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I was 20 years old. I won’t let anyone say that it’s the most beautiful age in life.
Paul Nizan, Aden Arabie, 1931.

Introduction

I will discuss two applications of microlocal sheaf theory to spacetime, one by solving the
global Cauchy problem on globally hyperbolic manifolds, another one by interpreting
the “Big Bang” as an Hamiltonian isotopy that one can quantify, obtaining a “shifted
spacetime”. This talk is based on various papers in collaboration with Benôıt Jubin,
Stéphane Guillermou and Masaki Kashiwara.

History: Mikio Sato 1970 introduced microlocal analysis giving rise to [SKK73], soon
followed by Lärs Hörmander and many others in the period 70–80 with a totally dif-
ferent approach (analytical methods vs Fourier analysis). Then Masaki Kashiwara and
myself [KS82] extend Sato’s idea to sheaves giving rise to [KS90].

The natural framework for microlocal sheaf theory is the cotangent bundle T ∗M
to a real manifold M , whence the use of symplectic geometry. Conversely, 25 years
later, David Nadler and Eric Zaslow [NZ09] made a link with the Fukaya category
and Dmitry Tamarkin [Tam12] initiated the use of microlocal sheaf theory to prove
results of symplectic topology, a strategy now systematically used by many authors (in
particular, Stéphane Guillermou [Gui23], Vivek Shende, etc.).

Linear PDE (systems, that is, D-modules) theory becomes sheaf theory.
Plan of my talk:

Microlocal sheaf theory (with Kashiwara)
Holomorphic solutions of D-modules (with Kashiwara)
Applications to causal manifolds (with Benôıt Jubin [JS16])
Sheaves for the Big Bang (extracted from [GKS12], with and Kashiwara)
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1 Microlocal sheaf theory

Idea of microlocal in Analysis: Mikio Sato, around 1970, developed in [SKK73]. Mi-
crolocal sheaves: initiated in KS82, developed in [KS90].

Let X be a real manifold.

• τ : TX −→ X the tangent bundle, π : T ∗X −→ X the cotangent bundle.

• for M a submanifold of X, TMX the normal bundle, T ∗MX the conormal bundle.

• X identified with T ∗XX, the zero-section of T ∗X.

Let k be a field (more generally, a commutative unital ring of finite global dimen-
sion). Db(kX): he bounded derived category of sheaves of k-modules. Let F ∈ Db(kX).

Definition 1.1. The microsupport SS(F ) is the closed R+-conic subset of T ∗X defined
as follows: for an open subset W ⊂ T ∗X one has W ∩ SS(F ) = ∅ if and only if for
any x0 ∈ X and any real C 1-function ϕ on X defined in a neighborhood of x0 with
(x0; dϕ(x0)) ∈ W , one has (RΓ{x;ϕ(x)≥ϕ(x0)}F )x0 ' 0.

Figure 1: Propagation

In other words, p /∈ SS(F ) if the sheaf F has no cohomology supported by “half-
spaces” whose conormals are contained in a neighborhood of p.
Set U = {x ∈ X;ϕ(x) < ϕ(x0)}. then

(RΓ{x;ϕ(x)≥ϕ(x0)}F )x0 ' 0 ⇔ lim−→
V 3x0

Hj(U ∪ V ;F ) ∼−→ Hj(U ;F ) for all j ∈ Z.
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• By its construction, the microsupport is R+-conic, that is, invariant by the action
of R+ on T ∗X.

• SS(F ) ∩ T ∗XX = π(SS(F )) = supp(F ).

• The microsupport satisfies the triangular inequality: if F1 −→ F2 −→ F3
+1−−→

is a distinguished triangle in Db(kX), then SS(Fi) ⊂ SS(Fj) ∪ SS(Fk) for all
i, j, k ∈ {1, 2, 3} with j 6= k.

• The microsupport SS(F ) is co-isotropic, (one also says involutive) ([KS90, Def. 6.5.1]).
Using Whitney’s normal cone, for any p ∈ T ∗X:

Cp(SS(F ), SS(F ))⊥ ⊂ Cp(SS(F )).

In the sequel, for a locally closed subset A ⊂ X, we denote by kA the sheaf on X
which is the constant sheaf with stalk k on A and is zero on X \ A.

Example 1.2. (i) If F is a non-zero local system on X and X is connected, then
SS(F ) = T ∗XX.
(ii) If M is a closed submanifold of X and F = kM , then SS(F ) = T ∗MX, the conormal
bundle to M in X.
(iii) When X = R, F = kI , I an interval:

Figure 2: Examples

Note that one can now define the “conormal bundle” to any locally closed subset A
by setting T ∗AX := SS(kA).
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Let f : X −→ Y a morphism of manifolds. We get the maps

TX
f ′ //

τX
%%

X ×Y TY
τ
��

fτ // TY

τY

��
X

f // Y

T ∗X

πX
&&

X ×Y T ∗Y
π
��

fdoo fπ // T ∗Y

πY

��
X

f // Y.

(1.1)

Theorem 1.3. Let f : X −→ Y be a morphism of manifolds, let F ∈ Db(kX) and
G ∈ Db(kY ).

(a) Assume that f is proper on supp(F ). Then SS(Rf!F ) ⊂ fπf
−1
d SS(F ).

(b) Assume that f is non characteristic for G, that is, fd is proper on f−1π SS(G). Then
SS(f−1G) ⊂ fd(f

−1
π SS(G)). Moreover f−1G⊗ωX/Y ∼−→ f !F .

Note that these inclusions may be strict (see the picture below for the direct image).
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2 D-modules

Let (X,OX) be a complex manifold, DX the sheaf of rings of differential operators
(see [Kas03]). An object of Db

coh(DX) is locally isomorphgic to a bounded complex
where ·P0 operates on the right.

M ' 0 −→ DNr
X −→ · · · −→ DN1

X

·P0−→ DN0
X −→ 0.

Then RHomDX
(M ,OX) is given by

Sol(M ) ' 0 −→ ON0
X

P0·−→ ON1
X −→ · · ·O

Nr
X −→ 0,(2.1)

where now P0· operates on the left.
One can define the characteristic variety of M , denoted char(M ), a closed complex

analytic subset of T ∗X, conic with respect to the action of C× on T ∗X. For example,
if M = DX/DX · P , then

char(M ) = {(z; ζ) ∈ T ∗X;σ(P )(z; ζ) = 0}.

where σ(P ) denotes the principal symbol of P .
The set char(M ) is co-isotropic thanks to [SKK73]. Later, Gabber [Gab81] gave

a purely algebraic proof of this fundamental result

Let Y be a complex submanifold of the complex manifold X and let M be a coherent
DX-module. One defines MY ∈ Db(DY ) which is neither concentrated in degree zero nor
coherent in general. One says that Y is non-characteristic for M if char(M )∩ T ∗YX ⊂
T ∗XX.

Theorem 2.1. (a) Kashiwara [Kas70]. Assume Y is non-characteristic for M . Then
MY is a coherent DY -module and

RHomDX
(M ,OX)|Y ∼−→ RHomDY

(MY ,OY ).(2.2)

(b) Kashiwara-Schapira [KS82]. One has

SS(Sol(M )) = char(M ).(2.3)

The proof only uses the classical Cauchy-Kowalevsky theorem (in its precised form,
see [Hör83, Th. 9.4.5–9.4.7]).
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3 Applications to LPDE

Elliptic systems

We denote by Db
cc(kX) the full triangulated subcategory of Db(kX) consisting of coho-

mologically constructible sheaves.

Theorem 3.1 (Petrowsky theorem for sheaves). Let G ∈ Db
cc(kX), F ∈ Db(kX) and

assume SS(G) ∩ SS(F ) ⊂ T ∗XX. Then

RHom (G,kX)⊗F ∼−→ RHom (G,F ).

Now consider a real analytic manifold M and a complexification X. We choose
k = C. The sheaf of real analytic function AM is defined by

AM = OX ⊗CM ' RHom (D′XCM ,CX)⊗OX .

The sheaf of Sato’s hyperfunctions is thus naturally defined by

BM = RHom (D′XCM ,OX) ' RΓM(OX)⊗ωX/M ,

where ωX is the dualizing complex, ωX/M = ωX ⊗ω
⊗−1
M ' orM [dimM ]. Recall that the

complex BM is proved to be concentrated in degree 0.
Let M be a coherent DX-module, F = RHomDX

(M ,OX), G = D′CM . Then
SS(F ) = char(M ), SS(G) = T ∗MX.

Classically, one says that M is elliptic if char(M ) ∩ T ∗MX ⊂ T ∗XX. The Petrowsky
theorem thus gives the isomorphism

RHom (M ,AM) ∼−→ RHom (M ,BM).
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Hyperbolic systems

Let M be a closed submanifold of the real manifold X

T ∗MX −→M defines T ∗M ×M T ∗MX ↪→ T ∗T ∗MX hence T ∗M ↪→ T ∗T ∗MX.

In local coordinates (x, y; ξ, η) ∈ T ∗X, M = {y = 0}, T ∗M ↪→ T ∗T ∗MX is given by

(x; ξ) 7→ (x, 0; ξ, 0),

Let A ⊂ T ∗X, conic. The Whitney normal cone CT ∗MX(A) ⊂ TT ∗MXT
∗X ' T ∗T ∗MX

(x0; ξ0) ∈ T ∗M ∩ CT ∗MX(A)⇔ there exists (xn, yn; ξn, ηn)n ⊂ A,

(xn; ξn)
n−→ (x0; ξ0), |yn|

n−→ 0, |yn||ηn|
n−→ 0.

Notation 3.2. For F ∈ Db(kX), T ∗M ∩ CT ∗MX(SS(F )) ⊂ T ∗M is intrinsically well
defined. (or M ∈ Db

coh(DX) in case X is complex):

SSM(F ) = T ∗M ∩ CT ∗MX(SS(F )), charM(M ) = T ∗M ∩ CT ∗MX(char(M )).

Theorem 3.3 ([KS90, Cor. 6.4.4]). One has

SS(RΓMF ) ⊂ SSM(F ),

SS(F |M) ⊂ SSM(F ).

Corollary 3.4. Let M be a real analytic manifold, X a complexification, Let M be a
coherent DX-module. Then

SS(RHomDX
(M ,BM)) ⊂ charM(M ),

SS(RHomDX
(M ,AM)) ⊂ charM(M ).

Let N ↪→ M is a real analytic smooth closed submanifold of M of and Y ↪→ X is
a complexification of N in X. We assume that Y is non characteristic for M in a
neighborhood of N and

T ∗NM ∩ charM(M ) ⊂ T ∗MM.(3.1)

Then the isomorphism (2.2) induces the isomorphism

RHomDX
(M ,BM)|N ∼−→ RHomDY

(MY ,BN).(3.2)
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4 Causal manifolds

Definition 4.1. A causal manifold (M,γ) is a connected manifold M equipped with
an open proper convex cone γ ⊂ TM such that γx 6= ∅ for all x ∈M .

When M ⊂ V is open, an open set U of M is γ-open if U = U + γ0 for any closed
convex proper cone γ0 such that M×γ0 ⊂ γ. Similar definition on a manifold, by using
local chart.

Definition 4.2. Consider a preorder � and its graph ∆� ⊂M ×M .

(a) The preorder is closed if ∆� is closed in M ×M .

(b) The preorder is proper if q13 is proper on ∆� ×M ∆�, that is, diamonds are
compact, for any x, y ∈M , J+

� (x) ∩ J−� (y) is compact.

(c) The preorder � is causal if for any y ∈ M , the set {x;x � y} contains the closure
of y for the γ-topology.

Example 4.3. A causal path (resp. strictly causal path) is a piecewise smooth curve
c : [0, 1] −→M , with c(0) = x, c(1) = y and c′l(t), c

′
r(t) in γ (resp. in γ). We get a causal

preorder: x ≤ps y if there exists a causal path from x to y.

Definition 4.4. A causal manifold (M,γ) is globally hyperbolic if the causal preorder
≤ps is proper and there are no causal loops.

Definition 4.5 (Jubin-S [JS16]). (a) Let (M,γ,�) be a causal manifold endowed with
a closed causal preorder �. A Cauchy time function q : (M,γ) −→ (R,+) is a
submersive morphism of causal manifolds such that for any compact set K, the
map q is proper both on J+

� (K) and on J−� (K).

(b) A G-causal (G for Geroch) manifold (M,γ,�, q) is a causal manifold endowed with
a proper causal preorder � and a Cauchy time function q.

Note that q is increasing from (M,�) to (R,≤). It is strictly increasing on strictly
causal paths.

Theorem 4.6. If (M,γ) is globally hyperbolic then there exists a Cauchy time function
q and (M,γ,≤ps, q) is G-causal.

See Geroch [Ger70], Bernal-Sanchez [BS05], the survey paper Minguzi-Sanchez [MS08].
See also Fathi-Siconolli [FS11] for a more general version.
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Figure 3: Time function

The link with the micro-support of sheaves is given by:

Lemma 4.7. Let (M,γ,�) be a causal manifold endowed with a closed causal preorder.
Set λ = γ◦. For K compact, set Z = J−� (K). Then SS(kZ) ⊂ λa.

Theorem 4.8 (Jubin-S). Let (M,γ,�, q) be a G-causal manifold, λ = γ◦ and let
F ∈ Db(kM). Assume that SS(F ) ∩ λ ⊂ T ∗MM . Then

SS(Rq∗F ) ∩ {τ ≤ 0} ⊂ T ∗RR.

Proof. Set Z = J−� (K). Then SS(kZ) ⊂ λa and thus SS(FZ) ∩ λ ⊂ T ∗MM . Since q is
proper on Z, SS(Rq∗FZ) ∩ {τ ≤ 0} ⊂ T ∗RR. Then recover (locally on R) the space M
with an increasing family of such Z. Q.E.D.

Corollary 4.9. Let (M,γ,�, q) be a G-causal manifold. Let F ∈ Db(kM) satisfying
SS(F ) ∩ (λ ∪ λa) ⊂ T ∗MM . Assume 0 ∈ q(M) and set M0 = q−1(0). Then the natural
restriction morphism below is an isomorphism:

RΓ(M ;F ) ∼−→ RΓ(M0;F |M0).(4.1)
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Now consider a G-causal manifold (M,λ,�, q) and we assume moreover that M and
q are real analytic. Let M be a coherent DX-module. Applying the preceding result
with F = RHomDX

(M ,BM), we get:

Theorem 4.10 ([JS16]). Let (M,γ,�, q) be an analytic G-causal manifold. Let N =
q−1(0) and let Y be a complexification of N in X. Assume charM(M ) ∩ λ ⊂ T ∗MM .

(a) One has the natural isomorphism

RHomDX
(M ,BM) ∼−→ RHomDY

(MY ,BN).

(b) Let K be a compact subset of M and let A be either J+
� (K) or J−� (K). Then

RHomDX
(M ,ΓABM) ' 0.

In other words, the Cauchy problem for hyperfunctions with data on N is globally
well-posed.

The theorem applies when M = DX/DX · P for P a wave operator associated with
a quadratic form of signature (+,−, · · · ,−)
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5 Before the Big Bang

Let us represent the universe as a closed ball in Rn whose radius grows linearly with the
time t. We represent spacetime as a closed cone in Rn+1 with vertex at t = 0, similarly
as a light cone in a Minkowski space.

What happens for t < 0? If one replaces the spacetime with the constant sheaf
supported by it, the sheaf k{|x|≤t} defined on t ≥ 0, we need to extend it naturally for
t < 0. The micro-support of this sheaf at the boundary is the interior conormal. If we
extend it naturally for t < 0 we get the exterior conormal which is the micro-support
of the constant sheaf on the open cone.

Figure 4: Before the Big Bang

With Guillermou and Kashiwara [GKS12], we have constructed a “distinguished
triangle” as follows. Set X = Rn

x × Rt. The morphism k{|x|≤−t} −→ k{0} and the
isomorphisms

D′Xk{0} ' k{0} [−n− 1], D′Xk{|x|≤−t} ' k{|x|<−t}

induce the morphism

k{0}[−n− 1] −→ k{|x|<−t}.

Composing with k{|x|≤t} −→ k{0}, we get the morphism k{|x|≤t}
ψ−→ k{|x|<−t} [n+ 1] hence

a distinguished triangle

k{|x|<−t}[n] −→ K −→ k{|x|≤t}
+1−−→
ψ

The micro-support of K outside the zero-section is the smooth Lagrangian manifold,
the image of T ∗{0}Rn by the Hamiltonian isotopy

(x; ξ) 7→ (x− tξ/|ξ|; ξ).
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One can modify the Lorentzian case encountered above and replace Rn
x with a Rie-

mannian manifold (with convexity radius and injectivity radius > 0) using the Hamil-
tonian isotopy associated with ||ξ||x.

In particular, one can consider the n-dimensional unit sphere M = Sn (n ≥ 2)
endowed with the canonical Riemannian metric. In this case, the sheaf obtained has a
shift which jumps by the dimension minus one when t ∈ πZ.

Figure 5: Periodic Big Bang

One also constructs a (non-zero) morphism k{|x|=t} [−n] −→ k{|x|=−t}, hence a distin-
guished triangle

k{|x|=−t}[n− 1] −→ K ′ −→ k{|x|=t}
+1−−→
ψ

In this case, the micro-support of K ′ is no more smooth, hence K is not associated with
an Hamiltonian isotopy.

It would be natural to extend these constructions to the case of a family of compact
Riemannian manifolds depending on t > 0 and whose diameter goes to 0 for t −→ 0.
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