UNE CARACTÉRISATION DE $\mathbb{B}_{\mathrm{dR}}^+$ ET $\mathcal{O}\mathbb{B}_{\mathrm{dR}}^+$

par

Pierre Colmez

Résumé. — Nous montrons que $\mathbf{B}_{\mathrm{dR}}^+$ est l'épaississement universel de \mathbf{C}_p . Plus généralement, nous montrons que, si S est une algèbre affinoïde réduite, $\mathcal{O}\mathbb{B}_{\mathrm{dR}}^+(\overline{S})$ est le S-épaississement universel du complété de \overline{S} .

Abstract. — We show that $\mathbf{B}_{\mathrm{dR}}^+$ is the universal thickening of \mathbf{C}_p . More generally, we show that, if S is a reduced affinoid algebra, $\mathcal{O}\mathbb{B}_{\mathrm{dR}}^+(\overline{S})$ is the universal S-thickening of the completion of \overline{S} .

Fontaine a introduit l'anneau $\mathbf{B}_{\mathrm{dR}}^+$ dans [2], et systématisé la construction dans le cadre relatif dans [3]. Il a aussi exploré les propriétés universelles de $\mathbf{B}_{\mathrm{dR}}^+$ d'un point de vue galoisien (cf. [4, prop. 3.2]), ou celles de l'anneau $\mathbf{A}_{\mathrm{inf}}$, pierre angulaire de la construction de $\mathbf{B}_{\mathrm{dR}}^+$, du point de vue épaississement infinitésimal [3]. Le th. 1 ci-dessous ⁽¹⁾ (ainsi que le th. 5) caractérise $\mathbf{B}_{\mathrm{dR}}^+$ de ce point de vue infinitésimal.

1. Différentielles de Kähler et épaississement universel

Soit S une algèbre affinoïde réduite $^{(2)}$, munie de la valuation spectrale $v_{\rm sp}$, et soit \mathcal{O}_S l'anneau de ses entiers (i.e. l'ensemble des $f \in S$, vérifiant $v_{\rm sp}(f) \geq 0$). Soit \overline{S} l'extension étale maximale de S, et soient $\mathcal{O}_{\overline{S}}$ l'anneau de ses entiers et $\widehat{\mathcal{O}}_{\overline{S}}$ son complété pour la topologie p-adique. Fontaine $[\mathbf{3}]$ a défini l'anneau $\mathcal{O}\mathbb{A}_{\rm inf}(\overline{S})$ comme le \mathcal{O}_S -épaississement universel de $\widehat{\mathcal{O}}_{\overline{S}}$: on dispose d'un morphisme surjectif de \mathcal{O}_S -algèbres $\theta: \mathcal{O}\mathbb{A}_{\rm inf}(\overline{S}) \to \widehat{\mathcal{O}}_{\overline{S}}$, $\mathcal{O}\mathbb{A}_{\rm inf}(\overline{S})$ est complet pour la topologie $(p, \operatorname{Ker} \theta)$ -adique et, si $\theta_A: A \to \widehat{\mathcal{O}}_{\overline{S}}$ est un \mathcal{O}_S -épaississement de $\widehat{\mathcal{O}}_{\overline{S}}$ (i.e. A est une \mathcal{O}_S -algèbre séparée et complète pour la topologie p-adique, θ_A est surjectif, et il existe $k \in \mathbb{N}$ tel que $(\operatorname{Ker} \theta_A)^{k+1} = 0$), il existe un unique morphisme de \mathcal{O}_S -algèbres $\alpha_A: \mathcal{O}\mathbb{A}_{\rm inf}(\overline{S}) \to A$ tel que $\theta_A \circ \alpha_A = \theta$.

^{1.} Qui répond à une question que m'a posée Alexander Petrov lors d'une conférence à Cargèse.

^{2.} Le cas absolu correspond à $S = \mathbf{Q}_p$, auquel cas $\widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}] = \mathbf{C}_p$.

A partir de $\mathcal{O}\mathbb{A}_{\mathrm{inf}}(\overline{S})$, on construit l'anneau $\mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S})$ comme le complété de $\mathcal{O}\mathbb{A}_{\mathrm{inf}}(\overline{S})[\frac{1}{p}]$ pour la topologie Ker θ -adique (où l'on a étendu θ en un morphisme $\mathcal{O}\mathbb{A}_{\mathrm{inf}}(\overline{S})[\frac{1}{p}] \to \widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$), et on étend θ par continuité en $\theta: \mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S}) \to \widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$, surjectif. Par construction, $\mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S})$ est complet pour la topologie Ker θ -adique. Nous allons prouver (th. 1) que $\mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S})$ est le S-épaississement universel de $\widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$.

Avant d'énoncer le résultat, rappelons que l'on dispose [1, th. 4.3] (3) d'une autre construction de $\mathcal{O}\mathbb{B}_{dR}^+(\overline{S})$, comme complété de \overline{S} pour la topologie ci-dessous. On définit, par récurrence, des sous- \mathcal{O}_S -algèbres $\mathcal{O}^{(k)}$ de $\mathcal{O}_{\overline{S}}$, par

$$\mathcal{O}^{(0)} := \mathcal{O}_{\overline{S}}, \quad \mathcal{O}^{(k+1)} := \operatorname{Ker}(\mathcal{O}^{(k)} \to \mathcal{O}^{(0)} \otimes_{\mathcal{O}^{(k)}} \Omega_{\mathcal{O}^{(k)}/\mathcal{O}_{S}})$$

Comme \overline{S} est étale sur S, on a $\mathcal{O}^{(k)}[\frac{1}{p}] = \overline{S}$ pour tout k. Soit alors $B^{(k)} := \widehat{\mathcal{O}}^{(k)}[\frac{1}{p}]$, où $\widehat{\mathcal{O}}^{(k)} := (\varprojlim_n \mathcal{O}^{(k)}/p^n)$, et soit $\mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S}) := \varprojlim_k B^{(k)}$. Chaque $B^{(k)}$ est naturellement une S-algèbre de Banach, et on on munit $\widehat{\mathcal{O}}\mathbb{B}^+_{\mathrm{dR}}(\overline{S})$ de la topologie de la limite projective, ce qui en fait un fréchet. Notons que, par définition,

$$B^{(0)} = \widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{n}]$$

On appelle S-épaississement de $\widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$ un morphisme surjectif $\theta_B: B \to B^{(0)}$ de S-algèbres de Banach tel qu'il existe $k \in \mathbb{N}$ tel que $(\operatorname{Ker} \theta_B)^{k+1} = 0$ (le plus petit tel k est l'ordre de l'épaississement).

Théorème 1. — Si $\theta_B: B \to B^{(0)}$ est un S-épaississement, il existe un unique morphisme continu $\alpha_B: \mathcal{O}\mathbb{B}_{dB}^+(\overline{S}) \to B$ tel que $\theta_B \circ \alpha_B = \theta$.

Démonstration. — Le lemme de Hensel permet de relever \overline{S} , de manière unique, dans B. L'unicité de $\mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S}) \to B$ résulte donc de la densité de \overline{S} dans $\mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S})$.

Pour prouver le théorème, il suffit donc de prouver que, si $(\text{Ker }\theta_B)^{k+1}=0$, on peut construire $B^{(k)}\to B$. Pour cela, il suffit de prouver que $\mathcal{O}^{(k)}\subset \overline{S}\subset B$ est borné dans B. On raisonne par récurrence sur k.

Soit B' le quotient de B par l'adhérence J de $(\operatorname{Ker} \theta_B)^k$, de telle sorte que $B' \to B^{(0)}$ est un épaississement d'ordre k-1. L'hypothèse de récurrence implique que $\mathcal{O}^{(k-1)}$ est contenu dans un borné $W' = p^{-N}B'_0$ de B', où B'_0 est la boule unité de B'. Soit B_0 la boule unité de B; alors l'image de $B_0 \to B'_0$ contient $p^L B'_0$ (théorème de l'image ouverte). Soit $W = p^{-N-L}B_0$; alors l'image de $W \to B'$ contient W' et $J \cap W$ est un réseau de J. Par continuité de la multiplication, il existe M tel que $W \cdot W \subset p^{-M}W$. En particulier, l'action de B sur J se factorise à travers $B^{(0)}$ et $\widehat{\mathcal{O}}^{(0)} \cdot (W \cap J) \subset p^{-M}(W \cap J)$; on peut donc, quitte à remplacer W par $W + (\widehat{\mathcal{O}}^{(0)} \cdot (W \cap J))$, supposer que $W \cap J$ est un $\widehat{\mathcal{O}}^{(0)}$ -module.

Si $x \in \mathcal{O}^{(k-1)}$, choisissons $\tilde{x} \in W$ ayant pour image x dans B', et notons $\delta(x)$ l'image de $x - \tilde{x}$ dans le $\mathcal{O}^{(0)}$ -module $J/p^{-M}(W \cap J)$; cette image ne dépend pas

^{3.} Il vaut mieux utiliser [1] que l'appendice de [3] car celui-ci comporte un trou, comme il est expliqué dans [1, note 1].

du choix de \tilde{x} (c'est déjà vrai dans $J/(W \cap J)$). De plus, $\delta(xy)$ est l'image modulo $p^{-M}(W \cap J)$ de $x(y - \tilde{y}) + (x - \tilde{x})\tilde{y} - \widetilde{x}\tilde{y} + \tilde{x}\tilde{y}$. Or $\widetilde{x}\tilde{y} - \tilde{x}\tilde{y} \in p^{-M}W \cap J$, et donc $\delta(xy) = x\delta(y) + y\delta(x)$.

Par la propriété universelle de $\Omega_{\mathcal{O}^{(k)}/\mathcal{O}_S}$ et par définition de $\mathcal{O}^{(k)}$, la dérivation δ s'annule sur $\mathcal{O}^{(k)}$; autrement dit, on a $\mathcal{O}^{(k)} \subset W + p^{-M}(W \cap J) \subset p^{-M}W$, ce qui permet de conclure.

2. De $\mathcal{O}\mathbb{A}_{\mathrm{inf}}$ à $\mathcal{O}\mathbb{B}_{\mathrm{dR}}^+$

On donne (rem. 2) une seconde preuve du th. 1 qui permet aussi de prouver (th. 5) que $\mathbb{B}_{dR}^+(\overline{S})$ est l'épaississement universel de $\widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$.

Remarque 2. — On peut aussi déduire le th.1 de l'universalité de $\mathcal{O}\mathbb{A}_{\inf}(\overline{S})$ en utilisant le lemme 3 ci-dessous $^{(4)}$. En effet, si $\theta_B: B \to B^{(0)} = \widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$ est un épaississement, le lemme fournit une \mathcal{O}_S algèbre $A \subset B$, ouverte (et donc aussi fermée) et bornée (et donc séparée et complète pour la topologie p-adique), telle que θ_B induise une surjection $A \to \widehat{\mathcal{O}}_{\overline{S}}$. L'universalité de $\mathcal{O}\mathbb{A}_{\inf}(\overline{S})$ fournit un morphisme $\alpha: \mathcal{O}\mathbb{A}_{\inf}(\overline{S}) \to A$ tel que $\theta_B \circ \alpha_A$ soit $\theta: \mathcal{O}\mathbb{A}_{\inf}(\overline{S}) \to \widehat{\mathcal{O}}_{\overline{S}}$. Si $(\operatorname{Ker} \theta_B)^{k+1} = 0$, α se factorise par $\mathcal{O}\mathbb{A}_{\inf}(\overline{S})/(\operatorname{Ker} \theta)^{k+1}$, et donc induit un morphisme

$$\mathcal{O}\mathbb{B}^+_{\mathrm{dR}}(\overline{S})/(\operatorname{Ker}\theta)^{k+1} = \mathcal{O}\mathbb{A}_{\mathrm{inf}}(\overline{S})[\tfrac{1}{p}]/(\operatorname{Ker}\theta)^{k+1} \to \widehat{\mathcal{O}}_{\overline{S}}[\tfrac{1}{p}] = B^{(0)}$$

Ceci nous fournit le morphisme surjectif $\mathcal{O}\mathbb{B}_{\mathrm{dB}}^+(\overline{S}) \to B^{(0)}$ cherché.

l'unicité d'un tel morphisme est une conséquence de la densité de \overline{S} comme nous l'avons déjà remarqué. Elle peut aussi se déduire du (ii) du lemme 3. En effet, si α_1, α_2 sont deux tels morphismes, alors $A_i := \alpha_i(\mathcal{O}\mathbb{A}_{\inf}(\overline{S}))$ est une sous- \mathcal{O}_S -algèbre bornée de B pour i=1,2. Il résulte des (i) et (ii) du lemme 3 que l'on peut trouver un \mathcal{O}_S -épaississement $A \subset B$ de $\widehat{\mathcal{O}}_{\overline{S}}$ contenant A_1 et A_2 . L'universalité de $\mathcal{O}\mathbb{A}_{\inf}(\overline{S})$ implique qu'il existe un unique $\alpha: \mathcal{O}\mathbb{A}_{\inf}(\overline{S}) \to A$ tel que $\theta_B \circ \alpha = \theta$. Il en résulte que $\alpha_1 = \alpha_2$ sur $\mathcal{O}\mathbb{A}_{\inf}(\overline{S})$, donc aussi (par \mathbf{Z}_p -linéarité) sur $\mathcal{O}\mathbb{A}_{\inf}(\overline{S})[\frac{1}{p}]$, et donc aussi (par continuité et densité de $\mathcal{O}\mathbb{A}_{\inf}(\overline{S})[\frac{1}{p}]$) sur $\mathcal{O}\mathbb{B}_{\mathrm{dR}}^+(\overline{S})$.

Lemme 3. — (i) $Si \ \theta_B : B \to \widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$ est un S-épaississement, alors B contient un sous-anneau ouvert et borné, qui est un \mathcal{O}_S -épaississement de $\widehat{\mathcal{O}}_{\overline{S}}$.

(ii) Si $A_1 \subset B$ est un \mathcal{O}_S -épaississement ouvert de $\widehat{\mathcal{O}}_{\overline{S}}$, et si A_2 est un sous-anneau borné de B, il existe un \mathcal{O}_S -épaississement $A \subset B$ de $\widehat{\mathcal{O}}_{\overline{S}}$ contenant A_1 et A_2 .

Démonstration. — On fait une récurrence sur l'ordre k de l'épaississement. Si k=0, il n'y a rien à prouver. Si $k \geq 1$, et si $I = \operatorname{Ker}(B \to \widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}])$ (on a $I^{k+1} = 0$), soit J l'adhérence de I^k , et soit B' = B/J. L'hypothèse de récurrence fournit une \mathcal{O}_S -algèbre $A' \subset B'$, ouverte (et donc aussi fermée) et bornée, se surjectant sur $\widehat{\mathcal{O}}_{\overline{S}}$.

^{4.} Qui permet aussi d'alléger les hypothèses de [4, prop. 3.2].

Choisissons $W \subset B$, un \mathcal{O}_S -module ouvert borné, se surjectant sur A' (on part d'un sous- \mathcal{O}_S -module borné de B dont l'image dans B' contient A', et on prend l'image inverse de A' dans ce borné ; l'existence d'un tel borné résulte de ce que la suite exacte $0 \to J \to B \to B' \to 0$ est une suite exacte stricte de banachs, cf. preuve du th. 1). Par continuité de la multiplication, il existe $M \in \mathbb{N}$ tel que $W \cdot W \subset p^{-M}W$; en particulier, $A' \cdot (W \cap J) \subset p^{-M}(W \cap J)$ et on peut remplacer W par $W + (A' \cdot (W \cap J))$ pour assurer que $W \cap J$ soit un A'-module. Soit alors $A = W + p^{-M}(W \cap J)$. Si $a_1, a_2 \in W$ et $b_1, b_2 \in (W \cap J)$, on a $(a_1 + p^{-M}b_1)(a_2 + p^{-M}b_2) = a_1a_2 + p^{-M}(a_1b_2 + a_2b_1) \in A$ car $a_1a_2 \in p^{-M}W \cap (W + J) = W + p^{-M}(W \cap J) = A$, et $a_1b_2 + a_2b_1 \in (W \cap J)$. Il s'ensuit que A est un sous-anneau ouvert borné de B, se surjectant sur A' et donc aussi sur $\widehat{\mathcal{O}}_{\overline{S}}$.

Ceci prouve le (i). Maintenant, si $A_1 \subset B$ est un \mathcal{O}_S -épaississement ouvert de $\widehat{\mathcal{O}}_{\overline{S}}$, et si A_2 est un sous-anneau borné de B, il existe N tel que $A_2 \subset p^{-N}A_1$. Mais $\theta_B(A_2) \subset \widehat{\mathcal{O}}_{\overline{S}}$, et donc $A_2 \subset A_1 + p^{-N}I_1$, où $I_1 = A_1 \cap \operatorname{Ker} \theta_B$. Soit $A = A_1 + p^{-N}I_1 + p^{-2N}I_1^2 + \cdots$ (il n'y a qu'un nombre fini de termes non nuls car $I_1^{k+1} = 0$ si notre épaississement est d'ordre k). Alors A est un sous-anneau borné de B qui contient A_1 et A_2 .

Ceci permet de conclure. \Box

Remarque 4. — Au lieu de \mathcal{O}_S -épaississements de $\widehat{\mathcal{O}}_{\overline{S}}$, on peut regarder les épaississements $\theta_A: A \to \widehat{\mathcal{O}}_{\overline{S}}$ de $\widehat{\mathcal{O}}_{\overline{S}}$ (i.e. on ne demande pas que θ_A soit un morphisme de \mathcal{O}_S -algèbres ni même que A soit une \mathcal{O}_S -algèbre). L'épaississement universel dans ce cadre est alors $\theta: \mathbb{A}_{\inf}(\overline{S}) \to \widehat{\mathcal{O}}_{\overline{S}}$ (cf. [3]), et on définit $\mathbb{B}^+_{dR}(\overline{S})$ comme le complété de $\mathbb{A}_{\inf}(\overline{S})[\frac{1}{p}]$ pour la topologie Ker θ -adique. Le lemme 3 et preuve du th. 1 donnée dans la rem. 2 s'étendent verbatim à ce cadre (contrairement à la première preuve utilisant les différentielles de Kähler). On a donc le résultat suivant.

Théorème 5. — $\mathbb{B}^+_{\mathrm{dR}}(\overline{S})$ est l'épaississement universel de $\widehat{\mathcal{O}}_{\overline{S}}[\frac{1}{p}]$.

Remarque 6. — Si on spécialise la situation au cas où S est une extension finie K de \mathbf{Q}_p , les th. 1 et 5 deviennent : $\mathbf{B}_{\mathrm{dR}}^+$ est à la fois l'épaississement universel et le K-épaississement universel de \mathbf{C}_p .

Références

- [1] P. Colmez, Une construction de $\mathbf{B}_{\mathrm{dR}}^+$, Rend. Sem. Mat. Univ. Padova 128 (2012), 109–130.
- J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982), 529-577.
- [3] J.-M. Fontaine, Le corps des périodes p-adiques, Astérisque 223 (1994), 59–101.
- [4] J.-M. Fontaine, Arithmétique des représentations galoisiennes p-adiques, Astérisque 295 (2004), 1–115.

PIERRE COLMEZ, CNRS, IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75005 Paris, France E-mail: pierre.colmez@imj-prg.fr