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On the Teichmiiller tower of mapping class
groups
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Abstract. Let GT be the subgroup of the Grothendieck-Teichmiiller group having
A-component equal to 1. We define a subgroup A of GT' by adding one additional defining

relation to the deﬁmtlon of Gﬂ!‘“1 and show that A acts on the tower of proﬁmte mapping
class groups I'”", for all g,n,m > 0, respecting all the natural arrows F = 1“’?’ coming
from cutting out a topological surface of genus ¢’ with »n’ punctures and m’ boundary
components inside one of genus g with » punctures and m boundary components. The
proof that these homomorphisms are respected is an easy consequence of a certain local
inertia conjugation property of the action of A. :

§1. Introduction and results

In this paper, we exhibit a large subgroup of the Grothendieck-Teichmiiller group
which has the following property: it acts on the profinite mapping class groups 1"'" for all
g,n,m = 0 (recall that these groups, also called Teichmiiller modular groups in an algebralc
context, are isomorphic to fundamental groups of moduli spaces of curves with a given
finite number of marked points and boundary components). We uncover and emphasize
the fact that this action, which extends the known action in the genus 0 case, respects cer-
tain fundamental homomorphisms between the mapping class groups, namely those natur-
ally induced by inclusions of the associated subsurfaces. Before stating the results, let us
informally recall some mathematical facts and historical background.

The history of the main character, namely the Grothendieck-Teichmiiller group GT,
is still a short one. A fascinating watermark version of it can be found in Grothendieck’s
Esquisse d'un programme (see [GGA] and the comments of V., G. Drinfeld in [D}). Let us
briefly sketch our version of this history. A Teichmiiller tower consists of a collection of
(algebraic, i.e. profinite) mapping class groups linked by certain natural homomorphisms
coming from corresponding homomorphisms between the associated moduli spaces. The
geometric (outer) automorphism group of such a Teichmiiller tower is the collection of tuples
of automorphisms of each of the mapping class groups which commute, up to inner auto-
morphism, with the homomorphisms of the tower. Until now, only Teichmiiller towers
consisting of mapping class groups in genus zero (or braid groups) have been studied. The
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ideal Teichmiiller tower should consist of the collection of the (algebraic, i.e. profinite)
fundamental groups l"'" of the moduli spaces .#,", of genus g curves with » marked points
and m boundary components for all possible types (g,n,m), linked by homomorphisms
coming from all possible natural morphisms between the corresponding moduli spaces. The
present article does not claim to give a full definition of the ideal Teichmiiller tower, but it
takes a fundamental step in that direction by introducing the two following new features:
considering a tower of mapping class groups in all genera, and equipping it with the ““subsur-
face-inclusion homomorphisms” . These homomorphisms are induced by morphisms of the
moduli spaces which send a given space to a divisor at infinity of another one of larger di-
mension. They are very natural, because the divisor at infinity of the completion of any
A, 1s (essentially, i.e. up to finite morphisms) “made of”* copies of other .#, 'n,, of strictly
lower dimensions (in fact, the stable completion of any .4, has a stratified structure with
Ay, itsell as the only open stratum). Thus, these homomorphlsrns should certainly be in-
cluded in any definition of an ideal Teichmiiller tower. The group which truly deserves the
name of “Grothendieck-Teichmiiller” should be the automorphism group of the ideal ge-
ometric Teichmiiller tower, consisting of all profinite mapping class groups and all possible
natural homomorphisms reflecting important geometric morphisms between the moduli
spaces.

In the Esquisse, Grothendieck suggests that the geometric automorphism group of a
Teichmyiiller tower can be in some sense “explicitly” described. Furthermore, he conjectures
that such an automorphism group must depend in fact only on the first two levels (les deux
premiers étages), 1.e. on the fundamental groups of the moduli spaces of types (g, n,m) with
3g ~ 3+ (n+ m) equal to 1 or 2. Part of this “two-level philosophy” is of essentially geo-
metric and even topological nature, and this is where one first comes across the work of
Thurston on surfaces and its bearing on the study of the moduli spaces (viewed as real or-
bifolds} and their (topological) fundamental groups (see [L} for a more detailed discussion).
Thus, the first striking piece of news is the fact that the group of geometric automorphisms
of a Teichmiiller tower should afford a reasonably explicit description. This is a very rare
and precious phenomenon. The first result in this direction is that the geometric auto-
morphism group of the Teichmiller tower of mapping class groups in genus zero linked by
subsurface-inclusion homomorphisms is equal to the original Grothendieck-Teichmiiller
group GT defined by Drinfel’d in [D]. This follows from the computation, in [LS], of the
automorphism group of a certain tower of braid groups with specific linking homo-
morphisms; the geometric aspect of this tower was not explored in [LS] but the tower con-
structed there is essentially equivalent to the genus zero Teichmiiller tower. In the present
article we compute the geometric antomorphism group A of a tower consisting of all the
Fm and all subsurface-inclusion homomorphisms, and its action restricts to the genus zero
Telchmuller tower; thus A naturally occurs as a subgroup of GT. Similarly, A should
contain (a large subgroup of) the ideal Grothendieck-Teichmiiller group, geometmc auto-
morphism group of the ideal Teichmiiller tower.

A major incentive for studying the Grothendieck-Teichmiiller group is its close con-
nection with the absolute Galois group G of @. The moduli spaces .#,”, are defined over

@, and this gives rise to an outer action of Gg on the algebraic parts f;:”n of their funda-
mental groups, justified by generalizing to stacks the Grothendieck short exact sequence for
fundamental groups (see [O]). In the ideal Teichmiiller tower, all the morphisms between
moduli spaces should be Q-morphisms (this is the case for the morphisms studied in the
present article). This would ensure a Gg-action on all the 177, , respecting all the morphisms
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of the ideal Teichmiiller tower, thus giving rise to a natural homomorphism of Gg into the
geometric automorphism group of the ideal tower (which can be shown to be injective via
the Belyi three-point theorem). Thus the interesting question of the possible equality of the
ideal Grothendieck-Teichmilller group with Gg arises. This interpretation of the usual
group GT makes it obvious that it contains Gg. The same is true of the group A defined in
this article—except that because of certain assumptions made about the type of the action,
it is actually a certain large subgroup of Gy which is included in A, namely the absolute
Galois group Gx of the extension K of ( obtained by adding all #-th roots of unity and of 2
for all » = 1. An actual proof of the fact that A contains this large group follows as a cor-
ollary of the results of [NS] (see also [LNS]). Indeed, in that article, a group II" is defined
which contains Gy, and it possesses a subgroup I such that Gx < I" = A. Such results are
far from obvious from the definitions of these groups as subsets of elements of profinite
groups satisfying combinatorial properties; the first proof that Gg < GT, which used the
combinatorial definition of GT, was given by Ihara in [I].

Let us now proceed to a statement of our main results. We first need a little notation
and background. Let L7, denote a topological surface with genus g = 0, # = 0 punctures,
and m z 0 boundary compenents, i.e. such that filling in the n punctures gives a compact
surface with # boundary components homeomorphic to circles. We write X, , when m = 0,
2’" when n = 0, and Z, when n = m = 0. The associated pure mapping class group, denoted
I"gmn, is defined to be the group of classes of orientation-preserving diffeomorphisms of X
fixing the boundaries pointwise, modulo those which are isotopic to the identity fixing the
boundaries pointwise. The term “pure” indicates the fact that we do not consider classes of
diffeomorphisms permuting the punctures or boundary components. The group L, is
generated by Dehn twists a along simple closed curves « on X7, (cf. [B] for a basic reference
on this material). We use corresponding Greek and Roman letters for corresponding loops
and Dehn twists. Generally, we write X for such a surface and I'(Z) for its mapping class
group; we say that Z is of type (g, n, m), and use hats to indicate profinite completions. As
for the ¥’s, we write I}, , = Fgon, =T, and T, =T, 0. The Dehn twists along the

boundary components are obviously central in I}, and we have the exact sequence

17" — I;:Tn — Lgntm — 1,
corresponding to collapsing the boundary components of 27, to punctures.

Definition. Let GTI be the set of elements fin the derived subgroup F2 of £, such
that x — x and y — £~ yf extends to an automorphism Fr of F, and whlch furthermore
satisfy the following three relations:

(1) f(a3,a})f(a},a}) = 1in T}, where o) and a; are as in figure 1(a);

(I1) f(b3,b1)f (b, b3) f (b1, b2} = 1 in T}, where f5;, §, and 53 are as in figure 1(b);

(IIT) f (b3, ba) f(bs, B1) S (b2, b3) f(ba, bs) f(b1,b2) = | in [, where the /31- are as in
figure 1{c).

In this definition, f{a, b) denotes the image of f under a homomorphism of £, into
some profinite group G sending x — a and y — b. The set GT' is made into a group by
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o1

{a) (b} ()

Figure 1

defining the multiplication law f - g to be given by composition of the automorphisms. In

other words, if ¥y and F, denote the automorphisms of ¥, associated to f and g e GT L
then the automorphism £y is defined to be F, o Fy, so that we have g - /' = gF, (/).

Remark 1. We note that relation (II) actually takes place in the subgroup of
fg‘ generated by by, b, and b;. This subgroup is described by the three relations: bybsbs
commutes with &, i = 1,2, 3. In other words, it is the quotient of the free group generated
by b1, b, and by obtained by requiring that bbby be central. Thus, we can write
S(x, »}f(z,x)f(y,z) = 1 whenever x, y and z generate a group such that xyz is central.
Whenever this is the case we also have the useful identity

(1) f(xa y)x_]f(za x)Zilf(y:Z)yMI =1

Although our presentation is unusual, the above group GT'is easily seen to be equivalent
to the set of elements (4, f) € GT! with 1 = 1, according to usual definitions. Let A be the
subset of GT! consisting of the elements f € 13“2’ satisfying the following additional relation,
taking place in T, where the loops o; and ¢; are as in figure 2.

(R) fles,a)f(a3,a3)f (e2,e3) f(e1,e2)f(af,a3) f(as,e1) = 1.

Figure 2

Now we can list our main results.

Theorem A (Lerma 7 of §3). A is a subgroup of GT'.

Throughout this paper, the terms “loop” and “curve” refer to homotopy classes of
those objects. The intersection (or self-intersection) numbers are defined as the- minimal
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such numbers as the curves vary in their homotopy classes. A simple loop is a loop whose
self-intersection number is zero. If « and f are two simple loops on X, we write [a N J| for
their intersection number. If two loops intersect in two points but with algebraic inter-

section equal to 0, then following [G], we write |oc Il ,8} = 2. Our second main result is the
following.

Theorem B (Theorem 4 of §3). Let ¥ be a surface of type (g,n m) and Iet 2 be a
pants decomposition of L. Then there exists a group homomorphism Yz 1 A — Aut( ()3))
such that setting Fp = 1 5(f), the automorphism Fp has the following “local properties’:

Fzla)=a Jorall we 2,
Fé?(b)zf(zbz) lbf(az b?) If{ﬁﬁcxl—1f0rsomeoceg’andfﬁmoc| 0
o Jorallod' e 2o Fo, B
Folc) =f(a,c)7lcf(a,c) C if lyevel =2 for somewe P and |y} =0 _'
forall ' € P4 +a. '

Furthermore, the homomorphisms A — Out(1'(z)) induced by the t,bg. Sor di di ifferent P are all
equal and give rise to a canonical homomorphism l//’” : A — Qut™(T} ) Jor each g, n,m Z 0.

Now we can deﬁne the Telchmuller tower studled in thls arucle and state our third
main result. -

' _Deﬁnition. We define the Teichnuiller tower of ( llt:m:r.e) mapﬁfng class groups 1o be the
collection of pure mapping class groups I'”, for all g,n,m = 0, equipped with all the natu-
ral homomorphisms

m' Tm
Ly — 17,

associated to subsurfaces of type (¢/,»’,m’} which can be cut out of X", by cuiting along
disjoint simple closed loops, and deﬁned by sending the Dehn twist along a simple closed
loop in the subsurface to the Dehn twist along the same loop considered in the full surface.
We define the profinite Teichniiller iower to be the analogous tower with the profinite
mappmg class groups 1"’” and the corresponding homomorphlsms

Definition. For g,n,m = 0, let Out™ (I"" ) denote the subgroup of Out(F"‘ ) consist-
ing of the outer automorphlsms which preserve conjugacy classes of Dehn twists; we call
these outer automorphisms special outer automorphisms of Fm We use them to define the
group of special outer automorphisms of the tower 7, as follows A special outer auto-
morphism of J" is a tuple (4,",)((s,n,my Of special outer automorphisms ¢, € Out* (1" )

g,h
having the following property for any liftings ¢ and. ¢5 w of 877, and ¢y 1o auto-

morphisms of F’" and F'“ . and any homomorphlsm t: I“’"n, — 1“”“ belongmg to 7, the

homomorphlsm :;5 of dlffers from ¢ o ¢;” by an inner automorphlsm of Fg’” We denote
the group of spec1al outer automorphisms of 7 by Out*(7"). For every (g,n,m), there is a
natural homomorphism S :

@) Pyl QUL () = Out” (),

obtained by sending the tuple (¢,.,) to the (g,n, m)-component ¢,
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Remark 2. We note that the maps I'(£') — I'(Z) are almost injective, that is they
are injective except for the possible identification of pairs of boundary components which
become identified as a simple loop in Z. However, the injectivity of these homomorphisms
in the profinite case is an 1mportant open question.

Theorem C (Theorem 5 of §3).  There is an injection of groups
¥ A — Out*(F)
such that for each g,n,m = 0, we have pyao¥ = i,b;’:‘n

‘The fundamental tool used in our proofs of all these theorems is a certain complex of
curves called the maximal multicurve complex H (Z) The definition is long and requires
several figures, so we put it in §2. However, the main result on H(X)} which we use in the
remainder of the article is the followmg simple statement.

. Theorem D (Theorem 2 of §2). The maximal multicurve complex H(Z) is simply
connected,

In §3, we make fundamental use of the fact that an explicit presentation of the map- .
ping class groups 17, is known, the generators being the Dehn twists along simple closed
curves on the topologlcal surface X7 . Let us conclude this introduction with this presen-
tation, a first version of which was glven by Gervais [G], and a subsequent improvement by
Feng Luo in [FL]. Note that we compose Dehn twists from right to left so that ab means
the twist & followed by the twist a.

We define the following braid relations:
(C) ab="ba if |anp|=0,
(B} c=bab™' ifjlunp[=1 and y = b(a).

Relation (B) implies the well-known braid relation aba = bab for lanfl=1 (cf. {FL],
Lemma 1). '

The doughnut relation, taking place on a subsurface E’ of ¥ of type (1,1, )} with
i+ j=1,is given by

(D) - .. (a;ap_al)_4 = d

where § is the boundary loop of ' (so it may Just surround a puncture), and «; and &, are
as in figure 1(a).

Finally, the lantern relation, taking place on a subsurface &' of ¥ of type (O i, j) Wlth
i+ j=4,is given by

(L) a1dadzdy = blbgbg

where the «; are loops on T bounding ¥’ (we allow.«; to be a loop surrounding a puncture,
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so that a; = 1) and f3, f» and f8; are the loops in the interior of £’ shown in figure 1(b).
These loops intersect each other in 2. :

Theorem 1 ([G], Thm. A, [FL)). A4 presentation for the pure mapping class group T,
Jor every g,n,m z 0 is given by taking all Dehn twists along simple closed loops as genemtors
and imposing all the relations (C), (B), (D) and (L).

§2. Transformations of pants decompositions

In this section we shall be concerned with curves on the surface £, and for this pur-
pose the distinction between punctures and boundary components becomes irrelevant, so
for simplicity we shall assume there are no punctures, only boundary components. Thus we
say T has type (g,n) if it has genus ¢ and » boundary components.

By a maximal multicurve on ¥ we mean a finite collection # of disjeint simple loops
(modulo isotopy) cutting X into pieces which are surfaces of type (0, 3). In other words, 2
defines a pants decomposition of Z. The number of curves in a maximal multicurve is
3g — 3 + n, and the number of complementary components is 2g — 2 +#n = |¥(Z)|.

We are interested in two fundamental types of transformations of pants decom-
positions of Z. Let 2 be a pants decomposition, and suppose that one of the loops f of 2 is
such that deleting # from 2 produces a complementary component of type (1,1). This is
equivalent to saying there is a simple loop 7y intersecting § in one point transversely and
disjoint from all the other loops in #. In this case, replacing § by v in 2 produces a new
pants decomposition %" We call this replacement a simple move, or S-move, and write
P = Sp ,(P).

S-move
A-move

Figure 3

In similar fashion, if % contains a loop £ such that deleting f from # produces a
complementary component of type (0,4), then we obtain a new pants decomposition 2’ by
replacing f by a loop y such that |y m | = 2o, and disjoint from the other curves of #. The
transformation 2 — @' in this case is called an associativity move or A-move, and we write
P! = Ag,(#). (In the surface of type (0,4) containing § and y these two curves separate
the four boundary circles in two different ways, and one can view these separation patterns
as analogous to inserting parentheses via associativity.) Note that the inverse of an S-move
is again an S-move, and the inverse of an A-move is again an A-move.

Remark 3. It is known that compositions of S-moves and A-moves act transitively
on the set of isotopy classes of pants decompositions of Z. In other words, if we build a
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graph. by letting its vertices be isotopy classes of pants decompositions of T, with an edge
joining two vertices whenever they are related by an S-move or A-move, then this graph is
connected. This statement was given in the final sentence of [HT], and we fill in the details
of this argument in the proof of theorem 2 below.

Definition. The maximal multicurve complex H(E) is the two-dimensional cell com-
plex having vertices the isotopy classes of maximal multicurves in %, with an edge joining
two vertices whenever the corresponding maximal multicurves differ by a single S-move or
A-move, and with faces added to fill in all cycles of the following five forms:

(3A) Suppose that deleting one loop from a pants decomposition creates a comple-
mentary component of type (0,4). Then in.this component there are loops By, B, and g,
shown in figure 4(a), which yield a cycle of three. A-moves: By~ fy — fz — 1. (No other
loops in the given pants decomposition change.) , : S

(5A) Suppose that deleting.two loops from a pants decomposition creates a comple-
mentary component of type (0,5). Then in this component there is a cycle of five A-moves
involving the loops f; shown in figure 4(b): '

{ﬁ1aﬁ3} — {1, B4} — {B2: B4} — {ﬁz?ﬁs} - {ﬁaﬁs} - {53:)81}-

(3S) Suppose that deleting one loop from a pants decomposition creates a comple-
mentary component of type (1,1). Then in this component there are loops fy, f,, and B,,
shown in figure 4(c), which yield a cycle of three S-moves: B — By — By — By

(6AS) Sﬁppose that deleting two loops from a pants decomposition creates a com- .

plementary component of type (1,2). Then in this component there is a cycle of four A-
moves and two S-moves shown in figure 5:

{an, 23} — {ar, &5} — {.062,83}.—9'{052,83} — {o, 82} — {0!2,_81} — {o3,e1} . {oz, a1},

(C) If two moves which are either A-moves or S-moves are supported in disjoint
subsurfaces of X, then they commute, and their commutator is a cycle of four moves. We
call them disjoint moves. : -
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Figure 5

Remark 4.- The four basic relations (3A), (38), (5A) and (6AS) live on surfaces of
type Zo,4, 21,1, Zo,5 and X 5 respectively. This fact is closely related to Grothendieck’s
philosophy of the importance of the first two levels of the Teichmiiller tower, a level being
defined by its modular dimension 3g — 3 + n.

The remainder of this section is devoted to the proof of the following theorem.
Theorem 2.  The maximal multicurve complex H(Z) is simply connected.

Remark 5. Thus any two sequences of A-moves and S-moves joining two given
pants decompositions can be obtained one from the other by a finite number of insertions
or deletions of the five types of cycles, together with the trivial operation of inserting or
deleting a move followed by its inverse. For example, if T has type (0,4) or (I, 1), the two
cases when a maximum multicurve contains just one circle, then H(Z) is the two-dimen-
sional complex shown in figure 6, consisting entirely of triangles since only the relations
{3A) or (3S) are possible in these two cases. The vertices of H(E) are labelled by slopes,
which classify the nontrivial isotopy classes of circles on . This is a familiar fact for the
torus, where slopes are defined via homology. For the (0,4) surface, slopes are defined by

Ca Yl 3
32

=43 g 3

Figure 6.




10 Hatcher, Lochak and Schneps, Teichmiiller tower of mapping class groups

lifting curves to the torus via the standard two-sheeted branched covering of the sphere by
the torus, branched over four points which become the four boundary circles of the (0,4)
surface. ' S ‘

Proof of theorem 2. This uses the same basic approach as in [HT], which consists of
realizing multicurves as level sets of Morse functions /' : £ — R.

Let 7 = [0, 1]. We consider Morse functions f : (%, 8Z) — (1,0) whose critical points
all lic in the interior of . To such a Morse function we associate a finite graph I'(f), which
is the quotient space of T obtained by collapsing all points in the same component of a level
set /1(a) to a single point in I'{f). If we assume fis generic, s that all critical points have
distinct critical values, then the vertices of T'(f) all have valence 1 or 3 and arise from
critical points of f or from boundary components of . Namely, boundary components
give rise to vertices of valence 1, as do local maxima and minima of f, while saddles of f
produce vertices of valence 3. See figure 2 of [HT] for pictures. We can associate to such a
function f a maximal multicurve C(f), unique up to isotopy, by cither of the following two
equivalent procedures: : o : C

(1) Choose one point in the interior of each edge of I"(f), take the loops in T which
these points correspond to, then delete those loops which bound disks in Z or are isotopic to
boundary components, and replace collections of mutually isotopic loops by a single loop.

(2) Let Ty(f) be the unique smallest subgraph of T'(f) which T'(f) deformation re-
tracts to and which contains all the vertices corresponding to boundary components of . If
To(f) has vertices of valence 2, regard these not as vertices but as interior points of edges.
In each edge of T'o(f) not having a valence 1 vertex as an endpoint, choose an interior
point distinct from the points which were vertices of valence 2. Then let C(f) consist of the
loops in £ corresponding to these chosen points of To(f). :

Every maximal multicurve arises as C(f) for some generic f : (%,8%) — (1,0). To
obtain such an f, one can first define it near the loops of the given multicurve and the loops
of 8% so that all these loops are noncritical level curves, then extend to a function defined
on all of £, then perturb this function to be a generic Morse function.

After these preliminaries, we can now show that H(Z) is connected. Given two max-
imal multicurves, realize them as C{fy) and C(f}}. Connect the generic Morse functions
£, and f; by a one-parameter family f; : (Z, ax) — (1,0) with no critical points near ¢X.
This is possible since the space of such functions is convex. After perturbing the family f; to
be generic, then £, is a generic Morse function for each ¢, except for two phenomena: birth-
death critical points, and crossings interchanging the heights of two consecutive non-
degenerate critical points, as described on p. 224 of [HT}. The associated maximal multi-
curves C(f,) will be independent of ¢ except for possible changes caused by these two
phenomena. Birth-death points are local in nature and occur in the interior of an annulus in
¥ bounded by two level curves, hence produce no chdnge in C (f,). Crossings can affect
C(f,) only when both critical points are saddles. Up to level-preserving diffeomorphism,
there are five possible configurations for such a pair of saddles, shown in figures 5 and 6 of
[HT]. The three simplest configurations are shown in figure 7 below, and one can see that
the intermediate level curve dividing the subsurface into two pairs of pants changes by an
A-move as the relative heights of the two saddles are switched.
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Figure 7

The fourth configuration, shown in the left half of figure 8 below, also occurs in a
subsurface of type (0,4). Here the crossing produces an interchange of the level curves o
and a;. These two curves intersect in four points, and can be redrawn as in the right half of
the figure. They are related by a pair of A-moves, interpolating between them the hori-
zontal loop f. (In terms of figure 6, we can connect the slope 1 and —1 vertices by an
edgepath passing through either the slope 0 or slope co vertices.)

Figure 8

The fifth configuration takes place in a subsurface of type (1,2), as shown in figure 9.
Here the two level curves in the left-hand figure change to the two in the right-hand figure.
This is prec1sely the change from the pair of loops in the middle of the upper row of figure 5
to the pair in the middle of the lower row. Thus the change is realized by an A~move an S-
move, and an A-move. ThlS finishes the proof that H(Z)} is connected.

Figure 9

Note that the edgepath in H(Z) associated to the generic family £, is not quite unique.
For a crossing as in the fourth configuration, shown in figure 8, there were two-associated
edgepaths in H(Z), which in figure 6 corresponded to passing from slope 1 to slope —1
through either slope 0 or slope co. These two edgepaths are homotopic in & (X) using two
relations of type (3A). Similarly, a crossing in the fifth configuration; in figure 9, corre-
sponded to an edgepath of three edges, but there are precisely two choices for this edge-
path, the two ways of going halfway around figure 5, so these two choices are related by a
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relation of type (6AS). Thus we conclude that the edgepath associated to a generic family f,
is unique up to homotopy in H(X). o ' .

‘A preliminary step to showing H(Z) is simply connected is:

Lemma 3. Every edgepath in H(X) is homotopic in the 1-skeleton of H () to an
edgepath which is the sequence of maximal multicurves C(f;) associated to a generic one-
parameter family f,. - : : -

Proof First we show:

. (%) If the multicurves C(fy) and C{f7) are_isotopié, then there is a generic family f,
joining f, and f; such that-f; has nonsingular level curves in the isotopy classes of all the
loops of C(f,) = C(f1) for all .

This can be shown as follows. Composing f, with an ambient isotopy of £ taking the
curves in C(f,) to the curves in C(f;), we may assume that C(fy) = C(f)). The normal
directions to these curves defined by increasing values of f and f; may not agree, but this
can easily be achieved by a deformation of f, near C(f;}. Then we can further deform f so
that it agrees with £; near C(f;) = C(f) and near %, without changing the local behavior
near critical points. Then, keeping the new f; fixed where we have made it agree with f;, we
can deform it to coincide with f; everywhere by a generic family f,. To deduce lemma 3
from (#) it then suffices to realize an arbitrary A-move or S-move. For A-moves we can just
use figure 7. Similarly, figure 9 realizes a givern S-move sandwiched between two A-moves,
but we can realize the inverses of these A-moves, so the result follows. [

Now consider an arbitrary loop in 7 (Z). By lemma 3, together with the statement (x)
in its proof, this loop is homotopic to a loop of the form C( £,) for a loop of generic func-
tions f,. Since the space of functions is convex, there is a 2-parameter family f, giving a
" nullhomotopy of the loop f,. We may assume f;, is a generic 2-parameter family, so that
S, 18 @ generic 1-parameter family for each up except for the six types of isolated phe-
nomena listed on page 230 of [HT]. The proof that H(X) is simply connected will be
achieved by showing that these phenomena change the associated loop C{f},,) by homo-
topy in H(Z). - T

The first three of the six involve degenerate critical points and ate uninteresting for
our purposes. In each case the change in generic I-parameter family is supported in sub-
surfaces of ¥ of type (0,k), & < 3, bounded by level curves, so there is no change in the
associated path in H(Z).

The last three phenomena, numbered (4), (5), and (6) on page 230 of {HT], involve
only nondegenerate critical points, which we may assume are saddles since otherwise the
reasoning in the preceding paragraph shows that nothing interesting is happening. Number
(4 is rather trivial: A crossing and its “inverse” are cancelled or introduced. We may
choose the segment of the edgepath in H(Z) associated to the crossing and its inverse. so
that it.simply backtracks across up to three edges, hence the edgepath changes only by
homotopy. Number (5) is the commutation of two crossings involving four distinct saddles.
This corresponds to a homotepy of the associated edgepath across 2-cells representing the
commutation relation (C). Number (6) arises when three saddles have the same f,,-value at
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an isolated point in the (7, u)-parameter space. As one circles around this value, the heights
of the saddles vary through the six possible orders: 123, 132, 312, 321, 231, 213, 123. To
finish the proof it remains to analyze the various possible configurations for these three
-saddles. The interesting cases not covered by previous arguments are when the three saddles
lie in a connected subsurface bounded by level curves just above and below the three sad-
dles. Note that we can immediately say that all relations among moves, apart from the
commutation relation, are supported in subsurfaces of types (0,5) and (1,3). This is be-
cause a subsurface bounded by level curves with three saddles, hence Euler characteristic
—3, must have at least two boundary circles, one below the saddles and one above, so if the
surface is connected it must have type (0, 5) or (1, 3). The analysis below will show that the
(1,3) subsurfaces can be reduced to (I,2) subsurfaces. There are sixteen possible config-
urations of three saddles on one level, shown in figure 10, where the saddles are regarded as
1-handles, or rectangles, attached to level curves. The sixteen configurations are grouped
into eight pairs, the two configurations in each pair being related by replacing S by its
negative.

( D 0 @D D

(b}

O=0=0=0 O=GD=OO=@@

& AD &

Figure 10

The first five pairs involve a genus zero subsurface and are somewhat easier to ana-
lyze visually than the other three pairs, which occur in a genus one subsurface We consider
each of these five pairs in turn. S

(a) A picture of the subsurface with + fm as the height functlon is shown in figure 11.

Vlewed from above, the surface can be scen as a dlsk w1th four subdlsks deleted, a
(0,5) surface. In the second row of the figure we show the various configurations of level
curves when the saddles are perturbed to each of the six possible orders. For example, the
first diagram shows the order 123, where the saddle 1 is the highest, 2:is the middle, and 3 is
the lowest. The two circles shown lie between the two adjacent pairs. of saddles. The four
dots represent four of the five boundary circles of the (0, 5) surface, the fifth being regarded
as the point at infinity in the one-point compactlﬁcatlon of the plane. In the third row of
the figure this fifth peint is brought in to a finite point and-the level: circles are redrawn
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accordingly. The two adjacent orderings 132 and 312 produce the same Ievel curves, so we
have in reality a cycle of five maximal multicurves. Each is related to the next (and the ﬁrst
to the last) by an A-move and the whole cycle is the relation (5A).

-@@---

132, 312

@& = %@ @' '@.
Figure 11

(¢) We treat this case next since it is very similar to (a). From figure 12 it is clear that
one again has the relation (5A).

1 - 3
> 0% &N & S
132,312 213

(b) Here the 3-fold rotational symmetry makes it unlikely that one would directly get
the relation (5A). The second row of figure 13 shows the cycle of six multicurves.

Tt is convenient to simplify the notation at this point by representing the two circles in
a pants decomposition of the (0, 5) surface by two arcs joining four of the five points rep-
resenting the boundary circles. The boundary of a neighborhood of each arc is then a circle
separating two of the five points from the other three. The third row of the figure shows the
cycle of six multicurves in this notation, with the fifth point at infinity and an arc to this
point indicated by an arrow from one of the other four points. Note that we have a cycle of
six A-moves. This can be reduced to two (3A) and two (SA) relations by adjoining the two
configurations in the fourth row. Schematically, one subdivides a hexagon into two penta-
gons and two triangles by inserting two interior vertices, as shown. :
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Figure 13

(d) Here the cycle of six multicurves contains two steps which are not A-moves but
resolve into a pair of A-moves. Thus we have a cycle of eight A-moves, and this decom-
poses into two (SA) relations, as shown in figure 14.

Figure 14
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(e) In this case we have the configuration shown in figure 15, with 3-fold symmetry.
The cycle of six multicurves has three steps which resolve into pairs of A-moves, so we have
a cycle of nine A-moves. This can be reduced to three (3A) relations and four cycles of six
A-moves. After a permutation of the five boundary circles of the (0, 5) surface each of
these 6-cycles becomes the 6-cycle considered in case (b).

VeE&29Y

\\I. \.._\: .7.-/ .I/

" Figure 15

This completes the analysis of the five cases of the phenomenon (5) involving genus 0
surfaces. In particular, the theorem is now proved for surfaces of type (0,#). To finish the
proof it would suffice to do a similar analysis of the three remaining configurations of three
saddles in surfaces of type (1, 3}. However, the cycles of A- and S-moves arising from these
configurations are somewhat more complicated than those in the genus zero configurations,
so instead of carrying out this analysis, we shall make a more general argument, showing
that the relations (3A) and (6AS) suffice to reduce the genus one case to the genus zero case.
So let = have type (1,7). We can view the boundary components of £ as punctures rather
than circles, so ¥ is the complement of n pomts in a torus X. Given an edgepath loop y in

H(Z), its image § in H(X) is nullhomotopic since the explicit picture of H(X) shows it is
contractible. Our task is to show the nullhomotopy of § lifts to a nullhomotopy of y.

The nulthomotopy of § gives a map g : D > H (E) Making § transverse to the graph
dual to the 1-skeleton of H (), the preimage of this dual graph is a graph & in D?, inter-
secting the boundary of D? transversely, as depicted by the solid lines in the left half of
figure 16.
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B e—

Figure 16

The vertices of G in the interior of D? have valence three, and are the preimages of
the center points of triangles of H(%). Each such vertex corresponds to three simple loops
on ¥ having distinct slopes and disjoint except for a single point where they all three inter-
sect transversely. Each edge of G corresonds to a pair of simple loops on % of distinct
slopes, intersecting transversely in one point. The complementary regions of & correspond

to single loops.

In a neighborhood N of G we can choose all these loops in £ to vary continuously
with the point in N. We can also assume these continuously varying loops have general
position intersections with the » puncture points, so that they are disjoint from the punc-
tures except along arcs, shown dotted in figure 16, abutting interior points of edges of G,
where a single loop slides across a puncture. Near such a dotted arc we thus have three
loops: the loop before it slides across the puncture, the loop after it slides across the punc-
ture, and a third loop intersecting each of the two loops in one point transversely. We can
perturb the first two loops to be disjoint, so they are essentially two parallel copies of the
same loop with the puncture between them. A neighborhood of the three loops is then a
surface of type (1,2). We can identify the three loops in this subsurface with the three
simplest loops in figure 5: the upper and lower meridian loops and the longitudinal loop.
The puncture is one of the two boundary circles of the subsurface. Adjoining the other
loops shown in the figure, we get various pants decompositions of the subsurface. Choosing
a fixed pants decomposition of the rest of T then gives a way of lifting § to g : D? — H(Z)
in a neighborhood of the dotted arc, by superimposing figure 5 on the right half of figure
16. Since the chosen loops are disjoint from punctures elsewhere along G, we can then ex-
tend the lift g over G by extending the given loops to pants decompositions of Z, using just
the fact that any two pants decompositions of a genus zero surface can be connected by a
sequence of A-moves. Finally, the lift g can be extended over the complementary regions of
G since the theorem is already proved for genus zero surfaces. [}

* . §3. The A-action on the Teichmiiller tower

In this section, we return to the definitions of A, 9 and Out*(7} given in §1. In both
this and the next section, curves and diffeomorphisms are understood up to isotopy, and for
the sake of brevity this will not be explicitly mentioned every time. Naturally this conven-
tion applies also to the objects built out of these two classes, as for instance pants decom-
positions. The main results of this section are stated in theorems 4 and 5.
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Theorem 4. Let X be a surface of type (g,n,m) and let be a pants decomposition of
L. Then there exists a group homomorphism Vi : A — Aut(I'(Z)) such that setting
Fp = iz(f), the automorphism Fp has the following “local properties™: :

Fy(a)
Fz(b)

a Jorall w € 2,

F@ b7 bf (@260 if Bral =1 for some e P and |fra'|=0
Jorall o/ e o’ = o, '

Fp(c) = fla,¢) ef(a,c) if lvnvo| =2 for somewe P and |y no| =0

Joralla' e P.o’ + o .

Furthermore, the homomorphisms A — Out( (z )) induced by the \j» for different 2 are all
equal and give rise to a canonical homomorphism Yyt A — Out” (F ) Jor each g, n,m = 0.

Remark 6. The conditions defining when the second {resp. third) local property can
take place can be rephrased as follows: the pants decomposition &' obtained from 2 by
replacing the loop-o by § (resp. by y) is obtained from 2 by a single S-move (resp. a single
A-move). : :

Theorem S.  There is an injection of groups
WA s Out™(7)

such that for each g.n,m = 0, we have Pyno¥ = lﬁg > Where pl is as in (2).

Proof of theorem 4. The proof has three steps. Steps 1 and 2 are devoted to con-
structing an automorphism Fp of I'(Z) associated to each f e A and each pants decom-
position Z. In step 1, we define the value of F» on the Dehn twists generating I'(E). In
order to give the value of Fz on an infinite number of generators, we give a procedure for
computing this value and then show that the defining relations (1), (II), (III) and (R) of A
ensure that this procedure is well-defined. In step 2; we show that the action of F» on the
generators of I'(Z) respects all the defining relations of I(Z) ~ qu*n given in theorem- 1, so
that Fz gives an automorphism of F( ). Finally, in step 3 we show that A is a group and
that the map ¥, : A — Aut(I'(X)) is in fact a group homomorphism and that all the ¥,
induce the same homomorphism A — Out” (1" )

. Step L. The generators of F(E). Fix a pants decomposition 2 of I, and let us define
the automorphism Fp of ['(Z). To start with, we define the values of Fp on the Dehn twists
of I'(X) via the following procedure. :

To begin with, set Fp(a) = a for all the loops « € 2, and also for all boundary twists,
i.e. for all « corresponding to boundary components of . Now let us define F»(b) for any
simple loop f on Z. By remark 3, there exists a pants decomposition 2 of ¥ containing f
and a finite sequence & — %3 , o---0 %, . of S- and A-moves taking 2 to 2. We define

O Bl i1/l )(b)

= S Y (B B (B ) - Y <),
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where

1 af F , is an A-move,
B2 if Zp..y, 15 an S-move,

Lemma 6. The value Fp(b) € I'(Z) is independent of the choice of the sequence & and
of the pants decomposition 9 containing f. ' .

Proof. Let 2 be a pants decomposition containing #, and consider two sequences &
and &’ taking £ to 2. By theorem 2, % can be homotoped to %' in H(X) via substitutions
from the basic cycles (3A), (5A), (38} and (6AS), and from the commutation relations (C).
So we only have to check that the action defined by (3) respects the relations F3a.= 1,
Fsa =1, P35 = 1, Feas = 1 and ¢ = 1. Relations (3A) and (5A) are respected because of
relat10ns (I1) and (III) in the definition of GT"'; that is, a sequence of type Fsa (resp. Fsa)
induces a conjugation by an element which is unity by relation (II} (resp. (IIT)). For ¥sg,
we use the first part of remark 5 and the fact that the squares 4?7, b2 and 53 generate a
subgroup of I'! in which h75367 is central, so that we have f(b2,52)f(b2,52)f(b2,b2) = 1.
A sequence of type Fss mduces conjugation by exactly this element, so the action defined
by (3) respects {385). - '

The validity of Fsas =1 18 a direct consequence of the defining relation (R) of A,
which again says that a cycle %sag induces conjugation by the unit element. Finally; if %
and .%, are disjoint moves in the sense of the definition of (C), then {3) makes them induce
a conjugation by elements f; and f, which commute, because they are prowords on twists
over disjoint sets of curves. So inn(f } and inn{f,) also commute as automorphisms, as was
to be checked. This shows that if we choose a pants decomposition 2 containing f3, then the
value of Fp(b) is independent of the sequence & taking 2 to 2.

Now let us show that the value Fy(b) is also independent of the choice of pants de-
composition containing f. Let 2 and 2 be two pants decompositions containing f. If we
cut T along f, the remaining loops of 2’ and of 2 form pants decompositions of the cut
surface, so there exists a sequence 7 of S- and A-moves transforming one into the other.
The same sequence .~ can be considered as a sequence of S- and A-moves transforming 2’
into 2 on X, and involving only moves whose departure and arrival loops are disjoint from
B. Now, let & be a sequence of moves from 2 to 2 and %’ a sequence of moves from 2 to
2'. Then we have a new sequence 7% from 2 to 2, and by the previous argument, the
value of Fp(b) is the same whether the sequence % or 7.9 is used. However, the value of
Fy(h)y computed using the sequence 7% is given by conjugating » with the f’s corre-
sponding to the moves in .7 and those corresponding to the moves in %', and all ’s cor-
responding to the moves in 7 commute with 5 by definition (since the curves involved are
disjoint from f). Thus, the value F»(b) computed by using the pants decomposition 2’ and
the sequence .%’ is again the same. This concludes the proof. J

Corollary 1. Let @ and 2 be two pants decompositions of L and let
& = Fp . 0 -0Fp y be a finite sequence of S- and A-moves taking P to 2. Let f e A,
and set :

x = [1£(b ) e T(E).
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Then for all Dehn twists b, we have the equality
F@(b) = (inn(x) o] F-@) (b)

We have proved in this step that the actions of the F» on Dehn twists are well-defined
and related by conjugation; in the following step we will show that they extend to auto-
morphisms of I'(Z).

Step 2. The defining relations of lA"(Z‘.) o lﬂ“g”"". - In this step, we show that the action of
Pz on Dehn twists defined in step 1 above respects all the defining relations (C), (B), (L)
and (D) of ['(Z) (cf. theorem 1). If these relations are respected by F, for any pants de-
composition 2, then by corollary 1, they are respected by Fa, so it suffices to show that
each relation is respected by some F, for a suitable choice of 2.

For (C), suppose 8, and §, are two disjoint loops on X and let 2 be a pants decom-
position containing both of them. Then by definition, Fy(b1) = by and Fy(by) = b, so they
commute. S

Let us consider braid relations of type (B). Let #; and §, be loops intersecting in one
point, and let 2 be a pants decomposition containing f, and not intersecting £,. Then the
definition above shows that Fy(by) = by and Fa(by) = f(b2,b))b f (b2, bZ). Lety = by(B,).
Relation (B) states that ¢ = b5,b7!. Computing the right-hand side gives

Fo(b1)Fa(b)Fa(br)™" = by (b2, b2)by £ (b2, b2)bT

= f(bibyby !, b1Yorbaby ! £(B2, 1620,
= f (A B)ef (bE, ¢2).

On the other hand, since the loop y can be obtained from B by a single simple move, the
definition of £, shows that Fy(c) = f(c? b})cf (b2, ¢?), so that relation (B) is respected by

Now consider any lantern relation ajazazay ='b1bgb3 in f(Z), and let 2 be a pants
decomposition containing the loops o; for 1 <7 < 4 (bounding a subsurface of type (1, , j)
with i+ j = 4) and B;. Then Fy(a;) = a; and Fo(b() = by, so in particular we have

Fa(a1)Fola)Fa{as) Falay) = ajazasas,
50 we jusi have to check that Fj preserves b1 babs. The loop b, is obtained from b; by an A-

move Ay, 1, and by is obtained from b, by an A-move 4;, ,,, so the definition of the action
Fg on by and b; gives

Fa(by) = f(ba, b1)baf(b1,b2) and  Fa(bs) = f(bs,b1)bsf(by, bs).
Thus '

Fa(b1)Fa(b2)Fa(bs) = byf (ba, b1)baf (b1, 0) f (b3, by)bs f (b, by)
= bif (b2, b1)b2f (b3, b2)b3 £ (b1, b3) = ayarazay
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where the last equality is obtained by using the inverse of equation (1) and the fact that
a1 ara3ay 18 central.

Finally, we check that all doughnut relations are respected by the action. Let o, o
and d be loops as in figure 1(a), so the doughnut relation is (a1a2a1)4 =d. Let 2 be a pants

decomposition containing «; and 8. Then Fa(d) = d, F{a1) = a1 and since a; is obtained
from o; by a single S-move, we have Fg(ay) = f(a2,a8)axf (a?,d3). We compute

Fo(a)Fo(a2)Fala) = a1 [ (a3,a})arf (a}, a3 )a
= f(a;a%al“l,a%)alagf(alz,a%)al
= flaazay,at) f (a3, aazayaaza
= f(aZ,a})aiaa.
The last equality is obtained by applying relation (II), which is legitimate since setting

x=aj, y=aj and z = ajaza;’, we have xyz = (a1a;)* which commutes with x, y and z.
So we have

Fo{m)Fo{m)Fa(a) = f(al,al)armal = aimar f{at, a3)

(the second equality comes from passing the a;a2a; to the left by conjugating the arguments

of f), so
(Fg(al)F_@(az)Fg(m)) = alagalf(al , az) (az, al)alagal (a1a2a1)2
by relation {I). A fortiori, we find that
(Fa(a)) Fo(a) Fala))'= (maa)* = d = Fo(d).
This proves that the action of Fjp respects the doughnut relation.
Corollary 2. Let P and 2 be two pants decompositions of T and let

S = Fp y 0--0Fp ., be a finite sequence of S- and A-moves taking P to 2. Let f € A,
and set '

@ x = TLA(b%, ) e F(E).

i=r
Then we have an equality of automorphisms Fp = inn(x) o Fy.

Proof.  This follows immediately from corollary 1 since we established in step 2 that
the Fip are automorphisms of T'(Z}. [

Step 3. The homomorphism ", : A — Out’ ([(%)). In the two previous steps, we
defined a map ¥, : A — Aut(F %)) “associated to each pants decomposition 2 of 3. Now
we need to show that A is a group.
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Lemma 7. A is a group.

Proof. Consider A as a subset of GT'. The product of two elements f, g € GT' is
given by composition of the associated automorphisms of F5; it is given explicitly by

&) h=g-f=g(x,y)f(x g(y', x)yg(x, y)) = h(x, y).

The fact that GT'isa group implies that for any f GT', the inverse /™ of f'(in the sense
of GT" ) also belongs to GT1 as does the product g - f for any elements f,g € GT1 Thus,
for all f,g e A, the inverses of these elements and the compositions g - f lie in GT° 7! and
satisfy relations {I), {II) and (II1}. To show that A is a subgroup of GT", it remains only to
show that for all f,ge A, f~ and the composition g - f satisfy relation (R)

In Steps 1 and 2 above, we showed that for every f € A, there exists a family (Fi)p of
automorphisms of F(Z} where P denotes the family of pants decompositions of Z, and that
the automorphisms Fp are related by corollary 2. Let ge A and let h=g- f ¢ GrT1 Set
Hp = Gp o Fp for every & € P. Let us show that corollary 2 remains valid when f'is re-
placed by 4 and (Fp)p by (Hp)p, even though we do not know that # € A. Suppose that 2
is a pants decomposition obtained from % by a single S- or A-move taking a loop f to a
loop y. Then by corollary 2, we know that Fp = inn{/f (5%, ¢?))Fa, where & = 1 if 2 is ob-
tained from 2 by an associativity move and & = 2 if 2 is obtained from £ by a simple
move. We also have Gp = inn(g(b*’, ¢*))Gq. Therefore, we find that

Hp = Gp o Fp = inn(g(b%,c%)) o Gg o inn(f(b*,c%)) o Fa
= inn(g(b", ¢)) oinn(Ga(f (b, ¢%)}) 0 Ga o Fp = inn(Ga(f (5%, ¢*))g(b%,¢c*)) 0 Hy
nn(f(Ga(h)*, Ga()?)g(b", ¢*)) o Ha = inn{f (g(b%, ¢*)b°g(c®, b%), c*}g(B°, ¢*}) o Hap
= inn{g(b®, ¢®) £ (B°, g(c*, B%)c?g(b", ¢%))) o Ha
mn(h (°,¢%)) © Ha.

Taking sequences of moves, we find that corollary 2 is valid for (Hz)p.

Now, consider the case where X = 22 Let 2 be the pants decomposition of £? given
by the loops o1 and a3 shown in figure 5, and let 2 = 2. Then the sequence of moves (6AS)
takes 2 to 2 (i.e. to itself’). Thus by corollary 2 applied to the family (Hg)p, we find that

Hp = inn(h(es, ar)h(aZ, a3)h(es, es)h(er, e2)h(af, a3)h(az, e1)) Hp.

Thus the element A(es, a1 )A (az, a3)h(ez, es)h(er, e2)h(a?, ad)h(as, er) lies in the center of I,
However, each factor of this expression belongs to the derived subgroup of I and the
intersection of the derived subgroup with the center (generated by the Dehn twists along the
two boundary components) is trivial.

We have shown that if /,ge A, thenh=g- f ‘e A. To show that A is a group, it re-
mains only to show that if f € A, then f* is also in A.- This time we consider the family
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(F3')p. We know that
Fp = inn(f(b‘g, c‘g)) o Fg;
and inverting this formula gives
Fp' = F;' oinn(f(c® b%)) = inn (F ' (f(c%,6%)) 0 F5' = inn(f*(5%,¢%)) o F5 .
Indeed, /™ is defined by £ (x, »)F~'(f(x, y})) = 1 with F(x) = x and

Fy)=fr,x)pf(x,y),

so under the homomorphlsm x++c¢ and yrs b, F corresponds to Fp and we have
(b5 ef) = ( (¢°,b%)). As for h above, using the cycle (6AS) in I“l,z to bring # to
9= ,@ we ﬁnd that

f*(e;,a; (al? )f (62363) (61,82) (a%1a2)f (a3:el) =1,

s0 f" € A. This concludes the proof that A is a group and also that for each pants decom-
position 2, 5, : A — I'(Z) is a group homomorphism. [J .

Let us conclude the proof of theorem 4. The fact that the automorphisms ¥ ,{f)
of l“g’” are all equivalent modulo inner automorphisms is an immediate consequence of
formula (4) in corollary 2. Furthermore, the image of A in Out(Fm) obviously lies in
Out” ( ™) since by construction, Dehn twists are sent to conjugates of themselves under
the action of W »(f), so that as outer automorphisms, the y,(f) preserve conjugacy classes
of Dehn twists. [ :

Proof of theorem 5. Let us show that the map
(6) ‘ J=F = (l/f;’fn(f))(g,n,m)

defines an injective group homomorphism from A to Qut” (0'" }. We know from theorem 4
that each ", is a group homomorphism from A to Out™ (l"g’"’ ). To see that & is an auto-
morphism of 77, we need to check that the %, (f) commute with the homomorphisms
belonging to the Telchmuller tower J assoc;ated to the cutting out of a subsurface of 0
along loops of 2. But this is an immediate consequence of the local properties of the hftmgs
Fp =¥q(f) of ¥, (f) to Aut( (£)). Thus we obtain a group homomorphism from A to
Out*(7). To see that it is injective, it suffices to note that the group homomorphism
o4 : A — Out” (To,q) is already injective. Indeed, if W 4(f} = 1, then for any pants de-
composition 2 of Xn4, Fp = Yu(f) is an inner automorphlsm of 1"04 But this auto-
morphism is given by by — &y and b, — f (b2, bl)bz S (b1, by) where by and b; are generators
of Fg 4, and since 1"0 4 1s a free group and f € ), we must have f =1. [
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