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Abstract. — On a complex manifold (X, Ox), a DQ-algebroid &y is
an algebroid stack locally equivalent to the sheaf Ox[[h]] endowed with
a star-product and a DQ-module is an object of the derived category
DP(ey).
The main results are:
— the notion of cohomologically complete DQ-modules which allows
one to deduce various properties of such a module .#Z from the

corresponding properties of the &x-module 7Z X%)ZX m/// ,

— a finiteness theorem, which asserts that the convolution of two co-
herent DQ-kernels defined on manifolds X; x X; (1 =1,2,j = i+1),
satisfying a suitable properness assumption, is coherent (a non com-
mutative Grauert’s theorem),

— the construction of the dualizing complex for coherent DQ-modules
and a duality theorem which asserts that duality commutes with
convolution (a non commutative Serre’s theorem),

— the construction of the Hochschild class of coherent DQ-modules
and the theorem which asserts that Hochschild class commutes with
convolution,

— in the commutative case, the link between Hochschild classes and
Chern and Euler classes,

— in the symplectic case, the constructibility (and perversity) of the
complex of solutions of an holonomic DQ-module into another one
after localizing with respect to A.

Hence, these Notes could be considered both as an introduction to non
commutative complex analytic geometry and to the study of micro-
differential systems on complex Poisson manifolds.
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INTRODUCTION

In a few words these Notes could be considered both as an introduc-
tion to non commutative complex analytic geometry and to the study
of microdifferential systems. Indeed, on a complex manifold X, we re-
place the structure sheaf &'y with a formal deformation of it, that is,
a DQ-algebra, or better, a DQ-algebroid, and study modules over this
ring, extending to this framework classical results of Cartan-Serre and
Grauert, and also classical results on Hochschild classes and the index
theorem. Here, DQ stands for “deformation quantization”. But the the-
ory of modules over DQ-algebroids is also a natural generalization of
that of Z-modules. Indeed, when the Poisson structure underlying the
deformation is symplectic, the study of DQ-modules naturally general-
izes that of microdifferential modules, and sometimes makes it easier (see
Theorem 7.2.3).

The notion of a star product is now a classical subject studied by many
authors and naturally appearing in various contexts. Two cornerstones
of its history are the paper [1] (see also [2, 3]) who defines x-products
and the fundamental result of [46] which, roughly speaking, asserts that
any real Poisson manifold may be “quantized”, that is, endowed with a
star algebra to which the Poisson structure is associated. It is now a
well-known fact (see [36, 45]) that, in order to quantize complex Poisson
manifolds, sheaves of algebras are not well-suited and have to be replaced
by algebroid stacks. We refer to [13, 65| for further developments.

In this paper, we consider complex manifolds endowed with DQ-algebroids,
that is, algebroid stacks locally associated to sheaves of star-algebras, and
study modules over such algebroids. The main results of this paper are:
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— a finiteness theorem, which asserts that the convolution of two co-
herent kernels, satisfying a suitable properness assumption, is co-
herent (a kind of Grauert’s theorem),

— the construction of the dualizing complex and a duality theorem,
which asserts that duality commutes with convolution,

— the construction of the Hochschild class of coherent DQ-modules
and the theorem which asserts that Hochschild class commutes with
convolution,

— the link between Hochschild classes and Chern classes and also with
Euler classes, in the commutative case,

— the constructibility of the complex of solutions of an holonomic mod-
ule into another one in the symplectic case.

Let us describe this paper with some details.

In Chapter 1, we systematically study rings (i.e., sheaves of rings)
which are formal deformations of rings, and modules over such deformed
rings. More precisely, consider a topological space X, a commutative
unital ring K and a sheaf o7 of K][h]]-algebras on X which is ii-complete
and without A-torsion. We also assume that there exists a base of open
subsets of X, acyclic for coherent modules over o) := o7 /h.af .

We first show how to deduce various properties of the ring &7 from the
corresponding properties on 7. For example, &/ is a Noetherian ring
as soon as .2 is a Noetherian ring, and an .@/-module .# is coherent as
soon as it is locally finitely generated and h".# /"' 4 is @/-coherent
for all n > 0. Then, we introduce the property of being cohomologically
complete for an object of the derived category D(<7). We prove that this
notion is local, stable by direct images and an object .# with bounded
coherent cohomology is cohomologically complete. Conversely, if .Z is
cohomologically complete, it has coherent cohomology objects as soon

as its graded module %é{ % has coherent cohomology over .« (see
Theorem 1.6.4). We also give a similar criterion which ensures that an
</-module is flat.

In Chapter 2 we consider the case where X is a complex manifold,
K =C, o = Ox and  is locally isomorphic to an algebra (Ox|[[h]], *)
where x is a star-product. It is an algebra over C":=C[[A]]. We call such
an algebra o/ a DQ-algebra. We also consider DQ-algebroids, that is,
Ch-algebroids (in the sense of stacks) locally equivalent to the algebroid
associated with a DQ-algebra. Remark that a DQ-algebroid on a mani-
fold X defines a Poisson structure on it. Conversely, a famous theorem
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of Kontsevich [46] asserts that on a real Poisson manifold there exists a
DQ-algebra to which this Poisson structure is associated. In the complex
case, there is a similar result using DQ-algebroids. This is a theorem of
[45] after a related result of [36] in the contact case.

If (X, o7x) is a complex manifold X endowed with a DQ-algebroid 7y,
we denote by X the manifold X endowed with the DQ-algebroid o7 ”
opposite to ox.

We define the external product @, « x, of two DQ-algebroids <7y, and
a/x, on manifolds X; and X,. There exists a canonical &y xe.-module
“x on X x X supported by the diagonal, which corresponds to the
o/x-bimodule .

On a complex manifold X endowed with a DQ-algebroid, we construct
the C"-algebroid ¢, a deformation quantization of the ring Zx of dif-
ferential operators. It is a C'-subalgebroid of E\[qn(#x). It turns out
that 2¢ is equivalent to Zx|[[Rh]]. This new algebroid allows us to con-
struct the dualizing complex w{ associated to a DQ-algebroid 7. This
complex is the dual over 257 of @, similarly to the case of Ox-modules.
Note that the dualizing complex for DQ-algebras has already been con-
sidered in a more particular situation by [20, 21].

We also adapt to algebroids a results of [40] which allows us to replace
a coherent @/y-module by a complex of “almost free” modules, such
an object being a locally finite sum @®;c;(L;)y,, the L;’s being free ofx-
modules of finite rank defined on a neighborhood of U;. We give a similar
result for algebraic manifolds.

Chapter 3. Consider three complex manifolds X; endowed with DQ-
algebroids o7y, (i = 1,2,3). Let % € D2, (@x,xxe,,) (i = 1,2) be two
coherent kernels and define their convolution by setting

L
Hro s =R (G BAE,, Gr).

Here pi4 denotes the projection of the product X; x X§ x X, x X§
to X1 X Xg

We prove in Theorem 3.2.1 that, under a natural properness hypoth-
esis, the convolution J#] o J# belongs to D (#x,xxg) and in Theo-
rem 3.3.3 that the convolution of kernels commutes with duality.

For further applications, it is also interesting to consider the localized
algebroid &7y¢ = C"°° @, oy, where C"°¢ = C((h)). An @/{°-module
A is good if for any relatively compact open subset U of X, there exists
a coherent of;-module which generates .Z|;. Then we prove that there
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is a natural map of the Grothendieck groups Kgq (&%) — Keon(gr,447)
and that this map is compatible to the composition of kernels.

Note that these theorems extend classical results of Cartan, Serre and
Grauert on finiteness and duality for coherent &-modules on complex
manifolds to DQ-algebroids.

For papers related to DQ-algebras and DQ-algebroids on complex
Poisson manifolds, and particularly to their classification, we refer to
61, 5, 8, 13, 6, 50, 51, 64].

Chapter 4. We introduce the Hochschild homology HH (<7x) of the
algebroid 7x:

L
HH(x) =Cx®,, _ Cx, an object of DP(Ch),

and, using the dualizing complex, we construct a natural convolution
morphism

L
o Rp1s1(piry HH(x, « x3)@pa3 HH(xyxxs)) = HH(Ax, xxs)-

To an object .# of DY, (/x), we naturally associate its Hochschild class
hhy (), an element of Hg, ., (X; HH(2/x)). The main result of this
chapter is Theorem 4.3.5 which asserts that taking the Hochschild class

commutes with the convolution:

(0.0.1) hhx, «xa (1 0 H5) = hhy, xxg (1) 2 hhx, .« xg(#3).

In Chapter 5, we consider the case where the deformation is trivial.
In this case, there is no need of the parameter 7 and we are in the well-
known field of complex analytic geometry. Although the results of this
chapter are considered as well-known (see in particular [33]), at least
from the specialists, we have decided to include this chapter. Indeed, to
our opinion, there is no satisfactory proof in the literature of the fact that
the Hochschild class of coherent &'x-modules is functorial with respect
to convolution. We recall in particular the formula, in which the Todd
class appears, which makes the link between Hochschild class and Chern
classes. This formula was conjecturally stated by the first named author
around 1991 and has only been proved very recently by Ramadoss [53] in
the algebraic setting and by Grivaux [30] in the general case. For other
papers closely related to this chapter, see [14, 15, 33, 48, 58].

In Chapter 6 we study Hochschild homology and Hochschild classes
in the case where the Poisson structure associated to the deformation is

symplectic. We prove then that the dualizing complex w¢ is isomorphic
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to €x shifted by dx, the complex dimension of X, and we construct
canonical morphisms

(0.0.2) hIxX2Ch [dx] — HH(ex) — h™2Ch [dx]

whose composition is the canonical inclusion. The morphisms in (0.0.2)
induce an isomorphism

(0.0.3) Chloc [dx] ~ HH(2°).

The first morphism in (0.0.2) gives an intrinsic construction of the canon-
ical class in H~9(X; HH(a/y)) studied and used by several authors (see
[11, 12, 25]). The isomorphism (0.0.3) allows us to associate an Euler
class euy (.#) € HX(X;C%°) to any coherent o/x-module .# sup-
ported by a closed set A.

Then we show how our results apply to Z-modules. We recover in
particular the Riemann-Roch theorem for Z-modules of [47] as well as
the functoriality of the Euler class of Z-modules of [57].

Finally, in Chapter 7, we study holonomic 271°*-modules on complex
symplectic manifolds. We prove that if . and .# are two holonomic
a/°-modules, then the complex R%ﬂom%lgc(/// ,-Z) is perverse (hence,

in particular, C-constructible) over the field C™°¢.
If the intersection of the supports of the holonomic modules . and
M is compact, Formula (0.0.1) gives in particular

V(RHom . (4,.2)) = / (eux (A) - eux (Z)).
b's
The Euler class of a holonomic module may be interpreted as a La-
grangian cycle, which makes its calculation quite easy.

If the modules . and .# are simple along smooth Lagrangian sub-
manifolds, then one can estimate the microsupport of this complex. This
particular case had been already treated in [42] in the analytic frame-
work, that is, using analytic deformations (in the sense of [54]), not
formal deformations, and the proof given here is much simpler.

We also prove (Theorem 7.5.2) that if ., is family of holonomic mod-
ules indexed by a holomorphic parameter a, then, under suitable geo-
metrical hypotheses, the complex of global sections RHom %1?6(/// L),

which belongs to D}(C"'°¢), does not depend on a. This is a kind of
invariance by Hamiltonian symplectomorphism of this complex.
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We have developed the theory in the framework of complex analytic
manifolds. However, all along the manuscript, we explain how the results
extend (and sometimes simplify) in the algebraic setting, that is on quasi-
compact and separated smooth varieties over C.

The main results of this paper, with the exception of Chapter 7, have
been announced in [44, 43|.

Acknowledgments. — We would like to thank Andrea D’Agnolo,
Pietro Polesello, Stéphane Guillermou, Jean-Pierre Schneiders and Boris
Tsygan for useful comments and remarks.



CHAPTER 1

MODULES OVER FORMAL
DEFORMATIONS

1.1. Preliminary

Some notations. — Throughout this paper, K denotes a commutative
unital ring.

We shall mainly follow the notations of [41]. In particular, if € is a
category, we denote by €°P the opposite category. If € is an additive cat-
egory, we denote by C(%) the category of complexes of € and by C*(%)
(* = 4, —, b) the full subcategory consisting of complexes bounded from
below (resp. bounded from above, resp. bounded). If € is an abelian
category, we denote by D(%) the derived category of ¢ and by D*(%)
(* = +, —, b) the full triangulated subcategory consisting of objects with
bounded from below (resp. bounded from above, resp. bounded) coho-
mology. We denote as usual by 72", 75" etc. the truncation functors
in D(%).

If Ais aring (or a sheaf of rings on a topological space X ), an A-module
means a left A-module. We denote by A°P the opposite ring of A. Hence
an A°°-module is nothing but a right A-module. We denote by Mod(A)
the category of A-modules. We set for short D(A) := D(Mod(A)) and
we write similarly D*(A) instead of D*(Mod(A)). We denote by DE, (A)
the full triangulated subcategory of DP(A) consisting of objects with
coherent cohomology. If K is Noetherian, one denotes simply by D'}(K)
the full subcategory of D(KK) consisting of objects with finitely generated
cohomology.

We denote by Dy the duality functor for Ky-modules:

(1.1.1) D (+):=Rstomy (+,Kx)



2 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS

and we simply denote by (+)* the duality functor on D"(K):

(1.1.2) (¢)* = RHomy(+,K).
If K is Noetherian and with finite global dimension, (+)* sends (D}(K))P
to D}(K).

We denote by {pt} the set with a single element.

Finiteness conditions. — Let X be a topological space and let < be a
K x-algebra (i.e., a sheaf of K-algebras) on X. Let us recall a few classical
definitions.

— An @/-module . is locally finitely generated if there locally exists
an exact sequence

(1.1.3) L — M —0

such that % is locally free of finite rank over o7
— An o/-module .# is locally of finite presentation if there locally
exists an exact sequence

(1.1.4) L= L= M —0

such that .2 and % are locally free of finite rank over .«7. This is
equivalent to saying that there locally exists an exact sequence

(1.1.5) 0= SN = M0

where .4 is locally free of finite rank and % is locally finitely
generated. This is also equivalent to saying that there locally exists
an exact sequence

(1.1.6) H =N =M —0
where .4 is locally of finite presentation and ¢ is locally finitely
generated.

— An @/-module . is pseudo-coherent if for any locally defined mor-
phism u: A" — .# with 4 of finite presentation, Keru is locally
finitely generated. This is also equivalent to saying that any locally
defined .o7-submodule of .Z is locally of finite presentation as soon
as it is locally finitely generated.

— An o/-module .# is coherent if it is locally finitely generated and
pseudo-coherent. A ring is a coherent ring if it is so as a mod-
ule over itself. One denotes by Mod.n(<7) the full additive sub-
category of Mod(&7) consisting of coherent modules. Note that
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Modon(47) is a full abelian subcategory of Mod(«7), stable by ex-
tension, and the natural functor Modg., (<) — Mod(&7) is exact
(see [41, Exe. 8.23]).

— An o/-module .# is Noetherian (see [37, Def. A.7]) if it is coherent,
M, is a Noetherian o7,-module for any = € X, and for any open
subset U C X, any filtrant family of coherent submodules of .Z |y
is locally stationary. (This means that given a family {.#;};c; of
coherent submodules of .Z |y indexed by a filtrant ordered set I,
with #; C #; for i < j, there locally exists ig € I such that
My = M; for any j > ip.) A ring is a Noetherian ring if it is so
as a left module over itself.

Mittag-Leffler condition and pro-objects. — We refer to [55] for the no-
tions of ind-object and pro-object as well as to [41] for an exposition. To
an abelian category %, one associates the abelian category Pro(%’) of its
pro-objects. Then % is a full abelian subcategory of Pro(%’) stable by
kernel, cokernel and extension, the natural functor ¥ <— Pro(%) is ex-
act, and the functor “Im”: Fet(I°?,¢") — Pro(%) is exact for any small
filtrant category I. In the sequel, we identify € with a full subcategory
of Pro(%¢). If ¥ admits small projective limits, we denote by 7 the left
exact functor

m: Pro(¢) — ¢, “@”Xi — 1£1XZ
If € has enough injectives, then 7 admits a right derived functor (loc.
cit.):
Rr: D (Pro(¢)) — D*(%).

Definition 1.1.1. — We say that an object M € Pro(%) satisfies the
Mittag-Leffler condition if, for any N € % and any morphism M — N
in Pro(%), Im(M — N) is representable by an object of €.

By the definition, any quotient of an object which satisfies the Mittag-
Leffler condition also satisfies the Mittag-LefHler condition.

Lemma 1.1.2. — Let {M,}nez., be a projective system in an abelian
category €, and set M = “@”m € Pro(¥¢). Then the following condi-
tions are equivalent: n
(i) M satisfies the Mittag-Leffler condition,
(i) {M,}nez., satisfies the Mittag-Leffler condition (that is, for any
p > 1, the sequence {Im(M,, — M,)},>, is stationary),
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(iii) there exists a projective system {M] }nez., in € such that the mor-
phism M), — M) is an epimorphism for any n > 1 and we have
an isomorphism M ~ “lim” M/ in Pro(%).

n

Proof. — (i) = (ii). For any p > 1, Im(M — M,) ~ “lim” Im(M,, —
n2p

M,,) is representable by an object of €. Hence, the sequence {Im(M,, —

M,)}n>p is stationary.

(ii) = (iii). Set M, = Im(M; — M,) for k > n. Then the morphisms

M/ — M, induce a morphism f: “lim” M — “m” M. On the other

hand, for each n, M — M, decomposes as M — M/ — M,,, since taking
k > n such that M) = Im(My — M,), we have a morphism M —
M, — M. These morphisms induce a morphism ¢: “lim” M, = M —

n
“lHim” M. Tt is easy to see that f and ¢ are inverse to each other.
am n Yy g
n

(iii) = (i). For any N € ¥ and any morphism f: M — N in Pro(%),
there exists p such that f decomposes into M — M, — N. Then
Im(M — N) ~ “Jim” Im(M;, = N) ~Im(M, — N). O

nzp

Note that the following lemma is well known.

Lemma 1.1.3. — Let {M,},>1 be a projective system of Z-modules.
Then
Rir(“lim” M,,) ~ 0 for i # 0,1. If {M,},>1 satisfies the Mittag-Leffler

condition, then H' (R?T “I'&H” Mn) ~ 0.

n
Here and in the sequel, we make the following convention.

Convention 1.1.4. — When we have a left exact functor ¢ L &' of

abelian categories and X € D(%’), the notation R*F (X)) stands for H'(RF(X)).

For example, R'7RT(U; #) means H'(RnRT(U; 4)).

Lemma 1.1.5. — Let #Z be an algebra over a topological space X, and
let { A, }n>0 be a projective system of %-modules. Set M = “l'gl” M, €

Pro(Mod(Z)). Let U be an open subset of X and let i € Z. Then we
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have an exact sequence
0 — le(“@” H U, ,)) — H'(U;Rn.tl) — @H’(U; M) = 0.

Proof. — We have RI'U;Rn.#) ~ RnRI'(U;.#) and we also have
H'(U; M) = “Yim” H(U; #,). Consider the distinguished triangle

Rrr<'RINU; #) — RaRT(U; M) — Rar>RIU; M) - .
It gives rise to the exact sequence
0 — Riar~'RI(U;.4) — R'aRT(U; M) — Rixr="RI(U; )
— R rr<'RINU; .4 ).
Since RFm “Im” M, = 0 for k # 0,1 and any projective system {M,},,
we obtain R“ar<'RI(U;.#) = 0.
Consider the distinguished triangle
T<ARNNU; M) — 7<RINU; M) — H™(U; M )[1 — 1] .
Using the isomorphism H*"Y(U; . #) ~ “lim” H~YU; . #,) and applying
the functor Rm, we get the distinguished griangle
Rrr<""'RINU; . #) — Rer~'"RI(U; A )
= Rer (“lim” H'™N(U; )1 = i]) =
We obtain R'r7<'RT\(U; #) ~ Rim “lim” H'~'(U; #,). Finally, we have
Rigr2'RI(U; M) ~ @H%U; My). O
As a corollary of this lemma, we obtain the following lemma, a slight

modified version of [31, Préliminaires, Prop. (13.3.1)].

Lemma 1.1.6. — Let X be a topological space, {Fy, tnez., a projective
system of abelian sheaves on X and F = @ﬁn Assume the following

conditions:
(a) for any x € X and any integer i, we have
lim R'7 “lim” HY(U; #,) ~0,
zel n
where U ranges over an open neighborhood system of x,
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(b) for any x € X and i > 0, %ﬂ(@ H'(U; #,)) = 0, where U ranges
zeU n
over an open neighborhood system of x.

Then for any @, the morphism

hi: H(X; ) — T&nHi(X;ﬁn)
is surjective. If moreover {H Y (X;.%,)}, satisfies the Mittag-Leffler
condition, then h; is an isomorphism.
Proof. — Set M = “I'Ln” Z,. By the preceding lemma, we have an
exact sequence "

0 — R'z(“im” H'™'(U3.2,)) — H'(U; Rmdt) — lim H'(U; 7,) = 0.

For any z, taking the inductive limit with respect to U in an open neigh-
borhood system of x, we obtain (R'r.#), = 0 for i # 0. Hence we
conclude Rr.# ~ .%. Then the exact sequence above reads as

0 — Rin(“im” H'(X;.7,)) — H'(X;.#) — lim H'(X; F,) = 0.

Hence we have the desired result. O

1.2. Formal deformations of a sheaf of rings

Now we consider the following situation: X is a topological space, &/
is a K-algebra on X and % is a section of .« contained in the center of .7
We set

oy = [hod
Let .4 be an «/-module. We set
(1.2.1) M=V M WA

and call it the A-completion of .#Z. We say that
—  has no h-torsion if h: .# — # is injective,

— M is h-separated if A — M s a monomorphism, i.e., (| A" =
0, n>0

— M is h-complete if A — M is an isomorphism.

Lemma 1.2.1. — Let .# € Mod(</) and assume that .4 has no h-
torsion. Then
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(i) M has no h-torsion,
(i) A |0 M = MW M,
(il) A = M, i.e., M is h-complete.
Proof. — (i) Consider the exact sequence
0 — "M s )Wl — MM — 0.
Applying the left exact functor @ we get the exact sequence

0— M L H— t)0eM,
which gives the result.
(ii) Consider the commutative diagram with exact rows:

0 ML MM — 0

L

0 M W — MR

(iii) Apply the functor lim to the isomorphism in (ii). O

In this paper, with the exception of § 1.3, we assume the following
conditions:

(i) 7 has no h-torsion,
(1.2.2)<  (ii) 7 is h-complete,
(iii) < is a left Noetherian ring,
and (iv) there exists a base B of open subsets of X such that
(1.2.3) for any U € 8 and any coherent (%|y)-module %, we
have H"(U; %) = 0 for any n > 0.

It follows from (1.2.2) that, for an open set U and a,, € «(U) (n > 0),
Y uso P'ay is a well-defined element of o7 (U).
By (1.2.2) (ii), heZ, is contained in the Jacobson radical of <7, for any
x € X. Indeed, for any a € haZ,, 1 — a is invertible in &7, since a is
defined on an open neighborhood U of x, and 1 — a is invertible on U.
Hence Nakayama’s lemma implies the following lemma that we fre-
quently use.

Lemma 1.2.2. — Let A be a locally finitely generated of -module.
(i) If A satisfies M = ht, then A = 0.
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(ii) Let f: N — A be a morphism of o/ -modules. If the composition
N — M — M0 M is an epimorphism, then f is an epimorphism.

For n € Z>q, set @, = &/ /" .o/. Note that there is an equivalence
of categories between the category Mod(<%,) and the full subcategory
of Mod () consisting of modules .# satisfying hi"™.# ~ 0.

Lemma 1.2.3. — Let n € Z>y.

(1) An ,-module N is locally finitely generated as an <f,-module if
and only if it is so as an <7 -module.
(ii) An ,-module A is locally of finite presentation as an <,-module
if and only if it is so as an </ -module.
(iii) An o, -module N is coherent as an <f,-module if and only if it is
so as an </ -module.
(iv) <, is a left Noetherian ring.

Proof. — Note that since we have o, ~ & /& h"*!| o, is an @/-module
locally of finite presentation.

(i) is obvious.

(ii)-(a) Let . be an o7,-module locally of finite presentation and consider
an exact sequence of o7,-modules as in (1.1.5). Then £ is locally finitely
generated as an .«/-module, 4 is locally of finite presentation as an /-
module and u is @7-linear. Hence, .# is locally of finite presentation as
an o/-module.

(ii)-(b) Conversely assume that .# is an <7,-module which is locally of
finite presentation as an .o7-module. Consider an exact sequence of .of-
modules as in (1.1.4). Applying the functor 47, ®_, +, we find and exact
sequence of «7,-modules as in (1.1.4), which proves that .# is locally of
finite presentation as an .o7,-module.

(iii) follows from (i) and (ii) since a module is coherent if it is locally
finitely generated and any submodule locally finitely generated is locally
of finite presentation.

(iv) Let us prove that <7, is a coherent ring. Since .o is a coherent
ring by the assumption, 7 is a coherent /-module. Using the exact
sequences of .&7-modules

O%Mn_lidn—)%—)(),

we get by induction on n that <7, is a coherent «7-module. Hence (iii)
implies that 7, is a coherent ring.
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One proves similarly by induction on n that (7,), is a Noetherian ring
for all x € X and that any filtrant family of coherent .o7,-submodules of
a coherent .o7,-module is locally stationary. O]

Lemma 1.2.4. — Let U €8, and n > 0.

(i) For any coherent o,-module A", we have H*(U; ") = 0 for k # 0.
(ii) For any epimorphism A — A" of coherent <f,-modules, A (U) —
N'(U) is surjective.
(i) &/ (U) = #,(U) is surjective.

Proof. — (i) is proved by induction on n, using the exact sequence

(1.2.4) 0— N — N = N ]hNV — 0.

(ii) follows immediately from (i) and the fact that ., is a coherent ring.

(iii) By (ii), 11 (U) — 4,(U) is surjective for any n > 0. Hence,
the morphism @ﬂm(U ) — <, (U) is surjective. Since the functor Jim

commutes with the functor I'(U; »), &/ (U) == l&nezzfm(U) and the result

follows. O
Properties of o/. — Recall that o satisfies (1.2.2) and (1.2.3).
Theorem 1.2.5. — (i) < is a left Noetherian ring.

(ii) Let A be a locally finitely generated </ -module. Then M is co-
herent if and only if K" [NV is a coherent <y-module for any
n > 0.

(iii) Any coherent o/ -module A is h-complete, i.e., M == M .

(iv) Conversely, an <f -module .# is coherent if and only if it is h-
complete and K" A | " is a coherent <fy-module for any n > 0.

(v) For any coherent o -module # and any U € B, we have H (U; M) =
0 for any j > 0.

The proof of Theorem 1.2.5 decomposes into several lemmas.

Lemma 1.2.6. — Let £ be a locally free of -module of finite rank and
let N be an < -submodule of £. Assume that

(a) (AN +hZ)/hL is a coherent afy-module,
(b) &/ NA"L C hNV + WL for anyn > 1.

Then we have
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(i) A is a locally finitely generated <7 -module,
(ii) &/ NA"L =N for anyn >0,
(iii) N (A +h"Z) =4
n>0
Proof. — First, let us show that
(1.2.5) N NhL ChV +R"Z  for any n > 0.

Indeed, (1.2.5) is trivial for n < 1. Let us argue by induction, and
let n > 2, assuming the assertion for n — 1. We have 4 N hZ C
N NN +RIL)=hN + (N NELEL) ChAN + (BN +EZL) by
the assumption (b). This proves (1.2.5).

Set

N =N +12).

n>0
Then .# C .4 and
(1.2.6) N NhL ChA.

Indeed we have A NAL C (N +h P L)YNRL C N MWL +IHL C
AN + L = WA + hnZ) for any n.
Set

N = (N +hL) 0L = (N +hL)/hL.

By the hypothesis (a), .4 is .@%-coherent. Hence we may assume that
there exist finitely many sections s; of A such that A = > @5;, where
S; is the image of s; in Z/h.ZL.

By hypothesis (a) and Lemma 1.2.4 (i), we have for any U € B,
N (U) =3, (U)s;. Since o (U) — o (U) is surjective by Lemma 1.2.4 (iii),
we have A (U) C >, @ (U)s; +hZL(U). Since #/ NhZL = h.A, we have

N(U) Y (U)s; + hA (V).

—~ —

For v € A (U), we shall define a sequence {v,},>0 in A4 (U) and se-
quences {a; . }n>0 in &/ (U), inductively on n: set vy = v, and write

Up = E QinSi + hvn—l—l-
%
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Hence we have A"v, =Y, h"a; ,s; + F" v, 11 and we obtain

v =1y = Z(Z h'a;n)s;.
i n>0
Thus we have 4 = > s;. Hence N = A which proves (i) and (iii).
Since A NhZ = hA by (1.2.6), we obtain (ii) for n = 1. For n > 1

we have by induction 4/ NA"Y C hA NHE"YL = A NHELL) C
hehn-lp O

Lemma 1.2.7. — Let L be a locally free o/ -module of finite rank, and
let N be an o/ -submodule of L. Assume that (N + W"T1.L)/RT1L s

a coherent o/ -module for any n > 0. Then we have

(i) A is a locally finitely generated <7 -module,
(iii) locally, "L N A C h(A" LN A) forn>0,
(iv) A /RN is a coherent </ -module for any n > 0.
Proof. — We embed £ into the &[h~']-module K[A,h™ "] @y £ =
Unez P2 Note that A" induces an isomorphism

R (LNR" N +hL) /L =5 (N NRL + L) T 2.

Since

(N NRL + L) L~ (N + L) ) (g /i .2)

is @7-coherent, {(LNA "N +hZL)/h.L }n>o is an increasing sequence of
coherent @7-submodules of .2 /h.Z. Hence it is locally stationary: locally
there exists ng > 0 such that ZNh "N +hsl = LNh ™ N + hZ for
any n > ng. Set

(1.2.7) M=L NN
Then (A5 + hL)/h.ZL is a coherent f-module and
MORL CH (RN NYL) CHY (AN +hL) C M+ TP

for any n > 0. Hence by Lemma 1.2.6:

— A5 is locally finitely generated over <,
n>0

— MNA"YL = h" A for any n > 0.
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(i) Since A N AL = WAy by (1.2.7), the module A" /A" Ay ~
N[N NEL) = (N + L)/ WL is o -coherent. Since h™ A
is locally finitely generated over o7, .4 is also locally finitely generated
over .

(ii) We have
(VA +1"ZL) C (AN + L))z (N +D"L)

n>no
N+ WL Nuzng (N + DL
N+ s (B2 O N + 1.2
N 4 Ny (RN + RPL)

N NNy =N

n NN N

(iii) For n > ng, we have
LN C (LN A)NRYL
C R(AMNRTYL)
C RA™R"" A = R A
C WA NATLY).

(iv) Since .4 has no h-torsion, we have the exact sequence

0= NN L VN — N RV = 0.

Hence, it is enough to show that .#"/h.4" is coherent. By (i), the images
of A and ht in £ /h".L are coherent. Since A N K'Y C hA for

some n, by (ii), we have the exact sequence

hNV . N R N 0
¥V Nhng AN NhnZ kN ’
which implies that .4 /h.4" is coherent. O

Corollary 1.2.8. — Assume that A is a locally finitely generated <f -
module. If M |0 M is a coherent o7 -module for all n > 0, then A is

an o/ -module locally of finite presentation and (k"4 = 0.
n>0

Proof. — We may assume that .# = £ /A for a locally free o/-module
Z of finite rank and A4 C £. From the exact sequence

0= (N + L)L — LWL — MM — 0,
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we deduce that (A + L) /h".Z is coherent for any n. Hence 4 is
locally finitely generated by Lemma 1.2.7, which implies that .# is locally
of finite presentation. Since () (A + h".Z) = A by Lemma 1.2.7,
n>0
(ot ~ ((\(AN + L)) )N

. > >
vanishes. n20 n20 O

Proposition 1.2.9. — </ is coherent.

Proof. — Let .# be alocally finitely generated .o7-submodule of o7. Since
(I + M)W ~ F)( IR ) C o [T

the «7-module .# /h".# is coherent by Lemma 1.2.7 (iv). Hence Corol-
lary 1.2.8 implies that .7 is locally of finite presentation. O]

Lemma 1.2.10. — Any filtrant family of coherent <7 -submodules of </
15 locally stationary.

Proof. — Let {#;}icr be a family of coherent <7-submodules of o7 in-
dexed by a filtrant ordered set I, with ., C .#; for any i < j. Then
{(h* g N + het)/hel }ier, k>0 is increasing with respect to &k and
i € I. Hence locally there exist iy and kg such that A *.% N &/ + hat =
h=* 7, N + het for any i > ig and k > kg. Then, for i > iy, the ideal
Fi=a N hko 7, satisfies

JiNk"o C MR gnd) C (RSN + he) Ch g+ W
for any m > 0. Hence Lemma 1.2.6 implies that #; N ha/ = h_Z,.
Since we have ¢; C #;, + ha/, we have #; C 7, + (FiNha) C
Fi, +h_Z;. Then Nakayama’s lemma implies #; = _#; , or equivalently,
h o gina/ = ko g, N for i > ig. Thus {F N Ao/}, is locally
stationary. Since {.%;/(.% N h* <)}, is a filtrant family of coherent sub-

modules of 7,1, it is also locally stationary and it follows that {.;};
is locally stationary. O

Lemma 1.2.11. — For any x € X, <, is a coherent ring.

Proof. — Any morphism f: &/ — 7, extends to a morphism f: A"y —
|y for some open neighborhood U of . Since .4 :=Ker f is coherent,
N, ~ Ker f is a finitely generated .oZ,-module. [

Lemma 1.2.12. — For any x € X and a finitely generated left ideal I
of oy, I N A"\, = h(I "R <,) for n>> 0.
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Proof. — Let us take a coherent ideal .# of &7 defined on a neighborhood
of  such that I = .#,. Then Lemma 1.2.7 implies that .# N A"t &/ =
I Nh"e) for n > 0. O

Lemma 1.2.13. — For any x € X, 4, is a Noetherian ring.

Proof. — Set A = <f,. Let us show that an increasing sequence {I,},
of finitely generated left ideals of A is stationary. Since {(A %I, N A +
hA)/hA}, ) is increasing with respect n, k, there exist ng and ky such
that h™*I, N A+ hA = h™™1, N A+ hA for n > ng and k > kg. For
any n > ng there exists k > ko such that A=%I, N hA = h(h=*I, N A) by
Lemma 1.2.12. Hence we have h=*I, NA C h™*I, N (h=* I, NA+hA) C
h koL, NA+ (R *I,NhA) C k=R, NA+h(h *I,NA). Since A *I,NA
is finitely generated by Lemma 1.2.11, Nakayama’s lemma implies that
hrL,NA = h_kOInO N A. Hence h =", N A = h_k‘)]no N A for any
n > ng. Therefore I, N A"™A = hko(h=% [, N A) is stationary. Since
{I,/(I, N R*A)}, is stationary, {I,}, is stationary. O

Thus, we have proved that 7 is a Noetherian ring.

Lemma 1.2.14. — Let {M,}n>0 be a projective system of coherent < -
modules. Assume that i 4, = 0 and the induced morphism My 1 /W My 1 —
My, is an isomorphism for any n > 0. Then M# = I'&n///n 1S a coherent

o -module and M |W M — M, is an isomorphism for any n > 0.

Proof. — Since the question is local, we may assume that X € B and
there exist a free K-module V' of finite rank and a morphism V' — .#,(X)
which induces an epimorphism % := .o/ @k V—».#,. Since My 1(X) —
M, (X) is surjective and V' is projective, we have a projective system of
morphisms {V — ., (X)}.:

e M(X) — My r(X) M (X) T lo(X),

which induces a projective system of morphisms {.& — .#,,},,. Hence we
may assume that there exists a morphism . — .# such that the compo-
sition & — M — M is an epimorphism. Since & — A, /ht,, == M,
is an epimorphism, . — .#,, is an epimorphism by Lemma 1.2.2.
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Set %, = L/ ¥, and let .4;, be the kernel of %, — #,. Set
N = 1&1% Then we have a commutative diagram with exact rows:

0 N Z M

S B

0 M %, M, 0.

In the commutative diagram

0 0

the rows and the columns are exact. Hence the left vertical arrow .47, 1 —
Ay, is an epimorphism. Therefore, A, 11(U) — A, (U) is surjective for
any U € B, and A(U) = lim A;,(U) — A,(U) is surjective. Hence

N — Ay, is an epimorphism for any n > 0, and {4;,(U)}, satisfies the
Mittag-Leffler condition.
Thus in the following commutative diagram

N (U) 2(U) A (U)

Tk

0 lim A,(U) — lim 2,(U) — it () — O

0

0

the bottom row is exact. Hence 0 — A4 — £ — .# — 0 is exact. Since
N — A, is an epimorphism, we have .# /"' 4 ~ Coker(N — £, ~
Coker( A, — £,) ~ M,. Since .# is locally finitely generated and
M |RTE A is coherent for any n > 0, . is coherent by Corollary 1.2.8
and Proposition 1.2.9. O
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Proposition 1.2.15. — Let .# be a coherent o/ -module. Then we
have the following properties.

(i) A is h-complete, i.e., M — ///l\,
(ii) for any U € B, H*(U; 4) = 0 for any k > 0.

Proof. — (i) Since the kernel of .# — M s () A", the morphism

n>0
M — M is a monomorphism by Corollary 1.2.8.

Let us show that M — M is an epimorphism. By the preceding
lemma, .# is a coherent </-module, and ./# / htl ~ M Jh.# . Hence
Nakayama’s lemma implies that .# — M is an epimorphism.

(i) For any U € B, the map U'(U; .4 /W) — T(U; M |h" M) is
surjective, and H*(U;.# |h". ) = 0 for any k > 0. Hence Lemma 1.1.6
implies (ii). O
Corollary 1.2.16. — Let # be an of -module. If A satisfies the fol-

lowing conditions (i) and (ii), then .4 is a coherent o7 -module.

(i) A is h-complete,
(ii) WA |h" T is a coherent ly-module for allm > 0.

Proof. — Set M, = M /h" 4. Then it is a coherent «/-module by
(ii), and lgl,///n is a coherent .&/-module by Lemma 1.2.14. ]

This completes the proof of Theorem 1.2.5.

Lemma 1.2.17. — Let .# be a coherent &7 -module without h-torsion.
If A |ht is a locally free ofy-module of rank r € Zso, then A is a
locally free 7 -module of rank r.

Proof. — We may assume that there exists a morphism of .&7-modules
[+ & =% — A such that L /hL — A |ha is an isomorphism.
Then, Nakayama’s lemma implies that f is an epimorphism. Let .4 be
the kernel of f. Since .# has no h-torsion, we have an exact sequence
0 — ANV = ZL/hE — M |h# — 0. Hence A /hV = 0 and
Nakayama’s lemma implies .4~ = 0. O

The following proposition gives a criterion for the coherence of the
projective limit of coherent modules, generalizing Lemma 1.2.14.
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Proposition 1.2.18. — Let {4, },>1 be a projective system of coherent
 -modules. Assume

(a) the pro-object “T&n” Ny iy, is representable by a coherent </y-module,

(b) the pro-object “lim” Ker(A;, LN Ny) is representable by a coherent

y-module.
Then
(i) A = Wm A7, is a coherent </ -module,

(i) A /RFI Y = “lim” N [RETEAL for any k >0,

(iii) Ker(A LN N) S5 “lim” Ker(A;, LN ).

(iv) Assume moreover that for each n > 1 there exists k > 0 such that
RF A;, = 0. Then the projective system {N;}, satisfies the Mittag-
Leffler condition.

Proof. — For any k > 0, set
yk — u@n J’/n/thrl%
Then % is representable by a coherent o/-module by hypothesis (a).

We shall show that .}, is representable by a coherent .o7-module for all
k > 0 by induction on k. Consider the exact sequences

(1.2.8) 0 — kA /BN — A RN — A, Ay — 0,
(1.2.9)  Ker(A, 2 ) = M /WMy D mtyy )R 4, — 0.

Assume that ., is representable by a coherent o7-module. Applying
the functor “1&1” to the exact sequence (1.2.9), we deduce that the ob-

ject “@n” hoA;, /B4, is representable by a coherent .7-module. Then
applying the functor “l‘&n” to the exact sequence (1.2.8), we deduce that
% is representable by a coherent .o/-module.

Since A}, ~ @%/hkﬂ% by Theorem 1.2.5 (iii), we have
k

N~ @%/hkﬂﬂn ~ lim ..
k,n k
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Since .S, 1 /LS ~ S, Lemma 1.2.14 implies (i), (ii). The property
(iii) is obvious.
Let us prove (iv). By the assumption, .4;, ~ “Hm” A /hEA;,. Hence
k

“lélll” % ~ “@” %/hk% ~ “l.gln yk
n k,n k

Since {}r satisfies the Mittag-Leffler condition, {4}, satisfies the
Mittag-Leffler condition by Lemma 1.1.2. O

Remark 1.2.19. — In Proposition 1.2.18 (iv), the condition k*.4;, = 0
(k > 0) is necessary as seen by considering the projective system .4, =
e/, (n € N).

1.3. A variant of the preceding results

Here, we consider rings which satisfy hypotheses (1.2.2), but in which
(1.2.3) is replaced with another hypothesis. Indeed, as we shall see, the
ring Zx|[[h]] of differential operators on a complex manifold X has nice
properties, although Zx does not satisfy (1.2.3). The study of modules
over Zx|[h]] is performed in [17].

We assume that X is a Hausdorff locally compact space. By a basis B
of compact subsets of X, we mean a family of compact subsets such that
for any x € X and any open neighborhood U of x, there exists K € ‘B
such that z € Int(K) C U.

We consider a K-algebra o7 on X and a section h of &7 contained in
the center of o/. Set @ = o/ /he/. We assume the conditions (1.2.2)
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and

((iv') there exist a base B of compact subsets of X and a

prestack U — Modgq(2%|r) (U open in X) such that

(a) for any K € B and an open subset U such that K C
U, there exists K’ € B such that K C Int(K') C
K' cU,

(b) U — Modga(e%|y) is a full subprestack of U
MOdcoh (%|U)a

(c) for an open subset U and .# € Modeon (%% |v), if A |y
belongs to Modgq(#%|y) for any relatively compact
open subset V' of U, then .# belongs to Modgq(2%|v),

(d) for any open subset U of X, Modgq(.2%|/) is stable by
subobjects, quotients and extension in Mod (<% |v),

(e) for any K € ‘B, any open set U containing K,
any A4 € Modg(%|y) and any j > 0, one has
HI(K; M) =0,

(f) for any .# € Modcon(% |y ), there exists an open cov-
ering U = |J, U; such that .Z |y, € Modgq(2%|v,),

(8) € Modya ().

(1.3.1%

\

Note that Lemmas 1.2.2 and 1.2.3 still hold.

The prestack U +— Modq (%) being given, a coherent module which
belongs to Modgq (%% |r) will be called a good module. Note that in view
of hypothesis (iv') (f), hypothesis (iv') (g) could be deleted since all the
results of this subsection will be of local nature. However, we keep it for
simplicity.

Example 1.3.1. — Let X be a complex manifold, &'x the structure
sheaf and let Zx denote the C-algebra of differential operators. One
checks easily that, taking for 8 the set of Stein compact subsets and
for @7 the C-algebra Zx, the prestack of good Zx-modules in the sense
of [37] satisfies the hypotheses (1.3.1).

Definition 1.3.2. — A coherent &7-module .# is good if both the ker-
nel and the cokernel of h: .# — # are good </-modules. One denotes
by Modgq(.27) the category of good o/-modules.

Note that an .@%-module is good if and only if it is good as an .o7-
module. This allows us to state:
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Definition 1.3.3. — An o/,-module .# is good if it is good as an .o7-
module.

Lemma 1.3.4. — The category Modeq(27) is a subcategory of Modon (/)
stable by subobjects, quotients and extension.

Proof. — First note that h".Z /"' # is a good -module for any
M € Modg(«/) and any integer n > 0. Indeed, it is a quotient
of M |hM.

For an «/-module A, set A; :=Ker(h: A — A).

We shall show that any coherent .o7-submodule .4 of a good .27-module
A is a good o/-module. It is obvious that .4} is a good .o-module,
because it is a coherent submodule of .#};. We shall show that A4 /(h.A"+
N NEFL ) is a good a-module for any k > 0. We argue by induction
on k. For k = 0, it is a good o/-module since it is a coherent submodule
of A /ha. For k > 0, we have an exact sequence

0 AN + N OREH N

(13.2) TR AN ORI T RN T N AR
3, .

TN T N O
Since (AN NR*A ) | (N NR* A ) is a coherent submodule of B*.# /W 4 |
it is a good “f-module. Since (bt + N NE M) /(AN + N "R A)
is a quotient of (A NI /(A N KAL), the left term in (1.3.2) is
a good «/-module. Hence the induction proceeds and we conclude that
N (AN + N NREHLA) is a good “y-module.
On any compact set, we have A4 N AL # C ht for k > 0. Hence,
(AN BN )|y is a good (v )-module for any relatively compact subset
V. Hence .4 belongs to Modgq (/) by (iv') (c).
Consider an exact sequence 0 — .#' — # — #" — 0 of coherent
o7/-modules. It gives rise to an exact sequence of coherent .o7-modules

0 — M — My — M — MW — MM — A" bt — 0.

If A is a good «/-module, then so is .#’. Hence the exact sequence

above implies that .Z} and .#" /h.#" are good <f-modules. This shows
that Modgq(7) is stable by quotients.

Finally, let us show that Modgq(%7) is stable by extension. If .Z],

M M A and A" [ A" are good of-modules, then so are .} and
A |h# by the exact sequence above. O

Lemma 1.3.5. — Let K € B, and n > 0.

— 0.
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(i) For any good <,-module A", we have HI(K; A) =0 for j # 0.
(ii) For any epimorphism AN — A" of good <t,-modules, N (K) —
N'(K) is surjective.
(i) & (K) — o, (K) is surjective.

Proof. — (i) is proved by induction on n, using the exact sequence
(1.2.4).

(ii) follows immediately from (i) and the fact that the kernel of a mor-
phism of good modules is good.

(iii) By (ii), “,11(K) — o, (K) is surjective for any n > 0. Hence
@(ﬂm(K)) — o, (K) is surjective.

For s € @7,(K), there exist K’ € B and s’ € o,(K’) such that K C
Int(K’) and s'|x = s. Then s is in the image of@(dm(K’)) — , (K').

Hence s is in the image of &/ (K) — 4,(K), because @(ﬂm(K’)) —

(K'Y — o,(K) decomposes into
@(dm(K’)) — Tgl(ngm(lnt(f(’))) ~ of (Int(K")) = o/ (K) = «,(K).

]

The proof of the following theorem is almost the same as the proof of
Theorem 1.2.5, and we do not repeat it.

Theorem 1.3.6. — Assume (1.2.2) and (1.3.1).

(i) < is a left Noetherian ring.

(ii) Let A be a locally finitely generated < -module. Then M is co-
herent if and only if " /W A is a coherent </y-module for any
n > 0.

(iii) For any coherent o -module M , M is h-complete, i.e., M = M.

(iv) Conversely, an < -module M is coherent if and only if A is h-
complete and K" A | " is a coherent <fy-module for any n > 0.

(v) For any good </ -module A4 and any K € B, we have H (K; #) =
0 for any j > 0.

1.4. h-graduation and h-localization

In this section, & is a sheaf of algebras satisfying hypotheses (1.2.2)
and either (1.2.3) or (1.3.1).
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Graded modules. — Let Z be a Z]h]-algebra on a topological space X.
We assume that #Z has no h-torsion. We set

Ry = R | R

Definition 1.4.1. — We denote by gr,: D(Z) — D(Z%,) the left de-
rived functor of the right exact functor Mod(#) — Mod(Z%y) given
by M — M |hA. For # € D(Z) we call gr,(#) the graded mod-
ule associated to ..

We have

L L
gty (M) =~ RoR, M ~ ZX@ZX[h M.

]

Lemma 1.4.2. — Let # € D(Z) and let a € Z. Then we have an
exact sequence of Zo-modules

0 — %o ®, H (M) — H(gr, (M) — Tor{ (Ro, H* (M) — 0.

Although this kind of results is well-known, we give a proof for the
reader’s convenience.

Proof. — The exact sequence 0 — Z LNy BN Hy — 0 gives rise to the
distinguished triangle

ML — g () s

It induces a long exact sequence

HY(H) L HY () — H(gr, (M) — H ) L HV (1),

The result then follows from
Ko @, H (M) ~ Coker(H (M) <= H* (),
Tor? (R, H (M) ~ Ker(H* () L H ().
]
Proposition 1.4.3. — (i) Let J#, € D(#Z°?) and 5 € D(Z). Then
(14.1) B (16, 5) = g, (A1), 81, (H2).
(i) Let # € D(#) (i =1,2). Then
(1.4.2)  grp(Room , (A, H3)) =~ Ritom , (gr,(1), gry(H2)).
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Proof. — (i) We have
L L L L
grh(%(g@%) ~ Ji/l@%'%/?@zx[h]ZX :'%@@grh(f%/?)
L L
~ %@ﬁ‘%()@gogrﬁ(%))
L L
(K Ro)S ()

L
o~ grh(%)(&%ogrh(‘%)'

(ii) The proof is similar. O

Proposition 1.4.4. — Let f: X — Y be a morphism of topological
spaces. Let M € D(Zx|h]) and A € D(Zy[h]). Then

gthf*'// = Rf*grh///,
g f AN~ [l

Proof. — This follows immediately from the fact that for a complex

of Zx [h]-modules # , gr,(.#) is represented by the mapping cone of .# LN
A and similarly for Zy [h]-modules. O

Recall that <7 is a sheaf of algebras satisfying hypotheses (1.2.2) and
either (1.2.3) or (1.3.1). The functor gr, induces a functor (we keep the
same notation):

(1.4.3) gry: D2, (/) — D, ().

coh

The following proposition is an immediate consequence of Lemma 1.4.2
and Nakayama’s lemma.

Proposition 1.4.5. — Let # € D°, (/) and let a € Z. The condi-
tions below are equivalent:

(i) H*(gry(A)) ~0,

(i) H*(A) ~ 0 and H*"'(.#) has no h-torsion.

Corollary 1.4.6. — The functor gr; in (1.4.3) is conservative (i.e., a
morphism in DP | (&) is an isomorphism as soon as its image by gr, is

an isomorphism in D2, (<) ).

Proof. — Consider a morphism ¢: .# — 4 in DP, (&) and assume

that it induces an isomorphism gr;,(): gr,(.#) — gr,(#") in D2, ().

coh

Let # — N — % s bea distinguished triangle. Then gr,.Z ~ 0,
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and hence all the cohomologies of .Z vanishes by the proposition above,
which means that £ ~ 0. O]

Homological dimension. — In the sequel, for a left Noetherian K-algebra
Z, we shall say that a coherent Z-module & is locally projective if, for
any open subset U C X, the functor

jiﬂom%(,@, '): MOdcoh(%‘U) — MOd(KU>

is exact. This is equivalent to one of the following conditions: (i) for each
x € X, the stalk &2, is projective as an #Z,-module, (ii) for each x € X,
the stalk &, is flat as an Z,-module, (iii) & is locally a direct summand
of a free Z-module of finite rank.

Lemma 1.4.7. — A coherent o/ -module &2 is locally projective if and
only if & has no h-torsion and gr, < is a locally projective </-module.

Proof. — We set for short A:=.7, and Ag:=(4%),. Note that Ay ~ gr; A.
Let P be a finitely generated A-module.

(i) Assume that P is projective. Then P is a direct summand of a free
A-module. It follows that P has no h-torsion and gr,P is also a direct
summand of a free Ap-module.

(ii) Assume that P has no A-torsion and gr, P is projective. Consider
an exact sequence 0 — N = L — P — 0 in which L is free of fi-
nite rank. Applying the functor gr, we find the exact sequence 0 —
gry N LN gr,LL — gr, P — 0 and gr; P being projective, there exists a
map U: gr,L — gr, N such that v o gryu = idg, n. Let us choose a map
v: L — N such that gr,(v) = 7. Since gr,(v ou) = idg, y, We may write

vou=Iidy —hyp

where ¢: N — N is an A-linear map. The map idy —hy is invertible
and we denote by v its inverse. Then ¢ ov o u = idy, which proves that
P is a direct summand of a free A-module. m

Theorem 1.4.8. — Let d € N. Assume that any coherent ofy-module
locally admits a resolution of length < d by free <fy-modules of finite rank.
Then

(a) for any coherent locally projective < -module &, there locally exists
a free of -module of finite rank F such that & ® ¥ is free of finite
rank,
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(b) any coherent 7 -module locally admits a resolution of length < d + 1
by free o/ -modules of finite rank.

Proof. — (a) It is well-known (see e.g., [56, Lem. B.2.2]) that the result
in (a) is true when replacing & with 4. Now, let & be as in the
statement. Then gr, & is projective and coherent. Therefore, there exists
a locally free @7-module .# such that gr, & @ gr;.# is free of finite rank
over . This implies that & @ % is free of finite rank over .o/ by
Lemma 1.2.17.

(b)-(i) Let # € Modeon(«/) and let us first assume that .# has no
h-torsion. Since .7 is coherent, there exists locally an exact sequence

0= >ZLy 11— =L — M —N0,

the o/-modules .Z; (0 < i < d—1) being free of finite rank. Applying the
functor gr,, we find an exact sequence of .2%-modules and it follows that
gr, () is projective and finitely generated. Therefore £ is projective
and finitely generated. Let .# be as in the statement (a). Replacing ¢
and %1 with # & .7 and .£,;_1 & .% respectively, the result follows in
this case.

(b)-(ii) In general, any coherent .o/-module .# locally admits a resolution
0— AN =L — # — 0, where £ is a free o/-module of finite rank.
Since .4 has no h-torsion, .4 admits a free resolution with length d, and
the result follows. O

Corollary 1.4.9. — We make the hypotheses of Theorem 1.4.8. Let # °
be a complex of &7 -modules concentrated in degrees [a,b] and assume that
Hi(#) is coherent for all i. Then, in a neighborhood of each x € X,
there exists a quasi-isomorphism £° — #"° where £ is a complex of
free of -modules of finite rank concentrated in degrees [a — d — 1,].

Proof. — The proof uses [41, Lem. 13.2.1] (or rather the dual statement).

Since we do not use this result here, details are left to the reader. O
Localization. — For a Zx[h]-algebra # with no h-torsion, we set
(1.4.4) R = Lx[h, b7 @,y Z,

and we call Z'°¢ the h-localization of %. For an %Z-module .4, we also
set
M =R Ry M= Lx B @y M

Lemma 1.4.10. — The algebra 27'°° is Noetherian.
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Proof. — Let T be an indeterminate. One knows by [37, Th. A.30]
that .«7[T] is Noetherian. Since .&7'°¢ ~ o/ [T|//[T)(Th — 1), the result
follows. O

1.5. Cohomologically complete modules

In order to give a criterion for the coherency of the cohomologies of
a complex of modules over an algebra &7 satisfying (1.2.2) and either
(1.2.3) or (1.3.1), we introduce the notion of cohomologically complete
complexes.

In this section, Z is a Z[h|-algebra satisfying

(1.5.1) Z has no h-torsion.
Recall that .#'°¢ :=Z[h, h™"] ®yy A for an Z-module A .

Lemma 1.5.1. — For M, 4" € D*(%"°), we have
RAtom poc (M, M) = Rtom ,( M, M").

L
Proof. — We have %IOC(X)%/// ~ /. Hence,

RAOM oo (M M) = RAOM e (Rl . M)
~ Rottom (M, H").

The next result is obvious.

Lemma 1.5.2. — The triangulated category D(%'°) is equivalent to
the full subcategory of D(Z) consisting of objects A satisfying one of
the following equivalent conditions:

(i) gry,(.4) =0,

)
L
(iil) A — R'°®, M is an isomorphism,
(iv) R#om ,(#"°, M) — M is an isomorphism,
)
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Lemma 1.5.3. — Let K be a Z[h]-module with projective dimension
< 1. Then for any # € D(Z), any open subset U and any integer i, we
have an exact sequence

0 — Exty, (K, H' (U M) — H'(UsRAom (K, A))
— Hom (K,H'(U; A)) — 0.

Proof. — We have a distinguished triangle
RHom ,, (K, 7<'RT(U; 4 )) — RHom , (K, RU(U; .4))
— RHom , (K, 7' RT(U;.#)) —— .
Since H’“RHomZ[h](K, N) =0 for any k # 0,1 and any Z[A]-module N,

we have H”lRHomZW (K, 7<'RI(U; #)) ~ 0. Hence we have an exact
sequence

0 — H'RHom (K, 7~'RT(U;.#)) — H'RHom ,, (K,RT(U; A))
— H'RHom (K, 7='RI(U; 4)) — 0.

Then the result follows from

H'RHom ,, (K, 7'RU(U; A )) = Extlzm (K,H'"Y(U; A))

and HiRHomZ[h] (K, 7='RT(U; M) ~ Hom (K,H\(U; A)). O
Recall that we set

(1.5.2) M=V M WM

Lemma 1.5.4. — Let # € Mod(Z) and assume that # has no h-
torsion.

(i) Hom (BB, M| M) = Ext! (B )R, M) = M.
(i) Ker(AZ — ,///l\) ~ Som ,(#"°°, M ). In particular, A is h-separated
if and only if Hom ,(#"°, M) ~ 0.
(iii) Coker(A — /Z/\) ~ gxtel%)(e%loc, A ). In particular, A is h-complete

if and only if éaxtf%(%bc,///) ~0 for j=0,1.
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Proof. — We have
Hom (R | R, M| M) ~ @%Om%(h_n%/%,%loc/%>

~ lim Aom ,(h""R| R, 0" M | )
~ lim . /B~ M

Since Rom (%' ) R, #4'°°) ~ 0 by Lemma 1.5.2, applying the functor
Rtom (%R, ) to 0 — M — M — M| .H# — 0, we obtain an
isomorphism Som, , (%' | R, M| M) == Ext (B | R, M ). Hence
we obtain (i).

By the long exact sequence associated with 0 — Z — Z'°¢ — #'°° /% —
0, we obtain

Hom (B | R, M) — Hom (R, M) — Hom ,(R, M)
— Eut (R )R, M) — Ext' (B, M) — 0,
which reduces to
0 — Hom (B, M) = M — M — Ext' (B, M) — 0.
Hence we obtain (ii) and (iii). O

Consider the right orthogonal category D(£%'°¢)*" to the full subcate-
gory D(%"°°) of D(Z). By definition, this is the full triangulated subcat-
egory consisting of objects .# € D(Z) satisfying Hom D) (N, M) =0
for any A4 € D(%'°) (see [41, Exe. 10.15]).

Definition 1.5.5. — One says that an object .# of D(Z) is cohomo-
logically complete if it belongs to D(Z'°¢)1".

Proposition 1.5.6. — (i) For .# € D(Z), the following conditions
are equivalent:
(a) A is cohomologically complete,
(b) R#om (%", M) ~ Rt om ,;, (Z[h, R, ) ~0,
(c) [ljigExtJZ[h](Z[h, WY, H(U; M) ~ 0 for any x € X, j = 0,1
ox
and any v € Z. Here, U ranges over an open neighborhood
system of x.
(ii) R#om ,(#'°| R, 4 ) is cohomologically complete for any M €
D(Z).
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(iii) For any A € D(Z), there exists a distinguished triangle
M — M — M
with A" € D(%"°) and H" € D(Z"°)*+".
(iv) Conversely, if
M — M= M
is a distinguished triangle with #' € D(%'°°) and #" € D(#"°)*",
then M' ~ RAom (%", M) and M" ~ RAom ,(%#°°|R|-1], ).
Proof. — (i) (a)&(b)  For any A" € D(£'°°), one has

L
Hom , (A, .#) =~ Hom ,(#'°®,N M)
~ Hom (AN, Rstom (%", M ))
and it vanishes for all .4~ € D(#"°) if and only if R#om (%", #) ~ 0.
(i) (b)<(c) follows from Lemma 1.5.3.
(i) Since 2, (8 /R) ~ 0, we have
Rstom (%', RAom , (R | R, M ))

L
~ Rt om ,(B°®,,(%|R), M) ~ 0,

and hence RA#om ,(%#'°° /%, 4 ) is cohomologically complete.

(iii) We have obviously R#om (%', #) € D(%"°). Hence the distin-

guished triangle
1

Rotom (B, M) — RAom (R, M) — RHom (B | R|-1], M) ——
gives the result.
(iv) Since R#om (%', . #") ~ 0, we have
M~ RA#om (B, M) =2 Rotom (R, M),

and hence .#" ~ R#om (%" |R|—-1], A ). O

Note that .# +— Ro#om ,(%'"°°, #) is aright adjoint functor of the in-
clusion functor D(#'°°) — D(Z), and the quotient category D(Z)/ D(%'°)
is equivalent to D(Z'°¢)1".

Remark that .Z € D(Z) is cohomologically complete if and only if its
image in D(Zx|[h]) is cohomologically complete.

Corollary 1.5.7. — Let A be an Z-module. Assume the following
conditions:
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(a) A has no h-torsion and is h-complete,
(b) for any x € X, denoting by %, the family of open neighborhoods of
x, we have “lim” H U; #) ~ 0 fori # 0.
Ues
Then A is cohomologically complete.

Proof. — For U open, we have the maps

D(U; ) % S (U ) BT (U; M) 2 S T(Us A 1) ~= T(U; M)

whose composition is the identity. Since b is a monomorphism, a is an
isomorphism and therefore I'(U; #) is h-complete. Consider the asser-
tion

“ling” Bxt?,  (Z[h, WY, H(U; #)) ~ 0 for j =0,1.

Ues
This assertion is true for ¢ = 0 since I'(U; .#) is h-complete and is true

for i # 0 by hypothesis (b). The same vanishing assertion remains true
after replacing “lig” with hﬂ Applying Proposition 1.5.6 (i), we find

that .# is cohomologically complete. H

Proposition 1.5.8. — Let # € D(Z) be a cohomologically complete
object and a € Z. If H (gr,(A)) = 0 for any i < a, then H'(#) = 0

for any i < a.

Proof — The exact sequence H™'(gr,.#) — Hi(.M) - H(.M) —
H'(gr,.# ) implies that H'(.#) SN H'(#) is an isomorphism for i < a.
Hence 7<%/ € D(%'°) and we have R#om ,(#"°, 7<° M) ~ 7<"M .
By the distinguished triangle,

RAom (B, <" M) — RAom ,(B°, M) = Rtom (B, 72°M)
we have 7<% ~ R om (%", 724 )|—1] and they belong to D<*(Z)N
D= (%) ~ 0. O
Corollary 1.5.9. — Let # € D(ZX) be a cohomologically complete ob-
ject. If grp (M) ~ 0, then M ~ 0.

Proposition 1.5.10. — Assume that A € D(Z) is cohomologically
complete. Then Ritom (N, M) € D(Zx[h]) is cohomologically com-
plete for any A € D(Z).
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Proof. — 1t follows from
Rotom 4, (Z[h, k1), Rtom (N, M) = R#om ,(N, Rotom ,, (Z]h, W, ).
]

We can give an alternative definition of a cohomologically complete
module.

Lemma 1.5.11. — Let # € D(Z). Then we have
(i) Rer((“im” )G, ll) = RAom (B, M),

(i) Ree((“1iaw” /1), M) =~ RAom (B | R 1], M).

Proof. — 1t is enough to show (i). Set L = “lim” (Zh"). Note that L is

flat, i.e., the functor L ®, « from Mod(Z) to Pro(Mod(Z)) is exact.
One has the isomorphisms

Hom (B, M) ~ z%”om%(hg%ﬁ_”,///)
~ lim Aom ,(Zh", M)

~ lim Aom ,(Zh", R) @, M

12

lim (1" @, ).

n

It remains to show that RW(L(}%% *) is the right derived functor of .4 —
@(%h” ®,-#). Hence, it is enough to check that if .# is an injective Z-
module, then RW(L(%%% ) is in degree zero. Applying Lemma 1.1.5 with
My, = BN R, M, we find H (U; RW(L(%%%)) ~ 0 for ¢ > 0. Therefore,
R%(Lé{)r%,///) ~ 0 for i > 1. On the other hand, since {I'(U;.#,)},
satisfies the Mittag-Leffler condition, we get that RIW(L<§L§>,%,//Z )~0. O

Hence, .# is cohomologically complete if and only if the morphism .# —
L
RW(“@” (%] %#Nh")R,,.#) is an isomorphism.
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Proposition 1.5.12. — Let f: X — Y be a continuous map, and # &€
D(Zx[h]). If # is cohomologically complete, then so is R f.. M .

Proof. — It immediately follows from
R‘%Omzy[h] (ZY [hv hil]? Rf*‘%) = R’f*Rﬁomzx[ﬁ] (ZX [hv hil]a '%)
O

1.6. Cohomologically complete .«7-modules

In this section, 7 is a K-algebra satisfying hypotheses (1.2.2) and
either (1.2.3) or (1.3.1).

Theorem 1.6.1. — Let .# € D°, (/). Then M is cohomologically
complete.

Proof. — Since any coherent module is an extension of a module without
h-torsion by an h-torsion module, it is enough to treat each case.

Assume first that .# is an h-torsion coherent .@Z-module. Since the
question is local, we may assume that there exists n such that A".# = 0.
Then the action of i on the cohomology groups of R#om (&', A ) is
nilpotent and invertible, and hence the cohomology groups vanish.

Now assume that . is a coherent «/-module without A-torsion. Then
Corollary 1.5.7 shows that .# is cohomologically complete. O

Corollary 1.6.2. — If # € D2, (/) and N € D(&), then R#om (N, M)

coh
s cohomologically complete.

Proof. — It is an immediate consequence of Proposition 1.5.10 and the
theorem above. O

In the course of the proof of Theorem 1.6.4 below, we shall use the
following elementary lemma that we state here without proof.

Lemma 1.6.3 (Cross Lemma). — Let € be an abelian category and
consider an exact diagram in €

X5

l

X1—>Y—>Zl

L.
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Then the conditions below are equivalent:

(a) Im(Xy — Z7) == Im(Y — Z4),
(b) Im(X; — Z5) =5 Im(Y — Z),
(c) X1 ® Xy =Y is an epimorphism.

Theorem 1.6.4. — Let # € DY (<) and assume:

(a) A is cohomologically complete,
(b) gry(#) € D ().
Then, # € D}, (<), and we have the isomorphism

coh
H (M) 22 Yim HY (M)

for alli € Z.

Proof. — We shall assume (1.2.3). The case of Hypothesis (1.3.1) could
be treated with slight modifications.

Recall that @, := & /"o and set A, = ﬂnéﬂ.///, NI = HI(M,).

(1) Foreachn € N, the distinguished triangle <7 /h" o/ L, AP —
of | hat L induces the distinguished triangle

(16.1) s Dl sty
This triangle gives rise to the long exact sequence
(1.6.2) NIV s v s ]

from which we deduce by induction on n that .47 is a coherent .&/-module
for any j and n > 0 by using the hypothesis (b).

(2)  Let us show that
(16.3) “L” Coker(A/7 LN A7) and “L” Ker(A/7 LN N7 are
locally representable for all 7 € Z

Consider the distinguished triangle:

(1.6.4) My s My — My, s

It gives rise to the long exact sequence

(1.6.5) o M s S T
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Now consider the exact diagram, deduced from (1.6.2) and (1.6.5):

(1.6.6) il

J

N e A AN

x J%
O

1

j+1
/S

Here the commutativity of the triangle follows from the commutative
diagram

My —"" 1, My —
lid lh lh
%0 e %n+1 %n =

Hence Im(¢! ) € Im(yp?) € A7 "' Therefore, the sequence {Im ¢/},

of coherent .&7-submodules of J%jﬂ is increasing and thus locally sta-
tionary. It follows from (1.6.6) and Lemma 1.6.3 that

(1.6.7 the decreasing sequence {Im(%f - %j )} is locally station-
ary for any j € Z.

Since Coker( A7 | 2 47} = Im(A7 — A7) by (1.6.2), we deduce that
“lim” Coker(4;7 2 A7) ~ “lim” Coker(A; | 2 A7)
is locally representable.
Since Ker(A7 | & A7) o AZ 71/ Im(A771 = A77Y) by (1.6.2), we
get that “lim” Ker(./4;7 U RS “lim” Ker(A47 | L 47) is locally

representable.
Therefore, we have proved (1.6.3). Then by Proposition 1.2.18, Jim NI

is a coherent «/-module and {.#,7},, satisfies the Mittag-Leffler condition.
(3)  Hence it remains to prove that H?(.#) == lim 477 for any j. Set

A = (T’ )&, 4 € D* (Pro(Mod(«))) and N7 = HI(A') =
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“lim” 477 € Pro(Mod(«)). Lemma 1.5.11 implies that
n

M = R

Since the 4,7’s are coherent </-modules, for any any U € B, H (U; A7) =
0 (i > 0) and {A7(U)},, satisfies the Mittag-Leffler condition. Hence in
the exact sequence

0 — Rim(“hwm” H=YU; A7) = H'(U; ReA”) — Im H' (U; A7) — 0,

the first and the last term vanish, and we obtain Rir.#7 = 0 for any
i > 0. Let us show that H’(.#) =% 1&1%3 by induction on j. Assuming

HI () = Yim A7 for j < c, let us show that H(.#) = lim 4. By

the assumption, H(#) = R (A") for any i < c¢. Hence 7.4 ==
Rr(r=¢.#'). Since M4 == Rr.d', we obtain 724 == Rr(r=.4").
Hence taking the c-th cohomology, we obtain H¢(.#) == ROt H(.A") ~
lim A O

The next result will be useful.
Proposition 1.6.5. — Assume that </°P/ha/°P is a Noetherian ring

and the flabby dimension of X is finite. If .# € DP() is cohomo-
L
logically complete, then for any A~ € DY, (&/°P), the object N ® .M

coh

of D™ (Z]h]x) is cohomologically complete.

Proof. — By the assumption on the flabby dimension, there exists a € Z
such that H'Rfom ,, (Z[h, h™'],.7) = 0 for any F € D=%(Zx/[h]) and
any i > a.

For any n € Z we can locally find a finite complex L of free .&7/°P-
modules of finite rank such that there exists a distinguished triangle

L L L

L M — N M — G where G € D"(Zx[h]). Since L& A is co-
. L .

homologically complete, H'R#om (7', N @ M) ~ HRHom (', G) =
L

0 for i > n + a. Hence A'®_,.# is cohomologically complete. O

Flatness. —
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Theorem 1.6.6. — Assume that &/°?/ha/°P is a Noetherian ring and
the flabby dimension of X s finite. Let .4 be an <f -module. Assume

the following conditions:

(a) A has no h-torsion,
(b) A is cohomologically complete,
(¢) A |hA is a flat oAy-module.

Then A is a flat o/ -module.

Proof. — Let .4 be a coherent /°P-module. It is enough to show that
we have Hi(ﬂéﬂe///) = 0 for any ¢ < 0. We know by Proposition 1.6.5
that ,/VQ%&V% is cohomologically complete. Since grh(ﬂéﬂ///) ~ (grh,/l/)%)% (gr, A )
belongs to D=%(Zx ), we have e/l/éi)p{/// € D="(Z[h]x) by Proposition 1.5.8.
[

Corollary 1.6.7. — In the situation of Theorem 1.6.6, assume more-
over that M |h A is a faithfully flat <fy-module. Then A is a faithfully
flat o/ -module.

Proof. — Let .4 be a coherent 2/°P-module such that A4 ®_, .# ~ 0.

We have to show that 4" ~ 0. By Theorem 1.6.6, we know that .Z is
L

flat, so that 4" ® , # ~ N ®_,. /. Therefore

L
(grhﬂ)(@%(grh%) =~ grh(JV X //) ~0

and the hypothesis that .# /h.# is faithfully flat implies that gr, .4 ~ 0.
Since .4 is coherent, Corollary 1.4.6 implies that .4 ~ 0. ]

Proposition 1.6.8. — Assume (1.2.2) and (1.2.3). Let U be an open
subset of X satisfying:

(1.6.8) UnV e®B forany V € B.

Then for any coherent o7 -module A , we have

(i) R*Ty(A) =0 for any n # 0,

(i) I'y(«) @, M — Ty( M) is an isomorphism,
(i) Ty (&) is a flat &/°P-module.

Proof. — (i) Since R"T'y(.#) is the sheaf associated with the presheaf
Vi H UNV; ), (i) follows from Theorem 1.2.5 (v).
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(ii)) The question being local, we may assume that we have an exact
sequence 0 — A — £ — # — 0, where £ is a free o/-module of
finite rank. Then, we have a commutative diagram with exact rows by

(i):

| ! |

0 ———Ty(A) I'y(Z) Ty(A) ——0.

Since the middle vertical arrow is an isomorphism, I'y(#) ® , 4 —
I'y(A) is an epimorphism. Applying this to A, T'y(&) ®, A —
L'y (A7) is an epimorphism. Hence, I'y(#) ® , # — T'y(#) is an iso-
morphism.

(ili) By (i) and (ii), # — I'y(«) ®,, A is an exact functor on the
category of coherent .o/-modules. It follows that for all x € X, the
functor A +— (P'y(H)). ®,, A, is exact on the category Modcen(#).
Therefore, (I'y (7)), is a flat &Z°P-module. O

Remark 1.6.9. — The results of this chapter can be generalized in the
following situation. Let o7 be a sheaf of rings on a topological space X
and let .# be a both-sided sheaf of ideals of &/. We assume that:
there exists locally a section s of .# such that & > a — as and &/ >
a — sa give isomorphisms &/ =% 7.

Weset oy = o/ | I, o (—n) = I" C o and &/ (n) = RAom (' (—n), )
for n > 0.

Then we have &7 (n) C &/ (n+ 1), and & (n) ®. o (m) ~ o (n + m).

We set &7'°¢ = hﬂ%(n) and for an &/-module .Z, we set .4 (n) =

o (n) Ry M .
We say that .# is .#-torsion free if #(—1) — .# is a monomorphism.
Of course, o7 is .#-torsion free.

Finally, for an «7-module .# we set M= @Coker(///(—n) — M).

Instead of (1.2.2), we assume
(1.6.9) (1) & =,
(ii) % is a left Noetherian ring.

Under the assumptions (1.6.9) and (1.2.3), all the results of this chapter
hold with suitable modifications.
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In particular, our theory can be applied when X = T*M is the cotan-
gent bundle to a complex manifold M and &/ = &x(0) is the ring of
formal microdifferential operators of order 0 (see Section 6.1 for more
details on the ring of formal microdifferential operators).



CHAPTER 2

DQ-ALGEBROIDS

2.1. Algebroids

In this section, X denotes a topological space and recall that K is
a commutative unital ring. A K-linear category means a category €
such that Hom, (X,Y) is endowed with a K-module structure for any
X, Y € ¢, and the composition map Hom,(X,Y) x Hom (Y, Z) —
Hom (X, Z) is K-bilinear for any X, Y, Z € . One defines similarly
the notion of a K-linear stack.

The notion of an algebroid has been introduced in [45]. We refer to
[18] for a more systematic study and to [41] for an introduction to stacks.
Recall that a K-algebroid & on X is a K-linear stack locally non empty
and such that for any open subset U of X, any two objects of <7 (U) are
locally isomorphic.

If Ais a K-algebra (an algebra, not a sheaf of algebras), we denote
by A" the K-linear category with one object and having A as the endo-
morphism ring of this object.

Let o7 be a sheaf of K-algebras on X and consider the prestack U —
</ (U)* (U open in X). We denote by &/ the associated stack. Then
&/ is a K-algebroid and is called the K-algebroid associated with <.
The category &/ (X) is equivalent to the full subcategory of Mod (< °P)
consisting of objects locally isomorphic to .o7°P.

Conversely, if o/ is an algebroid on X and o € &/ (X), then & is
equivalent to the algebroid E\[ (o).

For an algebroid & and o, 7 € &/(U), the K-algebras £\[ (o) and
E\[,,(7) are locally isomorphic. Hence, any definition of local nature
concerning sheaves of K-algebras, such as being coherent or Noetherian,
extends to K-algebroids.
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Recall that for an algebroid o7, the algebroid .7°P is defined by «7°P(U) =
(&7 (U))°? (U open in X). Then, if & is a sheaf of K-algebras, (&/°P)* ~
(VQ{—&-)OP'

Convention 2.1.1. — If o/ is a sheaf of algebras and if there is no risk
of confusion, we shall keep the same notation 7 to denote the associated
algebroid.

Note that two algebras may not be isomorphic even if the associated
algebroids are equivalent.

Example 2.1.2. — Let X be a complex manifold, .Z a line bundle
on X and denote as usual by Zx the ring of differential operators on X.
The ring of Z-twisted differential operators is given by

I =L, Ix@, L7

In general the two algebras Zy and 25 are not isomorphic although
the associated algebroids are equivalent. The equivalence is obtained by
using the bi-invertible module Ix ®, & #~! (see Definition 2.1.10 and
Lemma 2.1.11 below).

Let % = {U;}icr be an open covering of X. In the sequel we set
Uij = Ul N Uj, Uijk = Ul N Uj N Uk, etc.
Consider the data of
(2.11) {a K-algebroid &7 on X,
o o; € &/ (U;) and isomorphisms ¢;;: 0;

Uij = 0i|U;,; -
To these data, we associate:

— ;= E\[,(03),

- fij: 52%] Ui; =

— a;ji, the invertible element of <7 (U,ji) given by ¢;; o ;i o gpi_kl.
Then:
(2.1.2) fijo fin = Ad(az’jk) o fir on Uyp,

Qi Qikl = fij(ajkl)aijl on Uijkl-

(Recall that Ad(a)(b) = aba™!.)

Conversely, let 7 be K-algebras on U; (i € I), let fi;: <}|v,, = “i|u,
(¢,7 € I) be K-algebra isomorphisms, and let a;;i, (¢, 7, k € I) be invertible
sections of o7 (U, ;i) satisfying (2.1.2). One calls

(2-1-3) ({JZ{Z'}Z'GI, {fij}i,jela {aijk}i,j,kel)

u,;» the K-algebra isomorphism a +— ¢;;0a 0 gplfjl,



2.1. ALGEBROIDS 41

a gluing datum for K-algebroids on %/. The following result, which easily
follows from [27, Lem 3.8.1], is stated (in a different form) in [36] and
goes back to [28].

Proposition 2.1.3. — Assume that X is paracompact. Consider a glu-
ing datum (2.1.3) on % . Then there exist an algebroid &/ on X and
{04, i }ijer as in (2.1.1) to which this gluing datum is associated. More-
over, the data (o, 0;, ;) are unique up to an equivalence of stacks, this
equivalence being unique up to a unique isomorphism.

We will give another construction in Proposition 2.1.13, which may be
applied to non paracompact spaces such as algebraic varieties.

For an algebroid o7, one defines the K-linear abelian category Mod(47),
whose objects are called «7-modules, by setting

(2.1.4) Mod (/) := Fetg (o7, Mod(Kx)).

Here Mo0(Ky) is the K-linear stack of sheaves of K-modules on X and,
for two K-linear stacks @/ and <, Fctg (s, o) is the category of K-
linear functors of stacks from 7 to .@%. If o is the algebroid associated
with a K-algebra A on X, then Mod(.«7) is equivalent to Mod(A). The
category Mod(«7) is a Grothendieck category and we denote by D(.%7) its
derived category and by DP(.#) its bounded derived category.

For a K-algebroid <7, the K-linear prestack U +— Mod(«|y) is a stack
and we denote it by 9tod ().

In the sequel, we shall write for short “o € &/” instead of “o € &/ (U)
for some open set U”.

Definition 2.1.4. — An &/-module .Z is invertible if it is locally iso-
morphic to &/, namely for any o € 7, the £\[ ,(o)-module Z(0) is
locally isomorphic to E\[ (o).

This terminology is motivated by the fact that for an invertible module
Z, if we set B := (E\[ (L)), then Hom (£, ) ®, L ~ A and
L Ry, Hom (L, )~ .

We denote by Inv(./) the full subcategory of Mod(%7) consisting of
invertible ./-modules and by Jnv(<?) the corresponding full substack
of Mod(o7). Then we have equivalences of K-linear stacks &/ =% Jnv (/) =%
Jno(gef)°P.
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Recall that for two K-linear categories ¥ and %, one defines their
tensor product € ®; ¢’ by setting Ob(€ ®, €¢’) = Ob(%) x Ob(%¢”") and

Hom,,, (M, M"), (N, N')) = Hom , (M, N) &, Hom,,(M’, N')
K
for M, N € ¢ and N,N' € €¢'. Then ¢ ®, ¢’ is a K-linear category.
For a pair of K-algebroids &7 and 7', the K-algebroid &7 ®, &7’ is the

K-linear stack associated with the prestack U — &/(U) @, &' (U) (U
open in X). We have

Mod( ®, ") ~ Fetg (o, Mod(")).
For a K-algebroid o7, Mod(%/ @ 7/°P) has a canonical object given by
A Qp AP > (0,0"P) = Hom ,(o',0) € Mod(Kx).

We denote this object by the same letter 7. If & is associated with a
K-algebra A, this object corresponds to A, regarded as an (A ®, A°P)-
module.

For K-algebroids <7 (i = 1,2, 3), we have the tensor product functor

(2.1.5) * ®,, *: Mod(e @ ") x Mod(oh &y 5")
— Mod (4 @y 57),
and the sZom functor
(2.1.69¢0m , (=, *): Mod(# @y o,") x Mod (e &y A5")
— Mod(ets &y o57).

In particular, we have

*®, . Mod(#°P) x Mod(«/) — Mod(Ky),
Jtom ,(+,+) : Mod(#)® x Mod(&/) — Mod(Kx),
Jdtom ,(, ) Mod (.7 )°P —  Mod(&/°P).

Since Mod (/) is a Grothendieck category, any left exact functor from
Mod(<7) to an abelian category admits a right derived functor.

Now consider the tensor product in (2.1.5). It admits a left derived
functor as soon as %4 is K-flat. Indeed, any .Z € Mod(a & (%)°P) is
a quotient of an @%-flat module since there is an exact sequence

@ L — M —0,

s€Hom (Z,.# )
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where U ranges over the family of open subsets of X and % € (4% ®
(2%3)°P)°P(U). (Recall that for a K-algebroid &7, &/°P(U) is equivalent
to Jnou(e/)(U).) Note that .Z is @h-flat since (.o73)°P is K-flat.

The following lemma is obvious.

Lemma 2.1.5. — Let o/ and &' be K-algebroids. To give a functor of
algebroids p: o' — o is equivalent to giving an (/' @ o/ °P)-module £
which is locally isomorphic to & (i.e. foro € of and o’ € o', L (0’ R0c°P)
is locally isomorphic to E\[ (o) as an E\[ ,(0)°P-module).

The &' ® o/°P-module £ corresponding to ¢ is the module induced
from the & ® &/°P-module o7 by p @ FP: &' @ AP — o & /.
The forgetful functor

Mod(&) — Mod (&)

is isomorphic to A — L ®@ , M .

Let f: X — Y be a continuous map and let .7 be a K-algebroid on Y.
We denote by f~1a/ the K-linear stack associated with the prestack &
given by:

S(U) ={(o,V); V is an open subset of Y such that f(U) C V
and 0 € &/(V)} for any open subset U of X,

Homg ) ((0,V), (o, V")) = D(U; f ' SHom ,(0,0")).
Then '« is a K-algebroid. We have functors

fe, fr: Mod(f ') — Mod (),
f~': Mod(?) — Mod(f'<).

For two topological spaces X; and X, let p;: X7 X Xo — X, be the
projection. Let 7 be a K-algebroid on X; (i = 1,2). We define a K-
algebroid on X; x X3, called the external tensor product of &7 and .o,
by setting:

o W oty = py ah @ p; ' .
We have a canonical bi-functor

« X «: Mod(#) x Mod(e) — Mod(e K ).
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Bi-invertible modules. — The following notion of bi-invertible modules
will appear all along these Notes since it describes equivalences of alge-
broids.

Definition 2.1.6. — Let A and A’ be two sheaves of K-algebras. An
A ® A’-module L is called bi-invertible if there exists locally a section w
of L such that Ada— (a®@l)we Land A >d — (1®d)w e L give
isomorphisms of A-modules and A’-modules, respectively.

Lemma 2.1.7. — Let L be a bi-invertible A® A’-module and let u be a
section of L. If A> aw (a® 1)u € L is an isomorphism of A-modules,
then A’ > d' — (1®d")u € L is also an isomorphism of A'-modules.

Proof. — Let w be as above. There exist a € A and b € A such that
u = (a® 1w and w = (b ® 1)u. Then we have u = (ab ® 1)u and
hence ab = 1. Similarly w = (ba ® 1)w implies ba = 1. Hence we have a

commutative diagram
— L
\2 l a®1
L

and we obtain the desired result. O

Remark 2.1.8. — Let A and B be two K-algebras and let L be an
(A ® B°?)-module. Even if L is isomorphic to A as an A-module and
isomorphic to B°P as a B°®-module, L is not necessarily bi-invertible, as
shown by the following example.

Let I be an infinite set and take o € I. Set I* = I\ {o}. Then there
exists a bijection v: I* — I. Set

X ={a € Homg(I,1);a(o0) = o},
Y = {b e Homg,,(I,I);b(o) =0 and b(I*) C I"}.

Set Z = X. Then X and Y are semi-groups and X acts on Z from the
left and Y acts on Z from the right. Let v' € Z be the unique element
extending v. Then id; € Z gives an isomorphism X =% Z (X S a+>a €
Z) and v' € Z induces an isomorphism Y =% Z (Y 3 b— v ob € Z).
Let A = K[X] and B = K[Y] be the semigroup algebras corresponding
to X and Y. Set L = K[Z]. Then L is an (A ® B°?)-module and L
is isomorphic to A as an A-module and isomorphic to B° as a B°P-
module. Let u be the element of L corresponding to id;. Then u gives
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an isomorphism A 3 a — (a ® 1)u € L. Since the image of B® 5 b —
(1®b)u € Lis K[Y] # L, L is not bi-invertible in view of Lemma 2.1.7.

However the following partial result holds.

Lemma 2.1.9. — Let A and A’ be K-algebras and let L be an A ® A’-
module. Assume that L is isomorphic to A as an A-module and isomor-
phic to A" as an A’-module. If we assume moreover that A, is a left
noetherian ring for any x € X, then L is bi-invertible.

Proof. — Assume that A > a+— (a®1)u € Land A’ 5 d' — (1®d")v € L
are isomorphisms for some u,v € L. Set v = (¢ ® 1)u and u = (1 ® a’)v.
There exists a” € A such that (1 ® a’)u = (¢” ® 1)u. Then we have
u=(1®d)v=_10d)(a®@1)u = (a®1)(1®ad)u = (aa”®1)u. Hence we
obtain aa” = 1. Therefore the A-linear endomorphism f: A 3 z — zad”
is an epimorphism (f(za) = z). Since A, is a left noetherian ring, f is
an isomorphism. Hence, a”, as well as a, is an invertible element. Then
the following commutative diagram implies the desired result:

A
\2ja®1
L. ]

Definition 2.1.10. — For two K-algebroids &/ and <7/, we say that
an (& ® o/')-module .Z is bi-invertible if for any o € &/ and o’ € &/,
Z(0 ®0') is a bi-invertible E\[ ,(0) ® £\[ ., (¢’)-module.

Lemma 2.1.11. — To give an equivalence </’ == o is equivalent to
giving a bi-invertible (/' ® /°P)-module. More precisely, the forgetful
functor Mod(a/) — Mod(’) is given by M — £ ®, M for a bi-
invertible (<" ® o/°P)-module £ .

Let .# € Mod(<?). We shall denote by £\ [ (.#) the stack associated
with the prestack & whose objects are those of &/ and J#omg(o,0') =
Homy (M (o), #(0")) for o, 0" € A(U). Then E\[ (A ) is a K-algebroid
and there exists a natural functor of K-algebroids .@ — £\ [ (.#). Note
that .# may be regarded as an £\ [y (.#)-module.

In particular, £\[x(</) is a K-algebroid, there is a functor of K-
algebroids & ®.&7°P? — £\ [ (), and &7 may be regarded as an £\ [ (7 )-

module.
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Lemma 2.1.12. — Let &/ and o/’ be K-algebroids and let 4 € Mod(«/),
A" € Mod(e?"). Assume that A and ' are locally isomorphic as K-
modules, that is, for any o € o/ and o' € &', M (o) and #'(d') are
locally isomorphic as Kx-modules. Then E\ [y () and E\[y(A') are

equivalent as K-algebroids.

Proof. — Foro € o/ and o’ € &', set L (0'®@0c°P) = Homy (M (o), #'(d")).
Then Z is an (E\[g(A") @ E\[g (A )°?)-module. By the assumption,
£ is a bi-invertible (E\ [ (A") @ E\ [ (4 )°P)-module. Hence we obtain
the desired result. O

Since Proposition 2.1.3 does not apply to algebraic varieties, we need
an alternative local description of algebroids.
Let % = {U;}icr be an open covering of X. Consider the data of

a K-algebroid & on X,

(2.1.7) {Ui e o (U).
To these data, we associate

— = 5\ I—Jz%(o-i)’

— = z%”om%,w (ojlv,,» 0ilv,,;), (hence Z5; is a bi-invertible <7 ®

1U4 4
/;P-module on Uj;),

— the natural isomorphisms

(218) Qijf - OZL']‘ ®Q{] %k = Zk in MOd(JZZ ®%op Uv}jk)'

Then the diagram below in Mod (4 ® <7°"|y,,,,) commutes:

(2.1.9) L5 @ L @ L 2 Ly @ L
l/ajkl laikl
Ly Ly —L s .

Conversely, let <7 be sheaves of K-algebras on U; (i € I), let Z; be a
bi-invertible <7 ®%°p—module on U;j, and let a;j;, be isomorphisms as in
(2.1.8) such that the diagram (2.1.9) commutes. One calls

(2.1.10) ({ A Yicr, {Lij}ijer, {ijn }igrer)
an algebraic gluing datum for K-algebroids on % .
Proposition 2.1.13. — Consider an algebraic gluing datum (2.1.10)

on % . Then there exist an algebroid </ on X and {0;,pij}ijer as in
(2.1.1) to which this gluing datum is associated. Moreover, the data
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(e, 04, pi;) are unique up to an equivalence of stacks, this equivalence
being unique up to a unique isomorphism.

Sketch of proof. — We define a category Mod(.«Zx) as follows. An object
A € Mod(e7x) is defined as a family {.;, ¢;;}i jer with .#; € Mod(%%)
and the g¢;;’s are isomorphisms

4 Zij By, M; = M,
making the diagram below commutative:

95k

Zij @ Ly @ My — Zij @ M

o o

Lo @ My ——— M.

A morphism {4, qji}ijer — {4}, }ijer in Mod(&y) is a family of
morphisms w;: #; — #] satisfying the natural compatibility conditions.
Replacing X with U open in X, we define a prestack U — Mod ()
and one easily checks that this prestack is a stack and moreover that
Mod(e7,) is equivalent to Mod(.7). We denote it by 9tod(.e/). Then
we define the algebroid o7x as the substack of (Mod(e7))° consisting of
objects locally isomorphic to .7, on Uj;. O

Invertible algebroids. — In this subsection, (X, %) denotes a topological
space endowed with a sheaf of commutative K-algebras. Recall (see [41,
Chap.19 § 5]) that an Z-linear stack G is a K-linear stack & together
with a morphism of K-algebras # — £\[(idg). Here, £\[(idg) is the
sheaf of endomorphisms of the identity functor idg from & to itself.

Definition 2.1.14. — (i) An Z-algebroid & is a K-algebroid &
on X endowed with a morphism of K-algebras Z — £\ [(id»).
(ii) An Z-algebroid & on X is called an invertible Z-algebroid if Zy —
E\[ »(0) is an isomorphism for any open subset U of X and any
oge 2(U).

We shall state some properties of invertible #Z-algebroids. Since the
proofs are more or less obvious, we omit them.

For two Z-algebroids &7, and &5, the Z-algebroid &, ®4 %5 is defined
as the Z-linear stack associated with the prestack & given by
G(U) = f@l(U) X c@Q(U),
%Ome ((01, 02)7 (0-17 Ué))) = %Om,% (017 U;) Qg %Om,% (027 Ué)-
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If &2, and &, are invertible, then so is | ®4 5.
We have a functor of K-linear stacks & ®k, Y2 = P Qgp .
Note that

(2.1 11)If P, and H5 are two invertible Z-algebroids and F': &2, —
T Ay is a functor of Z-linear stacks, then F'is an equivalence.

For any invertible Z-algebroid &, & ®4 F°P is equivalent

(2‘1'12)»50 Z as an Z-algebroid.

The set of equivalence classes of invertible Z-algebroids has
a structure of an additive group by the operation * ®g4

(2.1.13)defined above, and this group is isomorphic to H?(X;Z>)
(see [7, 41]). Here Z* denotes the abelian sheaf of invertible
sections of Z.

For two invertible Z-algebroids &7, and &, there is a natural

functor

(2.1.14) @, +: Mod(2,) x Mod(2,) — Mod(2, ©4 2),

and its derived version.
Invertible Ox-algebroids. — In this subsection, (X, ) denotes a com-
plex manifold. As a particular case of Definition 2.1.14, taking K = C

and # = Ox, we get the notions of an Ox-algebroid as well as that of
an invertible O'x-algebroid.

Lemma 2.1.15. — Any C-algebra endomorphism of Ox is equal to the
identity.

Although this result is elementary and well-known, we give a proof.

Proof. — Let ¢ be a C-algebra endomorphism of 0x. For x € X, denote
by ¢, the C-algebra endomorphism of Ox , induced by ¢ and by m, the
unique maximal ideal of the ring Ox ,. Then ¢, sends m, to m,, ¢,
induces an C-algebra homomorphism wu,: Ox,/m, — Ox,/m,. Since
the composition C ~% Ox . /m, —— Ox,/m, == C is the identity, we
obtain that u, is the identity. Hence, for any f € Ox, ¢o(f)(z) = f(x).
Therefore ¢(f) = f. O

Lemma 2.1.16. — Let &2 be a C-algebroid on a complex manifold X .
Assume that, for any o € P, E\[ ,(0) is locally isomorphic to Ox as a
C-algebra. Then & is uniquely endowed with a structure of Ox-algebroid,
and & is invertible.
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Proof. — By Lemma 2.1.15, for an open subset U and o € &?(U), there
exists a unique C-algebra isomorphism Ox|y =% E\[,(0). It gives a

structure of Ox-algebroid on &. The remaining statements are obvious.
O

Let & be an invertible Ox-algebroid. For o, o’ € Z2(U), the two
Ox-module structures on Jom (0, 0’) induced by E\[ (o) ~ Ox and
by E\[,(0") ~ Ox coincide, and S#om ,(0,0') is an invertible Ox-
module.

Let f: X — Y be a morphism of complex manifolds. For an invertible
Oy-algebroid Py, we set

[ Py =0x @s-10, f 1Py,

where the tensor product ® -1, is defined similarly as for K-algebroids.
Then f*Zy is an invertible Ox-algebroid. We have functors

(2.1.15)f* : Mod(Py) — Mod(f*Py), Lf* :D*(Py) — DP(f*Py),
and
f!, f* : MOd(f*gZy) — MOd(@y),

(2.1.16) Rfi, Rf. :DP(f*Py) — DP(Py).

Let f: X — Y be a morphism of complex manifolds, and let &x (resp.
Py ) be an invertible Ox-algebroid (resp. an invertible &y-algebroid ).
If {712y — Px is a functor of C-linear stacks, then it defines a functor
of C-linear stacks f*#y — Py and this last functor is an equivalence
by the preceding results.

Remark 2.1.17 — Invertible Ox-algebroids are trivial in the algebraic
case. Indeed, for a smooth algebraic variety X, the group H?(X;0%)
is zero. Here the cohomology is calculated with respect to the Zariski
topology. (With the étale topology, it does not vanish in general.) This
result and its proof below have been communicated to us by Prof. Joseph
Oesterlé, and we thank him here.

Let K be the field of rational functions on X, K%, the constant sheaf
with the abelian group K* as stalks, and denote by X; the set of closed
irreducible hypersurfaces of X. One has an exact sequence

005 = Ki— @Zg—m.
SeXy



50 CHAPTER 2. DQ-ALGEBROIDS

Since K is constant, it is a flabby sheaf for the Zariski topology. On the
other hand the sheaf @, y, Zs is also flabby. It follows that H7(X; 0%)

is zero for j > 1.

2.2. DQ-algebras

From now on, X will be a complex manifold. We denote by dx: X —
X x X the diagonal embedding and we set Ax = 0x(X). We denote
by Ox the structure sheaf on X, by dx the complex dimension, by Qx
the sheaf of holomorphic forms of maximal degree and by © x the sheaf of
holomorphic vector fields. As usual, we denote by Zx the sheaf of rings
of (finite order) differential operators on X and by F,(Zx) the sheaf of
differential operators of order < n. Recall that a bi-differential operator
P on X is a C- blhnear morphlsm Ox X Ox — Ox which is obtained
as the composition §5' o P where P is a differential operator on X x X
defined on a neighborhood of the diagonal and 6! is the restriction to
the diagonal:

(221)  P(f.g)(x) = (P(x1,02: 00y 00 (f (21)9(22)) o1 oo

Hence the sheaf of bi-differential operators is isomorphic to Zx ®¢, Zx,
where both Zx are regarded as Ox-modules by the left multiplications.
Star-products. —

Notation 2.2.1. — We denote by C" the ring C[[h]] of formal power
series in an indeterminate i and by C™°° the field C((h)) of Laurent
series in . Then C™!°¢ is the fraction field of C".

We set
L m Ox ® (C"/h"C") ~ [] Oxh™.
n>0
Let us recall a classical definition (see [1, 46]).

Definition 2.2.2. — An associative multiplication law x on Ox|[[h]] is
a star-product if it is C"-bilinear and satisfies

(2.2.2) Frg=S"P(f. o)l for f,q € Ox,

i>0
where the P;’s are bi-differential operators such that Py(f,g) = fg and
Pi(f,1) = Pi(1,f) =0for all f € Ox and i > 0. We call (Ox][h]],*) a
star-algebra.
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Note that 1 € Ox C Ox[[h]] is a unit with respect to . Note also that
we have

(S (Soh) = T % Pilfig)w

Recall that a star-product defines a Poisson structure on (X, Ox) by
setting for f, g € Ox:

(2.2.3){f, g} = Pi(f.9) — Pi(g. f) = b '(f g — g * f) mod hOx[[h]],

and that locally, (globally in the real case), any Poisson manifold (X, O)
may be endowed with a star-product to which the Poisson structure is
associated. This is a famous theorem of Kontsevich [46].

Proposition 2.2.8. — Let* and ' be star-products and let p: (Ox[[A]],
(Ox[[h]],*) be a morphism of C'-algebras. Then there exists a unique
sequence of differential operators {R;}i>o on X such that Ry = 1 and
o(f) = Yo Ri(f)R* for any f € Ox. In particular, ¢ is an isomor-
phism.

First, we need a lemma. In this lemma, we set F.(Zx) = Px.

Lemma 2.2.4. — Letl € Z>_1U{cc}, and p € End (Ox). If[p, g] €
Fi((Zx) for all g € Ox, then ¢ € F111(Px).

Proof. — We may assume that X is an open subset of C" and we denote
by (z1,...,x,) the coordinates. Set P; = [y, z;]. Then

(B3, 23] = [, @il 45] = [, 5], @] = [Fy, @il
This implies the existence of P € Fy1(Zx) such that [P, x;] = P, for all
1. Setting ¢ := ¢ — P, we have
[,z ] =0foralli=1,...,n
Let us show that ¢ € Ox. Replacing ¢ with 0 := ¢ — (1), we get by
induction on the order of the polynomials that #(Q) = 0 and [0,Q] = 0

for all @ € Clxy,...,z,]. Let f € Ox. We shall prove that 6(f)(z) =0
for all z € X. It is enough to prove it for x = 0. Then, writing f =

f(0) + >, zifi, we get
0(f) = +Ze zifi) = 0(f +Z w:0(f;) + [0, ;)

> wb(f),

x) —
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which vanishes at z = 0. O

Proof of Proposition 2.2.3. — Let us write
(2.2.4) o(f) =D Heif), fe€Ox

i>0
By Lemma 2.1.15, 99 = 1. We shall prove by induction that the ¢;’s
in (2.2.4) are differential operators and we assume that this is so for all
1 <n forn € Zyg.

Let {P;} and {P/} be the sequence of bi-differential operators associ-
ated with the star-products x and «’, respectively. We have

p(fxg) = o _WPi(f.9)=> K o(Pi(f.9)).

Jj=0 1,j>0
() ¥ olg) = D W% D Weilg)= D B Pei(f), ¢i(9))-
>0 JEN 4,5,k>0

Since p(f *g) = (f) ¥ ©(g), we get:
(2.2.5) Z%(Pj(f, 9)) = Z Pi(pi(f), ¢5(9))-

By the induction hypothesis, the left hand side of (2.2.5) may be written
as ©n(f9)+Qn(f,g) where @, is a bi-differential operator. Similarly, the
right hand side of (2.2.5) may be written as ¢, (f)g + fen(9) + Ru(f, 9)
where R, is a bi-differential operator. For any g € O, considering g as
an endomorphism of O, we get

[on, 91(f) = on(f9) = 9pn(f) = Fion(g) + Su(f),

where S, is a differential operator. Then, the result follows from Lemma 2.2.4.

O
DQ-algebras. —

Definition 2.2.5. — A DQ-algebra o7 on X is a C-algebra locally
isomorphic to a star-algebra (Ox[[h]], ) as a C'-algebra.

Clearly a DQ-algebra o satisfies the conditions:

(i) h: &/ — </ is injective,
(2.2.6) (ii) & — @ﬂ/ﬁ"&zf is an isomorphism,

(ili) <7 /he is isomorphic to Ox as a C-algebra.
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For a C'-algebra .« satisfying (2.2.6), the C-algebra isomorphism &7 /h.a/ =
Ox in (2.2.6) (iii) is unique by Lemma 2.1.15. We denote by

(227) gg - o — ﬁX

the Cl-algebra morphism & — & /ha/ =~ Ox. If ¢ is a C-linear
section of 0: & — Ox, then ¢ extends to an isomorphism of C"-modules

$: Ox|[[M]] = o, given by 3(3, fil') = 32, o (fi)l'.

Definition 2.2.6. — We say that a C-linear section ¢: Ox — o/ of & —
Ox is standard if there exists a sequence of bi-differential operators P,
such that

(2.2.8) o(felg) = Zs@(Pi(f, g))l for any f, g € Ox.

Consider a standard section ¢: Ox — & of &/ — Ox. Define a
star-product = on Ox|[[A]] by setting

fxg=>_ Pif g forany f,g € Ox.

i>0
Then we get an isomorphism of C"-algebras
(2.2.9) o: (Ox[[h]),*) == .

We call ¢ in (2.2.9) a standard isomorphism.
Hence, a DQ-algebra is nothing but a C"-algebra satisfying (2.2.6) and
admitting locally a standard section.

Remark 2.2.7. — We conjecture that a C'-algebra satisfying (2.2.6)
locally admits a standard section.

Let & be a DQ-algebra. For f, g € Ox, taking a, b € & such that
oo(a) = f and og(b) = g, we set

(2.2.10) {f, 9} = oo(h(ab—ba)) € Ox.

Then this definition does not depend on the choice of a, b and it defines a
Poisson structure on X. In particular, two DQ-algebras induce the same
Poisson structure on X as soon as they are locally isomorphic.

By Proposition 2.2.3, if ¢, ¢': Ox — & are two standard sections,
then there exists a unique sequence of differential operators {R;};>o such
that '(f) = > ;50 h'@(Ri(f)) for any f € Ox.

Clearly, a DQ-algebra satisfies the hypotheses (1.2.2) and (1.2.3). Hence,
a DQ-algebra is a right and left Noetherian ring (in particular, coherent).
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Lemma 2.2.8. — Let o/ be a DQ-algebra. Then the opposite algebra
/P is also a DQ-algebra.

Proof. — This follows from (2.2.2). O

Let X and Y be complex manifolds endowed with two star-products
xx and xy. Denote by {F}; and {Q;}; the bi-differential operators
associated to these star-products as in (2.2.2). Let P X @; be a bi-
differential operator on X x Y defined as follows. Let us take differential
operators P;(z1,xa, Oy, 0z,) and Q;(y1, Y2, 0y, 0y,) corresponding to P
and @); as in (2.2.1). Then we set

= (Pi(xh T2, a’El? axz)Qj(yh Y2, a?;’l? 8y2)(f(x1, yl)g(x% yQ))) ’zlzx?:x'

1=Y2=Y
Hence, P;X @); is the unique bi-differential operator on X x Y such that
(PR Q;)(fi(2)g1(y), f2(2)g2(y)) = Pi(f1(), f2(2)) - Qi(91(y), ga(y)) for
any f,(r) € Ox and g,(y) € Oy (v =1,2).
One defines the external product of the star-products xx and xy on Oy [[A]]
by setting
Frg=> "> (RRQ)(f9)
n>0 i+j=n

Hence:

Lemma 2.2.9. — Let X and Y be complex manifolds, and let o/x be
a DQ-algebra on X and <y a DQ-algebra on Y. Then there exists a
DQ-algebra </ on X xY which contains o/x Ren 2ty as a Ch-subalgebra.
Moreover such an </ is unique up to a unique isomorphism.

We call &7 the external product of the DQ-algebra o7y on X and the
DQ-algebra - on Y, and denote it by o7y X o .

Remark 2.2.10. — (i) Any commutative DQ-algebra is locally iso-
morphic to
(Ox|[h]], ) where x is the trivial star-product f* g = fg.

(ii) For the trivial DQ-algebra Ox[[h]], we have

Auten g, (Ox[[R]]) = hOx[[h]] := [ [ "Ox,

(recall that ©x is the sheaf of vector fields on X') and we associate
tov:=)_ -, h"v, the automorphism f > exp(v)f.
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The ring 2% and another construction for DQ-algebras. — We define
the C'-algebra

Px[[h]] :=1lim Zx @ (C"/h"C") = [ | Zxh".
n n>0
Then Ox|[[]] has a Zx|[[h]]-module structure, and Zx[[h]] C E\ [ (Ox[[R]).
Let o7y be a DQ-algebra. Choose (locally) a standard section ¢ giving
rise to a standard isomorphism of C"-modules ¢: Ox[[h]] = «/x. This
last isomorphism induces an isomorphism

(2.2.11) Q: E\[en(Ox[[R]) == E\[cn(Hx).

Definition 2.2.11. — Let @/x be a DQ-algebra and let ¢ be a standard
section. The sheaf of rings 2¢ is the C"-subalgebra of £\ [ (), the
image of Zx[[h]] C E\[en(Ox[[R]]) by the isomorphism ¢ in (2.2.11).

It is easy to see that 257 C E\[cn(#x) does not depend on the choice
of the standard section ¢ in virtue of Proposition 2.2.3. Hence 2 is
well-defined on X although standard sections only locally exist.

By its construction, we have ¢ =% 1&1@3‘;‘7 /A" D . Moreover, the

image of the algebra morphism @y ® @y" — E\[cn(x), as well as the
one of 6y @xxxa — E\[en(x) is contained in 2. Hence we have
algebra morphisms

JZ%X & an — 5;(1%X><Xa — 9)%%

We shall show how to construct a star-algebra from the data of sections
of Zx||h]] satisfying suitable commutation properties.

Let @y := (Ox[[h]],*) be a star-algebra. There are two C"-linear mor-
phisms from Ox|[[h]] to Zx[[h]] given by

(2.2.12) O frs fr, D [

Hence, for f € Ox, we have:

“ SR, ®() =S P, PR
i>0 i>0
Then ®': oy — Px[[h]] and ®": ¥ — Dx[[h]] are two C'-algebra
morphisms, and induce a C"-algebra morphism &y ® " — PDx|[h]].
Assume to be given a local coordinate system x = (z1,...,2,) on X
and for ¢ = ]_, e, set (I)l(l’z) = Az and CI)T(ZL’Z) = Bz Then {A“ Bj}i,jzl n

77777
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are sections of Zx|[h]] which satisfy

(2.2.13)1 A; = x; mod hZx|[h]], B; = z; mod hZx|[[h]],
[AZ',B]'} =0 (Z,j = 1,. .. ,n).

Conversely, we have the following result.

Proposition 2.2.12. — Let {A;, B;}; j=1...n be sections of Dx|[[h]] which
satisfy (2.2.13). Define the subalgebra </x C PDx|[[h]] by

(2.2.14) o ={ac DxH);la, B =0,i=1,...,n}

and define the C'-linear map : o/x — Ox/[[h]] by setting ¥ (a) = a(1).
Then

(a) ¥ is a C'-linear isomorphism,

(b) the product on Ox|[h]] given by ¥ (a)*1(b):=v(a-b) is a star-product,
x 1s a DQ-algebra and =" is a standard isomorphism,

(c) the algebra <" is obtained by replacing A; with B; (i =1,...,n) in
the above construction.

Proof. — (a)-(i) @/xNhZx[[h]] = ha/x, since [ha, B;] = 0 implies [a, B;] =

0. Hence we have o7y /W oy C Px|[h]]/I Px]|[h]] for any j.

(a)-(il) ox == r&lﬂfx/hjﬂfx. Indeed, let a = Y ;7 h'a; and assume
J

that

k
) " Wa;, B =0mod R*' (1=1,...,n)

1=0

for all k € N. Then [a,B)]=0forl=1,... n.

(a)-(iii) Let ¢;: Wty /Wt alx — WOx /W Ox be the morphisms in-
duced by 9. By (a)-(ii) it is enough to check that all 1;’s are isomor-
phisms. Since all i/ .o/x /W 1oy are isomorphic and all W Ox /W10
are isomorphic, we are reduced to prove that y: oy /ha/xy — Ox is an
isomorphism.

(a)-(iv) 1o is injective. Let ag € x/ha/x C PDx. Since |ag, x;] €
hZx|[[h]] implies [ag, ;] = 0, we get ag € Ox. Therefore, ao(1) = 0
implies ag = 0.

(a)-(v) vy is surjective. Let y = (y1,. .., ¥yn) be a local coordinate system
on a copy of X. Notice first that the sections y; — A; of Zx«vy|[[A]] are
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invertible on the open sets {yZ # x;}. Let f(xy,...,2,) € Ox. Define
the section G(f) of .@X

]{f (y1 — A7 (g — A) iy - dyy,

Then [G(f), B;] = 0 for all 7. It is obvious that G(f) — f € hPx[[h]] and
ho(G(f)) = f.
(b) Clearly, the algebra (Ox|[[h]], ) satisfies (2.2.6). Moreover, f — G(f)

is a standard section since there exist P;(f) € Zx[[A]] (i € N) such that

G(f) =>, Bi(f)h* and P;(f) is obtained as the action of a bidifferential
operator P; on f.

(c) follows from &7 = {b € E\[qn(2x); [b, #x] = 0}. O

Exzample 2.2.13. — Let M:={a;;}; =1, be an nxn skew-symmetric
matrix with entries in C. Let X = C" and consider the sections of Zx|[R]]:

h h
Ai:$i+§zj:aij6j, Bi:l‘i—§zj:aij8j

Then {A;, Bj}ij=1..n satisfy (2.2.13), thus define a DQ-algebra «y.
Note that the Poisson structure associated with the DQ-algebra oy is
symplectic if and only if the matrix M is non-degenerate.

2.2.15
( ) 2m

2.3. DQ-algebroids

Let us introduce the notion of a deformation quantization algebroid, a
DQ-algebroid for short.

Definition 2.3.1. — A DQ-algebroid o7 on X is a Cl-algebroid such
that for each open set U C X and each ¢ € #/(U), the Ctalgebra
E\[ o) is a DQ-algebra on U.

Note that a DQ-algebroid is called a twisted associative deformation
of Ox in [64].

By (2.2.10), a DQ-algebroid .27 on the complex manifold X defines a
Poisson structure on X. It is proved in [45] that, conversely, any complex
Poisson manifold X may be endowed with a DQ-algebroid to which this
Poisson structure is associated.

According to Convention 2.1.1, if & is a DQ-algebra, we shall often
use the same notation &7 for the associated DQ-algebroid.
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Note that any DQ-algebroid « on X may be obtained as the stack
associated with a gluing datum as in (2.1.3), where the sheaves .7 are
DQ-algebras.

Let o/ be a DQ-algebroid on X. For an .&“module .# , the local notions
of being coherent or locally free, etc. make sense.

The category Mod(.#) is a Grothendieck category. We denote by D(.)
its derived category and by DP() its bounded derived category. We
still call an object of this derived category an .o“module. We denote
by DP | (@) the full triangulated subcategory of DP(#) consisting of ob-

coh
jects with coherent cohomologies.

Opposite structure. — If X is endowed with a DQ-algebroid &7y, then
we denote by X* the manifold X endowed with the algebroid <7y, that
is:

(2.3.1) Hxa = A
This is a DQ-algebroid by Lemma 2.2.8.
External product. — Assume that complex manifolds X and Y are en-

dowed with DQ-algebroids «/x and @ respectively. By Lemma 2.2.9,
there is a canonical DQ-algebroid &y X % on X x Y locally equiva-
lent to the stack associated with the external product .@x X o4 of the
DQ-algebras and there is a faithful functor of C"-algebroids

(2.3.2) dx X oty — ox Xy,
which induces a functor
(2.3.3) for: Mod(ex X %) — Mod(/x X o).
When there is no risk of confusion, we set
xwy = Dx Xy

Then o7y «y belongs to Mod(&xxy ® (#x« K 2#ya)) and the functor for
admits a left adjoint functor 7 +— &/xyy ® o Rty K

for
(234) MOd(JZ{XXy) P — MOd(JZfX X ,Q{y)

We denote by « K « the bi-functor &xyy & (X »):
xRty

(235) o @ e MOd(bex) X MOd(bQ{y) — MOd(JZ{XXy).
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Lemma 2.3.2. — If # is an ofx-module without h-torsion, then the
functor

MR+ Mod(ety) — Mod(ex xy)

is an exact functor.

Proof. — We may assume that @/x and 27 are DQ-algebras. Hence it is
enough to show that for any (z,y) € X x Y, setting A 1=y y Ry M
Ny 18 a flat module over @47, We may assume further that .# is a
coherent .o/x-module without A-torsion. For any Stein open subset U,
let py: U XY — Y be the projection. Set A7 = (pv).((Fxxy @,y
M )|uxy). Then it is easy to check the conditions (a)—(c) in Theo-
rem 1.6.6 are satisfied ((c) follows from the &-module version of this
lemma), and we conclude that A7 is a flat o%4"-module. Hence, A{, ;) ~
lim (A7), 1s a flat (e#”),~-module.

zeU

Hence the left derived functor
L
o @ LN D(JZ%)() X D(JZ{y) — D(JZ{XXy)

L
satisfies #° X N°" = #* X AN"° assoon as A " or A ° is a complex
bounded from above of modules without A-torsion.

Graded modules. — For a C'-algebroid % on X, one denotes by gr;, (%)
the C-algebroid associated with the prestack & given by

Ob(S(U)) = Ob(#(U)) for an open subset U of X

Hom g (0, 0") = Hom ,(0, 0’) /AHom 4(0,0")  for o, o' € B(U).
Let now «7x be a DQ-algebroid on X. Then it is easy to see that gr,(<x)

is an invertible @x-algebroid and that we have a natural functor oy —
gry,(e7x) of C-algebroids. This functor induces a functor

(2.3.6) for: Mod(gr;,(«7x)) — Mod(#x).

The functor for above is fully faithful and Mod(gr, (7)) is equivalent
to the full subcategory of Mod(«Zx) consisting of objects M such that
h: M — M vanishes. The functor for: Mod(gr,(«x)) — Mod()
admits a left adjoint functor M — M/hAM ~ C ®q, M. The functor for
is exact and it induces a functor

(2.3.7) for: D(gr,(e/x)) — D(<x).
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Remark 2.3.3. — The functor in (2.3.7) is not full in general. Indeed,
choose X = pt, &/x = C" and L = C"/hC" viewed as a gr;(A)-module.
Then

Hom py, cny (for(L), for(L[1])) ~ C"/nC",
Hom pyy ) (L, L [1]) = 0.

It could be also shown that this functor is not faithful in general.

One extends Definition 1.4.1 to the algebroid «7x. As an (&/x ® o/xa)-
module, gr,(#7x) is isomorphic to C ®, /x ~ o/x/ha/x. We get the
functor

(23.8)gr,: D) = Dl(gn,(x)), M — gr, ()6, M = Copy .

Note that Lemma 1.4.2, Propositions 1.4.3 and 1.4.5 as well as Corol-
lary 1.4.6 still hold. Moreover

Ch

Corollary 2.8.4. — Let # € D®, (ex). Then its support, Supp(.#),

coh
15 a closed complex analytic subset of X.

Proof. — By Corollary 1.4.6, Supp(.#) = Supp(gr,(.#)). Since gr, (A ) €
Db, (gr,(#/x)) and gr,(#/x) is locally isomorphic to @y, the result fol-
lows. [

Let dx denote the complex dimension of X. Applying Theorem 1.4.8,
we get

Corollary 2.3.5. — Let o/x be a DQ-algebra and let # € Modon(2x).
Then, locally, .# admits a resolution by free modules of finite rank of
length < dx + 1.

Proposition 2.3.6. — The functors gr, in (2.3.8) and for in (2.3.7)
define pairs of adjoint functors (gry, for) and (for,gr,[—1]).

Proof. — Consider a pair (B,C') in which either B = @y and C' =
gr,(e/x) or B = gr,(e/x) and C' = @, and let K be a (B, C')-bimodule.
We have the adjunction formula, for M € D*(B) and N € D(C):

L
(2.3.9)  Hom ) (K®,N, M) = Hom p, o, (N, R#om (K, M)).
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(i) Let us apply Formula (2.3.9) with B = gr,(«/x), C = @/x and K =
gr,(ox) considered as a (grh(ﬂix) oy )-bimodule. We get
Hom . (dx))(grh(ﬂfx) A N)
~ HomD V(A RAom (o (8T3(Fx), N ),

and when remarking that R#om,, . \(gr,(#x), A) = for(AN), we get
the first adjunction pairing.
(ii) Let us apply Formula (2.3.9) with C' = gr,(#/x), B = A and K =
gr,(e/x) considered as an (y, gr,(</x))-bimodule. We get
Hom . (grh(dx) )V M)
~ Hom D(grﬁ(ﬂx))(f/V, Rotom , (er,(x), A)).

L
We have gr;(@x)®,, ()
pairing, notice that

N =~ for(A) and to get the second adjunction

L
Rotom , (er(ex), #) ~ RiAom , (gr,(Fx), ﬂx)@dxe///,
and Rotom , (gr,(Fx), ox) ~ gr(2x) [—1]. O
Duality. — Let @/x be a DQ-algebroid on X.

Definition 2.3.7. — Let .4 € D(dx). Its dual D, A4 € D(dx.) is
given by
(2.3.10) M = RAom , (M, x).

When there is no risk of confusion, we write D/, instead of D;),X
By Corollary 2.3.5, D', sends DP, (#/x) to D2, (@/xa):

coh
D, coh("(Z{X) — Dgoh(%xa)'
Assume that .# € DP, (o/x). Then there is a canonical isomorphism:
(2.3.11) MDD, M.
For a grj,(«7x)-module .#, denote by D), .# its dual,
(2.3.12) Dyl == RAtom (o)A, gry(Hx)).

Proposition 2.3.8. — Let # € D2, (/x). Then
gry(Diy ) = Dy(gry(A)).
Proof. — This follows from Proposition 1.4.3. ]
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Corollary 2.83.9. — Let & € DP  (a/x) and j € Z. Let us assume that

coh

&Bt;ﬁ(ﬂx)(grh(,,?),grh(dx)) ~ (0. Then é"mt;x (&L, ox) ~0.

Proof. — Applying the above proposition, we get
Satl (@ L)) = B (D) (,(2)))
X
~ H(gry(D,(2))).
Then the result follows from Proposition 1.4.5. O]

Simple modules

Definition 2.3.10. — Let A be a smooth submanifold of X and let &
be a coherent &/y-module supported by A. One says that .Z is simple
along A if gr,(.#) is concentrated in degree 0 and H°(gr,(.£)) is an
invertible Oy ®,  gr;(</x)-module. (In particular, £ has no A-torsion.)

Proposition 2.3.11. — Let A be a closed submanifold of X of codi-
mension | and let £ be a coherent o/x-module simple along A. Then
HI(D (%)) = 5555%((37%)() vanishes for j # 1 and H(D',(£)) is a
coherent ofxa-module simple along A.

Proof. — The question being local, we may assume that &y is a DQ-
algebra so that gr,(#x) ~ Ox and gr,() ~ 0. Then, we have
gxt]ﬁx(grh(f),ﬁx) ~ 0 for j # . Therefore, gﬂﬁtjﬂx(g,&/x) =0
for j # [ by Corollary 2.3.9 and

grﬁ(gxtldx('”%?ﬂ)()) ~ Dy(gr,2) 1]

sty (e1,(2), 0x)

12

by Proposition 2.3.8.
If gr,(.Z) is locally isomorphic to Oy, then so is é"xtlﬁx (gr,(2), Ox).
O

Homological dimension of o/x-modules. — The codimension of the sup-
port of a coherent Ox-module .# is related to the vanishing of the
Ext! (F,Ox). Similar results hold for @/x-modules.

X

Proposition 2.3.12. — Let M/ be a coherent <fx-module. Then
(a) é”a:t];d (M, x) =0 for j < codim Supp .#,

X .
(b) codim Supp &Ut;x (M, ) > .
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Proof. — (a) First, note that Supp(.#) = Supp(gr,.#). Therefore,

é“‘xt];grh(dx)(grh///, gr,(x)) ~ 0 for j < codim Supp .4

and the result follows from Corollary 2.3.9.
(b) By Proposition 1.4.5, we know that

Supp &ct]{;& (A, ofx) C Supp éf’:vti{ grp A, gr,(x)),

and codim Supp @‘a:ct; o )(grh,///, gr,(e/x)) > j by classical results for O'x-
'y X

(
modules. O

Extension of the base ring. — Recall that C™1°¢:= C((h)) is the fraction
field of C". To a DQ-algebroid @7y we associate the C"'°“-algebroid

(2.3.13) ¢ = CMC @, oty

and we call &3¢ the h-localization of /x. 1t follows from Lemma 1.4.10
that the algebroid «7}°° is Noetherian.
There naturally exists a faithful functor of C"-algebroid

(2.3.14) dlx — AC.
This functor gives rise to a pair of adjoint functors (loc, for):

for

(2.3.15) Mod(&7)2¢) Mod(y).

loc

Both functors are exact and we keep the same notations for their derived
functors

for

(2.3.16) DP(.a71o%) DP (o).

loc

For .4 € DP(ay), we have
(2.3.17) N =loc(N) = CH° @, A

We say that an @x-module .2 is a submodule of an @Zi°*-module . if
there is a monomorphism .#, — for(.#') in Mod(#x).

If A is an o/°-module, .4, an @/x-submodule and . Qcn Chvloc oy
A , then we shall say that .#, generates .Z .

The following result is of constant use and follows from [37, Ap-
pendix Al.
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Lemma 2.3.13. — Any locally finitely generated ofx-submodule of a
coherent 2/3°°-module is coherent, i.e., any coherent o/3°¢-module is pseudo-
coherent as an x-module.

Definition 2.3.14. — A coherent o/x-submodule .#, of a coherent
szf}fc-module A is called an @x-lattice of .# if 4 generates .# .

We extend Definition 2.3.7 to @/°°-modules and, for .Z € DP(a/i°),
we set

(2.3.18) ' oc = R%”om%lgc(.///, ).

Proposition 2.3.15. — Let .4 be a coherent o/3°¢-module. Then

(a) gxt];{m(///, A2°) ~ 0 for j < codim Supp .,
s '
(b) codim Supp fxt;)lgc(///,%)?c) > .
Proof. — The result is local and we may choose an .«7x-lattice .# of . .
Then the result follows from Proposition 2.3.12. O]

Good modules. —

Definition 2.3.16. — (i) A coherent /{°°-module .# is good if, for
any relatively compact open subset U of X, there exists an (x|y)-
lattice of A |y .

(i) One denotes by Modgq(275°¢) the full subcategory of Modeop (275°°)
consisting of good modules.

(iii) One denotes by Dp,(275°) the full subcategory of Dg,, (@/) con-

coh

sisting of objects .# such that H?(.#) is good for all j € Z.

Roughly speaking, a coherent @74°“-module .# is good if it is endowed

with a good filtration (see [37]) on each open relatively compact subset
of X.

Proposition 2.3.17. — (a) The category Modg(#/°) is a thick sub-
category of
Modon (2752°), (i.e., stable by kernels, cokernels and extension ).

(b) The full subcategory Dy, (/x°) of Dy, (2/x°) s triangulated.

coh

(c) An object M € DP (/%) is good if and only if, for any open rel-

coh

atively compact subset U of X, there exists an @/x|y-module #y €
DP  (x|y) such that A is isomorphic to M |y .
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Since the proof is similar to that of [37, Prop. 4.23|, we shall not repeat
it.
Proposition 2.3.18. — Let # € DY, (/). Then Supp(A#) is a
closed complex analytic subset of X, involutive (i.e., co-isotropic) for the
Poisson bracket on X.

Proof. — Since the problem is local, we may assume that o7y is a DQ-
algebra. Then the proposition follows from Gabber’s theorem [26]. [

Remark 2.3.19. — One shall be aware that the support of a coherent
@x-module is not involutive in general. Indeed, for a DQ-algebra @y,
any coherent &'x-module may be regarded as an @/x-module. Hence any
closed analytic subset can be the support of a coherent .@7x-module.

2.4. DQ-modules supported by the diagonal

Let X be a complex manifold endowed with a DQ-algebroid «/x. We
denote by @Zx . x« the external product of &/x and &/x« on X x X* We
still denote by dx: X — X x X® the diagonal embedding and we denote
by Moda, (o/x K @7xa) the category of (#7y K o/xa)-modules supported
by the diagonal Ay. Then

6)(*2 MOd(ﬂX ®dxa) — MOdAX(ﬂX X ﬁxa)

gives an equivalence of categories, with quasi-inverse d5'. We shall often
identify these two categories by this equivalence.

Recall that we have a canonical object /x in Mod(/x ® @/xa) (see
§ 2.1). We identify o/x with an («/x X @/y.)-module supported by the
diagonal Ay of X x X% In fact, it has a structure of &y x.-module.
More generally, we have:

Lemma 2.4.1. — Let A be an (o/x ® oxa)-module.

(a) The following conditions are equivalent:
(i) A is a bi-invertible (2/x @ o/xa)-module (see Definition 2.1.10),
(ii) A is invertible as an <fx-module (see Definition 2.1.4), that is,
A is locally isomorphic to <fx as an /x-module,
(i) A is invertible as an ofxa-module.
(b) Under the equivalent conditions in (), dx, M — Hxxxa Qo Retya
Ox A 1s an isomorphism and Ox .. # has a structure of an oy xa-

module. Moreover, 0 x .. is a simple o/x« xa-module along the diag-
onal of X x X,
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(c) Conversely, if N is a simple ofxx xa-module along the diagonal of X x
X, then §5' AN satisfies the equivalent conditions (a) (i)—(iii).

Proof. — The statement is local and we may assume that &y = (Ox/[[h]], *).

(a) Assume (ii) and take a generator u € .# as an @/x-module. Then
for any a € @7y, there exists a unique 6(a) € &x such that ua = 0(a)u.
Then 0: o/x — @/x gives a Cl-algebra endomorphism of «/x. Hence @ is
an isomorphism by Proposition 2.2.3. Thus we obtain (i). Similarly (iii)
implies (i).

(b) Let us choose u € .# as in (a) and identify .# with Ox[[h]] that
we regard as a sheaf supported by the diagonal. The action of @y ® &7y ”
on ./ can be expressed by differential operators. Namely, there exist
differential operators {S;(x, 0y, Ory, Oz, ) ien such that

f *a* 8(9) = Z(Sl(xa a1717 83727 awg)f('rl)g(x?)a(mfi)) |$1:$2:z3:$hi

for f, g € @/x and a € Ox|[[h]].

Then this action extends to an action of @x« x« by setting

f(xa y) * a(as) = Z(Sz(xa a:m ) aIz) axd)f<xla [lfg)(l(l’g)) ’x1:x2:x3:xhi

7

for f € xxx« and a € Ox|[[h]].

We denote by //7/ the @7x « xa-module thus obtained. Then, as an (/x ®

xa)-module, it is isomorphic to .#. Hence M s a locally finitely

generated &y xo-module. Since h".# / R A s isomorphic to Oy, VA
is a coherent @y xo-module by Theorem 1.2.5 (ii).

Let .7 be the annihilator of w € # ~ .#. Then .7 is a coherent left
ideal of @y xa. In the exact sequence

yOT(i:h(%(C) — j/hj — VQ{XXXa/h,Q{XXXa — ,%A//FLJ% 0,
Fort" (/Z/v, C) vanishes. Therefore we obtain an exact sequence
0—>j/hj—> Oxxxa — Ox — 0,

and . / h.t is isomorphic to the defining ideal In C Ox«x.« of the diag-
onal set A C X x X“ This shows that .# is simple along the diagonal.

Denote by .#’ the left ideal of @/x ® o7y generated by the sections {a ®
1 —1®860(a)} where a ranges over the family of sections of </x and by .#
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the left ideal of @7x« xa generated by #'. Set ' .= o/x xa ® i Retca M.
We have:

M~ (ol @ dlxa)] I,
eﬂ/ Zﬂxxxa/cj.

There exists a surjective .@xy xe-linear morphism .#’ —»/Z and hence
I C F. Since S /hI — F|hI ~ I, is surjective, we conclude that
# = 7. Hence we obtain .4 ~ M.

(c) By the assumption, py,gr,(A4) =~ gr,(0x'.4) is an invertible Oy-
module, where p;: X x X* — X is the projection. Hence Theorem 1.2.5
(iv) implies that §5'.4" is a coherent &/y-module. It is locally isomorphic

to @/x by Lemma 1.2.17 because gr,(65'./#) is locally isomorphic to Oy.
[

Thus we obtain:

Proposition 2.4.2. — The category of bi-invertible (o/x R/xa )-modules
is equivalent to the category of coherent ofx « xa-modules simple along the
diagonal.

Definition 2.4.3. — Weregard dx,.o/x as an &y »x xa-module supported
by the diagonal and denote it by @x. We call it the canonical module
associated with the diagonal.

The next corollary immediately follows from Lemma 2.4.1.

Corollary 2.4.4. — The o/xyxa-module €x is coherent and simple
along the diagonal. Moreover, ofxxxa ® o Ratrca Cx — Cx 1s an iso-

morphism in Mod(@xxxa), and oy — 05 (€x) is an isomorphism
in Mod(ox ® oxa).

The next result is obvious.

Lemma 2.4.5. — Let Y be another complex manifold endowed with a

L
DQ-algebroid <. Then, there is a natural isomorphism €x X €y ~
Cxxy. Here, we identify (X x X*) x (Y xY*) with (X xY) x (X xY)*.

Definition 2.4.6. — We say that & € DP(&/x ® @/xa) is bi-invertible
if & is concentrated to some degree n and H"(Z?) is bi-invertible (see
Definition 2.1.10).
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We sometimes consider a bi-invertible (27x ®%7x.)-module as an object
of D2, (@xxx«) supported by the diagonal.

coh

For a pair of bi-invertible (@x ® &7x.)-modules &, and &y, P, Q% s Py
is also a bi-invertible (@/x ® @7xa)-module. Hence the category of bi-
invertible (@y ® &/ya.)-modules has a structure of a tensor category (see
e.g. [41, §4.2]). Tt is easy to see that €x is a unit object. Namely, for
any bi-invertible (@/x ® @7x«)-module &, we have:

G, P = DS, Cx = P,
We have
t@éﬂxf{%ﬂomﬂx(,@, Agx) == Cx,
RAtom., (P, )6, P = Ex.
Hence we have R#om , (&, 9x) ~ RHom , (P, dx).
Definition 2.4.7. — For a bi-invertible (/x ®.2/xa )-module &, we set
PEL = Rottom , (P, dx) ~ Rtom , (P, dx).
Hence we have
PG, P = PG, P =Gy

Note that, for two bi-invertible (&x ® “xa)-modules &, and P,, we
have

RAtom,, (P, D) ~ P76, P,
Rotom,, (P, Do) = Pys,, PP

For a bi-invertible (&y ® @xa)-module & and A, N € D(Axxyxz),
we have the isomorphism

L L
(24.1) RA#om,, (M, N)~RHtom,, (P2, M P2, N)

Remark 2.4.8. — Although it is sometimes convenient to identify (X x
Y*)* with Y x X, we do not take this point view in this Note. We identify
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(X x Y*)* with X* x Y. Hence, for example, we have functors
DzlﬂXxYa : Db(ﬂXXya) — Db(ﬂxaxy),
! : Db(e!Z{XXXa) —>Db(=Q{Xaxx>.

dxxxa

The next result may be useful.

Lemma 2.4.9. — (i) Let X and Y be manifolds endowed with DQ-
algebroids <fx and <ty , let M be an Ax«y-module and let 2 be a
bi-invertible (2y ® fya)-module. Then

ya MRy D)~ 2% g D, (M),
(ii) Let & and 2 be bi-invertible (ofx ® /xa)-modules. Then
e (PR, D)~ 2w, D, P~D, 2, P
Dl a@x By P =2 P @y Dy Cx =Dy (P97,
(Dl ®x) @, P=P®, (D Cx)°
Proof. — (i) We have the isomorphism
D ya (M @, 2) = SHom,, (M@, 2,dxxy)
~ %ﬂomdxwa (M, Axsya Dyr, 2%
~ Hom, (A, 291 R DX xya)
~ 2971 ®,, Dy L (A).

(ii) The first isomorphism follows from (i) and the the second is proved
similarly. The two last isomorphisms follow. m

The next result follows immediately from Corollary 2.4.4.

Lemma 2.4.10. — Let # € D (dx), ¥ € D>, (Zx) and N €
DP(exa). Identifying Ax and X, there are natural isomorphisms

Jl:dxédx/// ~ Rstom , (ox, H) inD(x),
L
NG, M = (NEMS, € inDC),
RAtom,, (L,.M) ~ D, L&, 4 inD(CL),

RAom , (M, L) ~ RA#om, (///&D &L, €x) inD(Ch).
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2.5. Dualizing complex for DQ-algebroids

The algebroid ¢ . — We have seen that the C"-algebra 2¢ C E\[en(x)
is well-defined for a DQ-algebra @7y on X.

Now let @7y be a DQ-algebroid. Then we can regard &7y as an (& ®
2 F)-module. In § 2.1, we have defined the C"-algebroid £\ [ (x) and
introduced a functor of C"-algebroids @y ® &¥ — E\[on ().

Definition 2.5.1. — The C'-algebroid 2¢ is the C"-substack of £\ [ o4 ()
associated to the prestack & defined as follows. The objects of & are
those of @y @ /. For 01,090 € ox @ oy, with o = 71 @ AP,

gy = T @AY, we choose isomorphisms ¢;: 7; ~ \; (i = 1,2) and
p3: 11 = To. Set B =E\[,, (A1) It is a DQ-algebra. The isomorphisms

@i (i =1,2,3) induce an isomorphism

Ve Homen (B, B) = Hom g (HHom (A, 1), Hom (s, T2))
= %Om(cﬁ(ﬂ{x(O'l),oQ{X<O'2 )
We define 7#om & (01, 02) C Hom c(x(01), Px(02)) as the image of 2

by 1. (This does not depend on the choice of the isomorphism ;
(1 =1,2,3) in virtue of Proposition 2.2.3.)

Then there are functors of C"-algebroids
WX ®£fxa — 5)_(1%X><X‘1 — .@;{ — 5\(@5(&7)()
and &/x may be regarded as an object of Mod(Z5Y).

Proposition 2.5.2. — (i) The C"-algebroid E\[qu(x) is equivalent
to the C"-algebroid E\ [ (Ox|[R]]) (regarding the C"-algebra E\[cn(Ox|[R]])
as a Ch-algebroid).
(ii) The equivalence in (i) induces an equivalence of C'-algebroids D¢ ~
Dx|[h]].

(iii) The equivalence in (ii) induces an equivalence of C'-linear stacks
Mod(2¢) ~ Mod(Zx[[1]]).

Moreover, the ¢ -module </ is sent to the Dx|[h]]-module O |[h]]
by this equivalence.
(iv) The equivalence in (ii) also induces an equivalence of C-algebroids

grh(@;?) = @X7
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and an equivalence of C-linear stacks 9Mod(gr,(2¢)) ~ Mod(Zx).
Moreover the gry(2%)-module gr,(a/y) is sent to the Px-module
Ox by this equivalence.

Proof. — Recall first that for two C’-algebroids % and %', to give
an equivalence of C'-algebroids # ~ %' is equivalent to giving a bi-
invertible #°? ® %’'-module (Lemma 2.1.11).

(i) follows from Lemma 2.1.12. More precisely, we define an (€\ [ (@ )®
(E\[en(Ox[[1]]))°P)-module £ as follows. For o = (07 ® 037) € &y ®
AL, set

L' (a) := Hom . (Ox|[N]], Hom , (03,01)).

Clearly, .#’ is bi-invertible.

(ii) For 0 = (01 @ 03°) € “x @ <", let us choose an isomorphism
Y: 01 =5 0y and a standard isomorphism ¢: Ox[[A]] = E\[,, (01).
Then they give an isomorphism

[ Ox[[n]] = Hom , (03, 01).

We define a (25 @ Zx[[h]]°P)-submodule £ of £’ as follows: let £ (o)
be the Zx|[h]]°P-submodule of .#’(0) generated by f. Then £ (o) coin-
cides with the submodule generated by f over the C"-algebra £\ [95? (o) C

E\[cn(Hom , (09,01)). Moreover, £ (o) does not depend on the choice

of 9 and @. It is easy to see that .Z is a bi-invertible (2¢ ® Zx|[[h]]°P)-
module.

(iii) The (2 ® Zx[[h]]°P)-module .Z gives an equivalence of categories
(2.5.1) L @y *: Mod(Zx[[h]]) = Mod(2%),

v

which is isomorphic to the functor induced by the algebroid equivalence
D¢ = Dx[[h]]. Consider the (Zx[[h]] ® (25)°P)-module

L= Hom e (L, 7).
A quasi-inverse of the equivalence (2.5.1) is given by
L Qg+ = HOM 4y (L, +): Mod(ZY) = Mod(Zx [[1]).

The results follow. O
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Dualizing compler. — Let @/x be a DQ-algebroid on X. We shall con-
struct a deformation of the sheaf of differential forms of maximal degree
and then the dualizing complex for .o7x.

Lemma 2.5.3. — (i) x has locally a resolution of length dx by free
D -modules of finite rank.
(ii) grh(é"xt(g‘d (ex, D¥)) ~ Qx. (Note that grh(gxtcgd(ﬂx, DY) is a
X X
module over gry,(x) ®,  gr,(Fxa) = Ox by (2.1.12)).
(iii) é"xt’éd(dx, D) =0 fori # dx.
X

Proof. — We have 2 ~ Zx|[[h]] and &x ~ Ox[[h]] as 2 -modules.

Then the results follow from

R0y (Ox[[Al), 2 [11)]) = (2 [1]) [ dx].

(ii) follows from

grﬁ(ijom%?(szfX, %)) =~ RAtom,, (9;?)(grh(dX>?grﬁ(-@;?)>

Th

~ RAom , (Ox,Dx) ~ Qx|—dx].

We set
(2.5.2) QF = Eut™ (o, 2%) € Mod(ex @ xa).

7%
Lemma 2.5.4. — The (&x ® @F)-module Q¥ is bi-invertible.
Proof. — Under the equivalence 2¢ ~ Zx|[h]], we have Q5 ~ Qx[[A]].

Hence we have an isomorphism Q¢ =% Jim O /hnQ¥. Since gr, (Q¥) ~

Qy is a coherent gr, (@ )-module, Q¢ is a coherent &7x-module by The-
orem 1.2.5 (iv). Since gr, () is an invertible &x-module and Q¥ has
no A-torsion, Q¢ is locally isomorphic to <7 as an &/x-module. Hence

Q¢ is a bi-invertible (/5" ® @ )-module by Lemma 2.4.1 (a). O
Lemma 2.5.5. — One has the isomorphisms

(2.5.3) O &,y ol ~dx] = RAom . (. o) = Ck.

Proof. — The first isomorphism is obvious by Lemma 2.5.3. Hence, it is

enough to prove that the natural morphism C% — R #om 99 (x, ox)is

an isomorphism. By the equivalence 25 ~ Zx|[[h]], we may assume that
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dy = Ox|[[h]] and 2{ = Dx|[[h]]. Then R%Om@g(%x,ﬂx) is repre-
sented by an infinite product of the de Rham complexes: [], 2"2%. Then

the assertion follows from a classical result: Q% (U) is quasi-isomorphic
to C when U is a contractible Stein open subset. O

Note that Q¢ and Q. are isomorphic as @y ® &/xe-modules.
Definition 2.5.6. — We set
wi =65, 07 [dx] ~ 5X*R<%”0m@§¢(ngx, D) [2dx] € DP(axx xe)
and call w¢ the /x-dualizing sheaf.

Note that w¢ is bi-invertible (see Definition 2.4.6). Using (2.5.3) and
L L
the morphism 5X*Qg®%<xxa Ex — Q}‘éf@@g alx, we get the natural mor-
phism
o h
(254) an@ﬁfXxxach — 5X*CX [de]

Applying the functor gr;, to the above morphisms, we get the morphism

L
(255) 5X*(grhwj‘?a)®

gry X x xa (

5X*g1“h<5)() — 5X*((CX [QdX])a

which coincides with the morphism derived from

L
(2.5.6)0%" (O (grpwide)®

grp X x xa

<5X*grﬁch)) — QX [dx] — (CX [2dx]

Here we used the functor of algebroids 5;(1 (gr,@xwxa) = Ox.
Let Y be another manifold endowed with a DQ-algebroid <. We
introduce the notation:

L
W;?XY/Y = W}?E%Y € Db(%XxXaxYxYa)-
Then w;‘éfxy/y also belongs to D" ((2¢) W @ «y.), and we have an

L
isomorphism w)?{xY/Y@@ff”Q{X ~ (Cf}( X . Hence we have a canonical
morphism

L
(2.5.7) Wiy )y O Ex = (Cx B Gy)[2dx]

in Db<(C§( X nyxya).
The proof of the following fundamental result will be given later at the
end of § 3.3.
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Theorem 2.5.7. — We have the isomorphism
(258) wj‘? ~ ( idanx(gXa)(g_l m Db(ﬂxxxa).

Note that in Formula (2.5.8), D, , _ is the dual over @x.xx and
(+)®!is the dual over &x.

Corollary 2.5.8. — For .# € DP(xyxaxy), we have
L L
nga@)ﬁxxxa% ~ ijom{dmxa (%X,w;?QZ)dX.///)

L
~ Ristom, (CKX,%Q@%X(U}?).
Proof. — We have
L
%X‘l® M Rfom%{xxa (D/ nga, %)

erXxX‘l v"fX‘lxX

L L
~ o / o
—= R%Om%XXXG (CUX ®Q{X IQ{XXXQ(KXHW wX ®JMX%>

L
o
~ RAom . (Cx, wX®, M)
The other isomorphism is similarly proved. O

One shall be aware that, although Q3 is locally isomorphic to &y as
an .@x-module, it is not always locally isomorphic to @y as an &y Q.o xa-
module.

Ezample 2.5.9. — Let X = C? with coordinates (x1,z5) and let @x
be the DQ-algebra given by the relation

(21, x9) = Bay.
Let (y1,y2) denotes the coordinates on X*. Hence

[y1,y2) = —hy.

Then €x is the &x« xo-module &x« xa - u Where the generator u satisfies
(i —y;) -u = 0 (i = 1,2). Therefore €x is quasi-isomorphic to the
complex

(2.5.9) 0= Syrxoe S A2 0 D liyxa — 0,

where @7y xo on the right is in degree 0, a(a) = (—a(xg —y2 +h), a(x; —
y1)) and B(b, ) = b(z1 — y1) + c(x2 — yo).

It follows that D’ (%) [2] is isomorphic to &« xa - w where the gen-
erator w satisfies (x1 —y1) - w = 0, (y2 — x2 + A) - w = 0. The modules
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D', (¢x)[2] and €x are isomorphic on x; # 0 by u <+ x;w. However,
D', (¢x)[2] and €x are not isomorphic on a neighborhood of z; = 0. In-
deed if they were isomorphic by u <> aw for a € @7y, then r1a = ax, and
zoa = a(xy — k). Then {x3,00(a)} = —op(a). Since {z3, *} = —210,,,
we have x10,,00(a) = og(a), which contradicts the fact that oy(a) is
invertible.

Remark 2.5.10. — The fact that D', %x is concentrated in a single
degree and plays the role of a dualizing complex in the sense of [60] was
already proved (in a more restrictive situation) in [20, 21].

2.6. Almost free resolutions

We recall here and adapt to the framework of algebroids some results
of [40].

In this section, K denotes a commutative unital ring, X a paracompact
and locally compact space and 7 a K-algebroid on X.

Let us take a family . of open subsets of X. We assume the following
two conditions on .%:

(i) for any x € X, {U € . ; x € U} is a neighborhood sys-
tem of x,

(ii) for U, V € ., UNV is a finite union of open subsets
belonging to ..

(2.6.1)

Recall that invertible modules are defined in Definition 2.1.4.

Definition 2.6.1. — (i) We define the additive category Mod (.27
of .#-almost free .&7-modules as follows.

(a) Anobject of Mod® (&) is the data of {I,{U;, U/, L; }ic;} where I
is an index set, U; and U] are open subsets of X, U; € .7, U, C
U!, the family {U};cr is locally finite and L; is an invertible
o |y-module.

(b) Let N = {J, {V},V}I,KJ‘}]‘GJ} and M = {I,{U”Uzl,[zz}ze[} be
two objects of Mod* (7). A morphism u: N — M is the data
of u;; € I'(Vj; #om (K, L;)) for all (i,5) € I x J such that
V; C U,

(¢) The composition of morphisms is the natural one.



76 CHAPTER 2. DQ-ALGEBROIDS

(d) We denote by ®: Mod* (&) — Mod(«) the functor which
sends {1, {U;, Uj, Li }ier} to @,.;(Li)u, and which sends an ele-
ment u;; of I'(V}; #om ,(K;, L;)) to its image in Hom , ((K;)v,, (L;)u,)
if V; C U; and 0 otherwise.

(ii) Similarly, we define the additive category Mod,s(27) as follows.

(a) The set of objects of Mod,¢(#7) is the same as the one of Mod® (<7).

(b) Let N = {J, {V}',‘/}/,KJ‘}]‘GJ} and M = {I,{U“UZ/,LZ}ZGI} be
two objects of Mod® (7). A morphism u: N — M is the data
of u;; € I'(Uy; #om (K, L;)) for all (i,5) € I x J such that
U; C ‘/J

(¢) The composition of morphisms is the natural one.

(d) We denote by W: Mod.s(«/) — Mod(«/) the functor which
sends {I,{U;,U/, L; }icr} to @,.,; I'v,(L;) and which sends an el-

el

ement u;; of I'(U;; #om ,(K;, L;)) to its image in Hom (v, (K;), Ty, (L))

if U; C V; and 0 otherwise.

Note that Mod,¢(27) is equivalent to Mod® (.e7°P)°P by the functor
which sends {1, {U;, U}, L;}icr} to {I,{U;, U], #om ,(L;, ) }icr}

Recall that for an additive category %, we denote by C~ (%) (resp.
C* (%)) the category of complexes of € bounded from above (resp. from
below).

The following theorem is proved similarly as in [40, Appendix].

Theorem 2.6.2. — Let o/ be a left coherent algebroid and let A €
D_,(&). Then there exist L* € C~(Mod*(«/)) and an isomorphism

coh

(L")~ inD ().
There is a dual version of Theorem 2.6.2.

Theorem 2.6.3. — Assume

(a) o being regarded as an object of Mod(o/ ® o/°P), RI'y () is con-
centrated in degree 0 for all U € .7,

(b) < is a right and left coherent algebroid,

(c) there exists an integer d such that, for any open subset U, any co-
herent o |-module admits locally a finite free resolution of length

d.

Let # € DY, (). Then there exist L° € CT(Mode(«)) and an iso-

morphism A ~ W(L") in DT ().
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Proof. — Denote by D the duality functor R#om ,(+,</) and keep
the same notation with .&7°P instead of 7. This functor sends D} , (&)

coh

to D_, («7°P) by (c). It also sends D__, (&/°P) to D, («7), and the com-
position
D+

coh

(°?) = D}

coh

() 25 Do

coh

()
is isomorphic to the identity functor.

On the other hand, if L is an invertible «/°P-module, then D(L) is an
invertible 7-module, and by the hypothesis (a), we have

D(Ly) ~T'y(D(L))

for any U € .77.
Then we get the result by applying Theorem 2.6.2 to D(.#) € D_, (7°?)
and using # =% D(D(.#)). O

2.7. DQ-algebroids in the algebraic case

In this section, X denotes a quasi-compact separated smooth algebraic
variety over C.

Clearly, the notions of a DQ-algebra and of a DQ-algebroid make sense
in this settings and a detailed study of DQ-algebroids on algebraic variety
is performed in [64].

Assume that X is endowed with a DQ-algebroid o7y for the Zariski
topology. Then, in view of Remark 2.1.17, gr,(«/x) ~ Ox. However, this
equivalence is not unique in general.

Let us denote by X,, the complex analytic manifold associated with
X and by p: X,, — X the natural morphism. Then we can naturally
associate a DQ-algebroid @7x, to /x and there is a natural functor
plaly — x,, whose construction is left to the reader. It induces
functors

(271) MOd(Jfo) — MOd(ﬂXan)
and
(272) MOdCOh(rﬂfo) — MOdCOh(ﬂXan).

When X is projective, the classical GAGA theorem of Serre extends
to DQ-algebroids and it is proved in [16] that (2.7.2) is an equivalence.

Lemma 2.7.1. — Let # € Modon(°). The two conditions below
are equivalent.
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(a) A is the inductive limit of its coherent sub-o/x-modules,
(b) there exists an </x-lattice of M (see Definition 2.3.14).

Proof. — (a)=(b) Let A4 = lim 4" where 4" ranges over the filtrant

family of coherent .@x-submodules of .#. Since /3¢ is Noetherian, the
family {CPloc ®Qcn A} is locally stationary. Since X is quasi-compact,
this family is stationary.

(b)=(a) is obvious. O

Definition 2.7.2. — Let A € Modon(27¢). We say that . is alge-
braically good if it satisfies the equivalent conditions in Lemma 2.7.1.

We still denote by Modgq(275¢) the full subcategory of Mod. o (275¢)
consisting of algebraically good modules.

The proof of [37, Prop. 4.23] extends to this case and Modgq(275°)
is a thick abelian subcategory of Modn(2742°). Hence, we still denote
by ng(%)?c) the full triangulated subcategory of DP  (@74°°) consisting

coh

of objects .# such that H? () is algebraically good for all j € Z.

Remark 2.7.3. — We do not know if every coherent &/3°°-module is
algebraically good.

Almost free resolutions. — Recall that X is endowed with a DQ-algebroid
x for the Zariski topology.

We denote by B the family of affine open subsets U of X on which
the algebroid .«7; is a sheaf of algebras. Note that this family is stable
by intersection. Moreover, hypotheses (1.2.2) and (1.2.3) are satisfied.

Lemma 2.7.4. — Assume that X s affine and o/x is a DQ-algebra.
Then, for any M € Modeon (), there exist a free ofx-module £ of
finite rank and an epimorphism u: L —» 4 .

Proof. — Set My = M |htl. Then M, is a coherent Ox-module and
there exist finitely many sections (vq, . ..,vy) of 4y on X which generate
My over Ox.

By Theorem 1.2.5, I'(X; #) — I'(X; A4,) is surjective. Let (uy,...,uy)
be sections of .# whose image by this morphism are (vy, ..., vy). Let £ =
/% and denote by (ey,...,ey) its canonical basis. It remains to define
u by setting u(e;) = u;. O
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Theorem 2.7.5. — Let # € Modeon(x). Then there exists an iso-
morphism M ~ £° in D(ox) such that £° is a bounded complex
of @x-modules and each £ is a finite direct sum of modules of the form
1Ly, where iy U — X is the embedding of an affine open set U such
that <y is equivalent to a DQ-algebra and £y is a locally free <7 -module
of finite rank.

Before proving Theorem 2.7.5, we need some preliminary results.

Let % = {U;}icr be a finite covering of X by affine open sets such
that x|y, is a DQ-algebra for all 1.

We denote by ¥ the category of non empty subsets of I (the morphisms
are the inclusions maps). For o € 3, we denote by |o| its cardinal.
For o € X, we set

U, = ﬂ U, ty: U, — X the natural embedding.

€0

We introduce a category Mod (<7, % ) as follows. An object M of Mod(«7, %)
is the data of a family ({Mo}ses, {¢))}rcoex), where M, € Mod(«,)
and ¢} : M|y, — M, are morphisms for ) # 7 C 0 € X satisfying
q%, =id and for any o; C 09 C 03, the diagram below commutes

M
qOQ,O’l

(2.7.3) Mo, |v,, — Mo, v,

M
M 73:92
q03 ,(71

o3+

A morphism M — M’ in Mod(«7, % ) is a family of morphisms M, — M
satisfying the natural compatibility conditions.

Clearly, Mod(«/, % ) is an abelian category.

To an object M € Mod(«7,% ) we shall associate a Koszul complex
C* (M) using the construction of [41, § 12.4]. To M we associate a func-
tor F': ¥ — Mod(«x) as follows: F(0) = 1y, M,, and F(r C 0): F(1) —

4,7

F(0) is given by the composition ¢, M, = 5, (M;|y,) — to.M,.
According to loc. cit., we get a Koszul complex C'* (M)

dl d?

(2.7.4) C'(M):=--—0— C'M) = C*(M) —
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where
CZ<M) - @ I/CT*MO'
lo|=1

is in degree 7. This construction being functorial, we get a functor
(2.7.5) C*: Mod(«, %) — C*(Mod(ax)).
It is convenient to introduce some notations. We set

Modeon (e, % ) = {M € Mod(oZ, % ) ; M, € Modcon(27,) for all o € 3},

Modg (e, %) = {M € Mod(, % ); M, is a locally free o7, -module

of finite rank for all o € ¥}.

Clearly, Mod.on (7, % ) is a full abelian subcategory of Mod(«7, % ) and
Modg (o7, %) is a full additive subcategory of Modcon (7, % ).

Lemma 2.7.6. — The functor C*: Modeon (o, %) — CP(Mod(ex))
induced by (2.7.5) is exact.

Proof. — By Proposition 1.6.8 the functor ¢, : Modcon (97, ) — Mod(2Zx)
is exact for each 0 € ¥. The result then easily follows. O]

Let us denote by
(276) A MOdcoh<%X> — MOdCOh(@{, %)
the functor which, to .#Z € Mod..n(2x), associates the object M where

M, = |y, and q(%: M|y, — M, is the restriction morphism.

Lemma 2.7.7. — The natural morphism M — C* (AN(A))[1] is a quasi-
1somorphism.

Proof. — Apply [41, Th. 18.7.4 (ii)] with A = “| |” U;, u: A — X. By
iel
this result, the complex

dl d?

F =0 C\O)) & CPOa) S

is exact. O

Lemma 2.7.8. — Let M € Modeow(/, % ). Then there ezists an epi-
morphism L—M in Mod (<, % ) with L € Modg (<, % ).
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Proof. — Applying Lemma 2.7.4, we choose for each ¢ € ¥ an epimor-
phism L/ — M, with a locally free o7, -module L. of finite rank. Set

LU = @ L;’Uo'
0#£ATCo

and define the morphism L, — M, by the commutative diagrams in
which 7 C o:

L, Mo

—

L;|Uo' - MT|U0"

For 7 C o, the morphism qCﬁT: L.|y, = L, is defined by the morphisms
(ACT):

45+

LT|U0'

7

Li|u,

Clearly, the family of morphisms qiT satisfies the compatibility conditions
similar to those in diagram (2.7.3). We have thus constructed an object
L € Mod(«e/,% ), and the family of morphisms L, — M, defines the
epimorphism L— M in Mod(«Z, % ). ]

Proof of Theorem 2.7.5. — By Lemma 2.7.8, there exists an exact se-
quence in Modon (<, % )

L,.

(2.7.7) 0— Lgyi1 — =Ly = Ly—=> NA)—0
with the L;’s in Modg (<7, % ) (see Corollary 2.3.5). Consider the complex
(2.7.8) L' :=---— L — Ly—0.

Hence, we have a quasi-isomorphism L°* s, ANA). Using Lemma 2.7.6,
we find a quasi-isomorphism

(2.7.9) C* (L) 2 0 (NA)).
Then, the result follows from Lemma 2.7.7. O






CHAPTER 3

KERNELS

3.1. Convolution of kernels: definition

Integral transforms, also called “correspondences”, are of constant use
in algebraic and analytic geometry and we refer to the book [33] for an
exposition. Here, we shall develop a similar formalism in the framework
of DQ-modules (i.e., modules over DQ-algebroids).

Consider complex manifolds X; (i = 1,2, ...) endowed with DQ-algebroids
Q{X- .

k3

Notation 3.1.1. — (i) Consider a product of manifolds X x Y x Z.
We denote by p; the i-th projection and by p;; the (4, j)-th projection
(e.g., p13 is the projection from X x X¢ x X5 to X; x X3). We use
similar notations for a product of four manifolds.

(ii) We write o7 and 7« instead of .7, and @y, « xe and similarly with
other products. We use the same notations for €.

(iii)) When there is no risk of confusion, we do note write the symbols
pi_1 and similarly with ¢ replaced with 27, etc.

Let . € D"(x,xxs,,) (i = 1,2). We set

L L
KD, He = PR AR, 0y
L L
~ (W A)D,,0,,,C € D" (.ey R Ch, B atsa).
Similarly, for % € DP(x,«x,,,) (i =1,2), we set
(3.1.2) Rtom , (1, Hz) = RAtom -, (Dro 1, Dos H5).
Here we identify X; x Xy x X§ with the diagonal set of X; x X§ x Xy x X§.

(3.1.1)
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This tensor product is not well suited to treat DQ-modules. For exam-
ple, @x vy # o/x XN of. This leads us to introduce a kind of completion
of the tensor product as follows.

Definition 3.1.2. — Let ¥ € Db(ﬂxixxgﬂ) (i=1,2). We set
L . L L
3.13) A, = L (RIG), )

L L
= piH < o
D12 1®sz1%&2 123®p2*31@/23ap23 2.

It is an object of DP(p4 #/3.) where pi3: X1 x Xp x X3 — X1 x X3 is
the projection.

We have a morphism in D"(p; "y, @ p3 " /xs):
L L
(3.1.4) IR, Ho = HNR,, s,
Note that (3.1.4) is an isomorphism if X; = pt or X3 = pt.
Definition 3.1.8. — Let ¥ € Db(«@fxixxg“) (i=1,2). We set

L
(3.1.5)  Jh o = Rpu(A©,,4) € D°(xxy),

L

(3.1.6) S x Ay = Rpus (M8, ) € D" (x, x xg)-

We call o the convolution of J#; and .#; (over Xs). If there is no risk of
2

confusion, we write J#] o J#5 for J#; o J5 and similarly with .
2

Note that in case where X3 = pt we get:
L
oy =~ Rpy(HQ,,py ),

and in the general case, we have:

L
%)?%/2 ~ (%E%) © %X2

X2 XX;
L L
~ Rpua (<°%/1 X %)@)ﬂzza %2) ’

where py4 is the projection X; x Xo x X§ x X§ = X; x X§. There are
canonical isomorphisms

(3.1.8) :/“5/1)? Cx, ~ #; and %Xl)? o~ K.

(3.1.7)
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One shall be aware that o and * are not associative in general. (See
Proposition 3.2.4 (ii).)

However, if .# is a bi-invertible &/x, ® &/xg-module and the J#’s (i =
1,2) are as above, there are natural isomorphisms

L L
Hio L =M, L Lo M= L, K,
(0 L) oy~ o( L o ).
X X2 Xo Xa
For a closed subset A; of X; x X;11 (i = 1,2), we set

(3.1.9)A10 Ay = pis(pi At Npyg An)
= pral(A x Ag) N (X7 x Az x X3)) € X x X3,

Note that if A; is a closed complex analytic subvariety of X; x X7,
(i = 1,2) and pi3 is proper on pi53 Ay N pyy Ao, then Aj o Ay is a closed
complex analytic subvariety of X; x X¥.

Let us still denote by o the convolution of gr,(</)-modules. More
precisely for .Z; € Db(grh(%xixxﬁrl)) (1 =1,2), we set

L L
Lo = Rpuy ((31 @fz)(@grh(ﬂma)grﬁ(%ﬁ)-

Proposition 3.1.4. — For J; € Db(,QinXxqu) (i =1,2), we have
(3.1.10) gr, (1 o Hs) ~ gr, () o gr, ().

Proof. — Applying Proposition 1.4.3, it remains to remark that the func-
tor gr, commutes with the functors of inverse images and proper direct
images as well as with the functor X. O]

3.2. Convolution of kernels: finiteness

In this section, we use Notation 3.1.1

Consider complex manifolds X; endowed with DQ-algebroids <7, (i =
1,2,...). We denote by dy the complex dimension of X and we write for
short d; instead of dx;.

We shall prove the following coherency theorem for DQ-modules by re-
ducing it to the corresponding result for &-modules due to Grauert ([29]).
In the sequel, for a closed subset A of X, we denote by D, ,(«/x) the
full triangulated subcategory of D2, (#7x) consisting of objects supported

by A. We define similarly D}y , (2/5°).
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Theorem 3.2.1. — Fori = 1,2, let A; be a closed subset of X; x X;11
and J; € D]CDOh,Ai(dXiXXg+1)' Assume that Ay xx, Ay is proper over
X1 x X3, and set A = Ay o Ay.  Then the object J# o #5 belongs
to DPyp 4 (Hxy xxg)-

Proof. — Since the question is local in X; and X3, we may assume from
the beginning that @7x, and @7x, are DQ-algebras.
We shall first show that

L
(3.2.1) 1@, Ho is cohomologically complete.

Since this statement is a local statement on X; x X, x X3, we may
assume that @7y, is a DQ-algebra. Since %] and J# may be locally
represented by finite complexes of free modules of finite rank, in or-
der to see (3.2.1), we may assume J#; =~ AN, x X5, (1t = 1,2). Then

L
TR %Ji/z ~ X, xX,xxg 18 cohomologically complete by Theorem 1.6.1.
L
Hence J#1 o %5 = Rpu3,(H1®,,H#3) is also cohomologically complete by
Proposition 1.5.12.
L
On the other hand, gr, (] o #5) ~ Rp3, (pfzgrh%®ﬁxlXXQXx3p§3gthi/2)

belongs to D2, (O, xx,) by Grauert’s direct image theorem ([29]). Hence

coh
Theorem 1.6.4 implies that %] o 5 belongs to D}c)oh(%xlxxg)' O
Remark 3.2.2. — In [4], its authors use a variant of Theorem 3.2.1 in

the symplectic case. They assert that the proof follows from Houzel’s
finiteness theorem on modules over sheaves of multiplicatively convex
nuclear Fréchet algebras (see [32]). However, they do not give any proof,
details being qualified of “routine”.

Corollary 8.2.8. — Let # and N be two objects of DY, (</x) and as-

sume that Supp(.# )NSupp(-4") is compact. Then the object RHom , (A, N")
belongs to DR(C").

Proposition 3.2.4. — Let #; € Dg,; (x,xxa, ) (i =1,2,3) andlet £ €
Db, (x,). Set A; = supp(#;) and assume that A; X x,,, Niy1 is proper

over X; X X2 (i =1,2).

-

L
(i) There is a canonical isomorphism (., o ) REL = ) o (K

X2
).

X
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(ii) There is a canonical isomorphism (%/1 o %/2) o s~ jifl (,)ifg o ,}5@)

X3

Proof. — The morphism (,%/1 o %/2) &Z — ,/"ffl (,)i/g &.,2”) is deduced

from the morphism (we do not erte the functors pZ , pw1 for short):
L L L
304Q oy @ty (((%12“23“ @y Ratyga (H1 B ‘%/2))@%2(1 %) X iﬂ)
L L L
= ((42713@4 ®ﬂ13a&a{4 %2“23) ®ﬂ12a®ﬂ23a&%4 S Bt g) ®,Q722a s

L L L
— (42712‘123“4 Rty 30 Rityza Rty (‘%/1 M N "?))@)ﬂfma .

Applying the functor gr;, to this morphism in DP, (x, « Xaxx1), We
get an isomorphism. This proves the result in view of Corollary 1.4.6.
(ii) By (i), we have

L
(fi o H) o Hy = ((%/1)?2%2)@%) 0 g EX

X3x

L
= (Mg (HEH) o Ex,

L L
~ (%XQ ° (%@%g%)) o Cx.
Xox X3 X3xXg
L L L
Then this object is isomorphic to (£ X % X J3) o (€¢x, &
X2><Xa><X3><Xa

L
€, ). Similarly, %ﬁ (Jifg o %ﬁ) is isomorphic to (%{@%&%) o (%x,X
Xo x X§ X X3 X X§

@x,). O

3.3. Convolution of kernels: duality

The duality morphism for kernels. — Denote as usual by pi3: X7 x Xg X
X§ = X x X¢ the projection.

Lemma 3.3.1. — For J%; € Db(leXixXg+1) (1 =1,2), we have a natural
morphism in DP(/xayx,):

(3.3.1) (D! Ji/l) o oJXa )?G(D' Ha) = D%X Xa(,/"i/l o Ji/g)

x| xXg Ax, xXg
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Proof. — We have

S s 'y ~ (D, BD.,H)E o
7Dy, wia B, Dy ds = (D i WD, H0)®,, | wh

12

L L
(D4 K D;sz%>®%12am Wi§a3a/13a

D (4 R )& .
g\ A1 EA2)D o Wi12a3a /130

12

L
RAtom ... .. (K s, Wgasa/lsa)'

12

Hence we have morphisms
/ L of L / L o
Dgw%/l@%a Wia & D, ~ RAom Aypagza (1 K Ao, W12a3a/13a)
L L o L
— R%ﬂompfglﬂma ((% X %)®<§Z{22a >, Wigaga 130 @y . %2)

L
— R%OTTLP;;WBG (Q%fl@df%/% pfg,l@fl?»a [2d2])
The last arrow is induced by (2.5.7). Taking Rp;3,, we obtain

L L
(DL, ) o wih o (D) = Ring (Dl i), w5l S, (D), 55))

L
— Rp13*Re%p0mp;31 Az (%@M2%7 pfglﬂfl:ﬁa [2ds])
= RMom,, (7 2 Ho, G3a).

Here the last isomorphism is given by the Poincaré duality. O]

Serre duality. — Let us recall the Serre duality for &-modules. Let X
and Y be complex manifolds. Denote by f: X x Y — X the projection,

L
by wy = Q?}’ [dy] the dualizing complex on Y and by wy xy/x :=Ox Mwy

the relative dualizing complex. For 4 € DP  (Ox), we set

coh
! NPy
9 =f g®f71ﬁXwX><Y/X'

Theorem 3.3.2. — For % € D2 (Ox«y) and 9 € D2, (Ox), we have
a morphism

(3.3.2) Rf*R%”omﬁxw(f, ') — Ritom , (RHTF,9).

If the support of F is proper over X, then this morphism is an isomor-
phism.
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This result is classical and we shall only recall a construction of the
morphism (3.3.2) adapted to our study. Since Qy has a Zy’-module
structure, we may regard wyy,x as an object of D?(0x K 7). By the
de Rham theorem, we have an isomorphism:

L
Wxxy/x®Qgy Oy ~ ftox[2dy).
. . . L
By composing with the morphism wyxy/x = Wxxy/x®,, Oy, we get a
morphism in DP(f~10x):
WXXY/X — f_lﬁX[Qdy].

Now we have a chain of morphisms in D*(f~10)

L
R%amﬁxw(ﬁ,f!g) = R%amﬁXXy(ﬁ,f_1€4®f,1ﬁxwaY/X)

L
— R%Omf_lﬁx(y,f_lg@)f_lﬁxf_lﬁ)(pdy])
~ R%omf_lﬁx(ﬁ,f_lgpdy]).

On the other hand, the Poincaré duality gives an isomorphism

Rf*Rﬁomf,lﬁX(ﬁ,f_lff[Qdy]) ~ RAom , (RfF,9).

Duality for kernels. — Let X; be complex manifolds of dimension d; and
let «7x, be DQ-algebroids on X; (i =1,2,3).

As in Notation 3.1.1, we often write for short X;; instead of X; x Xj,
Xijo instead of X; x X¢, etc. We also write «7; instead of &, , etc. and
ij/i instead of X;;/X; etc.

Theorem 3.3.3. — Let J¥; € Dgoh(ngiXx5+l) (i = 1,2). We assume

that Supp(#1) X x, Supp(#s) is proper over X, x X§. Then the natural
morphism (see (3.3.1))

(3.3.3) (Dl 1) o, wity o (Do) = Dy (S o H)

1S an isomorphism in Dkoh(gfxfxxs).

Proof. — Since the question is local on X; x X¢, we may assume that
gr,(y,) and gr,(x,) are isomorphic to Oy, and Ox,, respectively.
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Applying the functor gr;, we get
grh(D/ﬂ(f%/Z) © WS?Z © Dfa{(t%/l))
~ Rpugy(RAom (D80 (D) S, piagtn(H5), 0x1m0/x10))
~ RAom ;. (Rpis (0h280,(H0)E,, phatrs(H5))., Ora)
~ gr, (Dl (5 0 H5).

Here the second isomorphism follows from Theorem 3.3.2. Hence (3.3.3)
is an isomorphism by Corollary 1.4.6. O

Recall that Dy denotes the duality functor for C%-modules, (see (1.1.1))
and (+)* the duality functor on D}(C") (see (1.1.2)).

Corollary 3.8.4. — Let A and N be two objects of DP, ().

coh

(i) There is a natural morphism in D(C")

L
(3.3.4) RHom , (AN, w{®,, M) — (RHom , (M ,.N))".
(ii) If Supp(.#)NSupp(A) is compact, then (3.3.4) is an isomorphism

in DY(C").
Proof. — (i) In Lemma 3.3.1, take X; = X3 = pt, Xo = X, ] = A
and o =D, A .
(ii) follows from Theorem 3.3.3. O

In particular, if X is compact, then .# +— w{ @, -~ is a Serre functor
on the triangulated category D, (@7y).

coh

Remark 3.3.5. — For J; € Db(d}(‘j‘;xqﬂ) (i = 1,2), one can define

L
their product J® %loc,%/? similarly as in Definition 3.1.2 and their con-

volution similarly as in Definition 3.1.3. (Details are left to the reader.)
One introduces

(3.3.5) W = O @y wi
and for ./Z € DP(o7}¥¢), one defines its dual by setting
(3.3.6) Dl :=Rom (M, Fi°) € DP(A).

Then Theorems 3.2.1 and 3.3.3 extend to good 27'°°-modules.
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Theorem 3.3.6. — Let A; be a closed subset of X; x X;41 (i = 1,2)
and assume that Ay X x, Ny is proper over X; x X3. Set A = Ay o As.
Let %; € ng,Ai(d)léchfﬂ) (1 = 1,2). Then the object #; o 5 belongs

to ng,A(%)lgch;;) and we have a natural isomorphism
loc
D, () o wia o D () =5 D, (H o ).
xg 2 Xy Xo

Proof of Theorem 2.5.7. — We are now ready to give a proof of Theo-
rem 2.5.7. In Theorem 3.3.3, set X; = Xy, = X3 = X® and ] = 5 =
%’x«. Then we obtain

D, %xe 9 wi 0 Dy Gxe = Diy(Gxa 0 Cxe) = Dy (€xe).

By applying o(D’ ,€x.)®"!, we obtain D’ %y« )o(w;‘? ~ Ex.

3.4. Action of kernels on Grothendieck groups

Grothendieck group. — For an abelian or a triangulated category €, we
denote as usual by K(%') its Grothendieck group. For an object M of €,
we denote by [M] its image in K(%). Recall that if € is abelian, then
K(%) ~ K(D(%)).

If A is a ring, we write K(A) instead of K(Mod(A)) and write Ko, (A)
instead of K(Modgon(A)).

In this subsection, we will adapt to DQ-modules well-known arguments
concerning the Grothendieck group of filtered objects. References are
made to [37, Ch. 2.2].

For a closed subset A of X, we shall write for short:

Keona(x) := KD a (%)), Keona(grp@x) := K(D2, A (gr,9x)),
Koan () 1= K(Dgq 5 (95)).
Recall that for an open subset U of X and .# € Modop(274°°), an .o7-

submodule .y of .# |y is called a lattice of .# on U if .# is coherent
over «; and generates ./ |y .

Lemma 3.4.1. — Let 0 » £ — # — N — 0 be an exact sequence
in Modeon (2752°). Then there locally exist lattices £y, My and Ny of &L,
M and N respectively, such that this sequence induces an exact sequence

of “x-modules: 0 — L4 — My — Ny — 0.
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Proof. — (i) Let .4, be alattice of .# and let .4; be its image in .A”. We
set Ly = MoNZL. These o/x-modules give rise to the exact sequence of
the statement and it remains to check that %, and .4} are lattices of &
and .4, respectively.

(ii) Clearly, 4; generates .4, and being finitely generated, it is coherent
over .

(iii) Let us show that % is a lattice of .. Being the kernel of the
morphism ., — g, £, is coherent. Since the functor (+)¢ is exact,
the sequence 0 — ZJ°¢ — 1 — A;°° — 0 is exact. Therefore,
ogoloc ~ & O

Lemma 8.4.2. — Let # € Modeo,(2/5°), let U be a relatively compact
open subset of X and assume that there exists a lattice My of M in a
neighborhood of the closure U of U. Then the image of Ay in Keon (r),.27)
depends only on M .

Proof. — (i) Recall that [gr,.#;] denotes the image of gr), .4 in Kcon (gr,<74).
First, remark that for N € N, the two gr, &/x-modules gr;,.#, and gr,hi™ .4
are isomorphic, which implies

g, Mo] = [grth//lo].

(ii) Now consider another lattice . of .# on U. Since .# is an /-
module of finite type and .#; generates .#, there exists n > 1 such that
My C R A, Similarly, there exists m > 1 with .#Z; C h™™.#, so that
we have the inclusions

Wty C WM C M.

Using (i) we may replace . with " .#;. Hence, changing our notations,
we may assume

(3.4.1) W™ My C My C M.

(iii) Assume m = 1 in (3.4.1). Using ™. #; C K™ 4, we get the exact
sequences

0— ,/lé/h.%o — %Q/FL%O — %0/%6 — 0,
0 — hotly/htly — My h My — My bty — 0,

and the result follows in this case.
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(iv) Now we argue by induction on m in (3.4.1) and we assume the result
is true for m — 1 with m > 2. Set

MY ="y + M,
Then hatf C M C M and W' sty C M C M. Then the result

follows from (iii) and the induction hypothesis. O
We set
(342) KCOh,A(grﬁme) = lg_n KCOh,A(grﬁMU).

U

where U ranges over the family of relatively compact open subsets of X.
Using Lemma 3.4.2, we get:

Proposition 3.4.3. — There is a natural morphism of groups
grp: Kgd,A(%)l(oc) - I?Ctnh,A(grfo{X)-

Remark that when X = pt, the morphism in Proposition 3.4.3 reduces
to the isomorphism

(343) Kf((ch’loc) = Kf(@),
and both are isomorphic to Z by [M]| — dim M.

Kernels. — Consider the situation of Theorem 3.2.1. Let A; be a closed
subset of X; x X;41 (i = 1,2) and assume that A X x, Ay is proper over
X1 X X3. Set A = A; o Ay. Since the convolution of kernels commutes
with distinguished triangles, it factors through the Grothendieck groups.
Moreover, one can define the convolution of gr,.e/x-kernels and a variant
of Theorem 3.2.1 with &7y replaced with gr,o7x is well-known. Since the
functor gr; commutes with the convolution of kernels, the diagram below
commutes:

o

(3'4‘4)Ob(D}c30h,A1 ("%2“)) x Ob (D}goh,AQ (%3“» - Ob(D}cJoh,A('Q{l:i“))

l o

Kcoh,Al (MQ") X Kcoh,AQ (%3“) Kcoh,A (MSE)
l 8Ty Xgry l 8ry
Kcoh,A1 (grﬁf%Qa) X Kcoh,AQ (grh%i’)a ) Kcoh,A (grhv(z{l&l ) .
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Similarly to (3.4.4), the diagram below commutes:

(345) OB(DYy, (59)) x Ob(DYy 5, (7455)) — Ob(Dhy 5 (75)

| .

Kgan, (56) X Kgan, (4455) Kgan (55)

lgrﬁxgrh lgrﬁ
o

I/icoh,Al (grhﬁm‘l) X I/{coh,Ag (grh%?ﬂ) I/{coh,A (grﬁﬂl?ﬂ)-




CHAPTER 4

HOCHSCHILD CLASSES

4.1. Hochschild homology and Hochschild classes

Let X be a complex manifold and let @7y be a DQ-algebroid. Re-
call that 0x: X — X x X is the diagonal embedding. We define the
Hochschild homology HH(7x) of o/x by:

L
(4.1.1)  HH(x):= 5}1(‘@”@@%(”&‘5;(), an object of DP(C%).
Note that by Theorem 2.5.7, we get the isomorphisms:

HH(y) =~ 5;(1R<%”0m%mxa( ! Cxa, Cx)

dxaxx

~ 5;{1R¢%”0mﬂmxa(wjf®_l,%x).

We have also the isomorphisms

A1 ~ o o AD-1
RA#om , (W™, Cx) = RAom, . (w0 Qwy

~ Rstom, . (Cx, wid).

One shall be aware that the composition of these isomorphisms does not
coincide in general with the composition of

Ritom , (W 6x) ~ Ritom , ., (Ww® towd , Exowy)
o~ ijom%mxa(‘gx,wf).

We shall see that they differ up to hhx(wx) o (see Theorem 4.3.4 below).
For that reason, we shall not identify HH(#/x) and RA#om , (X, wi).
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Lemma 4.1.1. — Let M4 € D, (ox). There are natural morphisms
m Dth(vQ{XXX‘Z):

L
(4.1.2) wg® ' — A RD M,
L
(4.1.3) MRD, M — Cx.
Proof. — (i) We have

RAom , (M, M) = (Dydl)S,, M

12

L L
~ Cx®,, (MRD,.H)

L
~ R%”omﬂmxa(wjf@’l,//(@D; ).

The identity of Hom , (.#,.#) defines the desired morphism.
(ii) Applying the duality functor D', to (4.1.2), we get (4.1.3). [

Let .# € D, (o/x). We have the chain of morphisms

coh
N L
RAom , (M, M) «— Dy, M3, A
L L
(4.1.4) ~ CgX“&foxa (M RD, )
L
— %Xa®<ﬂx><xach = HH(%X)
We get a map
HomL%X (%7 %) — ngpp(%) (X, HH(%X))
For v € End(.#), the image of u gives an element
(4.1.5) hhx((A#,u)) € ngpp(%)(X;HH(dX)).
Notation 4.1.2. — For a closed subset A of X, we set
(4.1.6) HHp (/x ) := R\ (X; HH(x)), HHY (o) := H°(HHA (x)).

Definition 4.1.3. — Let .# € DY, \(/x). Weset hhy (.#) = hhx((.#,id 4)) €
HHS («7x) and call it the Hochschild class of ..

Lemma 4.1.4. — Let # € D, (ax). The composition of the two
morphisms (4.1.2) and (4.1.3):

L
w7 — HRD M — Cx
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coincides with the Hochschild class hhy (.#) when identifying HH(</x)
with RAom , . (W@ 6x).

Proof. — The Hochschild class hhy (.#) is the image of id_, by the com-
position
L
Rot#om , (M, M) ~ RiAtom, . (WY M RD, )
— Rotom (W@t Ex) ~ HH ().
O

Theorem 4.1.5. — The Hochschild class is additive with respect to dis-
tinguished triangles. In other words, for a distinguished triangle A’ —

M — M in Db, (#x), we have
(4.1.7) hhy () = hhyx(A') + hhx(A").

L
Proof. — Although the bifunctor «® 7y * 18 Dot internal to our category,
the theorem of May [49] is easily adapted to this situation. O]

By this result, the Hochschild class factorizes through the Grothendieck
group. Therefore, if A is a closed subset of X, we have the morphisms

(4.1.8) Do a(x) = Keona () — HHY ().

Duality. — Denote by s: X x X* — X*x X the map (z,y) — (y,z) and
recall that dx is the diagonal embedding. Then so dx = dx, s ' €x ~
Cxa, s 5y xa =~ Hxaxx and we obtain the isomorphisms

L
HH(x) = 65 (€xe® Cx)

&/jxxxa

12

-1 _-1 L
5X S (%Xa ®<“{X><Xa %X)

~ 5;(1(8_1%)@(}% S_lch)

s7lelx « xa

L
= 5;(1(%X®<Q‘7Xﬂxx(gxa) = %H(ﬂfxa)

After identifying HH (/) and HH (a/x«) by the isomorphism above, we
have:

(4.1.9) hhya(D',.) = hhx (.4).
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Remark 4.1.6. — Let o/ be a DQ-algebroid and let &2 be an invertible
C"-algebroid on X. Then

(4.1.10) d? = Qo P
is a DQ-algebroid on X. We have the natural equivalences
(7P) 7" = (e 7)P,
53 (7 B (/7)) = 63 (of B (7).
We deduce the isomorphism

(4.1.11) HH(etx) ~ HH(LD).

4.2. Composition of Hochschild classes

Let X; be complex manifolds endowed with DQ-algebroids o7, (i =
1,2,3) and denote as usual by p;; the projection from X; x X3 x Xj

Proposition 4.2.1. — There is a natural morphism

L
o : Rpugi (pra HH(x, x5 ) @pas HH(xyxxg)) — HH(x,xxg).

Proof. — (i) Set Z; = X; x X?. We shall denote by the same letter p;;
the projection from Z; x Zy x Z3 to Z; x Z;.
We have

HH(VQ{XZ'XX]@)

L L L
~ (%xe E%Xj)@’%z_ (€, E%X;)

i XZ¢
J

SO g Ae1 >

~ RAom,, (W, EWX; , Cx, X Cx )
x4
L L L L

N /@1 AD—1 o of
~ R%omdzixzq (w¥ waf )@WX@MX}“ (Cx, @%Xja)@%xqw)(}z)
J J J

A ®—1 L > o
~RAom,, (w0 Wy, Cx, Hwy ).
z J

L L
Set Sl-j::wjfvi@*l@(gx; eDP (ﬂzixzjq) and Kij::%XiEw% e DP (,!Zfzixz}z).

coh coh

Then we get
HH<£{X1-XX]CF) ~ R%”Omdz‘xz (S”,KZ])
L]

a
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Thus we obtain a morphism in D*(C}, . . ,.)
L
Pro HH(x, xxg)@pag HH (e x,xxg)
L
~ pIQIR%Ode sa (512, K12)®p531R%0de s (Sgg, K23)
1X23 2XZ§

L L
— p131R%0m47f21><Z (512@%22 523, KlZ@WZQ K23)

a
3

We get a morphism

L
(21) Rpusy (1o HH (A, xxg ) @23 HH(x,x5))
4 L L
— Rplg!R%OmﬂZ1ng (512@51{22 523, K12@%Z2 Kgg) .
(ii) We have a morphism
L
(CP;(Z — RC%”om_Q{Zél (ngg, Cng) ~ %XS@JJZQW}Z@_l’
which induces the morphism:
L L L L
Pis (WX W Cxa) = (Wi 'K Cxg)D,, (W2 ' K Exs),
that is, the morphism in D" (477, za):
L
(422) 813 — Rp13* (812@5%22 523).
(iii) We have a morphism (see (2.5.7)):
L L L L
(x, Bwiy)®,, (€x, Mwiy) = pig (€x, Bwi)[2da],
which induces the morphism in DP(#, « za):
L
(423) Rp13!(K12@p{Z2 Kgg) — Klg.
(iv) Using (4.2.2) and (4.2.3) we obtain

L L
Rplg!ijom%ZIng (312@d22 Sa3, K12@%Z2 K23)
(424) & Rotom,,  (Rpis.(S12®,, Sas).Rpis(Kin®,, Kn))
Sz, w28 350128 5, 923, P13 128, 223
— ijomﬁ{zlng (513,K13> ~ HH(%XlxXa‘?)-

Combining (4.2.1) and (4.2.4), we get the result. O
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Let us denote by Xg the real underlying manifold to X and by wg‘()ﬂs the
topological dualizing complex of the space Xw with coefficients in C”.
Note that X being smooth and oriented, WE?DS is isomorphic to Ch [2dx].

Corollary 4.2.2. — There is a canonical morphism HH (o x«\SHH (A x) —

wg?uf.

Proof. — Let us apply Proposition 4.2.1 with Xy, = X, X; = X3 = pt.
Denoting by ax the map X — pt, we get the morphism Rax(HH (o/xa)®
HH (o)) — (Cgt. By adjunction we get the desired morphism. O

4.3. Main theorem

Consider five manifolds X; endowed with DQ-algebroids «7x, (i =
ooy D).

Notation 4.3.1. — In the sequel and until the end of this section, when
there is no risk of confusion, we use the following conventions.
(i) Fori,j € {1,2,3,4,5}, we set X;; := X; x Xj, Xjjo 1= X; x X§ and
similarly with X, etc.
(i) We sometimes omit the symbols p;;, pij, , pi’jl, etc.
(iii) We write 47 instead of @, , 47« instead of Ay, and similarly with

i, wi”, ete., and we write o instead of o, * instead of *, Hom,
i X, i X;

instead of #om ,, and ®; instead of ®,, and similarly with i 3%, ijk,
ete.

(iv) We write D’ instead of D/, and wy instead of wy.

(v) We often identify an invertible object of DP(«/x ® /x.) with an
object of DP(#/x ya) supported by the diagonal.

(vi) We identify (X; x X§)* with X7 x Xj;.

1

Let Aj; C X;; (i=1,2, j =i+ 1) be a closed subset and assume that
Aqo X x, Aog is proper over X; x Xj3. Using Proposition 4.2.1, we get a
map

L
(4'3'1) CQ) : HHA12 (%X12E)®HHA23 (@{Xma) — HHA120A23<'Q{X13G)'

For C1, € HHY  (@x,,.), we obtain a morphism
(432) Ciz (2): HHj,, (’%Xzsa) — HHA 5000 (‘Q{Xwa)'
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L L L L
The morphism (61a®,,.61)X(62: X, 62) — (Glaga®

the exterior product

(433) X : I‘IHA1 (%Xl) X HHA2(J27X2) — HHAleg(fQ{XlxXg)
Lemma 4.3.2. — Let \j; C X;; (i = 1,2,3, j = i+ 1)and assume
that Ai; Xx; Aji is proper over Xy, (1 = 1,2, j =i+ 1, k = j+1).
Let Ci; € HHY (@) (i=1,2,3, j =i+ 1).

(a) One has (0123023) 2034 = 012 3(0232034).

(b) For Cous € HH(x,,..) we have

(Cl2 X 034) 204 Cass = Chg 3(034 i 0245)-
(C) Set CAi = th ((gxl) Then 012 C2> CAQ = CAl ?012 = 012.

%12) induces

11@ 220 121a2a

(d) (Cu&CA:g) 2§a 023 = 012 g 023. Here 012®CA3 € HH9\12><A3 <%X12a33a>

. 0
is regarded as an element of HHy . A, (szx(wa)ma)a)-

Proof. — The proof of (a) and (b) is left to the reader and (c) follows
from Theorem 4.3.4 below. Indeed, ® 4 in (4.3.8) is equal to the identity
when J#° = %’y since the functor £ — % * A Ouwsy * D’'# is isomorphic

to the identity functor.
(d) follows from (b) and (c). O

In order to prove Theorem 4.3.5 below, we need some lemmas.

Lemma 4.3.3. — Let # € DY, (#x,,.). Then, there are natural mor-
phisms in D(ex, ) :

(4.3.4) a: W= %;Dfd%/,
(435) ﬁ : %SWQEJD/Q{% — Cgl.

Proof. — (i) By (4.1.2), we have a morphism in DP(#x,,0,,4)
what — A XD,

L
Applying the functor *®,,, %>, we obtain

—1 81y Bl (D .. € 18 @ (A ED L H) D G
DP11aWq — Wy ( o 2®22a 2)_>w12a ®22a 2_>( = Yy )®22a 2-

By adjunction, we get (4.3.4).
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(ii) By (4.1.3), we have a morphism in DP(#x ,.,.)
H RD'H — Cloa.

L
Applying the functor *®,,,ws, we obtain

L
(e%/ & D’ %) ®22a Wy — %12a® Wy — %1@@&2 [ng]

222

Here the last arrow is given by (2.5.7). By adjunction, we get (4.3.5). O

For the sake of brevity, we shall write I'yHom instead of R['\RsZom .
Let Aj2 be a closed subset of X7 x X§ and Ay a closed subset of Xs.
Let # € Db, (ex,,.) with support Ajs. We assume

(4.3.6) A12 X x, Ay is proper over Xj.
We set for short

L
S = %@ (WQ%D{W%) I~ Db(e,Q{llaQQa),
A1 = A12 o AQ.

(4.3.7)

Note that
S *x wy™ Nji/*D A, Szga%gzt%/nggD;ﬁ%/.

229

We define the map
(4.3.8) Dy HHA2 (%Xz) — HHA120A2 (dxl)
as the composition

HHy, (a%) =~ Tp,Hom g, (w§ ™ FAQCKQ)
— FA12OA2Hom11a(S * Wy LS a [\, 62)

— FAlgoAQHomlla (S 2>§a w2 1’ San FAQ%Q)
— FA12OA2HOH111a (W?_l, cgl) ~ HHA120A2 (ﬂl)

The last arrow is associated with the morphisms in Lemma 4.3.3.
We have morphisms

L
(4.3.9) W = (WP X G) hd w1

(4310) ((51 E WQ) an (gg — (51-
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L
In fact, we have a natural morphism Chy. — %®,,.w5 " This mor-

L L
phism defines the morphism ponwi " — (WP K %5)®,,.ws "~ which
defines the morphism (4.3.9) by adjunction.
By (2.5.7), we have a natural morphism

L L L h,loc !
(61 X w2) R0, G2 — €1 X Cyy™ [2das] ~ oy @y
which defines the morphism (4.3.10) by adjunction.

Theorem 4.3.4. — Assume (4.3.6). Then the morphism @, : HHy, (x,) —
HHa o0, (9, ) in (4.3.8) is the morphism hhx ,, () o given in (4.3.2).

Proof. — We set

L L
F = (wi@il E (52)/\127 G = RFA12 (Cgl Ew?)'

We shall denote by a and E the morphisms
a:F—=S, 3:5-0G.

constructed similarly as in Lemma 4.3.3 by using (4.1.2) and (4.1.3).
Then the diagram below commutes:
(4.3.11)

o (F o (Foa(F)) » .
I'y,Hom . (w5 ™, 65) I'y,Hom . (F Sk, W ,G2>I2<a '), %)

m\ (aﬁ)

I'x,Hom,.(S X w1, Sga '), 63).

The morphisms in (4.3.9) and (4.3.10) define the morphisms
(4.3.12) w?_l — F % w¥ L nga Gy — 6.

220

Since G Jx [p, % < G 2, ', %5, we get the morphism
w: I'y,Hom . (F X w$ 1, GQ;G [, %) — I, Hom 1, (WP, 61).

By its construction, the morphism hhy ,,(2#") o is obtained as the

composition with the map w of the top row of the diagram (4.3.11).
Since the composition with w of the two other arrows is the morphism
® , the proof is complete. ]
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Theorem 4.3.5. — Let A; be a closed subset of X; x X;11 (i = 1,2)
and assume that Ay X x, Ao is proper over X7 x X5. Set A = AjoAy. Let
%/Z' S DSOh,A—L (dXiXX'E{I—l) (7/ - 1, 2). Th@n

(4.3.13) hhy,,. (4 o Hs) = hhy,,. () o hhy,,, ()
as elements of HH) (e/x,xxa). In particular, ® 0., ~ ® . 0 O .

Proof. — For the sake of simplicity, we assume that X3 = pt. Consider
the diagram in which we set Ay = hhy(#5) € HH"(x,) ~ Hom (w§™', 65)
and we write D’ instead of D’ :

Ww® 1 ®—-1 / A2 / €
1 J1owy T owyo D' H10Gr0wy0o D'ty — 01
2 2 2 / 2 2 2
L
H o(H B ) 0wy o DA
!
L
(10 o) WD A 0wy 0 D4
|
L
- (Mg M) KD (0 ) g

Here, the left horizontal arrow on the top is the composition of the mor-
phisms w® ! = 4 3D;¢%/1 — 30}?‘1 ows 9 D', #;. The composition

of the arrows on the bottom is hh; (] 0.%5) by Lemma 4.1.4 and the com-
position of the arrows on the top is ® 4 (hha(%3)). Hence, the assertion
follows from the commutativity of the diagram by Theorem 4.3.4. [

Recall Diagram 3.4.4. Using (4.1.8), we get the commutative diagram

o

(43 14) Kcoh,Al ('52{12‘1) X Kcoh,Ag (%3“) I Kcoh,A (MSQ)
lhhlga Xhh23a jhhlga
HHY (#20) x HH} (oge) — HHY (#30).

Remark 4.3.6. — (i) The fact that Hochschild homology of &-modules
is functorial seems to be well-known, although we do not know any paper
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in which it is explicitly stated (for closely related results, see e.g., [33,
58]).

(ii) In [15], its authors interpret Hochschild homology as a morphism
of functors and the action of kernels as a 2-morphism in a suitable 2-
category. Its authors claim that the the relation ® 4, o ® 4 = D 4 0.0

follows by general arguments on 2-categories. Their result applies in a
general framework including in particular -modules in the algebraic case
and presumably DQ-modules but the precise axioms are not specified
in loc. cit. See also [58] for related results. Note that, as far as we
understand, these authors do not introduce the convolution of Hochschild
homologies and they did not consider Theorem 4.3.4 nor Theorem 4.3.5.

Index. — Let K be a field, let M € D}(K) and let v € End(M). One
sets

tr(u, M) =Y (=1)"te(H'(u): H'(M) — H'(M)),

€L
X(M) = (=1) dimg (H'(M)).
€L
If X = pt, then HH (/) is isomorphic to C", and DY, («/x) = D3(C").

Recall that we have set M'* = C"'°° @, M. For M € D%(C") and
u € End(M), we have

(4.3.15) hhy (M, u)) = tr(u'c, M),
In particular,

hhy (M) = x(M*).
Moreover, we have

X(M*) = x(gry(M))
= ) (—1)"(dime(C @ H'(M)) — dimg Tor{" (C, H'(M))).
i€z
In the sequel, we set
X(M) = x (M),
As a particular case of Theorem 4.3.5, consider two objects .# and .4~
in DP, («x) and assume that Supp(.#) N Supp(.4’) is compact. Then

coh
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RHom , _(.#,./") belongs to D}(C") and
X(RHom (4, A)) = (Dl o )
= hhya( ;{//l);hhx(ﬂ)
= hhx(A) )@O(th(JV).
Note that we have
X(RHode(///, N)) = X(RHom%lgc (', </V1°C))
= X(RHomgrh(ﬂX)(grh(///)a grh,(t/’/)))-

4.4. Graded and localized Hochschild classes
Graded Hochschild classes. — Similarly to the case of @7x, one defines

)grfz((gX)'

L

HH(gra( ) = grp(Cxe)@

gry(Fx x xa
Note that HH(gr,(« y)) ~ C(}%@H’H(dx) and there is a natural mor-
phism

gry,: HH(ax) = HH(gry (< «)).
Notation 4.4.1. — For a closed subset A of X, we set
(4.4.1) HHA (gry @x) == RIA(X; HH(gry (47 ).

We also need to introduce

—0
(4.4.2) HH, (gr),ox) := @HHg(grh;sz),
U

where U ranges over the family of relatively compact open subsets of X.
For .7 € Db, (gr;(#x)), one defines its Hochschild class hhx(.%) by

coh
the same construction as for @/y-modules. For .# € DP (@), we have:

coh
gry(hhy (#)) = hhxy (gr,(A#)).
Theorem 4.3.5 obviously also holds when replacing o7y with gr, (7).

Corollary 4.4.2. — Let A; be a closed subset of X; x X;q (1 = 1,2)
and assume that Ay X x, Ao is proper over X; x X3. Set A = AjoAs.

Let % € ch)oh,Ai (gI'fZ(éZ{XiXXa )) (Z = 1, 2) Then

41

(443) thlsa (‘%/1 © ‘%/2) = th12a (‘1/1) © th23a (%)
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as elements of HH?X(grthIXxg).

It follows that the diagram below commutes

o

(444) Kcoh,Al (grhf‘ylﬁl) X KCOh,A2 (grh%?)“) - Kcoh,A(grh%3a>

. )

HHY, (gr)12:) x HH}, (g1, %30) —— HH} (g1, h30).
We shall study the Hochschild class of &-modules with some details
in Chapter 5.
Hochschild classes for «/3°°. — One defines

L
HH () = %;?f(gﬂié’ixa Ex°.
We have HH (/}°) ~ CHo°®., HH (</x) and there is a natural morphism

(o) HH(x) — HH(FYC).
For .# € Db, (&75¢), one defines its Hochschild class hhx (%) by the same

coh

construction as for @x-modules. For .# € DP, (a/x), setting .#'°¢ =
CMo¢ @ A , we have

(hhy ()¢ = hhx (.2™°).

Recall that the notion of good modules and the category Dp (/5
have been given in Definition 2.3.16. One immediately deduces from
Theorem 4.3.5 the following:

Corollary 4.4.3. — Let A; be a closed subset of X; x X;q (i = 1,2)
and assume that Ay X x, Ay is proper over X; x X3. Set A = Ay o As.
Let % G ng’Al (%)I(OZC><XG+1) (Z — 1, 2) Th@n

(4.4.5) hhx . (1 o H#5) = hhx,,. () o hhx, .. ()
as elements of HHS{(%}‘;&X;).

Using Proposition 3.4.3 and the additivity of the Hochschild class in
Theorem 4.1.5, we find that there is a natural map

~

—0
(4.4.6) Keon,a (gr,x ) — HH, (g1, o).
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For ./ € Dpy \(#/5¢), we denote by }/1}\1?(//{) the image of .# by the
sequence of maps

ng,A(le)l(oc) — Keona (grpex) — HH?\(grh“Q{X)‘
Let A; be a closed subset of X; x X;11 (i = 1,2) and assume that
Ay X x, Ay is proper over X; X X3. Set A = Aj 0 As.
Using the commutativity of Diagram 3.4.5, we get that the diagram

below commutes

[}

(447) OB(Dly 0, (155)) x OD(Dly, () — Ob(DY ,(7459))

| |
o

Kcoh,A1 (grhﬁ{ma) X Kcoh,Az (grh%Sa) Kcoh,A (gl"h«52713a )

| o

—0 —0 _——0
HH,  (gr,@2:) x HH, (g1, #s0) HH, (gr; s ).

In other words,
(4.4.8) hhys. (7 0 Ha) = by, (1) © hhiyg, (F3).

Corollary 4.4.4. — Let #, N € Dp,(/°) and assume that Supp(.4)N
Supp(4") is compact. Then RHom , (.4 ,.A") belongs to DY(C") and

X(RHOm o (4,.4) = Dhiga(Dly.) o by (H)
= Dhy () ohhy(A).
Proof — One has by (3.4.3)
X(RHom%lgc(,///, AN)) = hhy (D, o N)
= hhy (D). 0. A') = hhy (D) o kb (A)
and the last equality follows from (4.1.9). O

Remark 4.4.5. — In the algebraic case, that is, in the situation of
~ ——0
§ 2.7, one should replace Kcon o With Keon 4 and HH , (gr,,.7x ) with HH} (gr;,.27x ).

We shall explain how to calculate h/\hi{ in Chapter 5.



CHAPTER 5

THE COMMUTATIVE CASE

We shall make the link between the Hochschild class and the Chern
and Euler classes of coherent &'x-modules, following [35], an unpublished
letter from the first named author (M.K) to the second (P.S), dated
18/11/1991.

5.1. Hochschild class of -modules

In this section, we shall study the Hochschild class in the particular
case of a trivial deformation. In this case, the formal parameter i doesn’t
play any role, and we may work with &-modules. We shall use the same
notations for &x-modules as for (O x[[A]], x)-modules where * is the usual
commutative product.

Note that the results of this section are well known from the specialists.
Let us quote in particular [14, 15, 33, 48, 53, 58, 63].

Let (X, Ox) be a complex manifold of complex dimension dyx. As
usual, we denote by dx: X <— X x X the diagonal embedding. We
denote by Q% the sheaf of holomorphic i-forms and one sets Qx := Q%X
We set

wx = QX [dX]
We denote by D, and Dy the duality functors
Dy(F) = R#om , (F,0x), De(F)=RHAom, (F,wx).

When there is no risk of confusion, we write D’ and D instead of D/; and
Dy, respectively.
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Let f: X — Y be a morphism of complex manifolds. For & € D"(0y),
we set
L
1 = ﬁx®f,1ﬁyf_1%.
We use the notation H°(f*): Mod(0y) — Mod (@) for the (non de-

rived) inverse image functor.
The Hochschild homology of &x is given by:

(5.1.1) HH(Ox) :=6%0x.0x, an object of DP(Ox).

Note that dx >~ dx, ~ Rdx,, and moreover

L L
(5.1.2) (SX*HH(ﬁx) ~ (SX*(ﬁX®5;((5X*ﬁX)) ~ 5X*ﬁx®ﬁXXX(5X*ﬁX-

By reformulating the construction of the Hochschild class for modules
over DQ-algebroids, we get

Definition 5.1.1. — For # € DP | (Ox), we define its Hochschild class
hhx (F) € Hg,pp #(X;0%0x.0x) as the composition
(5.1.3) Ox — RAHom, (F,F) "5 6x(FRD'F) = 0x0x.0x.
Here the morphism .# X D'.% — §x,.0x is deduced from the morphism
L

X (F D7) = F®, D'F = Ox by adjunction.

Applying Theorem 4.3.5, we get that for two complex manifolds X and
Y and for . € D2 (Ox) and 4 € D, (0y), we have

hhx,y (F R %) = hhx(F) K hhy ().

Let f: X — Y be a morphism of complex manifolds and denote
by I'y C X x Y its graph. We denote by hhx.y(Or,) the Hochschild
class of the coherent &'y yy-module &1 ;- Hence

thxY<ﬁFf) € HO(X X Y;H,H(ﬁxxy)).
Applying Theorem 4.3.5, we get
Corollary 5.1.2. — (i) Let 9 € D2, (Oy). Then

coh

hhx(f*g) == thXY(ﬁFf) e} hhy(g)
(ii) Let # € DP,(Ox) and assume that f is proper on Supp(F). Then

coh

hhy(Rfl?) = hhx<§) o} thXy<ﬁ1"f>.

In Proposition 5.1.3 and 5.2.3 below, we give a more direct description
of the maps thXy(ﬁpf) o and othXy(ﬁpf).
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Proposition 5.1.3. — Let f: X — Y be a morphism of complex man-
ifolds.

(i) There is a canonical morphism

(ii) This morphism together with the isomorphism Ox <— f*Oy induces
a morphism

(5.1.5) [ HYRI(Y; 636y, Oy)) = H'(RT(X; 6%0x.0x))
and for 4 € D>, (Oy), we have

coh

(5.1.6) hhy (f*9) = f*hhy (9).

Proof. — (i) Consider the diagram

(5.1.7) XX XxX
| |
Yy Y Lyxy.

Then we have morphisms
FH0E0y Oy ~ 8% [*0y .0y — 83 0x, [ Oy ~ §%6x.,0x.
Here the arrow f*éy* — 0x, f* is deduced by adjunction from

Sy, — Oy RES  ~Rfdx.f"

(ii) The diagram

(@ RD'Y) —— [0y, 0y

- |

[9 X fDY Ox. [ Oy

| -

FGRD ') — 5y, Ox
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commutes. It follows that the diagram below commutes.
[*Oy —— 05 (Y K D'Y) —— [ 030y, Oy
S (G RD'Y) — 6% [*oy, Oy
S (f IR [DY)  Sidx.f Oy

~ ~

Therefore, the image of hhy (4) € Hom ﬁy(ﬁ’y, 030y Oy) by the maps

HOmﬁy(ﬁy,é;éy*ﬁy) — HOmﬁX(f*ﬁy,f*(s;(sy*ﬁy)
— Homﬁx(ﬁx,é‘}dx*ﬁx)

is hhy (f*9). O

Remark 5.1.4. — Although we omit the proof, the map in (5.1.5) co-
incides with thXy(@’pf) o.

Ring structure. — For an exposition on tensor categories, we refer to
[41].
Proposition 5.1.5. — (i) The object §%0x,0x is a ring in the tensor

b
coh

L
category (D¢, (Ox), ®,. ). More precisely,

(a) the map p obtained as the composition

L L
Ox0x.O0x®, 0x0x.Ox > 5}}(5X*ﬁx®ﬁmx5x*ﬁx)
— (5;}5)(*@)(
1s associative. Here the last arrow is induced by 0 x,Ox®R0x,.Ox —
0x.Ox.

(b) hhx(Ox) is a unit of this ring. More precisely, the natural
morphism e defined as the composition

e ﬁX = 6;(ﬁX><X — 5}5}(*6))(
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has the property that the composition

L . § Lo
0x0x.Ox = 0x0x.0x®, Ox — Ox0x.0x®, 6x0x.0Ox
L 5%0x.0x
15 the identity.
(ii) The ring (0%0x.Ox, 1) is commutative. More precisely, we have

oo = u, where o € AutDb(ﬁX)(5}}(5)(*@;((%@5}5)(*@)() is the
morphism associated with x @ ¥’ — 2’ @ x.

(iii) The object 8 dx\wx has a structure of a 0%0x,Ox-module. More
precisely, the composition

L L
(5}(5X*ﬁX®ﬁx5!)(5X!wX — 6!)((5X*ﬁx®ﬁXxX5X!wX)
— 5!)(5X!WX-
18 associative and preserves the unit. Here, the last arrow is induced
by
L
5X*ﬁx®ﬁxm5xywx ~ 6X*(6;(5X*ﬁx®ﬁxw){) — 5X*(ﬁx®ﬁxwx) ~ Oy Wx
by adjunction.
Proof. — The verification of these assertions is left to the reader. We

only remark that the commutativity and associativity are consequences
of the corresponding properties of dx,0x. For example, the commuta-

L
tivity is the consequence of the commutativity of dx,O0x® Oxxx O0x.Ox —
O0x.Ox. ]

Notation 5.1.6. — For \; € H} (X;0%0x.0x) (i = 1,2), we define
their product A; ¢ \y as the composition

L A1®A2 L
Ox °25 Ox®, Ox —— 050x,0x®, Sx0x,0x = §x0x,0x.
Proposition 5.1.7. — Let #; € D> (Ox) (i =1,2). Then

L
(518) hhx(ﬁ]@ 3?2) :th(ﬁl)'hhx(ﬁz)

Ox
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Proof. — Consider the commutative diagram below (in which ® stands
for ®,):
Ox Ox ® Ox

5}(?1 & D/ﬁl) ®5§((f2 @ D/ﬁg) I 5}5}(*@)( ®5§(5X*ﬁ)(

. I

53}((@1 & D’fl) ® (gg & Dltgé)) —— 5}(5)(*@)( ®5X*ﬁX)

|

5% (x. O).

The composition of the arrows on the top and the right gives hhx (%) « hhx (%)
and the composition of the arrows on the left and the bottom gives

L
hhx(§1®ﬁxyg). [l

5% (P10 F) RD (F @ F))

Note that
L

5.2. co-Hochschild class

Definition 5.2.1. — For .F € D" (Ox), we define its co-Hochschild
class thhy (F) € HY,,, »

(X; 8% dxwx) as the composition
(5.2.1)  Ox = RHAom , (F,7) ~ 0 (F RDeF) = OrOxiwy.
Here, the morphism (% K Dy.%) — dxwx is induced from 6% (F X
Dy F) ~ ﬁéﬁxDﬁgf — wyx by adjunction.
Consider the sequence of isomorphisms

L \ Lo
5;(6X*ﬁX R ﬁx®ﬁxé}5x*ﬁx%55((@)(@@@()@@5)(5)(*@)(

2y S ((Ox Buwx)®, 0x.0x) = dydx.(0x (Ox Bux)E, Ox)
= 6!)(5X!WX-

We denote by td the isomorphism

(5.2.2) td: S 0x,Ox =5 85 0xiwx
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constructed above. For a closed subset S C X, we keep the same notation
td to denote the isomorphism

(5.2.3) td: H3(X;0%0x,0x) =5 HY(X; 0\ 0x1wx).
Proposition 5.2.2. — For % € D, (Ox), we have

(5.2.4) thhy (%) = td o hhx(F).

Proof. — The proof follows from the commutativity of the diagram below

in which we use the natural morphism Oy — 0% (Ox M wy)

Ox

5 (F R D.F) 55bx.Ox
!
Oy (Ox Mwx) ® 0% (F W D'F) —— 0y (Ox Rwx) ®050x.0x
!
Oy ((Ox Rwx) @ (F WD'F)) —— 05 ((Ox Rwx) ®dx.0x)
!
S 0x. (0 (Ox Rwyx) ® Ox)

!
N 6 (F RD.F) 05 Ox 1wy

]

For a morphism f: X — Y of complex manifolds, we denote by I't_p,, (X *)
the functor of global sections with f-proper supports.

Proposition 5.2.3. — Let f: X — Y be a morphism of complex man-
ifolds.

(i) There is a canonical morphism
(525) Rf!(S!X(SX!wX — (Sg/(syng.

(ii) This morphism together with the morphism Oy — Rf,Ox induces
a morphism

(5.2.6)  fir HYRTy_(X; 05 0x1wx)) — HY(RD(Y; 68y 1wy))
and for F € DP  (Ox) such that f is proper on Supp(.F), we have
(5.2.7) thhy (Rf.%) = fithhyx(F).
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Proof. — (i) Consider the diagram (5.1.7). Then we have morphisms
R0 Oxiwy — 0y RASxiwy ~ 840y R fiwy — 040y 1wy
Here, the first morphism is deduced by adjunction from
8 = SN RS ~ f'oLR S

(ii) The proof is similar to that of Proposition 5.1.3 and follows from the
commutativity of the diagram below in which we write for short f, and

f« instead of Rf, and R f, and similarly with f

fxOx —— [.05(F RDF) —— fid' dxiwx

~

SLF(F KD F) — 6 fidxwy

~ ~

5%/(10!? X f!Df}) 5!Y5Y!f!wx

~

Oy —— 5‘!Y<f!35 X Df!gg) - 5%/5Y!WY-
Therefore, the image of thhy (%) € Hom,_(Ox, 8% 0xwyx) by the maps

Ff,pr(X; Fom Ox (ﬁx, 5‘!)((5)(!0.))()) — Homﬁx (Rf*ﬁx, Rf]é%&xgédx)

— Hom Oy (ﬁy, (5;/(5}/!(4]3/)

is thhy (f.). 0

Remark 5.2.4. — Although we omit the proof, the map in (5.2.6) co-
incides with o hhyy (Or,).

5.3. Chern and Euler classes of ¢-modules

The Hodge cohomology of Ox is given by:

dx
(5.3.1) HD(Ox) := @ Qi [i], an object of D(Ox).
=0
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Lemma 5.3.1. — Let f: X — Y be a morphism of complex manifolds.
There are canonical morphisms

(5.3.2) K : HD(Ox)RHD(Oy) = HD(Oxxy),
(5.3.3) f* © f*HD(Oy) — HD(Ox),
(5.3.4) fi + RAHD(Ox) — HD(Oy).

Proof. — The morphisms (5.3.2), (5.3.3) and (5.3.4) are respectively as-
sociated with the morphisms

O [(] RO [5] — Q¥ [i + 4,
£ [i] — Qx [i],
RAQKX [i + dx] — Q5™ [i + dy].

Theorem 5.3.2. — (a) There is an isomorphism
ax . 5}5}(*@))( = Hp(ﬁx)

which commutes with the functors X and f*.
(b) There is an isomorphism

ﬁxi Hp(ﬁx) = 5!)(6)(!&))(
which commutes with the functors X and f,.

Setting 7:= 85! otd o ay’, we get a commutative diagram in D"(Oy):

(535) 6}(5}(*6))( ; 6!)((5)(!&))(
QXLN NTﬁX
HD(Ox) —=—~ HD(O).

The construction of ax and Sy and the proof are given in the next
section.
Definition 5.3.3. — For % € D2, (Ox), we set

dx
(5.3.6) ch(F) = oy o hhy (F) € @D Hiypp(r) (X: ),

=0

(5.3.7) cu(.F) = 85! o thhy (F e@HSupp (X; Q%)
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We call ch(#) the Chern class of .# and eu(.%) the Euler class of .Z.

Of course, ch(.#) coincides with the classical Chern character and the
morphism ay is the so-called Hochschild-Kostant-Rosenberg map.
The following conjecture was stated in [35].

Conjecture 5.3.4. — One has eu(Ox) = tdx(TX), where tdx (T X) is
the Todd class of the tangent bundle T'X.

This implies that eu(.-#) = ch(.#) U tdx(TX). Indeed, for a,b €
H*(X;6%0x,0x), we have td(a o b) = aotd(b) by Proposition 5.1.5 (iii)
and Lemma 5.4.7 below.

This conjecture has recently been proved by A. Ramadoss [53] in the
algebraic case and by J. Grivaux [30] in the analytic case.

An index theorem. — Consider the particular case of two coherent O'x-
modules .Z; (i = 1,2) such that Supp(-Z1) N Supp(-%2) is compact. In
this case we obtain (see also [33, 53]):

hh(Zi0.%) = X(RT(X:Z8, %))
(5.3.8) _ / (ch(4) U ch(.5) U tdx (TX)).

We consider the situation of Corollary 4.4.4. Hence, o7y is a DQ-algebroid
on X.

Corollary 5.3.5. — Let M,V € D) () and assume that K :=
Supp(.#) N Supp(A") is compact. Let U be a relatively compact open
subset of X' containing K. Then RHom .. (A, N) belongs to D}(CM')

and its Euler-Poincaré index is given by the formula

(RHom o (4, 4) = [ el((eDLy)) U (et (1) Uty (TU).
U
Proof. — Applying Corollary 4.4.4, we have
X(RHom%lgc (M, V) = hh(D,MoN)

= hhy(gr,D’, A0 gry ),

where .4 (resp. 4p) is an object of DP | (%) which generates .# (resp.

coh

) on U. Then, the result follows from (5.3.8). O
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5.4. Proof of Theorem 5.3.2

As usual, we denote by p;: X x X — X the i-th projection (i = 1,2).
The following lemma is well-known.

Lemma 5.4.1. — Let F be an (Ox R Ox)-module supported by the
diagonal. Then the following conditions are equivalent:

(1) p1,.Z is a coherent Ox-module,
(ii) p2,.Z is a coherent Ox-module.

If these conditions are satisfied, then the map F — Oxyx D 05 F s

an isomorphism. In particular, the (Ox W Ox)-module structure on F
extends uniquely to an Oxyx-module structure.

We define the p; ! Ox-module
Py = 6x,0% @ 65, Q% for k>0, P, =0for k <0.
We endow the P,’s with a structure of p,'@x-module by setting
pi(a)(wp ® Opy1) = awg @ (abgr1 — da A wy)
for a € Ox, w, € Qlj(, Opi1 € Q’;;rl. This defines an action of pglﬁ’x
since
pa(ar)p3(az)(we @ Opi1) = p3lar)(aswy @ (a20k41 — daz A wy))
= aawi P (a1a201 — ardas A wy, — dag N\ as wy)
= ayawi B (a1a20k41 — d(arasz) A wy)
py(araz)(wy @ Opi1).

By Lemma 5.4.1, we get that P, has a structure of Oxyx-module and
we have an exact sequence:

&7

(5.4.1) 0 — 0x, Q5 25 by LN Sx Q% — 0.

Hence 6x,QF[k] < (6x, Q5 — P) — 0x, Q5 [k + 1] defines the mor-
phism

€t Ox U K] = 6x Q5 [k + 1]
It induces a morphism

(5.4.2) & D ox Q5 [k] — D ox QK]

Let d5*": P, — Pyx_; be the composition

O —1

(543) dztan: b —Bk—> 5)(*(21;( — P_.
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We define the complex P. whose differential d;k : Py — P, is given
by kd§*™. Then Imd§*™ ~ Im B, ~ 0x,0% and Ker d™ ~ Ker 3, =~
) X*Q’;“l. Therefore we have a quasi-isomorphism Pe — 0x,0x.

Lemma 5.4.2. — The morphism
(5.4.4) ax: 0%0x,Ox — H°(0%)(P.) ~ P QL k]
k

is an isomorphism in DP(Ox).

Proof of Lemma 5.4.2. — Since the question is local, we may assume
that X is a vector space V. Then we have a Koszul complex

. 2
ﬁXxX@Av* ~ ( — ﬁXxX@Av* = Oxxx @V" = ﬁXxX)

and an isomorphism Ox,x ® \° V* — 0x,0x in D*(Ox.x). Then
applying H(0%), we obtain an isomorphism in D"(&):

05x0x.O0x == HO(6%)(Oxxx @ \ V7).

The C-linear maps A" V* — Q% (V) — Py(X x X) induce a morphism of
complexes Oxy x @\ " V* — P. such that the diagram below commutes:

Oxxx ® /\. %
\
l 0x.Ox.
P.

Since HO(8%)(Oxxx @ N\ V*)[dx] — H(8%)(P») is an isomorphism, we
obtain the desired result. O

Remark 5.4.3. — (i) Let I C Oxyx be the defining ideal of the
diagonal set dx(X). Then the morphism &y: dx,O0x — dx, Q4 [1] is
given by the exact sequence 0 — 0x,Q% — Oxxx/I* = dx.0Ox —
0. Indeed, we have a commutative diagram

0 I/I2 ﬁxxx/12ﬁ5x*ﬁxﬁ0

N

00, QL 2 P 5 O —— 0.
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Here, the left vertical isomorphism is given by
I/I? 3 pi(a) — pi(a) < da € 0x, Q% (a € O).
(ii) Moreover the morphism &: dx,Q%[k] = 6x, Q% [k + 1] coincides
with the composition

L L
(5X*Q§([/{Z] ~ 5X*Q§(U€]®ﬁXXXﬁXXX — 5X*Q§([k]®ﬁXxX6X*ﬁX

0 G O K]S, v O [1] = Gxl (K]S, QL [1])
Xxdbx Oxxx Xxobx Xx\0tx Ox""X
— Ox QU [k + 1].
(iii) Note that the morphism ax: 0%0x,0x == @, Q% [k] coincides

with the morphism obtained from dx,0x — @k 5X*Q§( k] - exp(§) N
D, 6x.Q%[k] by adjunction.

Lemma 5.4.4. — The morphism ax in (5.4.4) interchanges the com-
position of the ring §%0x,.0x giwven in Proposition 5.1.5 (a) with the
composition
i T L 7 I 3 L Vi . . A g .
Qylil®,, Peli] = (Qx®, )i+ 7] — Q7[i + ]

Note that the unit Ox — 0%0x,0x is given by Ox ~ 05xOxxx —
0%0x,Ox, where the last arrow is induced by Oxyxx — 0x.Ox.
Proof. — We define

pij: B Qg  Pj = Piyj

by
(5.4.5) 15 (Wi @ 0i1) ® (w5 @ 011)))
= (wi A (JJJ') S5, ((91'+1 A Wi + (—1)iwi A\ 9j+1)-

This map is p, '(Ox)-bilinear since:
14ij ((PE(G)(M ©0i11) ® (w; ® 9j+1)>
= [ij ((awi () (a9i+1 —da N wl)) & (w]' ) 9j+1)>
= (awi N (,dj) S7) ((a0i+1 —da N\ wi) N Wi + (—1)iawi VAN Hj-l-l)
= p3(a) (Wi Awj) ® (Bip1 Awj + (=1)'w; A1)
= p3(@) i (Wi @ 0i41) @ (W5 @ 041)),



122 CHAPTER 5. THE COMMUTATIVE CASE

and
1 (wi @ 1) @ p3(a) (w; @ 041))
— i ( (w3 ® 0i11) © (aw; ® (31 — da Awy))
= (awi A wj) & (6i+1 A aw; + (—1)'w; A (aBjq — da A wj))
= (aw; Aw;) @ (abigy Awj + (—=1)'aw; A 0j11 — da A wi A w;)
= pi(a) (w; Aw;j & (Bi1 Awj+ (—1)'w; A1)
= Py (Wi @ bir1) © (W) ® 0j41))-
The morphism g commutes with the differentials since:
pd((wi ® 0i41) @ (w5 ® 011))
= 11i-1,;((0 @ iwi) ® (w; © 0541)) + (= 1) ptij—1 (Wi @ 0i1) @ (0@ jwj))
=08 (iw; Awj + (=1)"(—1)"jwi Aw;) =0 (i + j)w; A w;
= dp((wi @ bis1) ® (w; & 0;11)).

Hence we have a commutative diagram in DP(Ox . x)

L
Ox+Ox®p Ox.Ox —=0x.0x

| |

P.®6)X><XP. Po.

L
Therefore, applying 0%, the morphism 0%dx,O0x®05x0x.0x — 0%0x.Ox
is represented by

HO(0%)Pe ©, H(0%)Ps — H'(8%)Ps.
Thus we obtain the desired result. O

Lemma 5.4.5. — Consider a morphism f: X — Y. Then the diagram
below commutes:

7030y, Oy —— 0%0x.0x

| Jox
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Proof. — Let f: X x X — Y x Y be the morphism associated with f.
Let us denote by PX the complex on X constructed above. Then we
easily construct a commutative diagram

HO(f*)PY —— H'(f*)8y.Oy

| |

p¥ 0x.O0x

such that

HO(0% f*)PY HO(f*oy )Py (D, 5 [K))
53‘(s0l lw
HO(6%) PX D, k(K]
commutes where 1 is given in (5.3.3). O
Now we set

Py for 1 < k <dx,

(5.4.6) Qr =1 0x.Ox for k=0,

0 otherwise.

and define the differential d° with d? = (k — 1 — dy) d*®, where d5'2
is given by (5.4.3) and di*: Ox @ Ql — Oy is the canonical mor-
phism. Then Q. is a Complex of Ox«x-modules and the canonical ho-
momorphism Q% — Q¥ @ Q% induces a morphism of complexes
Ox.wx — @+, which is an isomorphism in Db(ﬁXXX)

Let us denote by HO(d%) the functor &y ,%”om(j (0.0x, *).

Lemma 5.4.6. — The morphism
Bx: @QX—HO( Qe — SxOx.wx

is an isomorphism in D(Ox).

Since the proof is similar to that of Lemma 5.4.2, we omit it.
Note that the morphism Sy coincides with the morphism obtained by
adjunction from

@5)('919 P @5){[9){ — 5Xle[ ] ~ dx\wx-
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L
Lemma 5.4.7. — The morphism 5}5X*ﬁx®ﬁx5lx5xlwx — O\ Oxiwx
in Proposition 5.1.5 (d) coincides with Q[i] ®, O 1] 2 Qi+ ).
Proof. — We define the morphism p;;: P;®, @ — Qiyj by the same
formula as in (5.4.5). Then it commutes with the differential. Indeed the

proof is similar to that of Lemma 5.4.4 except when ¢ + j = dx + 1. In
this case,

ud((wl D 91'+1) X (CL)J',1 D (93)) =0 @D (’L +j - dX - 1)(4.)1 A Wj—1 = 0.
With this morphism p: Pe ®,  Q« — ., the following diagram in
the category of complexes is commutative:

P. ®ﬁx><x Q. LQ.

| |

Pe @y Oxiwx — Ox1wx .

Thus we have a commutative diagram in DP(Oy):

HO(0%)Pe @, HO(6%)Q+ —= H°(0x)(Pe ®,, Q) — H(0x)(Q-)

¢ |

L L
5}5X*ﬁx®ﬁx5!)<5xxwx — 5!X(5X*ﬁx®ﬁmx5xwx) — Oy Ox b .
Recall that in Corollary 4.2.2, we have constructed a morphism HH (o/x)®

HH(Ax) — w;’ﬂs. Let us describe its image via the isomorphisms oy and
Bx. Consider the diagram

HH(Ox) @ HH(Ox)
(5.4.7) AL ¢
HD(Ox) @ HD(Ox) —— wir .

Here, u is the map given by Corollary 4.2.2, X is the isomorphism o x ®ﬁ)_{1
and v is the composition

D] o D 1j] — DO - wi

where the first morphism is given by the wedge product and the last one
by the map Q% [dx] — w?. Then diagram (5.4.7) commutes.



CHAPTER 6

SYMPLECTIC CASE AND
2-MODULES

6.1. Deformation quantization on cotangent bundles

Consider the case where X is an open subset of the cotangent bundle
T*M of a complex manifold M. We denote by 7: T*M — M the projec-
tion. As usual, we denote by %), the C-algebra of differential operators
on M. This is a right and left Noetherian sheaf of rings. R

The space T*M is endowed with the filtered sheaf of C—algel/gras Ere
of formal microdifferential operators of [54], and its subsheaf &7p«,,(0) of
operators of order < 0. .

On T*M, there is also a DQ-algebra, denoted by #7+3,(0) and con-
structed in [51] as follows. Consider the complex line C endowed with
the coordinate t and denote by (¢;7) the associated symplectic coordi-
nates on T*C. Let T} ,(M x C) be the open subset of T (M x C) defined
by 7 # 0 and consider the map

p: Tig(M xC) = T°M, (2,t€,7) — (z;7718).
Denote by é"AT*(MX(C)f(O) the subalgebra of gT*(MXC)(O) consisting of op-

erators not depending on ¢, that is, commuting with ;. Setting h = 9; ",
the DQ-algebra #x(0) is defined as

Wx(0) = pubp-(rrxc) 1(0)-

One denotes by 7//; u the localization of % v (0), that is, % M=
Chiloc Ren W (0).
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Remark 6.1.1. — One shall be aware that ET*M and éa\T*M(O) are de-

<

noted by & and cg"\M(O), respectively, in [54]. Similarly, #7+y and
Wrp(0) are denoted by # and #,,(0), respectively, in [51].

There are natural morphisms of algebras

(6.1.1) Tk Drs = Epers — Wens.

Lemma 6.1.2. — (a) The algebra %*M(O) is faithfully flat over C§T*M(0)-
(b) The algebra Wi« is faithfully flat over &pspy.
(¢) Epenr is flat over w3 Dus.

Proof. — In the sequel, we set X = T*M. For an gx(O)—module M, we
set

MV =W (0) @z ) A
~ ~ L
gre( M) = (‘g)X(())/gX(_l))@fx(o)'//['

Note that the analogue of Corollary 1.4.6 holds for g"\X(O)—modules, that

is, the functor gr, above is conservative on D'goh(éx(o)). We have

(6.1.2) guy (M) = Ox @, (o) 85 (M),

where Ox(0) denotes the subsheaf of &x of sections homogeneous of de-
gree 0 in the fiber variable of the vector bundle T* M, and O is faithfully
flat over Ox(0).

(a) (i) Let us first prove the result outside of the zero-section, that is,
on T*M \ T3, M. Let us show that

.~ L
(6.1.3) H (Wx(0)®z, )#) =0 for any j <0

holds for any coherent cg"\X(O)—moduIe A . First assume that .# is torsion-

free, i.e., @gx<_1) %, (0) M — A is a monomorphism. Since O is flat
over Ox(0),

e (Tx (0)8 5, o M) = O, 815 (M)

has zero cohomologies in degree < 0. Hence Proposition 1.4.5 implies
(6.1.3).
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Now assume that &x(—1).# = 0. Then we have

—~ L —~ L ~ L L

12

~ Wx(0)®z,0)0x(0)®, (o)A
L

which implies (6.1.3).

Since any coherent Ex (0)-module is a successive extension of torsion-
free cr,?f’\X(O)—modules and (dga\X(O)/é"AX(—l))—modules, we obtain (6.1.3) for
any coherent & v (0)-module.

Consider a coherent cga\X(O)—module A and assume that .#ZW ~ 0.
Then gr),(.#%) ~ 0 and this implies that gre(.#) ~ 0 in view of (6.1.2)
since O is faithfully flat over O'x(0). Since gr, is conservative, the result
follows.

(a) (ii) To prove the result in a neighborhood of the zero section, we use
the classical trick of the dummy variable. Let (¢; 7) denote a homogeneous
symplectic coordinate system on 7*C. Consider the functors

a: Modeon(Onr) — MOdcoh<<§X><T*C(O>|T¢O);

M= B (E(0)/E(0) - 1),

B: Modeon(#x |, (0)) = Modeon (#x xr-c(0)|r20),
M B Waec(0)) Wec(0) - 1),

These two functors o and S are exact and faithful. Then the result
follows from (a) (i).

(b) (i) Here again, we prove the result first on 7*M \ 75, M. In this case,
it follows from the isomorphism

WX ~ Wx(O) ®‘§T*C(O) éa\T*C.

(b) (ii) The case of the zero-section is deduced from (b) (i) similarly as

for (a).
(c) is proved for example in [37, Th. 7.25]. O



128 CHAPTER 6. SYMPLECTIC CASE AND 2-MODULES

Recall that for a coherent Z;;-module .#, the support of <;@\T* M ®ig,

my A is called its characteristic variety and denoted by char(.#). Tt is
a closed C*-conic complex analytic involutive subset of T M.

Now assume that M is open in some finite-dimensional C-vector space.
Denote by (x) a linear coordinate system on M and by (z;u) the asso-
ciated symplectic coordinate system on T*M. Let f, g € Ox[[h]]. In this
case, the DQ-algebra %(0) is isomorphic to the star algebra (Ox|[[A]], %)
where:

|a
(6.1.4) frg = 3 @@

a€eNn
This product is similar to the product of the total symbols of differential
operators on M and indeed, the morphism of C-algebras 7y, 2y — #x
is given by
f(x) = f(x), O+ A tu,.

Note that there also exists an analytic version of éaAT* v and 7//; M
obtained by using the C-subalgebra of (Ox[[A]], *) consisting of sections
f =250 fiW of Ox[[H]|(U) (U open in T*M) satisfying:

for any compact subset K of U there exists a positive con-
-1 stant C'x such that sup | f;| < C5-4! for all j > 0.
(6.1.5) < stant C such that sup |f;] < C%j! for all j > 0

K

They are the total symbols of the analytic (no more formal) micro-
differential operators of [54].

Remark 6.1.3. — (i) Let X be a complex symplectic manifold. Then
X is locally isomorphic to an open subset of a cotangent bundle 7™M,
for a complex manifold M (Darboux’s theorem), and it is a well-known
fact that if @y is a DQ-algebra and the associated Poisson structure is
the symplectic structure of X, then oy is locally isomorphic to #7«(0).
(ii) On X, there is a canonical DQ-algebroid, still denoted by %{(0) It
has been constructed in [51], after [36] had first treated the contact case.
Clearly, any DQ-algebroid 7 is equivalent to 7//}(0) R, P, where & is
an invertible C%-algebroid. It follows that the DQ-algebroids on X are
classified by H2(X; (Ch%)*). See [50] for a detailed study.

(iii) Using (4.1.11), we get the isomorphism

(6.1.6) HH (ox) ~ HH(#x(0)).
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6.2. Hochschild homology of o/

Throughout this section, X denotes a complex manifold endowed with
a DQ-algebroid «7x such that the associated Poisson structure is sym-
plectic. Hence, X is symplectic and we denote by ayx the symplectic
2-form on X.

We set 2n = dyx, Z = X x X* and we denote by dv the volume form
on X given by dv = oy /nl.

Lemma 6.2.1. — Let A be a smooth Lagrangian submanifold of X and
let £; (i=0,1) be simple o/x-modules along A. Then:

(i) L and &4 are locally isomorphic,
(ii) the natural morphism C" — #om , (£, %) is an isomorphism.
lx

Note that the lemma above does not hold if one removes the hypothesis
that X is symplectic (see Example 2.5.9).

Proof. — (i) We may assume that X = T*M for a complex manifold M,

oy = Wru(0). Choose a local coordinate system (zy,...,2,) on M,
and denote by (z;u) the associated coordinates on X. We shall identify
the section u; of &y with the differential operator ho;.

We may assume that A is the zero-section T3, M and £ = O [[h]] ~
x| H, where # is the left ideal generated by (hoy, ..., h0,). Since £
is simple, it locally admits a generator, say u. Denote by .#; the anni-
hilator ideal of u in @7x. Since .# /h.# is reduced, there exist sections
(Py,--+, P,) of @x such that

{hOy + WPy, ... hO, + hP,} C 4.

By identifying 7//; 1(0) with the sheaf of microdifferential operators of
order < 0 in the variable (x1,...,x,,t) not depending on ¢ and A with
0, ', a classical result of [54] (see also [56, Th 6.2.1] for an exposition)
shows that there exists an invertible section P € &/x such that %, =
S P. Hence, X4 ~%.

(ii) We may assume £y = Oy|[h]]. Then Som , (Ou|[R]], Oun|[R]]) is
isomorphic to the kernel of the map

w: O[] = (OulE))", w= (h, ..., 1dy).

Recall that the objects Q5 and wy are defined in § 2.5.
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Lemma 6.2.2. — There exists a local system L of rank one over Ch
such that Qg ~ L B, Cx in Mod(Hxxxa).

Proof. — Both 2 j? and €y are simple @7y yo«-modules along the diago-
nal A. By Lemma 6.2.1, L:=#om , (€x,Q¥) is a local system of rank

one over C" and we have Q¢ ~ L Ren Cx. O

Note that this implies the isomorphisms
(6.2.1) D’ Cx ~ L¥'®%x[—dx]

Ax xxa

Hence we obtain the chain of morphisms

L
L — L®R¢%ﬂ0mkdz(ch,(gx)2L®D, %X@MZCKX

,Q{Xan

L ©—1 Q7L
~ %ﬂX@»@{Z(gX [—dx] = HH(&Q{X) [—dx] ~ [ ®QX ®WZ%X [—dx]

L
— L®_1 ® Q;é{@@ggch [—dx] ~ L®_1.
X
Therefore, we get the morphism:
(6.2.2) L 25 H X (HH(x)) — L

Lemma 6.2.3. — (i) g, (L) — Hom, (., (81,(Cx), g1,(QF)) ~ Qx
gives an isomorphism gr,(L) = Cx - dv.
(ii) The morphism L%* — Ch induced by (6.2.2) decomposes as LE* 2
h2"Ch, — Ch and o is an isomorphism.
(iii) The diagram below commutes:
gry(L#?) — gry (R*"Ch) S er(Ch)

h2n

I I
(gry(L))®? — CY’ ~ Cx.
Proof. — The question being local, we may assume to be given a lo-
cal coordinate system x = (z1,...,%9,) on X and a scalar-valued non-

degenerate skew-symmetric matrix B = (b;;)1<i j<2n such that the sym-
plectic form ax is given by

axy — Z bij dIZ VAN dl‘j.
i3
We set

A = (aj)1<ij<on = B
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We may assume that o/x = (Ox|[[A]], *) is a star-algebra with a star
product
. haij 82 ’
Frg= (S 5 g ) f@o()

=z

ij
Set

2n
52' = Zaij(():c]. (Z = 1, .. ,2n)
j=1

Then, the C"-linear morphisms from Ox[[h]] to Zx|[h]]
(6.2.3) Ol frs fx, D frrxf

are given by

These morphisms define the morphism

h h

where we denote by y = (yi1,...,%2,) a copy of the local coordinate
system on X°.

We identify Q¢ with the (Zx[[A]])°-module Qx[[A]]. Then, regarding
Qx[[h]] as an @z-module through o |x — ,°|x — (Zx][[h]])°P, we
have

zri(adv) = (adv)® (z;) = (adv)(z; — g&)

= ((z; + Z(si)a)dv

and similarly
h
yi(adv) = ((z; — 5(51')&)61’0.
Hence, a — a dv gives an @7z-linear isomorphism
Hence it gives an isomorphism L:=7om , (¢, &) ~ Hom o, (Cx, Cx) =~
C%, and the induced morphism gry, (L) — HOM g, (o (815(Cx), o1, () ~
Qx gives an isomorphism gr, (L) =% Cx dv. Hence we obtain (i).
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For a sheaf of C'-modules .#, we set

p
F® = (A\(Ch)™) R, F-

Let (ej,...,e2,) be the basis of (C")2". Consider the Koszul complex
K* (dz;b) where b = (by, ..., ba,), b; = (x;—y;) is the right multiplication
by (x; — y;) on “y:

K*(dgib) = 0= 5ot g
b = D b Kt ) K ),

i

On the other hand, consider the Koszul complex K *(Z2x|[h]]; 0) where
0 =(01,...,09):

K*(2x[[1];0) = 0— (2x[A)@ % - 5 (2x[[A]) — 0,
§ = (01, 02).

There is a quasi-isomorphism K * (#z; b) N [—2n] in the category of
complexes in Mod(e77).
Then the morphism @ in (6.2.4) sends (x; — y;) to hd;. There is a

quasi-isomorphism K * (Zx[[A]]; §) L% G |[h]] [~2n]. Therefore we get a
commutative diagram in Mod(.«7y):

0 MZ(O) b dz(znq) b ﬂZ@n) 0

lrﬂ% lh@ jh%}

0 —= (Zx[[H)® = -+ — (D[] ) —2m (D [[H]))>) —= 0.

L
The object 2 5‘? ® MZ‘KX is obtained by applying the functor €2 5‘? ®,,, * to

L

the row on the top and the object Q¢ ® . Cx is obtained by applying
X

the functor Q7 Rga * to the row on the bottom. By identifying Q¢

L L
with Qx[[hﬂ, the HlOI‘phiSHl Qg@dz%x [—dx] — Qg®@g(gx [—dx] is
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described by the morphism of complexes:

0 — Q4 [[A)] 24> -+ —— Q%K) - Q3[[A] —— 0
(6.2.5) lhgn lh lho
0 — Q% [[A)] — -+ - —= Q%7 Y[B]] —= Q3[[A] — .

Here d denotes the usual exterior derivative.
Therefore, we find the commutative diagram with exact rows:

L®2
|
0 —— Cl — Q% [[1)] = Q4 [[A]
e
0 — Cl —— Q% [[1]] = Q& [[1]]

in which the morphism L®? — Ch corresponds to the morphism L{dx] —
LP'0O¥ ®,, Ex.
This completes the proof. O

Theorem 6.2.4. — Assume that X is symplectic.

(i) Let L be the local system given by Lemma 6.2.2. Then there is a
canonical C"-linear isomorphism L 2 h?x/2Ch., hence, a canonical
Ay -linear isomorphism

(6.2.6) OF 2 RPCY @ Cx
(ii) The isomorphism (6.2.6) together with (6.2.2) induce canonical mor-
phisms
(6.2.7) RIX2Ch [dx] 255 HH(ox) 25 hx2Ch [dx]

and the composition Txoux is the canonical morphism h¥x/?Ch [dx] —
h_dX/2C§( [dx]

(itl) HI (HH(x)) ~ 0 unless —dx < j < 0 and the morphism ix
mduces an isomorphism

(6.2.8) Ly RIX2Ch o Hd (W H (o).

In particular, there is a canonical non-zero section in H=X(X; HH(x)).
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Proof. — (i) By Lemma 6.2.3, we have an isomorphism (77,_d?</2L)®2 ~
C% together with a compatible isomorphism gr,(h~%x/2L) ~ Cx. This
implies h=%x/2[, ~ Ch. since the only invertible element a € C" satisfying
a*=1,0¢(a) =1lisa=1.
(i))~(iii) Denote by (Q%[[R]], hd) and (Q%[[A]], d) the complexes given by
the top row and the bottom row of (6.2.5), respectively. The morphism
Lx is represented by
Lldx] — L' @ (Qx[[1]], hd)[dx]
and the morphism 7x is the composition
L™ @ (Qx[[Rl], hd)[dx] — L7 @ (Qx[[Rl], d)[dx] = L [dx].

O

Applying Theorem 6.2.4 together with Corollary 3.3.4, we obtain:

Corollary 6.2.5. — Let X be a compact complex symplectic manifold.
Then ng(%)l(pc) is a Calabi-Yau triangulated category of dimension dx

over Chloc,

Remark 6.2.6. — The statement in Theorem 9.2 (ii) of [42] is not
correct. If Y is a compact complex contact manifold of dimension dy,
then the dimension of the Calabi-Yau category associated to it in loc.
cit. is dy, not dy — 1.

6.3. Euler classes of .&7'°°-modules

Theorem 6.3.1. — The complex HH () is concentrated in degree
—dx and the morphisms vx and Tx in Theorem 6.2.4 induce isomor-
phisms

(6.3.1) Chlo [dx] 2 HH(e/X) 22 C%dx].

Proof. — This follows from the fact that (Q5[[A]], id) — (Q%[[h]], d) be-
comes a quasi-isomorphism after applying the functor ()¢ = C"°c @,

(). O
Definition 6.3.2. — Let .4 € DP | (o/%°). We set
(6.3.2) cuy () = rx(hhx () € HEX 0 (X;CY)

and call eux (.#) the Euler class of ..
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Remark 6.3.3. — (i) The existence of a canonical section in H =% (X; HH(o/¢))
is well known when X = T*M is a cotangent bundle, see in particular

[12, 25, 62]. It is intensively used in [11] where these authors call it the

“trace density map”.

(ii) The Hochschild and cyclic homology of an algebroid stack have been

defined in [9] where the Chern character of a perfect complex is con-

structed in the negative cyclic homology. It gives in particular an al-
ternative construction of the Hochschild class of a coherent DQ-module,

but it is not clear whether the two constructions give the same class.

Consider the diagram
(633) p13!(pf21H%<d)l('(;chg) ®p531HH(%)1('(;CxX§>) — HH(%}&CX)(Q
l712a®’7'23a Lrlg,a

— oc — oc J2(u) oc
P13 (P13 C o [d1a] ® pog C[das]) —= CY°C(dus)-

Here, the horizontal arrow in the bottom denoted by [,(+U*) is obtained
by taking the cup product and integrating on X, (Poincaré duality), using
the fact that the manifold X, has real dimension 2 dy and is oriented. The
arrow in the top denoted by % is obtained by Proposition 4.2.1.

Proposition 6.3.4. — Diagram 6.3.3 commutes.

Proof. — Since X; and X3 play the role of parameter spaces, we may
assume that X; = X3 = {pt}. We set Xy = X and denote by ax the
projection X — {pt}. We are reduce to prove the commutativity of the
diagram below:

(6.3.4) ax (HH(2712°) @ HH (/1))

| T

ax (C [dx] ® C [dx]) Chiloc.
fx('U')

This will follow by applying the functor ax, to Diagram 6.3.5 below. [J
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Lemma 6.3.5. — The diagram below commutes.

(6.3.5) HH(A12°) @ HH (1)

T@j \

CY° [dx] ® CY° [dx] — CY°° [2dx].

Proof. — The morphism LOL[2dx] o~ C}° [dx]@CH° [dx] — C}°° [2dx]
is given by

L®L[2dx] — Lldx] ®R¢%ﬂ0mdz(ch,§2§{ )[dx]
~ L ®D;¢ng[dx] ®MZ w)";/ ~ nga ®4<{Z wg — (C}[de]

On the other hand, L ® L[2dx] — HH(ox) @ HH (o) — Ch[2dx] is
given by

L®L[2dx] — Rs#tom,, (D,%x,Cx«)@RHAom , (€x,wy)
~ RAom,, (D, Ex,Cxa)® (Dy(%x)Q,, wi)
- Cxe®,, wy — Ck[2dx].

These two morphisms give the same morphism from L®L[2dx] to Ch[2dx].
[

Corollary 6.3.6. — Let #; € D? (sz%}g"xxgﬂ) (i =1,2). Assume that

coh
the projection pi3 defined on X, x Xy x X3 is proper on pyy Supp(#1) N
D3 Supp(#). Then

(030) et (FigH) = | e () Uen, (H).

Xa

Remark 6.3.7. — Consider an object .# € D, (o/%°). Then, accord-
ing to Definition 6.3.2, its Euler class is well-defined in the de Rham
cohomology of X with values in C"'°¢. Now assume that .# is generated
by #y € DP, (ox) and consider gr)(.#;). Assume for simplicity that
gr,(/x) = Ox (the general case can be treated with suitable modifica-
tions). Then gr;,(.#) € DP,(Ox) and we may consider its Chern class
in de Rham cohomology. A natural question is to compare these two
classes. A precise conjecture had been made in the case of Z-modules
by one of the authors (PS) and J-P. Schneiders in [57] and proved by
P. Bressler, R. Nest and B. Tsygan in [11]. These authors, together with

A. Gorokhovsky, recently treated the general case of DQ-algebroids in
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the symplectic setting in [10]. The formula they obtain makes use of a
cohomology class naturally associated to the deformation /.

6.4. Hochschild classes of Z-modules

We shall apply the preceding result to the study of the Euler class
of Z-modules.

Recall after [37] that a coherent Zy-module .# is good if, for any
open relatively compact set U C M, there exists a coherent sub-0p-
module .Z of .# | which generates it on U as a Zj-module. One denotes
by ng(QM) the full sub-triangulated category of D® , (Zy/) consisting of
objects with good cohomology.

From now on, we set

X =T"M.
We introduce the functor
(6.4.1) ()V: Mod(Zy) — Mod(#y)
e —1
M = Wy ®771;11@J\4 Usy:; M.

The next result shows that one can, in some sense, reduce the study
of Z-modules to that of #x-modules.

Proposition 6.4.1. — The functor M — MV
ful.

Proof. — The morphism

T3, M 1S exact and faith-

% — (gT*M ®7r;11 Dt ﬂ]&lﬂ)

Ty M

is an isomorphism, and hence the result is a particular case of Lemma 6.1.2.
m

It follows that (+)W sends DP., (Zy/) to D2, (#) and DYy (Zum) to D';d(%().

coh

Definition 6.4.2. — Let # € Dyy(Zar). We set
(6.4.2) hhf () = hhf (™) € HHY,.0.0(Ox).

char

For A a closed subset of T*M, we denote by Keqa(Zn) the Gro-
thendieck group of the full abelian subcategory of Modgq(Z) consisting
of Z-modules whose characteristic is contained in A.
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Let V' be an open relatively compact subset of M. By slightly modi-
fying the proof of Proposition 3.4.3, we get morphisms of groups

(643) Kgd,A(-@M) — KCOh,A(ﬁTF_IV)'

Let M; (i = 1,2,3) be three complex manifolds and set X; = T*M,;.
Denote by ¢;; the ij-th projection defined on M; x M, x Mj and by p;;
the ij-th projection defined on X7 x Xo x X3 (1 <i < j < 3). We set,
as for DQ-algebras, Zye := (Z))°® and we write for short M;; or M;ja
instead of M; x M; or M; x MJ“ and similarly with X;;. We also write
P;; instead of Zy,; and similarly with ¢j¢, etc. For example,

.@12(1 = ﬁMu ®(ﬁMl®ﬁMQ) (ng X (.@M2>0P).

Then 2, may be regarded as a Z;1«-module supported on the diagonal
of Xl X Xla. Let % € Db<.@ija> (’L = 1,2, j =1+ 1) Set

L
H 1\32 Ho = Rquza <@2 O @12“23“®@12a&%3a (1 X %))

Theorem 6.4.3. — Let A\; be a closed subset of X; x X;11 (i = 1,2)

and assume that the projection pi3 defined on X1 x Xy X X3 is proper

on Py At N pyg Ao, Set A = Ay o Ny, Let A € DYy(Diye) (i = 1,2,

j =i+ 1) with char(J%) C A; (i = 1,2). Then o My € Dyy(Z1se),
2

char(J#] o ) C A and
Mo

(6.4.4) (A o )" = Y o Y.

2

The proof is straightforward and is left to the reader. By using Dia-
gram 4.4.7, we get:

Theorem 6.4.4. — In the situation of Theorem 6.4.5, let V;; be a rel-
atively compact open subset of M; x M; (i =1,2, j =i+1) and assume
that ™ "Wiga X g,  Vasa contains (A1 X x, Ag) N ql_;mflVlga. Then the
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diagram below commutes

ng,Al (Ph2a) % Dlgd,Az(@%“) ng,A(913“)

grhj grhl
o

KCOh,Al (6)71'_1‘/120,) X KCOh,AQ (ﬁﬂ'_l‘/23a) - KCOh,A(ﬁﬂ'_lvlga)

hhxhhj hhl
o

HHY, (Or1v50) x HHY, (Or-1vyy ) —— HHY(Gr1v3,0).

In particular

(645) Wb, (Hi9Jh) = hn?

—1Vi3a =1V 0a

(1) o hhity | ()

71V23a
in HHY (Or-1v:,.).

As a particular case, and using Corollary 5.3.5, we recover a theorem
of Laumon [47] in the analytic framework.

6.5. Euler classes of Z-modules

We keep the notations of § 6.4 and we set X = T*M. One defines the
Hochschild homology HH(&x) of &x and the Hochschild class hh x(A)
of a coherent &x-module .# similarly as for HH(Ax).

In the sequel, we identify a coherent Z);-module .# with (f/g;X ®-1g,,

n~l . In particular, we define by this way the Hochschild class hhx (.#)
of a coherent Z-module .#. Hence

(6.5.1) hhy (#) € HE, (X HH(Ex)).
Lemma 6.5.1. — There is a natural isomorphism
(6.5.2) HH(Ex) = Cx |dx]

which makes the diagram below commutative:

HH(gx) —— Cxldx]

| |

HH(Wx) —= C [dx].



140 CHAPTER 6. SYMPLECTIC CASE AND 2-MODULES

blk/etch of proof. — We take coordinates (z1,...,x,, ug,...u,), and set
Ox = hﬂnk<m h=%0x(k), where Ox (k) is the sheaf of holomorphic

functlons on X homogeneous of degree k with respect to the variables
(ug,...,up,). Then O’x is isomorphic to & as a sheaf. Moreover, 'HH(@‘" %)
is represented by the Koszul complex of 9/dx;, hd/ou; € 5\[(@’)()
(¢t = 1,...,n). On the other hand, as we have seen, 7—[7{(7%\() is rep-
resented by the Koszul complex of hd/dz;, hd/ou; € E\[(Ox((h)))

(t=1,...,n). Hence we have a commutative diagram

0 Ox Ox*" Ox 0

- | (j

0—> ﬁx«h)) T ﬁx((h))zn — Ox

(7)) —= 0,

in which the top row represents ’;’—[”;‘—[(éAa v) and the bottom row represents
HH(Wx). O
Definition 6.5.2. — Let A4 € Dcoh(éax). We denote by euy (.#Z) the

image of hhx(.Z) in Hf}f;r(///)(X,CX) by the morphism in (6.5.2) and

call it the Euler class of ..
The next result immediately follows from Lemma 6.5.1.

Proposition 6.5.3. — For .# € D>, (Zu), eux(#"Y) is the image
of eux () by the natural map HEX ) X:Cx) = Hflgr (X L Cllooy,

Applying Theorem 4.3.5, we get:
Theorem 6.5.4. — In the situation of Theorem 6.4.3, one has:
(6.5.3) euysa (] g%fz) = elyga () 0 etz (H5)
n Hzllj/ilg (X13; CXB)'

This formula is equivalent to the results of [57] on the functoriality of
the Euler class of Z-modules. Note that the results of loc. cit. also deal
with constructible sheaves.



CHAPTER 7

HOLONOMIC DQ-MODULES

The aim of this chapter is to study holonomic DQ-modules on symplec-
tic manifolds. More precisely, we will prove that, if .Z and .#Z are two
holonomic &7{°¢-modules on a symplectic manifold X, then the complex
R%”om%lgc (A, L) is perverse (hence, in particular, C-constructible)

over the field C™'°¢. It follows from the preceding results in Chap-
ter 6 that if the intersection of the supports of .#Z and .Z is compact,
then the Euler-Poincaré index of this complex is given by the integral
Jx eux (A ) - eux(ZL). We show here that the Euler class of a holonomic
module is a Lagrangian cycle, which makes its calculation easy.

If moreover .Z and .# are simple holonomic modules supported on
smooth Lagrangian submanifolds Ay and A, then the microsupport of the
complex RA0m oc (M, ZL) is contained in the normal cone C(Ag, Aq).

This last result was first obtained in [42] in the analytic framework, that

is, using #x-modules, not %—modules, which made the proofs much
more intricate.

Finally we prove that, in some sense, the complex R #om %1?0(/// , L)
is invariant by Hamiltonian symplectomorphism.

7.1. o~modules along a Lagrangian submanifold

Let X be a complex symplectic manifold endowed with a DQ-algebroid
.

The algebra <y;x. — Let A be a smooth Lagrangian submanifold of X
and let .Z be a coherent @/x-module simple along A.
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Locally, X is isomorphic as a symplectic manifold to T*A, the cotan-
gent bundle to A. We set for short
Of = OAlR)], O3 = O,((h)).
There are local isomorphisms
oy ~ Wx(0), L~o0"

Then E\[on (L) =~ E\[en(OF) (see Lemma 2.1.12) and the subalgebroid
of E\ [ (&) corresponding to the subring Z,[[A]] of E\[er(OF) is well-
defined. We denote it by Z¢.

Lemma 7.1.1. — (i) D¢ is equivalent to D,[[Rh]] as a C'-algebroid.
(ii) The Ct-algebra P4 satisfies (1.2.2) and (1.3.1). In particular, it is
right and left Noetherian.

Proof. — (i) follows by similar arguments as in Proposition 2.5.2 (ii).
(ii) follows from Example 1.3.1. O

The functor @x |y = E\[x(Z) factorizes as
(7.1.1) x|n — D,
and setting 2'9° := (Z¢)"°°, this functor induces a functor
(7.1.2) AN\ — D
We denote by In C Ox the defining ideal of A. Let .# be the kernel
of the composition

h_le,Q{X —h—) bQ){X —U—> ﬁX — ﬁA.

Then we have % /ofx ~ Ij.

Definition 7.1.2. — We denote by @) ,x the C"-subalgebroid of 27}
generated by .#.

Note that the algebra 7, x is the analogue in the framework of DQ-
algebras of the algebra &) constructed in [38].

The ideal h.# is contained in &7y, hence acts on .Z and one sees easily
that A.¥ sends £ to h.Z. Hence, .# acts on £ and defines a functor
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9y x — Py. We thus have the functors of algebroids

Ax|n — Dh x|n —= DL

~

Dy P
In particular, .Z is naturally an 7, /x-module.

Lemma 7.1.3. — (i) J% = dy,;x Nh " otx for any k >0,
(i) &/ Fr=L =~ I¥ for k > 0,

(ili) @ x is a right and left Noetherian algebroid,

(iv) gri(@a)x)|a = g1, Py ~= D,

(V) (Ph)x)' = A and /¢ is flat over oy x.

Proof. — Since the question is local, we may assume that X = T*C"
with coordinates (z,u), A = {u = 0} and & is the star-algebra as in
(6.1.4). Set

A ={>_ felr,u)h* € o fulw,u) € IT* for k < 0},
k

Then we can check that @’ is a subalgebra of &7¢ and it contains .#.
Hence it contains «7y,x. It is easy to see that the image of . ko
h=*afx |h~** o/ contains h=*I§. On the other hand, the image of &' N
hray — W hafx [h- "y coincides with h™*I}. Hence, @y, x Nk~ .o/x
and &' N h™*a/x have the same image h=*I} in h=*a/x /h " a/x. We
conclude that @7, x = &/ and &) ,x N hraty c %+ 1o/, Hence,
an induction on k shows (i).

(ii) is now obvious.

(iii) Considering the filtration {7,x N h %oy biso of /) /x, the result
follows by [37, Theorem A.32].

(iv) is obvious.

(v) follows from @7y C oy x C AC. O

By this lemma, for a coherent 27/ x-module 4", we may regard gr;,(.4")
as an object of D2 (Z,). Recall that DP;(Zs) denotes the full trian-
gulated category of D2, (2,) consisting of objects with holonomic coho-

mology.
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Lemma 7.1.4. — The algebroid P is flat over @/y;x and .@}? is flat
over @/\°°.

Proof. — 1t is enough to prove the first statement.

. L
Let us show that HJ(@»f@dA/X///) ~ 0 for any coherent 27, ,x-module

A and any j < 0.
(i) Assume that .# has no h-torsion. Using Lemma 7.1.3 (iv), we have

' L . . L
for j <0, ngrﬁ(@i”@%/x//[) ~ Hlgr,.# ~ 0, and hence H%.@g@m/xﬁ) ~
0 by Proposition 1.4.5.
(ii) Assume that h.# = 0. Then

//{:grh_@‘g(}% M= M.

L L L
D@y M= D2@,, B Ta/x® ot x

8T/ x
(iii) In the general case, set , A :=Ker(h": A4 — M) and M1, =\] n-N "

Note that this union is locally stationary. Defining .#;; by the exact
sequence,

0= Moy — M — My — 0,

this module has no A-torsion. It is thus enough to prove the result for
the ,,.4#’s and this follows from (ii) by induction on n, using the exact
sequence

0= N = 1N = p1 N oV — 0.
]

Definition 7.1.5. — Anobject A of D2, (7, x) is holonomic if gr, (.4")

coh

is Lagrangian in T*A, that is, if gr,(.#") belongs to DY ;(Z4).

Note that this condition is equivalent to saying that H*(_4")/hRH(.A)
and Ker(h: H'(A") — H'(/4")) are holonomic Z-modules for any i (see
Lemma 1.4.2).

Microsupport and constructible sheaves. — Let us recall some notions
and results of [39].

Let M be a real analytic manifold and K a Noetherian commutative
ring of finite global dimension. For F' € DP(K,;), we denote by SS(F)
its microsupport, a closed R*-conic (i.e., invariant by the RT-action
on T*M) subset of T*M. Recall that this set is involutive (one also
says co-isotropic), see [39, Def. 6.5.1].
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An object F of D*(Kyy) is weakly R-constructible if there exists a sub-
analytic stratification M = | | ., M, such that H’(F)|, is locally con-
stant for all j € Z and all &« € A. The object F' is R-constructible if
moreover H’(F), is finitely generated for all z € M and all j € Z. One
denotes by DB _(Kj) the full subcategory of DP(K,,) consisting of R-
constructible objects. Recall that the duality functor D'y () (see (1.1.1))
is an anti-auto-equivalence of the category DE_(Ky).

If M is complex analytic, one defines similarly the notions of (weakly)
C-constructible sheaf, replacing “subanalytic” with “complex analytic”.
We denote by DP . (Kj) the full subcategory of D(K,s) consisting of
weakly-C-constructible objects and by D2 (Kj,) the full subcategory con-
sisting of C-constructible objects. Also recall ([39]) that F' € DP(Ky,) is
weakly-C-constructible if and only if its microsupport is a closed C*-conic
(i.e., invariant by the C*-action on T*M) complex analytic Lagrangian
subset of T*M or, equivalently, if it is contained in a closed C*-conic
complex analytic isotropic subset of T*M.

Proposition 7.1.6. — Let F' € D*(Zy[h]) and assume that F is coho-
mologically complete. Then

(7.1.3) SS(F) = SS(gr,(F)).
Proof. — The inclusion
SS(gr,(F)) C SS(F)

follows from the distinguished triangle F' 2 F — gr,(F) *h Let us
prove the converse inclusion.

Using the definition of the microsupport, it is enough to prove that
given two open subsets U C V of M, RI'(V; F) — RI'(U; F') is an iso-
morphism as soon as RI'(V'; gr,(F')) — RI'(U; gr),(F)) is an isomorphism.
Consider a distinguished triangle RT'(V;F) — RI(U;F) — G 5.
Then we get a distinguished triangle RI'(V'; gr),(F')) — RI(U; gr,,(F)) —
gri,(Q) 2 Therefore, gr,(G) ~ 0. On the other hand, G is cohomo-
logically complete, thanks to Proposition 1.5.12 and G ~ 0 by Corol-
lary 1.5.9. [

Proposition 7.1.7. — Let F € D3 (C%). Then F is cohomologically
complete.



146 CHAPTER 7. HOLONOMIC DQ-MODULES

Proof. — One has
“lim” Ext], (Z[h, 7Y, H'(U; F)) =~ Ext](Z[h,h7'], “lig” H'(U; F))

2

- Z[h) Z[h]
Sz Usx
j -1
~ Ext (Z[h, 1), Fa) ~ 0

where the last isomorphism follows from the fact that F, is cohomologi-
cally complete when taking X = pt.
Hence, the hypothesis (i) (c¢) of Proposition 1.5.6 is satisfied. O

Propagation for solutions of /j,x-modules
Proposition 7.1.8. — Let A be a coherent ) x-module. Then

(7.1.4) SS(R%omMA/X(JV, Z)) C char(gr, /).

Proof. — By Lemma 7.1.4, we have
R%ﬂom%m (N, L) =~ RHom, (D Doty N, L.

Since gr,(Z¢ By x N) = gr(A), Proposition 7.1.8 will follow from
Proposition 7.1.9 below, already obtained in [17]. O

Proposition 7.1.9. — Let AN be a coherent P ¢-module. Then
(7.1.5) SS(R#om , (AN ,.Z)) = char(gr,. ).

Proof. — Set F' = R7tom,_, (AN, %). Then F is cohomologically com-
plete by Corollary 1.6.2 and SS(F') = SS(gr,(F')) by Proposition 7.1.6.
On the other hand, gr,(F') ~ R#om , (gr,/", Ox) by Proposition 1.4.3

and the microsupport of this complex is equal to char(gr,.#") by [39,
Th 11.3.3]. 0

Constructibility of solutions. — Theorem 7.1.10 below has already been
obtained in [17] in the framework of Z)[[A]]-modules.
Recall that .Z is a coherent @/x-module, simple along A.

Theorem 7.1.10. — Let A be a holonomic <) x-module.
(a) The objects R%”om%/x (AN, L) and R,%ﬂom%/x (&L, N) belong to DR (Ch)

and their microsupports are contained in char(gr,./").
(b) There is a natural isomorphism in D2 (CR)

(7.1.6) RAOom,, (N, L) DY (R%”om%/x (£, ) ldx].
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The morphism in (b) is similar to the morphism in Lemma 3.3.1 and
is associated with

R%”om%/x (N, L) ® R%ﬂom%/x (&L, N)
— R,%”om%/x(g,.iﬂ) — RAtom , (£, %) ~ Ch — C% [dx].

Proof. — (a) It is enough to treat F := R%”om%/x(e/i/, Z). In view of
Proposition 7.1.8, F' is weakly C-constructible and it remains to show
that for each z € A, F, belongs to D}(C").

If U is a sufficiently small open ball centered at x, then RI'(U; F') — F,
is an isomorphism ([39]). The finiteness of the complex gr,(F,) fol-
lows from the classical finiteness theorem for holonomic Z-modules of
[34]. Since F' is cohomologically complete, Proposition 1.5.12 implies
that RI'(U; F') is cohomologically complete. Hence the result follows
from Theorem 1.6.4.

(b) follows from Corollary 1.4.6, since we know by [34] that (7.1.6) is an
isomorphism after applying the functor gr;. ]

@\ /x modules and A -modules. —

Definition 7.1.11. — A coherent o7, x-submodule 4" of a coherent
g/ ¥c-module . is called an /) x-lattice of A4 if A generates .4 as an
a/¢-module.

Lemma 7.1.12. — Let A be a coherent o/32¢-module and let N C M
be an <y x-lattice of . Then char(gr,(#)) C T*A does not depend
on the choice of N .

The proof is similar to the one of Lemma 3.4.2, and we shall not repeat
it.
Definition 7.1.13. — Let .4 be a coherent «73°-module and let A" C
A be an oy x-lattice of .#. We set

chary (.#) := char(gr,.4").

Example 7.1.14. — Let X = C? endowed with the symplectic coordi-
nates (x;u) and let A be the Lagrangian manifold given by the equation
{u = 0}. In this case, #,x = Hx[uh™'].

Now let a € C and consider the modules .#Z = &/°/a°¢(xu — ah)
and A = ) x /Dy x(xuh™t — «). Then A is an @), x-lattice of 4
and gr, N =~ D/ Dy (20, — ).
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Lemma 7.1.15. — Let .4 be a coherent o/\°°-module.

(i) charp () is a closed conic complex analytic subset of T*A and this
set 1s 1nvolutive.

(ii) Let 0 — A" — M — M#" — 0 be an ezact sequence of o/s°-
modules. Then chary(.#) = charp(.#") U chary(A4").

Proof. — (i) is a well-known result of Z-module theory, see [37].
(ii) Let A be an &), x-lattice of A4 . Set N = .#'NA and V" C A"
be the image of 4. Then .4 and A" are o7,/ x-lattices of .Z" and .#",

respectively. Since we have an exact sequence
0— A" /hN"— N AN — N AN — 0,

we have chary (#) = char(A /h ") = char(A"/hA")Uchar (A" /AAN") =
chary (#") U chary (A"). O

Proposition 7.1.16. — For a coherent o/ -module . , we have
codim chary (.#) > codim Supp(.#).

Proof. — In the course of the proof, we shall have to consider the ana-
logue of the algebra 7, ,x but with /x. instead of &/x. We shall denote
by @y this algebra. We shall show that codim Supp(.#) > r implies
codim chary (.#) > r by descending induction on r. Applying Proposi-
tion 2.3.15 (a), we have RA#0m . (A, AP ~ TZTRﬁom%lgc (M, ),

where 72" is the truncation functor. Hence we have a distinguished tri-
angle in DP | (/5°):

coh

(TLT) Ext’ (M, ) [=r] = RAOM e (M, ) = H =,

loc
’Q{X

where & = T>TRf%”0m%1(oc (M, I¥°). Note that codim(Supp(#)) > r

by Proposition 2.3.15 (b). Setting .#' = &xt’ .. (A, 2/°°), the distin-
X

guished triangle (7.1.7) induces a distinguished triangle in D, (&/3°):

coh
Rf%”om%l(o;(,%/, ) — M — R%om%lgg(///’, AN [r] =
Setting .4, = éaxt;mc(///',d}("f), we obtain a morphism ¢: .# — 4,
Xa

and Ker(p) has codimension greater than r. Hence, codim char (Ker(p)) >
r by the induction hypothesis. Since chary(.#) C chary (.#;)Uchary (Ker(y)),
it is enough to show that codim chary (.#;) > 7.

Hence we may assume from the beginning that ./# = &xt” .. (M, A5

xa

for a coherent &/ic-module .#’. Let us take an @ja-lattice A" of 4"
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Set Ay = &ut’, | (AN, Apa). Then we have A7 ~ ., and it induces
a morphism 4y — #. Let 4 be the image of the morphism A5 —
A . Then A is an ) x-lattice of .#. Hence we have chary(.#) =
char(4"/h/"), which implies

(7.1.8) chary () C char(A5/hA).

On the other hand, we have an exact sequence
Bt (N pa) =5 Eall, (N, lha) = Eatl, (N, g1,( o).

Since we have éamt;{/\a (AN gry,(pa)) = é”a:t; grp N gr,(pa)), we
have a monomorphism

No/hMg—Ext’ )(grh/w; 8ry(Hpa)).

gty (pa

I‘ﬁ(ﬁan) (

Hence we obtain char(.4q/h.4g) C char (é"xtrgrh(%a)(grhﬂ/’grh(;z%/\a))>.

Since char (éaxtrgrh(%a)(grhg/i/’, grh(dAa))>haS codimension > r by e.g., [37,
Theorem 2.19], we conclude that codim char(.45/hAg) > r. By (7.1.8),
we obtain codim char (.Z) > r. O

7.2. Holonomic DQ-modules

In a complex symplectic manifold X, an isotropic subvariety A is a
locally closed complex analytic subvariety such that A, is isotropic,
i.e., the 2-form defining the symplectic structure vanishes on A,e;. Here,
A,ey denotes the smooth part of A.

A Lagrangian subvariety A is an isotropic subvariety of pure dimension
dx /2. Equivalently, A is a subvariety of pure dimension dx /2 such that
A is involutive.

Definition 7.2.1. — (a) An @/i*“-module .# is holonomic if it is co-
herent and its support is a Lagrangian subvariety of X.

(b) An &/x-module .4 is holonomic if it is coherent, without A-torsion
and .41°¢ is a holonomic #74°*-module.

(c) Let A be a smooth Lagrangian submanifold of X. We say that an
a/®c-module .# is simple holonomic along A if there exists locally
an o/x-module .#, simple along A such that .# ~ .#°°.

Lemma 7.2.2. — Let 4 be a holonomic o/52°-module. Then D' e [dx /2]
is concentrated in degree 0 and is holonomic.
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Proof. — This follows from Proposition 2.3.15 and the involutivity the-
orem (Proposition 2.3.18). O

Let X be a complex symplectic manifold and let .#Z and .Z be two
holonomic &73°°-modules. Using Lemma 2.4.10 (more precisely, an &/3°°-
variant of this lemma) and Theorem 6.2.4, we have

RAtom o (M, L) = RAOM poc //l&D’ L,6¥°),

Ritom joc (L, M) =~ RIAom o
(7.2.1) e ) P

~ RAom .o (€ lOC) ///@D’ L)

xa

A
(ZRD,., %loc)
(D
X

~ R%Om leoc %;?07 % IE D "%) [dX] .

Theorem 7.2.3. — Let X be a complex symplectic manifold and let A
and £ be two holonomic «/°°-modules. Then

(i) the object Rstom e (M, L) belongs to D2 (T,

(ii) there is a canomcal 1somorphism:
(7.2.2)  RAom (M. L) = (DkR%omﬂ}lgc (&, 4)) [dx],
(iii) the object Rotom (A, L)]dx /2] is perverse.

Proof. — Using (7.2.1), we may assume from the beginning that .Z is a
simple holonomic .2/{°°-module supported on a smooth Lagrangian sub-
manifold A of X. Let % be an @/x-module simple along A such that
L~ Lloe,
(i)-(ii) Let 4" be an @/, ,x-lattice of .#Z. By Lemma 7.1.3 (v), we have
RAOM. 1o (A, L) ~ R,%ﬁom%/x(,/i/, ZLy)ee.

Then the results follow from Proposition 7.1.16 and Theorem 7.1.10.
(iii) Since the problem is local, we may assume that X = T*M, &/ =
WX and % = OF,.

By (i), it is enough to check the statement:

(7.2.3) HI (RFN (Rf%”om%/x(f/i/,.,%))) vanishes for j < [ and for
any closed smooth submanifold N of M of codimension [.
Since F:=RI'y (R%ﬂom%/x(e/ﬁ/, %)) is C-constructible, it is enough to

show that H’(gr,(F)) = 0 for j < [. This follows from the well-known
fact that H/(RTn(Oy)) = 0 for j < L. O
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Assume for simplicity that X is open in some cotangent bundle T%M.
We shall compare the sheaf of solutions of holonomic &x-modules and
#x-modules. Recall that # is faithfully flat over &x by Lemma 6.1.2.

Corollary 7.2.4. — Let # and £ be two holonomic éaAX—modules. Then
the object RAom z (M, L) belongs to D (Cx).

Proof. — Let ¢ denote the coordinate on the complex line C, let E denote
the ring &7+c|,_,,_, and let L be the E-module £/E -t. Then we have
the embedding

Chec e B, hes O
Set for short F':=RAomz (M, %L). Then

~ ~ L
F ~ Rs#fom (L, Rotom z_ (M, (Exxrec/ExxTC - t)|t:0,r:1®§x-=§/ﬂ>)
~ R,%”omE(L,R%”omWAX(%( Rz, %,%{@(gx 2)).

Set G := R%”om%((%( R, A, 7%\( ®gz, ). Applying Theorem 7.2.3,
we find that G' € D2 (C}°) and it follows that F € DP (Cy).

wCc
Moreover, for each € X, G, is of finite type over C"'°¢ and is an

E-module. One easily deduces that F, ~ RHom ,(L,G,) is a C-vector
space of finite dimension. n

7.3. Lagrangian cycles

Given two holonomic &3¢ modules .# and £ such that Supp(.#) N
Supp(.Z) is compact, the Euler-Poincaré index is given by

X(X; M, %) = X(RHom%}lgc(///,Z))

(7.3.1) = ¥ () dimExt’ . (4, .2).
Applying (6.3.6), we get
(7.3.2) (Xl L) = /X (eux (A7) - cux(2)).

Recall that eux(.#) = (—1)%/2eux (D’ .. ), and also recall that dy
being even, eux () - eux (L) = eux (L) - eux(A).

We shall explain how to calculate the Euler classes by using the theory
of Lagrangian cycles. We refer to [39, Ch. 9 § 3] for a detailed study of
these cycles.



152 CHAPTER 7. HOLONOMIC DQ-MODULES

Recall that K denotes a commutative Noetherian unital ring of finite
global dimension.
Consider a closed Lagrangian subvariety A of X. We define the sheaf:

(7.3.3) LK .= Hx(Ky),

and we simply write L, instead of L%. The next results are obvious and
well-known (see loc. cit.).

Lemma 7.3.1. — (1) U — HX,(U;Kx) (U open in X) is a sheaf
and this sheaf coincides with LK,
(i) Hiy,., (LX) ~ 0 fori=0,1,
(iii) if s is a section of LK, then its support is open and closed in A,
(iv) there is a canonical section in T'(A; Ly) which gives an isomorphism
LAl Ay =2 Zp

reg *
We denote by [A] the section given in (iv) above.

Definition 7.3.2. — We call a section of L on an open set U of A a
Lagrangian cycle on U.

Recall that Kcon a(Ox ) denotes the Grothendieck group of the category
DYa(Ox). We denote by Fona(Ox) the sheaf associated with the
presheaf U +— Kcon an(Or). Then, there is a well defined Z-linear map

(734) K Ji/coh,A(ﬁX) — LA.
This map is characterized by the property that

Let .# € DP,(a7%°) and let A be a closed Lagrangian subvariety of X
which contains Supp(.#).
Let .4, be an @/x-lattice of .# on an open set U of X. Then gr,(.#,
defines an element [gr, (.#0)] € Keona(Ox|v), hence an element of I'(U; Heona (Ox)).
This element depends only on .#, and we thus have a morphism

Keona (%) = D(A; Heona(Ox)).
Composing with the map , we obtain a map
(7.3.6) Keona (70) — T(A; Ly).

Definition 7.3.3. — We denote by lex (/) the image of # € D, , ()
by the morphism in (7.3.6) and call it the Lagrangian cycle of .Z .
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On the other-hand, recall (see Definition 6.3.2) that the Euler class

eux (.#) of .4 belongs to H*(X;C%%). Hence, the Euler class of .#
is a Lagrangian cycle supported by A:

(7.3.7) euy () € T(A;LS"™).

The map Z — C™!°¢ induces the morphism

(7.3.8) tx: Ly — LE.
The next lemma is easily checked.

Lemma 7.3.4. — Let A be a smooth Lagrangian submanifold of X and
let & be a coherent o/°°-module, simple along A. Then eux (L) =

ex([A)).
Theorem 7.3.5. — One has eux (M) = 1x olex(A).

Proof. — By Lemma 7.3.1, it is enough to prove the result at the generic
point of A. Hence, we may assume that A is smooth. Let x € A and
let us choose a smooth Lagrangian submanifold S, of X which intersects
A transversally at the single point z. Let us also choose a simple @742
module . simple along S,. Using (7.3.2), we find

X(Rf%ﬁom%l?c(g,//l)x) = / (eux (L) -eux(A)).

X

Let 4 and .#, be /x-lattices of . and .#, respectively. We also
have

X(Rt%”om%lgc (&, M),) = x(Rstom ey (/x) (g1, (L), gry(Mp)))

_ /X (k(lgr4(2))) - K ([gm0(40)]).
Clearly, we have

(7.3.9) r(lgrn(Lo)]) = [Sz]-
By Lemma 7.3.4, eu(.%) = [S.]. Therefore,
(73,10 [ (.- et = [ (152)-tex ()

for any smooth Lagrangian submanifold S, which intersects A transver-
sally at x. This completes the proof. O
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Remark 7.3.6. — The Euler class of a holonomic @{°“-module sup-
ported by a Lagrangian variety A is easy to calculate, since it is enough to
calculate it at generic points of A. Moreover, the integral in (7.3.2) is in-
variant by smooth (real) homotopy of the Lagrangian cycles lex (.#) and
lex (.Z) and one may deform them in order that they intersect transver-
sally at the smooth part of their support. See [39, Ch. 9,§ 3] for a detailed
study.

7.4. Simple holonomic modules

When % and %] are simple along smooth Lagrangian manifolds, one
can give an estimate on the microsupport of R%om%l(oc (L4, %). It
follows from Lemma 6.2.1 that two simple holonomic modules along A
are locally isomorphic.

Example 7.4.1. — Assume X = T*M for a complex manifold M and
oy = Wx(0). Then 07/° is a simple holonomic #7i°¢-module along M.

Recall that on a complex symplectic manifold X, the symplectic form
gives the Hamiltonian isomorphism from the cotangent bundle to the
tangent bundle:

(741) H: T*X = TX, (#,v)=w(v,H)), veTX, 0cT"X.

For a smooth Lagrangian submanifold A of X the isomorphism (7.4.1)
induces an isomorphism between the normal bundle to A in X and its
cotangent bundle T*A.

For the notion of normal cone, see e.g., [39, Def. 4.1.1]. The next
result is proved in [42, Prop. 7.1].

Proposition 7.4.2. — Let X be a complex symplectic manifold and
let Ag and Ay be two closed complex analytic isotropic subvarieties of X .
Then, after identifying TX and T*X by (7.4.1), the normal cone C(Ag, A1)

is a complex analytic C*-conic isotropic subvariety of T*X.

Theorem 7.4.3. — Let % be a simple holonomic </5¢-module along a
smooth Lagrangian manifold A; (i = 0,1). Then

(7.4.2) SS(R%om%lgc (%, %)) C C(Ao, Ay).
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Idea of the proof of Theorem 7.4.3. — (i) By identifying Re%”om%lgc (%, %)
with a sheaf supported by Ag, the estimate (7.4.2) is equivalent to the
estimate

(7.4.3) SS(RAOM p1oe (L4, ) © Ciy(Ar).

(ii) The problem being local, we may assume X = T*M, oy = 7//;(0),
Ao =M, 4 = ﬁ]@l“. If A, = Ay, Theorem 7.4.3 is immediate. Hence,
we assume Ag # Aj.
Then there exists a non constant holomorphic function ¢: M — C
such that
A ={(z;u) € X ;u=gradp(z)}

Consider the ideal

(7.4.4) Iw = Wx - (hds, — &}).

=1

We may assume that & = %/ﬂw. Let u € £ be the image of 1 € %(
and denote by .4 the @7, x-submodule of £} generated by u.
To conclude, it remains to prove the inclusion

(7.4.5) char(gr,(4)) C C(Ay, TyM).
We shall not give the proof of (7.4.5) here and refer to [42]. Let us simply
mention that the proof uses [37, Th. 6.8]. O

Remark 7.4.4. — Consider a smooth Lagrangian submanifold A of X
and denote by ch(Qy) € H'(A; O5) the class corresponding to the line
bundle €. To the exact sequence

1—=C} — 05 N Y
one associates the maps 8 and ~:
HY (A 67) S HY(A;d6y) 2 HX(A; CY).
We shall denote by C}\/ ? the invertible Cj-algebroid associated with the

1
cohomology class 7(§ﬂ(ch(QA)) € H*(A; CX) (see (2.1.13)).

Consider an invertible Ch-algebroid 21 on A and denote by Inv(2() the
category of invertible 2-modules (see Definition 2.1.4). On the other
hand, denote by Simple(A) the category of simple o/x-modules along A.
It can be easily deduced from Lemma 6.2.1 that, given a DQ-algebroid



156 CHAPTER 7. HOLONOMIC DQ-MODULES

a, there exist an invertible Ck-algebroid 2 and an equivalence of cat-
egories

(7.4.6) Simple(A) ~ Inv(2L).

When &y is the canonical algebroid 7//;((0) (see Remark 6.1.3), it is
proved in [19] that one has an equivalence 2 ~ C} & (C,l\/ 2,

7.5. Invariance by deformation

We shall show that in the situation of Theorem 7.2.3, R.Zom oloe (A, L)

is, in some sense, invariant by Hamiltonian symplectomorphism.
First, we need a lemma.

Lemma 7.5.1. — Let M be a complex manifold, X = T*M and let A

be a holonomic %{—module. Assume that the projection wy: X — M
is proper (hence, finite) on Supp(.#). Then wy A is a locally free
ﬁ’]@l“-module of finite rank.

Proof. — (i) In the sequel, we write oy and @/%° instead of 7//;(0) and

W, respectively. Since 7y is finite on Supp(.#), Rmry,.# is concen-
trated in degree 0. Let us prove that this sheaf is ﬁ;}loc—coherent. Denote
by I'; the graph of the projection 7y, and consider the diagram

MxX<>2T,
/ \ lp
M X.

Using the morphism of C'-algebras 7y, 0%, — o/x, we may regard . :=
5,p Lelxa as a coherent 2/y;y xo-module simple along I';. Then

Ry, M ~ L ;.///.

We may apply Theorem 3.3.6 and we get that Ry, is O}, °°~coherent.

(ii) Let n = dy = 3dx. By Lemma 7.2.2, D/ ..(.#)[n] is concen-
trated in degree 0 and it follows from a similar argument as in (i) that
D' (M) o L' [n] is O}°°-coherent and concentrated in degree 0 for any



7.5. INVARIANCE BY DEFORMATION 157

coherent 7}°¢ ,,-module %’ simple along I';. Denote by Do the du-
ality functor over ﬁ]@[loc. Applying again Theorem 3.3.6, we get
e M 0. L) = D poe( L) 0wy 0 Dl poc ()

1

/ o L /
~ R (Rp*(Dﬂ (L) 0w )®,, D i (///)) .

Since w oD (L) ~ £"[n] for an s« x-module £’ simple along T,

and D’ .

trated in degree zero. Therefore, /. is a locally projective ﬁf/’[loc—
module of finite rank. To conclude, note that, for z € M, any finitely gen-
erated projective ﬁ;\i;[{(;c—module is free, by a result of [52] (see [59]). O

() is concentrated in degree n, D'y .. (Tar#) is concen-

Recall the situation of (3.1.9): we have three symplectic manifolds X
(1 = 1,2,3) and closed subsets A; of X; x X;11 (i = 1,2). Assume that
the A; (i = 1,2) are closed subvarieties and the projection pi3 is proper
on piy A1 N psy Az, Then Aj o Ay is a closed subvariety of X; x X3. Now
assume that A; (¢ = 1,2) is isotropic in X; x X¢ ;. Then A; o Ay is
isotropic in X; x X§ by classical results (see e.g., [39, Prop. 8.3.11]).

In the sequel, we denote by ID the open unit disc in the complex line
C, endowed with the coordinate t. We set for short

Y :=T"D,
and we consider the projections

XxYy-2-y
y pl \ Jﬂ
X X xD—==D.
Assume to be given a Lagrangian subvariety A C X x Y satisfying
(7.5.1) the restriction p|y: A — X x D is finite.
For a € D, writing for short 77'ID instead of Tfa}]D, we set
Ag:=AoT;D =pi(ANg '(a)),

and this set is a Lagrangian subvariety of X.
We introduce the “skyscraper” @4°°-module

(7.5.2) Co = ) A - (t — a).
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Theorem 7.5.2. — Let X be a complex symplectic manifold, let A be
a Lagrangian subvariety of X x Y satisfying (7.5.1), and let V be a
Lagrangian subvariety of X. Let £ be a holonomic </5Sy -module such
that Supp(£) C A and let A be a holonomic </¥°-module such that
Supp(A) C V. Assume that the map q: AN (p;*V) — D is proper.
Fora € D, we set fa::.,?g%a and %::Rpg*Rf%”ompl_{%lgc (py' N, 2).
Then

(i) &, is concentrated in degree 0 and is a holonomic </3°¢-module sup-
ported by Ag,
(ii) A is a coherent @4°°-module supported by V;A,

L

(iii) F, = RHom%l(oc(t/V,fa) ~ RI'(Y;(Ob/Ob(t — a))®, A) is an
object of D?(Cf’”loc), and F, and F, are isomorphic for any a,b € .

Proof. — (i) First note that t—a: £ — £ is a monomorphism. Indeed
for any s € Ker(t — a: & — &), @¥ys C £ is a coherent &/{°S, -
module whose support is involutive and of codimension > dxy /2, hence
empty. Therefore .7, = f}g(d}oc/d}“ - (t —a)) ~ Rp1,((Ob/Op(t —
a)) ®y L ), and (i) follows immediately from the Hypothesis (7.5.1).
(ii) We have

Rpa RA0m 1 o (p7' N L) =2 Dy (N )0 L.

By the hypothesis, the projection AN (V xY) — Y is proper. It follows
from Theorem 3.2.1 that .# belongs to DY, («%°¢) and is supported by
the isotropic variety Ay :=V 3 A.

(iii) By the hypothesis, the projection m: Ay — D is proper, hence
finite. It follows easily that H'(.#) is a holonomic /°-module and
H (Rm, M) ~ 7, H (M) is a locally free 0r'-module of finite rank by
Lemma 7.5.1. Hence

1 (RT(Y; (65 Ob(t — ))&, 4)) = T(V; H () /(¢ — ) H(.0)

is a finite-dimensional C™'°°-vector space whose dimension does not de-
pend on a € D. O

We shall make a link between the hypotheses in Theorem 7.5.2 and
the Hamiltonian deformations of a Lagrangian variety A,.
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Assume to be given a holomorphic map
O(z,t): X xD— X

such that ®(-,a): X — X is a symplectomorphism for each a € D and is
the identity for a = 0. Set

I'i={(z,t,®(x,t))}, the graph of ® in X x X x D.

Consider the differential

%—f:XX]D)%TX:T*X.

We make the hypothesis:

0P
(7.5.3) there exists f: X x D — C such that rre Hy,

where Hy denotes as usual the Hamiltonian vector field. In this case, we
can define (identifying 7*ID with D x C)

= {((z, ®(z,1)); (t, f(z,1)))} € X x X* x T*D
and T is Lagrangian. Let Ay be a Lagrangian subvariety of X. We set:
A:=AgoT.
Then A will satisfy hypotheses (7.5.1) and A, = ®(z, a)(A).

Example 7.5.3. — Let X =T*M,V =T M and let p: M xD — C
be a holomorphic function. Set Y = T*ID and let

A= {(ZL’, tiu, T) € X X Y7 (u7 T) = gradcc,t QO(ZE, t)}>
Au = {(z31) € X;u = grad, o(z,0)}.
Consider the family of symplectomorphisms
O(z,u,t) = (z,u+ @, (z,t) — @ (z,0)).
Then
e
ot
Set Z = {(z,t) € M x D;grad, ¢(x,t) = 0} and assume that

= —Hy,, and A, = O(z, u, ).

the projection Z — D is proper.
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Consider the ideals

I =Y Ay (0, = ) + Ay - (hd — ),

i=1
I, = Z’Q{)l(oc : (haﬂci - Sogci('aa))'
i=1

Set AN = o/yc ®gy,, On and £ = xxy/S. Hence we have ¥, =
/¢ ) 7, and H° (RHom%lgc (L., /) does not depend on a € D.
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