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We shall give (or recall) some examples of applications of the microlocal theory
of sheaves to some problems of symplectic topology:

• Arnold non-displaceability conjecture/theorem
classic: Chaperon, Conley–Zehnder, Hofer, Laudenbach–Sikorav,
using sheaves: Tamarkin (2008), Guillermou-Kashiwara-Schapira (2012)

• non-displaceability for non-negative Hamiltonian isotopies
(a notion introduced by Eliashberg-Kim-Polterovich)
classic: Chernov-Nemirovski, Colin-Ferrand-Pushkar,
using sheaves: Guillermou-Kashiwara-Schapira (2012)

• the Eliashberg theorem on the C 0-limit of symplectomorphisms
classic: Eliashberg (1987),
using sheaves: Guillermou (2013)
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Microsupport

Let M be a real C 1-manifold. For a commutative unital ring with finite global
dimension k, we denote by Db(kM) the bounded derived category of sheaves of
k-modules on M.
For a locally closed subset Z of M, we denote by kZ the constant sheaf with
stalk k on Z , extended by 0 on M \ Z .

Definition. (Microsupport or singular support of a sheaf, K-S 81.)
Let F ∈ Db(kM). The singular support SS(F ) is the closed conic subset of
T ∗M defined as follows. An open subset W of T ∗M does not intersect SS(F )
if for any C 1-function ϕ : M −→ R and any x0 ∈ M such that (x0; dϕ(x0)) ∈W ,
setting U = {x ;ϕ(x) < ϕ(x0)}, one has for all j ∈ Z

lim−→
V3x0

H j(U ∪ V ;F ) ' H j(U;F ).

Therefore, if (x0; dϕ(x0)) /∈ SS(F ), then any cohomology class defined on an
open subset U as above extends through the boundary in a neighborhood of x0.
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Figure: p /∈ SS(F )

• The microsupport is closed and is R+-conic, that is, invariant by the
action of R+ on T ∗M.

• SS(F ) ∩ T ∗MM = πM(SS(F )) = Supp(F ), where πM : T ∗M −→ M is the
projection.

• The microsupport satisfies the triangular inequality: if F1 −→ F2 −→ F3
+1−−→

is a distinguished triangle in Db(kM), then SS(Fi ) ⊂ SS(Fj) ∪ SS(Fk) for
all i , j , k ∈ {1, 2, 3} with j 6= k.

• The microsupport is involutive (i.e., co-isotropic). (A precise definition will
come later.)
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Examples

Examples.
(i) If F is a non-zero local system on M and M is connected, then
SS(F ) = T ∗MM, the zero-section.
(ii) If N is a closed submanifold of M and F = kN , then SS(F ) = T ∗NM, the
conormal bundle to N in M.
(iii) Let ϕ be a C 1-function such that dϕ(x) 6= 0 whenever ϕ(x) = 0. Let
U = {x ∈ M;ϕ(x) > 0} and let Z = {x ∈ M;ϕ(x) ≥ 0}. Then

SS(kU) = U ×M T ∗MM ∪ {(x ;λdϕ(x));ϕ(x) = 0, λ ≤ 0},
SS(kZ ) = Z ×M T ∗MM ∪ {(x ;λdϕ(x));ϕ(x) = 0, λ ≥ 0}.
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(iv) Assume M = V is a vector space and let γ be a closed proper convex cone
with vertex at 0. Then SS(kγ) ∩ π−1

M ({0}) = γ◦ where γ◦ ⊂ V ∗ is the polar
cone given by

γ◦ = {θ ∈ V ∗; 〈θ, v〉 ≥ 0 for all v ∈ γ}.

(v) Let (X ,OX ) be a complex manifold and let M be a coherent module over
the ring DX of holomorphic differential operators. (Hence, M represents a
system of linear partial differential equations on X .) Denote by
F = RHomDX

(M ,OX ) the complex of holomorphic solutions of M . Then

SS(F ) = char(M ), the characteristic variety of M .
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Operations

Let f : M −→ N be a morphism of real manifolds. To f are associated the
diagrams

TM

τM

��

f ′ // M ×N TN

��

fτ // TN

τN

��
M M

f // N.

T ∗M

πM

��

M ×N T ∗N

��

fdoo fπ // T ∗N

πN

��
M M

f // N.

Let ΛM ⊂ T ∗M be a closed R+-conic subset. Then fπ is proper on f −1
d ΛM if

and only if f is proper on ΛM ∩ T ∗MM.

Let ΛN ⊂ T ∗N be a closed R+-conic subset. Then fd is proper on f −1
π ΛN if and

only if f −1
π ΛN ∩ f −1

d T ∗MM ⊂ M ×N T ∗NN. In this case, one says that f is
non-characteristic for ΛN .
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Operations
Let f : M −→ N be a morphism of manifolds, and recall the maps:

T ∗M
fd←− M ×N T ∗N

fπ−→ T ∗N.
Let Λf ⊂ T ∗(M × N) denotes the conormal to the graph of f .

Theorem. Let F ∈ Db(kM) and let G ∈ Db(kN).

(i) (The stationary phase lemma.)
Assume that f is proper on Supp(F ). Then
SS(Rf∗F ) ⊂ fπf

−1
d SS(F ) = SS(F ) ◦ Λf .

(ii) Assume that f is non-characteristic for SS(G). Then
SS(f −1G) ⊂ fd f

−1
π SS(G) = Λf ◦ SS(G).

Figure: Direct image
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The Morse lemma

Theorem. (The Morse lemma for sheaves.)
Let F ∈ Db(kM), let ψ : M −→ R be a function of class C 1 and assume that ψ is
proper on Supp(F ). For t ∈ R, set Mt = ψ−1(]−∞, t[). Let a < b in R and
assume that dϕ(x) /∈ SS(F ) for a ≤ ψ(x) < b. Then the restriction morphism
RΓ(Mb;F ) −→ RΓ(Ma;F ) is an isomorphism.

Proof. Consider G = Rψ∗F ∈ Db(kR). Then SS(G) ∩ {(t; dt); t ∈ [a, b[} = ∅
and it follows that RΓ(]−∞, b[;G) −→ RΓ(]−∞, a[;G) is an isomorphism by
the definition of the micro-support.

Corollary. Let F ∈ Db(kM) and let ψ : M −→ R be a function of class C 1. Let
Λψ = {(x ; dψ(x))} ⊂ T ∗M. Assume that

(i) Supp(F ) is compact,

(ii) RΓ(M;F ) 6= 0.

Then Λψ ∩ SS(F ) 6= ∅.

Proof. Otherwise, RΓ(M;F ) ' RΓ(R;Rψ∗F ) ∼−−→ RΓ(]t0, t1[;Rψ∗F ) for all
t0 < t1 and Rψ∗F has compact support.
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Homogeneous Hamiltonian isotopies

Consider an open interval I with [0, 1] ⊂ I . An homogeneous Hamiltonian
isotopy Φ: Ṫ ∗M × I −→ Ṫ ∗M is a family of maps Φ = {ϕs}s∈I such that

• ϕs is a homogeneous symplectic isomorphism for each s ∈ I ,

• ϕ0 = idṪ∗M .

Then setting f = 〈αM ,
∂Φ
∂s
〉 we have ∂Φ

∂s
= Hfs and there exists a conic

Lagrangian submanifold Λ of Ṫ ∗M × Ṫ ∗M × T ∗I whose projection is the
graph of Φ in Ṫ ∗M × Ṫ ∗M × I . Moreover:

• Λ is closed in Ṫ ∗(M ×M × I )

• for any s ∈ I , the inclusion is : M ×M −→ M ×M × I is non-characteristic
for Λ

• the graph of ϕs is Λs = Λ ◦T ∗s I .
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Quantization of isotopies

For K ∈ Dlb(kM×M×I ) and s0 ∈ I , we set

Ks0 := K |s=s0 .

Theorem (GKS12) We consider Φ: Ṫ ∗M × I −→ Ṫ ∗M as above. Then there
exists K ∈ Dlb(kM×M×I ) satisfying

(a) SS(K) ⊂ Λ ∪ T ∗M×M×I (M ×M × I ),

(b) K0 ' k∆.

Moreover:

(i) both projections Supp(K) ⇒ M × I are proper,

(ii) Ks ◦K−1
s ' K−1

s ◦Ks ' k∆ for all s ∈ I ,

(iii) such a K satisfying the conditions (a) and (b) above is unique up to a
unique isomorphism,

Here, K−1
s := v−1RHom (Ks , ωM � kM).
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Example.
Let M = Rn and denote by (x ; ξ) the homogeneous symplectic coordinates on
T ∗Rn. Consider the isotopy ϕs(x ; ξ) = (x − s ξ

|ξ| ; ξ), s ∈ I = R. Then

Λs = {(x , y , ξ, η); |x − y | = |s|, ξ = −η = λ(x − y), sλ < 0} for s 6= 0,

Λ0 = Ṫ ∗∆(M ×M).

For s ∈ R, the morphism k{|x−y|≤s} −→ k∆×{s=0} gives by duality (replacing s
with −s) k∆×{s=0} −→ k{|x−y|<−s}[n + 1]. We get a morphism
k{|x−y|≤s} −→ k{|x−y|<−s}[n + 1] and we define K by the distinguished triangle
in Db(kM×M×I ):

k{|x−y|<−s}[n] −→ K −→ k{|x−y|≤s}
+1−→

One can show that K is a quantization of the Hamiltonian isotopy {ϕs}s . We
have the isomorphisms in Db(kM×M): Ks ' k{|x−y|≤s} for s ≥ 0 and
Ks ' k{|x−y|<−s}[n] for s < 0.
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Non displaceability: symplectic case

Consider a compact manifold N and a (no more homogeneous) Hamiltonian
isotopy Φ = {ϕs}s∈I , that is, the ϕs : T ∗N −→ T ∗N are symplectomorphisms
and ∂

∂s
Φ is the Hamiltomian vector field of a time dependant function f

defined on T ∗N.

Theorem In the above situation, ϕs(T
∗
NN) ∩ T ∗NN 6= ∅ for all s ∈ I .
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Non displaceability: homogeneous symplectic case

The preceding theorem is deduced from the next one by choosing M = N × R
and ψ : N × R −→ R the projection.
Consider a homogeneous Hamiltonian isotopy Φ = {ϕs}s∈I : Ṫ ∗M × I −→ Ṫ ∗M
and a C 1-map ψ : M −→ R such that the differential dψ(x) never vanishes. Set

Λψ := {(x ; dψ(x)); x ∈ M} ⊂ Ṫ ∗M.

Theorem. Let F ∈ Db(kM) with compact support and such that
RΓ(M;F ) 6= 0. Then for any s ∈ I , ϕs(SS(F ) ∩ Ṫ ∗M) ∩ Λψ 6= ∅.

Proof. Let K ∈ Db(kM×M×I ) be the quantization of Φ.
Set:

Fs := Ks ◦F ∈ Db(kM) for s ∈ I .

We have F0 = F and RΓ(M;Fs) ' RΓ(M;F ) 6= 0. Hence, Λψ ∩ SS(Fs) 6= ∅.
Finally, SS(Fs) ∩ Ṫ ∗M = ϕs(SS(F ) ∩ Ṫ ∗M).
One could also prove Morse inequalities in this setting.
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Non displaceability: non-negative Hamiltonian isotopies

Consider a manifold M and Φ: Ṫ ∗M × I −→ Ṫ ∗M a homogeneous Hamiltonian
isotopy with [0, 1] ⊂ I . Define as above f : Ṫ ∗M × I −→ R by f = 〈αM , ∂Φ/∂s〉
so that Hf = ∂Φ/∂s.

Definition The isotopy Φ is said to be non-negative if f ≥ 0 on [0, 1].

Denoting by Λ ⊂ Ṫ ∗M × Ṫ ∗M × T ∗I the Lagrangian manifold associated with
Φ, this is equivalent to

Λ ⊂ {τ ≤ 0}.

Theorem Let M be a connected and non-compact manifold and let X ,Y be
two compact connected submanifolds of M. Let
Φ = {ϕt}t∈I : Ṫ ∗M × I −→ Ṫ ∗M be a non-negative homogeneous Hamiltonian
isotopy. Assume that ϕ1(Ṫ ∗XM) = Ṫ ∗YM. Then X = Y and ϕs |Ṫ∗

X
M = idṪ∗

X
M

for all s ∈ [0, 1].
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Example
On Ṫ ∗Rn choose f (s, x , ξ) =

√∑
i ξ

2, Φ(s, x , ξ) = (x + sξ/|ξ|, ξ). A similar
example on the n-sphere would contradicts the theorem since it interchanges
the conormal bundles to the north and south poles.
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The main tool of the proof is the following:
Lemma Let N be a manifold, I an open interval of R containing 0. Let
F ∈ Db(kN×I ) and, for t ∈ I , set Ft = F |N×{t} ∈ Db(kN). Assume that

(a) SS(F ) ⊂ {τ ≤ 0},
(b) SS(F ) ∩ (T ∗NN × T ∗I ) ⊂ T ∗N×I (N × I ),

(c) Supp(F ) −→ I is proper.

Then for all a ≤ b in I there is a natural morphism rb,a : Fa −→ Fb, which
induces the isomorphisms

RΓ(N × I ;F ) ∼−−→ RΓ(N;Fa) ∼−−→
rb,a

RΓ(N;Fb) ∼←−− RΓ(N × I ;F ).
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Statement of the theorem

Theorem (Eliashberg)
Let E be a real symplectic finite dimensional vector space. Let B(R) denote
the open ball with radius R > 0 and B(r) the closed ball with radius r ,
0 < r < R. Let ϕi : B(R) −→ E be a C 1-map, i ∈ N t {∞}. Assume that
ϕn is a diffeomorphism onto its image for all n ∈ N t {∞},
ϕn is a symplectic diffeomorphism onto its image for all n ∈ N,
||ϕn − ϕ∞||r

n−→ 0 where ||ψ||r = supx∈B(r) |ψ(x)|.
Then ϕ∞|B(r) is a symplectic diffeomorphism onto its image.
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Involutivity

Definition (KS82)
A locally closed subset S of a symplectic manifold X is co-isotropic (or
involutive) at p ∈ X if

Cp(S , S)⊥ ⊂ Cp(S).

Here, Cp(S ,Z) ⊂ TpX is the Whitney normal cone, Cp(S) = Cp({p}, S) and ⊥
is defined through the Hamiltonian isomorphism TX ∼−−→ T ∗X .

Theorem (KS82)
Let F ∈ Db(kM). Then SS(F ) is co-isotropic in T ∗M.

(a) Let S1 ⊂ S2 ⊂ X be locally closed subsets and let p ∈ S1. If S1 is
co-isotropic at p then so is S2.

(b) Let ρ : T ∗M × T ∗τ>0R −→ T ∗M be as above. Let S ⊂ T ∗M be a locally
closed subset and let p ∈ S , q ∈ ρ−1(p). Then S is co-isotropic at p if and
only if ρ−1S is co-isotropic at q.
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Guillermou’s proof

(1) Using an approximation lemma, we reduce to the case where for each n
there exists a Hamiltonian isotopy Φn defined on I ⊃ [0, 1] such that ϕn = Φ1

n.

(2) We can lift the isotopies Φn (n ∈ N t {∞}) to homogeneous isotopies Ψn

whose graphs are homogeneous Lagrangian submanifolds
Λn ⊂ (T ∗E × T ∗E × T ∗R× T ∗I ) ∩ {τ > 0}, where (t; τ) are the coordinates
on T ∗R and denoting by ρ the map

ρ : T ∗E × T ∗E × T ∗R× T ∗I ∩ {τ > 0},−→ T ∗E × T ∗E × T ∗I ,

ρ : (x , y , t, s; ξ, η, τ, σ) 7→ (x , y , s; ξ/τ, η/τ, σ/τ)

we have ΓΦn = ρ(Λn). We have to show that Γϕ∞ is co-isotropic.
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(3) For a sequence Kn ∈ D[a,b](kX ), n ∈ N, define K∞ ∈ D[a,b](kX ) by the d.t.⊕
n

Kn −→
∏
n∈N

Kn −→ K∞
+1−→ .

Note that

SS(K∞) ⊂
⋂
k∈N

⋃
n≥k

SS(Kn).

(4) Using the GKS theorem, for each n, there exists Kn ∈ D[a,b](kE×E×R×I )
whose microsupport is contained in Λn and Kn|s=0 is the constant sheaf on the
diagonal.
(5) Main technical part: prove that given x ∈ B(r), K∞ is not constant (in
particular, not 0) in a neighborhood of x . Since SS(K∞) ⊂ Γϕ∞ and we may
assume that Γϕ∞ is in generic position, this will completes the proof.
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