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Introduction

This is a joint work with Masaki Kashiwara.

On a complex manifold (X ,OX ), the Hochschild homology is a powerful tool to
construct characteristic classes of coherent modules and to get index theorems.
Here, I will show how to adapt this formalism to a wide class of sheaves on a
real manifold M by using the functor µhom of microlocalization. This
construction applies in particular to constructible sheaves on real manifolds and
D-modules on complex manifolds, or more generally to elliptic pairs.
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Hochschild homology

Consider a complex manifold (X ,OX ) of complex dimension dX . We shall use
the following notations:

• ΩX = ΩdX
X , ωhol

X ' ΩX [dX ], the dualizing complex,

• DO( • ) = RHomOX
( • , ωhol

X ) the duality functor and

D′O( • ) = RHomOX
( • ,OX )

• δ : X ↪→ X × X the diagonal embedding and ∆ = δ(X ).
We set O∆ := δ∗OX , ωhol

∆ := δ∗ω
hol
X , etc.

The Hochschild homology of OX is defined by

HH (OX ) = δ−1(O∆

L
⊗

OX×X
O∆

)
' δ−1RHomOX×X

(ω
hol,⊗−1

∆ ,O∆) ' δ∗δ∗OX

' δ−1RHomOX×X
(O∆, ω

hol
∆ ) ' δ!δ!ωX .



Hochschild homology on complex manifolds Microlocal analysis Microlocal homology Microlocal Euler class Applications

Hochschild classes

Let F ∈ Db
coh(OX ). The morphisms D′OF ⊗F −→ OX and DOF ⊗F −→ ωhol

X

give by adjunction the morphisms

D′OF�F −→ O∆, DOF�F −→ ωhol
∆

and then by duality the morphisms

ω
hol,⊗−1

∆ −→ D′OF�F −→ O∆, O∆ −→ DOF�F −→ ωhol
∆

and the composition defines the Hochschild classes of F :

hhO(F ) ∈ H0
supp(F)(X ; δ−1δ∗OX ), h̃hO(F ) ∈ H0

supp(F)(X ; δ!δ!ωX ).
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Functoriality of Hochschild classes
Let Xi (i = 1, 2, 3) be complex manifolds. Set Xij = Xi × Xj , etc. Denote by
qij : X123 −→ Xij the projections. For Kij ∈ Db

coh(OXij ) (ij = 12, 23, 13), we set

K12 ◦
2
K23 := Rq13!(q

∗
12K12

L
⊗

O123
q∗23K23).

Similarly, for closed subsets Aij ⊂ Xij we set

A12 ◦
2
A23 = q13(A12 ×X2 A23).

Theorem

(a) There is a natural morphism

HH (O12) ◦
2
HH (O23) −→HH (O13),

(b) let Kij ∈ Db
coh(OXij ) with supp(Kij) ⊂ Aij and assume that q13 is proper on

A12 ×X2 A23.

hhX13 (K12 ◦
2
K23) = hhX12 (K12) ◦

2
hhX23 (K23),

h̃hX13

(
(K12 ⊗ω

hol⊗−1

2 ) ◦
2
K23

)
= h̃hX12 (K12) ◦

2
h̃hX23 (K23),

in H0
A13

(X13; HH (O13)).

Note that by (a) we get a morphism HH (OX )⊗HH (OX ) −→ ωhol
X .
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Hochschild-Kostant-Rosenberg isomorphism

There is a commutative diagram constructed by Kashiwara in 1991 in which
αX is the HKR (Hochschild-Kostant-Rosenberg) isomorphism and βX is a kind
of dual HKR isomorphism:

HH (OX )

∼

α1
X

xx
∼

β1
X

&&
δ∗δ∗OX

∼αX

��

∼
td

// δ!δ!ω
hol
X

∼ βX

��⊕dX
i=0 Ωi

X [i ]
∼
τ

//⊕dX
i=0 Ωi

X [i ].
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Hochschild-Kostant-Rosenberg isomorphism

For F ∈ Db
coh(OX ), one sets ch(F ) = αX ◦ α1

X (hhO(F )), the Chern character
of F and eu(F ) = βX ◦ β1

X (hhO(F )), the Euler class of F . Then ch
commutes with inverse images and eu commutes with proper direct images.

Kashiwara made in 1991 the conjecture that the arrow τ making the diagram
commutative is given by the cup product by the Todd class of TX . This
conjecture has recently been proved by Ramadoss (2008) (after previous work
by Markarian) in the algebraic case and Grivaux (2009) in the analytic case
(and with a very simple proof).
This gives a new and functorial approach to the
Riemann-Roch-Hirzebruch-Grothendieck theorem.
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Let M be a real manifold, π : T ∗M −→ M its cotangent bundle.

• k a commutative unital ring with finite global dimension,

• Db(kM) the derived category of sheaves of k-modules on M.

• ωM ' orM [dimM] the dualizing complex,

• D′M = RHom ( • , kM) and DM = RHom ( • , ωM) the duality functors.
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Microsupport
For F ∈ Db(kM) one defines its micro-support, or singular support, SS(F ), a
closed R+-conic subset of T ∗M.

Definition
An open subset W of T ∗M does not intersect SS(F ) if for any C 1-function
ϕ : M −→ R and any x0 ∈ M such that (x0; dϕ(x0)) ∈W , setting
U = {x ;ϕ(x) < ϕ(x0)}, one has for all j ∈ Z

lim−→
V3x0

H j(U ∪ V ;F ) ' H j(U;F ).

Equivalently, RΓ{x ;ϕ(x)≥0}(F )x0 ' 0.

Roughly speaking, F “propagates” in the codirections which do not belong to
SS(F ).
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Properties and examples of the microsupport

• SS(F ) is co-isotropic,

• if F1 −→ F2 −→ F3
+1−→ is a d.t. then SS(Fi ) ⊂ SS(Fj) ∪ SS(Fk) for j 6= k,

• Let N be a closed submanifold of M. Then SS(kN) = T ∗NM,

• Let X be a complex manifold, M a coherent DX -module. Set
F = RHomDX

(M ,OX ). Then SS(F ) = char(M ).

• Here, M = R and T ∗M = R2
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The functor µhom

Let N ⊂ M be a closed submanifold. denote by
τ : TNM −→ M the normal bundle,
π : T ∗NM −→ M the conormal bundle.
Recall the functor νN of specialization, µN of Sato’s microlocalization and its
variant, µhom:

νN : Db(kM) −→ Db(kTNM) similar to the deformation to the normal cone,

µN : Db(kM) −→ Db(kT∗
N
M) the Fourier-Sato transform of νM ,

µhom(F ,G) = µ∆RHom (q−1
2 F , q!

1G)

: Db(kM)op × Db(kM) −→ Db(kT∗M).
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Properties of the functor µhom

We can “microlocalize” the category of sheaves.
For A ⊂ T ∗M one denotes by Db(kM ;A) the localization of Db(kM) by the full
triangulated subcategory consisting of sheaves F with SS(F ) ∩ A = ∅. Then

for p ∈ T ∗M, H0µhom(F ,G)p ' HomDb(kM ;{p})(F ,G).

Moreover

RπM∗µhom ' RHom ,

suppµhom(F ,G) ⊂ SS(F ) ∩ SS(G).

Assume M is real analytic and k is a field (for simplicity). Let Db
R-c(kM) denote

the category of R-constructible sheaves on M. This category does not admit a
Serre functor. However, we have for F ,G ∈ Db

R-c(kM)

DT∗Mµhom(F ,G) ' µhom(G ,F )⊗ π−1
M ωM .
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Notations
As above, M is a real manifold. One sets:

• δ : M ↪→ M ×M the diagonal embedding, ∆ = δ(M), k∆ = δ∗kM ,
ω∆ = δ∗ωM , etc.

• δa : T ∗M ↪→ T ∗(M ×M), δa((x ; ξ)) = (x , x ; ξ,−ξ).

• Let Mi (i = 1, 2, 3) be manifolds. For short, we write Mij := Mi ×Mj

(1 ≤ i , j ≤ 3), M123 = M1 ×M2 ×M3, etc.

• qij : M123 −→ Mij the projections,
pij : T ∗M123 −→ T ∗Mij the projections,
pija , the composition of pij and the antipodal map on T ∗Mj .

For Kij ∈ Db(kMij ) and for Lij ∈ Db(kT∗
Mij

) we set

K12 ◦
2
K23 := Rq13!(q

−1
12 K12 ⊗ q−1

23 K23),

L12
a◦
2
L23 := Rp13a !(p

−1
12aL12 ⊗ p−1

23aL23).

We also define the corresponding operations for subsets of cotangent bundles.
Let A ⊂ T ∗M12 and B ⊂ T ∗M23. We set

A
a◦
2
B = p13a(A

a
×
2
B) where A

a
×
2
B = p−1

12a(A) ∩ p−1
23a(B).
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Microlocal homology 1

Let Λ be a closed conic subset of T ∗M. We set

MH(kM) := (δa)−1µhom(k∆, ω∆)

MH0
Λ(kM) := H0

Λ(T ∗M; MH(kM)).

We call MH(kM) the microlocal homology of M. Of course, we have an
isomorphism which plays a role similar to that of the HKR isomorphism

MH(kM) ' π−1
M ωM .

Let ij = 12, 23, 13 and let Λij be a closed conic subset of T ∗Mij . Assume that

Λ12

a
×
2

Λ23 is proper over T ∗M13 and set Λ13 = Λ12
a◦
2

Λ23. There is a natural

morphism

MH(kM12 ) ◦
2
MH(kM23 ) −→MH(kM13 ).

and this morphism induces a map

◦
2

: MH0
Λ12

(kM12 )⊗MH0
Λ23

(kX23 ) −→ MH0
Λ13

(kX13 ).
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Microlocal homology 2

The construction of the morphism above uses the composition of µhom, which
makes the computations not easy. Fortunately, we have the following result, a
kind of HKR isomorphism for sheaves.
We have a commutative diagram

MH(k12)
a◦
2
MH(k23) //

o
��

MH(k13)

o
��

π−1
12 ω12

a◦
2
π−1

23 ω23
// π−1

13 ω13.

Here the bottom horizontal arrow is induced by

p−1
12aπ

−1
12 ω12 ⊗ p−1

23aπ
−1
23aω23 ' π−1

1 ω1�ωT∗M2�π
−1
3 ω3 and

Rp13a !

(
π−1

1 ω1�ωT∗M2�π
−1
M3
ω3

)
−−→π−1

1 ω1�π
−1
3 ω3.

As a particular case, we get canonical isomorphisms

MH(kM)⊗MH(kM) ' π−1ωM ⊗ π−1ωM ' ωT∗M .
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Trace kernels

A trace kernel (K , u, v) on M is the data of K ∈ Db(kM×M) together with
morphisms (u, v)

k∆
u−→ K

v−→ ω∆.

Setting SS∆(K) := SS(K) ∩ T ∗∆(M ×M), the morphism u gives an element of
H0

SS∆(K)(T
∗M;µhom(k∆,K)) whose image by v is the microlocal Euler class of

K

µeuM(K) ∈ MH0
SS∆(K)(kM)) ' H0

SS∆(K)(T
∗M;π−1ωM).

If M = pt, a trace kernel K is nothing but an object of Db(k) together with
linear maps k −→ K −→ k. The composition gives the element µeu(K) of k. If k
is a field of characteristic zero and K = L⊗ L∗ where L ∈ Db

f (k), then
µeu(K) = χ(L).
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Functoriality of trace kernels

Theorem
Let Kij be a trace kernel on Mij and assume for simplicity that
SS(Kij) ⊂ Λij × Λa

ij (ij = 12, 23).
We make the hypothesis:

Λ12

a
×
2

Λ23 is proper over T ∗M13.

Set K̃12 = K12 ⊗ q−1
22 (k2�ω

⊗−1

2 ). Then K13 := K̃12 ◦
22
K23 is a trace kernel on

M13 and

µeuM13
(K13) = µeuM12

(K12)
a◦
2
µeuM23

(K23)

as elements of MH0
Λ13

(k13), where Λ13 = Λ12
a◦
2

Λ23
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As an application, one can perform the external product, the proper direct
image and the non characteristic inverse image of trace kernels and compute
their microlocal Euler classes. In particular, we get:

Corollary

Let Ki be a trace kernel with SS(Ki ) ⊂ Λi × Λa
i (i = 1, 2)and set

K̃1 = K1 ⊗ (kM�ω
⊗−1

M ).

(a) Assume Λ1 ∩ Λa
2 ⊂ T ∗MM. Then K̃1 ⊗K2 is a trace kernel on M and

µeuM(K̃1 ⊗K2) = µeuM(K1) ? µeuM(K2).

(b) Assume moreover that suppK1 ∩ suppK2 is compact. Then

µeu(RΓ(M ×M; K̃1 ⊗K2)) =

∫
T∗M

µeu(K1) ∪ µeu(K2).
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Constructible sheaves
We assume now that M is real analytic and k is a field. Let G ∈ Db

R-c(kM) be
an R-constructible sheaf.

The evaluation morphism G
L
⊗ DG −→ ωM gives by adjunction and duality:

k∆ −→ G
L

�DG −→ ω∆.

Denote by TK(G) the trace kernel so constructed. Then µeu(TK(G)) is
nothing but the Lagrangian cycle of G constructed by Kashiwara in 1985 and
one recovers the classical functorial properties of Lagrangian cycles. Let
f : M −→ N be a morphism of manifolds. To f one associates the maps

T ∗M
fd←− M ×N T ∗N

fπ−→ T ∗N

There are natural morphsim

fµ : fπ !f
−1
d π−1

M ωM −→ π−1
N ωN ,

f µ : fd !f
−1
π π−1

N ωN −→ π−1
M ωM .

• Let F ∈ Db
R-c(kM) and assume f is proper on supp(F ), or equivalently, fπ

is proper on f −1
d SS(F ). Then µeu(Rf∗F ) = fµµeu(F ),

• Let G ∈ Db
R-c(kN) and assume that f is non characteristic for G , that is, fd

is proper on f −1
π SS(G). Then µeu(f −1G) = f µµeu(D).



Hochschild homology on complex manifolds Microlocal analysis Microlocal homology Microlocal Euler class Applications

D-modules

• X a complex manifold of complex dimension dX , ∆ ↪→ X ×X the diagonal

• DDM :=RHomDX
(M ,DX )⊗OX

Ω
⊗−1

X [dX ], (duality for left D-modules),

• M�N := DX×X ⊗DX�DX
(M�N ) (external product),

• B∆ := HdX
[∆](OX×X ) and B∨∆ := B∆ [2dX ].

Note that DDB∆ ' B∆. For a coherent DX -module M , we have the
isomorphism

RHomDX
(M ,M ) ' RHomDX×X

(B∆,M�DDM ) [dX ].

We deduce the morphisms (the second one by duality from the first one):

B∆ −→M�DDM [dX ] −→ B∨∆.
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E -modules
Denote by ET∗X the sheaf on T ∗X of microdifferential operators. For a
coherent DX -module M set

M E := ET∗X ⊗π−1DX
π−1M .

We define the duality functor DE for E -modules and the external product
similarly as for D-modules.
Recall that char(M ) = supp(M E ) where char(M ) is the characteristic variety
of M . Set

C∆ := BE
∆, C ∨∆ :=

(
B∨∆
)E
.

We have the morphisms

C∆ −→M E�DE M E [dX ] −→ C ∨∆ .

Setting

HH(ET∗X ) = (δa)−1RHomEX×X
(C∆,C

∨
∆ ),

we get the Hochschild class of M :

hhE (M ) ∈ H0
char(M)(T

∗X ;HH(ET∗X )).
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Hochschild class and microlocal Euler class 1
We have the natural morphism in Db(π−1DX ⊗ π−1Dop

X )

EX −→ µhom(ΩX ,ΩX ).

We deduce the morphism for N1 and N2 in Db
coh(DX );

RHomE (N E
1 ,N E

2 ) −→ µhom(ΩX

L
⊗

DX
N1,ΩX

L
⊗

DX
N2).

We have

ΩX×X [−dX ]
L
⊗

DX×X
B∆ ' C∆, ΩX×X [−dX ]

L
⊗

DX×X
B∨∆ ' ω∆ .

One deduces the morphism and isomorphism

RHomEX×X
(C∆,C

∨
∆ ) ∼−−→ µhom(ΩX×X

L
⊗

DX×X
B∆,ΩX×X

L
⊗

DX×X
B∨∆)

' µhom(C∆, ω∆ ).

An easy calculation shows that the first arrow is also an isomorphism.
Therefore, we get (a result of Brylinski-Getzler 1987)

HH(EX ) ∼−−→MH(CX ).
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Hochschild class and microlocal Euler class 2

Recall the morphisms

B∆ −→M�DDM [dX ] −→ B∨∆.

Applying ΩX×X [−dX ]
L
⊗

DX×X

• to these morphisms, we get the morphisms

C∆ −→ ΩX×X

L
⊗

DX×X
(M�DDM ) −→ ω∆.

For M ∈ Db
coh(DX ), we set

TK(M ) = ΩX×X

L
⊗

DX×X
(M�DDM ).

Then

hhE (M ) = µeuX (TK(M )) in H0
char(M (T ∗X ;π−1ωX ).
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Elliptic pairs 1

Let M ∈ Db
coh(DX ) and G ∈ Db

R-c(CX ). Recall that (M ,G) is an elliptic pair
(S-Schneiders 1994) if

char(M ) ∩ SS(G) ⊂ T ∗XX .

We shall assume now that (M ,G) is an elliptic pair and we set

TK(M ,G) := ΩX×X

L
⊗

DX×X
(M�DDM )⊗G�D′G .

It follows from the functoriality of trace kernels that TK(M ,G) is a trace
kernel and moreover:

µeuX

(
TK(M ,G)

)
= µeuX (M ) ? µeuX (G).
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Elliptic pairs 2

We have the natural isomorphism (a Petrovsky’s theorem for sheaves)

RHomDX
(M ,D′G ⊗OX ) ∼−−→ RHomDX

(M ⊗G ,OX ).

Example Assume M is a real analytic manifold and X is a complexification of
M. Choose G = D′XCM . Then (M ,G) is an elliptic pair off M is elliptic in the
usual sense and we get

RHomDX
(M ⊗G ,OX ) ' RHomDX

(M ,BM)

' RHomDX
(M ,AM).

Assuming that supp(M ) ∩ supp(G) is compact, it follows that the complex

Sol(M ⊗G) := RHomDX
(M ⊗G ,OX )

may be represented both by a complex of topological vector spaces of type FN
and a complex of type DFN. Therefore its cohomology is finite dimensional.
Moreover

RΓ(X × X ;TK(M ,G)) ' Sol(M ⊗G)⊗ Sol(M ⊗G)∗.
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Elliptic pairs 3

Applying the general results on trace kernels , we get

Theorem
Let (M ,G) be an elliptic pair and assume that supp M ∩ suppG is compact.
Then

χ
(
RHomDX

(M ⊗G ,OX )
)

=

∫
T∗X

(hhE (M ) ∪ µeuX (G)).

This formula has many applications, as far as one is able to calculate hhE (M ).
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Elliptic pairs 3

Assume that M is endowed with a good filtration and char(M ) ⊂ Λ. Set

g̃rM := OT∗X ⊗π−1grDX
π−1grM

σΛ(M ) = chΛ(g̃rM ) ∈
⊕
j

H2j
Λ (T ∗X ;CT∗X ),

µchΛ(M ) = σΛ(M ) ∪ π∗TdX (T ∗X ) for a left D-module

µchΛ(M ) = σΛ(M ) ∪ π∗TdX (TX ) for a right D-module.

Note that µch commutes with proper direct images (Laumon’s version of the
RR theorem for D-modules) and non characteristic inverse images.
The formula

µeuΛ(M ) = [µchΛ(M )]2dX

was conjectured by S-Schneiders in 1994 and proved by Bressler-Nest-Tsygan
in 2002.
If M is a compact real analytic manifold and X is a complexification of M, one
recovers the Atiyah-Singer theorem by choosing G = D′CM .
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