an adaptation of Remark 2.5 shows that it is enough to prove the same statement

for RQ’UR): write an element of S(OvF ag Y oneN Tn = . , with z,, € S(Ovr) and d,, — 400, and

p
Xo)lme/oT—dn

0,

use the result for RO,

According to Lemma 2.18, it is enough to show that z, € Rg:fR)

, for all ¢ € I. For this purpose it is
enough, considering Lemma 2.21, to show that z, is a linear combination of the x; g’s, with coefficients

in Rg:fﬂ"), and we will in fact exhibit such a combination with coefficients in r™"?.
First, let us decompose elements of ro"®. If N € Z, if z € XéVr;O’”R), and if N = pg + r, with

0 <r <p-—1, one can write z, modulo X', as XJp(X)?>, w(an)ﬁ, with a,, € Op. Hence,

(O’Z)UR)

XéV*FlTT(I?,UR)’ and ay € 7 such that © = XJp(XJan) + zn41. Iterating this

there exist xy11 €
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process, one can write x as > s n o<pcp 1 X0P(XGUpgtr), With apgir € pQevn), Setting ¢, (z) =
Y patrsn Xo9(X§apgir), we obtain a decomposition

p—1
x = Zcr(m), with ¢, (z) € X5o(rg) N XY rOvr),
r=0

In particular, if N € N, we can write X{' = Zf;é X{en,y, with ey, € rQvr)

Xen, € Xp(re), for all 7.

Next, notice that u; g = )(’BOJ“Q‘””"”)([’1 ...XfaijJl*Bd“ . Xf_ﬁ:b 'Gd“_}(fizrll .ng' This im-

, in such a way that

plies that

0, otherwise.

((E ) {Cﬁ0+ﬁd+1h aoLi, By if (alv"'aad) = (517"')/6(1’/8(14»1 _ﬁd+17°"75a+b _ﬂd+17ﬁa+b+17~“a/8d) modulo D,
1,8

Summing over 3 € A; gives the desired expression of z, as a combination of the z; g’s. O
Lemma 2.22. If k > 0, there ezists a; € T-07rOP"™) such, that X = Sy plar) 1+ 1)

Proof. Let us denote by Tr the trace from ro to re—1. If0 < j < f—1, let f; = Xg The f;’s are a
basis of r/p over r¢_1/p; let (g;)o<j<s—1 be the dual basis for the bilinear form Tr(xzy). Now, if A is
as in Lemma 2.10, we have Tr(A™'XJ) = 0if 0 < j < f — 2 and Tr(A~ 1X({ 1Y = 1. Tt follows that
g; = A7'R;, where R; € k[Xy] is unitary, of degree f — 1 — j; in particular, g; € X (SK'F;/]?.

Now the fj’-”s are also a basis of r4/p over r¢_1/p and the g;”s are the dual basis. So, if x € rg/p,
we have z = Zf;é Tr(g%x) f7. But gfz € X "%k Jp € Xy 0% T—Porpt /p (we could improve this
to X_‘SKT_LI‘SR). It follows that if € rt/p, then Tr(gjz) € T*p‘erg_l/p. Hence one can write
Tr (g} ac) as T~P0r 3P~ (1 4 T)ia? all;, with a;; € rf_ /p. Tt follows that = = SP (14 T)iei(z)P, with
ci(z) = —on Zj:o ajifj €1 5R7’:—;/p-

The result follows from Lemma 2.19 with S = ro, N = fdg, and taking the (1+7T)"’s as the u;’s. O

From this lemma, we get the relation:

p—1
UKum,a = Z (P(aao,i) Ucycl,B; 5 with /Bz = (7/7 Q1,0 Cld).
i=0
This implies that ceyelo(z) = f:_ol ©(@i,00)T(i,01,....0q), and makes it possible to use Lemmas 2.21

and 2.22 to finish the proof of Proposition 2.15.

2.4. Period rings. let R be the “maximal extension of R unramified outside X,yps1---Xg = 0 in
characteristic 0 (i.e. after inverting p)”. Let Gr = Gal(R/R). Define v, on R[%] to be the spectral
valuation.

2.4.1. p-adic Hodge theory rings. If S = K,R[%], denote by C(S) the completion of S for v,, and let
C™(S) be the sub-ring of z’s with v,(z) > 0. C(S) is a perfectoid algebra. Denote by Eg its tilt and set
As=W(Eg). We can describe Eg as the set of sequences (Tn)nen, with z, € C(S) and ¥ | = z,, for
all n € N. If z € C(S), denote by z” any element (z,,),en of Eg with 2o = 2.

The inclusion K C R[%] induce inclusions

K CR[;], ExCEg AxCAgn

Define vg on Eg by vg(z) = v,(2*), 2% := . This is a valuation on Eg for which it is complete.
Let Eg be the subring of Eg of 2’s such that vg(z) > 0, and let Ag = W(Eg) So Eg is the tilt of
C*(S) and, as a ring, it is the projective limit (over N) of C*(S)/a for the transition maps x — a?,
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where a is the ideal {z, v,(z) > %} (we could have replaced % by any number in ]0,1]). The inclusion
Ok C R induce inclusions
+ + + +
Ex CEg, A-C AE'
Let

e=(1,(p Gy ) €EL, m=[e] 1€ AL and =
Any element x of Az (resp. Ag) can be written uniquely as

z=> pFlal,

keN
with 2, € Eg (resp. Ef). Then 0 : AL — C*(S) defined by 0(3,cnPFlon]) = Spenpbal is a

surjective ring homomorphism whose kernel is principal, generated by p — [p°] (or by Py ([x’]) or £). We

extend 6, by Q,-linearity, to  : Ag[%] — C(S), and we define B (S) to be the completion of A%[I%]
with respect to the ideal (p — [p’]). We filter B (S) by the powers of the ideal (p — [p’]), i.e. we set
F'Bar(S) = (p — [P’]) Bz (S)-

We define A.,.(S) as the p-adic completion of Ag[(pfl[gb})k , ke N] = Ag[%, k € NJ. It is naturally
a subring of B (S).

2.4.2. (p,T')-modules theory rings. If v > 0 and S = K, R, let A%),u} be the subring of Az defined by

AL = {37 pMan], vom(on) + b — +o0 when k — +oo},
keN

and let A" be the subring of A of the & = Y7, g p*[x4] such that vog(zx) +k > 0 for all k € N.
We have
A%),v] _ A%),U}Jr[ﬁ]_
Ifae E% satisfies vg () = 1, then Ag’UH is also the completion of A%[[%]] for the p-adic topology. If
v > 1, the natural map Ag[[%]] — BIR(S) extends, by continuity, to injections
AL B (S), AT - B (S).

If0<wu,andif g € E% satisfies vg(3) = 2, we define A[g] as the completion of Ag[%] for the p-adic

topology. If w < 1, the natural map Ag[%] — BQ'R(F) extends, by continuity, to an injection

Al S BL(S).

v
of Ag[ﬁ, %] for the p-adic topology. If u < 1 < v, the natural map AE[[%], [:%]] — BI;(5) extends, by
continuity, to an injection

Ifo<u<w andif a,f € E% satisfy vg(a) = X and vg(B) = %, we define A[gu’v] as the completion

AT B (S).

We use these embeddings into B, (S) to induce filtrations on all the rings A%eco. We have

0,v 0,v 0,v 0,v u u u,v u/p,v
@(A(? ]+) :A(? /P]-‘r7 @(A(g ]) :A(§ /P]7 (p(A[g}) :l,x[g/lﬂ7 (p(A% ]) :A[§/p /Pl

The relative crystalline ring of periods A..(R) = A%[ [p]:!]k ,k € NJ" is related to the above rings. We

have
A.(R) C A%[@]A, for 0<wvg(f) <p-1;

p
Ax(R) > ALEN for  vg(B) > p.

(If p— 1 < vg(B) < p, there exists C(v), v = vg(B), such that pc(”)A%[%}/\ C Au(R))
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To see this, write [3] = [p"]"u, for a unit u € A%, v = vg(B). Since v,(k!) = (k — sx)/(p — 1), where
sk > 1is the sum of digits in the p-adic presentation of k, we have [p°](F = [p*]Fp=(F=sk)/(P=Dy for a unit
ug € Op. For the first inclusion above, it suffices to show that, for all k, [p°]Fp~(k—sk)/(P=1) ¢ A%[[%]]’\.
But ([g]/p)F—sk)/(p=1) = [pb]v(Pfl)_l(k*Sk)p*(k*Sk)/(pfl)ul, for a unit u; € A%. It follows that, if
0 <v < (p—1), then [p°)¥ € (([8]/p)F—5x)/P=1)) as wanted.

For the second inclusion, if v > p, then ([3]/p)* = [P"]P*p~*as, az € A(R). Tt suffices to show that
(pk)!p~* € N. But

! k—sp
v ({2) = v, (ph)!) — v (pF) = 552 — &

and this is nonnegative since k > s, = sp.

Hence A (R) C A[ﬁu] foru>1/(p—1), and A (R) D A[ﬁu] for u < 1/p. That means that, in the case
of u, = (p—1)/p, for p > 2, A(R) C A[Eu”] and, for p = 2 (u, = 1/2), A (R) D A%/Q] (we also have
Ao (R) c o~ (AL,

2.4.3. Fundamental exact sequences. Recall that, if r € N, we have the fundamental exact sequence

0—Z,th = FrA, 5 A,

where t{7} .= t?() (12=1 /pya() for r = (p—1)a(r)+b(r), 0 < b(r) < p—1. Moreover the map p" — ¢ is p'-
surjective. Set Zy(r)" := ﬁzp (r). We will need the following generalizations of the above fundamental
exact sequence.

Lemma 2.23. (i) Let 0 < v. We have the following Artin-Schreier exact sequences
(2.24) 0-Z, > Ag— > Ap —0, 027, — AL 1-¢ RO

i1) The following sequence is p"-exact.
(i) g seq p

0= 2Zy(r) = F'Ac(R) > Au(R) —0
(iii) Let 0 < u <1 <w. The following sequence is p*"-ezact

0—Z,(r) — FTA%’U] = A[ﬁu’v/p] —0

Moreover, all the surjections above have continuous sections.

Proof. The exactness of the first two sequences is proved as in [4, 8.1]. The third sequence was treated
in [63, A3.26]. The exactness of the last one will follow from the exactness of the following two sequences

(2.25) 0 — Zy(r) — (Alhye=r" S Aledpr g

u,v]\ p=p" u,v p"—p w,v
0 — (Alevhyemrm Al E8 pluv/l g

To treat the first sequence, assume that p > 2 and map the sequence (p"-exact)
(2.26) 0—Zy(r) = Ax(R)PP —AL(R)/F" — 0

into it. We claim that the cokernel of this map is killed by p?": Indeed, note that we have the p"-
isomorphisms
Acr(B)7=" = (AR = (A=

For the first map the injection is clear and the p"-surjection follows from the fact that @(A%]) C A, (R).
For the second map, again the injection is clear and to show surjection it suffices to prove that the map

(2.27) (0" ) Al Al Alev/El ALY
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is an isomorphism. Since we have
(0,014 ) A+ o A [w0] ) A U] (0,0/P1+ J A+ ~ Alwsv/p] ) A lu]
Az /AE_AE /AE’ Az /AE_AE /AE’
we are reduced to showing that the map
r . (0,0]+ /A + (0,0/pl4 s A +
(p" =) Aﬁ /Aﬁ_’Aﬁ /Aﬁ
is an isomorphism. For r = 0 this follows from the third sequence in our lemma and the Artin-Schreier
theory as in [4, 8.1.1]:
(2.28) 02, > AL =5 A% 0
For r > 0, we can use the fact that the formal inverse of p" — p is — (=1 +p "0 2 +p?"p=3+...) and it

clearly converges.
Note also that the cokernel of the map A (R)/F" — A[Fu’v} /FT" is killed by p”. This follows from

the fact that already the cokernel of the map A%/FT — A%“’] /F" is killed by p". To see this write
A = A%[p/[0], [81/p]", ve(a) = 1/v,vE(8) = 1/u, and note that

Ll = Py = WEng) 4 (5], op(8) = 1/u—1;
ﬁ:([p]) [ ] (1_|_([p] p)) [o/], UE(O/)ZI—I/u

and use the fact that the kernel of 8 is generated by [p ] — p. We have shown that the first sequence in
(2.25) is p3r-exact for p > 2.
For p = 2 the argument is similar. We map the sequence
0 — Zy(r) — (A= - Al

to both the sequence (2.25) and the sequence (2.26). By the above, the first map has the cokernel
annihilated by p”. The cokernel of the second map is annihilated by p?": use the fact that the cokernel
of the map A[Eu] JF" — A (R)/F" is killed by p” and that we have p"-isomorphism

(AL)e=" 2 AL (R = ! (Al

To show that the second sequence in (2.25) is p?"-exact it suffices to show that it is p?"-exact on the
right and for that, using the isomorphism (2.27), we can pass to the following sequence

(2.29) 0 — (Alhye=r" AT PZg Al g

That is, it remains to show that the above sequence is p?”-exact on the right. Write A[Eu] = A%[[ﬂ] /p]",
vg(8) = 1/u. Since the map A% + [B}TA%] — A[ﬁu] is p"-surjective it suffices to show that p" — ¢ is
p"-surjective on A% and on [B}TA%] separately. Surjectivity on A% is clear since for » = 0 this is just
the Artin-Schreier theory from (2.28) and, for r > 0, the series —(1 + p"p ! + p?"p~=2 + ---) converges
on A% to an inverse of (p"¢~! — 1). To check p"-surjectivity on [ﬁ]’"A%], for z =[]y, y € A%‘]7 it is

2
enough to check that (14 ;% + & + ) converges (pointwise), as this gives an inverse to 1 — -%. We
have

( =Y £ W - =R () gk (),
k>0

k>0 k>0

We conclude, noticing that p*r — kr > 0 and goes to oo when k — oc.

Concerning the last claim of the lemma — can be proved for the first two sequences as in [4, 8.1,8.1.2,8.1.3].
The last two sequences are sequences of spaces with p-adic topology that are complete for that topology
— hence the existence of a continuous section is clear. O
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Remark 2.30. The same arguments can be used to prove the following result, where B/, = Acr[%}.
Let M be a p-module® over F, P € F[X] such that P(0) # 0. Then P(p): BL ®r M — B, ®@p M is
surjective.
Since B, contains W (k), Dieudonné-Manin’s theorem allows us to assume that M is the standard
module of slope A = #, i.e., M = Fe; @ --- @ Feyp,, and p(e;) = e;y1, if i < h, p(ep) = p®er. Also, the
result is true for P if and only if it is true for all of its irreducible divisors, which allows to assume that

P(0) = 1, that all roots of P have the same valuation a and that P(X) = Q(X") for some Q € F[X] (by
replacing P = [](1—a;X) by its multiple [J(1 —a?X")). So, we just have to check that R(¢x") = Q(p®¢p™)
is surjective on B, (note that all roots of R have valuation 3 = (o — A)h).

Write 1/R =14 b0X + 02X +---. We have v,(b;) > —i3, for all 4, which implies (by the arguments
above: pP"" — k3 — +oo when k — +00) that 1 + by" + by?* + ... converges (pointwise) on [p’|B,
and that P(y) has an inverse (and hence is surjective) on [p°|BZ.

So, we are left to check that R(¢") is surjective on A%[l/p]. Let us write R as 1 +a; X + -+ +aqX?,
with ag # 0. There are two cases:

o 3 <0, which implies that R € r[X] and R(p) sends A% into itself. Now, modulo p, R(") becomes
T X+ alxph 4+ 4+ adﬂc”dh, and is surjective since E is algebraically closed and A%/p is its ring of
integers (if 8 < 0, things are even simpler: all a; are 0 modulo p, and R(¢") is just  +— 2 modulo p).
Since A% is p-adically complete, this implies that R(") : A% — A% is, indeed, surjective.

e 3 > 0, in which case a;lR € Op[X] and is X¢ modulo p. It follows that a;lR(goh) becomes z +— 2P
modulo p, which makes it clear that it is surjective.

2.5. Embeddings into period rings.

2.5.1. Kummer embeddings. Choose, inside R, elements Xfin, fort =1,...,d and n € N, satisfying
the obvious relations (i.e. Xf_o = X, and (Xf_(nﬂ))p = Xf_n if n>0). Ifi=1,...,d let X} =
(X, X[7?,..) e BL.

Sending X; to [@’] and X; to [X?],ifi = 1,...,d, induces an embedding tkum of R;D into A which
commutes with Frobenius ¢ and is compatible with filtrations. As RY is étale over R;’D, one can extend
tKum to an embedding R — A4 and, by continuity, to embeddings

REP — Au(R), RW — Al Rluw)  Alvl)

which commute with Frobenius (with ¢kum on R2°) and filtration (if 1 ¢ [u, v], there is no filtration on
the corresponding rings).

2.5.2. Cyclotomic embedding of Ry . Let RCDy1 =0pA{X1,...,Xq}. Ifn e N, let RCDyC; = ﬁFHn{Xf_n, . ,Xg_n},

and let R, be the integral closure of R in the subalgebra of R[%] generated by R and RCDYC;. Set
Rchloo = U,LGNRCDyln and Ree = UnenRn. Then Rlcjyloo[%] and ROO[%] are Galois extensions of RCDyl[%]
and R[%] respectively, with Galois group I'g which is the semi-direct product

1> -Tr—>Tk—1,
where

I'y = Gal(Roo[L]/ Ko R[2]) ~ Z¢, Tk = Gal(Ko/K) = 1+p'")Z,

1 1
p P

and a € 1+ pi(K)Zp acts on Zg by multiplication by a.

8A finite rank vector space over F' with a semilinear Frobenius isomorphism ¢.
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We define an embedding teycr : Rzr—l,lj — A%, by sending T to m; = ¢~ *(r) and X; to [X?], where

XZ-b = (X, Xil/p, ...). This embedding commutes with Frobenius (i.e. ¢ 0 teyl = teyel © Peyel) and filtration
(since Py is sent to Py(m;) = &).

Proposition 2.31. ieya has a unique extension to an embedding RY, — A%[[ %7 ]| such that

T
i

D
teva(Xo) - [#] € S ALl

1l,  and 0 o teyer is the projection RY — R.

Proof. This is a consequence of Proposition 2.12, with A = A%[[%RH, A = leya, B+ M — A defined
ib h

by B(Xo) = [&'], B(X:) = X} if 1 < i < d B(Xayr) = [ 5] w = Po (hence M) = €),

J = Kerf = (%) and A\, : RE, — A/J = CT(R) being the natural map Rf, — R. (We have

0(Q([7°], 7)) = Q(w, — 1) = 0, hence Q(B(X,), A\(T)) is divisible by & = A(u) in A% C A, which shows
that we can indeed apply Proposition 2.12.) O

Let
TK = Lcy(:l(XO)-
By construction f(mx) = @, and one can show that, if n € N, then w,, = (¢~ (7)) is a uniformizer of
K,. Now, [’7;'71("] is a unit in A%[[ﬂf’;R
(0,9]+
w

]]. This allows, using an obvious variant of Remark 2.5, to extend

Leyl to embeddings Ry — Ag, R — A and R[w“’v] — A[E“’U], for u < v < pvg, which commute
with Frobenius (by unicity) and filtration (by construction).

2.5.3. The action of Tr. We denote by A% (resp. A%‘fc,:‘,’) the image of RIe (resp. Rgeffﬂ) by teyel- It
is quite clear that AE g is stable under the action of Gr. More precisely, Gr acts through I'r, and we
can choose topological generators v;, 0 < j < d, of I'r with the following properties. Let

c=-exp(p'); in particular a :=p “(c—1) € Z,.

Then
Yo(m)=1+m)—1=1+nm)*1+m)—1land vj(m) =m if 1 <j <d.
w(X3]) = [e] [X3] = (1 +7) [X7] and ; ([X7]) = [X}] if j # k and 1 <k < d.
It follows that 71, ...,74 are topological generators of I'j.

The induced action of I'p on Rg_LD is given by the formulas:
W) =1 +TP*A+T) -1, +(X;)=A+T)PX;, if1<j<d,
’Yk(T):Ta lfk#o, ’Yk(Xj):va 1fk7é]

Proposition 2.32. Let v : RZ_—LD — RZ‘_LD be a continuous ring morphism such that there exists
aj € Zyp, for 0 < j <d, such that:

VX)) =1 +TP9X;, if1<j<d, ~T)=@0+T)P°1+T)-1.

Then v extends uniquely to a continuous ring morphism RY — RE[[=45]], such that

vy —we GO SLRE B )| ifze RE and ~(Xo) — Xo € WO LRt (B 7).

TIHoR T20 R ToR T20R

Proof. This is a consequence of Proposition 2.12, with A = RE [[=571], A =7, B(z) = =, p = (1+T)P -1,
A(p)

Aw(z) = x, and J = (%) To check the requirements of that proposition, note that = is

a unit and that y(7) — T is divisible by p in r?_l, hence Q(Xo,v(T)) = Q(Xo,T) mod purk, and

w

Q(B(X0),\(T)) € purE C pA. The rest of the requirements are obvious. O
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Corollary 2.33. (i) The action of T'g extends uniquely to an action on R, which stabilizes RS—B’UH if

v < pugr and extends to a continuous action on RQ’U], if u < v < pug. Moreover this action is trivial

modulo T~179%((1+T)?" — 1) on all these rings.
(ii) The rings Ag, Ag’v]+,Ag’Tj],A%’v] are stable by Gr which acts through I'r, and tcya commutes
with the action of T'g.

Proof. For (i), just use Remark 2.5. For (ii), use the unicity in Proposiiton 2.32 and 2.31: it implies that
0 0 Loyl = beyel © 0, if 0 € G and @ is its image in I'p. O

The action of I'r on Agg’v] [%] is analytic, and the action of its Lie algebra LieI'g is given by:
IOg’Yj:tﬁj, 1f0§j§d,

as one sees easily using the above formulas for the action of I'p (here 9; is the derivation of A
w,v] 1 [ ]

L

deduced from Ogycl,; on R by transport of structure).

Lemma 2.34. Ifu<v <p and S = RO, R hen
(y=1) - T"(p, T*0)*S € T =0m(p, 7Y 18 and (v — 1)k § € THET =0a=D(p, T0)kg,

Proof. (ii) follows from the triviality of v modulo T—1=%7((1 4 T)”i — 1), the fact that v — 1 acts as a
twisted derivation [(y — 1) -2y = ((y — 1) - )y + v(x)((y — 1) - y) |, which implies that

(y—1)-T"S c T"~10r((1 + T)*' —1)8,

and the fact that 77" ' divides (1+7)?" " —1 (because v < p) and w € (p,T°°) (see Lemma 2.35

1+T)P*
below). O
Lemma 2.35. Ifv < p, then:
o, ' T 1S a unit oonvH
i—1

[(p 11)/17 ]

o p is divisible by ; , hence also by 7r(p Lp!

o p— € A(0 VIt and is diviszble by 7r.2(p Do

. € (p,m; (p=1)p"” 1)AE;?’”H and is divisible by 7r(p np' , hence also by 77‘5R+1
Proof. We can work in ré( UH, in which case m; becomes T and 7; becomes (1 + T)pif1 — 1, and we are

Gijp= on which (1+T)P""" —1 has no zero and vp((l—l—T)]"F1 -1)=

p'~!v,(T) since v < p. This proves the first point.

looking at the annulus 0 < v, (T') <

The second is basically the definition of AS;?’”H.
(p=Dp* =1y i1
The third point follows from the first two, which give £ divisible by ;' * ) *  and the in-
equality 2[2=20] — =l > (9(p — 1) — v)pi 2,
The fourth follows from the first two and the identity 7 = 72! 4+ pa?™2 4+ ... 4+ p. O

2.6. Fat period rings. We are going to make period rings fatter (Scholze [57] even call them ¢B’s)
by adding to them the variables Xo,..., X, (i.e. by tensoring with Rt and its siblings). This kind of
rings [63, 14] originate in linearizations of differential operators.

2.6.1. Structure theorem Let:
o S=REP, R (and S = RED,, R,
e A be a p-adically complete filtered ﬁplalgebra,
e . : S — A be a continuous injective morphism of filtered &r-algebras,
e f:S®A — A be the morphism sending z ® y to ¢(x)y,
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e SA; be the p-adically completed log-PD-envelope of S ® A — A with respect to Ker f.

Ik

(We take partial divided powers of level s: ie. zFl = W) By definition, SA; is the p-adic
completion of S ® A adjoined (z ® 1 — 1 ® t(z))¥, for € S and k € N, and (V; — 1)[¥, for 0 < j < d
and k € N, where V; = %. (Adding the (V; — 1)*I’s makes all the difference between the log-
PD-envelope and the PD-envelope.) The morphism f : S ® A — A extends uniquely to a continuous
morphism f: SA; — A.

We consider S and A as sub-algebras of SA; (by z+— 2 ® 1 and y — 1 ®y). Via these identifications,

X if0<j<d and (z®1—1® (x))* becomes (z — t(x))F

f induces the identity map on A, V; = neo)

ifxeS.
We filter SA; by defining F"SA;, to be the topological closure of the ideal generated by products of
the form xi2 [[(V; — D)k with 2, € F'' Ry, 29 € F™ Ry, and 1y 4+ 75 + Yoki>r.

Lemma 2.36. (i) Any element x € SA can be written, uniquely, as

d
= Z ka(l_‘/j)[kj]7
KENd+1  j=0

with xyc € A for all k = (ko, ..., kq) € N and 2. — 0 when k — oco.
(ii) x € F"SA, if and only if 2y € FT~®A for all k € N4+1,

Proof. Let A" = A[(1— Vj)[k]7 0<j<d ke N]/\ and let «/ : A’ — SA, be the natural map. We want
to prove it is bijective.

For injectivity, use the morphism f : SA; — A: it kills the H;l:o (1- Vj)[kj] with |k| > 0. Now
0; =X J‘aixj extends by continuity to SA; and A’, and commutes with +/, so we can prove by induction
on |k| that if J/(z) = 0, then x, = 0 for all k (apply f to (HBJ]%) o/, using the fact that 0;V, = 0 if
045 and ,V; = V; = (V; 1) + 1).

For surjectivity, first note that the kernel of fo:' : A’ — A is the PD-ideal generated by the (V; —1)’s
since fo./ is the identity map on A. Let Sg C S. There exists a unique morphism ¢g : Sg — A’ such that
' 01y is the natural injection Sg — SA,: unicity because ¢/ is injective, existence thanks to the formula

d d d +oo
ol TTX5) =9 TL (605 (1= )*™) = [T 0060 (o1 ) (v = 1)),

The above formula shows that to(z) — ¢(z) € Ker f o/, for all z € Sg. By étaleness (Remark 2.2), this
implies that 1o admits a unique extension to a morphism ¢ : S — A’ such that (o(x) — ¢(x) € Ker f o/,
and by unicity, ¢’ o ¢g is the natural injection S — SA;. This shows that ¢/(A’) contains S. Finally, Ker f
is generated by the (V; — 1)[¥I’s and by elements of the form x — «(x), for x € S, but these are in the
image of the PD-ideal generated by the (V; —1)’s. Hence the image of the PD-ideal generated by the
(V; —1)’s by ¢/ contains the log-PD-ideal generated by Ker f which shows that ¢’ is indeed surjective.
To prove the statement about filtrations, we argue by induction on r. Applying 9;, for 0 < j < d, and
arguing by induction on |k|, shows that a3 € F"~IA, if k # 0. Now, this implies that 2o € A N F"SA,.
But 29 = f(z0), because 29 € A, and f(F"SA,) C F"A because f is the identity on F2 A, kills (V; —1)[ks]
if k; > 1, and sends F"S to F"™ A since it coincides with ¢ on S. So z¢ € F"A, which concludes the
proof. O

2.6.2. The filtered Poincaré Lemma. Let, as usual, Q' = @9_,Z d;é;f and let Q" = A"QL. So Qg /n =

SAs @ Q. We filter the de Rham complex of SA; as usual by subcomplexes
F'Qgp p = F'SA - F'ISA, @0 - FT25A, 0% — -
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Lemma 2.37. (Filtered Poincaré Lemma) The natural map
FT'A — F7Qé’A5/A
18 a p°®-quasi-isomorphim.

Proof. Let € : FTA — F"SA; be the natural injection. A contracting (A-linear) homotopy can be defined
as follows. We define the map

hY: F"SA, — F"A, Z akﬁ(i/j—l)[kj]Hao.
keNdtl  j=0
Clearly h%e = Id. For g > 0, we define the map
he: FI7ISA, @ Q7 — FI79TIGA, @ Qi~!
by the following formula

aH DMV A AV, T 0Sqi< << d)
k;! [(kj+8;5,)/pP°]! [kj+055,1y, dX; dXjq _ s
) Gre &, /o] QHJ o (Vi —1) Vie o N MV s if kj =0 for 0 < j <,
0 otherwise.

We have eh® + h'd = Id and dh? + h9t1d = Id, as wanted. (The correcting factor 7 +5' 7 [(kjﬁ’/;s)]{ps]!
i1 J :
is due to the fact that we have partial divided powers; its valuation is between 0 and —s depending on

the valuation of k; 4 d;;,, which explains why we only get a p°-quasi-isomorphism.) (|

J1
2.6.3. Ezxtending the actions of ¢ and Gr. We take s =0 if p > 3 and s = 1 if p = 2, and define:
. El[g’”], Eg’;}] as SA, for S = Ri[;“’], A= AB;’U] or A[;;:], and ¢ = teyal.
o E%D as SAg for S = REP A = A (R), and ¢ = tkum,
o B as SA, for § = R A = A and 1 = iy,

Lemma 2.38. (i) EL° C E%"U].
(i) B c B ¢ Bl

Proof. (i) is obvious from the structure result of Lemma 2.36. To prove (ii), granted Lemma 2.36, we just
have to check that (1—22)k e E%“}]. But we have 1 — &2 = (1 [w,,]) + [XO < 1="] Now 1— X0 has

IS []
[

divided powers of level s in E%’”] by construction, so we just have to show that WK[;[;]” | admits divided

powers of level s in A For that, we are going to use the assumptions 2p(ég +1) < eq, u > pp%l, v<p

(andu=2,v=3, 1fp—2). We have

[u,0]

(=]

(=] §§+1AE[[7T;§R]] and & =7 + pa, with a € A,

But, vl* “]( —) >0, since v < p, and

e

(i) = min ((e0 — 6r — 1) 2,1 = (6r + 1) &) = min (1 - 5;)u, 1 - 5).

i

It follows that v["m](’”([;[ffb]) > (p_ll)ps, for all p, which allows to conclude. O

Remark 2.39. It follows from the proof that we could have also defined E% vl using teyql instead of tkym.

If (S, A) is any of the pairs above, there are natural, commuting, actions of Gr and ¢ on S® A (tensor
actions, with G acting trivially on S, and ¢ = @Kkum Or @eyel 00 S, if ¢ = tkum OF Leyel)-
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Lemma 2.40. (i) ¢ extends uniquely to continuous morphisms

EPD _, pPD  pluvl | pluv/pl o plu] HE}[};»v/p]

[u,v] [u,v/p)]
R R R R ) Roo o EE;MHEE;MP'

(ii) The action of Gg extends uniquely to continuous actions on EPD E[u’v] E}[g:] and E[%’U], com-
muting with ©. Moreover E[u "l is the fized point ofE wvl gy Gal(R [ ]/R [ ) C Gr.

Proof. Lemma 2.36 reduces the statement to the verification that (1 —¢(V;))* and (1 —o(V;))* belong
to the relevant ring, for 0 < j < d and o € Gpg.
Let us start with Frobenius. If we use tkum, the result is obvious as, in that case, ¢(V;) = Vp If we use

Leyel, the same argument is still valid for 1 < 5 < d, and we are left to check that (1- (X ))[k] S E}[g /Pl

But
D ¢4 xp

7\'p 7Tp
) emo + (1- 5m):

and the result follows from the fact that ¢y is admissible, hence 1 — has divided powers of level
s in A%’v/ Pl
X

For the action of G, we have to check that (1 - U(L()J(_)))[k] makes sense. If © = tgym or if j > 1, we

K
P(mK)

have o(¢(X;)) = [e5(0)]e(X;) for some ¢(o) € Z,,. So we can write

J
X, X, —ej(o)y X,
L= ooy = (U= iidy) + A= 79y,

and the results follows from the fact that 1 — []~%(?) is divisible by 7 which has divided powers of any
level. The case j =0 and ¢ = tcyc1 is more subtle: we have to consider

X, o X, Xo Tk —0o(mK)
L- U(ﬂ'(;() - ( - ﬁ) - i Ka(ﬂ'K)K '

But %(ﬂ)}() e m; 0r~ 17TA[u Y and 70" = 7% € s divisible by € in A[Ig’v] (by Lemma 2.35),
v]

and and ¢ has divided powers in AE%’ since it has already divided powers in AEP.
Finally, the “Moreover” is obvious from Lemma 2.36, Remark 2.39, and the fact that V; is fixed by
Gal(R [ ]/Rs [7]) if we use teycl- O

Example 2.41. If R = Ok, we have E%D = ;&st, where Kst is the p-adic completion of the ring
A, [k, , k € NJ, where Y = [ -1 Since p(Xp) = XP, we have ¢(Y) = (1 +Y)? — 1, and since
o([@°]) =[] [&], with c(0) € Z, if 0 € G, we have oY) =[] 1 +Y) 1.

A more conceptual description would be to define Ay as the H? of O for the log-crystalline coho-

mology:

w,n

Ast,n = ng(ﬁ% 7L/Tz};I,)n)7 Ay = pI‘Oj lim ng(ﬁ% n TPD )
) w )

3. LOCAL SYNTOMIC COMPUTATIONS

The goal of this section is to construct, if K contains enough roots of unity, a natural “quasi-
isomorphism between the complex Syn(R,r) computing syntomic cohomology of R, and a complex
Cycl(Rw [u v] r) that is closer to Galois cohomology For example, in dimension 0, choosing a basis of 0!,
the two complexes become (with dxum = Xo7% X and Ocyal = (1 + Xo) dXO)

(Oxum,P" —PKum) —(P" —PPKum)+OKum PD

)

Syn(Ok,r): FrrtP Fr—1yPD @ oD

(acychpr_‘/)cycl) _(pr_pﬁacycl)"l‘acycl

Cyel(rl? 7). el Fr1pel g luv/el

pluv/o] |
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The main step (Proposition 3.10) is the shift from Frobenius ¢xum to Peyel (this uses standard crystalline
techniques). But, since ¢gyc1 is not defined on RPP | one must first replace REP by REL"“}. This is done
through a string of “quasi-isomorphisms”

Syn(R,r) := Kum(REP, r) = Kum(RM, r) = Kum¥ (R, r) = Kum? (R r) = Kum(RMY ),

w
using techniques coming from (p,I')-module theory. (Actually, it is better to truncate in degree r as
the constants involved in the “quasi-isomorphism” Kum? (ng], r) = KumV (Rg’v]m) are too big in de-
grees >1.)

3.1. Local complexes computing syntomic cohomology. If
S = RPP Rl Rlul
set
S’ = REP Rl Rlwv/vl,
We endow all these rings with Frobenius ¢kum, and we have ¢(S) C S’ in all cases.

Ifi € N, let

Ji={0<j <--<j;<d} and wj:(%A---AdX‘

We define @xyum and ¢Ygum on Q% by
@Kum( Z f,]w_]) = Z QDKum(fj)wj 'l/)Kum( Z f]wj) = Z wKum(fj)wj'
J€J; jeJs JeJ; J€Js

(This is not the natural definition, as we have d(¢xum(f)) = pYxum(df) with this definition. The reason
for doing this is that we need the left inverse 1 of ¢ which makes it necessary, for integrality reasons,
to divide the natural Frobenius by suitable powers of p. The price to pay is that these powers of p are
showing up in the complexes that we are about to define.)

We define F"Q% as the sub-S-module of Q% generated by F”S - Q%; we have thus

FTQfg = @je.]iFTS - Wj.
We filter the de Rham complex Q% by subcomplexes
FrQy:=F'S — F' Qg — F' Q% — ...

We define the complex Kum(S,r) as

™ L]
—P $Kum

Kum(S,r) :=[ F"Qy P Q% .

We define the syntomic complex Syn(R,r) of R and the syntomic cohomology Hy, (R,7) of R as:
Syn(R,r) := Kum(REP r) and HZ (R,r):= H*(Syn(R,7)).

syn
For n € N, we define the syntomic complexes modulo p™ and syntomic cohomology modulo p™ of R as

Syn(R,7), :=Syn(R,r) ®z Z/p", and HZ, (R,,r):= H*(Syn(R,7),).

syn

If S = R R set 57 = RZY, RIE“) We define the complex Kum¥ (S, r), using ¢kum instead of
PKum, aS:

KumV(S,r) := [ FrQy LN Q% .

Finally, if S = RE;"”], we define Cycl(S,r) using @eya in place of prum (we cannot define Cycl(S,r)
for S = REP, Rg] as @Peycl does not send S into S’ in these cases (except if K = F, i.e if K is absolutely
unramified)):

" —p®peyel

Cycl(S,7) == [ FrQy 2270 s .
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For the remainder of this section, we write simply ¢ and Y for pxum and Ykum-
r) computes the syntomic

3.2. Change of disk of convergence. We are going to show that Kum(R[u]

cohomology up to a constant depending on r. For that we will need Lemma 3.1 below. For S = rEP or
Tz[v], we denote by vx, : S — N U {+o0} the valuation relative to Xo: if f = > a;Xo' then vXO (f) =
inf{i € N, a; # 0} and, if N € N, we define Sy as {f € S, vx,(f) > N}. We define RED, and R! ]N as

the topological closures of 25 ® + RE and REZ]’N ®,+ RL in RCPy and RE;J]’N.

Lemma 3.1. Let S = RZD,RF;]. Ifs€Z and N > 1, then (1 —p—®y) : SN[%] — SN[%] is bijective.
Moreover, if S = RPP (resp. S = Rz[;f]),

o there exists N(r,e) (resp. N(r,e,u)) such that (1—p~*p) isp
on S1 for all s <,

o if N > se, (resp. N > se/u(p — 1)), then 1 — p~ 3¢ is bijective on Sy .

N(me) _bijective (resp. pN (7% -bijective)

Proof. The estimates being easier for R (since [£]! is replaced by [““] which behaves better as a function
of i), we will just treat the case S = REP. An element f of Sy can be written as SN flﬁ, where

fi € RE goes to 0 when i — oo. We have then

k-
Pt ' Xp A
p R Zp*’“ ? F(f)

i>N [e }

Now,
inf (v, (1)) _vp([e] )= k) = up (1)) — ks =

i>1 e

—1—ks

goes to +00 when k — +oo. We deduce that, for f € SN[%], the series Y, .y P~ *(f) converges in
SN[%]. Since the sum g satisfies (1 —p~®p)g = f, we deduce that (1 — p~®¢p) is invertible, with inverse
> ren P 0", and we can take N(r,e) = infren(—1 — kr +pF~1/e).

Now, if ¢ > se, then

ka k-1 p]Z k=1 .
Up([j]') — v Z Z sp’ = sk
7=0 7=0
This implies the last statement of the lemma. (|

Lemma 3.2. Let r,s € N.
() If1/(p—1) <u < 1, the map p° — ¢ induces a p**t"-isomorphism FrQ u]/F QRPD ~ Q /QRPD

(ii) If v’ < u < pu', the map p* — ¢ induces a p*T" -isomorphism FTQ’ /F’ (0% w1 = QR[”] /QR[“ .

Proof. 1f j € J;, we have ¢(w;j) = p’wj. This makes it possible, by decomposing everything in the basis of
the wj’s, to only treat the case i = 0 (the map becoming p* — p'p). Let A = REP or RY) and B = RY.
we have A C B and ¢(B) < A.

To show p*-injectivity, since F"A = AN F"B, it suffices to show that (p® — pp)r C A implies that
x € A. But this follows from the fact that ¢(B) C A and the identity p*z = (p® — p'p)x + plo(z).

Now let f € B. Write f as f1 + fo with f5 € Ryse/u(p 1 and f; € p_[“(se/“)/e(p_l)]R; Cp *A. By
Lemma 3.1, we can write f as (1 — p'~%p)g, with ¢ € B. By Remark 2.6, we can write ¢ = g1 + g2
with g1 € F"B and g» € p~ ™ RE hence (1 — p'*@)p~*gp € p~*"A and f — (1 — p' )1 € p~* " A.
Finally, we obtain f € p=*~"A + p~*(p® — p'p)F" B, which allows to conclude. a

Proposition 3.3. (i) For ﬁ < u < 1, the morphism of compleves Kum(REP r) — Kum(Rgg],r)

induced by the injection REP C Rg] is a p® -quasi-isomorphism.
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(ii) If v’ < u < pu/, the morphism of complezes Kum(Rg/], r)— Kum(Ri[;f]J) induced by the injection
Rg] C Rg‘] is a p°-quasi-isomorphism.
Proof. The above lemma, applied with s = r — 1 and s = r, allows to show that the cohomology of the
quotient complexes is annihilated by pb”. O

3.3. (p,0)-modules and (¢, 9)-modules. We are going to show that Kumd’(Rg], r) computes syntomic
cohomology.

Lemma 3.4. The following commutative diagram

Fras, Ure

im J/w

FrQy, 2o

pu]

defines a quasi-isomorphism from Kum( Eg],r) to Kumw(Ry,r).

Proof. Let S = R[u] Since ¥ : Qy — Q
to show that the kernel complex

0— S¥=Y = (QH)¥=0 — (%)= — ...

is surjective, the quotient complex is trivial. It suffices thus

pu]

is acyclic. We have
yp=0 _ qh=0 j
QT =5 07,
where
Ot = @1§j§d+1z dXiJJ and QF = ATQL
Now, S¥=0 = Bac{0, ,p—1}9+1,0£09a, and this decomposition induces a direct sum decomposition of
the above de Rham complex, so we can argue for every « separately that the following de Rham complex

0—-S,—-5,90' =5, 20—
is exact, and it is enough to prove this modulo p. But Lemma 2.9 tells us that this complex has a very

simple shape modulo p: if d = 0, it is just S, 2o S, ,if d =1, it is the total complex attached to the
double complex

S’a*>5a

P

*>Sa

and, for general d, it is the total complex attached to a (d 4+ 1)-dimensional cube, with all vertices equal
to S, and arrows in the i-th direction equal to a;. As one of the «; is invertible by assumption, this
implies that the cohomology of the total complex is 0. O

3.4. Change of annulus of convergence.
Lemma 3.5. If u <1 <w, the natural morphism F"Rg’v]/F"RQ] — RQ’”]/RE;‘] is a p"-isomorphism.

Proof. 1t suffices to treat the case when R = Ok. The above map is clearly injective. To prove p"-
surjectivity, we need to verify that pTH’“’]X(; ke is in the image. For that, note that p being divisible by
w® in Ok, we can write p = X§A + BP, with A, B € rf. This implies that we can write p"***| as
By P" + Ap X{M | and pr Rl X ke as A XL X ke B P But A4y XFTP e rd ol el
hence X_keBkP’“ € n[;‘ U], and its image in n[;"”] [1] being divisible by P", we have written p”[k”]XO ke

[uv] [u]

as a sum of an element from F"r and an element from rg°. This allows us to conclude. O
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Lemma 3.6. Let u < 1 < wv. The natural morphism from Kumw(R[u] r) to Kum (R[u ] r) induces a
%" -quasi-isomorphism

<, Kum? (R, 7) 5 7o, Kum? (Rl r).

The same is true for the complexes modulo p™.

Proof. Our map is induced by the following diagram

roye . P U=p° ()e
F QRE;‘] Prr QR[wP“]

I

Fr ;’LQ‘ fpoe)
It suffices to show that the mapping fiber

(3.7) [ Fe, uv1/F QR[u1 S A R[pu v]/QR[pu ]

is p?"-acyclic. By Lemma 3.5, we can ignore the filtration and, working in the basis of the wj of Q,
it is enough to show that p™y — p' : RE_;"”]/RE;” — RE“’”]/RE“} is a p"-isomorphism if i < r. But
RE%’“/RE’;} ~ R[wp“’”}/ng“] and 1 — p*y, for s = r —i > 0, is invertible on RE;"”]/RE;‘] with inverse
1+ p*y + p?4p% + - -+ (this converges even if s = 0 because 9 is topologically nilpotent). This allows us
to conclude.

For complexes modulo p", since the quotients F’“Rg’v] /F’“Rg] — RE;“J] /Rg] are p-torsion free, it
again suffices to show that the mod p" analog of the mapping fiber (3.7) is p?"-acyclic. Note that the
mod-p™ version of Lemma 3.5 holds (though we now only have a p"-injection). Having that the rest of
the argument is the same. O

Remark 3.8. Truncating is not absolutely necessary at this point, as v is very rapidly nilpotent, but
the constants that come out involve loge.

Corollary 3.9. For pu < v, the natural map from Kum(Ry[;f]?r) to

Kum(REY, ) o= [ P70 2 Qi |

2¢ce+2r

induces a p -quasi-isomorphism

T, Kum(RM 1) 5 7o, Kum(RMY, r)

Proof. By Lemma 3.4 we can pass from the complex Kum( [l r) to Kum"( Eg],r) and, by the above

lemma, we can pass from 7<,Kum (Ry,r) to <, Kum" fue] U] r). It remains thus to show that we can

pass from Kum? (R, r) to Kum(R™",r). Or that the map induced by the following commutative

diagram
r p"—p°e
F Q;%[u v] ——— Q;%Lg,'u/p]
1d J{w
p"p—p®
FTQ;;»,L;; T Rz

is a quasi-isomorphism. We can now use the same arguments as in the proof of Lemma 3.4 to conclude. [
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3.5. Change of Frobenius. To pass from syntomic cohomology to étale cohomology, we will need to
change the crystalline Frobenius into the (¢, ')-module Frobenius.

Proposition 3.10. The complezes Kum(Rg’v],T) and Cycl(Rg’v],r) are 22004 _quasi-isomorphic.

Proof. If A C A’ are filtered rings with a Frobenius ¢ : A — A’, let

S(A,ry ) = [ Fray 20y
where ¢ on Q7 is the divided Frobenius (by p™). So, for example,
Kum(R%", r) = S(REY v, pium)  and  Cycl(RI 1) = S(RI 7, pcyar).
Since (Agg’v], p) = (Rlé“’], @eyal); Lemma 2.40 provides us with morphisms of complexes
S(RY ) orum) — S(E%f’v], 7, @) — S(REY 1 peyer).
Lemma 3.11 below shows that these are 2¢+!-quasi-isomorphisms, which allows to conclude. O

Let Ry, Rs be two copies of R we have isomorphisms ¢; : R — R;. We set Xi; = u(X;), if
1=1,2,0<j<d.

Let R3 = (R1 ® Rg)PD, with respect to « = 12 0 Lfl. Hence Rz & E%’U] as a ring, without the actions
of G or .

Ifi =12 let O} = &l Z dg;. Set 2 = Q! @ Q) and, if i = 1,2,3, let Q7 = A"QL. Then
Ok, = B3 @ Qf. We filter the de Rham complex of Rj3 as usual by subcomplexes

F'Qy, =F'Ry — F' 'Ry @ Q3 —> F" Ry @03 — - -
Lemma 3.11. (Filtered Poincaré Lemma) The natural maps
FrQR, — F'Qx, « F'Qp,
are 2% _quasi-isomorphims.

Proof. By symmetry, it is enough to consider the first map. First, we claim that we have the Og, filtered
Poincaré Lemma, i.e., that the following sequence

or, | | Ory
0—> F'Ry —> F'Ry —> F"1R; @ Q} —> .-

is 2-exact. Indeed, this is a special case of Lemma 2.37, with S = R; and A = R».
Now, we can extend the above to a sequence of maps of de Rham complexes

Ry

o
0—=F"Q%, — F'Rg®Qy —> F" 'Ry ® (U AQ3) — - -

The contracting homotopy used in the proof of Lemma 2.37, being Rs-linear, extends as well and shows
that the rows of the above double complex are 2-exact. Since the total complex of the double complex

7]
F'R3® Q3 —> F' 1Ry @ (Q AQS) —= - --

is equal to the de Rham complex F"Q%_, we are done. O
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3.6. Syntomic cohomology and de Rham cohomology. We will show that, up to some universal
constants, syntomic cohomology has a simple relation to de Rham cohomology. Let S = REP | ¢ = okum,
r > 0. Set

HK(S,r) = [Q2"—2FQy), DR(S,r) = Qy/F".

We note that 7<,_1DR(S,r) = DR(S,r) and that the natural map 7<,1HK(S,r) — HK(S,r) is a
p*"-quasi-isomorphism (since 1 — p*p, s > 1, is invertible on Q5"°).

Proposition 3.12. (i) The natural map
T<r+159yn(R,r) — Syn(R,r)

is a p*"-quasi-isomorphism and H"T(Syn(R,r)) = H"*(HK(S,)).

(ii) The complex T<,—1HK(S, ) is p™ -acyclic, for a constant N = N(e,d,p,r). Hence the natural map
DR(S,7) — T<,—1Syn(R,r)[1] is a pV -quasi-isomorphism.

(iii) The above statements are valid also modulo p™. Moreover, H™*1(HK(S,7),) is, étale locally on
R,,, pN) trivial.

Proof. For (i) and (ii), we are going to argue p-adically: the mod-p™ argument for (iii) is analogous. Since
we have

Syn(R,7) = Kum(REP, r) = [FrQy” 7"z = [HK(S, ) — DR(S, )],

the first claim of our proposition follows from what we noted just before the proposition.

For the second claim, write XS for XoS [%] NS and define Xy accordingly;‘ Writing differentials in
the basis of the wj’s and using Lemma 3.1, we obtain that the subcomplex (X002 X Q] is pN1(emd)
acyclic. Hence HK (S, r) is p™2(¢™d)_quasi-isomorphic to [Q'gple'g], where S := S/XoS = RE /X,.

Now, the following lemma shows that S is equipped with a left inverse 1 of ¢ verifying 1) o0; = p 9; 01,
if1<i<d.

Lemma 3.13. ¢ = Ykum stabilizes XoRL.

Proof. We have ¢ = p~%~ 1o~ oTr, with Tr = TrR;/w(R;), and the trace can be computed by taking the
sum over the conjugates: if n = (1o, . ..,74) is a tuple of p-th roots of unity, we define an automorphism o,
of RE[(,], sending X; to n; X; (this gives us o, on R;’D[Cp], and we extend it to R [(,] by étaleness). The
oy(x)’s are the conjugates of x, hence Tr(x) = Zn oy (), which makes it plain that, if « is divisible by Xy,
then so is Tr(z). Now, if p(z) € XoRE, then x € XoRZ: this can be seen by successive approximations,
using the last line of the proof of Lemma 2.7 and the fact that (XoRY) C XoRE. Hence, if x € XoRL,

then p?tly(z) € XoRE and, since XOR;[%] N RE = XoRJ, this implies ¢(z) € XoRZ. O
We can then use the arguments in the proof of Lemma 3.4 to deduce that [Q'gpifaﬁ'g] is quasi-

p"p—p®

isomorphic to [Q.E —5 Q’g] But, in degree i < r — 1, p™¢ — p' is a pr—isoglorppism (and even a
pi-isomorphism), with inverse —1 — p" %) — p?r=9yp2 — ... Hence Tgr,l[ﬂ'gpﬂ .§] is p"-acyclic,

which proves (ii).

For the very last claim of the proposition, since the map Qgﬁ'll_—wﬂgfrl is injective, it suffices to show
that the map aniﬂgn is surjective, which amounts to showing that 1 — ¢ is, étale locally, surjective
on S,. By dévissage we can assume n = 1, and then we are reduced to the statement that x — 2P is, étale
locally, a surjection, which is clear as Artin-Schreier extensions are étale. (|

The following lemma relates the complex DR(S,r) which appears in (ii) of the above proposition to
the usual de Rham complex.

Lemma 3.14. DR(S,r) is quasi-isomorphic to o<,_1Q% after inverting p. Here o<,_1 denotes the silly
truncation.
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Proof. We have rf[J]/F" = K[P]/P". Hence S[1/p|/F" = R ®g, (K[P]/P") (we see that R.'1/F" =
R ® (K[P]/P") by inspection and deduce the result for S by étaleness).

Writing differentials in the basis of the wj’s makes it possible to write DR(.S,r) as the total complex
of the double complex

(03)1<j<a

R® (K[P]/PT) (R@ (K[P]/Pr=1))" —= -+ —= p(.4) —=0—> -

- - -

R (K[P)/PY) 2258 (R (K[P)/Pr—2))" —= - —— 0 ——= 0 —= -

Now, 9y induces an isomorphism PK[P]/P" = K[P]/P"~!. Hence the subcomplex obtained by replacing
K[P]/P? by PK[P]/P? in the first row is acyclic, and the quotient complex is clearly isomorphic to
O'Srflgk. O

Remark 3.15. It follows from Lemma 3.14 that, if i < r — 2, then H'(DR(S,7)) = Hy(Spf R) after
inverting p. On the other hand, H""!(DR(S,7)) is much bigger than Hggl(Spf R), since we take all
differential forms modulo exact ones instead of closed ones. For example, if r = 1, r — 1 = 0, and
HO(DR(S,r)) is actually R, and not just the constants.

Let 2 be a semistable formal scheme over Ok (i.e., locally of the form described in section 2.1.2
with h = 1). Set Pkt = L2\ Z, Z being the divisor at infinity, and 22" — the rigid analytic space
associated to Z". Define

RTar(2k,log 2) := RI(Z", Qy-an(log 7)),
where Q'(%I,}n (log 2) denotes the (logarithmic) de Rham complex of 272", If £ is quasi-compact, we have

RFdR(%K,log .@) ~ RF(%‘,Q%/(]..;E

)q := (holimy, RT (27,9, 5 ))q-

Corollary 3.16. Let 2" be a quasi-compact formal semistable scheme over Ok . There is a natural map
it Hig (25 o) = Hign (2, 7)q-
It is an isomorphism for i < r — 1 and an injection for i =r.
Proof. The very definition of syntomic cohomolgy gives us a natural map
(holim, RTer (251, O, pw, ] I 50 v )@ — Higu (2. 7)q
from crystalline cohomology to syntomic cohomology. We claim that the domain of this map can be

identified with analytic de Rham cohomology. Indeed, we have a natural map from crystalline cohomology
to analytic de Rham cohomology

(holimy, RT (23, O, pw i/ i3y )) — (holimy, RI(25, Q7. o /F7))q
~ RFdR(%K,IOg .@)/FT — RFdR(%K7tr)/FT

This is a quasi-isomorphism: the last map is an quasi-isomorphism by Lemma 3.17 below; the first map
is a quasi-isomorphism since it suffices to argue locally and there we can use Lemma 3.14.
Hence we have a natural map

Héﬁl('%K,tr)_)Hgyn<%7 T)Q’ i< T
By point (ii) of Proposition 3.12 it is an isomorphism for ¢ < r and an injection for i = 7. O
Lemma 3.17. For a semistable formal scheme & over Ok, the natural morphism
RI4r(Zk,log Z) — RIar(Zk )

s a filtered quasi-isomorphism.
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Proof. Let Q% _(*Z) be the complex of meromorphic (along ) differentials [38, p.17]. There is a natural
morphism
Qyan (D) = J: Q% .-
By [38, Theorem 2.3], this is a quasi-isomorphism: after some preliminary reductions, this amounts to
showing that the usual integration works on essentially singular differentials. Since j : Zx ¢y — Z@" is
quasi-Stein, we have Rj, Q% = j.Q%, .
We also have a natural morphism

7 Qyan(log 7) — Qyan (7).

Integration causes no convergence issues here. In fact, the computations in [38, p. 18] go through in this
case: there is a residue map Res : Q}KEH(*.@) — Qj%;n(log 2) such that Resr = Id. Integrating gives a
homotopy between r Res and Id. Our lemma follows. ]

Remark 3.18. One can compute syntomic cohomology of R = &} rather explicitly, and the result
shows that a,., is not necessarily surjective: in the case r = 1 below, there is an extra Z, appearing in
HL . (OF,r). In higher dimensions the difference is much more serious (see Remark 3.15).

Denote by ﬁg) the intersection of O with REP + P"F[X,]p. We have ﬁf((l) = Ok . We will state the
following proposition without a proof.

Proposition 3.19. (i) For r > 2, we have

HY, (O, ) is p'* -isomorphic to 0,
HL (OF,r) is pN () isomorphic to ﬁg),

syn

H2 (07%,r) is pV (e isomorphic to 0.

syn

(ii) For r =1, we have p™ ("¢ -isomorphisms

HQ,, (05, 7) =0,
Hslyn(ﬁ;é’r) = ﬁg) S ZP
Hsyrl(ﬁ;é?’r) = (ﬁF/(QD - 1))

4. SYNTOMIC COHOMOLOGY AND (¢, I')-MODULES

Assume that K has enough roots of unity. Let u = (p—1)/p,v=p—1if p > 3, and u = %7 v = % if

p = 2. In particular, (1 + %ﬁ’*_l)u > (1 + Iﬁ — ﬁ)u > ]ﬁ, for all p.
We use the isomorphism RE;“”] = A[Ig’v] of filtered rings with a Frobenius to add an action of I'p on
the complexes that we consider. This allows us to relate the complex Cycl( Eg’”],r), that we showed

to be pN"-quasi-isomorphic, for a universal constant N, to our original syntomic complex, to complexes
coming from the theory of (¢, I')-modules and known to compute Galois cohomology. In dimension 0,
this amounts to relating the complex

(8,p" =) (p"—pyp)

U, u,v u,v u,v B +0 w.v
Kos(p,d, FFA™) : Frale Froiafe o ARl AR

[u,v]

that we obtain from Cycl(rs™,r), to the complex of Herr’s thesis [32]:

(10,1—¢) —(1=¢)+70
—_—

Kos(p, ', Ak (r)):  Axk(r)

where 79 = 79 — 1, and 7y is our topological generator of I'k.

AK(T)@AK(T) AK(’I") y

There are two main steps:
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— One gets rid of the filtration by dividing by suitable powers of t; this turns the differential 9 into
the action of the Lie algebra of I'r (Lemma 4.4). This looks similar to the construction in [10], where
[] — 1 appears in the place of ¢ (note that ¢/([¢] — 1) is a unit in Ag,).

— One uses the analyticity of the action to pass from the Lie algebra of I'g to I'g itself (Lemma 4.5).

The rest is standard (¢, I')-modules techniques to change the domains of convergence and move from
Al o Ag.

4.1. From complexes of differential forms to Koszul complexes. To start, we are going to trans-

form Cycl(Rg’v],T) into a “Koszul complex” by expressing the differentials d : F" Q% — F“i’lflis+1
in suitable basis. Namely, we define wg = % and w; = d;f_j if1<j<d If
J

i=01. ) edi={0<j1 <---<j; <d}, wesetwj=wj A---Awj,,

so that an element of F*Q% can be written uniquely as > :_; xjwj, with z; € F*S. In other words the wj,

] Jje€Ji
for j € J;, form a “basis” of F*Q) over F'“S; these are the basis that we use to describe d. In this way, d
becomes a map, involving the differential operators 9;, for 0 < j < d, from (F"~¢S)7i to (F"—=19)7i+1,
We denote by Kos(9, F'"S) the complex F"Qy expressed in these basis and Kos(¢y, 9, FTRQL’U]) the complex

Cyecl( Eg’”],r) written in the same way. By definition,
Kos(a7 FTS) — FrS (ﬁ) (Fr—IS)J1 — (Fr—2S)J2 BN

" _p. Pcycl

p
Kos(p, 0, F"RE;™) = [ Kos(0, 7 R&) Kos(a, R/ .

and

Kos(g, d, F" R ~ Cycl(RIY) 7).

w
The arithmetic and the geometric variables behave quite differently in what follows, so it is convenient
to separate them. Let J; C J; be the set of j’s with j; # 0, hence

Ji={01, - da), 1< <--- <ja<d},

and let & = (01,...,04). We denote by Kos(d', F"S) the subcomplex of Kos(d, F"S) made of the
(F™=%S)”. Then Kos(8, F"S) is the homotopy limit®

Kos(9, F"S) = [ Kos(9', F"S) &, Kos(&,F"9) |,

and Kos(g, 0, FTRi[;f’”]) is the homotopy limit

Kos(@/, PR — "2 Kos(er, R1v/P)
Kos(p, 0, F"RlT) = lao iao
Kos(@, 1Ry X2 ooy, R/
We can now use the isomorphisms ¢y : RQ’U] ~ A%’v] and eyl ¢ RE;"”“’] ~ A%’v/p], which commute

with Frobenius and filtration, to obtain a (tautological) quasi-isomorphism

Kos(a’,FTAEg’U]) _rre Kos(@’,ABg’v/m)

KOS(SDa aa FTR[U’U]) = Kos(<p,8, FTAE?EMU]) = \LBO i@o
r o+1

w

p"—

Kos(&/, F" Al Kos(&/, Ajy/")

9Strictly speaking, we should multiply dy by p to have it defined, but we will ignore this as it does not change anything
in the arguments that follow.
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What we have achieved by this procedure is twofold:

e we moved to the world of period rings,

e we gained an action of I'p whose infinitesimal action is related to the differentials 0 by the very
useful formula

V;:=logy; =t0;, for0<j<d.

4.2. Continuous group cohomology and Koszul complexes. Before we proceed, we will make a
little digression on Koszul complexes (we will need explicit formulas). Consider the Iwasawa algebra
S =Zy[[m1,...,74]]. The Koszul complex associated to (71, -- ,7q) is the following complex

K(Tl, s 77',1) = K(T1)®ZPK(T2)®ZP te @ZPK(Td),
K(1) = (0 = Zy[[r]] = Z[[ri] — 0)
Here the right hand term is placed in degree 0. Degree g of this complex equals the exterior power /\‘é S,

In the standard basis {e;,...;, },1 < i1 < --- <igy < d, of A% S? the differential dy = N% S /\?S_1 S ig
given by the formula

q
1 e
(4.1) d (aiy... Z + Bpeeviy T
k=1
The augmentation map S — Z, makes K (71, ...,74) into a resolution of Z, in the category of topological
S-modules.

Let Z,[[I';]] denote the Iwasawa algebra of I'};, i.e., the completed group ring
Zp[[T']] = lim Z, [T / H],

where the limit is taken over all the open normal subgroups H of Iy and every group ring Z,[I',/H| is
equipped with the p-adic topology. We have Z,[[[';]] ~ Z,[[11, - ,74l], 7 :=v;—1, j € {1,--- ,d}. The
Koszul complex K (7y,...,7q) is the complex

’ d - dl ’ dl !
0 ——> Z, [ /s ——> - — Z,[[DR))T —= Z,[[TR]]" — 0.,

with differentials given by formula 4.1. It is easy to see (for example, by induction on d) that this is a
resolution of Z,, in the category of topological Z,[[I';]]-modules. Similarly, we define the Koszul complex
K(rg,...,75) (Wlth differentials df), 75 := 7§ — 1, ¢ = exp(p’). Since (7§), 1 < i < d, is a basis of Iy,
this is also a resolution of Z,,.

Set A := Z,[[Cr]] (recall that we have an exact sequence 1 — I'y, — I'r — I'x — 1). Consider the
complex K (A):

di_, d; d}

0 ATG —— e AL 0 Ao 0,

By [44, Lemma 4.3], we have the isomorphism lim(Z,[Cx/(Tx)P"] @z, K(71,--+ ,7a)) ~ K(A) of left

A- and right Zy[[r1,- -, 74]]-modules. It follows that the complex K(A) is a resolution of Z,[[I'k]]
in the category of topological left A-modules. Similarly, we have the complex K°(A) (obtained from
K(r¢,---,75)) that is also a resolution of Z,[[T'k]].

We define the map

T0: K°(A)— K(A)
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by the following commutative diagram of topological left A-modules

ds_ € dg
0 A4 L A1 0 A Zp[[FKH —
lTO lr& irg l"/o—l
dy_ dl d
0 Ao — e A —=A Z,[[Tk]] —0

The vertical maps are defined as follows
o=%-1 7d: (@i iy) = (@i iy (Y0 = 04y-4,)), 1< qg<d, 1<id3<---<iy<d
6i1---iq = §iq .- '§i1a 6ij = (’710] - 1)(’)/7;1. — 1)_1
Note that

makes sense since v; — 1 is topologically nilpotent. It is a unit in Z,[[I';]]. To see that 7o is a map of
complexes note that
c c ..-c . 0_—1 -1 -1

(Yo = 0iyviy) = TiqTig—1 " TiTo Ty " Tig_y T,

as the 7;’s commute for j € {1,---,d}.

70

Set K(A,7):=[ K°(A) —— K(A) ]. Since we have the exact sequence

0 — Z,[[Tx]] = Z,[Tk]] — 0

the complex K (A, T) resolves Z,, in the category of topological left A-modules.
For a topological I g-module M, denote by Kos(I', M) the complex

Kos(T'g, M) := Homp cont (K (A), M) = Homp (K (A), M)

(which we will also call the Koszul complex). Similarly, we define the Koszul complex Kos®(I', M) using
the resolution K°(A) of Z,. In degree g of these two complexes there are (‘;) copies of M. If this does
not cause confusion we will write the Koszul complexes Kos(I';, M) and Kos®(I';, M) as

Kos(T, M) = M T M7 . M7, Kose(T, M) = M &) M7 o %,

The map 79 : K°(A) — K (A) induces a map of complexes
10: Kos(I'y, M) — Kos(I', M)
which we represent by the following diagram:

(73)

M7 M7 M7
o bl

! (TJC) ’ !
M7 M M7

Set
Kos(I'g, M) := Homy cont (K (A, 7), M) = [ Kos(I', M) . Kos®“(I', M) )]
Let X, denote the standard complex [42, V.1.2.1] computing the continuous cohomology Rl ¢ont (A, M) :=
Homa cont(X., M). We have X,, = ART™A, where T™ denotes the completed tensor product. Let Y,
denote the standard complex computing the group cohomology of I'g: we have Y, = T"TY(Z,['g])

and R['(Tg, M) = Homgz, 1y (Y., M). Continuous group cohomology RI¢ont(I'r, M) is computed by
the complex HomZP[FR]QCOm(Y.,M ) of continuous cochains. The continuous map Y, — X, induces a
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morphism Homy cont(X., M) — Homg p,)(Y,, M) and Lazard shows [42, V.1.2.6] that Mahler’s the-
orem implies that this morphism factors through Homgz (rp) cont(Ys, M) and induces an isomorphism
Homa cont(X., M) — HomZP[FRLCOm(Y,,M). Hence R cont(A, M) = RIcons(I'r, M). By choosing a
map between the two projective resolutions K(A,7) and X, of Z, (by [42, V.1.1.5.1] such a map ex-
ists between any two projective resolutions and is unique up to a homotopy) we obtain a functorial
quasi-isomorphism (unique in the derived category)

Kos(T'r, M) = R cont (A, M)

Adding up, we have obtained a quasi-isomorphism
A: Kos(Tr, M) = Rleont(Tr, M).
4.3. (¢,0)-modules and (¢, I')-modules. If
S = Al AQT AL

set

S — A%’U/p],Ag’U/pH,AR.
Write S(r), S’ (r) for the I'g-module S, S” with the action of I'r twisted by x”. Define the complex

Kos(I'g, S(r)) —— 2> Kos(I', 8 ()
Kos(, T, S(r)) = l i

1-¢p

Kos®(I', S(r)) — Kos“(I's, S'(1))
Proposition 4.2. There exists a universal constant N and a natural® p™N"-quasi-isomorphism
T< Kos(¢, 'R, A;f’v} (r)) ~ 1<, Kos(y, 9, FTA[;;’U]).

Proof. Denote by Kos(LieI'y, AB;’U} (r)) the complex

Ji J)
AL) = AR = AR )

with differentials dual to those in formula 4.1 (with 7; replaced by V;). Consider the maps
Vo: Kos(Liel, A" (1)) — Kos(Lie T, Al (r))

defined in the following way:

&)}

[u,v] 7 J N ) Jclz s ...
AR (r) AR(r)

AR"(r) b
ivo ivo+pi \LVOJrqpi
R T

Define the complex
o Al ¢ o Aluv/p]
Kos(Lie I, A" (1)) — Kos(Lie Iy, A7 (1))
Kos(w,LieFR,A[Ig’U] (r) == ivo \LVO
. ’ [u,v] 1—¢ . ’ [w,v/p]
Kos(LieI'y, AR ' (r)) — Kos(LieI';, AR 7 (1))
Our proposition follows from Lemma 4.4 and Proposition 4.5 below. O

10We use “natural” to mean “defined by universal formulas”.
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Remark 4.3. The Lie algebra Lie I';; of the p-adic Lie group I';; is a free Z,-module of rank d: LieI', =
Z,[V;, 1 <j <d. It is commutative. The Lie algebra LieI'p of the p-adic Lie group 'y is a free
Z,-module of rank d + 1: Liel'r = Z,[V,;, 0 < j < d]. We have [V,;,V|] = 0,1 < j,l < d, and
[V, Vo] = pivj, 1 < j < d. One easily checks that the above Koszul complexes compute Lie algebra

cohomology of LieI'; and LieI'p with values in Agg’v] (r). That is, we have quasi-isomorphisms

RI(Lie T, Al (1)) ~ Kos(Lie T, A1),
RI(Lie g, Al (1)) =~ [Kos(Lie Ty, Al ") (r)) 2% Kos(Lie Iy, Al (1))] .
This implies that
Kos(p, LieT g, Al () ~ [RT(Lie T, Al (1)) 228 RO (Lie T, AL ()]
By Lemma 2.11, multiplication by ¢" induces p*"-isomorphisms
FrAp o aAlel ana o alov/?h o Alyerv)

Ifs = Agg’”], A;f’v/p]7 and if we twist the Galois action by x" on the source (i.e. replace S by S(r)), then
multiplication by " becomes Galois-equivariant.

Lemma 4.4. (i) There is a natural p*°

-quasi-isomorphism
7<,Kos(p, Lie T g, ARy " (r)) = <, Kos(p, 0, F" Al)).

(ii) There is a natural p®°"

-quasi-isomorphism
TSTKOS((‘D’ Lielg, Agg,v] (T))n = TSTKOS(SOa 9, FTAB;“]])n.

Proof. We will present the proof of the first claim. The proof for the complexes modulo p” is similar and
we will just point out the key point where it differs.
We first construct p*"-quasi-isomorphisms

7<,Kos(LieI'y, S(r)) ~ 7<,Kos(d', F"S),
via the following diagram (with the convention F7S = S for all j, if S = A[I;L’"/p]):

(V)

S(’/’) —_— S(r)‘]{ v S(T)Jﬁ“ —_— S(T)J£+1 —_ ...
zltr zltr thr thr
(Vj) / ’ ’
FTS FTSJl e FTSJT - FTSJ7'+1 —_ ...
tO—IdT? tlTZ t"‘Tz trHT
(8J) _ ’ , ,
FT‘SH(FT’ 1S)J1 S Sy —— -

The top vertical map, being multiplication by ¢", is a p*"-quasi-isomorphism. For the same reason, the
bottom map is a p*’-isomorphism in degree < r and injective in higher degrees. (Note, however that
it is not a p -isomorphism in degree > r + 1 (for any N ), which explains why we have to truncate at
degree r.) In the case of complexes modulo p", the above argument works (with double exponents in
the error terms) since, by Lemma 2.11, ¢ is divisible in S by at most p? (hence multiplication by ¢"*! is
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pQ(’"“‘l)-injective). Compatibility with Frobenius and with dy gives us a p35"-quasi-isomorphism between
P —pp
Kos(@', Fr AL Kos (@', Alw-v/7h
TS’I“ \Lao lao
p —p* e

Kos(@’,F’"_lA[g’v]) Kos(a’,A%’v/p])

and
. ’ [u,v] P (1-¢) . ’ [u,v/p]
Kos(LieI'y, A" (r)) — Kos(Lie I, A7 (1))
T<r lvo \LVO
"(1-¢)
Kos(LieI'y, A[;;’"} (r)) L Kos(LieI', AB;’WP] (r)
This last complex being p"-quasi-isomorphic to 7<,Kos(y, LieI'g, A[Ig’v] (r)), our lemma follows. a

Proposition 4.5. There exists a natural quasi-isomorphism
Zaz:  Kos(o,Tr, A;f’v} (r)) = Kos(p, Lie FR7AB¥’U] (r))

Proof. If M = AE}{’U] (r), A%’U/p] (1), consider the map £ : Kos(I'y, M) — Kos(Lie 'y, M):

(’Yj_l) , 7
M M7 M2
llld J{m lﬁz
Vi (Vi) A A

with
ﬁq : (ai1-~~iq) — (Viq .. 'visz‘:1 .. 'Tizl(a'ir“iq)); 1<qg<d.

Similarly, we define the map 3¢ : Kos®(I', M) — Kos(LieI',, M) as:

(5-1 ,

M MJl MJ2
lﬁé iﬁf lﬁ;
(V_;’) / /

M MJ1 MJz

Here
B = Vory ', By : (@) = (Vi "'Vz‘IVOTo_lTi’_l : ..Tic;_l(ail”'iq)); 1<qg<ad.

Lemma 4.6. The maps 8 and 3¢ are well-defined isomorphisms.

Proof. We will treat the map 8 first. Since, for 5,k € {1,---,d}, VijTk_lrj_l = (V,;/7)(Vi/T), it

suffices to show that for S = A[Ig’v] or A[Ig’v/’)} and for j € {1,---,d}, the map V;/7; : A - Ais a
well-defined isomorphism of S(r). Write
log(1 4 X) 2 X 2
BT b X faaXP o 14 X 4 b X2 -
X + aq + ag + log(1+X) + 01 + 02 +

We have vy (ag) > =27 for all k (immediate) which implies that v, (bg) > — -5 for all k.
Now, ; = (v, —1)if1 < j<d,and 70 = "y —1 = (¢" — 1)y + (v — 1) (the ¢" comes from
the fact that we are in S(r), not S). Since ¢" — 1 is divisible by p?, one infers from Lemma 2.34,

that 77 (S(r)) C ﬂ'f(pl_lfé’rl)(p, 7°)%S(r). It follows that, since (1 + %{f’rl)u > p%l, the series

1+ai7j + agTjQ +---and 1+ by75 + bgTj2 + .- converge as series of operators on S(r), and the limit
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operators are inverse of each other. As the first one is V;/7;, this allows to conclude that V;/7; is an
isomorphism of S(r) for 0 < j < d.

That settles the case of 3. Let us show that the map 3, for 1 < ¢ < d, is a well-defined isomorphism,
i.e., that the maps V; - V; Vory 757 Loromh 1<y < - < iy < d, are well-defined isomorphisms.

11 g
We can write the last map as (V;, /7i,) -+ (Vi, /7)) 7, - 7oy VoTg ' 757 1. Tfl’_l. Hence, by the compu-

i1
tations done above, we are reduced to showing that the map 7;_ - T“V()To_ch’il —o 707 is well-defined

11 11
and an isomorphism.

We have
Tiq T, VoTg 17-1017 .. c,—l Z arTi, - 73, ((€" = D)yo + (0 — 1))k e—1, 2_1
keN
The formula 1
a/c "}/q —
(v = Do — ) = (0 — 26(75))(v; / —1), 0(y%) = ‘1]/671’

yields

(0 = Do = 1* = (0 = 8(5)) (30 = 6(1)8057)) -+ (0 = 6(r) -6 N = 1)

Hence we can write

1/ck 1/c®
_ _ Ve —1 oy =1
: —1
Tiq"'Til(Wo—l)kfl 1 T = (90— 6k) - (70 — 61) ;z_c — :C —
1q 11

= (0 = 6k) -+ (70 — 61)do,

where §; € 1+ (p%, (71 — 1), , (ya — 1)) (because ¢ — 1 is divisible by p?).
Writing (o — ;) = (70 — 1) + (1 — §;), one concludes that

—1 —1

Tig T (o — DT r T e (PP — 1 va — DR
It follows that the series of operators ZkeN ari, T (€7 = Do + (o — 1)Fr™ "'Ticq’_l converges,
which shows that V;_- V“VOTO iy -1 oTiCq’*l is well-defined. The same arguments show that the

series of operators >, n Ox7f -7/ ((¢" — 1)y + (0 — )kr --7'1-21 converges and the sum is the
inverse of the previous operator.
This proves the lemma. O

Remark 4.7. By Remark 4.3, the above isomorphisms can be written as a quasi-isomorphism
(575c) . RFcont(FRaM) :> RF(LIGFR7M)

Hence this is a (very simple — almost commutative) example of integral Lazard isomorphism between
Lie algebra cohomology and continuous group cohomology for p-adic Lie groups (see [33] for a detailed
treatment of integral Lazard isomorphism and [59] for an analytic (rational) version of the Lazard iso-
morphism).

The above maps yield the following isomorphism of complexes (where M = A[}g’v] (r) and M’ =
Al ()

Kos(Lie Ty, M) — %> Kos(Lie Iy, M) Kos(I'y, M) ——% > Kos(I'y, M)
\L \L (8,8°) i i
Vo Vo — To To
1—¢

Kos(Lie I, M) — 7~ Kos(Lie ', M) Kos? ([, M) — =~ Kose(Iy, 01"

Set ZLaz := (5, 5¢). This fullfills the requirements of Proposition 4.5. O
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4.4. Change of annulus of convergence.

Lemma 4.8. The natural map
Kos(p, I'r, A" () — Kos(io, I'r, AR (1)
18 a quasi-isomorphism.

Proof. Use the isomorphism R3¢ ~ Aji%eco which defines A‘}fco to translate everything into the language

of anlytic functions. It suffices to prove that the map 1 — ¢ : RE“;”]/RES’“]* — R[w“’“/”]/RQ”’/””

isomorphism.
First note that the natural map R /ROVT — Rlwv/Pl/RO-2/PIF (1nduced by the inclusion of R
into RQ’”/ P ]) is an isomorphism (injectivity is true because elements of the kernel are analytic functions
v

which take integral values on % < up(Xp) < = and which extend to analytic functions taking integral

O.v)+, ; and surjectivity - because r£ e r[:_]l Jrré(ltl}/ph'

is an

values on 0 < v,(Xp) < p%o’ hence belong to Ry

as is clear from the definitions). Denote by M the module RQ iy Rg v +; by the above 1 — ¢ can be
considered as an endomorphism of M.

[u,v]

. Xk . 0,v]+ .
Now, an element x of Rg'™ can be written as © = ), . Tg p{Tﬂﬁo], with xp € Rz(ﬂ R going to 0

k
padically. So ¢(x) = 3 op pPFe/eol=lhu/eol () (LX) X8 and, since [pku/eo] — [ku/eg) > 1 if
0

p[plcu/eo
[ku/eo] # 0, we see that ¢(x) € RO/ L pRI/PL hence p(M) C pM.
To conclude, it remains to check that M does not contain p-divisible elements. Let (e;);cr be a

collection of elements of RE whose images form a basis of Rt /(p, Xo) over k = rg_l/(p, Xo). Then

(e;)icr is a topological basis of RE;"”] over réufi] and of R(O’v]+ over réO’UH. Writing everything in the

[u v /7’(0 ]+

(ei)iecr basis, reduces the question to proving that T has no divisible element. This is rather

obvious if you look at Laurent expansions. O
4.5. Change of disk of convergence.
Proposition 4.9. The natural map
Kos(¢, I‘R7Ag’v]+(r)) — Kos(¢,Tr, Ag(r))
is a pB-quasi-isomorphism

Proof. We will use the quasi-isomorphisms with 1-complexes. The proposition is a direct consequence of
Lemmas 4.10 and 4.12 below. O
Set ¢ = p'~!. From Proposition 2.16, we know that ﬂ_eA(O UI* is stable under the action of (we

have ¢ > {g). For S = AR,Agg UH, let Kos(¢,I'r, S(r)) be the complex:

1L vl R
Kos(I'g, m; °5(r)) —— Kos(I'g, m; "S(r))
Kos(v, T, S(r)) = lm lm
-1
Kos* (T, 5(1)) = Kos*(, , “S(1)
(For S = Apg, there is no difference between 7; “S and S.)

(0,0]+

Lemma 4.10. If S = Ar, A", the natural map

Kos(p,I'g, S(r)) — Kos(¢,T'r, S(1)),

induced by the identity on the first column and v on the second column, is a pPt7-quasi-isomorphism.
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Proof. The arguments are the same in both cases, but the case S = AS’UH is a little bit subtler (because
of the difference between 7, *S and S), so we will only treat that case.

The quotient complex is annihilated by p?, since so is 7 ZA%?’UH / Agg”’]+ (by Lemma 2.35). It remains
to check that the kernel complex

> $=0 o c s P=0
[ Kos(T'g, (Agg v/pH(r)) ) — Kos® (T, (Aﬁg U/p]+(r)) ) ]
is p*-acyclic. Now, according to Proposition 2.16, we have a pP*!-isomorphism
(Aggw/pH(r))w:O ~ @ @(Aﬁgav]-l-)[;pa]’ where [xa] _ (1 + ﬂi)ao [14111] . [xii]d}'
a€e{0,...,p—1}10:d] a0

Hence, up to pPT!, we can replace the kernel complex by

b [ Kos(I. o(AlR 1) (1) [2°]) —> Kos® (T, o(AR ) (1) [z]) 1.
a€e{0,...,p—1}10:d]  az£0

and we can treat the complexes corresponding to each a separately. There are two cases:

e aj, # 0 for some k # 0. We claim that then Kos(I', cp(AEg’vH)[xa]) and Kos®(I'y, cp(Ag’UH)[xa])
are p-acyclic (the twist by (r) has disappeared because the cyclotomic character is trivial on I'j;). As
the proof is the same in both cases, we will only treat the first complex. Write it as the double complex:

p(AL ey L, G AQy I ey (AL e

l%_l lw—l lw—l

P(AL I gay D, G AQIy I ey (A e

where the first horizontal maps involve 7;’s with j # k, 1 < j < d. Now, we have:
(e = 1) - (e(m)[z7]) = p(m G(y))[=7],

where
G(y) = (L+m)** o = Dy + 71 (1 + 1) = 1)y.
(We use the fact that v, ([z]) = [e]**[2*] = ©((1 + 71)**)[z%].)

Now, G is m;-linear and, since (7, — 1) is trivial modulo 7; °#~!7 (cf. Corollary 2.33), it follows that,
modulo 71, G is just multiplication by «y, since wfR‘Hm divides 7 (Lemma 2.35). Hence G is invertible.
It follows, that v — 1 is injective on cp(Agg’UH)[xa] and, since % € Agg’UH, that the cokernel of (v, — 1)
is killed by p?.

e aj, =0 for all £ # 0, and o # 0. Then to prove that the kernel complex is p2-acyclic, we will prove
that 7y : Kos — Kos® is injective and the cokernel complex is killed by p?. This amounts to showing the
same statement for

v @ sV (67 ’Yicj_l
70 = 8y -0, (AR T (r) = p(AR D), 6, = T

We have

—1

(Y0 = 81y -+ 63,) - (PN () = (" (o) (1 +m)P V) (1) = (p(6i, -+ b, - 9)[2°]) (7).
So, we are lead to study the map F' defined by
F=c"(14m)%0—6, 0, wherea=p ‘(c—1)ag € Z;.

Now, ¢"—1 is divisible by p?, (1471)* = 14am mod 7%, and §;, —1 € (vi, —1)Z,[[vi, —1]]. Hence, we can
write 7, ' F in the form 7 ' F = a4 ' F/, with F’ € (p?, 72,7 —1,...,Ya—1)Zp[[m1,Tr]]. Tt follows from
Lemmas 2.35 and 2.34 that there exists N > 0 such that 7; 'F’ = 0 on ﬂngg’vH/ﬂ'erNAgg’vH for all
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k € N. Hence 77 'F induces multiplication by a on 7% A0 /7k+N AQIF o0 211 1 € N, which implies

that it is an isomorphism of Agg’UH_, and proves what we want since 7, divides p? by Lemma 2.35. [

Remark 4.11. If a € {0,1,...,p — 1}0 let M, = 2%¢(E},). The above proof shows that there exists
N > 0 such that P“Tfl is the multiplication by «; on Wkoa/ﬂ'ka’NMa, for all k € Z. Hence, if a; # 0,
then ; — 1 is invertible on 2%@(Eg) and (y; — 1)~! - 7P*M,, € n~ 17" M, for all k € Z. In view of the
relationship between Koszul complexes and group cohomology, this implies that H*(T'g, v kMa) is killed
by =, for all k € Z, and o # 0.

Now, we defined maps ceye1,o O Ry (cf. Proposition 2.15), and it follows from Proposition 2.15 (using
leyel to transfer the result to Ap), that ccycha(ﬂkaE) C ﬂfk_éRMa. As & — (Ceyel,a(®))azo gives
an isomorphism between E%:o and Gqx02"¢(ER), commuting with the action of I'r, we infer that
H'(Tg, (7P*EL)?=0) is killed by 770", for all k € Z and i € N.

Lemma 4.12. The natural map
Kos(¢),T'r, AR (1)) — Kos(v), i, Ar(r))
s a quasi-isomorphism.

Proof. The map is injective, so we just have to check that the quotient complex is acyclic. Since Ap
H[W-_l] with respect to the p-adic topology, Proposition 2.16 implies that

is the completion of A0 [x;

P AR/Wi_zASg,vH — AR/w;ZAg’vH is (pointwise) topologically nilpotent, hence 1 — v is bijective. It
follows that 1 — 1 is bijective on Kos(I', AR/W;ZAQ’DH) and Kos®(I';, AR/WZZASE?’UH). This allows to
conclude. ]

4.6. Passage to Galois cohomology.

4.6.1. Galois cohomology of R. Let Ro be the integral closure of R in the sub—R[%]—algebra of ﬁ[%]
generated by §m7X;’_‘F;1+1, . ,X(}’fl, for all m > 1. We have Roe C Rso and, by Abhyankar’s Lemma
(Lemma 5.8 below), R is the maximal extension of R, which is étale in characteristic zero.

Let T'r = Gal(Roo[1/p]/R[1/p]). Then T'g is a quotient of 'z and the kernel I'y of the projection is
isomorphic to H#p(Zg(l))C; in particular, it is of “order” prime to p.

The algebra ROO[%] is perfectoid; let Let Ef  be its tilt, and let EJI% be its ring of integers (it is the
tilt of Reo). Finally, let Ap =W(Eg_); this is the fixed points of Az by Gal(ﬁ[%]/ﬁm[%]).
Proposition 4.13. (i) The ezact sequence (2.24) induces a quasi-isomorphism
1— ~
[ R cont (G R, Ag(r) —> Rlcont(Gr: Ag(r)) | & RTcont (G, Zp (1))
(ii) The inclusions Ag, C Ag,_ C Ag induce quasi-isomorphisms
HH - chont (FRa lAROo (T)) = RFcont (fR7 Ajioo (’I")) = chont<GRa Aﬁ(’r))
(iil) The inclusion Ar C Ag__ induces a quasi-isomorphism
RPcons(Tr: AR(r)) =5 Rl cont(Cr, AR, ().

Proof. (i) is immediate. The first quasi-isomorphism in (ii) follows from the fact that I'y is of order prime
to p, and the second follows by almost étale descent as in [18, 3.2,3.3], [3, §2], [4, §7]. Finally, we will
prove (iii) by an adaptation of the usual decompletion techniques as in [4, Theorem 7.16], [37].

By dévissage, it is enough to prove the statement modulo p, in which case the twist disappears and
AR, Ag_, arereplaced by Eg, Eg_ . Now, Er__ is the completion of the perfectisation ¢=°>°(ER) of Ep.
But Ex = ¢(Eg) @ E4 =" = 0*(Eg) ® o(E% ") @ E4 =" = -, which gives us that

¢ "Er)=Er®¢ 'EF )@ @ <P_"(E%:0)-
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Hence we can write an element z of ¢~ *°(Eg), uniquely, as ¢ = so(z) + >_,,~; s5(x), with so(z) € Egr
and s%(z) € o "(E%™") if n > 1, with s*(x) = 0 for all but a finite number of n’s.

The map Eg-linear map s,, = so+s;+- - -+s}, is the normalised trace map from ¢~ (Eg) to ¢~ "(ERg).
On ¢ " F(EgR) it is given by the formula =" 0 9™ o ©"*+*  which shows, using (ii) of Proposition 2.16
(or rather its reduction modulo p), that

su(p”"TH(ER)) C ¢ " (m) e (ER) C m; e " (ER);
hence the s,’s are a uniform family of uniformly continuous maps ¢~*°(Eg), and they extend to Er__,
and any element z € Egr_ can be written, uniquely, as z = so(z) + >_,~; 55 (2), with so(z) € Eg
and s} (z) € go’”(E}g:O) if n > 1, with s}(z) — 0 when n — oo (this last condition means that
si(x) € mhrp T ((EL)¥=Y), with k, — +00). In particular, this gives a I'g-equivariant decomposition
Er._ =Er® Z (sending z to (so(z),z — so(z))).

Now, if ¢ is a continuous cocycle on I'g, the same is true of the s} (c), and there exists some N such
that s’ (c) has values in 7ri_N+k"g0’”((E§)w:O), with &k, > 0 and k, — +o0o0. But Remark 4.11 tells
us that ©™(s%(c)) is the coboundary of a cochain with values in wfn(7N+k")7T_17ri_5R(EEW:O. Hence
if we set M = N + p' + g, it follows that s’ (c) is the coboundary of a cochain ¢, with values in
7rfM+k"gp_"((EE)¢:0), and ¢ — so(c) is the coboundary of >° -, ¢,; hence H (', Z) = 0.

K2

This concludes the proof. O
4.6.2. The map o;7%*.

Theorem 4.14. Assume that K contains enough roots of unity. There exist universal constants N and
cp such that there exist pNTter _quasi-isomorphisms,

Oéf’paz : TS»,«SyH(R, T) =~ TSTRFcont(GRv Zp(r))a
287 7, Syn(R, 1), =~ 7<, Rl cont (G R, Z/p" (7).

r,n

Proof. We will argue integrally — the case modulo p™ being analogous. Section 3 provides us with a
“quasi-isomorphism” (in degrees < r as, in larger degrees the constants become too large)

Syn(R,r) ~ Cycl(R?] 7).

Choosing a basis of Q! and using the isomorphism R ~ A%’U], we change Cycl(RQ’U], r) into a Koszul

complex and obtain the isomorphism (see §4.1):

Cycl(R“" 1) ~ Kos(i, d, FTA[;’U]).

Then, multiplying by suitable powers of ¢, we can get rid of the filtration (Lemma 4.4) (in degrees < r;
this is the only place where the truncation is absolutely necessary), and change the derivatives into the
action of the Lie algebra of ', to obtain:

T<,Kos(p, 0, FTA[Ig’U]) ~ 7<,Kos(p, LieT'g, Agg’v] (r)).
Standard analytic arguments change this into a Koszul complex for the group (Lemma 4.5):
Kos(ip, Lie I‘R,A%"U] (r)) ~ Kos(¢, 'R, A%’U} (r)).
Then, using (p, I')-module techniques, we get a string of “quasi-isomorphisms” (Lemmas 4.8, 4.10, 4.12):
Kos(p. I'n, AR (1) = Kos(p, T, Al (1) = Kos(w, T, AR (1))
~ Kos(y,Tr, Ar(r)) =~ Kos(p,T'r, Ar(r)).

General nonsense about Koszul complexes (see §4.2) gives us a quasi-isomorphism:

Kos(p,T'r, Ar(r)) ~ [ Rl cont (T'r, Ar(r)) e Rl cont(Tr, AR(r)) ]
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Finally, general (¢, T')-module theory (Proposition 4.13) gives a quasi-isomorphism:

[ RFcont (FR> AR(T)) i chont (FR7 AR(T.)) } =~ RFcont (GRa Zp(r))
g

Remark 4.15. Quasi-isomorphisms between continuous Galois cohomology and Koszul complexes of the
type
Kos(p,T'r, Ar(r)) >~ Rlcont (Gr, Zy(1)),

that we have proved above, were derived before in the case of local fields with imperfect residue fields by
Morita [44] (for torsion representations) and Zerbes [67] (for rational representations), and in the case of
perfect residue field, but with a complex similar to our complex for d = 1, by Tavares Ribeiro [60]. They
are all generalizations of the complex from Herr’s thesis [32].

4.7. Comparison with local Fontaine-Messing period map. The aim of this section is to prove
that our period map coincides with that of Fontaine-Messing. We will first recall the definition of the
latter.

Let E%i denote the log-PD-envelope of R,, in A% (R), ® RL compatible with the PD-structures on

A, and Op. We have E%?L = E%D /p", where E%D is the ring appearing in Lemma 2.38, hence E%I;

has a natural action of Gg (trivial on RY) and a Frobenius ¢ compatible with the Kummer Frobenius
on RE.

Diagram (2.3) extends to the following diagram of maps of schemes.

Spec E%?L
Spec R,,© Spec(Ae(R), ® RE)
Spec RLD,

\

\
il

Spec R,,€ Spec RE

PD
Specry,,

Spec Ok ¢ Spec r;,n
As always, the bottom map is defined by Xg — .

EX

Set Qpep = E%]i ®pt Qp+ . Forr € N, we filter the de Rham complex Q5,5 by subcomplexes
R,n ) w,n w,n R,n

T()e o r mPD r—1 pPD 1
pro =BG = FTTUEL L ®py  Qpe

r—2 EPD 2
n - F R,TL ®R;,n Q

N
RE

Define the syntomic complexes

Syn(R, ) = [F"Qpen —2 0% 0 .

R,n R,n
For a continuous G g-module M, let C(Gr, M) denote the complex of continuous cochains of G with

values in M. One defines the Fontaine-Messing period map

a™ . Syn(R,7), — C(Ggr,Z/p"(r)")

rn
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as the composition

Syn(R,7)n = [FTng?nLW’ ko, ] = C(GR, [F"Qprn L Beo ])
& C(GR [P Aa(B)a—""2Au(R)n]) & C(Gr, Z/p" (1))
The second quasi-isomorphism above follows from the Poincaré Lemma, i.e., from the quasi-isomorphism
F'Ao(R), = F”"Q;E%Dn, r >0,

proved in [63, Lemma 3.1.7] (cf. also Lemma 2.37).
The following theorem allows us to pass from the local Fontaine-Messing period map to the Lazard
type period map we have defined in sections 3 and 4.

Theorem 4.16. If K has enough roots of unity, the map df}x{ is pNTTer _equal to the map dfﬁz from

Theorem 4.14.

Proof. Choose u,v as usual. The equality of the two maps follows from the commutative diagram below
(where we did the p-adic version for simplicity). The objects and maps of this diagram are described
after the diagram. It will be clear from this description that Ky ,(F"REP) = Syn(R,r) and that af™ is
exactly the map obtained form the quasi-isomorphisms in the first row (except for the fact we should get
Cc(Zy(r)") instead of Cg(Zy(r)), but the two are p"-isomorphic), whereas &Z%* is obtained by composing
the quasi-isomorphisms forming the lower boundary of the diagram. Tildas in the diagram denote maps
that we have proved above to be p™"-quasi-isomorphisms or that are known to be such. Little diagram

chase shows that this implies Theorem 4.16. a

Koo (F"REP) —> C6(Ko, o (F"EEP)) <2 Co(K p(F™ Ae(R))) < Ca(Zy(r))

T<r 2 = ! ~

Koo (F"REM) —= Ca(Ko o (FTER™)) <= Co (K4 (FTALY)) <— Co(K (AL (1)) —= Co (Ko (Ag(r)))
/ HH HH HH V| MH

Cr(Ko,p (FTEY ")) <2 Cr (Ko (F7 AL ) < Cr (K (AL (1)) — Or (Ko (An.. (1))

Moo Hoo Hoo V| oo

PL t"

Cr (Ko o(F"EL)) <0— Cr(K (FTAR™)) <— Or(K (AP () — Cr(Ko(AR(r))

DY DY DY v A
rgluvly P rAluely < ACUH () o K, 1 (Ar(r))
Kopr(F"ER™) == Kor(F"AR™) Ko r(Ag (r) o, P ART
V| Zaz U Zaz U| Zazcan

u,v PL u,v t/r‘ u,v
Koo uier(F Ep) <= Ky Lier(FTARY) <o— Ko pier (Al (r))

® Ut T<r

u,v PL u,v
Ka,p,04 (FTEJ[!?,’ ]) ~ waaA(FTAE%7 ])

In the diagram:

e Gand I are Gr and I'g,
e (¢ or Cr denotes the complex of continuous cochains of G or T,
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K denotes a complex of Koszul type:
— the indices indicate the operators involved in the complex:
¢ 0 is a shorthand for (XO%, . ,Xdaixd)7
o I' is a shorthand for (y9 — 1,...,74 — 1), where the ~;’s are our chosen topological
generators of T,
o Liel is a shorthand for (VO, ..., Va), where V; = log;, so that the V,’s are a basis
of LieI" over Z,,

[u,v]

& Oa is a shorthand for ((1 + T)%,Xla%, - 7Xd%)7 viewed as operators on Ajp

or Eg’v], via the isomorphism tcyc : Rg’”] = AE,;’U],

— only the first term of the complex is indicated: the rest is implicit and obtained from the
first term so that the maps involved make sense: ¢ does not respect filtration or annulus of
convergence, and 0 or da decrease the degrees of filtration by 1.

For example, choosing a basis of {2r_ /¢, transforms complexes involving differentials into complexes
of Koszul type: Kum(S,r) = Ky ,(F"S) if S = REP or Rlwl,

Let us now turn our attention to the maps between rows.

The maps AS and FES originating for the upper right corner come from the fundamental exact
sequences of Lemma 2.23 and Artin-Schreier theory of Proposition 4.13.

Going from first row to second row just uses the injection REP ¢ R,

Going from third row to second row is the inflation map from I'p to G, using the injection
R., C R. Note that we could use almost étale descent (i.e. Faltings’ purity theorem or its
extension by Scholze or Kedlaya-Liu) to prove that it is a quasi-isomorphism.

Going form fourth row to third row just uses the injection of R into R.,. We could prove that
this induces quasi-isomorphisms using the usual decompletion techniques, but we do not need it
for the theorem.

The maps A connecting the fourth row to the fifth are the maps connecting continuous cohomology
of I'g to Koszul complexes; they are defined in § 4.2.

All the maps Zaz connecting the sixth row to the fifth are defined as in Lemma 4.6 and Re-
mark 4.7. The same lemma shows that they are well-defined isomorphisms. (In the fourth column,
Zaz is composed with the canonical map Agg’UH' — AE;“’]; this is just to save space and not add
an extra column.)

The maps ¢* connecting the last row to the sixth are the maps appearing in the proof of Lemma 4.4
(multiplication by suitable powers of t).

Finally, let us describe the maps between columns.

The maps from the first column to the second are induced by the natural injections of rings; the
PL-map is a quasi-isomorphism by Lemma 3.11.

The maps from the third column to the second are also induced by the natural injections of rings;
the PL-map are quasi-isomorphisms by Lemma 2.37 (for the first 6 rows) and Lemma 3.11 (for
the last row).

From the fourth to the third the map is multiplication by ¢" (as explained before Lemma 4.4),
composed with inclusion of rings.

From the fourth to the last the map is just inclusion of rings.
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5. GLOBAL APPLICATIONS

Unless otherwise stated, we work in the category of integral quasi-coherent log-schemes. We will denote
by Ok, 0}, and 0% the scheme Spec(Oy ) with the trivial, canonical (i.e., associated to the closed point),
and (N — Ok, 1+ 0) log-structure, respectively.

5.1. Syntomic cohomology and p-adic nearby cycles.

5.1.1. Definition of syntomic cohomology. Let X be a log-scheme, log-smooth over €. For any r > 0,
consider its absolute (meaning over O) log-crystalline cohomology complexes

RTer(X, 7)1 = RO(Xet, R jw, (ke F% jwiy)r BRUex(X, #17) = holim, RU (X, 7).
where ux jw, (k) : (X,/Wn(k))er — Xe is the projection from the log-crystalline to the étale topos and
/}[;]/Wn(k) is the r’th divided power of the canonical PD-ideal #x ,w, &) ( for r < 0, by convention,

/}[g] SWa (k) = Ox, /w, k) and we will often omit it from the notation).
We have the mod p™ and completed syntomic complexes

Rlgyn(X,7), := Rl (X, #1), L —25RI.(X,,)],
RIgyn (X, 7) := holim,, Ry (X, 7).

Here the Frobenius ¢ is defined by the composition
®: RFcr(X, /[T])n - RFcr(Xn) = RFcr(Xl/ﬁF)n 5 chr(Xl/ﬁF>n & RFcr(Xn)

The mapping fibers are taken in the oco-derived category of abelian groups.
We have Rl syn(X,7)5 =~ Rlsyn(X,7) @ Z/p™. There is a canonical quasi-isomorphism

RTuyn(X, )0 = Rl (X )0 Z YR (X ) @ R (X, 6/ _717),0].

Similarly in the completed case.

The above definitions sheafify. Let /C[;]n, ey, and 7, (r) for r > 0 be the étale sheafifications of
the presheaves sending étale map U — X to RI'o(U, JI"),,, R[.(U),, and RIgyn (U, 7)n, respectively.
We have i

Fn(r) = [/C[T] = Hernly  Rlsyn(X,7)n = RT(Xgg, S (1))

r,n

Remark 5.1. Recall that syntomic cohomology can also be defined as cohomology of the syntomic site
with values in syntomic Tate twists. Let us explain briefly how. We will be working with fine log-schemes.
For a log-scheme X we denote by Xy, the small log-syntomic site of X defined as follows. The objects
are morphisms f : Y — Z that are log-syntomic in the sense of Kato, i.e., the morphism f is integral,
the underlying morphism of schemes is flat and locally of finite presentation, and, étale locally on Y,
there is a factorization Y <> W 25 Z where h is log-smooth and ¢ is an exact closed immersion that is
transversally regular over Z. We also require f to be locally quasi-finite on the underlying schemes and
the cokernel of the map (f*Mz)8” — M;P (M> being the log-structure sheaf) to be torsion.

For a log-scheme X log-syntomic over Spec(W (k)), define
O3 (X) = HOX,0),,  #1I(X) = HOX, #1),.

n

We know that the presheaves /,ET] are sheaves on X, ¢yn, flat over Z/p", and that /,Eﬂl RZ/p" ~ ,E“.
There is a canonical isomorphism

RI'(Xsyn, /X]) ~ Rl (X, /[T])n
that is compatible with Frobenius. Set

Fulr) = 7= o7,
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This is the syntomic Tate twist. In the same way we can define log-syntomic sheaves .7, (1) on X, syn
for m > n. Abusing notation, we define .#,(r) = i,.%,(r) for the natural map ¢ : X, syn — Xgyn. Since
iy is exact, RT' (X, syn, 0 (1)) = RT(Xgyn, S (r)). We have

yﬂ(r) = Rg*yn('r)7 € Xsyn — X,
RFsyﬂ(X7 T)n = Rr(Xétvyn(T)) = RF(XSYIU‘S””(T))'

Proposition 3.12 gives a simple description, up to some universal torsion, of syntomic cohomology
sheaves. Namely, assume that X is semistable over Ok or a base change of such. We write

Fn(r) = [ I Bt ) = (57— ) FLL,

cr,n

T /"—
= P ¢
where we set FLTP = [Hoy n—Por n)-

cr,n

Corollary 5.2. (i) Fori # r, the sheafji”i(.gz/cf;f) is annihilated by p~, for a constant N = N (e, d,p,r).
(ii) Fori >+ 1, the sheaf (S (r)) is annihilated by p™ ().
(iii) Fori <r —1, the natural map in_l(;zfcr,n/jc[f}n)eéfi(yn(r)) is a p -quasi-isomorphism, for

a constant N = N(e,d,p,r). Moreover we have the short exact sequence

0= AN ow] FEh) = K (1) = K (T = 0

cr,n cr,n

5.1.2. Syntomic complexes and p-adic nearby cycles. Let X be a fine and saturated log-scheme log-
smooth over 0. Denote by Xi, the locus where the log-structure is trivial. This is an open dense
subset of the generic fiber of X. Fontaine-Messing [28], Kato [36] have constructed period morphisms
(i:Xo—=X,j: Xip — X)

afM F(r)x — "RLZ/p"(r)y,., T >0.

r,n

Assume now that X has semistable reduction over & or is a base change of a scheme with semistable
reduction over the ring of integers of a subfield of K. That is, locally, X can be written as Spec(A) for a
ring A étale over
(5.3)

Ok(XT', X Xavts s Xatws Xasvrt, > Xay Xar1)/(Xas1Xaq1 - Xagp —@"), 1<h<e.

If we put D := {Xaqpt1---Xqg = 0} C Spec(A) then the log-structure on Spec A is associated to the
special fiber and to the divisor D. We have Spec(A)t, = Spec(Ak) \ Dx.
The purpose of this section is to prove the following theorem.

Theorem 5.4. Let X be a scheme with semistable reduction over O or a base change of a scheme with
semistable reduction over the ring of integers of a subfield of K. For 0 <1 < r, consider the period map

oM. %i(yn(T)x) — i*Rij*Z/pn(T)/Xtr'

r,n

(i) If K has enough roots of unity then the kernel and cokernel of this map is annihilated by p™"+¢r

for universal constants N and cp.
(ii) In general, the kernel and cokernel of this map is annihilated by p" for an integer N = N(K,p,7),
which depends on K, p, r.

Proof. Tt suffices to argue locally. Take an Oi-algebra A as in (5.3) and such that Spec(A/p) is nonempty
and connected. We have

RIgyn(Spec(4) r), = Syn(ﬁ, T)n, RIsyn(Spec(4),r) = Syn(zzl\, T).
The Fontaine-Messing period map

afM — af},\l/{A : Syn(A,7), — RT(Yiret, Z/p"(r)"), Y :=SpecA",

r,n
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can be described as the composition of the henselian version of the map dfﬁf with the natural map

C(GRr,Z/p"(r)") — R (Yirst, Z/p"(r)") for R := A" and G - the Galois group of the maximal extension
of R unramified in characteristic zero outside the divisor D. The henselian version of the period map
ap ) is obtained by replacing R with R and G g with Gr. We set Syn(A,r), = Syn(ﬁ, T)n-

Let i« < 7. We need to show that the map

~FM

(5.5) o Hisyn(A,r)n%HiC(GR, Z/p™(r)) — H'RL (Yip e, Z/p™(r)'),

is an isomorphism (up to the wanted constants). To do that we will pass to the completion of A. Consider
the following commutative diagram.

~FM

(5.6) Hi(Syn(A, 7)) —5 H (G, Z/p" (r)) —— H'(Ust, Z/p" (1))

Hi(Syn(A,r),) — H'(Gz,Z/p"(r)") L Hi (U, Z/p"(r)"),
where U = (Spec R), Z# = (Sp E[l/p])tr. Now, the middle vertical arrow is an isomorphism because
the two Galois groups are equal by Lemma 5.8 (combination of Abhyankar’s Lemma and Elkik’s approx-
imation techniques), the map f is an isomorphism by a K (7, 1)-Lemma (see 5.1.4), and the map g is an
isomorphism by a rigid GAGA argument (see 5.1.5). All of which we prove below. It thus remains to
prove that the map

r,n n,A

ap =M 2o HY(Syn(A,r),) — HY(GR, Z/p"(r)), i<,
is an isomorphism (up to the wanted constants). In the case that K has enough roots of unity this follows
from Theorem 4.16 and Theorem 4.14, which proves the first claim of the theorem.
To prove the second claim, we pass from R = A to R' := R((,:), i > ¢(K) + 3, so that R has enough
roots of unity. There the Fontaine-Messing period map is a p™"-quasi-isomorphism, for a universal con-
stant N (as we have just shown). To descend note that this period map is G; = Gal(K;/K)-equivariant,

i.e., that the following diagram commutes (cf. Remark 5.10 below).

~FM

RI(Gy, Syn(RY, 7)) —= RI(G;, C(GRi, Z/p™ (1))

e

n

Syn(R,r), —————— C(GRr,Z/p"(r)")

Q

Hence to finish the proof of our theorem it suffices to quote Lemma 5.9 below. ]
5.1.3. Comparison of Galois groups. Recall the following theorem of Liitkebohmert [43].

Theorem 5.7. (Riemann’s Existence) Let 2™ be a smooth quasi compact rigid space. Let & C 2 be a
normal crossings divisor and set % = % \ 2. Then any finite étale covering of % extends (uniquely)
to a finite flat normal covering of Z .

Proof. This is the main theorem of [43]. One uses the description of the tubular neighborhoods of the
divisor Z from [38, Theorem 1.18] to pass to pointed disks (of varied dimensions), which then can be
treated by the extension lemma [43, Lemma 3.3]. O

Let R be a ring as in (5.3) or a henselization at (p) of such a ring or a ring as in 2.2.2. Let R,, :=
R(Cm)[X;’_flerl, e 7Xfi”fl], for a choice of a primitive m’th root of unity ¢,,, and R, := Uy, Ry, Let E;o

~ —=/
be the maximal extension of R, which is étale in characteristic zero. We define similarly R, and R..
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Lemma 5.8. (i) (Abhyankar’s Lemma) The natural inclusion E;o C R is an equality. In particular, we
have the natural isomorphism

Gr = Gal(R[1/p]/R[1/p]) = Gal(RL[1/p]/RI[1/p]).

(ii) (Approximation) Let R be a henselization of a ring of the form (5.3). The natural map Gz — Gpg
s an isomorphism.

Proof. For the first statement, we first assume that R is of the form (5.3). Recall that R is the direct limit
of a maximal chain of normal R-algebras, which are domains and, after inverting p, are finite and étale
extensions of R[1/p] [X;Eb s Xy ']. Similarly, E;O is the direct limit of a maximal chain of normal
R-algebras, which are domains and, after inverting p, are finite and étale extensions of R._[1/p]. Let Y —
Spec(R[1/p]) be a normal, connected, finite scheme such that the base change Y(gpec r),, — (Spec R)sr,
(Spec R)4; := Spec(R[1/p]) \ {Xatb+1 - Xa = 0}, is a finite étale extension. Since R[1/p] is regular, by
Abhyankar’s Lemma [69, XIII, Proposition 5.2], there exists a number m > 1 such that the finite extension
Yo = (Y Xspee(n(1/p)) SPC(R(Gn) [1/D][X7 11+ X5 1) of Spec(R[1/pl[X -+, X5 ]) is
étale. The first statement of the lemma for follows for R and for its henselization at (p). For R as in
2.2.2, we argue in the same way noting that the rigid space Y above exists by Theorem 5.7.

For the second statement, since clearly Gal(R'_[1/p]/R[1/p])) = Gal(R. [1/p]/R[1/p])), by (i), it
suffices to show that the natural map

Gal (B [1/p]/ B [1/8])) — Gal(RL,[1/p])/Rec[1/9))

is an isomorphism. But

=

Cal(Rou[1/p]/ oo [1/0) = lim Gal(Ron[1/p]/ Bon[1/1]).

Gal(Ro[1/p)/ Rec[1/p))) = lim Gal(Ru[L/p]/ Run[1/p])).

where Em[l/p] (resp. Ryn[1/p]) denotes the maximal étale extension of Ry,[1/p] (resp. Ry [1/p]). Since
R,, is henselian at (p) and (R,,)" = Ry, we have, by Elkik’s theorem [23, Corollary p. 579], that, for
m > 0,

Gal(Ryn[1/p]/ Ren[1/2])) = Gal(Ron[1/p]/ R [1/5))-

To conclude we pass to the limit over m. O

5.1.4. K(m,1)-Lemmas. To show that the map f in diagram 5.6 is an isomorphism, note that this is
just the K(m,1)-Lemma for % and p-coefficients. In the case of the divisor at infinity D being trivial
this is proved by Scholze [57, Theorem 1.2]. The general case we will treat the way Faltings treated the
algebraic case. We have to show that, for any locally constant constructible p™-torsion sheaf .#, any
class 8 € H %y, #), i > 0, dies in a finite étale extension of %/. During the proof we will often pass
to the extension of % generated by taking k’th roots of all the U;’s, k > 0. This is possible since the
normalization of % in this extension satisfies the same/hypothesis as % .

By Abhyankar’s Lemma 5.8 we have G = Gal(R__[1/p]/R[1/p]). Hence, by adjoining k’th roots
of U;’s, for some k > 0, and adding some roots of unity if necessary, we can assume that the sheaf
A is unramified, i.e., that it is a module for the fundamental group of Spec(ﬁ[l/p]). Let j : % —
Sp(ﬁ[l/p]), f ="Uy---Up. There is a spectral sequence

By = H*(Sp(R[L/p))ee, R jul) = H* ¥ (Ues, M)

Taking p*’th roots of f induces multiplication by p** on Eg’t. This can be checked on the finite extension
of Spec(R[1/p]) that trivializes .# and there it follows from the purity statement [21, Thm 7.2.2], [45,
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Proposition 2.0.2], i.e., the fact that
R'j.Z[p" ~ N'MY @ Z/p"(—1), Y :=Sp(R[1/p]),

where My is the log-structure on Y associated to Dg: My = j.0, N Oy, M%p is the induced sheaf of
abelian groups, and My = My /0.

Repeating this procedure several times we reduce to the case when [ is a restriction of some cohomology
class on Sp(R[1/p]). Then we can use Scholze’s K (r, 1)-Lemma again.

5.1.5. Rigid GAGA. To show that the map ¢ in diagram (5.6) is an isomorphism, we will argue by
induction on the number of irreducible components of the divisor Dy, i.e., on s. If s = 0 this is a result
of Gabber [29, Thm 1]. Assume that the isomorphism is true for s — 1. The case of s follows now easily
from the following commutative diagram of localization sequences in the étale and rigid étale cohomology
[21, Thm 7.2.2](we assumed s = 1 for simplicity).

<= Hi(Dg oo, Z/p") ——= H'(Tep, Z/p") ——> Hi(Ust, Z/p") —= H" (D 0, Z/p") — -+~

L |

= Hi(-@éhz/pn) L> Hl(‘%bz/pn) #> Hl(%étvz/pn) - Hiil(-@étvz/pn) —

Here we set T := Spec(R[1/p]), 7 := Sp(R[1/p]), and Z is the rigid analytic spaces associated to D
The vertical isomorphisms follow from the inductive assumption.

5.1.6. Galois descent.

Lemma 5.9. Let Ky be a Galois extension of K, with relative ramification index e; and Galois group
G. Set R := R®gy Ok,. The natural map

RIgyn(R,7) — RI'(G,Rlsyn (R, 7))
s a p° e -quasi-isomorphism for some universal constant c.

Remark 5.10. One can see the G-action on RI'syn (R1,7) and the map RI'syn (R, r) — RLgyn(R1,7) very
explicitly. Namely, instead of the coordinate ring Or[T}] of Ok,, T) — w1, one can take the coordinate
ring Op[T, Xy,0 € G], T — w, X, — o(wy1). The action of G on this coordinate ring is defined by
9(T) =T, 9(Xo) = X40,9 € G.

Proof. Since crystalline cohomology satisfies étale descent we may assume that our extension is totally
ramified. Write

ROy (R, 7) = [RT(R)¥~P" 3 R (R)/F"],
R (R)?="" := [RTe(R)“—3RTc,(R)]

It suffices to show that the maps

~

Rl (R)?7F" 5 RI(G, Rl (R1)?™?"), RI(R)/F" = RI(G, Rl (Ry)/F")

are p “l-quasi-isomorphisms.
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To treat the first map consider the following diagram of maps of schemes

Ro(i> R,

<

R

|

E—— Ok

It yields the commutative diagram

%
'R

RFCI (R) —_—> chr (RO)

| |

RI'(G,RT:(R1)) T RI'(G,RT;(Ro))
Since the right vertical map is a ej-quasi-isomorphism, it follows that it suffices to show that the morphism
Rt (R)#=" & Ry (Ro) ="
and its analog for Ry are p°"ej-quasi-isomorphisms. To see this for R consider the following factorization
o™i REu(R/6r)*=" BRI (Ry/Op)?="" 1% R (R)O) ="

of the m’th power of the Frobenius, where p™ > e. We also have i}j, = ¢™. Since ¢™ is a p*""-quasi-
isomorphism on RI'¢,(R)?=P" and on RI'¢;(Ry)*=P" both i% and j, are p"™-quasi-isomorphisms as well.
The reasoning in the case of R; is analogous.

It remains to show that the map

~

RL(R)/F" = RI(G, RTe(Ry)/F")

is a rpUrOx1/x0) 4 ¢ -quasi-isomorphism. For that recall that Beilinson’s identification of filtered log-
crystalline cohomology with filtered derived log de Rham complex [8, 1.9.2] allows to prove that, for
n > 1, the natural map

Rl (R)y/F" — RU(R/ O %)y /F" ~ RTar(R/ Ok )n/F"

is a rpr(Ox/x0)_quasi-isomorphism [46, proof of Corollary 2.4]. Same is true for R; with a constant
rpUrO0x1/K0) | Tt follows that it suffices to show that the map

RFdR(R/ﬁK)n/FT — RF(G, RFdR(Rl/ﬁKl)n/Fr)
is a ej-quasi-isomorphism. But, since, Q;ﬁ/ﬁ}( = Q}%/ﬁx ®e, Ok, , this is clear. O
Using Corollary 3.16 and the proof of Theorem 5.4, we can relate de Rham and p-adic rigid étale

cohomology. More specifically, let 2 be a quasi-compact formal, semistable scheme over O (i.e., locally
of the form described in section 2.1.2 with h = 1). For ¢ > 0, consider the composition

. . aFM .
ari s Hig (Zxu) — Hyp (2, 1) Q== He (200, Qp(r))-
Corollary 5.11. Fori <r —1, the map

Qg - HZi;{l(%K,tr)_’Hét(f%K,trv Q,())

is an isomorphism. Moreover, the map o, : Hg;{l(%Kytr) — HL (X o, Qp(r)) is injective.
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5.1.7. Geometric syntomic cohomology. Recall the definition of the geometric syntomic cohomology, i.e.,
syntomic cohomology over K. For a log-scheme X, log-smooth over &} and universally saturated, we
have the absolute log-crystalline cohomology complexes and their completions

Rl (X, Z)n = RFcr(Xﬁf,ét,RUXﬁ?,,L/Wn(k)*/;[g,?n/wn(k)),
Rl (Xo,, #1") : = holim, Rl (Xo o, 7)),
Rle(Xoy. /), 1 = Rla(Xoy, /1) 0 Q,
By [7, Theorem 1.18], if X is proper, the complex chr(Xﬁ?) is a perfect A.-complex and
REer(Xo)n = Rlex(Xo) ©F,, Acr/p" ~ Rlex(Xo) ©F Z/p".

In general, we have:
Rl'w(Xor, #M)n = Rl (Xoy, 71) 0% Z/p".
Moreover, F"A., = RT ¢ (Spec(0%), #™) [63, 1.6.3,1.6.4].

For r > 0, the mod-p", completed, and rational syntomic complexes RIsyn(X e, 7)n, Rlsyn(Xeo,7),
and RTgyn (X O r)q are defined by the analogs of formulas we have used in the arithmetic case. We have
Rlgyn (X, ")n = Rlgyn (X 1) @ Z/p™. Let .7 (r) be the étale-sheafification of the presheaf sending
étale map U — Xp_ to RIsyn(U, 7). Let 7, (r) denote the étale-sheafification of the mod-p™ version of
this presheaf.

Corollary 5.12. (i) Let X be a semistable scheme over Ok or a base change of a semistable scheme
over the ring of integers of a subfield of K. Then for 0 < j <r, the kernel and cokernel of the map

oM. ij(yn(r)xﬁ?) — g»‘RJZ*Z/IJTL(T)/XK

n

is annihilated by p™", for a universal constant N. Here i : Xo — Xﬁ?,i Xy ' Xog-
(ii) Let X be a fine and saturated log-scheme log-smooth over 0. If X is proper then the map

M HL L (Xeo ) = H (X, 7,Qp(r), j<r,

I syn

18 an tsomorphism.

Proof. The first claim follows from Theorem 5.4 by going to the limit over finite extensions of the base
field.

It implies the second statement of the corollary for semistable schemes and with the group H styn (Xo,7)
as the domain. Here HN%,H(X@?, r) = liLnHjRFSyn(Xﬁ?, T)n, j > 0, denotes the naive syntomic coho-

n
mology. We have a natural map H,,(X¢,,r) = HNZ,(Xe,_,r). Since the groups H* (X, % Z/p"(r))
are finite all the relevant higher derived projective limits vanish and we can replace the naive syntomic
groups with the “real” ones.

To pass to general log-smooth schemes we use the following observation. We can assume that K has
enough roots of unity. By [55, Theorem 2.9], there exists a ramified extension K; of K such that the
base change X¢, has a semistable model. That is, there exists a log-blow-up 7 : Y — Xg, such that
Y is a semistable scheme (with no multiplicities in the special fiber). We have the following commutative
diagram

FM

rn

Hsjyn(Y7 T)YL H](Kr,Z/pn(’f')/)

* *
s T T
FM

Hgyn(XﬁKl ) r)n — HI (Xtr,Kl ) Z/pn(T')/)

Since log-blow-ups do not change syntomic cohomology [48, Proposition 2.3] and the top horizontal map
is a pV"-quasi-isomorphism, for a constant N independent of n, so is the bottom one.
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The final claim in the corollary is now clear. ]

5.2. Semistable comparison theorems. We show in this section how the comparison theorem for
p-adic nearby cycles (cf. Corollary 5.12) combined with the theory of finite dimensional Banach Spaces
allows us to reprove the semistable comparison theorem for schemes and prove a semistable comparison
theorem for formal schemes.

5.2.1. Semistable conjecture for schemes. For X proper and semistable over Ok (with no multiplicities
in the special fiber), we have [46, 3.2

(5.13) RTyu(Xo,,7)q = [RTuk (X) ®@p BE#= V=0 15 (RT g (Xk) @k Big)/F"]

Here RI'uk(X) ~ Rl (Xo/0%)q is the Hyodo-Kato cohomology of X defined by Beilinson [7] and
tar : Rk (X) — RIgr(Xk) is the Hyodo-Kato map (associated to w). The Hyodo-Kato complexes
are built from finite rank (p, N)-modules. We set

1-¢/p"
RFHK(X) XRrE B:; —_— RFHK(X) QQF BSJ';

[RE1ic(X) @ BEJ#=7" V=0 = iN
1
RFHK(X) XRr Bst —_— RFHK(X) QF B;

Recall that H’ [RT gk (X) @ p B3|#=P V=0 = (H} (X) @p BE)#="N=0 46, Corollary 3.25]. By the de-
generation of the Hodge-de Rham spectral sequence [22, Corollary 4.2.4] we also have H7 ((RT4r (X k) ®x
Bli)/F") = (Hix(Xk) ®Kx Big)/F". It follows that we have the long exact sequence

(5.14) — (Hig (XK) ©k BjR)/F" — H,\(Xo,1)q — (Hjx(X) ®p Bf)#=7 V=0
- (HgR(XK) K BIR)/FT —

Corollary 5.15. (Semistable conjecture) Let X be a proper, fine and saturated log-scheme, log-smooth
over O}, with Cartier type reduction. There exists a natural By -linear Galois equivariant period iso-
morphism

a: Hi(Xtrf, Q,) ®q, Bst ~ Higi (X) @ By

that preserves the Frobenius and the monodromy operators, and, after extension to Byr, induces a filtered
isomorphism

a: H'(X, % Q) ®q, Bar ~ Hig(Xx) ®x Bar

Proof. Take r > i. The period map is induced by the following composition

FM

H (X, 70, Qp(r) = Hiyo(Xog,r)q = (Hi(X) ©p Byt)# V=0 — Hipe(X) @ B

The first map is an isomorphism by Corollary 5.12. The period map is clearly compatible with Galois
action, Frobenius, monodromy, as well as with filtration (after extending to Bgr). To prove our corol-
lary, it suffices to show that H)z(Xx) is admissible and that the above map induces an isomorphism
H'(X,, 7% Qp) = Vit (Hir(Xk)). To do that we will use Corollary 5.12, exact sequence (5.14), and the
theory of finite dimensional Banach Spaces from [19] to prove Proposition 5.20 below that will imply our
corollary (take D' := (Hjx (X), Hig (Xk), tar : Hijc (X) — Hig(Xk)). O
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5.2.2. Finite dimensional Banach Spaces. Recall [19] that a finite dimensional Banach Space W is,
morally, a finite dimensional C-vector space (C := F/\) up to a finite dimensional Q,-vector space.
It has a Dimension!! Dim W = (a,b), where a = dim W € N, the dimension of W, is the dimension of
the C-vector space and b = ht W € Z, the height of W, is the dimension of the Q,-vector space. More
precisely, a Banach Space W is a functor A — W(A), from the category of sympathetic algebras (spectral
Banach algebras, such that x +— aP is surjective on {z, |z — 1| < 1}; such an algebra is, in particular,
perfectoid) to the category of Q,-Banach spaces. Trivial examples of such objects are:

o finite dimensional Q,-vector spaces V, with associated functor A — V for all A,

o V4 for d € N, with V¢(A) = A4, for all A.

A Banach Space W is finite dimensional if it “is equal to V¢, for some d € N, up to finite dimensional
Q,-vector spaces”. More precisely, we ask that there exists finite dimensional Q,-vector spaces Vi, Va
and exact sequences!?

0=V —=-Y—-Vi—0, 01 —Y—-W-—0,

so that W is obtained from V¢ by “adding V; and moding out by V5”. Then dimW = d and ht W =
dimq, V1 —dimq, V2. (We are, in general, only interested in W = W(C') but, without the extra structure,
it would be impossible to speak of its Dimension.)

Proposition 5.16. (i) The Dimension of a finite dimensional Banach Space is independant of the choices
made in its definition.

(i) If f : Wy — Wy is a morphism of finite dimensional Banach Spaces, then Ker f, Coker f and Im f
are finite dimensional Banach Spaces, and we have

DimW; = DimKer f + DimIm f and Dim W, = Dim Coker f + DimIm f.
(iil) If dim W = 0, then ht W > 0.

(iv) If W has an increasing filtration such that the successive quotients are V', and if W' is a sub-

Banach Space of W, then ht W' > 0.

Proof. The first two points are the core of the theory [19, Th. 0.4]. The third point is obvious and the
fourth is [20, Lemme 2.6]. O

Corollary 5.17. (i) If Wy is a successive extension of V'’s, and if Wo is of dimension 0, then any
morphism Wi — Ws is the 0-map.

(ii) Let Wy, Wy be finite dimensional Banach Spaces, W1 = W1(C) and Wy = Wy (C). Suppose that
Wy is a successive extension of V1’s, and that we are given a Qp-linear map f : W1 — Waq which lifts to a
morphism f: W1 — Wy of finite dimensional Banach Spaces. Then, if we are in one of these situations:

o dimq, Coker(f Wi — Wg) < 00,
e dimq, Ker(f W1 — Wg) < 00 and dimW; = dim W,
the map f: Wy — Wy is surjective.

(iil) If f : Wy — Wy is a morphism of finite dimensional Banach Spaces, and if the kernel and cokernel
of fc : W1 (C) — Wy (C) are finite dimensional over Q,, then dim W, = dim W.

Proof. Let f: W; — W3 be a morphism. We have dimIm f = 0 since dim Wy = 0. Now, ht W; = 0;
hence ht Im f = —ht Ker f, and ht Ker f > 0 by (iv) of Proposition 5.16 and our assumption on W;. So
ht Im f < 0, and since dimIm f = 0, we obtain Im f = 0, as wanted.

To prove (ii) in the first situation, note that the Banach Space Coker(f : Wi — Ws) is of dimension 0
since its C-points are finite dimensional over Q, by assumption. Hence we can apply (i) to deduce that

U [19], the dimension is called the “dimension principale”, noted dimp,, and the height is called the “dimension
résiduelle”, noted dimyes, and the Dimension is called simply the “dimension”.
125 sequence 0 — W1 — Wy — W3 — 0 is exact if and only if 0 — Wi (A) — Wa(A) — W3(A) — 0 is exact for all A.
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this cokernel is 0, hence also the cokernel of f : W7 — W,. In the second situation, the assumption
dimq, Ker(f W — Wg) < oo imply that dim Ker(f W, — Wg) = 0 and, since dimW; = dim W,
this implies that dim Coker ( f:W; — Wg) = 0, and we conclude as before.

Finally, (iii) is a consequence of (ii) of Proposition 5.16, which implies (forgetting the heights),

dim W; — dim Wy = dim Ker f — dim Coker f,

and the fact that dim Ker f = dim Coker f = 0 since their C' points are of finite dimension over Q, by
assumption. O

Example 5.18. Let D = (Dg, Dqr, \), where:
e Dy is a finite dimensional F-vector space with a bijective semi-linear Frobenius ¢, and a linear
monodromy operator N such that Ny = ppN,
e Dgygr is a finite dimensional K-vector space with a decreasing, separated, exhausting filtration
indexed by N,
e \: Dy — Dgr is a F-linear map.
If r € N, define

X5(D) = (7B @p D) *~ """ and  Xig(D) = (" "Bl @x Dar)/F°.

These are the C-points of finite dimensional Banach Spaces X[, (D) and X}y (D), and we have (cf. [19,
Proposition 0.8]),

dim X} (D) = (rdimg Dag — » _ dim F'Dag, 0)
i=1
dim X%, (D) = Z (r —ri, 1), where the r;’s are the slopes of ¢, repeated with multiplicity.
r<r
In particular, if F" "' Dgr = 0 and if all r;’s are < r (we let 7(D) be the smallest r with these properties),
then

dim X% (D) = (rdimp Dy — tn(Dgt),dimp Dgt) and  dimXjg(D) = (rdimg Dar — tg(Dar), 0).

Here ¢ty (D) = vp(det ) and ty (D) = Y, i dimg (F*Dar/F* ™ Dar).

Now, the map A extends (using the natural map B, — Bi) to a map X (D) — Xi(D) of fi-
nite dimensional Banach Spaces and, if A\ : K ®p Dgt — Dggr is bijective (in which case we set
rtk D = dimp Dgy = dimg Dggr), then the kernel of the C' points of this map is Vg (D) if » > r(D)
([19, Proposition 10.14]).

The following result is a variant of the theorem “weakly admissible implies admissible”.

Lemma 5.19. If A : K ®p Dy—Dqgr is an isomorphism, and if tg(Dar) = tn(Ds), the following
conditions are equivalent:

(1) V(D) is finite dimensional over Q,,

(ii) the map X5 (D) — Xir(D) is surjective for r = r(D).

(it") the map XL (D) — X3r (D) is surjective for all v > r(D).
Moreover, they imply:

(iii) tn (D) > tg(D’) for all D' C D stable by N and ¢ (i.e. D is weakly admissible).

(iv) dimg, Vit (D) = 1k D.

Proof. The hypothesis tg(Dar) = tn(Ds) implies that dim(X%g (D)) = dim(X[ (D)) for all r» > r(D).

Now, X7z (D) is a sucessive extension of V!’s; hence, if V(D) is finite dimensional over Q,, we are in

the second situation considered in Lemma 5.17 (ii), which proves the implications (i)=-(ii) and (i)=-(il’).
The converse implications and (iv) are just Dimension arguments.
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Now, if there exists D’ with tx(D’) < tg(D’), then dim(X[ (D)) > dim(X(jr (D’)) if r is big enough,
so the dimension of Ker (X, (D') — X4 (D’)) is > 1 and V(D') is infinite dimensional over Q,,. As this
contradicts our hypothesis that V(D) is finite dimensional over Q,, this proves (iii). O

Proposition 5.20. Assume that, for r € N, we have a set of D' = (D;t,DéR, M), i € N, as above but
with the additional condition I?""rlDz1R =0, and long exact sequences

c— H'(r) = X5(D") — Xig(D') — H'H(r) — -

Assume that dimq, H'(r) is finite if r > i. Then:
(i) the map X' : K ®p DY — D}y is bijective, if i > 0,
(ii) D? is weakly admissible, if i > 0,
(iii) the map X7 (D*) — X}x(D?) is surjective, if r > 1,
(iv) H(r) = Vg (DY), if r > i.

Proof. To see (i) note that the fact that H®(r) and H**1(r) are finite dimensional over Q, for r big
enough implies that dim (X% (D?)) = dim(X7, (D?)) for all such r by (iii) of Corollary 5.17. This, in turn,
implies that dimp D%, = dimg D! and tg(D?) = tn(D?).

Now, let D’ := Im(A\?) C Diy. Then the image of X, (D") in X7 (D) is included in X’z (D’) and
so the cokernel surjects onto X5 (D?/D’) = 0. Since its C-points inject into H**(r) which is finite
dimensional over Q,, it follows that dim(X/g(D*/D’)) = 0 if r > ¢ + 1. This implies that D*/D" = 0,
and that A is surjective, hence bijective.

Claim (ii) follows from claim (i) and Lemma 5.19. Note that it implies that r(D?) < i since F*"*' D}y
0 by assumption.

If i <7 —1, the map X/z(D") — H*"'(r) is the zero map, since the source is the C-points of a
successive extension of V1’s and the target is a finite dimensional Q,-vector space by assumption. This
allows to split the long exact sequence into short exact sequences 0 — H'(r) — X7 (D*) — Xz (D*) — 0
fori<r—1and 0— H"(r) — X7, (D") — Xz (D"). We conclude that H'(r) = V4 (D?), if i <r, using
inequality 7(D*) < i and Lemma 5.19. O

5.2.3. Semistable conjecture for formal schemes. Let 2 be a fine log (p-adic) formal scheme, log-smooth
over 0, and universally saturated. We define the arithmetic and geometric syntomic cohomology of 2~
by the same formulas as in the algebraic setting.

For 2 semistable over Ok, we have a rigid analytic version of the period map of Fontaine-Messing

ot HI (2, 7)n — H (2, Z/0" (1)),

The definition is a straightforward analog of the algebraic definition [63, p. 321]. Namely, we cover
2 with open affine formal schemes of the right presentation, use the Fontaine-Messing map on each
open set almost verbatim to end up with a Cech complex of Galois cochains. Then we use the K (7, 1)-
Lemma for p-coefficients to pass to a Cech complex of étale cohomology. That is, in the local version
of this map one combines the map a; ) : Syn(R,r), — C(Gr,Z/p"(r)') with the quasi-isomorphism
C(GRr,Z/p"(r)) = RI((Sp(R[1/p)))tr.cts Z/p"(r)"). This quasi-isomorphism is obtained from the Rie-
mann’s Existence Theorem 5.7 by Abhyankar’s Lemma argument as in Lemma 5.8. Finally, we descend.

Corollary 5.21. Let 2" be a proper semistable formal scheme over Ok . Then the period map
QEM : (%ﬁ r)qQ = Hj(%‘?,terp(T))v J<

syn
s an isomorphism.

Proof. The first claim follows from Theorem 5.4 by going to the limit over finite extensions of the base

field. It implies the second statement with the naive syntomic cohomology groups HNZ  (Z¢,.,7) =
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1i7m HIRT gy (26, 7)n in place of the syntomic cohomology groups. Since the groups H* (2% irr Z/p"(1))
are finite [57, Theorem 1.1] all the relevant higher derived projective limits vanish and we can replace the

naive syntomic groups with the “real” ones. The final claim in the corollary is now clear. ([

To proceed, we need to derive a presentation of the geometric syntomic cohomology using Hyodo-Kato
and de Rham cohomologies analogous to the one we have used in the algebraic setting. Assume that
the log-scheme 27 is of Cartier type over Spec(Ok 1)*. We have the Hyodo-Kato cohomology complex
Rk (2) ~ Rl (20/0%)q and the quasi-isomorphisms [7, 1.16.2]

(RFHK(%) SF B:;)N:O ~ RFHK(%) RQF B:rr, Ler * RFHK(%) QF B;rr = RFCY(%)Q,
that are compatible with the action of N and ¢. Recall that the complex RI'yk (2") is built from finite
rank (¢, N)-modules over F. We also have the Hyodo-Kato isomorphism [7, 1.16.2]
LdR - RFHK(%—) ®FK:>RF(1R(%K).
Since, for £ semistable over Ok, we have RT4r(Zx) ~ RLqr(ZKk ), in that case the Hyodo-Kato
isomorphism has the following form

tar © RTuk(2) @r K = RLGr(Zxk br)-

Proposition 5.22. For 2 proper and semistable over Ok with Cartier type reduction, we have
(i) the quasi-isomorphism

(5.23)  Rlun(Zo.r)q = [RTuk(2) ©p B V=01 (RTyp (25) @ Blp)/F']
i) for 3 <r, the following short exact sequences
(ii) for j <, the following sh q
(5.24) 0— HW(Zowm)q — (Hh (2) @ BL)P™N=0 — (Hiy (Zk) @k BiR)/F" — 0

Proof. Recall [7] that we have the complexes
RO R (26 )n =R0( 2o, LS o) RIY: (26, )®Z, := holim, RTY L (26 ),

REin(20,)8Qp =(RUiR(26,)0Z,) © Q.
These are objects in the filtered co-derived category. Here LQ%{F /6w denotes the derived log de Rham
! OFm

complex (see [6] for a review). The hat refers to the completion with respect to the Hodge filtration (in
the sense of prosystems). Set Agr := LQE’%/@’K' By [7, Iiemma 3.2] we have Agr = RI‘ER(@%). The
corresponding F-filtered algebras Agr.n, Adr®Z),, Aqr®Q, are acyclic in nonzero degrees and the
projections -/F™*1 — ./F™ are surjective. Thus (we set limp := holimp)

111{}1 AR®Q, = liLﬂHO(AdR@Qp/Fm) =Bl Amr®Q,/F™ =Bl /F™.
m

Recall that we have the quasi-isomorphism [46, Thm 2.1]

~

kil RPa(Zo.)q/F" = RIR(26,)8Q,/F'.
This yields the first quasi-isomorphism in the following diagram.

(1_‘97";”;1)

RFSYH(%@?’T)Q = [RF“(%@?)Q chr(%ﬁy)Q @ (RFZR(%ﬁ%)@Qp)/FT]

1=yt t)
_—

~ (
= [RTo(Zeoy)q Rl (26, )q ® RTar(2k) @k BiR)/F]

To define the second quasi-isomorphism note that the natural map RFER(% )®Q, — RT4r(Z2%) is a
filtered quasi-isomorphism: it suffices to show that the natural map

gri RI( 2, LQ}’KA/ﬁF)@Qp — grt RT( 2%, LQ'{E’;/@X()@QZ,
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is a quasi-isomorphism for all ¢ > 0 and this was done in [46, proof of Corollary 2.4]. It yields, by
extension to AdR®Qp, a quasi-isomorphism of F-filtered K-algebras

v: ROar(2k) @k (Aqr®Q,) = R (25,)8Q, :

one can use here the arguments of [7, 3.5] almost verbatim. Its mod F"-version v, is the quasi-isomorphism

v (RTar(2k) ®Kx Big)/F™ = RFER(«%ﬁf)/FT

The quasi-isomorphism (5.23) is now defined by the following composition of morphisms

RFsyn(%ﬁ?, T) :> RFCT(%ﬁ?)Q

(1_897‘77;1"'@;1)

Rl (26, )q ® (RTar(Zk) @ BlR)/F"

(1= tar®2)
Rluk(2) ©@p BY, — = Rl (2) @ BY, ® (RTar(2%k) @ BiR)/F"

lN |ovo

1—pr 1
| RT'uk(2) ®r B, ? Rluk(2) ®r B,

T2

Here second quasi-isomorphism uses the fact that the following diagram commutes (proof of [46, Lemma
3.23] goes through)

—-1,-1
Yy R, QL

Rlo(20,)q ®ps BY, (RTar(2%) ®x Bly)/F"

Ler |2

This proves the first claim of our proposition.
For the second claim, taking cohomology of the homotopy fiber (5.23) we get the long exact sequence

— HI7Y((RT4r(2x) ®x BIR)/F") — H\ (2o m)q — H! [RTuk(27) @p Bf]#=7N=0

syn

— H?((RTar(2¥%) @k Big)/F") —
But, arguing as in the algebraic case [46, Corollary 3.25], we obtain the isomorphism
HI[RTux (2) @p BE]#P7PN=0 o (i (27) ©p BE)#N0
Hence we have the long exact sequence

— B (RTar (i) ©x Bi) /") — B (Z0,0,7)q — (Hiyc(2) ©p BY)#= V=0

syn

— H/((RLar(2x) ©x Big)/F") —

To show that it splits into short exact sequences for j < r, we start with the observation that the coho-
mology groups H’((RTqr(Zk) ®x Bly)/F") are finite dimensional Banach Spaces which are successive
extensions of V1. This is because they are finite length Bg‘R—modules: we have

H (grp(RTar(2x) @k Bip)) ~ @ H () @k e " Bl
k>0

We get the required short exact sequences by the same argument that we have used in the proof of
Proposition 5.20 (the key point being that, by Corollary 5.21, the groups Hsjyn(%ﬁ?,r)Q, j < r, are
finite dimensional vector spaces over Q).

It remains to show that, for j < r , we have an isomorphism

H7(RTar(2k) @k BiR)/F") ~ (Hix(2k) @k BiR)/F".
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Just as in the algebraic case this statement (for all j) is an immediate result of the degeneration of the
Hodge-de Rham spectral sequence which follows from the de Rham comparison theorem for proper rigid
analytic spaces proved by Scholze [57]. It also can be proved directly via the following arguments. By
(5.24), we have a surjection

(Hi(2) @p BE)P="N=0 = HI((RT4r(2k) @K Big)/F"), j<r.
Since the above map factors through the natural map
(5.25) (Hin(25) @k Big)/F" — H((RFar(2k) ©x Big)/F"),
that latter is surjective as well. But it is also injective. Indeed, we have the distinguished triangle
F'(RTar(2xk) ®x Big) = RTar(2x) ®x Bl — (RTar(2k) ®@x Bg)/F"

It yields the long exact sequence of cohomology groups

j o i j j T
— H/F"(RPar(2%) @k Big) = Hip(2k) @k Big — H'(RTar(2k) ®x Big)/F") —
Since F"(H)p(Zx) ®x Big) = Im f;, the map in (5.25) is injective. We are done. O

Corollary 5.26. (Semistable conjecture) Let 2 be a proper semistable formal scheme over Ok . There
exists a natural Bgy-linear Galois equivariant period isomorphism

a: H/ (2%, Qp) ®q, Ba ~ Hjjy (%) @F By
that preserves the Frobenius and the monodromy operators, and induces a filtered isomorphism
«: Hj(‘%/?;cr? Qp) ®Qp Byr ~ HgR(%K,tr) QK Byr.

Proof. Take r > j. The period map is induced by the following composition

H (2 10 Qu(r) " Hip (2o m)q — (Hi(2) ©F Bo)?™P V=0 — H}y (27) ®F B

syn
The first morphism is an isomorphism by Corollary 5.21. The proof of our corollary proceeds now as the
proof of Corollary 5.15 using the short exact sequence (5.24). ]

Remark 5.27. It is shown in [49] that the distinguished triangles (5.13) and (5.23) lift canonically to
the category of finite dimensional Banach Spaces.

Remark 5.28. It is likely that de Rham conjecture for smooth and proper rigid analytic spaces proved
by Scholze [57] can be derived from the semistable comparison in Corollary 5.26 using the existence of
local (in the étale topology) semistable formal models of smooth rigid analytic spaces proved by Hartl
[31] and the “gluing on the generic fiber” techniques of [7], [46].
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