Rapid decay and polynomial growth for bicrossed products

Pierre Fima and Hua Wang

Abstract

We study the rapid decay property and polynomial growth for duals of bicrossed products coming from a matched pair of a discrete group and a compact group.

1 Introduction

In the breakthrough paper paper [Ha78], Haagerup showed that the norm of the reduced C*-algebra \(C^*_\text{r}(F_N) \) of the free group on \(N \)-generators \(F_N \), can be controlled by the Sobolev \(l^2 \)-norms associated to the word length function on \(F_N \). This is a striking phenomenon which actually occurs in many more cases. Jolissaint recognized this phenomenon, called Rapid Decay (or property \((RD)\)), and studied it in a systematic way in [Jo89]. Property \((RD)\) has now many applications. Let us mention the remarkable one concerning K-theory. Property \((RD)\) allowed Jolissaint [Jo89] to show that the K-theory and \(C^*_\text{r}(\Gamma) \) equals the K-theory of subalgebras of rapidly decreasing functions on \(\Gamma \). This result was then used by V. Lafforgue in his approach to the Baum-Connes conjecture via Banach KK-theory [La00, La02].

In this paper, we view discrete quantum groups as duals of compact quantum groups. The theory of compact quantum groups has been developed by Woronowicz [Wo87, Wo88, Wo98]. Property \((RD)\) for discrete quantum groups has been introduced and studied by Vergnioux [Ve07]. Property \((RD)\) has been refined later [BVZ14] in order to fit in the context of non-unimodular discrete quantum groups.

In this paper, we study the permanence of property \((RD)\) under the bicrossed product construction. This construction was initiated by Kac [Ka68] in the context of finite quantum groups and was extensively studied later by many authors in different settings. The general construction, for locally compact quantum groups, was developed by Vaes-Vainerman [VV03]. In the context of compact quantum groups given by matched pairs of classical groups, an easier approach, that we will follow, was given by Fima-Mukherjee-Patri [FMP17].

Following [FMP17], the bicrossed product construction associates to a matched pair \((\Gamma, G)\) of a discrete group \(\Gamma \) and a compact group \(G \) (see Section 2.2) a compact quantum group \(\hat{G} \), called the bicrossed product. Given a length function \(l \) on the set of equivalence classes \(\text{Irr}(G) \) of irreducible unitary representations of \(G \) one can associate in a canonical way, as explained in Proposition 4.2, a pair of length functions \((l_\Gamma, l_G) \) on \(\Gamma \) and \(\text{Irr}(G) \) respectively. Such a pair satisfies some compatibility relations and every pair of length functions \((l_\Gamma, l_G) \) on \((\Gamma, \text{Irr}(G)) \) satisfying those compatibility relations will be called matched (see Definition 4.1). Any matched pair \((l_\Gamma, l_G) \) on \((\Gamma, \text{Irr}(G)) \) allows one to reconstruct a canonical length function on \(\text{Irr}(G) \). The main result of the present paper is the following.

Theorem A. Let \((\Gamma, G)\) be a matched pair of a discrete group \(\Gamma \) and a compact group \(G \). Denote by \(\hat{G} \) the bicrossed product. The following are equivalent.

1. \(\hat{G} \) has property \((RD)\).

2. There exists a matched pair of length function \((l_\Gamma, l_G)\) on \((\Gamma, \text{Irr}(G))\) such that both \((\Gamma, l_\Gamma)\) and \((\hat{G}, l_G)\) have \((RD)\).

For amenable discrete groups, property \((RD)\) is equivalent to polynomial growth [Jo89] and the same occurs for discrete quantum groups [Ve07]. Hence, for the compact classical group \(G \) one has that \((\hat{G}, l_G)\) has \((RD)\) if and only if it has polynomial growth. Note that a bicrossed product of a matched pair \((\Gamma, G)\) is co-amenable if and only if \(\Gamma \) is amenable [FMP17]. The following theorem shows the permanence of polynomial growth under the bicrossed product construction.

Theorem B. Let \((\Gamma, G)\) be a matched pair of a discrete group \(\Gamma \) and a compact group \(G \). Denote by \(\hat{G} \) the bicrossed product. The following are equivalent.
1. \hat{G} has polynomial growth.
2. There exists a matched pair of length function (l_r, l_G) on $(\Gamma, \text{Irr}(G))$ such that both (Γ, l_r) and (\hat{G}, l_G) have polynomial growth.

The main ingredient to prove Theorem A and B is the classification of the irreducible unitary representation of a bicrossed product and the fusion rules.

The paper is organized as follows. Section 2 is a preliminary section in which we introduce our notations. In section 3 we classify the irreducible unitary representation of a bicrossed product and describe their fusion rules. Finally, in section 4, we prove Theorem A and Theorem B.

2 Preliminaries

2.1 Notations

For a Hilbert space H, we denote by $\mathcal{U}(H)$ its unitary group and by $\mathcal{B}(H)$ the C^*-algebra of bounded linear operators on H. When H is finite dimensional, we denote by Tr the unique trace on $\mathcal{B}(H)$ such that $\text{Tr}(1) = \dim(H)$. We use the same symbol \otimes for the tensor product of Hilbert spaces, unitary representations of compact quantum groups, minimal tensor product of C^*-algebras. For a compact quantum group G, we denote by $\text{Irr}(G)$ the set of equivalence classes of irreducible unitary representations and $\text{Rep}(G)$ the collection of finite dimensional unitary representations. We will often denote by $[u]$ the equivalence class of an irreducible unitary representation u. For $u \in \text{Rep}(G)$, we denote by $\chi(u)$ its character, i.e., viewing $u \in \mathcal{B}(H) \otimes C(G)$ for some finite dimensional Hilbert space H, one has $\chi(u) = (\text{Tr} \otimes \text{id})(u) \in C(G)$. We denote by $\text{Pol}(G)$ the unital C^*-algebra obtained by taking the Span of the coefficients of irreducible unitary representation, by $C_m(G)$ the enveloping C^*-algebra of $\text{Pol}(G)$ and by $C(G)$ the C^*-algebra generated by the GNS construction of the Haar state on $C_m(G)$. We also denote by $\varepsilon : C_m(G) \to \mathbb{C}$ the counit and we use the same symbol $\varepsilon \in \text{Irr}(G)$ to denote the trivial representation and its class in $\text{Irr}(G)$. In the entire paper, the word representation means a unitary and finite dimensional representation.

2.2 Compact bicrossed products

In this section, we follow the approach and the notations of [FMP17].

Let (Γ, G) be a pair of a countable discrete group Γ and a second countable compact group G with a left action $\alpha : \Gamma \to \text{Homeo}(G)$ of the compact space G by homeomorphisms and a right action $\beta : G \to \text{S}(G)$ of G on the discrete space Γ, where $\text{S}(G)$ is the Polish group of bijections of Γ, the topology being the one of pointwise convergence i.e., the smallest one for which the evaluation maps $\text{S}(G) \to \Gamma, \sigma \mapsto \sigma(\gamma)$ are continuous, for all $\gamma \in \Gamma$, where Γ has the discrete topology. Here, α is a group homomorphism and β is an antihomomorphism. The pair (Γ, G) is called a matched pair if $\Gamma \cap G = \{e\}$ with e being the common unit for both G and Γ, and if the actions α and β satisfy the following matched pair relations:

$$\forall g, h \in G, \gamma, \mu \in \Gamma, \quad \alpha_\gamma(gh) = \alpha_\gamma(g)\alpha_{\beta_\gamma(\mu)}(h), \quad \beta_\gamma(\mu) = \beta_{\alpha_{\beta_\gamma(\mu)}}(\gamma)\beta_\gamma(\mu) \quad \text{and} \quad \alpha_\gamma(e) = \beta_\gamma(e) = e.$$

We also write $\gamma \cdot g := \beta_\gamma(g)$. From now on, we assume (Γ, G) is matched. It is shown in [FMP17] that β is automatically continuous. By continuity of β and compactness of G, every β orbit is finite. Moreover, the sets $G_{r,s} := \{g \in G : r \cdot g = s\}$ are clopen. Let $v_{rs} = 1_{G_{r,s}} \in C(G)$ be the characteristic function of $G_{r,s}$. It is shown in [FMP17] that, for all β-orbits $\gamma \in \Gamma/G$, the unitary $v_{\gamma,G} := \sum_{r,s \in \gamma \cdot G} v_{rs} \otimes v_{rs} \in B(l^2(\gamma \cdot G)) \otimes C(G)$ is a unitary representation of G as well as a magic unitary, where $e_{rs} \in B(l^2(\gamma \cdot G))$ are the canonical matrix units and the Haar probability measure ν on G is α-invariant.

It is shown in [FMP17] that there exists a unique compact quantum group \hat{G}, called the bicrossed product of the matched pair (Γ, G), such that $C(\hat{G}) = \Gamma_\alpha \ltimes C(G)$ is the reduced C^*-algebraic crossed product, generated by a copy of $C(G)$ and the unitaries $u_\gamma, \gamma \in \Gamma$ and $\Delta : C(\hat{G}) \to C(\hat{G}) \otimes C(\hat{G})$ is the unique unital \ast-homomorphism satisfying $\Delta|_{C(G)} = \Delta_G$ (the comultiplication on $C(G)$) and $\Delta(u_\gamma) = \sum_{r \in \gamma \cdot G} u_{\gamma r} v_{\gamma r} \otimes u_r$ for all $\gamma \in \Gamma$. It is also shown that the Haar state on G is a trace and is given by the formula $h(u_\gamma F) = \delta_{\gamma,1} \int_G F d\nu$ for all $\gamma \in \Gamma$ and $F \in C(G)$.
3 Representation theory of bicrossed products

3.1 Classification of irreducible representations

In this section we classify the irreducible representations of a bicrossed product. Let \((G, G)\) be a matched pair of a discrete countable group \(\Gamma\) and a second countable compact group \(G\) with actions \(\alpha, \beta\).

For \(\gamma \in \Gamma\) we denote by \(G_\gamma := G_{\gamma, \gamma}\) the stabilizer of \(\gamma\) for the action \(\beta : \Gamma \curvearrowright G\). Note that \(G_\gamma\) is an open (hence closed) subgroup of \(G\), hence of finite index: its index is \([\gamma : G]\). We view \(C(G_\gamma) = v_\gamma C(G) \subset C(G)\) as a non-unital C*-subalgebra. Let us denote by \(\nu\) the Haar probability measure on \(G\) and note that \(\nu(G_\gamma) = \frac{1}{[\gamma : G]}\) so that the Haar probability measure \(\nu_\gamma\) on \(G_\gamma\) is given by \(\nu_\gamma(A) = |\gamma : G| \nu(A)\) for all Borel subset \(A\) of \(G_\gamma\).

For \(\gamma \in \Gamma\) we fix a section, still denoted \(\gamma, \gamma : \gamma \cdot G \rightarrow G\) of the canonical surjection \(G \rightarrow \gamma \cdot G : g \mapsto \gamma \cdot g\). This means that \(\gamma : \gamma \cdot G \rightarrow G\) is an injective map such that \(\gamma \cdot (r \cdot g) = r \cdot (\gamma \cdot g)\) for all \(r \in \gamma \cdot G\). We choose the section \(\gamma\) such that \(\gamma(\gamma) = 1\), for all \(\gamma \in \Gamma\). For \(r, s \in \gamma \cdot G\), we denote by \(\psi^G_{r,s}\) the \(\nu\)-preserving homeomorphism of \(G\) defined by \(\psi^G_{r,s}(g) = \gamma(r)g\gamma(s)^{-1}\). It follows from our choices that \(\psi^G_{r,s} = \text{id}\) for all \(\gamma \in \Gamma\). Moreover, for all \(g \in G\), one has \(\psi^G_{r,s} = \text{id}\) in \(G_\gamma\), if and only if \(g \in G_{r,s}\). It follows that \(\psi^G_{r,s}\) is an isomorphism and an homeomorphism from \(G_{r,s}\) to \(G_{r,s}\) intertwining the Haar probability measures.

Let \(u : G_{\gamma} \rightarrow U(H)\) be a unitary representation of \(G_{\gamma}\) and view \(u\) as a continuous function \(G_{\gamma} \rightarrow B(H)\) which is zero outside \(G_{\gamma}\) i.e. a partial isometry in \(B(H) \otimes C(G)\) such that \(u^* = u^* u = \text{id}_H \otimes v_{\gamma, \gamma}\). Define, for \(r, s \in \gamma \cdot G\), the partial isometry \(u_{r,s} := u \circ \psi^G_{r,s} := (g \mapsto u(\psi^G_{r,s}(g))) \in B(H) \otimes C(G)\) and note that \(u_{r,s}^*u_{r,s} = u_{r,s}u_{s,r,s} = \text{id}_H \otimes 1_{G_{r,s}}\). In the sequel we view \(u_{r,s} \in B(H) \otimes C(G)\) in \(B(H) \otimes C(G)\) and we define:

\[
\gamma(u) := \sum_{r,s \in G_{\gamma}} e_{r,s} \otimes (1 \otimes u_{r,s})u_{r,s} \in B(\ell^2(\gamma \cdot G)) \otimes B(H) \otimes C(G),
\]

where we recall that \(e_{r,s}\), for \(r, s \in \gamma \cdot G\), are the matrix units associated to the canonical orthonormal basis of \(\ell^2(\gamma \cdot G)\).

The irreducible unitary representations of \(G_{\gamma}\) are described as follows.

Theorem 3.1. The following holds.

1. For all \(\gamma \in \Gamma\) and \(u \in \text{Rep}(G_{\gamma})\) one has \(\gamma(u) \in \text{Rep}(G_{\gamma})\).
2. The character of \(\gamma(u)\) is \(\chi_{\gamma}(u) = \sum_{r,s \in G_{\gamma}} u_{r,s}^* \chi(u) \otimes \psi^G_{r,s}\).
3. For all \(\gamma \in \Gamma\) and \(u, w \in \text{Rep}(G_{\gamma})\) one has \(\dim(\text{Mor}_G(\gamma(u), \mu(w))) = \delta_{\gamma, \gamma} \delta_{\mu, \mu} \dim(\text{Mor}_G(u, w \circ \psi^G_{\gamma, \gamma}))\).
4. For all \(\gamma \in \Gamma\) and \(u \in \text{Rep}(G_{\gamma})\) one has \(\gamma(u) \simeq_{\gamma} \gamma^{-1}(\pi \circ \alpha_{\gamma-1})\) (which makes sense since \(\alpha_{\gamma-1} : G_{\gamma-1} \rightarrow G_{\gamma}\) is a group isomorphism and an homeomorphism).
5. \(\gamma(u)\) is irreducible if and only if \(u\) is irreducible. Moreover, for any irreducible unitary representation \(u\) of \(G_{\gamma}\) there exists \(\gamma \in \Gamma\) and \(v\) an irreducible representation of \(G_{\gamma}\) such that \(u \simeq_{\gamma} v\).

Proof. (1) Writing \(\gamma(u) = \sum_{r,s} e_{r,s} \otimes V_{r,s}\), where \(V_{r,s} := (1 \otimes u_{r,s})u_{r,s} \in B(H) \otimes C(G)\), it suffices to check that, for all \(r, s \in \gamma \cdot G\) one has \(\text{id} \otimes \Delta)(V_{r,s}) = \sum_{t \in G_{\gamma}} (v_{r,t} \otimes 1_{12(12,13)})\). We first claim that, for all \(r, s \in \gamma \cdot G\), \(\text{id} \otimes \Delta)(u_{r,s}) = \sum_{t \in G_{\gamma}} (u_{r,t} \otimes 1_{12(12,13)})\). To check our claim, first recall that, for all \(r, s \in \gamma \cdot G\) one has \(\psi^G_{r,s}(g) \in G_{\gamma}\) if and only if \(r \cdot g = s\). Let \(r, s \in \gamma \cdot G\) and \(g, h \in G\). For \(t = r \cdot g \cdot G \in \gamma \cdot G\) one has:

\[
u_{r,s}(gh) = u(\gamma(r)g\gamma(t)^{-1}\gamma(t)h\gamma(s)^{-1}) = u(\psi^G_{r,s}(g)\psi^G_{r,s}(h)) = \begin{cases} u_{r,t}(u_{r,s}(h)) & \text{if } r \cdot gh = s, \\ 0 & \text{otherwise}. \end{cases}
\]

Since we also have \(u_{t,s}(h) = 0\) whenever \(r \cdot gh \neq s\) we find, in both cases, that \(u_{r,s}(gh) = u_{r,t}(u_{r,s}(h))\). Now, for \(t \neq r \cdot g\) we have \(u_{r,t}(g) = 0\) so the following formulae holds for any \(r, s \in \gamma \cdot G\) and any \(g, h \in G\):

\[
v_{r,t}(g)u_{r,s}(gh) = u_{r,t}(g)u_{r,s}(h).
\]
Hence, for all $r, s, t \in \gamma \cdot G$, $(1 \otimes v_{r,t} \otimes 1)(\text{id} \otimes \Delta)(u_{r,s}) = (u_{r,t})_{12}(u_{t,s})_{13}$. Using this we find:

\[
\sum_{t \in \gamma \cdot G} (V_{r,t})_{12}(V_{t,s})_{13} = \sum_{t} (1 \otimes u_{r,v_{t}} \otimes 1)(u_{r,t})_{12}(1 \otimes 1 \otimes u_{1}v_{t}) (u_{t,s})_{13} = \sum_{t} (1 \otimes u_{r,v_{t}} \otimes u_{1}v_{t}) (u_{r,t})_{12}(u_{t,s})_{13} = \left(1 \otimes \left(\sum_{t} u_{r,v_{t}} \otimes u_{1}v_{t}\right)\right) (\text{id} \otimes \Delta)(u_{r,s}).
\]

Since v_{r} is a unitary representation of G and a magic unitary we also have:

\[
\Delta_{r,s}(u_{r,v_{r}}) = \sum_{t} (u_{r,v_{t}} \otimes u_{t}) (v_{t,s} \otimes v_{t,s}) = \sum_{t} u_{r,v_{t}} \otimes u_{t}v_{t}.
\]

This shows that $\gamma(u)$ is a representation of G. We now check that $\gamma(u)$ is unitary. As before, since for all $r, s \in \gamma \cdot G$ one has $\psi^{\gamma_{r,s}}_{s}(g) \in G_{\gamma}$ if and only if $r \cdot g = s$ and because u is a unitary representation of G_{γ}, we have, for all $r, t \in \gamma \cdot G$, $(1 \otimes v_{r})u_{r,t}u_{r,t}^{*} = 1 \otimes v_{r}$. Hence,

\[
\sum_{t \in \gamma \cdot G} V_{r,t}V_{t,s}^{*} = \sum_{t} (1 \otimes u_{r})(1 \otimes v_{t})u_{r,t}u_{r,t}^{*}(1 \otimes u_{t}^{*}) = \sum_{t} (1 \otimes u_{r}) \left(\sum_{t} (1 \otimes v_{t})u_{r,t}u_{r,t}^{*}\right) (1 \otimes u_{t}^{*}) = \delta_{r,s}(1 \otimes u_{r}) \left(\sum_{t} (1 \otimes v_{t})\right) (1 \otimes u_{t}^{*}) = \delta_{r,s}.
\]

A similar computations shows that $\sum_{t \in \gamma \cdot G} V_{r,t}^{*}V_{t,s} = \delta_{r,s}$.

(2) The character of $\gamma(u)$ is given by

\[
\chi(\gamma(u)) = \sum_{r \in \gamma \cdot G} (\text{Tr} \otimes \text{id})(V_{r,r}) = \sum_{r} u_{r,v_{r}}(\text{Tr} \otimes \text{id})(u_{r,r}) = \sum_{r} u_{r,v_{r}} \chi(u) \circ \psi^{\gamma}_{r,r}.
\]

(3) Let $\gamma, \mu \in \Gamma$ and u, w be representations of G_{γ} and G_{μ} respectively. Since the Haar measure on G is invariant under the action α and the homeomorphisms $\psi^{\gamma}_{r,r}$ and $\psi^{\mu}_{r,r}$, we find by 1,

\[
\dim(\text{Mor}(\gamma(u), \mu(w))) = h(\chi(\gamma(u))\chi(\mu(w))) = \sum_{r \in \gamma \cdot G, s \in \mu \cdot G} h(u_{r,s^{-1}} \alpha_{s}(v_{r,s} \chi(u) \circ \psi^{\gamma}_{r,s} \circ \psi^{\mu s}_{r,s} \circ \psi^{\gamma}_{s,s} \circ \psi^{\mu}_{s,s})).
\]

Now, note that $\psi^{\mu}_{r,r} \circ (\psi^{\gamma}_{r,r})^{-1} \circ (\psi^{\mu}_{s,s})^{-1} = \text{Ad}(h)$, where $h = \mu(r) \gamma(r)^{-1} \mu(\gamma)^{-1}$. Moreover it is clear that $\mu \cdot h = \mu$, so $h \in G_{\mu}$. Since the characters of finite dimensional unitary representation of a group A are central functions i.e. invariant under $\text{Ad}(\lambda)$ for all $\lambda \in \Lambda$, we have $\chi(\mu) \circ \psi^{\mu}_{r,r} \circ (\psi^{\gamma}_{r,r})^{-1} \circ (\psi^{\mu}_{s,s})^{-1} = \chi(\mu) \circ \text{Ad}(h) = \chi(\mu)$. Hence:

\[
\dim(\text{Mor}(\gamma(u), \mu(w))) = \delta_{\gamma,\mu} \cdot \chi(u) \circ (\psi^{\mu}_{r,r})^{-1} \chi(\mu)d\nu = \delta_{\gamma,\mu} \int_{G_{\mu}} \chi(u) \circ (\psi^{\mu}_{r,r})^{-1} \chi(\mu)d\nu = \delta_{\gamma,\mu} \dim(\text{Mor}_{G_{\mu}})(u \circ (\psi^{\mu}_{r,r})^{-1}, w) = \delta_{\gamma,\mu} \int_{G_{\mu}} \chi(u) \circ \psi^{\mu}_{r,r} d\nu = \delta_{\gamma,\mu} \dim(\text{Mor}_{G_{\gamma}})(u, w \circ \psi^{\mu}_{r,r}).
\]
Using the discussion above we find, for all $\gamma \in \Gamma$ and $g \in G$, $(\gamma \cdot g)^{-1} = \gamma^{-1} \cdot \alpha_g(g)$. Hence $v_{r^{-1} \gamma^{-1}} \circ \alpha_g \equiv v_{\gamma} \gamma$ and $(\gamma \cdot G)^{-1} = \gamma^{-1} \cdot G$. In particular, $\alpha_g : G_r \to G_{r^{-1}}$ is an homeomorphism and, by the bicrossed product relations, one has, for all $g \in G_{\gamma}$ and $h \in G$, $\alpha_g(h) = \alpha_g(g)\alpha_g^{-1}(h) = \alpha_g(g)\alpha_g(h)$ so that $\alpha_g : G_{\gamma} \to G_{\gamma^{-1}}$ is also a group homomorphism.

For $r \in \gamma \cdot G$ one has $\gamma^{-1} \cdot \alpha_g(\gamma(r)) = (\gamma \cdot \gamma(r))^{-1} = r^{-1} = \gamma^{-1} \cdot (r^{-1})$. This implies that, for all $\gamma \in \Gamma$, there exists a map $\eta_\gamma : \gamma \cdot G \to G_{\gamma^{-1}}$ such that, for all $r \in \gamma \cdot G$, one has $\alpha_g(\gamma(r)) = \eta_\gamma(r)\gamma^{-1}(r^{-1})$.

Let now $r \in \gamma \cdot G$ and $g \in G_r$. One has, using the bicrossed product relations, that $e = \alpha_r(\gamma(r)\gamma(r)^{-1}) = \alpha_r(\gamma(r))\alpha_r(\gamma(r)^{-1})$, hence

$$
(\alpha_r \circ \psi_{r\gamma})(g) = \alpha_r(\gamma(r)\alpha_r(g)(\gamma(r)^{-1}) = \alpha_r(\gamma(r)\alpha_r(g)(\alpha_r(\gamma(r))))^{-1} = \eta_\gamma(r)(\psi_{r^{-1},r^{-1}} \circ \alpha_r(g)(\eta_\gamma(r))^{-1}.
$$

Hence, for all $\gamma \in \Gamma$, if $w \in \text{Rep}(G_{\gamma^{-1}})$, since $\chi(w) \in C(G_{\gamma^{-1}})$ is central we have

$$
\chi(w) \circ \alpha_r \circ \psi_{r\gamma}(g) = \chi(w) \circ \psi_{r^{-1},r^{-1}} \circ \alpha_r(g) \quad \text{for all } r \in \gamma \cdot G, g \in G_r.
$$

Using the discussion above we find,

$$
\chi(\gamma^{-1}(\pi \circ \alpha_{\gamma^{-1}})) = \sum_{r \in \gamma \cdot G} u_{r^{-1}} v_{r^{-1}} \chi(\pi) \circ \alpha_{\gamma^{-1}} \circ \psi_{r^{-1},r^{-1}}^{-1} = \sum_{r \in \gamma \cdot G} (\chi(\pi) \circ \alpha_{\gamma^{-1}} \circ \psi_{r^{-1},r^{-1}}^{-1} \circ \alpha_r)(v_{r^{-1}} \circ \alpha_r(u_{r^{-1}})) = \sum_{r \in \gamma \cdot G} \chi(\pi) \circ \psi_{r} \circ u_{r} = \sum_{r \in \gamma \cdot G} (\chi(\pi) \circ \psi_{r} \circ u_{r}) u_{r} = \chi(\gamma^{-1}(\pi)) \chi(\pi) \circ \alpha_{\gamma^{-1}} \circ \psi_{r^{-1},r^{-1}}^{-1} = \chi(\gamma^{-1}(\pi) \circ \alpha_{\gamma^{-1}})
$$

(5). By the general theory it suffices to show that the linear span X of coefficients of representations of the form $\gamma(u)$, for $\gamma \in \Gamma$ and u an irreducible unitary representation of G_{γ}, is a dense subset of $C(G)$. Note that, for all $\gamma \in \Gamma$, the relation $1 = \sum_{r \in \gamma \cdot G} v_{r^{-1}}$ implies that any function in $C(G)$ is a sum of continuous functions with support in $G_{\gamma,r} := \{g \in G : \gamma \cdot g = r\}$, for $r \in \gamma \cdot G$. Moreover, since $G_{\gamma,r} = (\psi_{r\gamma})^{-1}(G_{\gamma})$, any continuous function on G with support in $G_{\gamma,r}$ is of the form $F \circ \psi_{r\gamma}^{-1}$, where $F \in C(G_r)$. Since the linear span of coefficients of irreducible unitary representation of G_{γ} is dense in $C(G_{\gamma})$, it suffices to show that, for any $\gamma \in \Gamma$, for any irreducible unitary representation of G_{γ}, $u : G_{\gamma} \to U(H)$, any coefficient $u_{ij} \in C(G_{\gamma}) = v_{\gamma,r}C(G) \subset C(G)$ satisfies $u_{ij} \in X$. But this is obvious since one has

$$
u_{ij} u_{ij} = u_{ij} v_{\gamma,\gamma} u_{ij} = u_{ij} v_{\gamma,\gamma} u_{ij} \circ \psi_{\gamma,\gamma} = \gamma(u_{ij}) \in X.
$$

Finally, the fusion rules are described as follows.

Let $\gamma, \mu \in \Gamma$, $u : G_{\gamma} \to U(H_u), v : G_{\mu} \to U(H_v)$ by unitary representations of G_{γ} and G_{μ} respectively. For any $r \in (\gamma \cdot G)(\mu \cdot G)$, we define the r-twisted tensor product of u and v, denoted $u \otimes v$ as a unitary representation of G_r on $K_r \otimes H_u \otimes H_v$, where

$$K_r := \text{Span}\{e_s \otimes e_t : s \in \gamma \cdot G \text{ and } t \in \mu \cdot G \text{ such that } st = r\} \subset l^2(\gamma \cdot G) \otimes l^2(\mu \cdot G).
$$

For $g \in G$, we define:

$$
(u \otimes v)(g) = \sum_{r,s,t \in \Gamma} e_{ss'} \otimes e_{tt'} \otimes v_{ss'}(\alpha_s(g))v_{tt'}(g)u(\psi_{ss'}^r(\alpha_s(g))) \otimes v(\psi_{tt'}^r(g)) \in U(K_r \otimes H_u \otimes H_v).
$$

Theorem 3.2. The following holds.

1. For all $\gamma, \mu \in \Gamma$, all $r \in (\gamma \cdot G)(\mu \cdot G)$ and all u, v finite dimensional unitary representations of G_{γ}, G_{μ} respectively the element $u \otimes v$ is a unitary representation of G_r.

5
2. The character of \(u \otimes v \) is
\[
\chi(u \otimes v) = \sum_{s,t \in \mathbb{C}G, r \in \mathbb{C}G} (v_s \otimes \alpha_t)v_{tt'}(\chi(u) \otimes \psi^\alpha_{s,t}(\alpha_t(\otimes)) \otimes v_{tt'-(s,t)}).
\]

3. For all \(\gamma_1, \gamma_2, \gamma_3 \in \Gamma \) and all \(u, v, w \) unitary representations of \(G_{\gamma_1}, G_{\gamma_2} \) and \(G_{\gamma_3} \) respectively, the number
\[
\text{dim}(\text{Mor}_G(\gamma_1(u), \gamma_2(v) \otimes \gamma_3(w)))
\]

is equal to:
\[
\begin{cases}
\frac{1}{|G_\gamma|} \sum_{r \in \mathbb{C}G} \text{dim}(\text{Mor}_G(\chi(r) \otimes v \otimes w)) \\
0 \quad \text{if } \gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G) \neq \emptyset,
\end{cases}
\]

otherwise.

Let us observe that, by the bicrossed product relations, we have, for all \(\gamma_1, \gamma_2, \gamma_3 \in \Gamma \),
\[
\gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G) \neq \emptyset \iff \gamma_1 \cdot G \subset (\gamma_2 \cdot G)(\gamma_3 \cdot G).
\]

Proof. (1). Put \(w = u \otimes v \) and let \(g, h \in G_r \). Then, \(w(gh) \) is equal to:
\[
\sum_{s,t \in \mathbb{C}G, \gamma \in \mathbb{C}G} e_{ss'} \otimes e_{tt'} \otimes v_{ss'}(\alpha_t(gh))v_{tt'}(\chi(u) \otimes \psi^\alpha_{s,s}(\alpha_t(gh))) \otimes v(\psi^\mu_{t,t'}(gh)).
\]

Since \(v_{tt'}(g) \neq 0 \) precisely when \(t \cdot g = y \), the factor \(v_{ss'}(\alpha_t(gh))v_{tt'}(\chi(u) \otimes \psi^\alpha_{s,s}(\alpha_t(gh))) \otimes v(\psi^\mu_{t,t'}(gh)) \) is equal to:
\[
\sum_{x \in \Gamma, \gamma \in \mathbb{C}G} v_{xx'}(\alpha_t(gh))v_{tt'}(\chi(u) \otimes \psi^\alpha_{x,x'}(\alpha_t(gh))) \otimes v(\psi^\mu_{t,t'}(gh))
\]
\[
= \sum_{x \in \Gamma, \gamma \in \mathbb{C}G} v_{xx'}(\alpha_t(gh))v_{tt'}(\chi(u) \otimes \psi^\alpha_{x,x'}(\alpha_t(gh))) \otimes v(\psi^\mu_{t,t'}(gh)).
\]

Moreover, since for all \(g \in G_r \), and all \(s, t \) such that \(st = r \), one has, whenever \(t \cdot g = y \) and \(s \cdot \alpha_t(g) = x \),
\[
xy = (s \cdot \alpha_t(g))(t \cdot g) = (st) \cdot g = r \cdot g = r,
\]

it follows that the only non-zero terms in the last sum are for \(x \in \gamma \cdot \Gamma \) and \(y \in \mu \cdot G \) such that \(xy = r \). By the properties of the matrix units we see immediately that \(w(gh) = w(g)w(h) \).

To end the proof of (1), it suffices to check that \(w(1) = 1 \), which is clear, and that \(w(g)^* = w(g^{-1}) \) for all \(g \in G_r \). So let \(g \in G_r \). One has:
\[
w(g)^* = \sum_{s,t \in \mathbb{C}G, \gamma \in \mathbb{C}G} e_{ss'} \otimes e_{tt'} \otimes v_{ss'}(\alpha_t(g))v_{tt'}(\chi(u) \otimes \psi^\alpha_{s,s}(\alpha_t(g))^{-1}) \otimes v(\psi^\mu_{t,t'}(g)^{-1}).
\]

Note that for all \(t, t' \in \Gamma \) and all \(g \in G_r \), one has \(v_{ss'}(g) = v_{ss'}(g^{-1}) \). Also, using the bicrossed product relations one finds that \(\alpha_t(g)^{-1} = \alpha_{-t}(g) \) for all \(r \in \Gamma \) and \(g \in G_r \). In particular, \(v_{ss'}(\alpha_t(g))v_{tt'}(g) = v_{ss'}(\alpha_t(g^{-1}))v_{tt'}(g^{-1}) \) and when \(t' \cdot g = t \), one has \(v_{ss'}^\gamma(\alpha_t(g))^{-1} = v_{ss'}^\gamma(\alpha_t(g^{-1})) \). It follows immediately that \(w(g)^* = w(g^{-1}) \).

(2) Is a direct computation.

(3) One has \(\text{dim}(\text{Mor}_G(\gamma_1(u), \gamma_2(v) \otimes \gamma_3(w))) = h(\gamma_1(u)^* \gamma_2(v) \chi(\gamma_3(w))) \) which is equal to:
\[
\sum_{r \in \mathbb{C}G, s \in \mathbb{C}G, t \in \mathbb{C}G} v_{ss,t}(\chi(u) \otimes \psi^\gamma_{r,r'})v_{tt'}(u_{s,s'}u_{s,s}v_{ss'}(v) \otimes \psi^\gamma_{s,t}v_{tt'}(\chi(w) \otimes \psi^\gamma_{t,t'}))
\]
\[
= \sum_{r, s, t} v_{ss,t}(\chi(u) \otimes \psi^\gamma_{r,r'})v_{tt'}(u_{s,s'}u_{s,s}v_{ss'}(v) \otimes \psi^\gamma_{s,t}v_{tt'}(\chi(w) \otimes \psi^\gamma_{t,t'}))
\]
\[
= \sum_{r \in \mathbb{C}G} \int_G v_{ss,t}(\chi(u) \otimes \psi^\gamma_{r,r'})v_{tt'}(u_{s,s'}u_{s,s}v_{ss'}(v) \otimes \psi^\gamma_{s,t}v_{tt'}(\chi(w) \otimes \psi^\gamma_{t,t'})) dv
\]
\[
= \sum_{r \in \mathbb{C}G} \frac{1}{|G_r|} \int_G v_{ss,t}(\chi(u) \otimes \psi^\gamma_{r,r'})v_{tt'}(u_{s,s'}u_{s,s}v_{ss'}(v) \otimes \psi^\gamma_{s,t}v_{tt'}(\chi(w) \otimes \psi^\gamma_{t,t'})) dv
\]
\[
= \frac{1}{|G_r|} \sum_{r \in \mathbb{C}G} \frac{1}{|G_r|} \sum_{s \in \mathbb{C}G} \text{dim}(\text{Mor}_G(u \otimes \psi^\gamma_{r,r'}, v \otimes w)).
\]

Note that, whenever \(\gamma_1 \cdot G \cap (\gamma_2 \cdot G)(\gamma_3 \cdot G) = \emptyset \), there is no non-zero terms in the sum above. \(\square \)
3.2 The induced representation

In this section, we explain how the induced representation maybe viewed as a particular twisted tensor product.

For \(\gamma \in \Gamma \) and \(u : G_\gamma \to \mathcal{U}(H) \) is a unitary representation of \(G_\gamma \) we define the induced representation:

\[
\text{Ind}^G_\gamma(u) := \varepsilon_{G_{\gamma^{-1}}} \otimes u : G \to \mathcal{U}(l^2(\gamma \cdot G) \otimes H); \quad g \mapsto \sum_{r,s \in G} e_{rs} \otimes v_{rs}(g) \psi_{\gamma}(g).
\]

It follows from Theorem 3.2 that \(\text{Ind}^G_\gamma(u) \) is indeed a unitary representation of \(G \). We collect some elementary and well known facts about this representation in the following Proposition. Note that, in property 3, we use the symbol \(\text{Res}^G_{\gamma_0}(u) \) for \(u \in \text{Rep}(G) \) to denote the restriction of \(u \) to a representation of \(G_\gamma \). Hence, property 3 motivates the name induced representation for the representation \(\text{Ind}^G_\gamma(u) \).

Proposition 3.3. The following holds.

1. For all \(\gamma \in \Gamma \) and all \(u \in \text{Rep}(G_\gamma) \) one has \(\chi(\text{Ind}^G_\gamma(u))(g) = \sum_{r,s \in G} v_{rs}(g) \chi(u)(\psi_{\gamma}(g)) \) for all \(g \in G \).

2. For all \(\gamma \in \Gamma \) and all \(u, v \in \text{Rep}(G_\gamma) \) one has \(u \preceq v \implies \text{Ind}^G_\gamma(u) \preceq \text{Ind}^G_\gamma(v) \).

3. For all \(\gamma \in \Gamma \), \(u \in \text{Rep}(G) \) and \(v \in \text{Rep}(G_\gamma) \) one has \(\dim(\text{Mor}_G(u, \text{Ind}^G_\gamma(v))) = \dim(\text{Mor}_G(\text{Res}^G_{\gamma_0}(u), v)) \).

Proof. (1). It is obvious, by definition of \(\text{Ind}^G_\gamma(u) \).

(2). If \(u \preceq v \) then \(\chi(u) = \chi(v) \). Hence, \(\chi(\text{Ind}^G_\gamma(u)) = \chi(\text{Ind}^G_\gamma(v)) \) by (1). So \(\text{Ind}^G_\gamma(u) \preceq \text{Ind}^G_\gamma(v) \).

(3). Let \(\gamma \in \Gamma \), \(u \in \text{Rep}(G) \), and \(v \in \text{Rep}(G_\gamma) \). One has,

\[
\dim(\text{Mor}_G(u, \text{Ind}^G_\gamma(v))) = \sum_{r \in G} \int_G \chi(\bar{\gamma}) v_{rr}(g) \omega_{\gamma}(g) \, d\nu = \frac{1}{|\gamma \cdot G|} \sum_{r \in G} \int_{G_\gamma} \chi(\bar{\gamma}) \omega_{\gamma}(g) \, d\nu.
\]

Since \(\psi_{\gamma} : G_\gamma \to G_\gamma \) is a Haar probability preserving homeomorphism we obtain

\[
\dim(\text{Mor}_G(\text{Res}^G_{\gamma_0}(u), v)) = \frac{1}{|\gamma \cdot G|} \sum_{r \in G} \int_{G_\gamma} \chi(\bar{\gamma}) \omega_{\gamma}(g) \, d\nu.
\]

Finally, since, for all \(g \in G \), \(\chi(\bar{\gamma}) \omega_{\gamma}(g)^{-1}(g) = \chi(\bar{\gamma})(g) \) (because \(\chi(\bar{\gamma}) \) is a central function on \(G \)) it follows that:

\[
\dim(\text{Mor}_G(u, \text{Ind}^G_\gamma(v))) = \dim(\text{Mor}_G(\text{Res}^G_{\gamma_0}(u), v)). \tag*{\Box}
\]

4 Length functions

Recall that given a compact quantum group \(\mathbb{G} \), a function \(l : \text{Irr}(\mathbb{H}) \to [0, \infty) \) is called a length function on \(\text{Irr}(\mathbb{H}) \) if \(l(\varepsilon) = 0 \), \(l(\rho) = l(z) \) and that \(l(x) \leq l(y) + l(z) \) whenever \(x \leq y \otimes z \). A length function on a discrete group \(\Lambda \) is a function \(l : \Lambda \to [0, \infty) \) such that \(l(1) = 0 \), \(l(r) = l(r^{-1}) \) and \(l(rs) \leq l(r) + l(s) \) for all \(r, s \in \Lambda \).

Let \((\Gamma, G) \) be a matched pair with bicrossed product \(\mathbb{G} \). In view of the description of the irreducible representations of \(\mathbb{G} \), the fusion rules and the contragredient representation, it is clear that to get a length function on \(\text{Irr}(\mathbb{G}) \), we need a family of maps \(l_\gamma : \text{Irr}(G_\gamma) \to [0, \infty] \), for \(\gamma \in \Gamma \), satisfying the hypothesis of the following definition.

Definition 4.1. Let \((\Gamma, G) \) be a matched pair, \(l : \text{Irr}(G) \to [0, \infty] \) and \(l_\Gamma : \Gamma \to [0, \infty] \) be length functions. The pair \((l, l_\Gamma)\) is matched if, for all \(\gamma \in \Gamma \), there exists a function \(l_\gamma : \text{Irr}(G_\gamma) \to [0, \infty] \) such that
(i) \(l_1 = l \) and \(l_r(\varepsilon_{G_r}) = \text{lr}(\gamma) \).

(ii) For any \(\gamma \in \Gamma \), \(r \in \gamma \cdot G \), and \(x \in \text{Irr}(G_r) \), we have \(l_r(x) = l_r([u^x \circ \psi_{r,r}]) \).

(iii) For any \(\gamma \in \Gamma \), \(x \in \text{Irr}(G_r) \), we have \(l_r(x) = l_{r-1}(\text{lr} \circ \alpha_{r-1}) \).

(iv) For any \(\gamma_1, \gamma_2, \gamma_3 \in \Gamma \), \(x \in \text{Irr}(G_{\gamma_1}), y \in \text{Irr}(G_{\gamma_2}), z \in \text{Irr}(G_{\gamma_3}) \), if \(\gamma_3 \in (\gamma_1 \cdot G)(\gamma_2 \cdot G) \), and

\[
\dim \text{Mor}_{G_r}(u^x \circ \psi_{r,r}, u^x \otimes_r u^y) \neq 0
\]

for some \(r \in \gamma_3 \cdot G \), then

\[
l_{\gamma_3}(z) \leq l_{\gamma_1}(x) + l_{\gamma_2}(y).\]

The next Proposition shows that our notion of matched pair for length functions is the good one, as expected.

Proposition 4.2. Let \((\Gamma, G)\) be a matched pair with bicrossed product \(G\).

1. If \(l \) is a length function on \(\text{Irr}(G) \) then the maps \(l : \text{Irr}(G) = \text{Irr}(G_1) \to [0, +\infty[\) \(x \mapsto l([1(x)]) \) and \(l_r : \Gamma \to [0, +\infty[\), \(x \mapsto l([\gamma(\varepsilon_{G_r})]) \) are length functions and the pair \((l_r, l)\) is matched.

2. If \(\text{lr} \) is any \(\beta \)-invariant length function on \(\Gamma \) then the map \(l'[\Gamma] : \text{Irr}(G_1) \to [0, +\infty[\), \(\gamma \mapsto l'(\gamma) \) is a well defined length function on \(\text{Irr}(G) \).

3. If \((l_l, l_r)\) is a matched pair of length functions on \((\Gamma, \text{Irr}(G)) \) then \(l_r \) is \(\beta \)-invariant and the maps \(l_l, l_r : \text{Irr}(G) \to [0, +\infty[\), \(\gamma \mapsto l_l(\gamma)(u^x) \) := \(l_l(x) \) and \(l_r(\gamma)(u^x) \) := \(l_r(x) + l_r(\gamma) \) are well-defined length functions.

Proof. (1). Since \(1(\varepsilon_{G_r}) \) is the trivial representation of \(G \) one has \(l_{\Gamma}(1) = 0 \). Let \(\gamma, \mu \in \Gamma \) and note that \(\gamma \mu \in (\gamma \cdot G)(\mu \cdot G) \).

Moreover,

\[
\dim(\text{Mor}(\varepsilon_{G_r}, \varepsilon_{G_r} \otimes \varepsilon_{G_r})) = \int_{G_{\gamma}} \chi(\varepsilon_{G_r}, \varepsilon_{G_r}) d\nu_{G_{\gamma}} = |\gamma \mu \cdot G| \sum_{s \in \Gamma \mu, t \in \Gamma \mu, st = \gamma \mu} \nu(\alpha_{r-1}(G_s) \cap G_t \cap G_{\gamma \mu})
\]

Hence, since \(\alpha_{r-1}(G_s) \cap G_t \cap G_{\gamma \mu} \) is open and non-empty (it contains 1) we deduce that

\[
\dim(\text{Mor}(\varepsilon_{G_r}, \varepsilon_{G_r} \otimes \varepsilon_{G_r})) > 0.
\]

So \(\varepsilon_{G_r} \subset \varepsilon_{G_r} \otimes \varepsilon_{G_r} \) which implies, by the fusion rules of \(G \), that \((\gamma \mu)(\varepsilon_{G_{\gamma \mu}}) \subset (\gamma \varepsilon_{G_r}) \otimes (\mu \varepsilon_{G_r}) \). Hence, since \(l \) is a length function, \(l_{\Gamma}(\gamma \mu) = l((\gamma \mu)(\varepsilon_{G_{\gamma \mu}})) \leq l((\gamma \varepsilon_{G_r})) + l((\mu \varepsilon_{G_r})) = l_r(\gamma) + l_r(\mu) \). Finally, note that, for all \(\gamma \in \Gamma \), \(\gamma^{-1}(\varepsilon_{G_{\gamma^{-1}}}) \cong \varepsilon_{G_{\gamma}} \). Hence,

\[
l_{\Gamma}(\gamma^{-1}) = l((\gamma^{-1}(\varepsilon_{G_{\gamma^{-1}}})) = l((\varepsilon_{G_{\gamma}})) = l_{\Gamma}(\gamma).
\]

So \(l_r \) is a length function on \(\Gamma \). It is obvious that \(l_{\gamma l} = l_1 \) is a length function on \(\text{Irr}(G) \). It is also clear that the pair \((l_r, l)\) is matched. Indeed, define \(l_r : \text{Irr}(G_1) \to [0, +\infty[\) by \(l_r(x) = l([\gamma(\varepsilon_{G_r})]) \). Since \(l \) is a length function on \(\text{Irr}(G) \) and by assertion 4 of Theorem \ref{correct_theorem_number} and Theorem \ref{correct_theorem_number}, it is clear that the family \(\{l_r : \gamma \in \Gamma\} \) satisfies the conditions of Definition \ref{correct_definition_number}.

(2). Since \(l_{\Gamma} \) is \(\beta \)-invariant, the map \(l' \) is well defined by point 3 of Theorem \ref{correct_theorem_number}.

It is clear that \(l'(\varepsilon_{G_r}) = 0 \) and, by point 4 and 5 of Theorem \ref{correct_theorem_number} and since \(l' \) is a length function we also have that \(l'(z) = l'(z') \) for all \(z \in \text{Irr}(G) \). Let now \(\gamma_1, \gamma_2, \gamma_3 \in \Gamma \), \(x \in \text{Irr}(G_{\gamma_1}), y \in \text{Irr}(G_{\gamma_2}) \) and \(z \in \text{Irr}(G_{\gamma_3}) \) be such that \(\gamma_1(u^x) \subset \gamma_2(u^y) \otimes \gamma_3(u^z) \) then, by point 3 in Theorem \ref{correct_theorem_number} there exists \(r \in \gamma_1 \cdot G \), \(s \in \gamma_2 \cdot G \) and \(t \in \gamma_3 \cdot G \) such that \(r = st \) and \(u^x \circ \psi_{r,r} \subset u^y \otimes u^z \). Then,

\[
l'(\gamma_1(u^x)) = l_{\Gamma}(\gamma_1) = l_{\Gamma}(r) \leq l_{\Gamma}(s) + l_{\Gamma}(t) = l_{\Gamma}(\gamma_2) + l_{\Gamma}(\gamma_3) = l'(\gamma_2(u^y)) + l'(\gamma_3(u^z)).
\]

8
Fourier transform as:

Lemma 5.1. can easily be deduced from the following lemma. Given a length function \(l \) and its "Sobolev 0-norm" by \(\| H \) also holds when we assume \(a \in c_c(\hat{H}) \) and all \(\gamma \in \Gamma \) and all \(r \in \gamma \cdot \Gamma \), \(l_\Gamma(\gamma) = l_\Gamma((e_{G_r} \circ \psi_\gamma)) = l_\Gamma(r) \). Hence, \(l_\Gamma \) is \(\beta \)-invariant.

By point 2, we get a length function \(l' \) on \(\text{Irr}(G) \). Now, it is clear from Definition \[\text{L1}\] the fusion rules and the adjoint representation of a bicrossed product (point 3 of Theorem \[\text{D1}\] and point 4 of Theorem \[\text{E1}\]) that \(l : \gamma(u^x) \mapsto l_\gamma(x) \) is a length function on \(\text{Irr}(G) \). Since \(\tilde{l} = l + l' \), \(\tilde{l} \) is also a length function on \(\text{Irr}(G) \).

\[\square\]

5 Rapid decay and polynomial growth

In this section we study property \((RD)\) and polynomial growth for bicrossed-products.

5.1 Generalities

We use the notion of property \((RD)\) developed in [BVZ14] and recall the definition below. Since we are only dealing with Kac algebras, we recall the definition of the Fourier transform and rapid decay only for Kac algebras.

Let \(\mathbb{H} \) be a compact quantum group. We use the notation \(l^\infty(\hat{\mathbb{H}}) := \bigoplus_{x \in \text{Irr}(\mathbb{H})} B(H_x) \) to denote the \(l^\infty \) direct sum. The \(c_0 \) direct sum is denoted by \(c_0(\hat{\mathbb{H}}) \subset l^\infty(\hat{\mathbb{H}}) \) and the algebraic direct sum is denoted by \(c_c(\hat{\mathbb{H}}) \subset c_0(\hat{\mathbb{H}}) \). An element \(a \in c_c(\hat{\mathbb{H}}) \) is said to have finite support and its finite support is denoted by \(\text{Supp}(a) := \{ x \in \text{Irr}(\mathbb{H}) : ap_x \neq 0 \} \), where \(p_x \), for \(x \in \text{Irr}(\mathbb{H}) \) denotes the central minimal projection of \(l^\infty(\hat{\mathbb{H}}) \) corresponding to the block \(B(H_x) \).

For a compact quantum group \(\mathbb{H} \) which is always supposed to be of Kac type, and \(a \in c_c(\hat{\mathbb{H}}) \) we define its Fourier transform as:

\[
\mathcal{F}_\mathbb{H}(a) = \sum_{x \in \text{Irr}(\mathbb{H})} \dim(x) (\text{Tr}_x \otimes \text{id}) (u^x (ap_x \otimes 1)) \in \text{Pol}(\mathbb{H}),
\]

and its "Sobolev 0-norm" by \(\| a \|^2_{\mathbb{H},0} = \sum_{x \in \text{Irr}(\mathbb{H})} \dim(x) \text{Tr}_x (a^*a)p_x \).

Given a length function \(l : \text{Irr}(\mathbb{H}) \to [0, \infty) \), consider the element \(L = \sum_{x \in \text{Irr}(\mathbb{H})} l(x)p_x \) which is affiliated to \(c_0(\hat{\mathbb{H}}) \). Let \(q_n \) denote the spectral projections of \(L \) associated to the interval \([n, n+1) \).

The pair \((\hat{\mathbb{H}}, l)\) is said to have:

- **Polynomial growth** if there exists a polynomial \(P \in \mathbb{R}[X] \) such that for every \(k \in \mathbb{N} \) one has

\[
\sum_{x \in \text{Irr}(\mathbb{H}), k \leq l(x) < k+1} \dim(x)^2 \leq P(k)
\]

- **Property \((RD)\)** if there exists a polynomial \(P \in \mathbb{R}[X] \) such that for every \(k \in \mathbb{N} \) and \(a \in q_k c_c(\hat{\mathbb{H}}) \), we have

\[
\| \mathcal{F}(a) \|_{C(\mathbb{H})} \leq P(k) \| a \|_{\mathbb{H},0}.
\]

Finally, \(\hat{\mathbb{H}} \) is said to have polynomial growth (resp. property \((RD)\)) if there exists a length function \(l \) on \(\text{Irr}(\mathbb{H}) \) such that \((\hat{\mathbb{H}}, l)\) has polynomial growth (resp. property \((RD)\)).

It is known from [Ve07] that if \((\hat{\mathbb{H}}, l)\) has polynomial growth then \((\hat{\mathbb{H}}, l)\) has rapid decay and the converse also holds when we assume \(\mathbb{H} \) to be co-amenable. Moreover, it is shown also shown in [Ve07] that duals of compact connected real Lie groups have polynomial growth. The fact that polynomial growth implies \((RD)\) can easily be deduced from the following lemma.

Lemma 5.1. Let \(\mathbb{H} \) be a CQG, \(F \subset \text{Irr}(\mathbb{H}) \) a finite subset and \(a \in l^\infty(\hat{\mathbb{H}}) \) with \(ap_x = 0 \) for all \(x \notin F \). Then,

\[
\| \mathcal{F}_\mathbb{H}(a) \| \leq 2 \sqrt{\sum_{x \in F} \dim(x)^2} \| a \|_{\mathbb{H},0}.
\]

Proof. One can copy the proof of Proposition 4.2, assertion (a), in [BVZ14] or the proof of Proposition 4.4, assertion (ii), in [Ve07].

\[\square\]
5.2 Technicalities

Let \((\Gamma, G)\) be a matched pair with actions \((\alpha, \beta)\) and denote by \(G\) the bicrossed product.

Recall that \(\text{Irr}(G) = \cup_{\gamma \in \Gamma} \text{Irr}(G_i)\), where \(I \subset \Gamma\) is a complete set of representatives for \(\Gamma/G\). For \(\gamma \in I\) and \(x \in \text{Irr}(G_i)\), we denote by \(\gamma(x)\) the corresponding element in \(\text{Irr}(G)\). If a complete set of representatives of \(\text{Irr}(G_i), x \in \text{Irr}(G_i)\) is given by \(u^* \in \mathcal{B}(H_x) \otimes \mathcal{C}(G_\gamma)\) then a representative for \(\gamma(x)\) is given by

\[
u^\gamma(x) := \sum_{r,s \in \Gamma, G} e_{rs} \otimes (1 \otimes u_r v_{rs}) u \circ \psi_{r,s} \in \mathcal{B}(l^2(\gamma \cdot G)) \otimes \mathcal{C}(G).
\]

The lemma below gives a way of obtaining an element \(\tilde{a} \in \text{c}_c(\hat{G})\) from an \(a \in \text{c}_c(\hat{G}_\gamma)\) in a suitable way so that they are compatible with the Fourier transforms.

Lemma 5.2. Let \(\gamma \in \Gamma\) and \(a \in \text{c}_c(\hat{G}_\gamma)\). Define \(\tilde{a} \in \text{c}_c(\hat{G})\) by:

\[
\tilde{a}_y = \sum_{x \in \text{supp}(a) \text{ and } y \in \text{Ind}_G^G(x)} \frac{\dim(x)}{\dim(y)} \sum_{i=1}^{\dim(\text{Mor}(y, \text{Ind}_G^G(x)))} (S^y_i)^*(e_{\gamma \cdot \beta} \otimes a_p x) S^y_i,
\]

where \(S^y_i \in \text{Mor}(y, \text{Ind}_G^G(x))\) is a basis of isometries with pairwise orthogonal images. The following holds.

1. If \((l_r, l)\) is a matched pair of length functions on \((\Gamma, \text{Irr}(G))\) then, for all \(y \in \text{supp}(\tilde{a})\) one has

\[
l(y) \leq \max\{l_r(x) : x \in \text{supp}(a)\} + l_r(\gamma),
\]

where \((l_r)_\gamma \in \Gamma\) is any family of maps realizing the compatibility relations of Definition 4.1.

2. \(\mathcal{F}_{\gamma}(a) = v_{\gamma \gamma} \mathcal{F}_G(\tilde{a})\).

3. \(\|\tilde{a}\|_{G,0} \leq \|a\|_{G,0}\).

Proof. (1). Since any \(y \in \text{supp}(\tilde{a})\) is such that \(y \subset \text{Ind}_G^G(x) = \varepsilon_{G_{\gamma^{-1}}} \otimes x\) for some \(x \in \text{supp}(a)\), it follows that any \(y \in \text{supp}(\tilde{a})\) satisfies \(l(y) = l_1(y) \leq l_{\gamma^{-1}}(\varepsilon_{G_{\gamma^{-1}}}) + l_r(\gamma) = l_r(\gamma^{-1}) + l_r(\gamma) = l_r(\gamma) + l_r(x)\) for some \(x \in \text{supp}(a)\).

(2). One has:

\[
v_{\gamma \gamma} \mathcal{F}_G(\tilde{a}) = v_{\gamma \gamma} \sum_y \dim(y)(\text{Tr}_y \otimes \text{id})(u^y \tilde{a}_y \otimes 1)
\]

\[
= v_{\gamma \gamma} \sum_{x \in \text{supp}(a), y \subset \text{Ind}_G^G(x)} \frac{\dim(\text{Mor}(y, \text{Ind}_G^G(x)))}{\dim(y)} \sum_{i=1}^{\dim(\text{Mor}(y, \text{Ind}_G^G(x)))} \dim(x)(\text{Tr}_y \otimes \text{id})(u^y ((S^y_i)^*(e_{\gamma \cdot \beta} \otimes a_p x) S^y_i) \otimes 1)
\]

\[
= v_{\gamma \gamma} \sum_{x \in \text{supp}(a), y \subset \text{Ind}_G^G(x)} \dim(x)(\text{Tr}_y \otimes \text{id})((S^y_i)^* \otimes 1)\text{Ind}_G^G(x)(e_{\gamma \cdot \beta} \otimes a_p x \otimes 1)(S^y_i \otimes 1))
\]

\[
= v_{\gamma \gamma} \sum_{x \in \text{supp}(a), y \subset \text{Ind}_G^G(x)} \dim(x)(\text{Tr}_y \otimes \text{id})(\text{Ind}_G^G(x)(e_{\gamma \cdot \beta} \otimes a_p x \otimes 1)(S^y_i \otimes 1))
\]

\[
= v_{\gamma \gamma} \sum_{x \in \text{supp}(a)} \dim(x)(\text{Tr}_x \otimes \text{id})(u^x a_p x \otimes 1) = \mathcal{F}_{\gamma}(a).
\]

(3). One has:

\[
\|\tilde{a}\|_{G,0}^2 = \sum_y \dim(y)\text{Tr}_y(\tilde{a}^* \tilde{a}_y)
\]

10
Lemma 5.3. For all γ, $\|a\|^2_{G,0} \leq \sum_{x,y,i} \dim(x) \dim(y) \dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y) = \sum_{x \in \text{supp}(a)} \dim(x) \dim(y) \dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y) = \sum_{x \in \text{supp}(a)} \dim(x) \dim(y) \dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y)

Since, for all y, i, $S_{\gamma}^y(S_{\gamma}^i)^*$ is a projection, one has $S_{\gamma}^y(S_{\gamma}^i)^* \leq 1$ hence,

$$\dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y) \leq \dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y).$$

Moreover, note that $y \in \text{Ind}_G^G(x)$ if and only if $\dim(\text{Mor}_G(\text{Res}_G^G(y,x))) \neq 0$. Since x is irreducible, we find that $y \in \text{Ind}_G^G(x) \Leftrightarrow x \in \text{Res}_G^G(y)$. In particular, for any $y \in \text{Ind}_G^G(x)$ one has $\dim(x) \leq \dim(y)$.

Hence,

$$\|a\|^2_{G,0} \leq \sum_{x,y,i} \dim(x) \dim(y) \dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y) = \sum_{x \in \text{supp}(a)} \dim(x) \dim(y) \dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y) \leq \dim((S_{\gamma}^y)^*(e_{\gamma} \otimes a^* p_x) S_{\gamma}^y).$$

Lemma 5.3. Let (l_Γ, l) be a matched pair of length functions on $(\Gamma, \text{Irr}(G))$. If (\hat{G}, l) has polynomial growth, then there exists $C > 0$ and $N \in \mathbb{N}$ such that:

- $\|F_G(a)\| \leq C(k + 1)^N \|a\|_{G,0}$ for all $a \in c_c(\hat{G})$ with $\text{supp}(a) \subset \{x \in \text{Irr}(G) : l(x) < k + 1\}$.
- $|\gamma \cdot G| \dim(x) \leq C(l_\Gamma(\gamma) + l_\gamma(x) + 1)^N$ for all $\gamma \in \Gamma$, $x \in \text{Irr}(G)$.
- For all $\gamma \in \Gamma$, $\sum_{x \in \text{Irr}(G), l(x) < k+1} \dim(x)^2 \leq C^2 (k + l_\Gamma(\gamma) + 1)^{2N}$.

Proof. Let $P \in \mathbb{R}[X]$ be such that $\sum_{x \in \text{Irr}(G), l(x) < k+1} \dim(x)^2 \leq P(k)$ for all $k \in \mathbb{N}$ and et $C_1 > 0$ and $N_1 \in \mathbb{N}$ be such that $P(k) \leq C_1(k + 1)^{N_1}$ for all $k \in \mathbb{N}$. By Lemma 5.1 one has, for all $a \in c_c(\hat{G})$, with $\text{supp}(a) \subset \{x \in \text{Irr}(G) : l(x) < k + 1\}$, $\|F_G(a)\| \leq 2 \sqrt{P(k)} \|a\|_{G,0} \leq \sqrt{C_1(k + 1)^{N_1}} \|a\|_{G,0}$. Now, suppose that $\text{supp}(a) \subset \{x \in \text{Irr}(G) : l(x) < k + 1\}$ so that $a \in q_k c_c(\hat{G})$, where $q_k = \sum_{j=0}^k p_j$ and $p_j = \sum_{x \in \text{Irr}(G), l(x) < k+1} \dim(x)^2 \leq C^2 (k + l_\Gamma(\gamma) + 1)^{2N}$. One has,

$$\|F_G(a)\| = \sum_{j=0}^k \|F_G(a p_j)\| \leq \sum_{j=0}^k \sqrt{C_1(j + 1)^{N_1}} \|a\|_{G,0} \leq \sqrt{C_1(k + 1)^{N_1}} \|a\|_{G,0}. \quad (5.1)$$

Now, let $\gamma \in \Gamma$ and $x \in \text{Irr}(G)$. By Proposition 5.3 one has:

$$|\gamma \cdot G| \dim(x) = \dim(\text{Ind}_G^G(x)) = \sum_{y \in \text{Irr}(G)} \dim(\text{Mor}_G(y, \text{Ind}_G^G(x))) \dim(y) = \sum_{y \in \text{Irr}(G), y \in \text{Ind}_G^G(x)} \dim(\text{Mor}_G(y, \text{Res}_G^G(y, x))) \dim(y).$$

Note that $\dim(\text{Mor}_G(y, \text{Res}_G^G(y, x))) \leq \dim(y)$ for all x, y. Moreover, since $\text{Ind}_G^G(x) \simeq c_{G_{\gamma-1}} \otimes x$ and the pair (l_Γ, l) is matched, one has $\{y \in \text{Irr}(G), y \in \text{Ind}_G^G(x)\} \subset \{y \in \text{Irr}(G) : l(y) \leq l_\Gamma(\gamma) + l_\gamma(x)\}$. Hence,

$$|\gamma \cdot G| \dim(x) \leq \sum_{y \in \text{Irr}(G), l(y) < l_\Gamma(\gamma) + l_\gamma(x) + 1} \dim(y)^2 = \sum_{j=0}^{l_\Gamma(\gamma) + l_\gamma(x)} \sum_{y \in \text{Irr}(G), j \leq l(y) < j+1} \dim(y)^2.$$
where \(P \) polynomial growth, there exists a polynomial defined equation for all \(j \).

Proof. Let \(\gamma \in \Gamma \) and consider the matched pair of length functions \(p_F \in c_\ell(G) \) by \(p_F = \sum_{x \in F} P(x) \) and note that \(F_{\gamma}(p_F) = \sum_{x \in F} \dim(x) \chi(x) \) and \(\|a\|_{G,0}^2 = \sum_{x \in F} \dim(x)^2 \). Suppose that \(F \subset \{ x \in \text{Irr}(G) : l_r(x) < k + 1 \} \). Using Lemma 5.2 and the first part of the proof we find, since \(p_F \in c_\ell(G) \) with \(\text{Irr}(p_F) \subset \{ x \in \text{Irr}(G) : l_r(x) < l_r(\gamma) + k + 1 \} \),

\[
\left(\sum_{x \in F} \dim(x)^2 \right)^2 = \left(\sum_{x \in F} \dim(x) \chi(x)(1) \right)^2 \leq \sum_{x \in F} \dim(x) \chi(x) \leq C^2 (k + l_r(\gamma) + 1)^{2N} \sum_{x \in F} \dim(x)^2.
\]

Hence, for all nonempty finite subset \(F \subset \{ x \in \text{Irr}(G) : l_r(x) < k + 1 \} \) one has \(\sum_{x \in F} \dim(x)^2 \leq C^2 (k + l_r(\gamma) + 1)^{2N} \). The last assertion follows.

5.3 Polynomial growth for bicrossed product

We start with the following result.

Theorem 5.4. Suppose that that \((\ell, l_r) \) is a matched pair of length functions on \((\Gamma, G) \). If both \((\ell, l_r) \) and \((\widehat{\ell}, \ell_G) \) has polynomial growth then \((\widehat{\ell}, \ell_G) \) have polynomial growth.

Proof. Let \(I \subset \Gamma \) be a complete set of representatives for \(\Gamma \) so that \(\text{Irr}(G) = \bigcup_{\gamma \in I} \text{Irr}(G_\gamma) \). Let \(k \geq 1 \) and define

\[
F_k := \{ z \in \text{Irr}(G) : \ell_k(z) < k \} \subset \bigcup_{\gamma \in I_k} T_{\gamma,k},
\]

where \(I_k := \{ \gamma \in \gamma : l_r(\gamma) < k + 1 \} \) and \(T_{\gamma,k} := \{ z \in \text{Irr}(G_\gamma) : l_r(z) < k + 1 \} \). Since \((\ell, l_r) \) has polynomial growth, there exists a polynomial \(P \) such that, for all \(k \in \mathbb{N} \), \(|I_k| \leq P_k \). Moreover, since \((\ell, l_r) \) has polynomial growth, we can apply Lemma 5.2 to get \(C > 0 \) and \(N \in \mathbb{N} \) such that, for all \(k \in \mathbb{N} \) and all \(\gamma \in I_k \), one has \(\sum_{x \in T_{\gamma,k}} \dim(x)^2 \leq C^2 (2k + 2)^{2N} \) and, \(|\cdot| G \leq |G| \text{dim}(\xi_G) \leq C^2 (2k + 3)^N \). Hence, for all \(k \geq 1 \),

\[
\sum_{z \in F_k} \dim(z)^2 = \sum_{\gamma \in I_k} |\ell'(\gamma)|^2 \sum_{z \in T_{\gamma,k}} \dim(z)^2 \leq C^4 (2k + 2)^{2N} \sum_{\gamma \in I_k} |\ell'(\gamma)|^2 \leq C^4 (2k + 2)^{2N} (2k + 3)^{2N} |I_k| \]

\[
\leq C^4 (2k + 2)^{2N} (2k + 3)^{2N} \ell_P(k).
\]

To complete the proof of Theorem B, we need the following Proposition.

Proposition 5.5. Assume that there exists a length function \(l \) on \(\text{Irr}(G) \) such that \((\widehat{\ell}, l) \) has polynomial growth and consider the matched pair of length functions \((\ell, l_G) \) associated to \(l \) given in Proposition 4.2. Then \((\ell, l_r) \) and \((\widehat{\ell}, \ell_G) \) both have polynomial growth.

Proof. Assume that \((\widehat{\ell}, l) \) has polynomial growth. Since the map \(\text{Irr}(G) \to \text{Irr}(G), x \mapsto 1(x) \) is injective, dimension preserving and length preserving (by definition of \(l_G \)), it is clear that \((\widehat{\ell}, \ell_G) \) has polynomial
proof. Let us show that (Γ, l_Γ) also has polynomial growth. Let P be a polynomial witnessing (RD) for (\widehat{G}, l) and $k \in \mathbb{N}$. Define $F_k := \{ \gamma \in \Gamma : k \leq l_\Gamma(\gamma) < k + 1 \}$. One has, for all $k \in \mathbb{N}$,

$$|F_k| = \sum_{k \leq l([\gamma(x)]) < k+1} 1 \leq \sum_{k \leq l([\gamma(x)]) < k+1} |\gamma \cdot G|^2 = \sum_{k \leq l([\gamma(x)]) < k+1} \dim([\gamma(x)G])^2$$

$$\leq \sum_{z \in \text{Irr}(\Gamma)} \dim(z)^2 \leq P(k).$$

5.4 Rapid decay for bicrossed product

Recall that $l^\infty(\widehat{G}) = \bigoplus_{\gamma \in \Gamma/G} \bigoplus_{x \in \text{Irr}(G)} \mathcal{B}(l^2(\gamma \cdot G) \otimes H_x)$. Let us denote by $p_{\gamma(x)}$ the central projection of $l^\infty(\widehat{G})$ corresponding to the block $\mathcal{B}(l^2(\gamma \cdot G) \otimes H_x)$ and define, for $\gamma \cdot G \in \Gamma/G$, the central projection :

$$p_\gamma := \sum_{x \in \text{Irr}(G)} p_{\gamma(x)} \in l^\infty(\widehat{G}).$$

Note that $p_\gamma l^\infty(\widehat{G}) = \bigoplus_{x \in \text{Irr}(G)} \mathcal{B}(l^2(\gamma \cdot G) \otimes H_x) \simeq \mathcal{B}(l^2(\gamma \cdot G) \otimes L(G))$, where $L(G_\gamma) = \bigoplus_{x \in \text{Irr}(G)} \mathcal{B}(H_x)$ is the group von-Neumann algebra of G_γ (which is also the multiplier C^*-algebra of $C^*_r(G_\gamma) = \bigoplus_{x \in \text{Irr}(G)} \mathcal{B}(H_x)$).

Using this identification, we define $\pi_\gamma : c_0(\widehat{G}) \to \mathcal{B}(l^2(\gamma \cdot G)) \otimes C^*_r(G_\gamma) \subset c_0(\widehat{G})$ to be the \ast-homomorphism given by $\pi_\gamma(a) = ap_\gamma$, for all $a \in c_0(\widehat{G})$. We also write, for $a \in c_0(\widehat{G})$, $\omega_{x,e}^\gamma(a) = \sum_{r,s \in G} e_{rs} \otimes \pi_{x,r}^\gamma(a)$, where we recall that (e_{rs}) are the matrix units associated to the canonical orthonormal basis $(e_r)_{r \in \mathbb{N}}$ of $l^2(G)$ and $\pi_{x,r}^\gamma : c_0(\widehat{G}) \to C^*_r(G_\gamma)$ is the completely bounded map defined by $\pi_{x,r}^\gamma := (\omega_{x,e} \otimes \text{id}) \circ \pi_\gamma$ and $\omega_{x,e}^\gamma \in \mathcal{B}(l^2(\gamma \cdot G))$, $\omega_{x,e}^\gamma(T) = (Te_r,e_r)$.

We start with the following result.

Theorem 5.6. Let (l_Γ, l_G) be a matched pair of length functions on $(\Gamma, \text{Irr}(G))$. Suppose that (\widehat{G}, l_G) has polynomial growth and (Γ, l_Γ) has (RD). Then (\widehat{G}, l) has (RD).

Proof. Let $a \in c_0(\widehat{G})$ and write $a = \sum_{\gamma \in S} \sum_{x \in T} a p_{\gamma(x)}$, where $S \subset I$ and $T_\gamma \subset \text{Irr}(G)$ are finite subsets.

Claim. The following holds.

1. $F_G(a) = \sum_{\gamma \in S} |\gamma \cdot G| \left(\sum_{r,s \in G} u_{r,s} F_G, (\pi_{x,r}^\gamma(a)) \circ \psi_{x,s}^\gamma \right)$.
2. $\|a\|_{2,0}^2 = \sum_{\gamma \in S} |\gamma \cdot G| \left(\sum_{r,s \in G} \|\pi_{x,r}^\gamma(a)\|_{2,0}^2 \right)$.

Proof of the Claim. (1) A direct computation gives:

$$F_G(a) = \sum_{\gamma \in S} \sum_{x \in T_\gamma} |\gamma \cdot G| \dim(x) (\text{Tr}(\gamma \cdot G) \otimes H_x)(\gamma(u^x)^* a p_{\gamma(x)} \otimes 1)$$

$$= \sum_{\gamma \in S} \sum_{x \in T_\gamma} |\gamma \cdot G| \dim(x) \sum_{r,s \in G} u_{r,s} (\text{Tr}_x \otimes \text{id})(u^x \circ \psi_{r,s}^\gamma(a) p_{r,s}) \otimes 1$$

$$= \sum_{\gamma \in S} \sum_{r,s \in G} u_{r,s} F_G, (\pi_{x,r}^\gamma(a)) \circ \psi_{x,s}^\gamma.$$

(2) Since π_γ is a \ast-homomorphism, we have $\pi_{x,r}^\gamma(a^*a) = \sum_{x \in G} \pi_{x,r}^\gamma(a)^* \pi_{x,r}^\gamma(a)$ hence,

$$\|a\|_{2,0}^2 = \sum_{\gamma \in S} \sum_{x \in T_\gamma} |\gamma \cdot G| \dim(x) \left(\sum_{r,s \in G} (\text{Tr}_x \otimes \text{id})(\pi_{x,r}^\gamma(a)^* \pi_{x,s}^\gamma(a)) \right)$$

$$= \sum_{\gamma \in S} \sum_{r,s \in G} \|\pi_{x,r}^\gamma(a)\|_{2,0}^2.$$
Let us now prove the theorem. Let \(b = \sum_{\gamma \in S'} \sum_{t \in \Gamma} u_t \psi_{t,\gamma} \in C(\Gamma) \), where \(F_\gamma \in C(\Gamma) \) and \(S' \subset I \) is a finite subset. For all \(r \in \Gamma \), we denote by \(\gamma_r \) the unique element in \(I \) such that \(\gamma_r \cdot G = r \cdot G \). We may re-order the sums and write:

\[
F_\gamma(a) = \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G| \left(\sum_{s \in \Gamma} u_{r,s} F_{\gamma,\gamma_r} \left(\pi_{s,r}^{\gamma_r}(a) \right) \circ \psi_{s,t}^{\gamma_r} \right) \quad \text{and} \quad b = \sum_{t \in \Gamma} u_t 1_{S \cdot G}(t) \left(\sum_{t' \in \Gamma} \psi_{t',t}^{\gamma_r} \right).
\]

Also, \(\|a\|_{L^2}^2 = \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G| \left(\sum_{s \in \Gamma} \|\pi_{s,t}^{\gamma_r}(a)\|_{\mathcal{H}}^2 \right) \). Then, \(F_\gamma(a) b \|_{L^2(\mathcal{C})} \) is equal to:

\[
\sum_{r,t \in \Gamma} u_{r,t} 1_{S \cdot G}(r) 1_{S \cdot G}(t) |r \cdot G| \left(\sum_{s \in \Gamma} u_{r,s} \alpha_t \pi_{s,t}^{\gamma_r}(a) \circ \psi_{s,t}^{\gamma_r} \circ \alpha_t \psi_{t',t}^{\gamma_r} \right)^2
\]

\[
= \sum_{r,t \in \Gamma} 1_{S \cdot G}(r) 1_{S \cdot G}(t) |r \cdot G| \left(\sum_{s \in \Gamma} \|\pi_{s,t}^{\gamma_r}(a)\|_{\mathcal{H}}^2 \right)^2
\]

\[
\leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) 1_{S \cdot G}(t) \left(\sum_{s \in \Gamma} \|\pi_{s,t}^{\gamma_r}(a)\|_{\mathcal{H}}^2 \right)^2
\]

\[
= \| \psi \circ \psi \|^2_{L^2(\Gamma)},
\]

where \(\| \cdot \|_2 \) and \(\| \cdot \|_{\infty} \) denote respectively the L^2-norm and the supremum norm on \(C(\Gamma) \) and \(\psi, \phi : \Gamma \to \mathbb{R}_+ \) are finitely supported functions defined by:

\[
\psi(r) := 1_{S \cdot G}(r) |r \cdot G| \left(\sum_{s \in \Gamma} \|\pi_{s,t}^{\gamma_r}(a)\|_{\mathcal{H}}^2 \right)^2 \quad \text{and} \quad \phi(t) := 1_{S \cdot G}(t) \left(\sum_{t' \in \Gamma} \|\psi_{t',t}^{\gamma_r}\|_{\mathcal{H}}^2 \right)^2.
\]

Note that \(\| \phi \|^2_{L^2(\Gamma)} = \| b \|^2_{L^2(\mathcal{C})} \). Moreover, one has, since \(\psi_{r,s}^{\gamma_r} : G_{r,s} \to G_{\gamma} \) is an homeomorphism,

\[
\| \psi \|^2_{L^2(\Gamma)} = \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^2 \left(\sum_{s \in \Gamma} \|\pi_{s,t}^{\gamma_r}(a)\|_{\mathcal{H}}^2 \right)^2
\]

\[
\leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^3 \sum_{s \in \Gamma} \|\pi_{s,t}^{\gamma_r}(a)\|_{\mathcal{H}}^2 \left(\sum_{t' \in \Gamma} \|\psi_{s,t}^{\gamma_r}\|_{\mathcal{H}}^2 \right)^2
\]

\[
= \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^3 \left(\sum_{s \in \Gamma} \|\pi_{s,t}^{\gamma_r}(a)\|_{\mathcal{H}}^2 \right)^2.
\]

For \(k \in \mathbb{N} \) let \(p_k = \sum_{\gamma \in I \cdot x \in \text{Irr}(G_{\gamma}) : \kappa \leq x \gamma \} \sum_{l \in \mathbb{N}} \| p_{l\gamma} \|_{C^0(\hat{G}_{\gamma})} \), hence we must have \(S \subset \{ \gamma \in \Gamma : l_{\gamma}(x) < k + 1 \} \) and, for all \(\gamma \in S, T_{\gamma} \subset \{ x \in \text{Irr}(G_{\gamma}) : l_{\gamma}(x) < k + 1 \} \). Hence, for all \(\gamma \in S \) and all \(r, s \in \gamma \cdot G \) one has \(\pi_{s,t}^{\gamma_r}(a) \in q_k^{\gamma_r} \), where \(q_k^{\gamma_r} = \sum_{j=0}^{k} p_j^{\gamma_r} \).
Since \((\hat{G}, l_G)\) has polynomial growth, there exists \(C > 0\) and \(N \in \mathbb{N}\) satisfying the properties of Lemma \[5.3\]. In particular, one has, for all \(\gamma \in \Gamma\), \(|\gamma \cdot G| \leq C(2|\gamma| + 1)^N\). Moreover, since \(S \subset \{g \in \Gamma : l_{r}(g) < k + 1\}\) and \(l_{r}\) is \(\beta\)-invariant, it follows that \(S \cdot G \subset \{g \in \Gamma : l_{r}(g) < k + 1\}\). By Lemma \[5.2\] (and Lemma \[5.3\]) we deduce that:

\[
\|\psi\|_{L^2(\Gamma)}^2 \leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^3 \sum_{s \in r \cdot G} \left\|\varphi_{r, s} \cdot \mathcal{F}_G(\pi_{s, r}(a))\right\|^2 \leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^3 \sum_{s \in r \cdot G} \left\|\mathcal{F}_G(\pi_{s, r}(a))\right\|^2 \\
\leq \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^3 \sum_{s \in r \cdot G} C^2(k + l_{r}(\gamma) + 1)^{2N} \left\|\pi_{s, r}(a)\right\|_{G,0}^2 \\
\leq C^2(2k + 2)^{2N} \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G|^3 \sum_{s \in r \cdot G} \left\|\pi_{s, r}(a)\right\|_{G,\gamma,r}^2 \\
\leq C^4(2k + 3)^{4N} \sum_{r \in \Gamma} 1_{S \cdot G}(r) |r \cdot G| \sum_{s \in r \cdot G} \left\|\pi_{s, r}(a)\right\|_{G,\gamma,r}^2 = C^4(2k + 3)^{4N} \|a\|_{C,0}^2.
\]

Since \((\Gamma, l_{r})\) has \((R, D)\), let \(C_2 > 0\) and \(N_2 \in \mathbb{N}\) such that for all \(k \in \mathbb{N}\), for all function \(\xi\) on \(\Gamma\) supported on \(\{g \in \Gamma : l_{r}(g) < k + 1\}\), we have \(|\xi \ast \eta|_{L^2(\Gamma)} \leq C^2(k + 1)^{2N_2} \|\xi|_{L^2(\Gamma)}\|\eta|_{L^2(\Gamma)}\). Note that \(\psi\) is supported on \(S \cdot G\) and \(S \cdot G \subset \{g \in \Gamma : l_{r}(g) < k + 1\}\). Hence, it follows from the preceding computations that:

\[
\|\mathcal{F}_G(\hat{a})\|_{L^2(\Gamma)}^2 \leq \|\hat{\psi} \ast \hat{\eta}|_{L^2(\Gamma)} \leq C^2(k + 1)^{2N_2} \|\psi|_{L^2(\Gamma)}\|\eta|_{L^2(\Gamma)} \leq C^4(2k + 3)^{4N} C_2^2(k + 1)^{2N_2} \|a\|_{C,0}^2 \|\hat{a}\|_{C,0}^2.
\]

where \(P(X) = C^2 C_2^2 (2X + 3)^{2N} (X + 1)^{2N_2}\). It concludes the proof.

To complete the proof of Theorem A, we need the following Proposition.

Proposition 5.7. Assume that there exists a length function \(l\) on \(\text{Irr}(\mathbb{G})\) such that \((\hat{G}, l)\) has \((R, D)\) and consider the matched pair of length functions \((l_{r}, l_G)\) associated to \(l\) given in Proposition \[4.2\]. Then \((\Gamma, l_{r})\) has \((R, D)\) and \((\hat{G}, l_G)\) has polynomial growth.

Proof. Suppose that \((\hat{G}, l)\) has \((R, D)\). The fact that \((\hat{G}, l_G)\) has \((R, D)\) follows from the general theory (since \(C(\hat{G}) \subset C(\mathbb{G})\) intertwines the comultiplication and the associated injection \(\text{Irr}(G) \to \text{Irr}(\mathbb{G})\), actually given by \((x) \mapsto 1(x))\), preserves the length functions). Let us show that \((\Gamma, l_{r})\) has \((R, D)\). Let \(k \in \mathbb{N}\) and \(\xi : \Gamma \to \mathbb{C}\) be a finitely supported function with support in \(\{\gamma \in \Gamma : k \leq l_{r}(\gamma) < k + 1\}\). Define \(\hat{\xi} \in c_0(\hat{G})\) by \(\hat{\xi} = \sum_{\gamma \in \Gamma} \frac{1}{|\gamma|} \left(\sum_{r \in \gamma \cdot G} \xi(r) e_r\right) p_{\gamma}(1)\), where we recall \(e_{rs} \in B(P^{\gamma}(\gamma \cdot G))\) for \(r, s \in \gamma \cdot G\) are the matrix units associated to the canonical orthonormal basis. Then,

\[
\mathcal{F}_G(\hat{\xi}) = \sum_{\gamma \in \Gamma} \sum_{r \in \gamma \cdot G} \xi(r) (\mathcal{T}_{P^G}(\gamma \cdot G) \otimes \text{id})(a^{(1)}(e_r \otimes 1)) = \sum_{\gamma \in \Gamma} \sum_{r \in \gamma \cdot G} \xi(r) u_r v_r
\]

also,

\[
\|\hat{\xi}\|_{C,0}^2 = \sum_{\gamma \in \Gamma} |\gamma \cdot G| |\mathcal{T}_{P^G}(\gamma \cdot G)| \sum_{r \in \gamma \cdot G} \frac{\|\xi(r)\|^2}{|\gamma \cdot G|^2} = \sum_{\gamma \in \Gamma} \frac{1}{|\gamma \cdot G|^2} \sum_{r \in \gamma \cdot G} |\xi(r)|^2 \leq \sum_{\gamma \in \Gamma} \sum_{r \in \gamma \cdot G} |\xi(r)|^2 = \|\xi\|_{C,G}^2.
\]

Since \(\xi\) is supported in \(\{\gamma \in \Gamma : k \leq l_{r}(\gamma) < k + 1\}\) and \(l_{r}\) is \(\beta\)-invariant, it follows that \(\text{supp}(\hat{\xi}) \subset \{z \in \text{Irr}(\mathbb{G}) : k \leq l(z) < k + 1\}\). Hence, denoting by \(P\) a polynomial witnessing \((R, D)\) for \((\hat{G}, l)\), we have:

\[
\left\|\sum_{\gamma \in \Gamma} \sum_{r \in \gamma \cdot G} \xi(r) u_r v_r\right\| \leq P(k) \|\xi\|_{C}.
\]

Denote by \(\Psi\) the unital *-morphism \(\Psi : C(\mathbb{G}) = \Gamma \ltimes C(\Gamma) \to C^*_{\gamma}(\Gamma)\) such that \(\Psi(u_r F) = \lambda_r F(1)\) for all \(\gamma \in \Gamma\) and \(F \in C(\Gamma)\). Since \(\Psi\) has norm one, denoting by \(\lambda(\xi) \in C^*_{\gamma}(\Gamma)\) the convolution operator by \(\xi\), we have

\[
\|\lambda(\xi)\| = \left\|\sum_{\gamma \in \Gamma} \sum_{r \in \gamma \cdot G} \xi(r) \lambda_r\right\| = \|\Psi(\sum_{\gamma \in \Gamma} \sum_{r \in \gamma \cdot G} \xi(r) u_r v_r)\| \leq \left\|\sum_{\gamma \in \Gamma} \sum_{r \in \gamma \cdot G} \xi(r) u_r v_r\right\| \leq P(k) \|\xi\|_{C}.
\]

This concludes the proof."
References

Pierre FIMA
Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586, F-75013, Paris, France
Sorbonne Universités, UPMC Paris 06, UMR 7586, IMJ-PRG, F-75005, Paris, France
CNRS, UMR 7586, IMJ-PRG, F-75005, Paris, France
E-mail address: pierre.fima@imj-prg.fr

Hua WANG
Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586, F-75013, Paris, France
Sorbonne Universités, UPMC Paris 06, UMR 7586, IMJ-PRG, F-75005, Paris, France
CNRS, UMR 7586, IMJ-PRG, F-75005, Paris, France
E-mail address: hua.wang@imj-prg.fr