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Canonical perturbation theory
via simuitaneous approximation

P. Lochak

- “Drailleurs, ce qui nous rend ces solutions
périodiques si précieuses, c’est qu’elles sont,
pour ainsi dire, la seule bréche par ou nous
puissions essayer de péneétrer dans une place
jusqu’ici réputée inabordable.”

Henri Poincaré, Les méthodes nouvelles de la
mécanique céleste (§36) '
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INTRODUCTION

In this article, we wish to present a new method to deal with problems
related to canonical (that is, symplectic or Hamiltonian) perturbation theory.
The familiar model situation consists in the perturbation of an integrable
Hamiltonian system; that is, one considers the system in phase space
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governed by
(1) H(p g} = h(p)+cf(p,9), (p.e) ER™xT", T=R/Z.

As usual, (p, g) denote action-angle variables of the integrable Hamiltonian 4,
and € is a small parameter.

Our main result here will be a substantial improvement, both quantitative
and qualitative, of Nekhoroshev’s resuits ([43], [44]) about the stability of the
action variables over exponentially long times, when the unperturbed
Hamiltonian £ is quasi-convex, by which we mean (following Nekhoroshev)
that the energy surface h(p) = E is strictly convex (for a certain range of the
energy E). Of course, any convex function is a fortiori quasi-convex.

Under such a hypothesis, the following general estimate holds:

(2) lip(t) — p(O)lf < R(e) when [t] < T(e) and | € &,

where R(g) = O(e®) and 7(c) has the orderof exp(c/e?). We call T (€) the
stability time, R(g) the radius of confinement, and g, > 0 the threshold of
validity. A gross but important evaluation of the size of 7(g) and R(g) is
provided by the numbers (a, 8), 0 < a, b < 1, which we call the stability
exponents.

(2) was proved by Nekhoroshev ([43], [44]) under the assumption that H is
analytic (this cannot be dispensed with) and 4 is steep, which is a weak, C=
generic condition. Here we shall have to work under the more stringent
hypothesis that / is quasi-convex and we have to insist that this does not
merely allow for a technical simplification; the proof method used below
simply does not carry over to the steep case. It is interesting to note in this
respect that recent works also point to the specificity of quasi-convex systems
(we return to this in Chapter IV, §4). We also mention that Nekhoroshev’s
original proof has been rewritten precisely in the convex case (see [6] and [7]).

Below (see Chapters II and III), we shall improve on the known values
of the exponents in the quasi-convex case. In particular, we show that
a > 1/(2n+1)~mn for any n > 0, and believe that in general a < 1/(2n). The
latter assertion essentially means that over a longer timescale Arnol’d’s
diffusion may, and in fact generically will, switch on, so that stability results
are effectively broken. This of course seems quite hard to prove and we shall
content ourselves with a heuristic argument which points in that direction (see
Chapter V, §2). Another striking qualitative phenomenon which we explore is
the fact that over finite but exponentially long times, resonance stabilizes the
motion. In fact, we prove a precise local version of (2) which implies that the
stability time is increased when the initial condition is resonant.

These results are easy consequences of the proof itself, which is substantially
different from the usual one, and less cumbersome. To appreciate the
difference, it suffices to say that the usual ingredients of canonical perturbation
theory, such as small divisors, ultraviolet cut-off, resonance surfaces, or even
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Fourier series in general, simply do not enter the proof at all. This stems
from a change of viewpoint, and we devote the end of this introduction to a
more general discussion because, as suggested in the title, we believe that this
method may have a wide range of applications, some of which are explored or
suggested in Chapters IV and V.

Loosely speaking, the usual point of departure of canonical perturbation
theory consists in the observation that the perturbed system could be reduced
to an integrable one, using the apparatus of normal form theory, in a region
of phase space which is free from resonances. Since no such open domain of
phase space exists in general (leaving aside the linear or isochronous case, that
is, the perturbation of harmonic oscillators), non-integrability is the rule rather
than the exception, as was brought to light essentially by Poincaré, and the
aim is to understand what results can be obtained in spite of the unavoidable
existence of resonances. Of such nature for instance was Kolmogorov’s
remarkable insight about the existence of invariant tori.

Here, in some sense, things are turned inside out, as one tries to
view resonances not as a hindrance but as an opportunity. To this end,
one focuses first on the fully resonant situation, which is embodied in
closed orbits. Let us be more specific; at the level of “classical” perturbation
theory, which culminates in results of Nekhoroshev type, one should consider
the objects (resonant surfaces, closed orbits, and so on) related to the
unperturbed system. Referring to (1) and denoting the frequency vector by
o(p) = VA(p)eR", the closed orbits of the unperturbed system simply
correspond to rational vectors o, that is, vectors which are multiples of integer
ones: if wp = @(po) is rational, the torus p = po is filled with closed orbits
of the unperturbed system, with common period T such that Tag € 2",

In order to prove estimates such as (2), one first studies stability in the
neighbourhood of these periodic tori. This is the object of Chapter II, and all
the analysis it requires is one phase or time averaging. Then, given an
arbitrary point in phase space, or rather in action space, it may be
approximated by points corresponding to periodic tori. The rate of
approximation and the growth of the corresponding periods are related, for a
generic point, by the simplest approximation result, namely Dirichlet’s
theorem. This procedure will enable us (in Chapter 1II) to prove (2) and its
local version, which depends on the properties of the initial conditions.

Returning to more general considerations, one realizes that the approach
relies on a kind of duality (using the word with a non-technical meaning),
which may be expressed in several ways. First, at the dynamical level, there is
the relationship between time and phase averaging, which lies at the root of
ergedic theory. For linear flows on tori, it can of course be made much more
explicit, using in particular the notion of approximate recurrence times. This
corresponds, in the theory of Diophantine approximation, to the “duality”
between linear and simultaneous approximations. Given o € R", the former
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deals with the size of the linear forms o -k (k € 27, ordinary dot product),
the latter with the approximation of the straight line Tw (T € R) by the
integer lattice Z”; that is, one is interested in the distance dist(To, Z") as T
varies, say along the positive semiaxis. In dynamical terms, the first describes
- the distribution of the small divisors, the latter that of the closed orbits. In

- some sense, both contain the same arithmetical information about ®, as
asserted by transfer principles which originated in the work of A. Khinchin
(the simplest and most useful ones are recalled in Appendix 1). Notice
however that the information is encoded in a more compact way using
simultaneous approximation: it is always ‘“‘one-dimensional”, whatever the
dimension of the ambient space. Finally, transfer principles are a—unot
straightforward —reflection of the projective "duality between a linear
subspace and its orthogonal complement, and in fact, as far as linear and
simultaneous approximations are concerned, between lines and hyperplanes.

As a final word in this introduction, we mention that Appendix 2 has been
inserted in order to clarify the discussion in Chapter IV, §2. Also we have
tried to keep the reference list to a reasonable length and have accordingly -
refrained from quoting some classical—and Iess classical —works, the
references to which can be found, for example, in the bibliographies of several
of the articles we refer to.

It is a pleasure to acknowledge interesting conversations with N.N. Nekhoroshev
and A.L Neistadt in connection with this work. I wish to thank M.B. Sevryuk
for making judicious remarks which helped me prepare the final draft of this
paper and also for his contribution to the preparation of the Russian version
of this text. |

CHAPTER I
STABILITY IN THE NEIGHBOURHOOD OF A PERIODIC TORUS
We shall be interested in Hamiltonians of the type
(1) H(p.q)=h(p)+ f(p.0). (p,9) €ER*xT™, T=R/Z

o(p) = Vh(p) denotes the frequency vector of the unperturbed system and we
assume in this chapter that @y = ®(0) is rational of (minimal) period 7, that
is, Twy € Z". We use the notation Q = || ey (Euclidean norm). % and f are
assumed to be defined and analytic in a neighbourhood of the origin, more
precisely on a complex domain D = D(R, p, ©) (p > 0, o > 0) defined as
follows: let By be the real ball of radius R around the origin, then

(2) D(R,p,0) = {(p,q) €C™, dist(p, Bg) < p, {Img| < o},

where [Im ¢| = sup;|Im g;|; h and f are supposed to be continuous on the
boundary of D. The real part of D is of course nothing but BrspxT"
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When 0 £ § < p, 0 < £ € o, we denote by D—(8, E) the domain
D(R, p—5, c—E).

The norm ||-||p is simply the sup norm (L) over D and we write
Il filp = €E. Notice that we have not written the small parameter € 2> 0
explicitly in (1) and we introduce the letter E essentially because in this way ¢
becomes a non-dimensional quantity and all the formulae we get will be
dimensionally correct. The reader who does not find it useful may set £ = 1
in the sequel; he may also set Q = 1, using a rescaling of the time variable,
but again we find the formulaec more suggestive this way. Finally, to define
the size of the perturbation, one could also compare the norm of Vf with Q;
we do not even assume, as one could, that f has zero mean with respect to g,
for any p. | |

We consider the case when A& is convex; the slight modifications needed
when 4 is only assumed to be guasi-convex will be indicated at the end of this
section.. We denote the Hessian matrix by A(p) = V?h(p) and suppose that it
is positive definite (if not, change ¢ into —¢ and H into —H), more precisely
that m (respectively M) is a lower (respectively upper) bound of the spectrum
of A over D. Explicitly:

lA(p)vll < Miloll, (A(p)v,v) 2 mijv}l?, for any pe DNR" and v eR™,

where 0 < m < M and the dot denotes the usual scalar product.

We shall first prove an iterative lemma which consists in a simple one-
phase averaging procedure and constitutes the only analytical result that will
be needed in all this paper. From it there will easily follow three allied
statements which describe the stability near periodic tori. To give a more
precise idea of the type of resuits we have in mind, let us state Theorem 1B
(see below) in a slightly informal way.

Let H(p, 9 = h(p)+f(p, g) be a perturbation of a convex integrable
Hamiltonian such that p = 0 is a periodic torus of period T. Let (p(¢), ¢(t))
denote the trajectory starting at (p(0), g(0)). Then, if ||p(0)|| < roe'?, the
estimate || p(1) || < Roe'® holds when ¢ < & and | ¢| < T () = Toexp((t/T)e~ 7).

All the constants will be explicitly computed as simple functions of the
parameters Q, m, M, p, o, E and 7, the physical meaning of which is clear.
The number n of degrees of freedom will not appear.

In order to state the iterative lemma, we need yet another simple notion.
With a function g(g) on the torus one associates its time average (g) along the
orbits of the linear flow defined by w,:

. _
(g)(g) = -;.— fo 9(g + wot)dt.

We shall say that g is resonant (with respect to wo) if g = (g), which simply
means that g is constant along the orbits of the flow directed along .
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Iterative lemma. Let H(p, q) be an analytic Hamiltonian on D = D(R, p, o).
. such that

(3) H{p,q) = h(p) + Z(p,q) + N(p,q),

where Z is resonant with respect to wy (p comes in as a parameter) whereas
(N} =0. Suppose that ||Z+N|lp < eE and ||Nllp < nE. Let& and &

satisfy
(4) 0<é<p, 0<E<o and £5>2TEn;

then there exists a canonical transformation C : D' - D with D' = D—(3, £)
such that C is one-to-one and its image C(D') satisfies

D - (8/2,£/2) D C(D') D D ~ (36/2,3¢/2).

C is analytic and preserves reality, that is, C(D' N\ R*") C D N R?,
Moreover if C(p', ¢') = (p, g), one has the estimates |lp'—p|| < §/2,
Ilg"~qil < &/2, and denoting H' = HoC, the function H' can be written in
the form (3) (using primed letters) with

i , 1,
(8 £setan,
(5): n' < 5Tn[M(R+p)e~" + 4Ee(€s) ™).

To anticipate a bit, the idea is that by using the lemma one will
progressively make the non-resonant part N as small as possible, keeping the
size of the resonant term Z roughly constant. One then uses Hamilton’s

: Z .
equation p = _%}5 and the crucial fact that c, %—5 = 0 (here one may think
of the “standard” case when 0wy = (v, 0, ..., 0), with period T = 1/v). This

implies that wy-p = —w - %g, which will be very small. Thus, one has almost

eliminated the possibility of a drift along the direction of @p. This will in turn
guarantee stability, using a simple geometric argument (see (21) and the
reasoning below).
Turning to the proof of the iterative lemma, C is built with the help of a

“Lie series, that is, as the time 1 map of an auxiliary Hamiltonian x(p, 9. We
shall need a lemma in order to estimate gradients and Poisson brackets, which
represents a slightly elaborate use of the Cauchy formula. Below, 8 f/0p and
0f/8g (n-vectors) denote of course the gradients of f with respect to the
variables p and ¢; {-,-} is the Poisson bracket: '

_ 9/ 05 050
{f.9} = 3 B0~ B9 B (dot products).

Finally the norm of a vector-valued function on D is defined as the supremum
Over D of the Euclidean norm of its value.
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Lemma 1. Let f and g be analytic on D (continuous at the boundary); then

af 1 af 1
(6) |3elsog, < M2 151 5-eor < 3111
Suppose that 0 < & < Eand 0 < & < & then
™ 10 W poce < (int[666 = 82,86 = €0]) " Il ligllo—corer

In particular,
. .
{79}l p- ) S g5l Alloligllo and

(8) | 2
1.9 -5 < 251 No M8l 5.5)-

In order to prove the first inequality in (6), one observes that at a given
point (p, 4)

f(p,q+te)u-

L] = e |51,

One then applies Cauchy’s formula to the function t = f(p, g+te) of the
complex variable ¢, defined for |7| < ¢ and continuous at the boundary, when
(p, 9 € D—(0, £); the second inequality in (6) is proved analogously. |

To prove (7), one writes, in a similar way:

0
t=0 g(p— t%’ 7 +t%£)

and again applies Cauchy’s formula to the function of f appearing on the right-
hand side.” Here one uses the circle { 7] = inflE(8—5"), 8E—&)1- (11 f 1 ) |
To justify this, one first notices that |g(p—1t2f/oq, g+tof/Op)I < llg ||D—(5'.&7:"
when (p, ) € D—(5, &) if ¢ satisfies 119f/0gl < 8—38 and [18f[Op| < E-E&';

one then applies (6) to show that the function at hand is indeed analytic inside
the circle mentioned above (and continuous at the boundary). [

{f,9}(2,9) =%

Let us now come back to the construction of the canonical transformation C,
as the time 1 map of the Hamiltonian 3. One demands that it satisfy
Hxllp < £8/4, so that (6) provides the following evaluations for the
Hamiltonian vector field: '

© Bl g S o <5 [l S 2 lllo < &

This allows one to define C and ensures that the inclusions and inequalities
following (4) are satisfied. Let Ly denote Liouville’s operator (L,(f) = {X./})
The transformation C = exp L, acts on functions defined on D' and one can
compute

(10) H' =exp(lLy)H =h+Z+N+{x,h}+{x,Z+N}+H - H~- {x, 7}
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to be estimated on D’ (below, however, we write (p, ¢) instead of (p’, ¢’) for .
simplicity). One has {3, &} = —w-0y/0g (v = w(p)) and we shall define y
such that it satisfies wy-8y/0¢ = N, which is made possible by the condition
(N) =0 (see Lemma 2 below). One may then write H' = h+Z-+N" with

(11) N":(wo

—w)%+{x,Z+N}+H'-H—{x,H}. |

Then, one defines Z' = Z+(N"),N=N"— (N") and finds that
12"+ N'llo < 11Z]lor + INIlpr < €E + [IN") o0,
IN'llpr = [N = (N} 51 < 2AIN“lor,
so that &' < e+ (1/2)n’, which is (5);, with n' < 2{|{N"||p/E. We have used
the fact that the operation {-) of averaging is a projection of unit norm, which
means that for any function g, ||(g)|lp < llg!lp. This is obvious from the

definition of {-).
It remains to evaluate || N"||p. To this end one writes

(12) UVl < lloo = ollor [ 2] + 1,2 + M3+ 5 10 0 F3 5.5

The last term comes from Taylor’s formula and the fact that C(D’) C D —(8/2, 2';/2)
The first two terms on the right-hand side are easily estimated: :

o ~wllor < M(R+p) and | E] <6 ixilo

(using (6));
1{x,Z + N}, < €6 lIxllpliZ + Nllp < cEES) M ixllp

(using (8) and the definition of &).
To estimate the third term, one takes advantage of the definition of y and
writes
. By
{x,H} = ~N + (wo —wlg, {2+ N},
so that

(o x BB < oo MY+ [{x wo - ) XM + ] e txa 2+ W1}
ol

and there are again three terms to be estimated over D—(3/2, £/2). The ﬁrst
is dealt with as above:

Hx, MY, ) SAE lixlio 1N < 4nE(E8)” Yfixlip-

The other two necessitate a repeated application of the inequalities (8):

[Hrowo-aB)] (s ) S SE o

O
(wo - w)g;

| D-(%-_i)
< 8(&6) Mixllp M(R+ p)4€ 7 |Ix|lp
=32M (R + p)6™* 67 |IxllD;
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and

Hxx02+ M3, (g 5) < 86O IXloll 6. 2+ MY, 4.6y

< 8(€8)"|Ixl516(€6) M 1Z + Nllp
= 1285E5"’5“’||x||§,

Gathering terms together, this elcmentary (but adn:uttedly forbidding)
computation furnishes

" fE — o
(13)  IN"llor = n'5 < MR+ p)¢ ixllp + €E(€6) fixlip
+2nE(£8) 7 IxIlp + 16M (R + p)¢ %67 |IxlI}
+ 64cEE2 672 ||x||2..

To go further, we must compute %, to which end we use the following
lemma, where the variable p is omitted because it plays the role of a dummy
parameter.

Lemma 2. Let g(q) be a function with zero mean value (with respect to ®g):
(g) =0; then the equation
0

possesses the explicit solution

(15) x(g) = %/T (g + wot)t di.

In particular, it satisfies

(16) Ixl < Sl

for any translation-invariant norm || - || def ned on the space of measurable
functions on the torus. :

The two-line proof reduces to an integration by parts:

1 [T d
uo 6q T_/ q+w0t)tdt T = (g + wot)dt

1 T_1r t)dt O
= 79(g +wot)t]° - ?fo 9(q + wot) “—_9(9)-

Coming back to (13), y satisfies (14) with g = N, and choosing the -
solution (15), we get {|x|lp < (T/2nE, so (13) becomes

(17) " <AT{M(R+p)™" +cE(£6)™ + 2nE(£5)™"
4+ BMET(R+p)E~ 26 'n+32E*T¢ ™6 %¢y).
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-

All these estimates are valid under the hypothesis that ||y |lp < £8/4, that is,.
2TEn < £5. It allows for a simplification of (17), which also underlines its
dimensional correctness. In fact, after inserting this inequality in (17) one
gets the second inequality in (5):

(5)s 7 < 5Tp{M(R+p)¢™} +4Ee(£6)7Y).
This finishes the proof of the iterative lemma. [J

A few remarks may be in order.

1. The contribution of the second order term (that is, {%, {x, H}}) has
been reduced to a numerical factor.

2. 1'/n is bounded by a quantity proportional to T: the larger the
frequency over which one averages, the better the resulting estimate.

3. The appearance of the terms on the right-hand side of (5); is easy to
understand. The second stems from the ‘“‘quadratic error” and has the size of
the Poisson bracket {y, f} of the auxiliary Hamiltonian (or generating
function) with the perturbation. The first represents a frequency shift and
comes in because we always solve (14), instead of adapting the frequency, that
is solve the same equation with @, replaced by ® = w(p). The above
algorithm is thus in principle worse than the usual Picard method, not to
mention Newton’s.

:We shall now apply the iterative lemma a certain number of times,
say 5 = s{e), so as to eliminate the resonant part of the Hamiltonian to
a high order. We start from H = H® = p+f, defined on D@ (with
DO C D(R, p, 6); see below) and in the decomposition (3) set

Z= (f)! N=.f—'(f): €= ¢&p, ﬂ=f]0="f—(f)|[D/E.<_25-

In the end, we get a Hamiltonian H' = H®, defined on D' C D = D@ and
characterized by ¢’ = g, and ' = n,, having gone through a sequence of
intermediate quantities H9), DY), g, n;,j = 0, ..., s

Because of the frequency shift, one cannot work on a domain of order 1,
so we use the smaller domain

D = D® = D(R(e), p(€), ) C D(R,p,0).

Any trajectory with_initial condition (in action space) lying in the (real) ball of
radius r(g) around the origin will stay, until time 7(g), in the ball of radius
R(e) < R. One has DY) = DU b_ —(8;, &;) and all the pairs (3;, £;) are
chosen to be equal forj = 1, ..., 5 : & = £, §; = §; this choice implies that

D' = D© — (46, sE) = D(R(e), ple) — 86,0 — s).

_We build a sequence of canonical transformations CY) : DU) —» pU-D
using the iterative lemma and denote by C their composition, from D' into D.
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The iterative lemma ensures that

sé s 3
D® — (?—25) 5 ¢(D') D> D® — (-3-%9 3‘535. _D(R(e) p(e) - "2’5,0- 3—;-5-)
There are two requirements on the domains:
1) The system is defined on D = D©, that is, D C D(R, p, ©), which
implies that R(e) < R and p(e) < p.
2) The image of C contains the real ball of radius R(g) centred at the ongln
in action space. For this to be true, it is enough that 3s8/2 < p(g) and

3s€/2 < ofg), which leads to the choice

e . _ O
=6=t2 g=g=g5.

Moreover, in the sequel, we choose R(g) = p(g), which is no essential
restriction; r(e) < R(g) will be of the same order (with respect to £). Finally,
to simplify the notation, we shall often write r, R and p, without making the
dependence on & explicit. This slight ambiguity should cause no confusion as
the original quantities R and p will not play any role and we shall rewrite the
conditions R(e) < R and p(e) < p at the very end.

Rewriting formula (5), with these values of the parameters, we get

i=1,...,s.

e
(18) 75 < 7512007 T (Mops + s ),

This is in some sense the fundamental inequality and it reflects rather
accurately the data of the problem in its dependence with respect to the
various parameters. We shall exploit it in three ways, but first go on with
what is common to the three variants.

Each time we perform s transformations and ask that s > 2 (in fact
otherwise the construction is of no interest). We also require that the
sequence T ; decrease at least geometrically with ratio I/e (e = 2.718..),
which is of course somewhat arbitrary. From m; < mee™, no < 2¢ and
g < g1 +(1\2)1;, one finds that g; < 25y = 2e. Inserting this into (18) we
ﬁnd that 1; < (1 /e)n;_, is guaranteed provided that

(19) X ¥ 200717 (Mp s+g5‘°‘—) <L
P €

The final remainder 1’ is thus estimated as
(20) ' 7 =9, <ne* < 2™’

We now have at our disposal a “resonant normal form”, in which the
non-resonant harmonics of the original Hamiltonian have been eliminated
to a high order s (still to be determined), with the help of a canonical
transformation C such that C(p’, ¢’) = (p, 9).
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To make use of it, we now add the ingredients of energy conservation and
convexity of the unperturbed Hamiltonian. The functions s = s(g), r(g) and
R(g) are still free parameters, and the reasoning below concerns the real parts
of the various domains. We denote by c(e) the size of the canonical
transformation in action space: ||p'—p|| < c(g); from the construction
c(e) < (1/2)p(e), but we shall need a somewhat more precise estimate.

We thus start from the initial condition (p(0), g(0)) with || p(0)|| < r(e);
one has

h(p'() = h(3(0) +w(p(0)-(p(1) - #(0))
+5 (460 - #O)- (F ) - F(),

where p* is situated between p'(r) and p’(0) (the domain is convex). The
convexity of /4 then implies that

21 5mlF@) - FO)] < pe0) - A O)] + |0 (O) () - () |

The first term on the right-hand side is estimated using conservation of
energy for the full system: H'(p'(r), g'(t)) = H'(p'(0), ¢'(0) implies that

(22) |hp®) - hE )| < |2 Fw)]+ |2 G )|+ [V ()] + |V (o)
< 2%E+2%E+7E+nE <5:E. |

We have used || Z'|| < 2¢eEand " < (1/2) (which comes from 5 > 2).

To estimate the second term on the right-hand side of (21), one considers
the projections of the vectors w(p'(0)) and p’(r)—p'(0) on w, and on the
orthogonal complement. We denote the corresponding projection operators as
I1 and IT* respectively. First: :

|0 (@) = |1+ (@ ©) - wo) | < [w(z0) - ()]
< M|p'(0)]f < 2rM.
¢(e) < r(e) has been used, and that will be yet another requirement to keep
in mind. 5
Projecting now on wy we use the crucial fact that H((,—;—Z’) = 0, because

q
Z' is resonant. This is the only place where use is made of the normal form;

to rephrase this, one can say that we have eliminated one degree of freedom
by time averaging over the motion of period T. Because of the Hamiltonian
character of the equation, this corresponds to motion orthogonal to the
(unperturbed) energy surface. Convexity then provides quadratic potential
wells, which prevent motion tangent to the surface. So from
v o _n(%Z , 9Ny __jon
N = n(aq+ Bq)_ n-

we get

RICORSION R R

2 , 2 ,
< SRV < =T(e)' E.
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We have applied the Cauchy inequality to real points of the domain D’ and
used the fact that the analyticity width o of H' is equal to o/2 because of the
choice of . The time of validity 7(g) is still a free parameter at this point.
We thus obtain

o) (#) - 2(0)| < 2rMIF @)~ F O + T (e E|w(p(@)].

Since p'(0) € By, , one has ||o(p'(O) || < Q+2rM < 2Qif 2rM < Q, which
is a condition on r = r(g). Writing a = ||p'(t)—p'(0)|l, we collect the above
estimates as

1
(23) --:;ma2 < 5¢E + ii-T(E)Qn'E' + 2rMa.

We choose T (g) such that (4/0)T(€)QM'E < ¢E, that is, T(e) < < &(c/40m
since i < 2ee”’, this is larger than

o
24 T — s(e)

which is the value we finally adopt. Putting this into (23), we find that

(25) - 052r£+-1—(12m55+4r’M2)%.
m m

One may notice that the quantity on the right-hand side is at least of the
order of /g, which could have been predicted. In fact, conve:uty provides

quadratic potential wells, so that the energy increases as a’ (the square of the

distance to the bottom); adding a perturbation of order &, both terms have to
be at least of the same size to ensure confinement. This implies that the
confinement radius is at least of the order of /g, so that the second stability
exponent satisfies b < 1/2.

We now require that the second term in the bracket be the larger:
12meE < 4r®M?. Under this condition (25) implies that a < 5rM/m, so

o)~ p(0)] € 2¢(e) + [ (8) - PO < 772

which entails {ip(¢)1] < 8rM/m.

Before gathering everything together, we make the condition r(g) = c(e)
explicit, by estimating the latter quantity as follows:

) < L—ux,np, <Y —FuE=
j=i :-———0
From n; < 2ee™’ we deduce the bound: c(g) < (BET/c)ss
Everything we have done above is valid under the assumptions (4) of the

iterative lemma. Now the first two are satisfied by construction and it is easy
to see that the inequality £8 > 2TEn holds if (5); is satisfied. This is shown
by looking back at (5), and estimating the right-hand side from below,
keeping only the second term in the bracket. To compare the resulting

=1
45T 2ET
32 ;-
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inequalities, one uses the fact that n < 2e (we apply the iterative lemma with
n=1n,n = W+ and g < 2e).

We can now produce a statement from which Theorems 1A, 1B, 1C below
will easily follow, by specifying the parameters in different ways.

Model statement. In the situation above, suppose (19) is satisfied, so that one
can per;form s(e) steps of the algorzthm We choose R(e) = p(e) and

r(e) = R(e) Then if the mztlal condition satisfies {{p(0)1! < r(€), one has
p() < R(a) for |t} < T(e) = 2 Q ‘(E), prowded that the following conditions
obtain:

i) R(e) = p(e) < inf(R, p); R and p are the original quantities (see (2)).
One simply requires that the Hamiltonian be defined over the domain one is '
working on.

i) 2Mr < Q; the frequency should not vary too much over the ball where
the initial conditions are chosen.

iii) 12meE < 4M 242 that is, r® 3m8E the energy of the perturbation
is balanced by that arising from the quadratic wells for the “kinetic” part.

: E
ivyr() = c(e),orr = %ss: the size of the ball prescribed for the initial

conditions is larger than that of the canonical transformation (in action space).
v) 5 = 2: one can perform at least two steps in the algorithm.

Before stating Theorem 1A, we define three quantities which will be useful
in the sequel; they are dimensionally correct and their occurrence, except for
a numerical factor, is easy to understand; so we let

26 3=10328 =310 e, To=4-10772,
( ) Mg ) T \/ET/I 0 Q
We retain, of course, the setting defined at the beginning of this section.

Theorem 1A. Let o be such that 0 < o < 1/3; assume that | p(O)l| < r(e) = 3&¥T
with T satisfying 1 < T < e ¥~ 3“) Then || p(t1)il € R(E) = 8M/m-r{e) <
< 10~ 26/M -£%/T when |1 < T(e) = To exp(e™"), provided that & satisfies the
following inequalities: -

M, QM
a & —_— a 3

(27) e* <100 > inf(R, p), € < 10 Y
ccyq.10m2 2 (1-3a)

e®*<4-10 i E'f <T.

This may not look like the most natural statement in the framework of this.
chapter, but its merit lies in that the time of validity is independent of the
chapter of the orbit when this is short enough. This will be crucial in the
next section. To prove the result, set -

(28) P=pn%£"., s=[s0e%], T < Toe™?, ﬁ:%u—aa).
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po, To and s are to be determined; [x] denotes the integer part of a real - |
number x. The factor X in (19) becomes

2 : 2
X == -9' MPQSQTQ + 8ET2_80 El—aa] .
o poTp

The first term in the bracket is larger than the second provided that |

2
MposoTy > SER%.
| P
Choose 5o = 1 and py = 2(2E/M)'?, which ensures equality. (19) is reduced

to

'?P'MPOSOTD < 1
4 €

Assuming equality again, we find that

Ty= 2 7

S em—— ——— > T

° 80ev2 VEM

so we may adopt the value Ty, = 1 and compute p(e) = R(e) and r(e). Notice
that _

R(e) < poToe™ and R(e) > poe®*F = poet=2 > poe?.

Theorem 1A is then a consequence of the “model statement” above.
Concerning the time of validity, one writes 5 = soe¢~%—1, which leads to the

value of 7 defined in (26), by slightly reducing the quantity —S—gﬁ, obtained

from this inequality and the model statement.

The computation of the thresholds is straightforward, using the five
conditions of the model statement. In the first two, one should use upper
bounds for r(e) and R(g), that is, set T = 1, whereas in the third one has to
use the lower bound for r(e). This leads to the first three inequalities in (27).
Conditions iv) and v) are both weaker than iii). The last threshold ensures
that the upper bound for T is indeed larger than 1. [J

The next result will sound more natural in this setting; we write again

2L m m [2F
(29) P=Ro=23m ro=grfe=pV
Theorem 1B. If 1| p(O) | < roe', then || p(t) || < Roe'? if 2] < Toexp (‘7‘%17'5)

(however, if T < T, one should replace the factor ©/T by 1) provided that €
satisfies |

1 1 M 1 )
eI < =y/-—=inf(R,p), €37 < ,
(30) S3Vap el € < e

1 m T o
€3 <4.107% < —=15-10"3 ——mee—.
- M - 2T TVEM

Cadfms

£

N
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The proof is similar, and in fact simpler. One defines
1 _1
p=poe¥, s=[see” 3}

inserting these values in (19) gives

20 8E 1
X = -—T[Mposo+ -;—so] <<
We assume that s, < 1 (hence the restriction in brackets in the statement),
which allows one to replace s¢ by so, slightly strengthening the condition.
Assuming equality, one finds that
BE\ -1
20T 2007 (Mpo+ ";:) '

Upon maximizing this expression with respect to po, one finds the value in
(29) and

§pg =

1 c T
= — = > -,
0% R0ev2 TVEM ~ T
It remains to determine the thresholds of validity, which does not pose any

particular problem. Again iv) is weaker than iii), and ii) has been slightly
strengthened for aesthetic purposes. [J

We are concerned with three parameters of physical interest, 7, 5 and r,
which are connected, respectively, with the period of the linear flow on the
given torus, the time of validity of the stability estimate, and what we shall call
the radius of the influence zone of the torus. In our last statement, we shall
put the latter quantity in a privileged position and treat r as a free variable,
trying to make it as large as possible. We may assume that r > ree'/>, since
otherwise Theorem 1B applies.

Theorem 1C. Let (p(0), q(0)) be an initial condition such that || p(0)|| < r
then || p(1) 1Y < S(M/m)r if |t < T, expM(T)] (in the case M/(rT) = e~ '/3
one should use the latter quantity), provided that the following conditions hold:

a) r = roe'’, where rg -—?‘:--Jk-{(ZE/M)]/2

b} r satisfies the following four inequalities:
m Q 3m A om
31 < —1 < — > < e = 1073
Bl r<gpinfiRe) r< o T2 gpeb r< or= 0T gms

Combining the last two 1nequa11t1es provides a threshold for &, and
Theorems 1C and 1B connect nicely in the vicinity of r = ree'/?. The proof is

. . . 8M
again straightforward, using the model statement. One has p=—r > poe’’?,

so in (19) one finds that

2
X = %!T Mps + SE%] < 2;OT[J‘V-’JOS +2v2EM(e55)?).

i
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One assumes that s < £~ (hence the restriction in brackets in the statement)
which is in fact true if for instance © < T, because r > rge'®. Under this
assumption, the first term in the bracket is the larger and one proceeds as in
Theorems 1A and 1IB. [J

The three above results constitute the “building bricks” from which the
general stability theorems over finite times will be obtained in the next section,
using only simple approximation properties, without any additional work.
Since these arithmetical considerations cannot be improved upon, all the non-
optimal features of the results should be blamed on the above.

It remains in this chapter to indicate briefly the necessary modifications
when 4 is only assumed to be guasi-convex. This is the natural geometrical
assumption: the unperturbed energy surface is convex in angle-action variables
(when considered in action space). It allows one in particular to include the
case of periodic perturbations of convex Hamiltonians (see below) and the
related situation of symplectic maps with sign-definite twist matrices (see
Chapter IV, §2).

We still denote the Hessian matrix as 4(p) = V2h(p) and M its largest
cigenvalue on the given domain: || A(p)vil € M||viiforanyve R", pe D.
Now m > 0 is defined by the inequality

Alp)v-v > mllvl’ if w(p)v =0, vER®, pe DNR",

that is, v is tangent to the unperturbed energy surface (w(p) = VAi(p)).

For illustrative purposes, let us compute this quantity for a periodically
perturbed convex Hamiltonian, that is, let H(p, ¢, t) = h(p)+f(p, g, t),
where A is convex and has associated quantities m and M when considered as
a convex functional; f is assumed to be l-periodic with respect to z. One
may regard this as an autonomous problem in n+1 dimensions, with
Hamiltonian

Hi{pi,q1) = hi(py) + fHilpr, @),

where p1 = (p, €), q1 = (g, t), i = h(p)+e and fi(p1, ¢1) = f(p, ¢1). The
frequency is ®; = (w, 1). The Hessian matrix is singular, since we have

added a constant frequency, but the system is isoenergetically non-degenerate
(see the beginning of Chapter III). The function 4, is quasi-convex, as we -
shortly see; let m,; and M, denote the associated quantities. Obviously one
has M, = M, and m, is computed as follows: if v; = (v, w) € R"*, v e R,
w € R, the condition v,-®; = 0 reads ®-v+w = 0. By definition,

Aviv; = Avy > ml|?
and under the assumption v;-®; = 0

lfoal® = {Ivl? + lwl® < (1 + [lw]]?)]]0]?,
hence : _
Arvy-vy 2 m(1 4+ |lw]f?) 7w
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Working in a domain such that, say, |[|o(p)|| € 2Q = 2|{&(0}], we may - ]
take |
m; = m(1 + 4Q%)7*,

Returning to the proof of the results, the difference between convexity and
quasiconvexity occurs in the geometrical reasoning only; the iterative lemma
remains untouched (notice that m does not appear in it). (21) can still be
written

5 (46 () - P(0)- (') - #(0) € |'= "(P(O))I
| SFO)- 60 - #0) |

where p* lies somewhere between p'(r) and p'(0).

The right-hand side is estimated as above by the right-hand side of (23).
Let o* = o(p*), A* = A(p*), u = p'(t)-p’'(0), ||u)l = a. Choosing 7 (g)
again as in (24), one thus finds that

1
(32) E(A'u, u) < 6cE + 2rMa,

and it only remains to estimate the left-hand side from below. To this end,
let TI* be the orthogonal-projection operator on @*, and IT** the projection
operator on the orthogonal complement; we write the explicit decomposition -

Avuy = A'Tu- s + A eIy +2 A°0u- Iy

Then
1 3 »L 1 L 12 1 2 . 12
-2—A Iu.Il*"u > Em“H ul|! = Em(a - 1I"u}?).

Hence

0 Y s I = gmewp - Lagmewlp - Mo
SATwu 2 smad - SMIT [P — MaflI"u]
> %ma2 — 2Mal{II" u||,
which yields
(33) -;—rm:2 < 6eE + 2rMa+ 2Mal|lI" ul].

With II still denoting the projection on wy = @(0) and Q = ||wp ||, one has

0wl = {|Dulf+ (T - 1°)u).
We then use

el

Il < 27w E < 5,
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which still hoids. From ||p*|| < 2r+a, one concludes that

- 0] < 2a(2r + ),

and in the end

E
‘ul] <
(3¢) o)l < o5

We now insist on obtaining the same radius of confinement R(e), in order
not to have to alter the domains in the iterative lemma. A simple way to
achieve this is to require that ||IT*u|] < r. In view of (33), one may then
leave R unchanged, replacmg r by r/2. We therefore define

+ 2a{2r+ a)%d-.

R(e) = p(€) and r(e) = ——R(¢) (mstead of —R(s))

16M
We need || IT*u|| < r, knowing that ¢ < R. This amounts to a simple
bootstrap argument: (34) yields a condition on R (or r), which is satisfied in
particular if
gm0

M3
Model statement (version for quasi-convex Hamiltonians). It differs from the
version for convex Hamiltonians only in the following point.s"

1) One still defines R(e) = p(g), but now r(g) = —— R(c).
2) Condition ii) is replaced by

rzeg and r <107

16M

m?Q
M3

i bis) r < 1073

which is stronger. E
3) One adds the condition r > &5
We leave it to the interested reader to modify Theorems 1A, 1B, 1C

accordingly. The modifications are of minor significance.

which for small € is weaker than iii).

CHAPTER |l
STABILITY FOR ARBITRARY INITIAL CONDITIONS

In this chapter, we use Theorems 1A, 1B, 1C, especially Theorem A, to
obtain information about stability of points in phase space. The general idea
is to apply one of these results whenever a given point lies in the influence
zone of some periodic torus. This amounts to studying the distribution of
rational points in frequency space, which corresponds to that of unperturbed
periodic tori, provided that the frequency map p — (p) enjoys some non-
degeneracy condition. We mention that this is really all that is needed for the
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approximation process; in particular, analyticity and quasi-convexity are used:

only inasmuch as the theorems of Chapter II are applied.

To make all this precise, let us consider again the Hamiltonian (1) of
Chapter II; the only difference here is that we look at the neighbourhood of
some arbitrary point (or rather torus) p = p*, so that in (2) (Chapter II) one
should use a ball with centre at p*.

If the unperturbed Hamiltonian 4 is convex, the Hessian matrix A(p) = V?(p)
is non-singular (det A(p) # 0), and the frequency map is a local diffeomorphism.
Simultaneous approximation will however deal rather with the ratios of the
frequencies to one of them, which corresponds to isoenergetic non-degeneracy.
For the sake of completeness, we briefly recall the definition and show that it
is satisfied by quasi-convex (in particular convex) Hamiltonians. '

Let T be the unperturbed energy surface h(p) = h(p*); one wants the
n—1 ratios of the frequencies to a given one to yield a local chart of £. This
is the same as requiring that the map

PEL —wepPR™!

be a local diffeomorphism near p*, where the frequency is considered in
projective space. To check this condition, one should make sure that the
Hessian matrix of the “homogeneous™ map

(p,A) ER™ x R — Ah(p)

is non-singular at {p*, 1). The matrix reads

w_ (A w
A= (2 %).
where ® = w(p*) is written as a column on the right and as a row at the
bottom. The isoenergetic non-degeneracy condition thus reads det A % 0 7
(this is sometimes called “the Arnol’d determinant™). Suppose now that 4 is

quasi-convex, and let w € R™*! with 4u = 0. We write u = (v, w),ve R",
w e R. The condition Au = 0 splits into '

Av+ww =0 and (w,v)=0.
Taking the dot product of the first equality with v, we find that

(Av,v) =0 and (w,v) =¥, _
which implies that v = 0 by the very definition of quasi-convexity, and then
w=0,s0u=0. :

Quasi-convex Hamiltonians are thus isoenergetically non-degenerate. We
recall that in the opposite direction, and for low dimensions, one has the
fouowing simple results: when n = 2, isoenergetic non-degeneracy is
equivalent to quasi-convexity; when n = 3 quasi-convexity is equivalent to

the condition det A < 0, so that, so to speak, “half” the non-degenerate
Hamiltonians are 'ql;asi-convex. We also recall, as a word of caution, that




Canonical perturbation theory via simultaneous approximation 77

outside the realm of convexity and quasi-convexity, non-degeneracy and
isoenergetic non-degeneracy are independent conditions; neither of them
follows from the other. |

Below we shall again, for simplicity, treat the case of convex Hamiltonians;
the modifications needed in the quasi-convex case are of minor interest.
Geometrically speaking, in both cases the locus, in action space, where
@ € PR"! is constant, is a smooth curve which intersects the unperturbed
energy surface transversally. So on this curve the n-vector © varies along a
straight line. Now in the convex case it does indeed vary and the frequency
itself constitutes a local parameter; in the quasi-convex case, however, the
frequency may well be constant along the curve (think of the periodic
perturbation of a convex Hamiltonian; compare the end of the previous
chapter).

So let & be convex, p* a hitherto arbitrary point, and 0* = o(p*). Of
course we use the notation of Chapter II. By the usual implicit function
theorem, one has the following. Let B(p*) be a ball centred at p* with radius
S, such that for p € B(p*) '

1A(p) -
Here || - || denotes the usual Operator norm associated with the Euclidean
norm. One can take S = 2| e where | 4|3 i1s an upper bound of the third
3

derivative of A. Then the frequency map is one-to-one on B(p*), and
o(B(p*)) O B(w*), a ball with centre at ©* and radius (m/2)S.

The above determines in a quantitative way the local inversion properties
of the frequency map. Because of this, the procedure to determine the domain
1s as follows. One starts from a fixed ball By(p*) over which H = h+ fis '
defined with analyticity widths p and ¢. One then determines m, M and |45
oni Bo(p*), and then restricts oneself to a ball of radius S, which may be
assumed to be included in By(p*), decreasing m if necessary.

Let us now get closer to the heart of the matter, which will necessxtate one
more piece of notation. For real x one has

z = [z]+{z},
with [x] € Z the integer part, and {x} e (0, 1). We use the notation
| | ||z|[z"§f inf({z},1- {z}) = dist(z, Z).
Although || - ||z is not a norm, this is a commonly used notation, even without

the index Z, which we have added to avoid confusion. If now x € R” with
components x"’, one sets

zllz = sup llr‘”llz~— inf, ltz = Clloes
j=1,..,
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where || - ||, is the norm of the largest component, which naturally occurs in . g
approximation theory. In particular, |

|lzllz < dist(z,Z") € Valizlz.
With this notation, one has the following result.

Theorem (Dirichiet, see, for example, [11] or [52]). Let « € R” and Q a real
number, Q > 1. There exists an integer g, 1 < q < Q, such that

o1
llgallz £ Q™ ™.

We shall apply this basic result of approximation theory with o = o* = @(p*)
and ¢ = T playing the role of a period. Before we do this, however, it is
important to notice that one can gain one dimension, which bears directly on
the value of the stability exponents. This reflects the fact that simultaneous
approximation corresponds to inhomogeneous linear approximation (see
Appendix 1) or, very concretely, that g in the above theorem is an integer, so
that approximating o is equivalent to approximating (1, «) € R"*! One way
to put this to use is precisely to consider that o e PR"~!, that is, one should
in fact approximate the ratios of the components to a fixed one. In the
framework we are interested in, we may in fact simply rescale one of the
components of @* to unity. To this effect, let w > 0 denote the modulus of a
non-zero component of ®*, for example, but not necessarily the largest one:

w = |lo*||o. One introduces the scaling.
. M E
(1) t' = wt, H’:E, u":ﬂ-—, m’=£n—, Mz=— E==,¢=¢
w w w w w

Relabelling if necessary, we are reduced to the case when the first |
component of the frequency is equal to unity. Below, for the sake of clarity,
we write everything using the original quantities and at the very end remember
that one should first perform the transformations (1) and change the results
accordingly.

Let us now apply Dirichlet’s theorem with « = w*; for any Q > 1 there
exists an integer 7, 1 < T < @, and { € Z", such that

ITw* — ¢]] < VAQ™* (Buclidean norm).

Thus, ® = T~ is a rational vector of period T, satisfying

o VA
(@) o - "Il € g

We assume that © is close enough to o* so that the frequency map can be
inverted. From what was recalled above, to secure this it is enough to require
that

2
AP L
Qirm =" g
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where T has been removed from the left-hand side because it is =1. Under
this condition, there exists a point p such that ® = w(p) and

e VB _ 1
- <
(3) llp—#"ll < — Tou’

where the factor 1/m estimates from above the norm of the inverse of the
frequency map.

We wish to apply Theorem 1A around the point p, which is rational with
period T, and we want p* to lie in the influence zone of p, which will be the
case if

r(e) = 5\-,;:- > lp-pll-
It follows from (3) that this is in turn guaranteed if we choose

H

@) QF = Y2os

which defines the value of Q. This is where it is crucial to apply Theorem 1A,
with its time of stability independent of the period and a radius of the
influence zone inversely proportional to it. The latter feature yields (4), in
which T does not appear. We shall point out below what can be inferred if
one tries to use Theorems 1B and 1C.

To apply Theorem 1A, there remains yet another important condition to be
satisfied: the period should not be too long. More precisely, since T < Q, it
is enough to require that :

1
Q S. re~ 5(1—3:::),

that is, referring to (4),
(L b
AT -

or
=3 . < (/\m)ﬂ
T === .
(5) e <o (2
This simple reasoning is very important, because in fact it unveils the meaning
of the first stability exponent, the more important one. The inequality (5)

defines a threshold for & provided that §(1—3a)—na > 0, or

1
*<nt3
The value on the right-hand side is thus not accessible, but any smaller value
is; at this point one should remember that we shall then substitute n—1 for n,
and the stability exponent a(n) will be given by a(n) = a{n—1). For the time
being, we go on with the initial quantities and write a statement with
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o = 5—-};2, which satisfies %(1 —3o)—no = %a. This allows us to rewrite (5)-
n

as .
Am n
cLrl—=) .
(6) < ( \/E)
The radius of stability can be easily computec since Theorem 1A specifies the
distance from p and ||p—p*|| < r(e). In fact, returning to the text
immediately above the “model statement” of Chapter II, one notices that we

have proved slightly more than what was actually included in the statement
itself; in fact, it was shown that

[2(t) = p(O)]] < 7#_”": < R(e).

We use this estimate to get

- ...2'___
lp(t) - p(0)|f < R(e) < 1077 _A?—T_<10 ik

To compute the threshold of validity, one should essentially copy inequalities
(27) of Chapter II, add the invertibility condition and, most important,
inequality (5), in the form (6) because of our choice of o. Let us quickly go
into some details.

We leave the first of (27) unchanged: H is defined and analytic over the
domain D = D(R, p, o) around p*, and then one should possibly restrict the
domain because of the invertibility condition, as explained above. Applying
Theorem 1A around p (and not p*) does not change anything.

- In the second of (27), however, one should beware of the fact that Q refers
to p(Q = |lo{p)||), and not p* (Q* = [|w*||). In order to express
everything with parameters centred at r*, we may add for example the
iollowing condition:
NP [

|Q—Q|S§Q,

which holds in particular if
Mllp-p7|| < Mr < %P

But this is precisely equivalent to the second inequality in (27) (see the “model
statement”, condition ii) in Chapter II), with © replaced by Q*. In short, to
take care of these details, it is enough to substitute Q* for Q in the second

of (27). Then in the definition of 7, (compare (26) in Chapter IT) one
replaces Q by 3Q*.

The third mequahty in (27) remains unaltered. As regards the fourth, one
notices that the exponent £ (1 —3a) is larger than 1/5 (or even 1/4 if n > 3);
here we have already taken into account the substitution n » n—1, tobe
effected after the transformation (1). One then adds the invertibility condition
together with (6), with n—1 instead of n. Summarising, we have proved the
following statement.
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Theorem 2. For any initial point (p(0), g(0)) (p(0) = p*), the trajectory
(p(1), q(2)) starting at (p(0), q(0)) satisfies

o . ‘ » -
lip(t) — p(0)]| < 107576 W < T(e) = T3 exp(e™),
1 c
= — 3 - — » _2-——
where a = a(n) A1) Q Ha(pO) ], Ty = 3-10 o
This holds provided that € satisfies the following inequalities:
£* < 100-1‘i inf(R, p), €e*< 200MQ*, <4 1072,
% o om - M
M? Am \3n-1)
e < 5’ 8 & S
<r € _20001}43, __-,-( n—l) ,

where A and T are defined in formula (26) of Chapter 11, and | k|4 is the
maximum of the third derivative of h over the domain D.

In this statement, all the parameters connected with the Hamiltonian, along
with time t, are those which are obtained after the rescalings (1) have been
performed, that is, one should use the primed quantities in (1).

Although the threshold conditions seem to proliferate somewhat dangerously,
only the last one is really significant. In particular, all but this last one read

exactly the same whatever the value of g, inside the interval (O,ﬁ). On

the other hand, the last condition is essentially a rewriting of (5), which is a
direct consequence of the Dirichlet estimate. In short, the value of the first
exponent, which governs the time of stability, is a very direct descendant of
the exponent 1/» which appears in Dirichlet’s theorem. In particular, when
the number of degrees of freedom increases, results deteriorate, not because of
the invasion of the phase space by the resonance surfaces, but because of the
relative scarcity of rational points, that is, periodic tori. We shall see below
how this new point of view may be exploited further.

Returning to the last condition, we notice that this is also the only place in
which n appears explicitly. The factor /n (or vn — 1) is simply the length of
the diagonal of the unit cube, and occurs because one uses Euclidean norms,
whereas the sup norm is more natural when dealing with approximation
theory; this is of little importance. Apart from this, the last threshold is very
sensitive to the value of o (or @), and it vanishes when a = 1/(2n+1). If one
chooses for instance o« = 1/(2n+35), which satisfies %(I——Ba)—ncz = o, One
comes up with the condition ‘

Am  \n-1 1
m) TRy
which is much weaker than the last inequality in (7).

It is important to notice that the lack of optimality of Theorem 2 is exactly

the same as that of Theorem 1A. Indeed, the only new ingredient we have

E“Sr(
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added is Dirichlet’s theorem, which is optimal (at least as far as the quantities
we are interested in are concerned).

It is in our opinion quite remarkable that essentially the best possible
perturbation result over finite times may be obtained using the most basic
approximation result, but various important refinements and improvements of
Theorem 2 are easily derived for certain classes of initial conditions. We
devote the end of this chapter to some of them, using freely the notions and
notations of Appendix 1.

Placmg arithmetical conditions on the frequency is essentlally equivalent to
ensuring some comparison between ¢ (or T') and Q in Dirichlet’s theorem. In
particular, the following statement is true.

Corollary 1. Assume that after the rescalings (1) one has o* = o(p*) = (1, @),
with o' € Q,_1(3, v), (v, 8 > 0; we avoid the letter 1, which has been used
already in this context). Then in Theorem 2 one may replace the radius of
confinement by |

@) - <107 7

£

-r b
n+9o g 1

1+8'7 2(n+1)°

The time of stability and the threshold conditions remain the same.

In particular, almost all points in phase space admit, for any n > 0, the
stability exponents

where b = a

(a,6)= (2n1+1 )

The proof is straightforward; we have in fact already written the first
inequality on the norm || p(z)—p*|i. Now, when w* € Q,(3, v), T may be
estimated from below, since

1
-1 . Y\ w48
Q= 2T liz2 (F)™ .

Q is given by (4) and one only needs to substitute it; of course, (1) is used
first in order to rescale one of the components. The last assertion comes from
the proposition in Appendix 1, together with the fact that in Theorem 2 one

may replace 1/(2n+2) by —— ™ ! —mn for any 1 > 0 {(and vanishing threshold

+1
when n goes to zero). [
Note that the pair of exponents comes very close to the would-be optimal
. 1 1 . '
pair (-?-'-;,5)- The assertion may be slightly misleading, because although

almost every point belongs to Q,(8) for any 8 > 0, it is also the case that for
almost every point the corresponding constant y approaches 0 together with 3.
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One may devise a result of a slightly different nature; fix 8 > 0 and consider
Y = 7(g), going to infinity as & goes to 0, for example, ¥ = Yt~ 5, yo > 0,

0 <& < b= b(n, 8). One then gets the same result, over the set (after
rescaling) Q,_1(6, v(g)), whose relative measure goes to 1 as & goes to 0, with
a second exponent b(n, 8)—&, and a fixed value ¥yq.

Suppose now that we wanted to apply Theorem 1B or 1C in order to find -
results for general initial conditions. We would come across a kind of
intermittency phenomenon, which is perhaps worth noticing. Let (Ti);s0
be the sequence of the periods of @*, and (®;);»o the related best
approximations. The rational vectors ®; converge to ®*, so one has
T;w; € Z", and the estimate

vn
Ty

i=+1

e =t £

For i large enough, let us define the corresponding points p,, converging to
p* (o(p;) = ), and let

/a1
m TTU"- '

i+l

(8) =|lp:i=p']| £ —
Finally, we define the sequence of values g; satisfying r; = rqel/®, where 7, still
denotes the constant in formula (29) of Chapter II. With these definitions and
the same setting as above, the following statement holds.

lete > 0,¢_1 = € > g, i large enough; then

., © my2
o ot 10 n—1 (H) .
As usual, the parameters relate to the situation after transformation (1).

This holds for any initial condition (p* = p(0), ¢(0)), but we do not state
this rather unnatural assertion as a ‘“‘theorem”, nor bother to mention the
thresholds, which could be easily computed. The proof is again very short;
just apply Theorem 1C around the point p;.;, which is valid because
ri—1 = roe'’?, by the definition of ¢ and of the sequence (g;). Next, to
estimate the exponent A/(r;—,7T;_,) from below, use (8):

if [#] < 77 =T expuT}/®~"), with Tg = 3- 10722

A Am__ L
> —=T".
rl—l =1 - \/-
Finally, notice that the factor Am//n is slightly larger than p, after the
substitution of n—1 for n. [J

Both the radius of confinement and the time of stability remain constant
when & belongs to an interval (g;, ;_;). In fact, the most favourable situation
occurs when g is equal to one of the g;’s. This is also apparent if one applies
Theorem 1B: if € = g;_;, it may be applied around the point p;_;; but as
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soon as & crosses this value, p* leaves the influence zone of p;_; and one
must use the point p; instead. This causes the time of validity to drop
discontinuously from a quantity proportional to exp(t/(T;_:e'”)) to one
proportional to exp(t/(T;e'/?)).

We notice that the quantities T}, ®;, p;, r; have an obvious intrinsic
meaning, but the sequence (g;) is rather artificial, again partially because of
the exponent 1/3 instead of 1/2 in Theorem 1B. What is really important is
that the distribution of the rational vectors around a given one may be quite
erratic (for example, nothing can be said in general about the sequences
T;/Ti+1 or r;[r;y) and there arises a sequence of values for which the closed
orbit approximation is relatively best possible. |

With this in mind, it is not surprising that one can prove statements of the
same type as Corollary 1, using Theorem 1B and the Diophantine sets Q(z, 7);
in fact, by the very definition of these sets (see Appendix 1), it is then possible
to estimate, for example, the ratios T;/7T;.; from below, which enables one to
derive results that are valid for all sufficiently small perturbations over a set of
large measure (or even almost everywhere). Recalling from Appendix 1 the
inclusions

Qu(r,7) C Qr,y~ 047,

one may then compare the statement obtained from Theorem 1B with
Corollary 1, over sets of type Q,(t, v), and make sure that they are essentially
equivalent. We shall not go into the easy details. '

As a final remark on this topic, we note that it may sound somewhat
paradoxical to introduce Diophantine conditions while studying the behaviour
of a system over finite times, because these arithmetical conditions are

_essentially of asymptotic nature. In fact, there are two additional flexibilities
which we have not used.

1. We are interested in phenomena which occur over exponentially long
times; on the other hand, the sequence of the periods (T;) of any vector
increases at least geometrically (see Appendix 1). Therefore we could restrict
attention to indices 7 such that i = O(¢~°) for some ¢ > 0; this is the
“simultaneous” analogue of the ultraviolet cut-off, and it is naturally
interpreted in terms of approximate recurrence times (again see Appendix 1).

2. There is an additional freedom related to the initial condition. Suppose
that we divide the radius r(g) of the influence zone into—say—two equal
parts; it is then sufficient to find a point whose frequency has nice
arithmetical properties and which lies within r(g)/2 of the given initial
condition p*,

It may be that these two remarks can be combined to show that the
estimate of the radius of confinement which appears in Corollary 1 holds in
fact for any point in phase space, so the second stability exponent would

indeed always be close to 1/2. In any case, the second remark will be put to
use below, to derive Corollary 3.
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Let us now pass to the interpretation of the resonances, and to what
happens when the initial condition is resonant or even only nearly resonant.
Loosely speaking, the important property that emerges is that the more
resonant the initial condition, the more stable the corresponding trajectory will
be. In fact it should be remembered that the more resonant points correspond
precisely to rational vectors, that is, unperturbed closed orbits, and that we
have already noticed that Theorems 1A, 1B, 1C are essentially independent of
the number of dimensions. We strongly emphasize that this stabilization
through resonance is very specific of quasi-convex systems and cannot possibly
hold for generic steep Hamiltonians.

Let us first recall some usual notions. Let M be a submodule (or.
sublattice of Z" of rank (dimension) r, generated over Z by the linearly
independent vectors ki, ..., k, of 2" A vector o € R” is said to be resonant
with multiplicity r and associated module M (we write M-resonant) if
o -k = 0 for any k € M, which is of course equivalent to w-k = 0,
i=1,..,r WithM we also associate the corresponding resonant surface
Y u, consisting of the points p in action space whose corresponding frequency
o(p) is M-resonant: |

Y= {p EP‘", (w(p),k,-) = Q, 1= 1,...,1’}.

Since the frequency map is a local diffeomorphism, 4 is 2 smooth manifold
of dimension 4 = n—r. In this classical framework, we prove the following
result.

Corollary 2. Let M a submodule of Z" of rank r, 0 < r € n—1, p* e R,
o(p*) = o*. Assume that o* is M-resonant, that is, p* € L. Then there
exist positive constants c¢(M) and ¢’ (M) (to be constructively defined in the
proof ) such that Theorem 2 and Corollary 1 remain valid at the points
(p(0) = p*, q(0)) (g(0) arbitrary) with the following changes:

a) one replaces everywhere n by d =n—r and vn—1 by c(M)vd—1.

b) in the transformation (1) one replaces w = | ©* || by ¢ (M)w.

¢) finally, in Corollary 1, the expression “almost all points” should be
interpreted as “‘almost everywhere on the resonant surface ", equipped with
the natural superficial measure.

The basic idea is that resonant surfaces should be viewed as loci which
contain abnormally many rational vectors. Thus, Corollary 2 will follow
almost immediately from the next lemma.

Lemma 3. Let M a submodule of Z" of rank r,0 < r < n, and let
o € R", be an M-resonant vector. Writing d = n—r, there exists c(M) such
that if Q@ > 1 is real one can find an integer g satisfying 1 < ¢ < Q and such
that

lleellz < (M)Q™ 2.
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c(M) is defined as the smallest constant with the above property and the integer

c(M)/e({0}) will be called the order of the resonance (or submodule).

The assertion is obvious when M defines the “standard” resonance, that is,
when o has the form o = (0, a’), where 0 € R’ is the zero vector and
o’ & R% The proof of the lemma is then nothing but an exercise in linear
algebra, by means of which we can reduce everything to this case, but we shall
go into some details, for the sake of completeness. Before this, we note that
Dirichlet’s theorem asserts that ¢({0}) < 1, but that equality does not hold
(see Appendix 1), which is the reason why we defined the order as above;
since however ¢({0}) is close to 1 and the difference is completely irrelevant
for our purpose, we shall occasionally indulge in calling ¢(M) itself the order
of the resonance. |

Let K = (k) be an r xn matrix whose rows are vectors k; which generate
Mover Z:k; = ki) j =1, .., n Since K has integer entries, a classical
result from linear algebra asserts that it may be written K = BAA, with
B e Gl,(Z) and A4 € GI,(Z) invertible square matrices; A has the form
A = [D|04. Here 0, is the zero matrix of order d = #n—r and D is diagonal:
D = diag(d), ..., d,); moreover, d; is a multiple of 4; for i < j. The positive
integers d; are often called the invariants of M. We say that the module is
primitive when they are all equal to unity, which is the same as requiring that
d. = 1 or else that the determinants of all the r x r submatrices of X be
mutually prime. One has then D = {,, and we write A = I1, because this is
a projection operator. Any module is contained in a unique primitive one
(obtained by replacing the original A by II) which defines the same
resonance, so that one may restrict atteation to primitive modules. This stems
from the obvious equivalences:

a M-resonant < Ko =0 < Ada = () <= IAa = 0.

So let M be primitive and denote by {e;), i = 1, ..., n, the standard basis
of Z". The M-resonant vectors are generated over R by the vectors 4~ ¢;,
i=r+1, ., n Let|lu||, denote the sup norm as usual and if M = (my;) is
a matrix, let [| M ||, denote the corresponding operator norm, that is:

IMllo = sup [[Mullo =supy_ |myl.

u jlull=1 L

Now suppose one wants to approximate an M-resonant vector «; Aw lies in
the subspace R spanned by (e;), i = r+1, ..., . Apply Dirichlet’s theorem
in this space to find g € N such that ||gdall; < 07 then

fleallz < 4™ [l Q" 4,

because A4 ha1s integer entries. This proves Lemma 3 and the estimate
cM) £ 147 Hle- O
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Corollary 2 is a direct consequence of this lemma, because if o* is
M-resonant, then using Lemma 3 the estimate (2) may be changed to -

Vde(M)

TQlfd )

and the reader will check that everything follows from this, except for the
preliminary rescaling. To be more specific, one uses the linear symplectic
transformation (p, ¢} = (p’, ¢') = (A~ 'p, Aq) to reduce the situation to the
standard resonance case. One then uses transformation (1) to gain one more
dimension, and obtain a frequency vector of type (0, ..., 0, 1, ®’) with

o’ € R“"!. In this way, one has rescaled 2 component of 40*, and this is
how the factor ¢’ (M) arises. In fact, this shows that ¢'(M) < || 4|lwo.

Finally, the last assertion of the corollary about the interpretation of the

expression “almost all points” which arises in Corollary 1 should be clear
from the above. [

llw — ol <

We shall add some simple remarks about the geometric meaning of the
constants c{M) and ¢’ (M) and obtain slightly better estimates for them.

By construction, the last d columns of A~ provide integer vectors which
are orthogonal to M, and in fact they generate over Z the primitive module
M orthogonal to M. In other words, the nx d matrix E composed of the
last d columns of A~ ! defines a linear embedding of Z¢ into Z” whose image
coincides with M*. One may obviously refine the estimate of c(M) to

o(M) < [|Blleo = _sup 3 (4™
""" T j=ral
Since A has determinant +1, its inverse is simply the cofactor matrix. One
can still minimize this with respect to the possible matrices E, that is, with
respect to the p0551ble embeddings of Z¢ into Z” with image M"" In other
words, E can be replaced by ET, where T € GI;(Z), which corresponds to

changing A4 into
i 0
(3 )
using block notation.

In a parallel way, the d last rows of 4 provide vectors which generate a
module, or lattice, M’ such that M & M’ = Z” and one has the estimate

M) sup Z!Aul
t=r<l,. _1"'1
with a further minimization over the possible choices.
Of course the matrix B, whose value does not enter, simply corresponds to
a possible change of basis of M itself: changing the basis changes K into PX
with P € GI,(Z), and choosmg P = B! reduces the general situation to the
case B = 1,. '
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We also note, because it may sometimes be useful, that it is easy to write
down explicitly a basis of integer vectors for the real subspace orthogonal to
M (“resonant plane”). Assume in fact that &y, ..., k,, e,+1, ..., €, span the
whole space R”, which is always the case, up to a possible relabelling; then
set '

=k A Aky A A A A Ae,, i=1,...,d,

where A denotes the ordinary exterior product and the vector under the “hat™
is omitted. The /;’s generate over Z a module L,L c M, and the span over
R (£ ® R) is the plane orthogonal to M; in general £ is not primitive, so
L # Mt

As a final remark, let us consider the case when r = n—1, that is, the
“maximally resonant™ case, or that of rational vectors. Then Corollary 2
should and indeed does reduce to Theorem 1A, except for a few minor losses
which occur while going all the way round. When r = n—1, and writing ©
instead of o, one has 4w = (0, ..., 0, v) with v > 0 (up to a possible change

of sign in A), so
v = Z A,U-wj,
;

where A,; is the last row of 4. The period T = 1/v and To € Z" is the last
column of 4=}, In other words, suppose that @-k; = 0,7 = 1, ..., n—1, and
the n—1 square matrices of size n—1 obtained by deleting a column from
the matrix K have mutually prime determinants. If &, e Z" satisfies
det(k, ..., k,) = 1, the period is given by T = |-k, |~ ".

We shall now refine Corollary 2, showing that the initial point p* need not
be situated exactly on the resonant surface. This uses the remark we made
above, that instead of approximating the initial point itself, one may use
another, sufficiently close point. So, consider again the module M, the

associated resonant surface Z,4, and a point p* lying at a distance from = M
&

less than r(g)/2. Here (see Theorem 1A), one has r(ey = ?L%, and we want to

estimate this from below as T runs through the values prescribed in
Theorem 1A. This was done already in Chapter II, towards the end of the
proof of Theorem 1A, to the effect that -

3 1
r(e) 2 roe?"® S poed,

with ro defined in (29) of Chapter II. So let p* satisfy
dist(p*, Tae) < %95%;

we apply Theorem 2, in the version of Corollary 2, to a point of T A as close
to p* as possible (it is not necessarily unique but it does not matter). The

only difference is that the influence zones should be shrunk, so that the result
effectively applies to p*. So we also approximate the point on the surface by
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means of rationa! points within r(g)/2, instead of r(g). Looking back to
equation (3), one sees that formally this is equivalent to changing /n into |
24/n, or rather ¢(M)vd— 1 into 2¢(M)v/d—1. This proves the following
result. :

Corollary 3. Let M be a submodule of Z" of rank r, and X the associated
resonant surface of dimension d = n—r; let p* be a point in action space

satisfying

Then for any point (p(0) = p*, q(0)), Theorem 2 applies with the replacement
of n by d and \/n—1 by 2c(M)Vd —1; in the preliminary transformation (1),
w = [|o*|l, should be changed to ¢’ (M)w.

Of course, one could also devise a— somewhat far-fetched — statement in
the spirit of Corollary 1. We believe that Corollaries 2 and 3 should have
important and far-reaching consequences. Roughly speaking, one may
remember that initial conditions which belong to a tubular neighbourhood of
thickness O(+/€) of a resonant surface of dimension d will be stable (in action
space) for a time of the order of exp(ce~'?#); but, of course, the order of
the resonance comes into play and, given ¢, this will break if this order is too
high. We slightly elaborate on this heuristic picture in Chapter V, §2.

To put it differently, define subsets of phase space by

F(dy, co, &) = {(p*, g*) € R"x 7", such that there exists M, a submodule
of Z", corank M < dy, c(M) < co, and dist(p*, Tpy) < ’3"-8‘/2},

with ¢g > O and dy € N (1 € dp € n). Then on such a subset the stability
of the action variables is essentially that of a system with d, degrees of
freedom. It is of course tempting to let # tend to infinity (thermodynamical
limit) or simply be infinite from the start (see Chapter IV, §3).

Corollaries 2 and 3 also demonstrate that there should be, for quasi-convex
systems, a competition between stability over finite times and perpetual KAM
stability, which applies, roughly speaking, to *“‘very non-resonant” frequencies.
This may be relevant in particular in celestial mechanics, as detailed below
(Chapter IV, §1).

CHAPTER IV
TRANSPOSITIONS, APPLICATIONS, PROSPECTS
§1. Additional variables and an application to celestial mechanics

There is one important extension of the above results which does not
require any extra work, namely one may add canonical variables in the
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perturbation. That is, let
H(p,g,1,¢) = h(p)+ef(p,q,1,8), (p,9) ER"xT™, (I,8)eR™ xT™;

if 4 is quasi-convex, all the results above carry over, obtaining of course
stability of the p variables only. To check this, just go through the proofs
again and make sure that nothing is altered by the addition of “dummy”
variables (this remark also applies in the general steep case; see [43], §1.5). It
should be emphasized that such systems are degenerate from the standpoint of
KAM theory, which extends to them only under some rather restrictive
additional assumptions. Essentially, one should have

flpoa,1,¢)= filp, I) + f2(p, 9,1, ¢),

along with the corresponding non-degeneracy condition. _
As a first class of applications, one may treat in this way the “adiabatic-
integrable’ situations, that is, Hamiltonians of the form

H(p,q,¢et) = h(p) +cf(p,q, et),

where f is periodic in T = e¢. Introducing the variable e, canonically
conjugate to T, brings this to the form

H(p,g,e,7) = h(p) + =le + f(p,q,7)],

which is of the type considered above.

Here we want to mention an important application, which may have far-
reaching consequences in celestial mechanics: the problem of planetary -
systems. Since it is discussed at length by Arnol’d ([2]) in connection with
the conservation of tori and by Nekhorochev ([43], §1.18 and §12) from the
same viewpoint as ours, namely stability over exponential times, we shall be
quite sketchy about the setting of the problem. Our results will however be
not only quantitatively better than those of [43], but also qualitatively
different, because Corollaries 2 and 3 seem indeed to open new perspectives,
when applied in this context.

So, one wants to examine the particular case of the many-body problem in
which one of them (the sun) is much heavier than the others (the planets). If
the interactions among the planets is neglected, these travel along mutually
independent Keplerian orbits, which are determined by their elliptic elements:
the major semi-axis, the eccentricity, and the inclination, along with the
corresponding angles. For reasons to be sketched below, one has to
restrict attention to the case of small eccentricities and small mutual
inclinations, that is, to a neighbour of the plane circular problem. The best
suited variables are then the so-called Poincaré heliocentric variables. We refer
to [45] (§§8—12) or to [2] (Chapter III, §2) for their definition. They read
(A,H,Z, %, h,0) e (R’ x(T")% the action variables (A, H, Z) are simple
functions of the semi-axes, eccentricities, and mutual inclinations; when
eccentricities and inclinations are small, it is best to pass to symplectic
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polar coordinates in the pairs (H, ) and (Z, {), obtaining the variables
(A, A, €, m, p, g) where, componentwise,

1 1,,
H=3E+7), Z=30"+d").

The mass of the sun may be normalized to unity and those of the planets

written as m; = g£y;, where ¢ is the ratio of the mass of the heaviest planet to

that of the sun (for the solar system, € & 10~3). With these notations, the

Hamiltonian reads

1 — p3

H=h(A)+Ef(A3AyE,q:p:Q:E)a h(A)= "5 }\_;'
=1

Moreover, A; = y;,/a;, a; being the major semi-axis of the ellipse osculating

to the trajectory of the i-th planet at a given time; hence, controlling A is

equivalent to controlling the semi-axes.

Before applying any theorem, one should make sure that the perturbation
is indeed small, and this is true only so long as the n+1 bodies do not come
too close to each other. Since we shall have control on the g;’s only, the only
region in phase space when this implies estimates on the eccentricities and '
inclinations is near the plane circular problem. This is because plane circular
motion with the planets travelling in the same direction achieves a maximum
of the angular momentum of the system, and the latter is a conserved
quantity. More precisely, let G; be the angular momentum vector of the i-th
planet (|| G;|| = m; (a;(1 —e?))'2, ¢, the eccentricity), G = Z;G;, the total
angular momentum, and N = £7'G, independent of . Pick 2n positive
numbers o;, B; satisfying

0<e<hLa; <~ Lan € b

A domain of planetary motion B(x, B, v) is a region of phase space such
that

agSﬂ,"_(_ﬁ,', z'=1,...,n and ”N”Z"}‘,

v is a number such that 0 < vo(2t, P) < ¥ < ¥m(a, B). Here v,(a, B) is the
maximal possible value of || N|| under the conditions imposed on the g;’s; it
corresponds to plane circular motions with radii B;, and vo(a, B) is the largest
value of || N|] cor'responding to possible collisions among the planets and/or
with the sun. We refer to [43] (§12) for a detailed discussion of the fact that
on a domain B(x, B, ¥) one may indeed apply the results about stability over
exponentially long times; this discussion carries over without any change.
Since h(A) is a convex function, Theorem 2 applies, yielding stability of the
major semi-axes over exponentially long times. The implications of Corollaries
2 and 3, however, are much more intriguing. Indeed, these assert that
resonant, or even nearly resonant, trajectories are privileged, from the point of
view of finite time stability. Resonance here simply means resonance between
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the inverses of the periods of the motions along the instantaneous ellipses, that
is, the inverses of the “years”; the relation between these periods of
revolution and the values of the semi-axes, that is, Kepler’s third law, follows
from the expression for A(A).

But there has been a long-standing discussion about the fact that celestial
bodies seem to pick resonant trajectories more often than could be expected
from a mere statistical effect. These speculations about “harmonic motions”
could be traced back to Pythagoras, Platoc or Kepler, but in modern terms this
was forcefully advocated by Molchanov (see [40], [41], [5], {27]) who noticed
the existence of many “simple” resonance relations between the planets of the
solar system and inside the satellite subsystems around Jupiter, Saturn and
Uranus. He was immediately strongly criticized on the ground that these _
relations were not really “astonishing” and would often occur among numbers
or vectors picked “‘at random”; he then replied to these criticisms, trying in
particular to give a precise definition of the adjective “simple” used above.
Since no repeatable experiment can be performed in this case, the evidence is
bound to remain fragile. In any case, since then a lot of work has been
devoted to the subject, including resonances which involve artificial satellites.
Many of these resonances are ascribed to non-Hamiltonian causes, for example
tidal effects, but there seems to remain some “mystery”’ buried in a mass of
controversial observations. In Molchanov’s terms: ‘“Why are planets and
satellites locked into simple resonances, whereas the rings of Saturn or the
asteroid belt have gaps in these places?” Even if particular assertions may be
challenged, this seems to ask us an authentic riddle.

The results above offer the first purely Hamiltonian partial explanation for
this; if the bodies must linger much longer about resonant trajectories than
elsewhere, after some time these will become indeed the most populated places.
This is not so simple, however, and in accordance with the spirit of the above
quotation, we have really set up a “competition” between finite time stability
and perpetual stability of the KAM type, since the latter favours very non-
resonant trajectories. According to the concrete situation at hand, it is quite
possible that one or the other kind of stability actually prevails. In this
context, we insist that the stability estimates imply that the bodies remain
locked in resonance zones for exponentially long times, but of course they do
not preclude small amplitude (O{+/€)) “chaotic” motions inside such a zone,
on much shorter timescales.

One should also note that the present results have a wider range of validity
than KAM results (specifically the theorem proved in [2]). First, from a
practical point of view, although it is not realistic, the threshold of validity
which we obtain is not nearly as small as the one of KAM theory; it could
even perhaps be pushed to some realistic value, using computer assisted
estimates. Second, finding invariant tori of maximal dimension (half the
dimension of the phase space) requires that the unperturbed system be
integrable with respect to all the variables. Here, this translates into the fact
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that one must perturb from the exact plane circular problem (as in {2]) and
so, in the perturbed problem, the eccentricities and the inclinations should
be of the order of (a power of) the perturbation parameter, that is,
extraordinarily small. It should be noted however that a version of KAM
theory has been developed in which one looks for low-dimensional tori, that is,
tori which are not of maximal dimension (see in particular [10], [47], [53], [57]
and references therein); this in turn requires only partial integrability of the
system, as is the case here. To our knowledge, this theory has never been
applied specifically to the planetary problem, although the difficulties are
probably of a technical nature only (see however [51]). More significant may
be the fact that the set of tori one thus finds is of zero Lebesgue measure.
We shall briefly comment on this when discussing Arnol’d’s diffusion in
Chapter V, §2.

Returning to the results on stability over finite times, these only require
that the system be close enough to the plane circular problem so as to avoid
collisions. This is the condition || N|| > 7o in the definition of a domain of
planetary motions, where 7y, is independent of £. It defines an “order 1”
neighbourhood of the plane circular problem, the most favourable case arising
when all the planets have the same mass; indeed no condition on the
momentum can possibly prevent collision as the mass of at least one planet
vanishes, as in the restricted three-body problem,

§2. Transposition to other coniexts and degenerate cases

The results of Chapters II and III can be transposed, at least to some
extent, to the other circumstances under which classical perturbation theory
applies. We mention:

1) perturbation of an integrable Hamiltonian vector field;

ii) neighbourhood of an elliptic fixed point of a Hamiltonian vector field;

iii) neighbourhood of a Lagrangian torus over which a Hamiltonian vector
field induces a flow conjugate to a linear one.

Each situation has its discrete analogue where Hamxltoman vector fields are
replaced by symplectic maps. Of course, 1) is the problem we have been
dealing with, but we listed it for the sake of completeness. We refer to [4]
(and [21] as far as iii) is concerned) for the elementary details. Continuous
and discrete problems essentially correspond under the two inverse operations
of section and suspension. Let us briefly illustrate this on i). It is well known
how to construct a local Poincaré section for an autonomous Hamiltonian
vector field. On the other hand, start from the discrete problem, which is
described as follows: let Bs be the open ball of radius & > 0 centred at the
origin in R”, and A; = 7" x Bs an annulus. Let f; be defined as

(1) | (9,f)—*fo(9:f)=(9+w(f)m°dz“,"): (6,r) € As.
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We assume that @ = Vh is the gradient of a function 4; then f; is an ,
integrable globally canonical map with generating function . We consider the
map f generated by a perturbation of 4, £(8, r') = h(r')+o(0, r'), where o
is small (of order g), and f is implicitly defined by :
i, do
@,r') = f(6,7) = (o+ w(r') + 6—:’-, mod Z*, r — EE)‘

Assume that # and o are analytic and that 4 is a convex function; then one
has the following stability result for the variable r € Bj:

Ife = |loll < e, then ||r,—r|| < ce® when |s| < cexp(e™), s€Z;
we use the notation (65, ) = f°(8,7), 8, = 8, r0 = r.

The definition of the norms is as in Chapters II and III, and the exponents
(a, b) are as in Theorem 2, but in dimension n+1. All the later refinements
could be added.

To view such a result as a corollary of those of Chapter III, one must
build a suspension of the map f, that is, realize it as the time 1 map of a flow
associated with a Hamiltonian H (8, r, 1) which is periodic of period 1 in the
time variable z. Here the real difficulty lies in the regularity assumption; in
fact, the construction is quite easy in a C® setting, much less so if one
requires analyticity, as is necessary here. There is no obstruction however,
and Kuksin proves (in [34]) the existence of H, which is an O(g)-perturbation
of h, of which f, is the time 1 map. So one is led to the quasi-convex case,
having to deal with a periodic perturbation of a convex Hamiltonian (this is
why h must be convex, not guasi-convex). Of course, it would still be useful
to write a direct proof of the result above. Note that one has to cope with
the fact that energy conservation is not available any more.

We shall now dwell a bit more on situation ii), which has been the subject
of much study, for the past century at least. We shall not mention any more
the discrete cases corresponding to ii) and iii). Situation ii) is degenerate
from the point of view of perturbation theory, and before we turn to it, it is
useful to look at another, slightly simpler but quite similar problem: the
perturbation of harmonic oscillators; of course, this is also interesting for its
own sake. So let '

(3) H(p,q) = wo-p +ehi{p) + € f(p,9),

where o, € R" is a non-zero vector, h; and f are analytic functions, and h; is
quasi-convex. We perform the scalings  — €1, H — e_le’ and obtain,
keeping the same notations for simplicity,

(4) Hipg)= 2p +h(p)+cf(p.o)

We write ®, = Vh;; degeneracy manifests itself through the fact that the
frequency @ = &~ 'wo+ 0, is of the order of ¢~'. Fix ¢ > 0 small enough,

suppose that m(0) is rational of period T, and go through Chapter II again.
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The quantities m and M which measure the non-linearity and convexity now
refer to h; and are independent of @y; this implies that the iterative lemma
carries over without any change. However, in the geometric reasoning leading
to equation (23) of Chapter II, one should take into account the fact that
l1@(0) || is of order €~ }; so just replace Q by 2e~'Q, where Q here stands for
Il || (indeed || @(0) || < 28 '|{ay]| for & small enough). Then (24) still
defines 7(c), with the replacement Q — 2e~!Q, and the rest is unaltered. So
the “model statement” also carries over with only this modification.

Finally, Theorem 1A is valid for the Hamiltonian (4), except for the
substitution Q — 2e~'||@y]|. We said we have fixed € > 0 so that ®(0)
is rational of period T. Now the only requirement is that ¢ satisfy _
inequalities (27) of Chapter II. The second of these inequalities is very much
weakened by the substitution on , but one has to add the requirement -
[fa(0)}] < 2e~'||@ol], that is, ||@; |} < &~ ']|wp]l, which is a weak bound
on e€. Note that Q does not enter in the definition (26) of the quantities A
and T.

Now let p*eR” be a point in action space, of = @,(p*), 0* = £ oy + 0f,
and we wish to approximate @*. Here comes the key observation: although
we are working at high frequencies (of order g~ 1), there are always low
frequency (of order 1) orbits close to a given one, and this phenomenon is
uniform in € as this quantity goes to zero. Indeed it only expresses the fact
that for any value of ¢ > 0, £~ 1o, can be shifted back into the unit cube,
using an integer vector. This simple but physically significant property will
allow one to cope with the degeneracy. Let us now implement the above:
with our notations, formula (2) of Chapter III is unchanged; define ®; by the

equality ® = £ 'wo+ @, 0

Jn
TQI/H '

llwy —will £

Since the map p — w(p) is locally invertible, one finds p close to p* such
that ®; = ®,{p), and the rest of the reasoning needs no modification at all..
Of course the matrix A now denotes the Hessian matrix of h;, and
analogously for the other quantities. Let us state the result.

Theorem 3. Consider the Hamiltonian (3) above. Then the result stated as
Theorem 2 of Chapter 111 holds, with the following qualifications:

i) Q* is replaced by 26 '||wq |, with the additional threshold condition
one:.

1Vh} < 267" [woll;

ii) the constant T¢ now has the value
o
T =15-10"—;
— {lwoll
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ili) scalings (1) of Chapter 111 are not performed, so n should be changed to
n+1 in the statement, and quantities m, M, and so on, refer to the original
Hamiltonian h;.

Although this result has been obtained in an almost effortless way, we have
stated it as a “theorem”, because we believe it is quite significant: indeed, this
is the first non-linear stability result over exponential times to be obtained in a
degenerate case. Before we comment on this, let us briefly return to the
statement above: ii) comes from the fact that we have been working with the
Hamiltonian (4); returning to (3) involves a scaling of the time variable which
gains back the factor ¢ that had been lost before. Scalings (1) of Chapter III
cannot be performed because they involve the frequency, which is here of
order e~!; hence iii). In particular, we obtain for the time of stability an

1 .
P n.foranyn > 0.

The Hamiltonian (3) may arise naturally, for example in the following
context: consider again a perturbation of a system of harmonic oscillators:

(5) H(p,q)= wo-p +c9(p,q)-

Assume that g contains only a finite number of harmonics, that is, it is a
trigonometric polynomial in g. Then, away from a finite number of resonance -
surfaces, one can perform one step of the reduction to normal form, whxch
leads (after a change of variables) to

H(p,q)= wop +e{g)(p)+ € f(p,q)

So, if the space average (g) is quasi-convex, we are reduced to the
Hamiltonian (3).

To appreciate the significance of Theorem 3, one should beware of an
important possible misunderstanding. We have proved a result which is
completely independent of «@p, in particular its arithmetical properties. In fact,
if one sets ®; = 0 in (3), it reduces 1o the non-degenerate case, and apart
from some details which we leave to the reader to settle, we do recover the
corresponding result. Now, if w, is strongly non-resonant, say satisfies the
usual Diophantine condition

(6) 3v>0, r>n—1, suchthat |wek |>4lkl™", Vk € Z"\{0},

exponent a =

it is easy to derive a stability result over exponential times. Indeed, starting
from the less explicit form (5), one simply builds up the Birkhoff series, and
makes use of (6) to control the process, using either an iterative method or a
majorant series. This completely algebraic construction allows us to prove a
stability result over exponential times, but one which is very sensitive to the
arithmetics of .

Such elementary estimates are derived for example in [7], and we -
propose to call them Gevrey type estimates, the reason for this terminology
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being clarified in Appendix 2. In results of this kind, one considers the
linear Hamiltonian A(p) = @y-p as the unperturbed system. Theorem 3 les
definitely deeper: one considers the non-linear Hamiltonian A(p) = ¢ - prem(p)
as the unperturbed part and takes advantage of the non-linearity (ankarmonicity)
and convexity to derive an estimate which is independent of the unperturbed
frequency wy; such estimates we propose to call Nekhoroshey type estimates.
A similar result should be valid (with other exponents) if 4, is only assumed
to be steep, but this seems very cumbersome to obtain if one applies
Nekhoroshev’s original method. |

We finally note that Zaslavskii and coworkers (see [58]) have recently
studied, mostly from a physical and numerical standpoint, systems which are -
perturbations of Hamiltonians of type

B(p) = wo-po +hi(m), P = (po.pr) ERI™ =R,

where 4; is non-degenerate (say convex); in such a situation, instabilities
usually occur on much shorter time-scales, and Nekhoroshev type results are
excluded in general.

We now return to the problem of studying a Hamiltonian vector field in the
neighbourhood of an elliptic fixed point, and we shall use Theorem 3 in order to
derive a result for this situation. We denote by +iafi = vV=1),j=1,...,n,
the eigenvalues of the linearized system at the fixed point, which we take as
the origin of the coordinate system x;, v j=1, ., n of R%" we write
z = (x,y) € B*". We assume that the linear part can be diagonalized and
that there is no resonance of order < s (a positive integer), which means,
writing o = (a4, ..., &,) € R” that

VEEZ™\{0} ok £0 if |k]={k]+ -+ [ka] < 5.
Let r; = (1/2)(x?+y?), r = (r1, ..., r,) € R™. Following Birkhoff, one can
perform a canonical transformation so as to put the Hamiltonian in the form
(M) H(z)=H(z,y) = H"(r) + O(|jz, ylI'**).

H®)X(r) is a polynomial of degree at most [s/2] in the r;’s; we assume that H
is analytic, so that the rest is a convergent power series whose terms are of
degree at least s+ 1 in x;, y;. We suppose that 5 > 4, so H® has the form

1
H(r) = Z ori + 3 z ayyrir; + O({irll®)
®) ; E |
= aor 4 (4rr) + O(IP),

where 4 = (o;;) is a symmetric matrix. This way of writing determines the
sign of the a,’s; note that if they are all of the same sign, the stability
problem is immediately settled (positively), because the origin is a local
maximum (or minimum) of the Hamiltonian. Here we shall work again under
the convexity assumption that 4 is a, say, positive matrix and we let m > 0
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(respectively, M > m) be its smallest (respectively, largest) eigenvalue. Under
these assumptions we prove the following theorem. :

Theorem 4. Consider a trajectory z(t) under the evolution governed by H(z) (see
(7) and (8)). There is a constant v > 0 such that if z = z(0) is small enough
and satisfies

©) = @2, =1
(r; = r;(0), and so on), then one has ‘ |
s @)~ rs]) < il w9, G=10m,
provided that t satisfies
1t < 7 exp(||21777 ).
where T is some strictly positive constant.

Before making some comments, we show how this is an easy consequence
of Theorem 3; as the reader will see, we prove in fact a more precise and
slightly stronger statement. First, introduce the usual symplectic polar
coordinates (r, 6) defined as

z; = \/2rjcosb;, y; = /2r;sinb;.

We fix z = z(0) and set € = Z;r; = (1/2)]z !>. Then perform the scaling
r = gp, H = &K, which multiplies the symplectic form by the factor ¢ and
leaves the equations invariant. Then

K(p0)= ap +eldpa) + € SVER6),

where we write “componentwise” /7 = (\/71,...,+/) € R%. The function f
is analytic, periodic in 8, and we let & be its analyticity width in 6.

We may now apply Theorem 3, provided that we keep away from the
singularities at p; = r;, = 0,j = 1, .., n. Now recall that in Theorem 2 (or
even Theorem 1), the analyticity width in the action variables need not be of
order 1, but only at least equal to the confinement radius. This is quite an
important feature in the present context, because it says how close we may
approach the singularities. From Theorem 3 (or rather Theorem 2), we
compute the confinement radius:

llps(t) = psl| < 10"%5“ = 10-"-‘5']‘4T (%uzn*)“ < 1o-=%t|z||=“.

Here a =

= "2_c.r_ 1 1
i and we set v = 10 TR We thus get the inequality on the

drift of the action variables, with a time of validity

T(z) = Texp(e~*) > Texp(|lz}}™**), T=15- 10“’ﬁ2—“.
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All this is valid prowded that the inequalities p;(¢) > ve” keep holding during
the time 79(z), which is guaranteed by inequality (9). We have thus proved
the theorem and computed the quantities v and 7. The threshold of validity,
that is, the maximal possible value of || z||, could of course also be computed
explicitly, using Theorems 2 and 3. [J

We add some short comments about this result. First, a similar, slightly
weaker estimate holds with s > 4 (the minimal order of a possible resonance),
which is also the condition under which KAM thcory applies. We took s > 4
for convenience only.

Second, one may improve on this result if s is really larger, by performing
some steps of the Birkhoff normal form algorithm and applying this type of
reasoning afterwards. In fact, this strategy may also be used in the contexts
of Theorems 2 and 3, at least under certain circumstances. This is a
combination of the usual method and the closed orbit method we put forward
in this paper, and this may be useful in trving to improve the estimates,
possibly in a computer assisted way.

Third, if the matrix 4 has no definite sign, steepness cannot be decided
from the knowledge of o and A alone and one must compute more Birkhoff
invariants (hence s must be larger, at least > 6); then, in the steep case, it
would in principle be possible to apply a variant of the strategy of [43] to
prove a result of the type of Theorem 4, but again this looks very
cumbersome indeed.

Fourth, we have not proved an exponential “exit time” estimate because of
the seemingly artificial and spurious requirement (9) on the initial conditions.
This stems from the fact that we had to use the action-angle variables (r, 6),
which present singularities on the coordinate planes r; = 0. Exactly the same
difficulty is encountered (and left unsolved) in KAM theory (see, for example,
[46], last paragraph). We do not know if and how it may be overcome and
accordingly we have had to leave out small cusp-shaped regions with vertices
at the fixed point. |

Fifth, there are some obvious generalizations which may be useful. For
example, one may require guasi-convexity only: in this context, it means that
the quadratic form Ar-r has to be of definite sign, but only when restricted to
the plane o-r = 0. Alternatively, one may consider periodic perturbations:
A must have definite sign but the Hamiltonian may depend periodically on
time.

Lastly, the same comment is in order concerning Gevrey type estimates, as
was discussed in connection with Theorem 3 (we again refer the reader to
Appendix 2). If a is a Diophantine vector, that is, if it satisfies inequalities (6)
(with « in place of wy), one obtains exponential stability estimates in an
elementary, purely algebraic way, by controlling the growth of the Birkhoff
series (see, for example [24] and [25]). Again, these estimates depend strongly
on the arithmetics of @. We note that if one wants to derive Nekhoroshev
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type estimates, as we did, one cannot use the usual complex coordinates

(w = x+iy and the complex conjugate vector) because these are not d1rectly
related to the action-angle variables of the unperturbed part, unless the latter
is taken to be linear, as is the case in Gevrey type estimates. _

In some sense, case iii) mentioned at the beginning of this section, namely
the neighbourhood of an invariant Lagrangian torus, is easier to disentangle.
To start with, by the symplectic tubular neighbourhood theorem, one may
symplectically describe the neighbourhood of the torus as T” x B, where B is
again the open ball of radius & centred at the origin in R”. We still denote
the corresponding coordinates as (6, r) € T" x Bs; the invariant torus has the
equation r = 0, and after conjugation the flow on it is linear with vector
o e R" The crux of the matter is that if « is nof Diophantine, the -
situation is structurally unstable and it seems quite hard to say anything at all.
Indeed normal theory at first order already requires that o be strongly
irrational.

Suppose now that a is indeed Diophantine; as a side remark we note that
this implies, under weak regularity assumptions, that the torus is Lagrangian,
so this need not be part of the hypothesis any more. Then one is reduced to
a situation very similar to that of the elliptic point, namely, after a change of
coordinates, to the Hamiltonian '

H(g,r)=H(r)+O(lIrll™*),
(10) HO() = Zajrj + %ZQ{;‘T;TJ' + O{|Ir|i*)

1
= a1 + (Ar 7)+ O(IrlP).

Here s is arbitrary and r € Bs runs through a neighbourhood of the origin.
No singularities occur and one may derive, without any convexity or steepness
assumptions, Gevrey type estimates, because o is highly non-resonant. This is
done as in the case of the elliptic fixed point, except that here complex
coordinates cannot be used ((6, r) do not arise as polar coordinates);
situation is similar to the case of the elliptic fixed point, with the latter
“blown-up”. These estimates seem not to have yet been written out in detail,
although they describe in particular the time needed to move away from a
Kolmogorov invariant torus. Note that the latter is a problem with two
small parameters: & describing the perturbation from integrability and || r||
measuring the distance from the torus. |

§3. Systems with (infinitely) many degrees of freedom

Corollaries 2 and 3 of Chapter III are perhaps of great relevance to a class
of problems with a large— possibly infinite—number of degrees of freedom.
Here we are thinking of simple statistical models, such as spin lattices, chains,
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crystals, and so on, as well as some particular PDE’s, mainly in one space
dimension. These problems have been studied during the past few years with
varied successes and a special emphasis on KAM theorem; the bibliography
of [48] contains some of the important references on the subject.

Rather than being too vague or abstract, it is perhaps best to consider a
simple example which displays the main features and difficulties: 2 one-
dimensional chain of rotators with nearest neighbours interactions. We thus
look at the Hamiltonian '

N .

H(p,q) = Z(%p? + eV(gin — q.-)).

i=1

Here V is a potential with a critical point at some value @ > 0 V'@ = 0)
representing the average distance between two free rotators. If N is finite; one
should add boundary conditions (for example, periodicity, say gy+; = ¢;) and
then look for results which do not depend on N, at least asymptotically when
this tends to infinity (thermodynamical limit). Alternatively, one may set
N = oo from the start, with a suitable mathematical setting.

Now, the point we want to make in this short section is that localization is
resonance and that, by the results of Chapter III, convexity and resonance
together imply stability, because of a local abundance of periodic orbits.

From this, it should be possible to derive strong “non-linear localization
results”. Indeed, suppose that at time ¢ = 0 one jiggles d of the N rotators
(assume that N is finite and impose periodic boundary conditions for
simplicity), that is, we have the following initial conditions:

pi(0) arbitrary, i=1,....d; p(0)=9, i=d+1,...,N;
qi(0) arbitrary, i=1,... N.

- This is a resonant situation, since the frequency vector is none other than

w(0) = (p1(0),...,p4(0),0,...,0),

0 we start on a d-dimensional resonant surface. Now apply Corollary 2 of
Chapter III and conclude that the action variables are stable over an interval
of time essentially of the order of exp(e~"?%) for & small enough,
independently of the number N of degrees of freedom. Corollary 3 adds the
important flexibility that one may even allow for some energy to be fed into
the remaining N—d rotators, still getting essentially the same result.

But all this is cheating, of course! What is it that is lacking? Not much
really; only the fact that the number of degrees of freedom is buried in the
definition of the norms we use, for example, to measure the strength of the
perturbation. These do not take advantage of the fact that the problem
displays some locality property in real space, to wit that the interaction
involves nearest neighbours only. Péschel, starting from the work of various
authors (including himself) has abstracted a general scheme to deal with these
local structures (see [48]). We hope that combining this with the principles of
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the present paper could lead to interesting results, of the kind that were
carelessly stated above.

Again convexity is here an essential ingredient. In particular, chains of
perturbed harmonic oscillators could be treated, using Theorem 3 in §2, only
insofar as the non-linear perturbation presents some convexity property in
action-angle variables (“normal modes” coordinates). Unfortunately, this is a
rather unnatural requirement in this context (compare the Fermi—Pasta~Ulam
model).

We recall also that KAM theory has been recently extended to some classes
of infinite-dimensional systems; under some technical assumptions, one proves
the existence of either finite-dimensional invariant tori (Kuksin, Pdschel,
Wayne, et al.) that is, quasi-periodic motions with finitely many frequencies
and/or infinite-dimensional invariant tori (Vittot, Pdschel, et al.). We refer to
[48] and [35] for a bibliography. Our last remark is that, among other
conditions, KAM theory requires a priori some form of non-degeneracy
condition, as is usual, but that in the context of statistical mechanics, this
essentially implies convexity. This stems from the fact that the unperturbed
integrable system is usually assumed to be an ensemble of non-interacting
identical objects. Non-degeneracy means that each of the microscopic entities
s “truly non-linear” (for example, a rotator, rather than a harmonic
oscillator). But then the Hessian matrix of the unperturbed Hamiltonian will
obviously be diagonal with identical non-zero entries, which implies convexity.

§4. Steepness, quasi-convexity, and closed orbits

We have repeatedly emphasized that the closed orbit method we use in the
present paper is restricted to the quasi-convex case and that stability in the
general steep situation is just not amenable to it. Maybe this could provoke a
renewal of interest for the latter case, which has been very little investigated?
All the more since in the analytic framework, taking advantage of the
rigidity of analytic objects, Il'yashenko has given a completely algebraic
characterization of steepness (in [30]), which was originally introduced as a
C*®-notion. It would thus be quite interesting to rewrite Nekhoroshev’s proof
([43], [44]), trying to clarify the relationship with geometry and singularity
theory, from which, incidentally, steepness originally emerged. One could also
try to isolate interesting subclasses of steep functions, beyond the quasi-convex
one, which, we recall, is the only one where steepness can be read off the 2-jet
of the function.

On the other hand, quasi-convexity has been recognized, in the past few
years, to imply very specific properties, and from this standpoint the stability -
properties explored in the present paper fit well into the picture. It may thus
be useful to mention some of these features. (Quasi-)convexity is naturally
appealing first of all, because the kinetic energies which one comes across in
physics usually enjoy this property. This is also linked to the fact that even in
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a non-perturbative framework, Hamiltonians are usually derived from
Lagrangians, and that convexity with respect to the action variables goes along
with the existence and nice properties of the Legendre transform.

Then, convexity is also the natural and simplest framework of variational
methods, for example if one tries to prove the existence of closed orbits “4n
the large”, that is, for arbitrary Hamiltonians with compact energy surfaces.
The assumption that the energy surface is convex enormously simplifies the -
problem and much more precise results are known than in the general case.

Some rather subtle specificities of convexity have been revealed recently.
Let us consider, as in §2 (formula (1)), a globally canonical integrable map of
the annulus:

(6,7) = (6 +w(ry mod Z*,r), (6,r) €A* =T" xR", w=Vh,

Here we shall need only a finite order of differentiability, so that everything is
really local in the r variables. One considers a globaily canonical perturbation
of the above (see (2) in §2). If n = 1, under the twist condition ' (rp) # 0,
Birkhoff showed that any invariant curve I" close to the circle r = ry is the
graph of a continuous function, that is, there exists € CO(T?, R) such that
I'=Ty = {(6, ¥(®), 6 € T'}. Moreover, { is in fact Lipschitz, and its
derivative (which exists almost everywhere) satisfies an a priori estimate;
Birkhoff’s theory is in fact not of perturbative nature, but we restrict ourselves
to this case for simplicity.

Now, if n > 1, Herman ([28]) shows that various pathologies may arise,
unless one restricts consideration to Lagrangian tori homotopic to r = 0 agnd
if one assumes monotone twisting (convexity), that is, that the matrix
A(r) = 8o/or = V*h has a definite sign. Only in that case can Birkhoff's
regularity theory be generalized to more than one dimension, at least in a
perturbative way.

We shall devote the end of this section to a brief discussion of the existence
of (exact) closed orbits for near integrable Hamiltonians; we first recall the
old perturbative result, essentially due to Poincaré ([45], Chapters III and IV),
and emphasize how the specificity of quasi-convexity is already quite visible at
this level, something which never seems to be pointed out in the literature.

Let us go back to the setting of Chapter II. Let H = h(p)+ef(p, q)
be a perturbed Hamiltonian; ¢ is written explicitly and there is no loss
of generality in assuming that it is > 0. When & = 0, p=10is an
invariant periodic torus of period T and rational frequency ®(0) = w,.
We do not assume quasi-convexity for the moment, only non-degeneracy:
det Ay # 0 (A(p) = V°h, Ay = A(0)). As in Chapter II, if glg) is a
function on T" (g) denotes its average along wo. Let {f)(q)=(f)(0,q)
be the average of the perturbation of the torus p = 0. It is constant on
the orbits of the linear flow along w, and can be thought of as a function on
the space of orbits @ = T"~!, We suppose that it is a Morse function on
this space. Viewed on the torus T, it means that the Hessian matrix
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Ba_q-'l (£1(0,4?) at a critical point ¢ has a one-dimensional kernel

spanned by w, (critical points are in fact critical orbits). The following
assertion holds. '

Theorem Let H(p, q) = h(p)+ef(p, q) (¢ = 0) be such that p = 0 is, for
= (, a periodic torus of frequency wy and period T. Assume that k is non-
degenerare at p = 0 (det V*h(0) # 0) and that the average { £)(0,q) has a
one-dimensional null space (spanned by wg) at its critical points.
Then for € > 0 small enough there exist, in an O(e) neighbourhood of
= 0, at least 2"~ orbits of period T, including multiplicity, of which at least
n are geometrically distinct.
Moreover, if h is quasi-convex, one may specify the spectral type of these.

orbits and assert that there are at least ("; 1) k-hyperbolic orbits,
k=0,1,.,n~1

Here we call an orbit k-hyperbolic if it has k pairs of Floquet exponents
which are not purely imaginary; recall that u is a Floquet exponent of
some orbit of period T if A = ¢"” is an eigenvalue of the linearized '
return map. The last item thus says that in the quasi-convex case one
may predict the linear stability of the orbits which are born from a periodic
torus. For instance, there will arise at least one linearly stable (that is
0-hyperbolic or elliptic) orbit. This comes from the fact that the Floguet
exponents, which are paired in pairs of opposite signs, may be expanded in
powers of 1/ (two of them vanish); at first order, they are of the form
i(st)m, J = 1, ..., n, where the ;’s are the eigenvalues of the matrix

—AoFo (Ao = V2h(0), Fp = gg—z— { £)(0, q(o))). In the non-degenerate case one
uses Morse inequalities to specify the number and spectral type of the critical
points (or rather orbits of { /), that is, the spectral type of F;. Then, adding
the assumption of quasi-convexity, one may use the following elementary
assertion.

Proposition. Let A and B be two symmetric matrices, A > 0. Then, the
spectrum of the product AB is real and of the same type as that of B, that is, it
contains the same number of positive, zero and negative eigenvalues (including
multiplicity).

Indeed, if P2 = 4, P > 0, the spectrum of 4B coincides with that of
PBP, which is symmetric, and subspaces over which B is > 0 (respectively,.
=0, < 0) are carried over by P into corresponding subspaces of PBP. ]

To apply this proposition, one considers the orthogonal complement of wy,
so only guasi-convexity is required. The upshot is that even at the
perturbative level, only in the quasi-convex situation can one predict the
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stability of (at least some of) the periodic orbits which are born from a
periodic torus.

The theorem above applies when 0 < € < g = gh, T). It took a
century to prove that one may at least partially remove the dependence of &,
on T, and this again in the quasi-convex situation only. Loosely speaking,
Bernstein and Katok proved (in [8)]) that if & is quasi-convex, for € small
enough, independently of T, there survive at least n closed orbits in a O(e'?)
neighbourhood of a torus of period 7. This is a deeper result, strongly
connected with the multidimensional version of ‘“Poincaré’s last geometric
theorem”, as proved by Conley and Zehnder (in [14]). This is also the first
step in trying to understand what happens under perturbation, when a
sequence of rational tori accumulates to a given limiting torus (in the
unperturbed situation), that is, in trying to generalize the Aubry—Mather
theory of “cantori” to higher dimensions. Once more, all this requires quasi-
convexity, not only because the methods are often variational, but also
because many “wild” phenomena seem to be liable to occur otherwise (see
again [28]). Of course, in order to prove stability results over exponentially
long times, we only had to use some simple arithmetics related to these results;
we shall go deeper into the arithmetics in the next section (Chapter V, §1).

CHAPTER V
ROBUST TOR!; ARNOL'D DIFFUSION
§1. Robust tori and “renormalization”

We do not know precisely how simultaneous approximation can be used to
prove KAM type results, although this is certainly possible. Note that such a
method would be closer to the ideas of “‘renormalization™ and especially the
original intuition of Greene in [26). This could be useful in several respects,
for example, for the study of lower-dimensional invariant tori. The only thing
we wish to mention in this direction is a simple proposition which makes more
precise the convergence of the time averages to the space average for linear
flows on the torus. It should probably be used, in some form at least, on the
way towards KAM type results via simultaneous approximation.

Let A, denote the space of functions on T” which extend analytically to
the strip {Im ¢| < p and are continuous at the boundary; A, is provided
with the norm || - ||, of the maximum over the closed strip. On the other
hand, let @ € R", let (7;); 50 be the sequence of its period, and (®;);3 o0 the
corresponding sequence of best approximations (w; has period T;; see

Appendix 1). We denote 1; = ||@;—o|| and one has the estimate
(1) S 7 < \/i < \1/_:_11_'
| LTh, 5
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Lastly, we introduce the operators M; of time average along ®; and M, the
space average; for a function g(g) on the torus

1 (%
M@ =7 [ de+un Malw)= [ slo)da
2 JO -
Then the following statement holds.
Proposition. Assume that © is Diophantine, more precisely :

3r>n—-1, v>0 suchthat YkeZ™\{0}

@) | wk| > 7|k|™", where |k1=z|k¢|.

Forany ge A, and any 6,0 < 8 <

(3) 15(6) = Mo()]- < 4,67 exp [—% (%)#] :

Note that the right-hand side may be estimated in terms of 7; only, using
(1). To prove (3), let g € L%(T") with Fourier coefficients gx, k € 2", M;(g)
is the function whose only non-zero Fourier coefficients are equal to g, for
the values of % satisfying ®;-k = 0. This last relation implies that

VR S ok | =] @ =)k | <l - w1kl = 1kl
Hence
1
(4) k> K (1),
75
where the inequality | k| = || k|| (Euclidean norm) has been used. On the

other hand, the fact that g € A, provides the estimate

x| < {lgll e,

which enables us to evaluate the tail of the Fourier series. Namely, if Ke Z,
one sets "

g2k = z getTite),
k&2 K
Then (see [6], for example):

§K
(8) ”g"K”ﬂ—G < {lgll, z e~ ** 4l < cllgll, 67" exp(-*'g—)'»
W2 K
one can take ¢, = 4" (see [7]). Letting K = K;, this implies (3), in view
of (4). O |

This rather elementary proposition is interesting in itself. It is however
unsatisfactory because it uses an arithmetical condition of linear type (here (2),
which could be generalized) whereas one would like to start from a hypothesis
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of simultaneous type, say o € Q,(t) (sec Appendix 1 for the definition). This
is by no means fortuitous. Generally speaking, linear conditions which bound

- divisors from below allow one naturally to control the evolution of functions,
whereas conditions from simultaneous approximation pertain more to the
trajectories themselves. This can perhaps be thought of as an aspect of the
Fourier (“wave-particle”) duality. One may illustrate this further by studying
directly the approximate recurrence times of a linear flow, starting from linear
Diophantine conditions of type (2) as is done in [23]. Since simultaneous
approximation of a vector is essentially equivalent to the distribution of these -
recurrence times (see Appendix 1), this is again a form of transfer principle.

In the remainder of this section we would like to pursue a purely
arithmetical track; we shall prove no new result, but shall gather some facts
and references which are little known and might be useful in a further
exploration of some dynamical questions. We shall use some notions from
algebraic number theory and accordingly refer the reader to any elementary
book on this subject, for example [50]. For motivation we shall first
formulate a conjecture. Let us consider a two-dimensional “standard” map,
that is, a symplectic map from T2 xR? 1o itself defined by

f(8,r)=(8',7'") = (6 + r'(modZ?), r + eVa(F)),
(6,r)€T* xR? ¢:T* =R analytic.

When o = 0 the tori » = @ = const are invariant under this
transformation. Let A be a space of functions with prescribed analyticity
widths and continuous at the boundary, with the associated sup norm || - |].
If © e R? we say that g = go(0) is the break-up threshold for the
frequency o if there persists an invariant torus with frequency © (homotopic
to T?x {0} C T?xR?) forany o € A, || 5|l < g and g, is maximal with this
property. On the basis of the one-dimensional evidence, one can expect the
following.

Conjecture. Consider the frequency vectors ® = (@, ©;) € R? such that

(1, @, w2) is an integral basis (over Z) of the cubic field Q)(cos(2n/7)); then,
among these, some define tori whose break-up thresholds are locally maximal in
Jfrequency — or action-—space.

We shall make this statement more precise below, so that it could be
numerically supported or invalidated; it seems however very hard to prove or
disprove analytically. The same assertion can be put forward if in the first
component of the map f one replaces 8’ = 0+r’' by 8’ = 0+ Sr', where
§ = diag(l, —1) (2x2 matrix). The convexity hypothesis then no longer
holds, so this lies outside the range of applicability of the results of this paper
and, for example, of those of [8]. It should give rise to a more unstable '
situation, both from the standpoint of finite time stability and of the existence
of the analogue of Aubry—Mather sets. These features could make the
invariant tori more important dynamically and easier to locate numerically.
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The above conjecture rests on arithmetics, not dynamics, and is linked with
the search for the two-dimensional “golden vector”, which we shall now
summarize. Apart from being interesting for its own sake, we hope this will
give an idea of how far one can go with approximation theory. We shall
need the functions v, (x) and y"(a) introduced at the end of Appendix 1, and
the Diophantine constant v, = y". The results we shall present are too
precise for simple transfer principles to hold, so the connection between linear
and simultaneous approximations usually requires detailed work; there are
even results which are proved in one of the two cases only.

It was long thought that the constant y,, is determined by vectors o such
that (1, ay, ..., o,) form the basis of a real algebraic field of degree n+1. This
‘would of course be very helpful in searching for the “worst” approximable
vectors in dimension n. However, Szekeres recently presented numerical
evidence strongly suggesting that this is true forn = 2 (the case n = 1 is
well-known; see below) but wrong for » = 3 and perhaps for n = 4
(see [55]). In fact he performed delicate numerical computations which seem
to imply that y; cannot be approached using bases of quartic fields. If this
turns out to be true, there is a qualitative difference between the cases n = 2
and n > 2; we shall henceforth restrict ourselves to the former case, which
has been the object of many more studies than the higher dimensions. From
the point of view of dynamical systems, one may remember that already at the
level of arithmetics, little is known beyond problems with three independent
frequencies, or rather two frequency ratios. This is also the lowest dimension
in which Arnol'd diffusion may occur.

Before turning to the two-dimensional case, let us briefly recall some
features of the well-known one-dimensional case. We need one elementary
property of continued fractions: if a = [ay, ..., ax, ...] and b = [by, ..., by, ..]
are the continued fraction expansions of the numbers a and b, these are called
equivalent if, up to translation, the expansions coincide for k large enough; in
other words, if there exist positive integers / and m such that a,,; = b,,.; for
any positive i. One has the following elementary assertion.

Proposition (sec [52], for example). Two numbers a and b are equivalent if and
only if there are integers p, q, r, s satisfying ps—gqr = +1 and

PG+¢I
ra+s

We now list the following properties (see again [52])

1 o= 1/V5.

i) 1 is not only an upper bound, but also a maximum, which is achieved
for example by the golden number 4 = (1++5)/2 = 1,1,1,...)J0m00) = v1),
or by x' = %—1 (x and —y' are the roots of the equation x? = x+1).

iii) The numbers o such that y,(x) = v, are exactly those which are
equivalent to the goiden number .
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iv) There is a gap in the Lagrange spectrum, that is, in the values of the
function v,(x): indeed, for any number a which is not equivalent to g,

1 1
71.(0') S \/g < \/5
In dimension 1 much more is known of course than what is listed above;
we shall see that in dimension 2 much Jess is known (and in fact is true).
First, one does not know how to prove that one may restrict consideration to
cubic fields. Leaving this question aside, the following result holds.

Theorem. Let v3 = sup{y,(e), where & = (a, b) € R?, (1, a, b) is the basis of
a cubic field}; then y; = 2[7.

This was proved by Adams (in [1]), closing a list of works on the subject
by several authors. Of course, Y5 < ¥y, and equality is strongly expected to
hold (and to be hard to prove); this is very well supported by numerical
evidence (see [55]), in contrast to the parallel statement in dimension 3, as was
mentioned above.

Let us now rephrase assertions ii) and iii) so that they can be generalized
to higher dimensions. The maximum ¥, is reached when x € Q(v/5); it is
easy to show that Q(+/3) is the quadratic field of minimal discrimant. Still
more precisely, (1, %) span over Z the ring of integers of this field (recall that

Vd+1 7if

if d € Z is squarefree, the integers of Q(v/d) are given by Z +

d = 1 (mod 4) and Z+vdZ if d = 2 or 3 (mod 4)).

As for iii), if « is equivalent to y, then using the proposition above we
have o = (py+q)/(ry+s), with ps—gr = £1, which is equivalent to saying
that (py+gq, ry+s) is again an integral basis of Q(+v/5); moreover, all the
bases are of this form. '

In dimension 2 one is thus led to investigate the real cubic fields of |
minimal discriminant. In fact (see [20] or [33]) one can restrict attention to
totally real fields, that is, those such that the roots of a defining polynomial
are all real. There is only one totally reail field of minimal discriminant
(= 49); it is Q(E), where £ is a solution of

B+’ -2r—-1=0,

the three roots of which are £ = 2cos(2n/7), £’ = 2cos(4n/7) and

E" = 2cos(6n/7). Moreover, it happens that (1, £, £%) is an integral basis of (&)
(this is far from obvious). The corresponding Diophantine constants, however,
are not very close to 2/7 (=0.286); specifically, v,(&, £2) = (&, 52) ~ 0.187.

So in fact the upper bound 2/7 is not reached in dimension 2. But more is
known in this direction, which is connected with the conjecture made above.
Let us start from the basis (1, &, £%), £ = 2cos(2n/7), of the integers of Q(E).
The other integral bases which include 1 have the form (1, a, b), where

a=m +p€+.q€-2, b= ng-—}-r{-}-s{?,
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n,n,p, g, r,sinZ, ps—gr = +1; one may restrict oneself to the case
0<a<bd< L

In [17] (which uses [15], [16]) Cusick describes a construction which allows

one, given £ > 0, to determine p, ¢, r, s such that

;27— ~ € < 1a{a,b) = ¥*(a,b) < ;
(the equality of the two constants is proved in [15]). This procedure is
effective—and algorithmic—if one knows the continued fraction expansion of
£ = 2cos(2n/7) and if this satisfies some property which is generically true
but which one does not know how to prove for this particular number.

As a last piece of information, one should mention numerical evidence
which is the only two-dimensional analogue of property iv) above known to
date: Szekeres carried out computations which indicate (see [55]) that if
a = (a, b) and (1, a, b) is not a basis (integral or not) of Q(cos(2n/7)), then
v2(0) < 2/7—8, where 8 ~ 0.03. If this is true, using the continued fraction
expansion of & and the construction of Cusick mentioned above, it is easy to
construct pairs (a, b) satisfying v»(a, &) > 2/7—38. These should correspond
to local maxima of the function y»(x) and correspondingly to the locally most
“robust” invariant tori. Of course, one could—and should-—also consider all
the intggral bases of @Q(E), given by the action of G5(Z) on the vector
(1,8 &)

We come to our last topic in this section, which is connected with a still
very hypothetical “renormalization” theory. Again, we shall deal only with
arithmetics, and in this respect simultaneous approximation is the only relevant
concept. The most robust tori should correspond to the worst and most
regularly (the two properties are intimately connected) approximable frequency
vectors, which led to the-statement of the conjecture made above. In the
spirit of this article and of Greene’s paper [26], which prompted the
development of the renormalization “ideology” in one dimension, one may
now enquire about the distribution of the closed orbits of long periods
accumulating on an invariant torus. This seems out of reach for the moment,
and we shall examine the much more modest problem of the location of the
best approximations of a given vector. This corresponds to the distribution, in
action or frequency space, of the periodic tori in the unperturbed integrable
situation. After perturbation, essentially the only information we have is that
some closed orbits corresponding to these tori will survive, however large the
period (that is, however close we approach the unperturbed torus; see the end
of Chapter IV, §4 and [8]).

Let o € R”, and let (;) be the sequence of its best approximations:

= pilq;, where p; € 2", q; € Z.+, (g;) being the sequence of the periods
of e. Is it possible that the sequences (g;) and (o;) exhibit some kind of self-
similarity? The existence of a meaningful scaling transformation corresponding
to a shift i —» i+ 1 on the indices is apparently subject to the existence of
three quantities A, p and 6, which we define as follows. |
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First let
A= lim B2
t—oo g .
when this limit exists, of course. Note that we have an a priori estimate from
below: A > 1+27""! in two dimensions, this is improved to A > 1.270
(>1.125, see [36]). The number A governs the scaling of the time variable.
Second let

p= lim ”C!,‘ - ﬂ'”
o Nl — el
if again this exists. The number p governs the scaling property of space.

Of course, in the definition of A and p one can generalize the shift i — i+1
to the more general i — i+u, u € Z, arbitrary; we have set u = 1 for
notational simplicity. In one dimension, A and p exists in particular (for some
u € Z.) for the quadratic irrationals. In the multidimensional case one must
also take account of the angular variable.

Let

6, = il L e s* 1,
g — pil|

We define 6 when n = 2; this could be generalized, but very little is known
then. For n = 2, (8;) is a sequence of points on the circle S ' and
8 e (—n, ) is defined as its rotation number, again if it exists. It is
interesting to note that for n = 1 the sequence (8;) C S% = {+1} is well
known: it has the form 8; = (—1)’, which simply means that the convergents
of the continued fraction of an irrational number approximate the latter in
turn from above and from below.

The optimistic guess is that A, p and 8 exist at least when o = (g, b} is
such that (1, a, b) is an integral basis of Q(cos(2n/7)), or more generally a
basis (not necessarily integral) of a cubic real field. Little seems to be known
in this direction; the reader interested in general results on the behaviour of
best approximations is referred to [31], [32] and [37] among others. In [56] the
authors construct vectors analogous to the Liouville numbers, whose best
approximations can exhibit essentially any prescribed behaviour, however
erratic.

There is one tool for studying approximation which we have not yet
mentioned: multidimensional continued fractions. We shall say a few words
about it, and this is more of a pretext to introduce references; some of them
would be quite useful if one wants to study numerically the conjecture made
above or related questions. We first recall that a continued fraction
algorithm is a scheme which, given an n-vector, produces, as in the one-
dimensional case, a string of digits from which one may construct a sequence
of rational vectors which approximate the original vector with increasing
precision. There are several requirements which may be asked from such an
algorithm. They are discussed in [54], to which we refer for a simple and
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careful discussion of various possible schemes; the upshot is that all the
requirements cannot be met simultaneously, so that, in contrast with the one-
dimensional situation, there is no optimal algorithm.

Returning to “renormalization”, the self-similarity properties of the
best approximations are reflected in the periodicity properties of the
multidimensional continued fraction, and it is tempting to ask which vectors
correspond to periodic fractions. Here one comes across a deep arithmetical
phenomenon: for vectors which are bases of number fields, all the continued
fraction algorithms are linked with the search of the units of the field. By far
the most favourable case arises when the group of units is monogenic (that is,
generated, multiplicatively, by one element); but, by Dirichlet’s theorem
about the structure of the group of units of algebraic fields, this is the case for
cubic fields if and only if the field is not totally real. In fact, the following -
stronger property holds: if a continued fraction algorithm yields all the best
approximations, it can be periodic on the basis of a real number field only if
this is quadratic or cubic and non-totally real. This result is due to Mahler,
whose original article [39] we recommend, particularly to the amateur of
algebraic number theory; the case of the field Q(cos(2r/7)) is treated there in
detail. Note that one cannot hope to obtain only the best approximations; all
algorithms also yield spurious approximations, which are not particularly -
good.

To summarize, the worst approximable vectors in dimension 2 correspond
to integral bases of a totally real cubic field, whereas the vectors whose
continued fractions are the most regular and the easiest to compute are
associated with bases (not necessarily integral) of real, non-totally real, cubic
fields, for instance Q(/m), m € Z+; [19], [9] and [22] are devoted to the
study of this last example. |

One is then faced with an alternative: one can either weaken the
requiremnents to be met by a continued fraction algorithm or modify the
notion of best approximation. In the first direction, Szekeres has proposed in
[54] (see also [18]) an algorithm which generalizes the classical Jacobi—Perron
scheme. The last example which is examined in [54] is precisely that of the
2-fraction of (&, £?) (£ = 2 cos(2n/7)), of which the first 100,000 digits have
been computed. This heavy computation made it possible to conjecture that
there enter only 1’s and 2’s, and that the fraction is almost periodic in some
precise sense; this was proved by Cusick in a long paper [18] which is entirely
devoted to this fraction and is a real tour de force. Apgain we mention this
partly because it indicates that all the arithmetical computations linked with
the conjecture about robust tori are already available in the literature.

In the second direction, concerning the very definition of best approximation,
one may note the elementary fact that in dimension 1 the approximations we
have defined are approximations of the second kind: if o € R, one minimizes
lga—pl, g€ Z+, p e Z. Approximations of the first kind, which minimize
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|le—p/q], are in some sense more natural, but they do not all appear among
the convergents of o. In dimension », approximating & means approximating
the straight line in R™*' directed along (1, o) by the integer lattice Z"**; a
natural way to evaluate the approxiamtion is, for example, through the
Euclidean distance to this line. For all these questions, which give rise to
many open problems, we refer in particular to [20], [9], [36] and [22]; again
these articles examine in detail the case of cubic fields.

§2. Amol'd diffusion

The purpose of this section is twofold: first we would like to elaborate a
little on the heuristic picture of Arnol’d diffusion which emerges from the
results of this paper. Then we shall develop a non-rigorous but suggestive
argument in favour of showing why these results should be close to optimal,
as far as the stability exponents are concerned. Throughout this section, we
shall assume that the reader has a nodding acquaintance with the original note
of Arnol’d ([3]). We note that the term “diffusion” is somewhat unfortunate
(in [3] Arnol’d speaks of ‘‘topological instability”), because the phenomenon is
probably too complex to be modelled rigorously by simple stochastic processes
enjoying the Markov property; ‘we shall however comply with the widely
accepted terminology. We do not wish to discuss the difficulties linked
with a rigorous treatment of Arnol’d diffusion, which are far from understood,
and we shall stay at an essentially heuristic level. Let us only mention that in
[21] an example is constructed which allows us to avoid the main difficulties
(but not to solve them); so in this very particular case, the construction put
forward in [3] has been made rigorous. Lastly, for a physical approach to the
phenomenon and its physical relevance, we refer in particular to [12] and [13],
where it is forcefully demonstrated why it should “look like” a diffusion
process with a well-defined diffusion coefficient (see also the end of this
section).

The results of Chapter III allow us to estimate the velocity of Arnol’d
diffusion from above, that is to estimate from below the time needed to
produce a drift of order 1 of the action variables. But our method also
suggests a different picture of the phenomenon. Let us start again from the
familiar Hamiltonian H{(p, q) = h(p)+ef(p, q). Here we may as well assume
that A(p) = (1/2)p?, so that action and frequency spaces coincide; for other
convex unperturbed Hamiltonians, the picture is only slightly distorted by the
frequency map. The trellis formed by the rational planes in frequency space
or resonance surfaces in action space naturally goes along with the use of
linear approximation; it is termed ‘“‘stochastic web” in the physics literature.
On the other hand, simultaneous approximation is associated with the rational
lattice formed by the rational points, properly weighted with their periods.

A vivid illustration could be obtained in dimension 2 or 3 by plotting these
points on a screen with a brightness or brilliance depending on the period.
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The rational planes then appear as ‘“caustics”, since they are loci on which the
“irrationality dimension” drops (see Lemma 3 of Chapter III).

In any case, the resonance trellis and the rationa! lattice are dual objects
which carry essentially the same information. Using the latter, it seems that
Amol’d diffusion could be heuristically described as follows. One restricts
attention to the action space (which coincides with frequency space when
h(p) = (1/2)p*) and uses only Theorem 1B with 1/2 in place of 1/3, that is: -

1p(0) || < rov/E implies || p(t) | < R/ for [t] < Toexp(-f%) and € small

enough, where the origin p = 0 has been set at a point (a torus in phase
space) of period T. Of course, we did not prove exactly this statement, but
this section is non-rigorous anyway, and we are more interested in offering a
simple picture which could perhaps be implemented numerically. Concerning
the constants, one may set m = M = E = 1, and looking at formula (29) in
Chapter II, one sees that for numerical purposes one may set for example 7
= 1, Ry = 10, whereas T, and T are relatively “‘small” constants, the exact
value of which is not crucial.

Now let p(0) be an arbitrary initial condition; draw a ball B(p(0), /&)
of radius /e around p(0) (ro = 1) and look for a rational point p of
minimal period T lying inside this ball. Note that this specifies a unigque
point because two points of the same period T are at least 1/T apart and
1T > 24/e = diam B(p(0),+/c). The point p(r) is then a priori allowed to .
oscillate “randomly”, with a speed of the order of /¢ inside B(p, 104/€), the

ball of radius 104/ (R, = 10) around p, until the time 7, = Tyexp (?Tz) has

elapsed (with an appropriate choice of 7 and 1, say of the order of 10~1).
However, when for some ¢/, 0 < t' < t,, p(t') lies within /& of some
rational point p' of period T', one may apply the same rule with respect

to p’, starting at time ¢’. So one should compare 7, with 7'+ ¢!, where -

t' = Toexp (?f—/—g), and possibly consider the ball B(p’, 104/) for further

reference (in fact, during some time, one should even consider the intersection
of B(p, 10/e)and B(p’,104/€), but since we are describing a qualitative and
non-rigorous mechanism, this is probably unnecessarily elaborate). In other
words, if p(z’) lies in the influence zone of some rational point with
sufficiently small period, that is, long enough trapping time, one switches
consideration to this point and starts the process afresh. It is now obvious
that this will always happen for some ¢’ < t., so the whole process is well-
defined over any interval of time. |
One could perhaps think of it as a ball (rather than just a point) trying to
make its way amidst very “sticky” points (the rational points) or on the
contrary a “Brownian” particle amidst sticky balls. One should however not
be misled by this image and keep in mind that everything is time reversible.
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A nice feature of this model is that because there is no integration to perform,
it can be “speeded up”, using a logarithmic timescale, with a particle moving

exponentially fast trapped in a ball over a “time” of order —

TVe
Of course, this crude model also suffers from many defects, insufficiencies
and oversimplifications, and we shall proceed to list but a few.

1. The model is so “universal” that it does not even depend on the exact
form of the perturbation (!), the latter being only assumed to be “generic” in
a vague sense. In fact, one works in action space only, which does not allow
one to do justice to the complexity of the problem. This is in some sense
tantamount to some kind of “random phase approximation”, a device which is
very common in physics and very difficult to justify or even express in a |
mathematically sensible way.

2. Related to the above is the fact that we consider the motion of the
particle inside the ball as “random”. Here we seemingly do not take
advantage of one piece of information which is crucial in Nekhoroshev’s
proof; namely the oscillatory motion should, in the mean, be transverse to the
resonant surfaces (see [43}). This is guaranteed by the convexity assumption,
which, from that viewpoint, arises precisely as a strong transversality condition
(which can be relaxed to a weak transversality condition, namely steepness). It
is still unclear how Nekhoroshev’s mechanism of “detuning”, that is, drifting
towards a non-resonant region, can be fitted into the picture; it does not even
seem completely clear to what extent it reflects reality or only the proof
method. Quite the opposite, it could somehow be built into the picture of the
resonant surfaces appearing as “caustics” of the rational lattice.

3. Another piece of information which is conspicuously missing is the
existence of the Kolmogorov tori (invariant tori of maximal dimension).

Again these cannot be properly represented in action space since they are
distorted with respect to some of the unperturbed tori (which appear as points
in action space). It ought perhaps to be mentioned that the dynamical
importance of the tori for systems with more than two degrees of freedom is
difficult to assess. In other words, there could exist in some (many?) cases a
typical “Nekhoroshev regime”, that is, an interval of values of the small
parameter ¢ for which “most” tori are destroyed but such that Nekhoroshev
type estimates are still valid; that is, it may be that 0 < ex < &n £ 1,
where, roughly speaking, £x and &y are the respective thresholds of validity for
the KAM and exponential time theories.

Now Kolmogorov tori also tend to “trap” (but not “attract”; again
everything is reversible) nearby trajectories over exponentially long times. This
corresponds to the two-parameter Gevrey type estimates which were alluded to
at the end of Chapter IV, §2. This points again to the kind of duality
between very resonant and very non-resonant frequencies which was discussed
above (see especially Chapter IV, §1) and also reflects the fact that “classical”
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perturbation theory, including estimates over exponential times, and KAM
theory still do not fit quite well together. In our opinion this enhances still
more the value of Kolmogorov’s insight about the possible existence of
invariant tori.

4. Also absent from the picture are other well-known objects, in particular
the lower-dimensional invariant tori, down to the periodic orbits. All these
objects, which of course can be represented only in the full phase space, form
a set of zero Lebesgue measure, contrary to Kolmogorov tori, but do also
correspond to some exponential time estimates in their vicinity, although these
have never been worked out and some may be technically rather cumbersome
to write down. Moreover, these tori go along with stable, central and
unstable manifolds which also play a role, and indeed an important one, since
they are the core of the original analysis of Amnol’d in [3]. At last, one
should mention possible cantori (Aubry—Mather sets) about which little is
known, only that one cannot draw a complete parallel with the two-
dimensional situation and that convexity plays a prominent role (see the end
of Chapter IV, §4).

The above remarks should have convinced the reader that our model can at
best provide a crude “macroscopic” description of the phenomenon, one that
may be implemented numerically. As such it may be of some value and one
can hope to eventually extract some quantitative information from it,
describing some features of this particular process. These could then be
confronted with the results of the already existing numerical experiments on
Arnol’d diffusion. |

As far as a “microscopic™ rigorous description of Arnol’d diffusion is
concerned (or indeed a rigorous statistical description) the task looks rather
formidable, and we make only one simple remark. In order to substantiate
such a picture as the one described above, or even a small part of it, in a
rigorous way, one would have to consider the linearly unstable closed orbits as
the elementary bricks for the construction, instead of the transversally
hyperbolic (n— 1)-dimensional tori. Now suppose that o € R? 1<d<n-1)
is Diophantine, say it satisfies

3y >0 such that |w-k | >y[k[* VEe Z4\{0].

Then tori of dimension 4 and frequency @ which are transversally hyperbolic
will in general exist for 0 < € < g5 = &(Y), and go(y) tends to 0 together
with v. Instead, for d = 1, we have already mentioned (see Chapter IV, end
of §4) that closed orbits of period T will in general exist for & < €o
independent of T. Here T and y play very similar roles, ¥ being connected
with the approximate recurrence times of the linear flow directed along ® (see
Appendix 1). The upshot is that generically, given &, there will be instability
regions where no torus survives, whereas this does not occur with closed

orbits. This may be quite important in trying to construct transition chains in
the sense of [3].
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We now return to the more conventional picture of Arnol’d diffusion, using
transversally hyperbolic (“whiskered”) tori, with the purpose of examining the
optimality of the stability exponent a(#) found in Chapter III. The
computation below can be read as an interpretation of certain reasonings of
Chirikov, in particular in the last section of [12]. We consider the
Hamiltonian
1

(1) H=2

' % I + g(cos g — 1)(1 + pF(8)),

where
(p.g) € R x (R/2xZ), (I,8) € R™ x (R™/27Z)".

The number of dimensions is N = n+1 and the name of the variables has
been modified in order to focus interest on a neighbourhood of the simple
resonance surface p = 0. Moreover, € and p are perturbation parameters,
and F is a real analytic function with analyticity width o > 0; for
convenience; we assume that it is even and write

F(8)= ) fecos(k:g), with foi=fi
keZ™\{0}

The Fourier coefficients satisfy the estimate | f;| = O(e~ ") with

ki = Z|k;|; in view of possible numerical experiments, one can think of the
following two examples: f; = ¢~ °% in which case the series may be
summed explicitly, and fi = exp(—clik|/®), (||-|| is the Euclidean norm)
which defines an entire function which is almost a theta function. We
decompose H into H = H,+ H,+epd(g, @), where

1 1
H, = -2-p"’ +e(cosg—1), H,= 51’.

When p = 0, Hy = H;+ H, has invariant tori of dimension n = N—1
definedbyp = ¢g=0,1 = o, ¢ € (R/2rZ)", we write © = [ only to
underline that this is a frequency (0 = VH,). With respect to Arnol’d’s
example in [3], the generalization consists in the fact that the dimension is
arbitrary (so one can consider an autonomous Hamiltonian), but more
crucially in that the perturbation term includes arbitrarily high harmonics.
Hyperbolicity is absent when ¢ = 0, which points to the degeneracy of the
problem, and we have introduced, as in [45] and [3], two parameters to get
round a difficult singular perturbation problem (see a brief comment below);
also, still as in [3], the perturbation vanishes on the tori, which are thus all
conserved, a highly non-generic feature.

We shall now give in detail the computation of the Poincaré—Melnikov
integrals for H, in which small divisors will arise. When p > 0 the stable (+)
and unstable (—) manifolds of a torus are defined by equations of the form -

1 1 .
leAi(Q:p)Iié)) EI;=EW§+A3:(Q1P?I:¢): 1= 1}"'5”“
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A% and AF (bere indices designate the components of a vector) vanish when
p = 0; the classical Poincaré~Melnikov computation consists in evaluating—
at least formally— these functions to the first order in p. More precisely, let
(p(2), q(1)) be the solution of the pendulum equation described by H,,
corresponding to the separatrix (say its upper branch) and such that g(0) = n:

g(t) = 4arctane®, p(t) =4(1) = 2\/5.1, T = kL

One has
dfl,y__,0H 1 ,0F
(52) =T, = 5457 5

dt
since I; = o; and H; = 0 on the separatrix. The linear approximation
consists in substituting the unperturbed trajectory for the perturbed ore in the
integration. One computes the differences A = A¥—A~ and A = A —A;
in the plane ¢ = =, which we denote by § = 8H,; and 3; to this
approximation. These quantities represent, to the first order in p, the distance
of the projections of the stable and unstable manifolds in the planes (p, g)
and (I;, ¢)); they are functions of the initial angle ¢® on the torus (see
below), of its frequency ®, and of the parameters which describe the
perturbation. We thus obtain the version of the Poincaré—Melnikov formula
for this example; in particular, :

1 [+ _8F
(2) b5 = HH; -[-oo p ngdi-

For a harmonic f; cos(k- @) of the perturbation, the contribution 5}" is
given by

1 e
HES —Epfkwjk,-/ p*sin(k-¢(1))dt,

where ¢(t) = ¢ +ar describes the unperturbed trajectory. One finds that

in(k.3©
(3) g = —2npfulw, b) 2P )

r wik
smh(? 7:-)
After a summation over j, we obtain the contribution of harmonic & to H.,,
denoted as §%H,:

Ujk_,'.

sin(k - ¢(?)
sinh (3%
In a similar way one can compute & = 8K, and find that
8H, = —8H,(= —X;5;). This result is not surprising, given the decomposition

of H, since the latter is invariant and epd® is negligible to the first order in p
(this term is in fact of a still higher order because ® oscillates).

4) §*H, = ~2npfi{w, k)
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The reasoning then goes very roughly as follows (see [3]): in order to
construct a ‘‘transition chain” between hyperbolic tori, one looks for
heteroclinic intersections, here in the plane ¢ = w, between the stable and
unstable manifolds of two tori with respective frequencies ™ and @®. One
must then solve the system

1 -1 .
A= AH, =0, 2;"+A“’ 2u§.” +AP*, i=1,...,n

If the difference between the frequencies is small with respect to p, the
solvability of the system is equivalent, by the implicit function theorem, to
that of the following linearized system, where & and the §;’s are computed at-
a common intermediate value © lying between o and m(z)

2
(5) §=0, ,--—%wj”’ ; Wi, j=1,m

However, in *“real” problems there is a link between p and g, of the type
p = gf (p € Z,) and the problem of justifying this linear computation is
quite difficult; only the one-dimensional case has been investigated. To our
knowledge, the most precise formal computations can be found in [45] (§225
et seq.), which we urge the reader to consult; in the introduction of [29] he
will find a discussion of the many circumstances under which such a singular
perturbation problem arises: in two words, it stems from the fact that
integrable Hamiltonian systems contain no hyperbolicity, the latter being thus
of the same size as the perturbation. A problem of this type but in one
dimension was solved for the first time only quite recently, by Lazutkin and
coworkers (see [38]). Here we shall simply point out this difficulty and go on
with the linear computation.

Pursuing Arnol’d’s reasoning, the maximal step in the transition chain, that
is, 1 0@ —oM||, is essentially determined, according to (5), by the size of the
Poincaré— Melnikov integrals, and if one can neglect the time necessary to
achieve one step, with respect to the number of steps, then the average
velocity of Arnol’d diffusion, that is, the inverse of the time necessary to
produce a drift of the action variables of the order of unity, will be
approximately equal to that same number. The above heuristic considerations
are summarized in the following *“‘equation’”:

Average velocity of the diffusion = splitting = splitting in the variational approximation,

where the first “equality” sign is to be understood in the sense that the two
quantities are of the same order of magnitude and the second in the sense of
asymptotic expansions. Roughly speaking, the justification of the first is
subject to the solution of hard geometrical problems, and that of the second
poses hard analytical problems.

If one believes in this, one can estimate the average velocity and find, in
the case of the Hamiltonian examined in [3], that it is of order e~v%, The
situation for the Hamiltonian H above is complicated by the appearance,
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in formulae (3) and (4), of the expression -k, or rather the combination
(o-k)/+/€; this expresses an interlacing of hyperbolicity (heteroclinic
manifolds), singular perturbation (factor 1/4/€), and ellipticity (*“small divisor”
@- k), this last ingredient being new, and of course generic. This factor may

a priori assume essentially any value, and this seems to invalidate the
variational computation a la Poincaré—Melnikov completely, even from a
formal point of view. Indeed, for suitable values of the small divisor one may
predict any value for the speed of diffusion, including one which contradicts
Nekhoroshev type estimates.

Looking at the above a little more carefully, however one sees that the
factor (@ - k)/+/€ arises from the possible resonance of the frequency vector @
of the hyperbolic torus with the relative frequency k/+/¢ of a harmonic in the
- perturbation. But recall that the frequency vector of the Hamiltonian H is
really (0, @) € R¥, so a resonance of o indicates a double resonance for H. ,
Our prescription now will be to stay away as far as possible from these double
resonances, which means assuming that o is a Diophantine frequency; there
are at least three good reasons for this.

First, in general, the only transversally hyperbolic tori to arise will be
precisely those corresponding to Diophantine frequencies. Here, of course,
this is a rather bad argument since all the frequencies coexist.

Second, the variational argument above is adapted to single resonances. If
one stays on an r-fold resonance {1 € r < N-1), that is, if one examines
transversally hyperbolic tori of dimension 4 = N—r, one must in principle -
compute an r x r matrix of functions.

Third, by the result of this paper, if we want to maximize the velocity of
Armol'd diffusion, we should stay away from resonances of high multiplicities.
Indeed, if two. points in action space with the same unperturbed energy lie on,
say, two simply resonant surfaces which intersect on the unperturbed energy
surface, to go from one to the other necessitates a passage through a double
resonance, and this causes the first stability exponent to increase (by
Corollaries 2 and 3), that is, the velocity of the drift to decrease.

With this in mind, let us look back at formula (3). Up to now, the only
condition has been 8 = 8H; = 0, which constrains the vector I (or ) to
move on a sphere (|{I}| = const). Now we set sin(k-0®) = +1, because we
maximize the splitting over the initial angle (note that when k tends to
infinity, the condition |sin(k-¢)| > const partitions the torus into thinner
and thinner strips). We add the condition that o is Diophantine, that is, it
satisfies the familiar inequalities

3r2n-1,y>0 suchthat |w-k |27k, Vkez"\{0}.

We can at last perform the following estimate; look at the harmonics k&
such that

VEC|wklr L«

Ll
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assume that the amplitude | fi| is of order ¢~ !, According to formula (3),

this harmonic will coptﬁbute to the splitting of the stable and unstable
manifolds a term

5fﬁﬂlkl"e“’""exp[-— £ ]

VElk]

where p = ny/2- Let us now e?:tremize (maximize) this quantity with respect
to k, with ¢ held fixed. Af:cordmg to the considerations above, this will yield
the maximal p ossible sf;ep in a tfansition chain and, roughly speaking, the
maximal average velocity. One immediately finds that for ¢ < 1 one must

have [k| ~ (%E)ﬁs'mlr”, 50

for some constant > (Which can be computed easily). By far the most

) . 1
important feature of this formula is the exponent m of ¢ in the iterated
exponential. In particular, setting T = n, one finds that the velocity decreases
like exp(— ce~2) (N = n+1), which is almost identical to the estimate from
above found in Chapter IIL To tell the truth, one could even set 1 = n—1]
or rather use any T > .n—-l to define a set of frequencies of relative measure 1,
and this would result in a slight overestimate of the velocity, with respect to

stability results: this is not really troublesome, in view of the many

assumptions to which the above computation is subject.

In the same perspective, if one would try to perform a similar computation
for r-fold resonance }vc have. already mentioned that one would need to
compute an r X7 matrix, and 1t. is conceivable that from the point of view of
the exponent this would .result In a replacement of n by d = N—r above,
because of the Diophantine conditions on the frequency; we would recover in
this way the stability exponents of Corollary 2. The fact is that stability
exponents are Very rough, hence very robust indicators which in particular are
insensitive to many algebl"alc operations. In more intuitive terms, one can say
that the more the dimension of the hyperbolic torus, the more important can
be the resonanct O thg perturbation with the linear flow the torus carries,
even if this resonanc 1s assumed to be minimal, given the dimension.

We have already said that the reasoning above is closely connected with
estimates that Were perfox:med by Chirikov in a rather different language.

This led him to predlctxon. of the “‘diffusion coefficient”, with an exponent
again equal to ! /(21\(), N 'bemg the: number of independent frequencies.
Although they ar dlmen.smnal-ly different, the “diffusion coefficient” (which
cannot really be deﬁf’ed m a'r.igor?us_ Wa}’) .and the “mean velocity” essentially
point to the same thing. Chmkoy s prediction has been checked numerically
and the agreement S8 good, given the great difficulty of the experiments
(see [13]). Thanks 1 the results of the present paper, one can say that the
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stability results which estimate the speed of Arnol'd diffusion from above and
the heuristic reasonings which provide rough estimates for it essentially touch
each other, at least as far as the exponents in the iterated exponentials are
concerned. '

APPENDIX 1
SOME DIOPHANTINE APPROXIMATIQN

Here we briefly recall, for the convenience of the reader, some simple
results from approximation theory, referring to the specialized monographs
(especially [11] and [52}) and articles for more details and many more results.

Let o = (o, ..., &) € R”, two important and related problems consist in
studying the simultaneous and linear approximations of . In the first case, -
one is interested in the sequence of numbers |iga]lz, g € Z (or I), in the
second, one considers the value of o k|, k € Z". We recall that we use the
notation

elly = inf Ho— (e,
leliz= inf lla =i

where || - ||, denotes the sup norm (largest component). A more general
problem is to consider the size of p linear forms on R and this viewpoint is
technically very useful, even for proving results on simultaneous or linear
approximations, but we shall not enter into this.

It is obviously equivalent, from the standpoint of simultaneous approximation,
to approximate o € R” or (1, o) € R"™!; this is why the simultaneous
approximation of o corresponds to inhomogeneous linear approximation. One
considers the values of |ko+o-k|, ko e Z, k = (ky, ..., k,) € Z7, that is, the
values of ||a-k||z. Also, to obtain good transfer properties, one should use
(k| = sup;lk;| to estimate the size of k. One thus defines '

Lasrn)
u(r7) = {@ €R", Ve €N\T} Theliz > (1),
Qn(r) = 11;10971 (r )
Q"(r,7) = {2 R, VE€Z™\{0}, || -k [z > 71K},
Q™ (r)= TLJDQ (r,7);
The inclusion properties

Qn(1,7) C Qu(72,y) for = <7,
() Ch(nm) for m>m

are checked by inspection, along with the analogous properties for the sets
Q"(z, v). : ' :
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We shall first present a few simple properties of the sets Q,(t, ¥) and then
state a transfer theorem which in particular allows one to translate these
properties for Q"(z, 7).

A vector is said to be badly approximable if it belongs to Q,(0). It is not
obvious that this set is not empty, but one may in fact exhibit explicit
examples: any vector & such that (1, oy, ..., &,) constitutes a basis of an
algebraic field (of degree n+1) over ® is badly approximable; this simple
proposition is the multidimensional version of Liouville’s theorem about the
approximation of algebraic numbers. :

On the other hand, a vector is said to be very well approximable if it does
not belong to the set Q,(z) for sufficiently small T > 0, which is the same as
requiring the existence of € > 0 such that the inequality ||gull; < ¢~/ *
has an infinite number of integer solutions. With these definitions, the
following proposition holds.

Proposition. Almost all vectors are neither badly nor very well approximable
mes 2,(0) = mes(R" — QDQ.,,(T)) =0.

This means that the estimate in Dirichlet’s theorem is almost nowhere
optimal (because mes Q,(0) = 0), but that the exponent 1/n of g~ '™ can be
improved almost nowhere. This proposition is a special case of a basic result
in the metric theory of approximation, which may be stated as follows.

Theorem (Xhinchin). Let ¢ : N — R be monotonically decreasing. If the
sum Z((p(q))" converges (respectively, diverges), the inequality || qoliz < o)

q20 , . . . .
possesses, for almost all o, a finite (respectively, infinite) number of integer
solutions.

- This theorem may then be applied with ¢(g) = g~ '™ or even

o(g) = (glog )~"" (g > 1, divergent case) or on the contrary o(g) = g~ ln-E
(e > 0 orolg = (g log® ¢)~ /" (convergent case). Note that the statement
in the theorem is easy to prove in the convergent case, much less so in the
divergent case. There is a more precise version in [52] (due to Schmidt).
Note also that although Q,(0) has zero Lebesgue measure, its Hausdorff
dimension is equal to n. -

We may now introduce the positive valued functions 7. and 1* on RrR"
defined as

r.(a) = inf{‘r >0 suchthat ac€ Q,,(‘r)},

*(a) =inf{r 20 such that « e Q*(n)}.
In general, of course, these lower bounds are not reached, that is, o does not
necessarily belong to Q,(t.(2)) (or Q"(t*(»)). One may restate the definition

as
b
r.(a) = inf{r >0 such that |jgaljz < ¢~ ="*"

has a finite number of integer solutions}.
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A similar statement holds for t*. One has then the following transfer
theorem.
Theorem. i) For any o € R”
(a)
(n=1)r*(a)+n’

nt*(e) 2 7.(a) 2
if) Q.(0) = Q(0).

The metric theorem stated above implies that t.(x) = 0 almost everywhere,
hence t*(e) = 0 almost everywhere. This theorem says in particular that the
notion of being badly or very well approximable does not depend on the kind
of approximation.

One advantage of simultaneous approximation is that one need only
consider a sequence of numbers (indexed by the positive integers). In fact, one
may often restrict oneself to the best approximations. Let us first introduce
the corresponding periods (this last name is not standard terminology, but we
do not know of any widely used term).

Definition. For any vector a € R", its periods (g;); » o are the positive integers
such that

go=1and Vge N, ¢ < g1 = lgallz > llg:ellz.

One of the components of @ may be rescaled to unity, so one may assume
that « = (1, &), ' € R"™'. For n = 2, the g;'s are the denominators of the
convergents of the continued fraction of «’. In any dimension one may define
integer vectors p, such that

llgiallz = Haix = piffec-

The rational vectors o; = p;/q;, pi€ 2", g; € N, with periods g¢;, are called
the best (Dirichlet) approximations of «.

Turning to dynamics for a short while, one may note that the periods are
linked with the approximate recurrence times on the torus. In fact, let
® = (1, ®') € R” with associated periods (T7), and let F’ be the linear flow
on the n-dimensional torus along .

dET = F(¢)=d+wteT™

Consider C(8), 0 < 8 < 1/2, the cube centred at the origin with sides along
the coordinate axes, of length 23 (viewing T” as R"/Z"); finally, let T(5) be
the return time into C(8) for a trajectory starting at the-origin. Then, apart
from some trivial exceptions, | .

T(8) = T; + O(6), where i is the smallest index such that ||Tiw||z < &.

This is in fact simply a dynamical restatement of the definition of the periods.
In the present article, when studying canonical perturbation theory, we thus
substitute the use of the periods for that of the small divisors, or the
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recurrence times for the resonances. Dirichlet’s theorem asserts that
T(®) = O(B~"""), which is almost obvious.

Coming back to arithmetics and o € R”, Dirichlet’s theorem is also seen to
be equivalent to the sequence of inequalities

-1 .
lgsedlz < 9,7, #20.

We may now introduce yet another type of Diophantine conditions by
defining

Arm) = {a €R™ V20 gus S 71*7),
Q)= U Q(r,7).
¥>0

We thus require that the sequence of the periods does not grow too fast.
Imposing a polynomial bound is largely arbitrary, as is the case for the other
Diophantine conditions. It is important to point out that the sets Q(t, y) do
not really describe the rate of approximation, but rather its regularity. In
particular, if « = (0, a') with 0 € R", &’ € R? (d+r = n), then o € Q(x, y) if
and only if o’ € (1, ¥). This is why in some sense this set is independent
of n. In other words, when a vector is resonant, a trajectory of the
corresponding linear flow on the n-dimensional torus is not dense; rather, the
torus is foliated into tori of lower dimension over which the trajectories are
dense. Belonging to €2(t, v) or not depends only on the motion on these
lower-dimensional tori. It is conceivable that this kind of arithmetical
conditions turns out to be the most useful or natural under various
circumstances.

Finally there are some straightforward inclusion relations which relate these -
and the previously defined sets. In particular,

Q.(r,v) C Q(r, 4=+,  hence Qa.(r) C Q7).
To prove this, let o € §, (1, ¥); then, in particular, for any ¢

1
AL A
(;) < laiallz < qa+1! .

which implies the above inclusion (as we have already observed, inequality on

the right is equivalent to Dirichlet’s theorem). We thus also obtain
mES(R \n«r>o Q ) = 0

but in fact much more is true; as was noted above this statement holds with
R” replaced by any rational plane (the “‘resonant” planes of dynamics).

As a final topic, let us examine the set of badly approximable vectors a
little more closely. We use the notation Q, = Q,(0) = Q%0), Q = Q(0).
One has Q, C Q, which means that the sequence of the periods of badly
approximable vectors increases at most geometrically. More precisely,

Q.0,7) C QO, v~ (y > 0), that is, when « € Q,(0, v), the correspondmg

periods (g;) satisfy ¢; € v~ ' (g0 = 1).
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In the other direction, for any o € R” this sequence increases at least
geometrically (when it is finite, that is, when at least one of the components of
the vector is irrational). If fact, for any «

lim(qi)"f’ > gn >0,
with an explicit estimate g, > > 1+27"! (see [36]). By analogy with the case
of dimension 2 (or 1 depending on the terminology), one could say that badly
approximable vectors are of constant type.
For these vectors one can define v,(¢) and y"(¢) as
(o) = Im glleally, 7"(e)= lim [K[Z]] ok |-
g—00 ' ffoms 00
True, these functions can be defined for any vector, but they vanish if it is not
badly approximable. Equivalently:

1
1n(e) = inf {7y > 0 such that |j¢allz < (%) o

has an infinite number of integer solutions},
with a similar definition of y"(x).
The n-dimensional Diophantine constants are defined as

tn = sup{ra(e),a €R"}; 7 =sup{y"(a),a €R"}.
The following transfer theorem holds.
Theorem (Davenport; see [20]).
="

This is a more subtle result than the transfer theorem quoted above, and its
proof uses the characterization of the Diophantine constants in terms of
geometry of numbers. Except in dimension 1, y,(2) and y"(x) are different in
general, We may also define v, as

1
9» = inf{y > 0 such that for any e €R", |lgallz £ (:;“) )

has an infinite number of integer solutions}.

From this definition and Dirichlet’s theorem it follows that y, < 1, which
may be improved to vy, < (n/(n+1))" (see [11] or [52]), which again may be
improved still further. Considerations from the geometry of numbers allow us
to show that, in the other direction, v, = 1/A,+;, where A, 4+ stands for the
modulus of the smallest discriminant of a real algebraic field of degree n+1
(Furtwingler, 1928); one may also improve on this result (see [30] and [33]).
Here, in Chapter IV, §5, some results about the two-dimensional Diophantine
constant are discussed, in connection with dynamics.
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APPENDIX 2
GEVREY ASYMPTOTIC EXPANSIONS

In this Appendix we shall first recall a few definitions and standard
properties about Gevrey properties of formal series and the functions
asymptotic to them, referring once and for all to [49] (among other sources, of
course). One motivation is the hope that further investigations along these
lines will result in a deeper understanding of the divergence of the series which
occur in canonical perturbation theory. We start with the following definition.

Definition 1. A formal series Za,z" € C[[2]] is said to be Gevrey of order k
(k a real positive number) if there are constants C > 0 and M > 0 such that

(1) for any n >0 |a.] < CM™(n}).

The algebra of these series, which is stable under derivation, is denoted by

Clzlle. Of course, Cllzlle C Cllzllk if kK > k', and C[[z]]l, = C{z}, the
algebra of convergent power series.

Definition 2. Let f(z) be a function defined and analytic over an open
sector S':

S:{ZEC, Bo<a.rgz<91, 0<IZI<R}3

and let f=3a,z" be a formal series. By definition, f admits f as an '
asymptotic expansion at 0 over S if for any proper subsector S’ of S (defined
by inequalities 6y < 8g < argz < 6] < §;))andany N > 0

N
f(z)= z:a,,z“ + zNRN(z),

n=0

where Ry is defined in S’ and Ry{z) - 0 when z — 0 in S".

Definition 3. A function f analytic in a sector S is said to be Gevrey of
order k if it admits an asymptotic expansion f > a,z" at the origin, and for
any proper subsector S’ of § there are constants C' and M’ (possibly
dependent on S’) such that

(2) sup
se s’

< C'M™(n)E.

f™)(2)
al

The algebra, stable under derivation, of these functions is denoted by
Gi(S). Of course, if f € Gi(S), then f®(©) = n!a, and f€ C[z]}y; moreover,
by (2) and Taylor’s formula,

n~1 n 3
(3) V>0, If(z) Za,z”l < C'(M'jz])" (nl)E.
p=0
Conversely, using Cauchy s formula, it is easy to prove that f e Gi(S) 1f (3)
holds true over any proper subsector S’ of § (and possibly different constants
C’ and M'). On the other hand, (3) implies the following proposition.
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Proposition 1. Let f e Gi(S), f= " a,z" its asymptotic expansion at the origin, |
and S' a proper subsector of S. There exist positive constants A, B, C such
that '

4) Vze S lf(z)— E Gn2"

n<Ajz|—k

__c
< Be BF,

To prove this, just minimize the right-hand side of (3) over n for fixed |z},
using Stirling’s formula to estimate n!. The upshot is that using a least term
cut-off, Gevrey asymptotic expansions naturally lead to exponentially small
remainders with exponent k for functions in Gi(S). Unfortunately, there is no
simple converse to this proposition, that is, inequalities (4) are strictly weaker
than (3), although they are essentially equivalent for ‘“‘well-behaved” functions.
This is the case in particular when all the terms of the expansion vanish:
specifically, we say that f e Gi(S) is flar at the origin over S if f = 0, that is,
if a, = 0 for all n = 0. Then the following proposition holds.

Proposition 2. A function f € Gi(S) is flat if and only if it is exponentially
decreasing, that is, if for any proper subsector S’ there are positive constants B
and C such that

, _.c
(5) Vz€ S |f(z)| < Be F.
~ The function exp(—z*) belongs to Gi(S), where

T K4

S = {z eC, —55 <argz< -2—5}
(when & < 1/2 one should think of § as a region of the universal covering of
C/{0}). Moreover exp(—z~*) is flat at 0 over S, and by Proposition 2 it is
some sense as large as possible there. More generally, one may consider the.
function exp[—(A/z)*], which is flat over a sector bisected by the ray directed
along A e C.

The last feature of Gevrey functions that we shall mention is a very

important quasi-analytic property, which can be viewed as a version of the
Phragmén - Lindeldf principle.

Proposition 3. Assume that f € Gi(S) is flat at O over S and angle(S) > n/k;
then f = 0. '

Here angle(S') = |0,—6,| denotes the aperture of the sector. The function
exp(—z~%) is thus flat over a sector which is as large as possible.

With the above definitions and properties in mind, let us return to
canonical perturbation theory. The overall idea would be to clarify the
Gevrey properties, if any, of the various series which appear classically in
normal form theory. For instance, as in §2 of Chapter IV, one can look at
the perturbation of harmonic oscillators (see (5) there) or at the elliptic fixed
point problem (see (7), (8) there), adding a Diophantine condition ((6) there)

R
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on the frequency. One then builds the normalizing series, and by controlling
its growth one can prove exponential estimates. This is a quantitative version
of Birkhoff’s original construction, leading to what we termed Gevrey type
estimates. Why? Roughly speaking, one in fact proves inequalities as in (4)

- above, that is, a least term cut-off procedure yields an exponentially small
remainder. Here the role of z is played of course by €, and one confines
attention to real values of this parameter, working with series which live in,
say, C{p, g}[[]], that is, they are formal series in the perturbation parameter
whose terms are analytic functions of the phase variables. -

The message is simply that it might be interesting to dig a little deeper,
exploring the analyticity properties in € and perhaps proving inequalities as in
(3) above, which, as we said, are the true signature of Gevrey functions and
imply (4) but not conversely. The index k of the Gevrey spaces (for the time
being at the level of (4)) and the exponent t of the Diophantine condition are
closely related. Indeed, one obtains more or less k = 1/(21) for the harmonic
oscillator problem (or k = 1/t if \/¢ is taken to be the small parameter) and
k = 1/t in the elliptic fixed-point problem. In turn, T > n—1, where n is the
number of dimensions, which is thus related to the divergence of the series.
Note also that in normal form theory one deals with series in two essentially
different ways, using either majorant series or an iterative procedure. The first
method is better suited to prove Gevrey properties; unfortunately it is
available only in comparatively simple situations.

In this paper we have produced exponentially small remainders in a very
different way, without any arithmetical condition, but using the non-linearity
or anharmonicity and approximation, instead of the usual resonant normal
forms. We find roughly @ = 1/(2n) for the first stability exponent, so
a = k() if one sets T = n in Gevrey type estimates. In other words, things
happen as if the non-linear estimate (Nekhoroshev type) for the quasi-convex
situation more or less coincides with the linear estimate (Gevrey type) in the
best possible case, that is, for the worst approximable frequencies. This is
certainly not obvious and not fortuitous, and requires perhaps further
investigation. Is the stability exponent linked with some Gevrey index? Of -
what functions or series exactly? The fact is that in our proof we have by-
passed the construction of the series completely and restricted ourselves to the
treatment of a one frequency problem, supplemented with approximation. In
this respect, one should write 2 = 1/(2n) = 1/2x1x 1/n. The factor 1/2
comes simply from the fact that £'/2 and not ¢ is the natural small parameter;
1/n comes from Dirichlet’s theorem, which corresponds to T > n—1 in terms
of linear approximation; lastly, “1” comes from the 1 frequency problem and,
simple as it looks, this is perhaps yet another interesting path to follow.

In its barest version, one starts from the equation '

(6) | ‘;—f = ef(z,1)
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with a scalar unknown x (one could take a vector as well) and a function f .
periodic in the time variable ¢, say of period 1. The function f has to be
analytic in x and at least Lipschitz in t. The goal is to conjugate (6) with an
autonomous problem

dy _
(7 5= €9(y, £),

which is “‘integrable” (in the scalar case); this is effected via a change of
variable

(8) z = y+cu(y,t,€).

This is always possible formally, that is, there exists & € C{y, t}[[e]], which-
maps (6) into (7) with some g € C{y,7}{[c]]. Moreover, one can obtain an
exponentially small remainder by a least term cut-off procedure: there are
Sunctions u(y, t, &) and g(y, €) obtained as truncations of # and g such that
(8) transforms (6) into "

Y = e e)+ 07,

where the estimate is for real € only. This result was obtained explicitly by
Neishtadt in [42]. It is in fact simpler than the iterative lemma in Chapter II
above; there we had to deal with the facts that the problem is canonical, that
there are other degrees of freedom, and that the angle one seeks to eliminate
corresponds to a variable frequency. It resulted altogether in a loss in the
exponent; for instance in Theorem 1B we find 1/3 instead of 1/2 (beware of
the correspondence £ « /¢ in the above setting). We believe that it would be
interesting to investigate the Gevrey 1 properties of problem (6), (7}, (8), which
expresses a simple form of the occurrence of divergence without small divisors.
It is quite possible that summability and resurgence (in the sense of Ecalle)
will prove useful in this context. |

Added in proof. Since this paper was written, a technical improvement of the
iterative lemma enabled P. Lochak, A. Neishtadt and L. Niederman to reach

1 : :
the value a = o (the proof appears in the Proceedings of the 1991 Conference

on Dynamical Systems of the Euler Institute in St Petersburg, published by
Birkhaiiser). On the other hand, in a recent preprint (to appear in Math.
Zeitschrift), Poschel found this same value for a, by improving in the convex
case the original method of Nekhoroshev.
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