THÉORIE LOCALE DU CORPS DE CLASSES ET $(\varphi,\Gamma)\text{-MODULES LUBIN-TATE}$

par

Pierre Colmez

À la mémoire de John Tate

 $\label{eq:Resume.} \textbf{\textit{Résumé.}} \quad \text{Mous montrons comment déduire la détermination de l'extension abélienne maximale de F, où $[F:\mathbf{Q}_p]<\infty$, de la théorie des (φ,Γ)-modules Lubin-Tate.}$

Abstract. We show how to deduce the determination of the maximal abelian extension of F, with $[F: \mathbf{Q}_p] < \infty$, from the theory of Lubin-Tate (φ, Γ) -modules.

1. Introduction

1.1. Extraits de la correspondance Serre-Tate. — La théorie de Lubin-Tate [9] fournit une construction explicite des extensions abéliennes des extensions finies de \mathbf{Q}_p . Elle apparaît à la fin d'une lettre de Tate à Serre [14], du 10 janvier 1964.

One more thing before I mail this : I think that Lubin's business in his thesis will give the "explicit reciprocity law" in local class field theory;

[...]

The miracle seems to be that once one abandons algebraic groups, and goes to formal groups, the theory of complex multiplication applies *universally* (locally) and indeed the "full" groups on *one*-parameter already just suffice, one for each ground field! I have no idea for a proof at present.

[...]

Les preuves n'ont pas tardé à arriver : on peut les reconstruire à partir des indications données dans une lettre [14] du 3 mars 1964 :

Lubin and I recently proved the following results, which I would write in French if I were Bott $^{(1)}$.

Let k be complete with respect to a discrete valuation with finite residue class field with q elements. Let A be the ring of integers in k and let π be a prime element in A. Let $f(X) = X^q + \cdots + \pi X$ be a polynomial of degree q with coefficients in A, highest coefficient 1, such that $f(X) \equiv X^q \pmod{\pi}$, f(0) = 0, and $f'(0) = \pi$; for example, we might take $f(X) = X^q + \pi X$ simply, (although if $A = \mathbf{Z}_p, \pi = p$, we might want to take $f(X) = (1 + X)^p - 1$). For each integer $m \geq 1$, let

$$f^{\circ m}(X) = X^{q^m} + \dots + \pi^m X = f(f(\dots(f(X))\dots))$$
 (m-th iterate of f).

Let W_f be the set of elements $\lambda \in \bar{k}$ such that $f^{\circ m}(\lambda) = 0$ for some m, and let $K_{\pi} = k(W_f)$ be the field generated over k by these elements (it does in fact depend only on the choice of π , not on the choice of f).

THEOREM. — K_{π} is the maximal abelian extension of k such that π is a norm from every finite subfield, and for each unit u in k, and each $\lambda \in W_f$ we have $(u, K_{\pi}/k)(\lambda) = \underline{u}_f^{-1}(\lambda)$, where $\underline{u}_f(X) \in A[[X]]$ is the unique formal series such that $\underline{u}_f(X) \equiv uX$ (mod deg 2) and $\underline{u}_f(f(X)) = f(\underline{u}_f(X))$

The existence and uniqueness of such a series (for any $u \in A$, not only for units) is a trivial exercise; you construct it stepwise, coefficient by coefficient and observe at each step that the *n*-th coefficient is in A because, for any series $G(X) \in A[[X]]$ the coefficients of $G(X^q) - (G(X))^q$ are divisible by $\pi + \pi^r$ (for $r \geq 2$).

I am of course deliberately obscuring the issue. The point is that in the same way, you show that there is a unique $F_f(X,Y) \in A[[X,Y]]$ such that $F_f(X,Y) \equiv X+Y \pmod{\deg 2}$ and

$$f(F_f(X,Y)) = F_f(f(X), f(Y)),$$

and you verify (by the unicity statement in the general lemma you are now mentally formulating) that

$$F_f(F_f(X,Y),Z) = F_f(X,F_f(Y,Z))$$

because both are $\equiv X+Y+Z \pmod{\deg 2}$ and both "commute" with f. Moreover you check that F_f is not only a formal group, but a formal A-module over A, via the series \underline{u}_f .

[...]

^{1.} Une référence à la lettre que Bott a envoyé à Serre pour annoncer sa périodicité.

Now one shows easily that the torsion points over \bar{k} on the formal A-module F_f constitute an A-module isomorphic to k/A. Hence there is an injection $G(K_\pi/K) \hookrightarrow U = \text{units in } A$. It is a surjection, because the Eisenstein polynomials $f^{\circ m}(X)/f^{\circ (m-1)}(X) = X^{q^m-q^{m-1}} + \cdots + \pi$ are irreducible in k. These same polynomials show that π is a universal norm from K_π . Now you can believe that one can check that the isom $\lambda \mapsto \underline{u}_f^{-1}$ is the reciprocity law; one uses the fact that any two of our formal groups F_f and $F_{f'}$ (for different π and π') are isomorphic over the completion \hat{B} of the ring of integers in the maximal unramified extension T of k.

[...]

Notice that we have constructed the canonical homomorphism $\theta: k^* \to G(K_{\pi}T/k)$ without using any class field theory at all; using class field theory we see that $\theta =$ reciprocity law, and hence, since θ is injective, $K_{\pi}T$ is the maximal abelian extension of k. Probably one could prove that directly, too, using ramification theory.

[...]

Notre but, dans cet article, est de donner une preuve assez directe de ce résultat de la théorie locale du corps de classes mentionné par Tate.

1.2. Notations. — Commençons par fixer un certain nombre de notations $^{(2)}$. Soient F une extension finie de \mathbf{Q}_p et ϖ une uniformisante de F. On note \mathscr{O}_F l'anneau des entiers de F et k_F son corps résiduel. On note v_{ϖ} la valuation sur F normalisée par $v_{\varpi}(\varpi) = 1$. Alors v_{ϖ} s'étend, de manière unique, à une clôture algébrique \overline{F} de F ainsi qu'au complété \mathbf{C}_p de \overline{F} pour v_{ϖ} .

Si $q = |k_F|$, on note \mathscr{G} le groupe formel de Lubin-Tate associé au polynôme $P := \varpi X + X^q$. Si $a \in \mathscr{O}_F$, on dispose de $[a] \cdot T \in aT + T^2\mathscr{O}_F[[T]]$, unique, vérifiant $P([a] \cdot T) = [a] \cdot P(T)$ (en particulier $[\varpi] \cdot T = P(T)$); l'application $[a] \cdot T \mapsto a$ induit un isomorphisme $\operatorname{End}(\mathscr{G}) \cong \mathscr{O}_F$.

Le module de Tate $T_{\varpi}\mathscr{G}$ de \mathscr{G} est un \mathscr{O}_F -module de rang 1. Choisissons en un générateur $(\pi_n)_n$; alors $\pi_0 = 0$, $P(\pi_{n+1}) = \pi_n$ pour tout n et $\pi_1 \neq 0$.

Soit $F_n = F(\pi_n)$; c'est une extension totalement ramifiée de F, dont π_n est une uniformisante. Soit $F_\infty = \bigcup_{n \geq 0} F_n$. C'est une extension totalement ramifiée de F, abélienne de groupe de Galois $\Gamma_F \cong \mathscr{O}_F^*$; si $\sigma_a \in \Gamma_F$ correspond à $a \in \mathscr{O}_F^*$, on a $\sigma_a(\pi_n) = [a] \cdot \pi_n$ pour tout n. On note $\chi_F : G_F \to \mathscr{O}_F^*$ le composé de la projection $G_F \to \Gamma_F$ avec l'isomorphisme $\Gamma_F \cong \mathscr{O}_F^*$ ci-dessus.

1.3. L'isomorphisme de la théorie locale du corps de classes. — Soit F^{nr} l'extension maximale non ramifiée de F. Le composé $F^{nr} \cdot F_{\infty}$ est une extension

^{2.} Pour faire le lien avec les extraits des lettres de Tate, le dictionnaire est le suivant : $F \leftrightarrow k$, $\mathscr{O}_F \leftrightarrow A$, $\varpi \leftrightarrow \pi$, $F_{\infty} \leftrightarrow K_{\pi}$, $F^{\mathrm{nr}} \leftrightarrow T$, $P \leftrightarrow f$, $\mathscr{G} \leftrightarrow F_f$, $[u] \cdot T \leftrightarrow \underline{u}_f(T)$.

abélienne de F, de groupe de Galois le complété profini $\widehat{F}^*\cong \mathscr{O}_F^*\times \varpi^{\widehat{\mathbf{Z}}}$ de F^* : dans l'isomorphisme ci-dessus, ϖ agit comme φ_F sur F^{nr} et trivialement sur F_{∞} , et \mathscr{O}_F^* agit trivialement sur F^{nr} . Comme l'explique Tate dans sa lettre, le composé $F^{\mathrm{nr}}\cdot F_{\infty}$ et l'isomorphisme $\mathrm{Gal}(F^{\mathrm{nr}}\cdot F_{\infty}/F)\cong \widehat{F}^*$ ne dépendent pas du choix de ϖ (car les groupes de Lubin-Tate associés à deux uniformisantes sont isomorphe sur $\widehat{F}^{\mathrm{nr}}$).

La théorie locale du corps de classe peut s'encoder dans le résultat suivant.

Théorème 1. — L'extension $F^{\mathrm{nr}} \cdot F_{\infty}$ est l'extension abélienne maximale de F; l'application $G_F^{\mathrm{ab}} \to \mathrm{Gal}(F^{\mathrm{nr}} \cdot F_{\infty}/F) = \widehat{F^*} = \mathscr{O}_F^* \times \varpi^{\widehat{\mathbf{Z}}}$ est donc un isomorphisme.

Nous nous proposons de retrouver ce résultat via la théorie des (φ, Γ) -modules Lubin-Tate. Notons que Herr [6] a montré comment utiliser la théorie des (φ, Γ) -modules cyclotomiques pour retrouver la dualité locale de Tate [15] (dont le résultat ci-dessus se déduit facilement en utilisant la théorie de Kummer), mais passer par celle des (φ, Γ) -modules Lubin-Tate fournit une preuve bien plus directe.

Les chapitres 2 et 3 sont consacrés à une présentation succincte (mais assez complète) de la théorie des (φ, Γ) -modules Lubin-Tate. Le lecteur familier avec cette théorie peut aller directement aux chapitres 4 et 5 pour une preuve du th. 1.

2. La théorie du corps des normes

La théorie du corps des normes de Fontaine-Wintenberger $[\mathbf{4,\ 17}]$ fournit un isomorphisme naturel

$$H_F := \operatorname{Gal}(\overline{F}/F_{\infty}) \cong \operatorname{Gal}(\mathbf{E}/\mathbf{E}_F), \quad \text{où } \mathbf{E}_F \cong k_F((T))$$

et \mathbf{E} est la clôture séparable de \mathbf{E}_F . On a aussi des isomorphismes

$$H_F \cong \operatorname{Aut_{cont}}(\mathbf{C}_p/\widehat{F}_{\infty})$$
 et $\operatorname{Gal}(\mathbf{E}/\mathbf{E}_F) \cong \operatorname{Aut_{cont}}(\widetilde{\mathbf{E}}/\widetilde{\mathbf{E}}_F)$

où \widehat{F}_{∞} est le complété de F_{∞} et $\widetilde{\mathbf{E}}$ et $\widetilde{\mathbf{E}}_F$ sont les complétés des extensions radicielles de \mathbf{E} et \mathbf{E}_F (et $\widetilde{\mathbf{E}}$ est aussi le complété de \mathbf{E} , d'après Ax [1]). On peut donc écrire l'isomorphisme de la théorie du corps des normes sous une forme perfectoïde, ce qui en fait un cas particulier de la "tilting equivalence" de Scholze [13], à la base de la théorie des espaces perfectoïdes. La preuve de Fontaine et Wintenberger repose sur la théorie de la ramification, suivant la voie tracée par Tate [16] dans l'article ayant donné naissance à la théorie de Hodge des variétés p-adiques. C'était aussi le cas de la première approche de Scholze mais Kedlaya et Liu ont trouvé une approche alternative nettement plus simple (que Scholze a incorporée dans son article). C'est cette approche que nous résumons ci-dessous.

2.1. Basculement. — Un sous-corps fermé K de \mathbb{C}_p , contenant F, est dit perfectoïde, si $x \mapsto x^q$ est surjectif sur \mathscr{O}_K/ϖ . Si K est perfectoïde, on note \mathscr{O}_K^{\flat} le basculé de \mathscr{O}_K , i.e. la limite projective des \mathscr{O}_K/ϖ pour $x \mapsto x^q$ (i.e. $x \in \mathscr{O}_K^{\flat}$ est une suite

 $(x_n)_n$ d'élements de \mathscr{O}_K/ϖ avec $x_{n+1}^q=x_n$, pour tout n). Alors \mathscr{O}_K^{\flat} est un anneau de caractéristique p, parfait.

Si $x = (x_n)_{n \in \mathbb{N}} \in \mathscr{O}_K^{\flat}$, on note $x^{\sharp} \in \mathscr{O}_K$ la limite de $\hat{x}_n^{q^n}$, où $\hat{x}_n \in \mathscr{O}_K$ est un relèvement de x_n (cette limite ne dépend pas du choix de \hat{x}_n). On peut aussi identifier \mathscr{O}_K^{\flat} à l'ensemble des suites $(x^{(n)})_n$ d'éléments de \mathscr{O}_K , avec $(x^{(n+1)})^q = x^{(n)}$ pour tout $n : \text{si } x \in \mathscr{O}_K^{\flat}$, on a $x^{(n)} = (x^{1/q^n})^{\sharp}$.

On choisit $\widetilde{\varpi} = (\widetilde{\varpi}_n)_n \in \mathscr{O}_K^{\flat}$, avec $v_{\varpi}(\widetilde{\varpi}_1) = \frac{1}{p}$. Alors $\mathscr{O}_K/\varpi = \mathscr{O}_K^{\flat}/\widetilde{\varpi}$, et $\widetilde{\varpi}^{\sharp}/\varpi$ est une unité de \mathscr{O}_K .

Si $x \in \mathscr{O}_K^{\flat}$, on pose $v_{\mathbf{E}}(x) := v_{\varpi}(x^{\sharp})$. Alors $v_{\mathbf{E}}$ est une valuation sur \mathscr{O}_K^{\flat} pour laquelle il est complet. Cette valuation s'étend à $K^{\flat} := \mathscr{O}_K^{\flat}[\frac{1}{\widetilde{\varpi}}]$, ce qui fait de K^{\flat} un corps valué complet.

La construction $K \mapsto K^{\flat}$ est fonctorielle; en particulier, $\operatorname{Aut_{cont}}(K/F)$ s'identifie à un sous-groupe de $\operatorname{Aut_{cont}}(K^{\flat})$: on a $\sigma((x^{(n)})_n) = (\sigma(x^{(n)}))_n$.

2.2. Le basculé de \mathbf{C}_p . — On note $\widetilde{\mathbf{E}}^+ := \mathscr{O}_{\mathbf{C}_p}^{\flat}$ le basculé de $\mathscr{O}_{\mathbf{C}_p}$ et $\widetilde{\mathbf{E}} := \mathbf{C}_p^{\flat}$ celui de \mathbf{C}_p . Alors $\widetilde{\mathbf{E}}$ est un corps parfait de caractéristique p, complet pour $v_{\mathbf{E}}$, et G_F s'identifie à un sous-groupe de $\mathrm{Aut}_{\mathrm{cont}}(\widetilde{\mathbf{E}})$.

Proposition 2. — $\widetilde{\mathbf{E}}$ est algébriquement clos.

Démonstration. — Comme $\widetilde{\mathbf{E}}$ est parfait, il suffit de prouver qu'il séparablement clos ; il suffit donc de prouver que, si $P = X^d + a_{d-1}X^{d-1} + \dots + a_0 \in \widetilde{\mathbf{E}}^+[X]$ est séparable, alors P a une racine dans $\widetilde{\mathbf{E}}^+$. Quitte à remplacer a_i par a_i^{1/q^n} , ce qui remplace P par un polynôme séparable dont les racines sont les racines q^n -ièmes de celles de P, on peut supposer que le discriminant Δ de P vérifie $v_{\mathbf{E}}(\Delta) < \frac{1}{2}$.

Soit $\alpha \in \mathcal{O}_{\mathbf{C}_p}$ une racine de $P^{\sharp} = X^d + a_{d-1}^{\sharp} X^{d-1} + \cdots + a_0^{\sharp}$, et soit $\alpha^{\flat} \in \widetilde{\mathbf{E}}^+$ vérifiant $(\alpha^{\flat})^{\sharp} = \alpha$. Alors $v_{\mathbf{E}}(P(\alpha^{\flat})) \geq 1$ (car $P^{\sharp}(\alpha) = 0$) et $v_{\mathbf{E}}(P'(\alpha^{\flat})) \leq v_{\mathbf{E}}(\Delta) < \frac{1}{2}$ (car $\Delta = PQ + P'R$, avec $Q, R \in \widetilde{\mathbf{E}}^+[X]$). Le lemme de Hensel fournit donc une racine β de P vérifiant $v_{\mathbf{E}}(\beta - \alpha^{\flat}) \geq v_{\mathbf{E}}(P(\alpha^{\flat})) - 2v_{\mathbf{E}}(P'(\alpha^{\flat}))$.

Ceci permet de conclure. \Box

Modulo ϖ , on a $\overline{\pi}_{n+1}^q = \overline{\pi}_n$, ce qui permet de prouver que \widehat{F}_{∞} est perfectoïde, et fait de $\overline{\pi} = (\overline{\pi}_n)_n$ un élément de $\widetilde{\mathbf{E}}^+$. On a $v_{\mathbf{E}}(\overline{\pi}) = \frac{q}{q-1} > 0$, et donc $\mathbf{E}_F^+ := k_F[[\overline{\pi}]]$ est un sous-anneau de $\widetilde{\mathbf{E}}^+$. Comme $\sigma(\pi_n) = [\chi_F(\sigma)] \cdot \pi_n$, on a $\sigma(\overline{\pi}) = [\chi_F(\sigma)] \cdot \overline{\pi}$, et donc \mathbf{E}_F^+ est stable par G_F qui agit à travers Γ_F . Soit $\mathbf{E}_F := \mathbf{E}_F^+[\frac{1}{\overline{\pi}}]$ le corps des fractions de \mathbf{E}_F^+ , et soit $\widetilde{\mathbf{E}}_F$ le complété de sa clôture radicielle.

Proposition 3. — On $a \widetilde{\mathbf{E}}_F = (\widehat{F}_{\infty})^{\flat} = \widetilde{\mathbf{E}}^{H_F}$.

Démonstration. — L'égalité $(\widehat{F}_{\infty})^{\flat} = \widetilde{\mathbf{E}}^{H_F}$ résulte du théorème d'Ax-Sen-Tate [1]. L'inclusion $\mathbf{E}_F \subset (\widehat{F}_{\infty})^{\flat}$ est immédiate, l'inclusion $\widetilde{\mathbf{E}}_F \subset (\widehat{F}_{\infty})^{\flat}$ s'en déduit en utilisant le fait que $(\widehat{F}_{\infty})^{\flat}$ est parfait et complet.

Enfin, si $x=(x^{(n)})_n\in \mathscr{O}_{\widehat{F}_\infty}^{\flat}$, on peut écrire $x^{(n)}$, modulo ϖ , sous la forme $\sum_{i\geq 0}a_{n,i}\pi_{n+m}^i$, avec $a_{n,i}\in k_F$ et m assez grand (la somme est en fait finie car $\pi_{n+m}^i=0$ mod ϖ si $i\geq (q-1)q^{n+m-1}$), et on montre facilement que x est la limite des $\sum_{i\geq 0}a_{n,i}\overline{\pi}^{i/q^m}$, et donc appartient à $\widetilde{\mathbf{E}}_F^+$.

2.3. Débasculement. — Si Λ est un sous-anneau parfait de $\widetilde{\mathbf{E}}$, soient $W(\Lambda)$ l'anneau des vecteurs de Witt à coefficients dans Λ et $W_{\mathscr{O}_F}(\Lambda) := \mathscr{O}_F \otimes_{W(k_F)} W(\Lambda)$. Si $y \in \Lambda$, on note $\{y\} \in W_{\mathscr{O}_F}(\Lambda)$ son représentant de Teichmüller (i.e. $1 \otimes [y]$, où [y] est le représentant de Teichmüller dans $W(\Lambda)$).

Soit $\widetilde{\mathbf{A}}^+ := W_{\mathscr{O}_F}(\widetilde{\mathbf{E}}^+)$ (resp. $\widetilde{\mathbf{A}} := W_{\mathscr{O}_F}(\widetilde{\mathbf{E}})$). Tout élément de $\widetilde{\mathbf{A}}^+$ (resp. $\widetilde{\mathbf{A}}$) peut s'écrire, de manière unique, sous la forme $\sum_{k \geq 0} \varpi^k \{x_k\}$, où $x_k \in \widetilde{\mathbf{E}}^+$ (resp. $x_k \in \widetilde{\mathbf{E}}$). Les actions de G_F et φ_F sur $\widetilde{\mathbf{E}}$ et $\widetilde{\mathbf{E}}^+$ se relèvent en des actions sur $\widetilde{\mathbf{A}}$ et $\widetilde{\mathbf{A}}^+$, en posant $\sigma(\sum_{k \geq 0} \varpi^k \{x_k\}) = \sum_{k \geq 0} \varpi^k \{\sigma(x_k)\}$ et $\varphi_F(\sum_{k \geq 0} \varpi^k \{x_k\}) = \sum_{k \geq 0} \varpi^k \{x_k^q\}$.

On pose $\widetilde{\mathbf{A}}_F^+ := W_{\mathscr{O}_F}(\widetilde{\mathbf{E}}_F^+)$ (resp. $\widetilde{\mathbf{A}}_F := W_{\mathscr{O}_F}(\widetilde{\mathbf{E}}_F)$). On déduit de la prop. 3 que $\widetilde{\mathbf{A}}_F^+ = (\widetilde{\mathbf{A}}^+)^{H_F}$ et $\widetilde{\mathbf{A}}_F = \widetilde{\mathbf{A}}^{H_F}$. Il existe un unique relèvement $\pi \in \widetilde{\mathbf{A}}^+$ de $\overline{\pi}$ vérifiant $\varphi_F(\pi) = [\varpi] \cdot \pi$ (cf. [2, Lemme 9.3] : on a $\pi = \lim_{n \to +\infty} [\varpi^n] \cdot \{\pi_n^{\flat}\}$, où $\pi_n^{\flat} \in \widetilde{\mathbf{E}}^+$ vérifie $(\pi_n^{\flat})^{\sharp} = \pi_n$). Par unicité, on a $\sigma(\pi) = [\chi_F(\sigma)] \cdot \pi$ pour tout $\sigma \in G_F$; en particulier, $\pi \in (\widetilde{\mathbf{A}}^+)^{H_F} = \widetilde{\mathbf{A}}_F^+$.

Soit $\mathbf{A}_F^+ := \mathscr{O}_F[[\pi]] \subset \widetilde{\mathbf{A}}_F^+$, et soit \mathbf{A}_F l'adhérence de $\mathbf{A}_F^+[\frac{1}{\pi}]$ dans $\widetilde{\mathbf{A}}$; alors \mathbf{A}_F^+ et \mathbf{A}_F sont stables par φ_F et G_F (qui agit à travers Γ_F), on a $\mathbf{A}_F^+/\varpi = \mathbf{E}_F^+$ et $\mathbf{A}_F/\varpi = \mathbf{E}_F$.

On dispose d'un morphisme surjectif d'anneaux $\theta: \widetilde{\mathbf{A}}^+ \to \mathscr{O}_{\mathbf{C}_p}$ envoyant $\sum_{k\geq 0} \varpi^k \{x_k\}$ sur $\sum_{k\geq 0} \varpi^k x_k^{\sharp}$. Le noyau de θ est principal, et $x\in \operatorname{Ker}\theta$ en est un générateur si et seulement si $v_{\mathbf{E}}(\overline{x})=1$ (où $\overline{x}\in \widetilde{\mathbf{E}}^+$ est la réduction de x modulo ϖ). Par exemple, $\pi\in \operatorname{Ker}\theta$ (car $[\varpi^n]\cdot \{\pi_n^{\flat}\}\in \operatorname{Ker}\theta$ pour tout n) et $\xi:=\frac{\pi}{\varphi_F^{-1}(\pi)}$ est un générateur de $\operatorname{Ker}\theta$ (car $v_{\mathbf{E}}(\overline{\xi})=(1-\frac{1}{a})v_{\mathbf{E}}(\overline{\pi})=1$), fixe par H_F .

Proposition 4. — Soit K un sous-corps fermé de $\widetilde{\mathbf{E}}$, parfait et contenant $\widetilde{\mathbf{E}}_F$. Soit $\mathscr{O}_K^{\sharp} := \theta(W_{\mathscr{O}_F}(\mathscr{O}_K)) \subset \mathscr{O}_{\mathbf{C}_p}$. Alors $K^{\sharp} := \mathscr{O}_K^{\sharp}[\frac{1}{\varpi}]$ est un sous-corps perfectoïde de \mathbf{C}_p , et $(K^{\sharp})^{\flat} = K$.

Démonstration. — Soit $x = x_0^{\sharp} + \varpi x_1^{\sharp} + \cdots \in \mathscr{O}_K^{\sharp}$. Si $v_{\varpi}(x) = 0$, on a $v_{\mathbf{E}}(x_0) = 0$ et donc $\{x_0\} + \varpi\{x_1\} + \cdots$ est inversible dans $W_{\mathscr{O}_F}(\mathscr{O}_K)$ et $x \in (\mathscr{O}_K^{\sharp})^*$.

Si $v_{\varpi}(x) \geq 1$, alors $v_{\mathbf{E}}(x_0) \geq v_{\mathbf{E}}(\widetilde{\varpi})$, où $\widetilde{\varpi} = \overline{\pi}^{\frac{q-1}{q}}$. Il s'ensuit que $x_0 = \widetilde{\varpi}y$, avec $y \in \mathscr{O}_K$, et donc $x_0^{\sharp} = \widetilde{\varpi}^{\sharp}y^{\sharp}$, et comme $\varpi/\widetilde{\varpi}^{\sharp}$ est une unité de $\mathscr{O}_{\widehat{F}_{\infty}}$, cela implique que x est divisible par ϖ dans \mathscr{O}_K^{\sharp} .

Si $v_{\varpi}(x) = \frac{a}{b}$, on déduit de ce qui précède que $x^b = \varpi^a u$, avec u inversible dans \mathscr{O}_K^{\sharp} , et donc x est inversible dans K^{\sharp} . Il en résulte que K^{\sharp} est un corps, et que \mathscr{O}_K^{\sharp} est

l'anneau de ses entiers. Comme \mathscr{O}_K^{\sharp} est séparé et complet pour la topologie ϖ -adique, il en résulte que K^{\sharp} est fermé dans \mathbf{C}_p .

Le reste de l'énoncé résulte de ce que $\mathscr{O}_K^{\sharp}/\varpi = \mathscr{O}_K/\widetilde{\varpi}$.

Exemple 5. — (i) $\widetilde{\mathbf{E}}^{\sharp} = \mathbf{C}_p$ (car $\theta : \widetilde{\mathbf{A}}^+ \to \mathscr{O}_{\mathbf{C}_p}$ est surjective).

(ii) $\widetilde{\mathbf{E}}_F^{\sharp} = \widehat{F}_{\infty}$. En effet, l'inclusion $\theta(\widetilde{\mathbf{A}}_F^+) \subset \mathscr{O}_{\widehat{F}_{\infty}}$ résulte de ce que $\widetilde{\mathbf{A}}_F$ est fixe par H_F , et l'inclusion dans l'autre sens résulte de ce que $\mathscr{O}_{\widetilde{\mathbf{E}}_F}^{\sharp}$ est complet pour v_{ϖ} et $\pi_n = \theta(\varphi_F^{-n}(\pi)) \in \mathscr{O}_{\widetilde{\mathbf{E}}_F}^{\sharp}$, pour tout n (si $u_n = \varphi_F^{-n}(\pi)$, on a $\theta(u_n) = \theta([\varpi] \cdot u_{n+1}) = [\varpi] \cdot \theta(u_{n+1})$, et modulo (Ker θ, ϖ), on a $\theta(u_n) \equiv u_n \equiv \overline{\pi}^{1/q^n} \equiv \pi_n$; il n'est pas difficile d'en déduire que $\theta(u_n) = \pi_n$ pour tout n).

2.4. L'isomorphisme. — L'isomorphisme annoncé entre les groupes de Galois (th. 8) est une conséquence du résultat suivant.

Proposition 6. — Soit K un sous-corps fermé de \mathbf{C}_p , contenant \widehat{F}_{∞} . Si K^{\flat} est algébriquement clos, alors $K = \mathbf{C}_p$.

Remarque 7. — Le seul sous-corps fermé de \mathbf{C}_p qui est algébriquement clos est \mathbf{C}_p lui-même. Par contraste [10], il existe $Y \in \widetilde{\mathbf{E}}^+$ tel que le complété K de la clôture algébrique de $k_F((Y))$ dans $\widetilde{\mathbf{E}}$ soit strictement inclus dans $\widetilde{\mathbf{E}}$. (C'est à partir de ce type de corps que l'on construit [7] des points x de la courbe de Fargues-Fontaine dont le corps résiduel $\kappa(x)$ est strictement plus gros que \mathbf{C}_p – bien que $\mathscr{O}_{\kappa(x)}/\varpi^n \cong \mathscr{O}_{\mathbf{C}_p}/\varpi^n$, pour tout n.) Cela ne contredit pas la prop. 6 car K n'est pas de la forme L^{\flat} , avec $L \subset \mathbf{C}_p$: en effet, θ est alors injective sur $W_{\mathscr{O}_F}(\mathscr{O}_K)$ et $W_{\mathscr{O}_F}(\mathscr{O}_K)[\frac{1}{\varpi}]$ n'est pas un corps.

Démonstration. — Il suffit de prouver que K est algébriquement clos et, pour cela, il suffit de prouver que tout $P \in \mathcal{O}_K[X]$, unitaire et irréductible, a une racine dans \mathcal{O}_K . Soit donc $P(X) = X^d + a_{d-1}X^{d-1} + \cdots + a_0 \in \mathcal{O}_K[X]$, irréductible, et soit $\alpha \in K^{\flat}$ vérifiant $v_{\mathbf{E}}(\alpha) = \frac{1}{d}$. Soit $k \geq 0$. Supposons que l'on dispose de $y_k \in \mathcal{O}_K$ tel que $P(y_k) \in \varpi^k \mathcal{O}_K$. Soit $Q(X) = (\alpha^{\sharp})^{-kd} P((\alpha^{\sharp})^k X + y_k)$. Alors Q est unitaire par construction, et vérifie $Q(0) = (\alpha^{\sharp})^{-kd} P(y_k) \in \mathcal{O}_K$. Par ailleurs, Q est irréductible et donc son polygone de Newton est un segment ; il s'ensuit que $Q \in \mathcal{O}_K[X]$. Il existe $Q^{\flat} \in \mathcal{O}_{K^{\flat}}[X]$ ayant même image modulo ϖ . Si $x \in \mathcal{O}_{K^{\flat}}$ est une racine de Q^{\flat} , alors $Q(x^{\sharp}) \in \varpi \mathcal{O}_K$, et donc $P(y_{k+1}) \in \varpi^{k+1} \mathcal{O}_K$, où l'on a posé $y_{k+1} := y_k + (\alpha^{\sharp})^k x^{\sharp}$. Ceci fournit un algorithme construisant une racine de P.

On note \mathbf{E} la clôture séparable de \mathbf{E}_F dans $\widetilde{\mathbf{E}}$.

Théorème 8. — $\widetilde{\mathbf{E}}$ est le complété de \mathbf{E} pour $v_{\mathbf{E}}$, et on a un isomorphisme naturel

$$\operatorname{Aut}_{\operatorname{cont}}(\widetilde{\mathbf{E}}/\widetilde{\mathbf{E}}_F) = \operatorname{Aut}_{\operatorname{cont}}(\mathbf{C}_p/\widehat{F}_{\infty})$$

Démonstration. — Soit K l'adhérence de \mathbf{E} dans $\widetilde{\mathbf{E}}$ (c'est aussi le complété de \mathbf{E} pour $v_{\mathbf{E}}$). Il résulte du théorème d'Ax que K est algébriquement clos. Son débasculé K^{\sharp} est alors complet, et algébriquement clos d'après la prop. 6 (car $(K^{\sharp})^{\flat} = K$ est algébriquement clos). Comme il est contenu dans \mathbf{C}_p et qu'il contient \widehat{F}_{∞} , on a $K^{\sharp} = \mathbf{C}_p$, et donc $K = \widetilde{\mathbf{E}}$, ce qui prouve le premier énoncé.

Si $\sigma \in \operatorname{Aut}(\widetilde{\mathbf{E}}/\widetilde{\mathbf{E}}_F)$, alors σ induit un automorphisme de $\widetilde{\mathbf{E}}^+$ et donc aussi de $\widetilde{\mathbf{A}}^+$, qui laisse stable $\operatorname{Ker} \theta$ puisque son générateur ξ est fixe vu qu'on a supposé que σ fixe $\widetilde{\mathbf{E}}_F$. Ceci fournit un morphisme de groupes $\operatorname{Aut}(\widetilde{\mathbf{E}}/\widetilde{\mathbf{E}}_F) \to \operatorname{Aut}(\mathbf{C}_p/\widehat{F}_{\infty})$ qui est injectif. Réciproquement, comme $(\widehat{F}_{\infty})^{\flat} = \widetilde{\mathbf{E}}_F$ et $\widetilde{\mathbf{E}} = \mathbf{C}_p^{\flat}$, on dispose d'un morphisme $\operatorname{Aut}(\mathbf{C}_p/\widehat{F}_{\infty}) \to \operatorname{Aut}(\widetilde{\mathbf{E}}/\widetilde{\mathbf{E}}_F)$ qui est injectif car G_F , qui contient $\operatorname{Aut}(\mathbf{C}_p/\widehat{F}_{\infty})$, agit fidèlement sur $\widetilde{\mathbf{E}}$. La composée de ces deux injections étant l'identité de $\operatorname{Aut}(\mathbf{C}_p/\widehat{F}_{\infty})$, on en déduit le résultat.

3. (φ, Γ) -modules Lubin-Tate

Définition 9. — Un (φ, Γ) -module étale sur \mathbf{A}_F est un \mathbf{A}_F -module D, de type fini, muni d'actions semi-linéaires de φ_F et Γ_F commutant entre elles, et telles que l'application naturelle $\mathbf{A}_F \otimes_{\varphi_F(\mathbf{A}_F)} \varphi_F(D) \to D$ soit un isomorphisme.

Exemple 10. — Si L est une extension finie de F, et si $\eta: F^* \to \mathscr{O}_L^*$ est un caractère continu, on note $(\mathscr{O}_L \cdot \mathbf{A}_F)(\eta)$ le $\mathscr{O}_L \otimes_{\mathscr{O}_F} \mathbf{A}_F$ -module de rang 1, engendré par un élément e_{η} tel que $\varphi_F(e_{\eta}) = \eta(\varpi)e_{\eta}$ et $\sigma_a(e_{\eta}) = \eta(a)e_{\eta}$ si $a \in \mathscr{O}_F^*$. Alors $(\mathscr{O}_L \cdot \mathbf{A}_F)(\eta)$ est un (φ, Γ) -module étale sur \mathbf{A}_F , de rang [L:F]; il est de plus muni d'une action de \mathscr{O}_L commutant à celles de φ_F et Γ_F .

On note \mathbf{A} le complété pour la topologie ϖ -adique de l'extension étale maximale de \mathbf{A}_F dans $\widetilde{\mathbf{A}}$. On a $\mathbf{A}/\varpi = \mathbf{E}$ et \mathbf{A} est stable par G_F et φ_F (car \mathbf{A}_F l'est). De plus, $\mathbf{A}^{\varphi_F=1} = \mathscr{O}_F$ et $\mathbf{A}^{H_F} = \mathbf{A}_F$ (car $\mathbf{E}^{\varphi_F=1} = k_F$ et $\mathbf{E}^{H_F} = \mathbf{E}_F$).

On a alors le résultat suivant ⁽³⁾.

Proposition 11. — Les foncteurs

$$V \mapsto D(V) := (\mathbf{A} \otimes_{\mathscr{O}_F} V)^{H_F} \quad \text{et} \quad D \mapsto V(D) := (\mathbf{A} \otimes_{\mathbf{A}_F} D)^{\varphi_F = 1}$$

sont inverses l'un de l'autre et induisent une équivalence de catégories entre la catégorie des \mathscr{O}_F -représentations de G_F et celle des (φ, Γ) -modules étales sur \mathbf{A}_F , qui est compatible au produit tensoriel.

^{3.} Ce résultat était connu de Fontaine (dans son article fondateur [3], il ne développe que la théorie cyclotomique, mais il était bien conscient de la possibilité de développer la théorie Lubin-Tate – même si la parenthèse "Dans la suite de ce travail...", p. 251 de [3] est un peu optimiste dans le cas non commutatif); il apparait en filigrane dans la thèse de Fourquaux [5, n° 1.4.1], voir aussi [12, rem. 2.3.1]; pour des preuves, voir Kisin-Ren [8] et Schneider [11].

Démonstration. — (esquisse, voir [3] ou [11] pour les détails) — Ce résultat se démontre par dévissage à partir du même résultat modulo ϖ .

Si V est une k_F représentation de G_F , de dimension d, on a $\mathbf{E} \otimes_{k_F} V \cong \mathbf{E}^d$ comme représentation de H_F d'après le théorème de Hilbert 90 ; il s'ensuit que D(V) est un \mathbf{E}_F -module de rang d, que $\mathbf{E} \otimes_{\mathbf{E}_F} D(V) = \mathbf{E} \otimes_{k_F} V$, et $V = (\mathbf{E} \otimes_{\mathbf{E}_F} D(V))^{\varphi_F=1}$.

Si D est un (φ, Γ) étale sur \mathbf{E}_F , de rang d, et si e_1, \ldots, e_d en est une base, il existe $(a_{i,j}) \in \mathrm{GL}_d(\mathbf{E}_F)$ telle que $e_i = \sum_{j=1}^d a_{j,i} \varphi_F(e_j)$. Si $v = \sum_{i=1}^d x_i e_i$, l'équation $\varphi_F(v) = v$ se traduit par le système d'équations $x_i^q = \sum_{j=1}^d a_{j,i} x_j$, pour $1 \le i \le d$. L'algèbre définie par ce système est étale sur \mathbf{E}_F (car $(a_{i,j}) \in \mathrm{GL}_d(\mathbf{E}_F)$), de degré q^d . L'espace V(D) des solutions est donc un k_F -module de rang d, et on a $\mathbf{E} \otimes_{k_F} V(D) = \mathbf{E} \otimes_{\mathbf{E}_F} D$ (et donc $D = (\mathbf{E} \otimes_{k_F} V(D))^{H_F}$) car les deux membres ont la même dimension sur \mathbf{E} et une famille de V(D), liée sur \mathbf{E} , l'est déjà sur k_F (si $\lambda_1 v_1 + \cdots + \lambda_r v_r = 0$ est une relation minimale, on peut diviser par λ_1 et donc supposer $\lambda_1 = 1$; appliquer $\varphi_F - 1$ donne $\lambda_i^q - \lambda_i = 0$ par minimalité, et donc $\lambda_i \in k_F$ pour tout i).

La compatibilité au produit tensoriel, résulte de ce que,

$$\mathbf{E} \otimes_{k_F} (V_1 \otimes V_2) = (\mathbf{E} \otimes_{k_F} V_1) \otimes_{\mathbf{E}} (\mathbf{E} \otimes_{k_F} V_2)$$
$$= (\mathbf{E} \otimes_{\mathbf{E}_F} D_1) \otimes_{\mathbf{E}} (\mathbf{E} \otimes_{\mathbf{E}_F} D_2) = \mathbf{E} \otimes_{\mathbf{E}_F} (D_1 \otimes D_2)$$

si D_1, D_2 correspondent à V_1, V_2 .

Remarque 12. — Si L est une extension finie de \mathscr{O}_F , en rajoutant une action de \mathscr{O}_L commutant à celles de G_F (resp. φ_F et Γ_F), on obtient une équivalence de catégories entre entre la catégorie des \mathscr{O}_L -représentation de G_F et celle des (φ, Γ) -modules étales sur $\mathscr{O}_L \otimes_{\mathscr{O}_F} \mathbf{A}_F$.

4. Frobenius et élévation à la puissance p

Avant de prouver le th. 1, commençons par deux résultats préliminaires. Notons :

$$\mathscr{O}_L \cdot \mathbf{A}_F := \mathscr{O}_L \otimes_{\mathscr{O}_F} \mathbf{A}_F, \quad \mathscr{O}_L \cdot \mathbf{A} := \mathscr{O}_L \otimes_{\mathscr{O}_F} \mathbf{A}$$

L'anneau $\mathscr{O}_L \cdot \mathbf{A}$ n'est pas nécessairement intègre, contrairement à $\mathscr{O}_L \cdot \mathbf{A}_F$.

Lemme 13. — L'application $x \mapsto \frac{\varphi_F(x)}{x}$ induit une suite exacte

$$\mathcal{O}_L^* \to (\mathcal{O}_L \cdot \mathbf{A})^* \to (\mathcal{O}_L \cdot \mathbf{A})^* \to \{1\}$$

 $D\acute{e}monstration.$ — Par dévissage, on est ramené à prouver que :

- $x \mapsto \frac{\varphi_F(x)}{x}$ est une surjection de $(k_L \otimes_{k_F} \mathbf{E})^*$ sur lui-même, de noyau k_L^* ,
- $x \mapsto \varphi_F(x) x$ est une surjection de $k_L \otimes_{k_F} \mathbf{E}$ sur lui-même, de noyau k_L . La détermination des noyaux est immédiate :

$$(k_L \otimes_{k_F} \mathbf{E})^{\varphi_F = 1} = k_L \otimes_{k_F} \mathbf{E}^{\varphi_F = 1} = k_L \otimes_{k_F} k_F = k_L$$

Pour la surjectivité, il suffit de prouver le résultat pour φ_F^N au lieu de φ_F (car $\varphi_F^N-1=(\varphi_F-1)(\varphi_F^{N-1}+\cdots+1)$). En prenant $N=[k_L:k_F], \varphi_F^N$ devient $x\mapsto x^{q^N}$ sur $k_L\otimes_{k_F}\mathbf{E}$ (car $x^{q^N}=x$ si $x\in k_L$). Comme $k_L\otimes_{k_F}\mathbf{E}\cong\mathbf{E}^N$, la surjectivité résulte de celle de $x\mapsto x^{q^N-1}$ sur \mathbf{E}^* et $x\mapsto x^{q^N}-x$ sur \mathbf{E} .

Lemme 14. — $Si \beta \in (\mathcal{O}_L \cdot \mathbf{A}_F)^*$ est tel qu'il existe $\lambda \in (\mathcal{O}_L \cdot \mathbf{A}_F)^*$, avec $\lambda^p = \frac{\varphi_F(\beta)}{\beta}$, alors il existe $\beta_0 \in \mathcal{O}_L^*$ et $\alpha \in (\mathcal{O}_L \cdot \mathbf{A}_F)^*$ tels que $\beta = \beta_0 \alpha^p$.

Démonstration. — Il existe $\alpha \in (\mathscr{O}_L \cdot \mathbf{A})^*$ tel que $\frac{\varphi_F(\alpha)}{\alpha} = \lambda$, et on conclut en remarquant que $\frac{\beta}{\alpha^p} \in ((\mathscr{O}_L \cdot \mathbf{A})^*)^{\varphi_F=1} = \mathscr{O}_L^*$.

5. L'extension abélienne maximale de F

Nous pouvons maintenant prouver le th. 1. Il s'agit de prouver que tout caractère d'ordre fini $\delta: G_F \to \mathscr{O}_L^*$ se factorise à travers $\mathscr{O}_F^* \times \varpi^{\widehat{Z}}$ ou, ce qui revient au même, que le (φ, Γ) -module associé est de la forme $(\mathscr{O}_L \cdot \mathbf{A}_F)(\eta)$ (cf. ex. 10), où $\eta: F^* \to \mathscr{O}_L^*$ est un caractère (et alors $\delta = \eta$). Comme un caractère non ramifié se factorise à travers $\mathscr{O}_F^* \times \varpi^{\widehat{Z}}$ (et même $\varpi^{\widehat{Z}}$), on peut multiplier δ par un tel caractère, si besoin est.

On peut supposer que δ est d'ordre ℓ^n où ℓ est un nombre premier. Le cas $\ell \neq p$ ne pose pas de problème : dans ce cas, δ se factorise à travers le ℓ -Sylow du groupe de Galois de l'extension modérément ramifiée maximale qui est une extension de \mathbf{Z}_{ℓ} par $\mathbf{Z}_{\ell}(1)$, où $1 \in \mathbf{Z}_{\ell}$ agit (par conjugaison) par multiplication par q sur $\mathbf{Z}_{\ell}(1)$; l'abélianisé de ce groupe s'identifie donc au quotient $\boldsymbol{\mu}_{\ell^{\infty}}(F) \times \boldsymbol{\varpi}^{\mathbf{Z}_{\ell}}$ de \widehat{F}^* (via $\boldsymbol{\mu}_{\ell^{\infty}}(F) = \mathbf{Z}_{\ell}(1)/(q-1)$), et δ se factorise à travers ce quotient.

Le cas délicat est donc $\ell=p$; comme l'ordre de δ est p^n , L contient $\boldsymbol{\mu}_{p^n}$. Soit $D:=D(\delta)$ le (φ,Γ) -module Lubin-Tate associé à δ . Si e est une base de D, il existe $\lambda\in(\mathscr{O}_L\cdot\mathbf{A}_F)^*$ tel que $\varphi_F(e)=\lambda e$. Maintenant, comme δ est d'ordre p^n , le (φ,Γ) -module $D^{\otimes p^n}$ est trivial; il existe donc $\beta\in(\mathscr{O}_L\cdot\mathbf{A}_F)^*$ tel que $\lambda^{p^n}=\frac{\varphi_F(\beta)}{\beta}$.

Il ressort du lemme 14 que $\beta = \beta_0 \alpha^p$, et donc que $\lambda^{p^n} = (\frac{\varphi_F(\alpha)}{\alpha})^p$. Il existe donc $\zeta \in \mu_p$ tel que $\zeta \lambda^{p^{n-1}} = (\frac{\varphi_F(\alpha)}{\alpha})^p$, et comme L contient μ_{p^n} , il existe $\eta_1 : F^* \to \mathcal{O}_L^*$, non ramifié, tel que $\eta_1(\varpi)^{p^{n-1}} = \zeta$. Quitte à multiplier δ par η_1 , ce qui multiplie λ par $\eta_1^{-1}(\varpi)$, on peut supposer $\zeta = 1$. Une récurrence immédiate montre donc que, quitte à multiplier δ par un caractère non ramifié de F^* , on peut trouver $\alpha \in (\mathcal{O}_L \cdot \mathbf{A}_F)^*$ tel que $\lambda = \frac{\varphi_F(\alpha)}{\alpha}$.

Soit $f = \alpha e$. Alors f est aussi une base de D, et on a $\varphi_F(f) = f$. Par ailleurs, si $a \in \mathscr{O}_F^*$, on a $\varphi_F \sigma_a = \sigma_a \varphi_F$. Il s'ensuit que, si $\sigma_a(f) = \eta(a)f$, avec $\eta(a) \in (\mathscr{O}_L \cdot \mathbf{A}_F)^*$, alors $\varphi_F(\eta(a)) = \eta(a)$, ce qui implique $\eta(a) \in \mathscr{O}_L^*$. Comme $\sigma_a \sigma_b = \sigma_b \sigma_a$, η est un caractère de \mathscr{O}_F^* . Si on étend η à F^* en posant $\eta(\varpi) = 1$, on a $D = (\mathscr{O}_L \cdot \mathbf{A}_F)(\eta)$ puisque $\varphi_F(f) = f$.

Ceci permet de conclure.

Références

- J. Ax, Zeros of polynomials over local fields The Galois action, J. Algebra 15 (1970), 417–428.
- [2] P. Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), 331–439.
- [3] J.-M. Fontaine, Représentations p-adiques des corps locaux. I, in *The Grothendieck Festschrift, Vol. II*, Progr. Math. **87** (1990) 249–309, Birkhäuser.
- [4] J.-M. Fontaine, J.-P. Wintenberger, Le corps des normes de certaines extensions algébriques de corps locaux, C.R.A.S. 288 (1979) 367–370.
- [5] L. FOURQUAUX, Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate, thèse Paris 6 (2005), https://hal.archives-ouvertes.fr/hal-01255343.
- [6] L. Herr, Une approche nouvelle de la dualité locale de Tate, Math. Ann. 320 (2001), 307-337.
- [7] K. Kedlaya et M. Temkin, Endomorphisms of power series fields and residue fields of Fargues-Fontaine curves, proc. AMS 146 (2018), 489–495.
- [8] M. Kisin, W. Ren, Galois representations and Lubin-Tate groups, Doc. Math. 14 (2009), 441–461.
- [9] J. Lubin, J. Tate, Formal complex multiplication in local fields, Ann. Math. 81 (1965), 380–387.
- $[10]\,$ M.Matignon, M. Reversat, Sous-corps fermés d'un corps valué, J. Algebra $\bf 90$ (1984), 491–515.
- [11] P. Schneider, Galois representations and (φ, Γ)-modules, Cambridge Studies in Advanced Mathematics 164, Cambridge University Press, 2017.
- [12] A. Scholl, Higher fields of norms and (φ, Γ) -modules, Doc. Math. 2006, Extra Vol. (2006) 685–709.
- [13] P. Scholze, Perfectoid spaces, Publ. l'IHES 116 (2012), 245–313.
- [14] Correspondance Serre-Tate, Documents mathématiques 13 et 14, SMF 2015.
- [15] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math., Stockholm, 234–241, 1962.
- [16] J. Tate, p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), 158–183, Springer 1967.
- [17] J.-P. WINTENBERGER, Le corps des normes de certaines extensions infinies des corps locaux; applications, Ann. ENS 16 (1983), 59–89.

PIERRE COLMEZ, C.N.R.S., IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75005 Paris, France E-mail: pierre.colmez@imj-prg.fr