Introduction Microlocal theory of sheaves Quantization of Hamiltonian isotopies Application: non displaceability Application: positive isotopies Application

Some applications of the microlocal theory of sheaves to symplectic topology

Pierre Schapira

Université Pierre et Marie Curie Paris, France

Lyon 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We shall give (or recall) some examples of applications of the microlocal theory of sheaves to some problems of symplectic topology:

- Arnold non-displaceability conjecture/theorem classic: Chaperon, Conley–Zehnder, Hofer, Laudenbach–Sikorav, using sheaves: Tamarkin (2008), Guillermou-Kashiwara-Schapira (2012)
- non-displaceability for non-negative Hamiltonian isotopies (a notion introduced by Eliashberg-Kim-Polterovich) classic: Chernov-Nemirovski, Colin-Ferrand-Pushkar, using sheaves: Guillermou-Kashiwara-Schapira (2012)
- the Eliashberg theorem on the C⁰-limit of symplectomorphisms classic: Eliashberg (1987), using sheaves: Guillermou (2013)

References

- S. Guillermou, *The Gromov-Eliashberg theorem by microlocal sheaf theory*, In preparation.
- S. Guillermou, M. Kashiwara and P. Schapira Sheaf quantization of Hamiltonian isotopies and applications to non displaceability problems. Duke Math. Journal, (2012). arXiv:math.arXiv:1005.1517
- S. Guillermou and P. Schapira Microlocal theory of sheaves and Tamarkin's non displaceability theorem, arXiv:1106.1576 LNM Springer (2014)
- M. Kashiwara and P. Schapira, *Sheaves on Manifolds*, Grundlehren der Math. Wiss. **292** Springer-Verlag (1990).

D. Tamarkin, Microlocal conditions for non-displaceability, arXiv:0809.1584

Microsupport

Let *M* be a real C^1 -manifold. For a commutative unital ring with finite global dimension **k**, we denote by $D^{b}(\mathbf{k}_{M})$ the bounded derived category of sheaves of **k**-modules on *M*.

For a locally closed subset Z of M, we denote by \mathbf{k}_Z the constant sheaf with stalk \mathbf{k} on Z, extended by 0 on $M \setminus Z$.

Definition. (Microsupport or singular support of a sheaf, K-S 81.) Let $F \in D^{\mathrm{b}}(\mathbf{k}_M)$. The singular support $\mathrm{SS}(F)$ is the closed conic subset of T^*M defined as follows. An open subset W of T^*M does not intersect $\mathrm{SS}(F)$ if for any C^1 -function $\varphi \colon M \to \mathbb{R}$ and any $x_0 \in M$ such that $(x_0; d\varphi(x_0)) \in W$, setting $U = \{x; \varphi(x) < \varphi(x_0)\}$, one has for all $j \in \mathbb{Z}$

$$\lim_{V\ni x_0}H^j(U\cup V;F)\simeq H^j(U;F).$$

Therefore, if $(x_0; d\varphi(x_0)) \notin SS(F)$, then any cohomology class defined on an open subset U as above extends through the boundary in a neighborhood of x_0 .

Introduction Microlocal theory of sheaves Quantization of Hamiltonian isotopies Application: non displaceability Application: positive isotopies Application

Figure: $p \notin SS(F)$

- The microsupport is closed and is \mathbb{R}^+ -conic, that is, invariant by the action of \mathbb{R}^+ on \mathcal{T}^*M .
- $SS(F) \cap T_M^*M = \pi_M(SS(F)) = Supp(F)$, where $\pi_M \colon T^*M \to M$ is the projection.
- The microsupport satisfies the triangular inequality: if F₁ → F₂ → F₃ ⁺¹→ is a distinguished triangle in D^b(k_M), then SS(F_i) ⊂ SS(F_j) ∪ SS(F_k) for all i, j, k ∈ {1, 2, 3} with j ≠ k.
- The microsupport is involutive (i.e., co-isotropic). (A precise definition will come later.)

Examples

Examples.

(i) If *F* is a non-zero local system on *M* and *M* is connected, then $SS(F) = T_M^*M$, the zero-section.

(ii) If N is a closed submanifold of M and $F = \mathbf{k}_N$, then $SS(F) = T_N^*M$, the conormal bundle to N in M.

(iii) Let φ be a C^1 -function such that $d\varphi(x) \neq 0$ whenever $\varphi(x) = 0$. Let $U = \{x \in M; \varphi(x) > 0\}$ and let $Z = \{x \in M; \varphi(x) \ge 0\}$. Then

$$SS(\mathbf{k}_U) = U \times_M T_M^* M \cup \{(x; \lambda d\varphi(x)); \varphi(x) = 0, \lambda \le 0\},$$

$$SS(\mathbf{k}_Z) = Z \times_M T_M^* M \cup \{(x; \lambda d\varphi(x)); \varphi(x) = 0, \lambda \ge 0\}.$$

(iv) Assume M = V is a vector space and let γ be a closed proper convex cone with vertex at 0. Then $SS(\mathbf{k}_{\gamma}) \cap \pi_{M}^{-1}(\{0\}) = \gamma^{\circ}$ where $\gamma^{\circ} \subset V^{*}$ is the polar cone given by

$$\gamma^{\circ} = \{ \theta \in V^*; \langle \theta, v \rangle \geq 0 \text{ for all } v \in \gamma \}$$

(v) Let (X, \mathcal{O}_X) be a complex manifold and let \mathscr{M} be a coherent module over the ring \mathscr{D}_X of holomorphic differential operators. (Hence, \mathscr{M} represents a system of linear partial differential equations on X.) Denote by $F = \operatorname{R}\mathscr{H}om_{\mathscr{D}_X}(\mathscr{M}, \mathscr{O}_X)$ the complex of holomorphic solutions of \mathscr{M} . Then $\operatorname{SS}(F) = \operatorname{char}(\mathscr{M})$, the characteristic variety of \mathscr{M} .

Operations

Let $f: M \to N$ be a morphism of real manifolds. To f are associated the diagrams

$$TM \xrightarrow{f'} M \times_N TN \xrightarrow{f_{\tau}} TN \qquad T^*M \xleftarrow{f_d} M \times_N T^*N \xrightarrow{f_{\pi}} T^*N$$

$$\downarrow^{\tau_M} \qquad \downarrow \qquad \qquad \downarrow^{\tau_N} \qquad \downarrow^{\pi_M} \qquad \downarrow \qquad \qquad \downarrow^{\pi_N}$$

$$M \xrightarrow{f} N. \qquad M \xrightarrow{f} N.$$

Let $\Lambda_M \subset T^*M$ be a closed \mathbb{R}^+ -conic subset. Then f_{π} is proper on $f_d^{-1}\Lambda_M$ if and only if f is proper on $\Lambda_M \cap T_M^*M$.

Let $\Lambda_N \subset T^*N$ be a closed \mathbb{R}^+ -conic subset. Then f_d is proper on $f_{\pi}^{-1}\Lambda_N$ if and only if $f_{\pi}^{-1}\Lambda_N \cap f_d^{-1}T_M^*M \subset M \times_N T_N^*N$. In this case, one says that f is non-characteristic for Λ_N .

(日) (日) (日) (日) (日) (日) (日) (日)

Operations

Let $f: M \to N$ be a morphism of manifolds, and recall the maps: $T^*M \xleftarrow{f_d} M \times_N T^*N \xrightarrow{f_{\pi}} T^*N.$

Let $\Lambda_f \subset T^*(M \times N)$ denotes the conormal to the graph of f.

Theorem. Let $F \in D^{\mathrm{b}}(\mathbf{k}_M)$ and let $G \in D^{\mathrm{b}}(\mathbf{k}_N)$.

- (i) (The stationary phase lemma.) Assume that f is proper on Supp(F). Then $SS(Rf_*F) \subset f_{\pi}f_d^{-1}SS(F) = SS(F) \circ \Lambda_f.$
- (ii) Assume that f is non-characteristic for SS(G). Then $SS(f^{-1}G) \subset f_d f_{\pi}^{-1}SS(G) = \Lambda_f \circ SS(G)$.

The Morse lemma

Theorem. (The Morse lemma for sheaves.)

Let $F \in D^{\mathrm{b}}(\mathbf{k}_{M})$, let $\psi: M \to \mathbb{R}$ be a function of class C^{1} and assume that ψ is proper on Supp(F). For $t \in \mathbb{R}$, set $M_{t} = \psi^{-1}(] - \infty, t[)$. Let a < b in \mathbb{R} and assume that $d\varphi(x) \notin \mathrm{SS}(F)$ for $a \leq \psi(x) < b$. Then the restriction morphism $\mathrm{R}\Gamma(M_{b}; F) \to \mathrm{R}\Gamma(M_{a}; F)$ is an isomorphism.

Proof. Consider $G = R\psi_*F \in D^{\mathrm{b}}(\mathbf{k}_{\mathbb{R}})$. Then $SS(G) \cap \{(t; dt); t \in [a, b[\} = \emptyset$ and it follows that $R\Gamma(] - \infty, b[; G) \rightarrow R\Gamma(] - \infty, a[; G)$ is an isomorphism by the definition of the micro-support.

Corollary. Let $F \in D^{\mathrm{b}}(\mathbf{k}_M)$ and let $\psi \colon M \to \mathbb{R}$ be a function of class C^1 . Let $\Lambda_{\psi} = \{(x; d\psi(x))\} \subset T^*M$. Assume that

- (i) Supp(F) is compact,
- (ii) $\mathrm{R}\Gamma(M; F) \neq 0$.

Then $\Lambda_{\psi} \cap SS(F) \neq \emptyset$.

Proof. Otherwise, $\mathrm{R}\Gamma(M; F) \simeq \mathrm{R}\Gamma(\mathbb{R}; \mathrm{R}\psi_*F) \xrightarrow{\sim} \mathrm{R}\Gamma(]t_0, t_1[; \mathrm{R}\psi_*F)$ for all $t_0 < t_1$ and $\mathrm{R}\psi_*F$ has compact support.

Homogeneous Hamiltonian isotopies

Consider an open interval I with $[0,1] \subset I$. An homogeneous Hamiltonian isotopy $\Phi : \dot{T}^*M \times I \to \dot{T}^*M$ is a family of maps $\Phi = \{\varphi_s\}_{s \in I}$ such that

• φ_s is a homogeneous symplectic isomorphism for each $s \in I$,

•
$$\varphi_0 = \operatorname{id}_{\dot{\tau}^* M}$$

Then setting $f = \langle \alpha_M, \frac{\partial \Phi}{\partial s} \rangle$ we have $\frac{\partial \Phi}{\partial s} = H_{f_s}$ and there exists a conic Lagrangian submanifold Λ of $\dot{T}^*M \times \dot{T}^*M \times T^*I$ whose projection is the graph of Φ in $\dot{T}^*M \times \dot{T}^*M \times I$. Moreover:

- Λ is closed in $\dot{T}^*(M \times M \times I)$
- for any $s \in I$, the inclusion $i_s \colon M \times M \to M \times M \times I$ is non-characteristic for Λ

the graph of φ_s is Λ_s = Λ ∘ T^{*}_sI.

Quantization of isotopies

For $K \in \mathsf{D}^{\mathrm{lb}}(\mathbf{k}_{M imes M imes I})$ and $s_0 \in I$, we set

$$K_{s_0}:=K|_{s=s_0}.$$

Theorem (GKS12) We consider $\Phi: \dot{T}^*M \times I \to \dot{T}^*M$ as above. Then there exists $K \in D^{lb}(\mathbf{k}_{M \times M \times I})$ satisfying (a) $SS(K) \subset \Lambda \cup T^*_{M \times M \times I}(M \times M \times I)$, (b) $K_0 \simeq \mathbf{k}_{\Delta}$.

Moreover:

- (i) both projections $\text{Supp}(K) \rightrightarrows M \times I$ are proper,
- (ii) $K_s \circ K_s^{-1} \simeq K_s^{-1} \circ K_s \simeq \mathbf{k}_\Delta$ for all $s \in I$,
- (iii) such a K satisfying the conditions (a) and (b) above is unique up to a unique isomorphism,

Here, $K_s^{-1} := v^{-1} \mathbb{R} \mathscr{H} om(K_s, \omega_M \boxtimes \mathbf{k}_M).$

Example.

Let $M = \mathbb{R}^n$ and denote by $(x; \xi)$ the homogeneous symplectic coordinates on $T^*\mathbb{R}^n$. Consider the isotopy $\varphi_s(x;\xi) = (x - s\frac{\xi}{|\xi|};\xi)$, $s \in I = \mathbb{R}$. Then

$$\begin{split} \Lambda_s &= \{(x,y,\xi,\eta); |x-y| = |s|, \ \xi = -\eta = \lambda(x-y), \ s\lambda < 0\} \quad \text{ for } s \neq 0, \\ \Lambda_0 &= \dot{\mathcal{T}}^*_\Delta(M \times M). \end{split}$$

For $s \in \mathbb{R}$, the morphism $\mathbf{k}_{\{|x-y| \le s\}} \to \mathbf{k}_{\Delta \times \{s=0\}}$ gives by duality (replacing s with -s) $\mathbf{k}_{\Delta \times \{s=0\}} \to \mathbf{k}_{\{|x-y| < -s\}}[n+1]$. We get a morphism $\mathbf{k}_{\{|x-y| \le s\}} \to \mathbf{k}_{\{|x-y| < -s\}}[n+1]$ and we define K by the distinguished triangle in $D^{\mathrm{b}}(\mathbf{k}_{M \times M \times I})$:

$$\mathbf{k}_{\{|x-y|<-s\}}[n] \to \mathcal{K} \to \mathbf{k}_{\{|x-y|\leq s\}} \xrightarrow{+1}$$

(日)、

One can show that K is a quantization of the Hamiltonian isotopy $\{\varphi_s\}_s$. We have the isomorphisms in $D^{\mathrm{b}}(\mathbf{k}_{M \times M})$: $K_s \simeq \mathbf{k}_{\{|x-y| \le s\}}$ for $s \ge 0$ and $K_s \simeq \mathbf{k}_{\{|x-y| < -s\}}[n]$ for s < 0.

Non displaceability: symplectic case

Consider a compact manifold N and a (no more homogeneous) Hamiltonian isotopy $\Phi = \{\varphi_s\}_{s \in I}$, that is, the $\varphi_s \colon T^*N \to T^*N$ are symplectomorphisms and $\frac{\partial}{\partial_s} \Phi$ is the Hamiltonian vector field of a time dependant function f defined on T^*N .

Theorem In the above situation, $\varphi_s(T_N^*N) \cap T_N^*N \neq \emptyset$ for all $s \in I$.

Hamiltonian

Not Hamiltonian Hamiltonian but not compact

Non displaceability: homogeneous symplectic case

The preceding theorem is deduced from the next one by choosing $M = N \times \mathbb{R}$ and $\psi: N \times \mathbb{R} \to \mathbb{R}$ the projection.

Consider a homogeneous Hamiltonian isotopy $\Phi = \{\varphi_s\}_{s \in I}$: $\dot{T}^*M \times I \rightarrow \dot{T}^*M$ and a C^1 -map $\psi \colon M \rightarrow \mathbb{R}$ such that the differential $d\psi(x)$ never vanishes. Set

$$\Lambda_{\psi} := \{ (x; d\psi(x)); x \in M \} \subset \dot{T}^* M.$$

Theorem. Let $F \in D^{\mathrm{b}}(\mathbf{k}_M)$ with compact support and such that $\mathrm{R}\Gamma(M; F) \neq 0$. Then for any $s \in I$, $\varphi_s(\mathrm{SS}(F) \cap \dot{T}^*M) \cap \Lambda_{\psi} \neq \emptyset$.

Proof. Let $K \in D^{\mathrm{b}}(\mathbf{k}_{M \times M \times I})$ be the quantization of Φ . Set:

$$F_s := K_s \circ F \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}_M) \text{ for } s \in I.$$

We have $F_0 = F$ and $\mathrm{R}\Gamma(M; F_s) \simeq \mathrm{R}\Gamma(M; F) \neq 0$. Hence, $\Lambda_{\psi} \cap \mathrm{SS}(F_s) \neq \emptyset$. Finally, $\mathrm{SS}(F_s) \cap \dot{T}^*M = \varphi_s(\mathrm{SS}(F) \cap \dot{T}^*M)$. One could also prove Morse inequalities in this setting.

Non displaceability: non-negative Hamiltonian isotopies

Consider a manifold M and $\Phi: \dot{T}^*M \times I \to \dot{T}^*M$ a homogeneous Hamiltonian isotopy with $[0,1] \subset I$. Define as above $f: \dot{T}^*M \times I \to \mathbb{R}$ by $f = \langle \alpha_M, \partial \Phi / \partial s \rangle$ so that $H_f = \partial \Phi / \partial s$.

Definition The isotopy Φ is said to be non-negative if $f \ge 0$ on [0, 1].

Denoting by $\Lambda \subset \dot{T}^*M \times \dot{T}^*M \times T^*I$ the Lagrangian manifold associated with Φ , this is equivalent to

$$\Lambda \subset \{\tau \le 0\}.$$

Theorem Let *M* be a connected and non-compact manifold and let *X*, *Y* be two compact connected submanifolds of *M*. Let $\Phi = \{\varphi_t\}_{t \in I} : \dot{T}^*M \times I \to \dot{T}^*M \text{ be a non-negative homogeneous Hamiltonian}$ isotopy. Assume that $\varphi_1(\dot{T}^*_XM) = \dot{T}^*_YM$. Then X = Y and $\varphi_s|_{\dot{T}^*_XM} = \operatorname{id}_{\dot{T}^*_XM}$ for all $s \in [0, 1]$.

Example

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

On $\dot{T}^*\mathbb{R}^n$ choose $f(s, x, \xi) = \sqrt{\sum_i \xi^2}$, $\Phi(s, x, \xi) = (x + s\xi/|\xi|, \xi)$. A similar example on the *n*-sphere would contradicts the theorem since it interchanges the conormal bundles to the north and south poles.

The main tool of the proof is the following:

Lemma Let N be a manifold, I an open interval of \mathbb{R} containing 0. Let $F \in D^{\mathrm{b}}(\mathbf{k}_{N \times I})$ and, for $t \in I$, set $F_t = F|_{N \times \{t\}} \in D^{\mathrm{b}}(\mathbf{k}_N)$. Assume that (a) $\mathrm{SS}(F) \subset \{\tau \leq 0\}$, (b) $\mathrm{SS}(F) \cap (T_N^*N \times T^*I) \subset T_{N \times I}^*(N \times I)$,

(c) $\text{Supp}(F) \rightarrow I$ is proper.

Then for all $a \leq b$ in I there is a natural morphism $r_{b,a}$: $F_a \rightarrow F_b$, which induces the isomorphisms

$$\mathrm{R}\Gamma(N\times I;F)\xrightarrow{\sim} \mathrm{R}\Gamma(N;F_a)\xrightarrow[r_{b,a}]{\sim} \mathrm{R}\Gamma(N;F_b)\xleftarrow{\sim} \mathrm{R}\Gamma(N\times I;F).$$

Statement of the theorem

Theorem (Eliashberg) Let *E* be a real symplectic finite dimensional vector space. Let B(R) denote the open ball with radius R > 0 and $\overline{B}(r)$ the closed ball with radius r, 0 < r < R. Let $\varphi_i \colon B(R) \to E$ be a C^1 -map, $i \in \mathbb{N} \sqcup \{\infty\}$. Assume that φ_n is a diffeomorphism onto its image for all $n \in \mathbb{N} \sqcup \{\infty\}$, φ_n is a symplectic diffeomorphism onto its image for all $n \in \mathbb{N}$, $||\varphi_n - \varphi_\infty||_r \xrightarrow{n} 0$ where $||\psi||_r = \sup_{x \in \overline{B}(r)} |\psi(x)|$. Then $\varphi_\infty|_{B(r)}$ is a symplectic diffeomorphism onto its image.

Involutivity

Definition (KS82) A locally closed subset S of a symplectic manifold X is co-isotropic (or involutive) at $p \in X$ if

$$C_p(S,S)^{\perp} \subset C_p(S).$$

Here, $C_p(S, Z) \subset T_pX$ is the Whitney normal cone, $C_p(S) = C_p(\{p\}, S)$ and \perp is defined through the Hamiltonian isomorphism $TX \xrightarrow{\sim} T^*X$.

Theorem (KS82) Let $F \in D^{\mathrm{b}}(\mathbf{k}_M)$. Then $\mathrm{SS}(F)$ is co-isotropic in \mathcal{T}^*M .

- (a) Let $S_1 \subset S_2 \subset X$ be locally closed subsets and let $p \in S_1$. If S_1 is co-isotropic at p then so is S_2 .
- (b) Let ρ: T^{*}M × T^{*}_{τ>0}R → T^{*}M be as above. Let S ⊂ T^{*}M be a locally closed subset and let p ∈ S, q ∈ ρ⁻¹(p). Then S is co-isotropic at p if and only if ρ⁻¹S is co-isotropic at q.

Guillermou's proof

(1) Using an approximation lemma, we reduce to the case where for each n there exists a Hamiltonian isotopy Φ_n defined on $I \supset [0,1]$ such that $\varphi_n = \Phi_n^1$.

(2) We can lift the isotopies Φ_n $(n \in \mathbb{N} \sqcup \{\infty\})$ to homogeneous isotopies Ψ_n whose graphs are homogeneous Lagrangian submanifolds $\Lambda_n \subset (T^*E \times T^*E \times T^*\mathbb{R} \times T^*I) \cap \{\tau > 0\}$, where $(t; \tau)$ are the coordinates on $T^*\mathbb{R}$ and denoting by ρ the map

$$\rho: T^*E \times T^*E \times T^*\mathbb{R} \times T^*I \cap \{\tau > 0\}, \to T^*E \times T^*E \times T^*I, \\ \rho: (x, y, t, s; \xi, \eta, \tau, \sigma) \mapsto (x, y, s; \xi/\tau, \eta/\tau, \sigma/\tau)$$

we have $\Gamma_{\Phi_n} = \rho(\Lambda_n)$. We have to show that $\Gamma_{\varphi_{\infty}}$ is co-isotropic.

(3) For a sequence $K_n \in D^{[a,b]}(\mathbf{k}_X)$, $n \in \mathbb{N}$, define $K_{\infty} \in D^{[a,b]}(\mathbf{k}_X)$ by the d.t.

$$\bigoplus_n K_n \to \prod_{n \in \mathbb{N}} K_n \to K_\infty \xrightarrow{+1} .$$

Note that

$$\mathrm{SS}(\mathcal{K}_{\infty}) \subset \bigcap_{k \in \mathbb{N}} \overline{\bigcup_{n \geq k} \mathrm{SS}(\mathcal{K}_n)}.$$

(4) Using the GKS theorem, for each *n*, there exists $K_n \in D^{[a,b]}(\mathbf{k}_{E \times E \times \mathbb{R} \times I})$ whose microsupport is contained in Λ_n and $K_n|_{s=0}$ is the constant sheaf on the diagonal.

(5) Main technical part: prove that given $x \in B(r)$, K_{∞} is not constant (in particular, not 0) in a neighborhood of x. Since $SS(K_{\infty}) \subset \Gamma_{\varphi_{\infty}}$ and we may assume that $\Gamma_{\varphi_{\infty}}$ is in generic position, this will completes the proof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ