Pierre Fima

Maître de Conférences
Université Denis-Diderot - Paris 7
Equipe d'Algèbres d'Opérateurs
Institut Mathématiques de Jussieu
Site Sophie Germain
75 013 Paris
France
Office: 7010

pierre.fima@imj-prg.fr

PhD in Mathematics from the University of Caen, France (2007) and HDR in Mathematics from the University Paris 7 (2014).

Voici une synthèse de mes recherches.

PhD students:

  • Lorenzo Pittau
  • Rubén Martos
  • Frank Taipe
  • Hua Wang

      Preprint:

    1. Monoidal Rigidity for Free Wreath Products, with L. Pittau.
      Download here in pdf.
    2. Homogeneous Actions on the Random Graphs, with S. Moon and Y. Stalder.
      Download here in pdf.
    3. The KK-theory of fundamental C*-algebras, with E. Germain.
      Download here in pdf.
    4. The KK-theory of amalgamated free products, with E. Germain.
      Download here in pdf.
    5. Publications:

    6. On compact bicrossed products, with K. Mukherjee and I. Patri.
      To appear in Journal of NonCommutative Geometry. Download here in pdf.
    7. The free wreath product of a compact quantum group by a quantum automorphism group, with L. Pittau.
      To appear in Journal of Functional Analysis. Download here in pdf.
    8. Graph products of operator algebras, with M. Caspers.
      To appear in Journal of NonCommutative Geometry. Download here in pdf.
    9. On a cocycle in the adjoint representation of the orthogonal free quantum groups, with R. Vergnioux.
      Int. Math. Res. Notices 2015 (2015) 10069-10094. Download here in pdf.
    10. Highly transitive actions of groups acting on trees, with S. Moon and Y. Stalder.
      Proc. Amer. Math. Soc. 143 (2015) 5083-5094. Download here in pdf.
    11. Graphs of quantum groups and K-amenability, with A. Freslon.
      Adv. Math. 260 (2014) 233-280. Download here in pdf.
    12. The Haagerup property for locally compact quantum groups, with M. Daws, A. Skalski and S. White.
      J. Reine Angew. Math. 711 (2016) 198-229. Download here in pdf.
    13. K-amenability of HNN extensions of amenable discrete quantum groups.
      Journal of Functional Analysis, 265 (2013) 507-519. Download here in pdf.
    14. Amenable, transitive and faithful actions of groups acting on trees.
      Ann. Inst. Fourier (Grenoble) 24 (2014) 1-17. Download here in pdf.
    15. A note on the von Neumann algebra of a Baumslag-Solitar group.
      C. R. Acad. Sci. Paris, Ser. I 349 (2011) 25-27. Download here in pdf.
    16. HNN extensions and unique group measure space decomposition of II1 factors, with S. Vaes
      Transactions of the American Mathematical Society, 354 (2012) 2601-2617. Download here in pdf.
    17. Property T for Discrete Quantum Groups
      International Journal of Mathematics 21 (2010), no. 1, Pages 47-65. Download here in pdf.
    18. Twisting and Rieffel's deformation of locally compact quantum groups. Deformation of the Haar measure, with L. Vainerman
      Communications in Mathematical Physics, Volume 286, Number 3, March 2009, Pages 1011-1050. Download here in pdf.
    19. A locally compact quantum group of upper triangular matrices, with L. Vainerman.
      Ukrainian Math. Journal, Volume 60, No 4 (2008), pp. 564 - 577. Download here in pdf.
    20. On locally compact quantum groups whose algebras are factors.
      Journal of Functional Analysis, volume 244, Issue 1, 1 March 2007, Pages 78-94. Download here in pdf.


    Last updated: October 19, 2016.