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Introduction

The aim of these Notes is to introduce the reader to the theory of D-modules in
the analytical setting. This text is a short introduction, not a systematic study.
In particular many proofs are skipped and the reader is encouraged to consult the
literature. To our opinion, the best reference to D-modules is [Ka03], and, in fact,
most of the material of these Notes are extracted from this book.

Indeed, although we do not mention it in the course of the notes, almost all the
results and proofs exposed here are due to Masaki Kashiwara.

References for D-modules. Some classical titles are [Ka70,Ka83,Bj93,Ka03] and,
in the algebraic setting, [Bo87]. An elementary introduction may also be found in
[Co85]. Applications to D-modules to representation theory are studied in [HTT08].

Related theories to D-modules. Microdifferential operators are the natural
localization of differential operators. References are made to [SKK73, Ka83, Sc85].
In fact, microdifferential operators may also be considered as an avatar of rings of
deformation quantization for which there exists an enormous literature. See [KS12]
and the references therein.

References for categories, homological algebra and sheaves. The reader is
assumed to be familiar with sheaf theory as well as homological algebra, including
derived categories. An exhaustive treatment may be found in [KS06] and a pedagog-
ical treatment is provided in [Sc08]. Among numerous other references, see [GM96],
[KS90, Ch. 1, 2] [We94].

History. An outline of D-module theory, including holonomic systems, was pro-
posed by Mikio Sato in the early 60’s in a series of lectures at Tokyo University
(see [Sc07]). However, it seems that Sato’s vision has not been understood until his
student, Masaki Kashiwara, wrote his thesis in 1970 (see [Ka70]). Independently
and at the same time, J. Bernstein, a student of I. Gelfand at Moscow’s University,
developed a very similar theory in the algebraic setting (see [Be71]).
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Chapter 1

The ring DX

In all these Notes, all rings are associative and unital. If R is a ring, an R-module
means a left R-module and we denote by Mod(R) the abelian category of such mod-
ules. We denote by Rop the opposite ring. Hence, Mod(Rop) denotes the category of
right R-modules. If a, b belong to R, their bracket [a, b] is given by [a, b] = ab− ba.
We use similar conventions and notations for a sheaf of rings R on a topological
space X. In particular, Mod(R) denotes the category of sheaves of left R-modules
on X.

1.1 Construction of DX

O-modules

Let X denote a complex manifold, OX its structural sheaf, that is, the sheaf of holo-
morphic functions on X. Unless otherwise specified, we denote by dX the complex
dimension of X. We denote by Ωp

X the sheaf of holomorphic p-forms and one sets
ΩX = ΩdX

X . One also sets

Ω• =
⊕
p

Ωp
X .(1.1.1)

We denote by Mod(CX) the abelian category of sheaves of C-vector spaces on
X, and we denote by Hom and ⊗ the internal Hom and tensor product in this
category. For F ∈ Mod(CX), we set E nd(F ) = HomCX (F, F ).

Similarly, we denote by Mod(OX) the abelian category of sheaves of OX-modules,
and we denote by HomO and ⊗O the internal Hom and tensor product in this cat-
egory. We denote by Modc(OX) the full abelian subcategory consisting of coherent
sheaves.

One denotes by ΘX the sheaf of Lie algebras of holomorphic vector fields. Hence,
ΘX = HomO(Ω1

X ,OX).
The sheaf ΘX has two actions on Ω•, that we recall. Let v ∈ ΘX . The interior

derivative iv ∈ E nd(Ω•X) is characterized by the conditions
iv(a) = 0, a ∈ OX

iv(ω) = 〈v, ω〉, ω ∈ Ω1,
iv(ω1 ∧ ω2) = (ivω1) ∧ ω2 + (−)pω1 ∧ (ivω2), ω1 ∈ Ωp

X .
(1.1.2)

Note that iv : Ωp
X −→ Ωp−1

X is of degree −1.
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8 CHAPTER 1. THE RING DX

On the other-hand, the Lie derivative Lv ∈ E nd(Ω•X) is characterized by the
conditions 

Lv(a) = v(a) = 〈v, da〉, a ∈ OX ,
d ◦ Lv = Lv ◦ d,
Lv(ω1 ∧ ω2) = (Lvω1) ∧ ω2 + ω1 ∧ (Lvω2),

(1.1.3)

The Lie derivative is of degree 0 and satisfies

[Lu, Lv] = L[u,v], u, v ∈ ΘX .(1.1.4)

One has the relations

Lv = d ◦ iv + iv ◦ d.(1.1.5)

Using v 7→ Lv, one may regard ΘX as a subsheaf of E nd(OX).

The ring DX

Definition 1.1.1. One denotes by DX the subalgebra of E nd(OX) generated by
OX and ΘX .

If (x1, . . . , xn) is a local coordinate system on a local chart U of X, then a section
P of DX on U may be uniquely written as a polynomial

P =
∑
|α|≤m

aα∂
α(1.1.6)

where aα ∈ OX , ∂i = ∂xi = ∂
∂xi

and we use the classical notations for multi-indices:
α = (α1, . . . , αn) ∈ Nn,
|α| = α1 + · · ·+ αn,
if X = (X1, . . . , Xn), then Xα = Xα1 . . . Xαn .

Proposition 1.1.2. Let R be a sheaf of CX-algebras and let ι : OX −→ R and
ϕ : ΘX −→ R be CX-linear morphisms satisfying (here, a, b ∈ OX and u, v ∈ ΘX):

(i) ι : OX −→ R is a ring morphism, that is, ι(ab) = ι(a)ι(b),

(ii) ϕ : ΘX −→ R is left OX-linear, that is, ϕ(av) = ι(a)ϕ(v),

(iii) ϕ : ΘX −→ R is a morphism of Lie algebras, that is, [ϕ(u), ϕ(v)] = ϕ([u, v]),

(iv) [ϕ(v), ι(a)] = ι(v(a)) for any v ∈ ΘX and a ∈ OX .

Then there exists a unique morphism of CX-algebras Ψ : DX −→ R such that the
composition OX −→ DX −→ R coincides with ι and the composition ΘX −→ DX −→ R
coincides with ϕ.

The proof is straightforward.

Corollary 1.1.3. Let M be an OX-module and let µ : OX −→ E nd(M ) be the action
of OX on M . Let ψ : ΘX −→ E nd(M ) be a CX-linear morphism satisfying:
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(i) µ(a) ◦ ψ(v) = ψ(av) (resp. ψ(v) ◦ µ(a) = ψ(av)).

(ii) [ψ(v), ψ(w)] = ψ([v, w]) (resp. [ψ(v), ψ(w)] = −ψ([v, w])),

(iii) [ψ(v), µ(a)] = µ(v(a)), (resp. [ψ(v), µ(a)] = −µ(v(a))).

Then there exists one and only one structure of a left (resp. right) DX-module on
M which extends the action of ΘX .

Proof. For the structure of a left module, apply Proposition 1.1.2 to R = E nd(M ).
The case of right modules follows since the bracket [a, b]op in Dop

X is −[a, b], where
[a, b] is the bracket in DX .

Examples 1.1.4. (i) The sheaf OX is naturally endowed with a structure of a left
DX-module and 1 ∈ OX is a generator. Since the anihilator of 1 is the left ideal
generated by ΘX , we find an exact sequence of left DX-modules

DX ·ΘX −→ DX −→ OX −→ 0.

Note that if X is connected and f is a section of OX , f 6= 0 (i.e., f is not identically
zero), then f is also a generator of OX over DX . This follows from the Weierstrass
Preparation Lemma. Indeed, choosing a local coordinate system (x1, . . . , xn), one
may write f =

∑m
j=0 aj(x

′)xj1, with am ≡ 1. Then ∂m1 (f) = m!.
(ii) The sheaf ΩX is naturally endowed with a structure of a right DX-module, by

v(ω) = −Lv(ω), v ∈ ΘX , ω ∈ ΩX .

(iii) Let F be an OX-module. Then DX ⊗O F is a left DX-module.
(iv) Let Z be a closed complex submanifold of X of codimension d. Then Hd

Z(OX)
is a left DX-module.
(v) Let X be a complex manifold and let P be a differential operator on X. The
differential equation Pu = v may be studied via the left DX-module DX/DX · P .
(See below.)
(vi) Let X = Cn and consider the differential operators P =

∑n
j=1 ∂

2
j , Qij = xi∂j −

xj∂i. Consider the left ideal J of DX generated by P and the family {Qij}i<j. The
left DX-module DX/J is naturally associated to the operator P and the orthogonal
group O(n;C).

Internal hom and tens

The sheaf DX is a sheaf of non commutative rings and CX is contained (in fact, is
equal, but we have not proved it here) in its center. It follows that we have functors:

HomD : (Mod(DX))op ×Mod(DX) −→ Mod(CX),

⊗D : Mod(Dop
X )×Mod(DX) −→ Mod(CX).

We shall now study hom and tens over OX .
Let M ,N and P be left DX-modules and let M ′ and N ′ be right DX-modules.

(a) One endows M ⊗
O

N with a structure of a left DX-module by setting

v(m⊗n) = v(m)⊗n+m⊗ v(n), m ∈M , n ∈ N , v ∈ ΘX .
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(b) One endows HomO(M ,N ) with a structure of a left DX-module by setting

v(f)(m) = v(f(m))− f(v(m)), m ∈M , f ∈HomO(M ,N ), v ∈ ΘX .

(c) One endows N ′ ⊗
O

M with a structure of a right DX-module by setting

(n⊗m)v = nv ⊗m− n⊗ vm, m ∈M , n ∈ N ′, v ∈ ΘX .

(d) One endows and HomO(M ′,N ′) with a structure of a left DX-module by
setting

v(f)(m) = f(mv)− f(m)v m ∈M ′, f ∈HomO(M ′,N ′), v ∈ ΘX .

(e) One endows and HomO(M ,N ′) with a structure of a right DX-module by
setting

(fv)(m) = f(m)v + f(vm) m ∈M , f ∈HomO(M ,N ′), v ∈ ΘX .

There are isomorphisms of CX-modules;

HomD(M ⊗
O

N ,P) 'HomD(M ,HomO(N ,P)),

HomD(M ′ ⊗
O

M ,N ) 'HomD(M ,HomO(M ′,N )),

(M ′ ⊗
O

M )⊗D N 'M ′ ⊗
D

(M ⊗
O

N ).

To summarize, we have functors

⊗O : Mod(DX)×Mod(DX) −→ Mod(DX),

⊗O : Mod(Dop
X )×Mod(DX) −→ Mod(Dop

X ),

HomO : Mod(DX)op ×Mod(DX) −→ Mod(DX),

HomO : Mod(Dop
X )op ×Mod(Dop

X ) −→ Mod(DX),

HomO : Mod(DX)op ×Mod(Dop
X ) −→ Mod(Dop

X ).

Remark 1.1.5. Following [HTT08] who call it the Oda’s rule, one way to memorize
the left an right actions is to use the correspondence left = 0, right = 1, a⊗b = a+b
and Hom (a, b) = −a+ b.

Twisted DX-modules

Let L be a holomorphic line bundle, that is, a locally free OX-module of rank one.
One sets

L ⊗− 1 = HomO(L ,OX).

There are a natural isomorphisms

OX
∼−→HomO(L ,L )

∼←−HomO(L ,OX)⊗O L .

If s is a section of L ⊗− 1 and t a section of L , their product will be denoted by
〈s, t〉, a section of OX .

Let R be a OX-ring, that is, a sheaf of rings together with a morphism of rings
OX −→ R. One can define a new OX-ring L ⊗R ⊗L ⊗− 1 by setting (with obvious
notations)

(s⊗m⊗ t) · (s′ ⊗m′ ⊗ t′) = s⊗m〈t, s′〉m′ ⊗ t′.

If M is a left R-module, then L ⊗O M is a left L ⊗O R⊗O L ⊗− 1-module. Clearly:



1.2. FILTRATION ON DX 11

Proposition 1.1.6. The functor M 7→ L ⊗O M is an equivalence of categories
from Mod(R) to Mod(L ⊗O R ⊗O L ⊗− 1).

Proposition 1.1.7. There is an isomorphism of OX-rings Dop
X ' ΩX ⊗O DX ⊗O

Ω⊗− 1

X .

Proof. The right DX-module structure of ΩX defines the morphism of rings

Dop
X −→ E nd(ΩX).

On the other-hand, the morphism DX −→ E nd(OX) defines the morphism of rings

ΩX ⊗O DX ⊗O Ω⊗− 1

X −→ E nd(ΩX).

Both these morphisms are monomorphisms, and to check that their images in
E nd(ΩX) are the same, one remark that both rings are generated by OX and ΘX .

Corollary 1.1.8. The functor M 7→ Ω⊗O M induces an equivalence of categories
Mod(DX) ∼−→ Mod(Dop

X )

Remark 1.1.9. Suppose to be given a volume form dv on X. Then f 7→ fdv gives
an isomorphism OX

∼−→ ΩX and we get an isomorphism DX ' Dop
X . The image of

a section P ∈ DX by this isomorphism is called its adjoint with respect to dv and is
denoted by P ∗. Hence, for a left DX-module M and a section u of M , we have

P · u = (u · dv) · P ∗.
Clearly (Q ◦ P )∗ = P ∗ ◦ Q∗. If (x1, . . . , xn) is a local coordinate system on X and
dv = dx1 ∧ · · · ∧ dxn, one checks that x∗i = xi and ∂∗xi = −∂xi .

1.2 Filtration on DX

Total symbol of differential operators

Assume X is affine, that is, X is open in a finite dimensional complex vector space
E. Let P be a section of DX . One defines its total symbol

σtot(P )(x; ξ) := exp〈−x, ξ〉P (exp〈x, ξ〉) =
∑
|α|≤m

aα(x)ξα.(1.2.1)

Using (1.1.6), one gets that σtot(P ) is a function on X×E∗, polynomial with respect
to ξ ∈ E∗. This function highly depends on the affine structure, but its order (a
locally constant function on X) does not. It is called the order of P and denoted
ord(P ).

If Q is another differential operator with total symbol σtot(Q), it follows easily
from the Leibniz formula that the total symbol σtot(R) of R = P ·Q is given by:

σtot(R) =
∑
α∈Nn

1

α!
∂αξ (σtot(P ))∂αx (σtot(Q)).(1.2.2)

By this formula, one gets that

ord(P ·Q) = ord(P ) + ord(Q),

ord([P,Q]) ≤ ord(P ) + ord(Q)− 1.

The ring DX is now endowed with the filtration “ by the order”,

Flm(DX) = {P ∈ DX ; ord(P ) ≤ m}.
One can give a more intrinsic definition of the filtration.
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Filtration on DX

Definition 1.2.1. The filtration FlDX on DX is given by

Fl−1DX = {0}, FlmDX = {P ∈ DX ; [P,OX ] ∈ Flm−1DX}.

Note that{
Fl0DX = OX , Fl1DX = OX ⊕ΘX ,
FlmDX · FllDX ⊂ Flm+lDX , [FlmDX ,FllDX ] ⊂ Flm+l−1DX .

(1.2.3)

One denotes by GrDX the associated graded ring, by σ : FlDX −→ GrDX the “prin-
cipal symbol map” and by σm : FlmDX −→ GrmDX the map “symbol of order m”.

One shall not confuse the total symbol, which is defined on affine charts, and
the principal symbol, which is well defined on manifolds.

It follows from (1.2.2) that σ(P )σ(Q) = σ(Q)σ(P ) = σ(P · Q). Hence, Gr(DX)
is a commutative graded ring. Moreover, Gr0(DX) ' OX and Gr1(DX) ' ΘX .

Denote by SO(ΘX) the symmetric OX-algebra associated with the locally free
OX-module ΘX . By the universal property of symmetric algebras, the morphism
ΘX −→ Gr(DX) may be extended to a morphism of symmetric algebra

SO(ΘX) −→ GrDX .(1.2.4)

Proposition 1.2.2. The morphism (1.2.4) is an isomorphism.

Proof. Choose a local coordinate system (x1, . . . , xn) on X. Then ΘX '
⊕n

i=1 OX∂i
and the correspondence ∂i 7→ ξi gives the isomorphism

SO(ΘX) '
⊕
α

OX∂
α ' OX [ξ1, . . . , ξn] ' GrDX .

Denote by π : T ∗X −→ X the projection. There is a natural monomorphism

ΘX ↪→ π∗OT ∗X .

Indeed, a vector field on X is a section of the tangent bundle TX, hence defines a
linear function on T ∗X.

By the universal property of symmetric algebra, we get a monomorphism SO(ΘX) ↪→
π∗OT ∗X . Applying Proposition 1.2.2, we get an embedding of CX-algebras:

GrDX ↪→ π∗OT ∗X .

In the sequel, we shall still denote by

σ : DX −→ π∗OT ∗X and σm : FlmDX −→ π∗OT ∗X ,

the maps obtained by applying the inverse of the isomorphism (1.2.4) to σ and σm.

Theorem 1.2.3. The sheaf of rings DX is right and left Noetherian.

Proof. This follows from Proposition 1.2.2 and general results of [Ka03, Th. A.20]
on filtered ring with associated commutative graded ring (see Theorem 3.3.5).



1.3. CHARACTERISTIC VARIETY 13

1.3 Characteristic variety

We shall use here the results of § 3.4.

Poisson’s structures

The graded ring Gr(DX) is endowed with a natural Poisson bracket induced by the
commutator in DX .

On the other hand, the sheaf OT ∗X (hence, the sheaf π∗OT ∗X) is endowed with
the Poisson bracket induced by the symplectic structure of T ∗X. Recall that if
(x1, . . . , xn; ξ1, . . . , ξn) is a local symplectic coordinate system on T ∗X, this Poisson
bracket is given by

{f, g} =
n∑
i=1

∂ξif ∂xig − ∂xif ∂ξig.

Proposition 1.3.1. The Poisson bracket on π∗OT ∗X induces the Poisson bracket
on Gr(DX).

Proof. Let P ∈ Flm(DX) and Q ∈ Fll(DX). Then [P,Q] ∈ Flm+l−1(DX) and it
follows from (1.2.2) that

σm+l−1([P,Q]) =
n∑
i=1

(
∂ξiσm(P )∂xiσl(Q)− ∂ξiσl(Q)∂xiσm(P )

)
.(1.3.1)

Hence, σm+l−1([P,Q]) = {σm(P ), σl(Q)}.

Good filtration

We shall recall some notions also introduced in § 3.3, 3.4. Recall that a good
filtration on a coherent DX-module M is a filtration which is locally the image of a
finite free filtration. Hence, a filtration FlM on M is good if and only if,

locally on X, FljM = 0 for j � 0,
FljM is OX-coherent,
locally on X, (FlkDX) · (FljM ) = Flk+jM for j � 0 and
all k ≥ 0.

(1.3.2)

Applying Corollary 3.3.6, we get:

Lemma 1.3.2. Let M be a coherent DX-module, N ⊂M a coherent submodule.
Assume that M is endowed with a good filtration FlM . Then the induced filtration
on N defined by FljN = N ∩ FljM is good.

Denote by Modgr
coh(GrDX) the abelian category of coherent graded GrDX-modules

and consider the functor

˜: Modgr
coh(GrDX)−→Modc(π∗OT ∗X),

GrM 7→ π∗OT ∗X ⊗GrDX
GrM .

This functor is exact and faithful. If M is a coherent DX-module endowed with a
good filtration, the π∗OT ∗X-module

G̃rM = π∗OT ∗X ⊗GrDX
GrM



14 CHAPTER 1. THE RING DX

is thus coherent and its support satisfies:

supp(G̃rM ) = {p ∈ T ∗X;σ(P )(p) = 0 for any P ∈ Icar(M )}.

In the sequel, we shall often confuse GrM and G̃rM .

Definition 1.3.3. The characteristic variety of M , denoted char(M ), is the closed
subset of T ∗X characterized as follows: for any open subset U of X such that M |U
is endowed with a good filtration, char(M )|T ∗U is the support of G̃rM |U .

Theorem 1.3.4. (i) char(M ) is a closed C×-conic analytic subset of T ∗X.

(ii) char(M ) is involutive for the Poisson structure of T ∗X, and in particular,
codim(char(M )) ≤ dX .

(iii) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence of coherent DX-modules,
then

char(M ) = char(M ′) ∪ char(M ′′).

Proof. (i) is obvious, (ii) follows from Gabber’s theorem and (iii) follows from
Lemma 1.3.2.

Note that the involutivity theorem has first been proved by Sato, Kashiwara and
Kawai [SKK73] using analytical tools, before Gabber gave is purely algebraic proof.

Suppose that a coherent DX-module M is generated by a single section u. Then
M ' DX/I , where I is the anihilator of u. There is a natural filtration on M ,
the image of FlDX . Put FljI = I ∩ FljDX . It follows from Corollary 3.3.6 that
the graded ideal GrI is coherent. Moreover, since GrM = GrDX/GrI , we get

char(M ) = {p ∈ T ∗X;σj(P )(p) = 0 for all P ∈ Flj(I )}.(1.3.3)

If {P0, . . . , PN} generates I it follows that

char(M ) ⊂
⋂
j

σ(Pj)
−1(0).

In general the equality does not hold, since the family of the Pj’s may generate I
although the family of the σmj(Pj)’s does not generate GrI .

Example 1.3.5. If X = A1(C), the affine line, the ideal generated by ∂ and x is
DX , but the ideal generated by their principal symbols is not OT ∗X .

Corollary 1.3.6. Let M be a coherent DX-module, let p ∈ T ∗X and assume that
p /∈ char(M ). Let u ∈ M . Then there exists a section P ∈ DX defined in a
neighborhood of π(p) with Pu = 0 and σ(P )(p) 6= 0.

Proof. Consider the sub-DX-module DXu generated by u. It is coherent and its
characteristic variety is contained in that of M . Let I denotes the anihilator ideal of
u in DX and let P1, . . . , PN denotes sections of this ideal such that σ(P1), . . . , σ(PN)
generate the graded ideal GrI . Such a finite family exists since GrI is coherent.
Since p /∈ char(DXu), there exists j with σ(Pj)(p) 6= 0.

Example 1.3.7. (i) char(OX) = T ∗XX, the zero-section of T ∗X.
(ii) char(DX/DX · P ) = {p ∈ T ∗X;σ(P )(p) = 0}.
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Multiplicities

By the result of Proposition 3.5.2, one sees that if M is a coherent DX-module and

V is an irreducible component of char(M )∪V , then multV (G̃rM ) depends only on
M .

Definition 1.3.8. Let V be a closed analytic subset of T ∗X and let M be a coherent
DX-module such that V is an irreducible component of char(M ) ∪ V . The number

multV (G̃rM ) is called the multiplicity of M along V and denoted multV (M ).

If 0 −→M ′ −→M −→M ′′ −→ 0 is an exact sequence of cherent DX-modules with
V irreducible in char(M ) ∪ V , then

multV (M ) = multV (M ′) + multV (M ′′).

Involutive basis

Definition 1.3.9. Let I be a coherent ideal of DX and let {P1, . . . , PN} be a family
of sections of I , with Pj of order mj. One says that this family is an involutive
basis of I if the family {σ(P1), . . . , σ(PN)} generates GrI .

Proposition 1.3.10. Assume

(i) ∩Nj=1σmj(Pj)
−1(0) is of codimension N ,

(ii) there exist Qjkl ∈ Flmj+mk−ml−1DX such that for all j, k

[Pj, Pk] =
∑
l

QjklPl

Then {P1, . . . , PN} is an involutive basis.

Proof. Set pj = σ(Pj). Let aj ∈ Grl−mjDX with∑
j

ajpj = 0.

By Proposition 3.4.9, it is enough to find Aj ∈ DX with σ(Aj) = aj and such that∑
j

AjPj = 0.

By the hypothesis, the sequence {p1, . . . , pN} is a regular sequence. Hence, we may
find rij ∈ Grl−mi−mjDX satisfying

aj =
∑
i

rijpi, rij = −rji.

Next we choose Rij ∈ Fll−mi−mjDX with σ(Rij) = rij and Rij = −Rji. Set Aj =∑
iRijPi. Then σl−mj(Aj) = aj and∑

j

AjPj =
∑
i,j

RijPiPj =
∑
i<j

Rij[Pi, Pj]

=
∑
i<j

∑
k

RijQijkPk.

Set Sk =
∑

i<j RijQijk. Then Sk has order ≤ l −mk − 1,
∑

j(Aj − Sj)Pj = 0 and
σl(Aj − Sj) = aj.
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1.4 De Rham and Spencer complexes

If A is a ring, M is an A-module, and ϕ := (ϕ1, . . . , ϕn) are n-commuting endo-
morphisms of M , one can define the Koszul complex K•(M ;ϕ) and the co-Koszul
complex K•(M ;ϕ). We refer to [Sc08] for an exposition.

Also recall the De Rham complex

DRX(OX) := 0 −→ Ω0
X

d−→ Ω1
X

d−→ · · · −→ ΩdX
X −→ 0,(1.4.1)

where d is the differential.
Let M be a left DX-module. One defines the differential d : M −→ Ω1

X ⊗O M as
follows. In a local coordinate system (x1, . . . , xdX ) on X, the differential d is given
by

M −→ Ω1
X ⊗O M , m 7→

∑
i

dxi ⊗ ∂im

and one checks easily that this does not depend on the choice of the local coordinate
system.

One defines the De Rham complex of M , denoted DRX(M ), as the complex

DRX(M ) := 0 −→ Ω0
X ⊗O M

d−→ · · · −→ ΩdX
X ⊗O M −→ 0,(1.4.2)

where Ω0
X ⊗O M is in degree 0 and the differential d is characterized by:

d(ω ⊗m) = dω ⊗m+ (−)pω ∧ dm, ω ∈ Ωp
X ,m ∈M .

Note that DRX(DX) ∈ Cb(Mod(Dop
X )), the category of bounded complexes of right

DX-modules, and

DRX(M ) ' DRX(DX)⊗D M .(1.4.3)

Recall that there is a natural right D-linear morphism ΩX ⊗O DX −→ ΩX . Moreover,
one checks easily that the composition

ΩdX−1
X ⊗O DX −→ ΩdX

X ⊗O DX −→ ΩX

is zero. Hence, we get a morphism in the derived category Db(Dop
X )

DRX(DX) −→ ΩX [−dX ].(1.4.4)

Proposition 1.4.1. The morphism (1.4.4) induces an isomorphism in Db(Dop
X ).

Proof. Since the morphism is well defined on X, we may argue locally and choose a
local coordinate system. In this case, there is an isomorphism of complexes

DRX(DX) ' K•(DX ; ∂1·, . . . , ∂dX ·)(1.4.5)

where the right hand side is the Koszul complex of the the sequence ∂1·, . . . , ∂n·
acting on the left on DX . Since this sequence is clearly regular, the result follows.

Applying Proposition 1.4.1 and isomorphism (1.4.3), we get:
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Corollary 1.4.2. Let M be a left DX-module. Then

DRX(M ) ' ΩX

L
⊗

D
M [−dX ].

Let us apply the contravariant functor HomDop( • ,DX) to the complex DRX(DX).
One sets

SPX(DX) := HomD(DRX(DX),DX),(1.4.6)

and calls SPX(DX) the Spencer complex.

SPX(DX) := 0 −→ DX ⊗O

dx∧
ΘX

d−→ · · · −→ DX ⊗O ΘX −→ DX −→ 0,(1.4.7)

One deduces from (1.4.5) the isomorphism of complexes

SPX(DX) ' K•(DX; ·∂1, . . . , ·∂dX
)(1.4.8)

where the right hand side is the co-Koszul complex of the sequence ·∂1, . . . , ·∂dX
acting on the right on DX . Since this sequence is clearly regular, we obtain:

Proposition 1.4.3. The left D-linear morphism DX −→ OX induces an isomorphism
SPX(DX) ∼−→ OX in Db(DX).

Corollary 1.4.4. Let M be a left DX-module. There is an isomorphism in Db(CX)

RHomD(OX ,M ) ' DRX(M ).

Proof. Since SPX(DX) is a complex of locally free DX-modules of finite rank, one
has

RHomD(OX ,M )'HomD(SPX(DX),M )

'HomD(SPX(DX),DX)⊗D M

'DRX(DX)⊗D M

'DRX(M ).

Proposition 1.4.5. One has the isomorphism

RHomD(OX ,DX)[dX ] ' ΩX

RHomDop(ΩX ,DX)[dX ] ' OX

RHomD(OX ,OX) ' CX .

Proof. (i) One has the chain of isomorphisms

RHomD(OX ,DX)[dX ]'RHomD(SPX(DX),DX)[−dX]

'HomD(SPX(DX),DX)[−dX]

'DR(DX)[−dX ] ' ΩX .

(ii) The proof is similar.
(iii) The canonical morphism CX −→HomD(OX ,OX) induces the morphism

CX −→RHomD(OX ,OX)

'HomD(SPX(DX),OX)

' Ω•X .

The isomorphism CX
∼−→ Ω•X is the classical Poincaré lemma.
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1.5 Homological properties of DX

Vanishing theorems and dimension

There is a corresponding theorem to Theorem 3.5.6 for D-modules.

Theorem 1.5.1. Let M be a coherent DX-module. Then

(i) Extk
D

(M ,DX) is coherent for all k and is 0 for k < codim(char(M )),

(ii) codim(char(Extk
D

(M ,DX))) ≥ k,

(iii) char(Extk
D

(M ,DX)) ⊂ char(M ),

(iv) Extk
D

(M ,DX) = 0 for k > dX .

Corollary 1.5.2. Let M be a coherent DX-module. Then the support of ExtdX
D

(M ,DX)
has pure dimension dX .

Proof. First we construct by induction a finite free filtered resolution of FlM , that
is, a filtered exact sequence of FlDX-modules

· · · −→ FlL1 −→ FlL0 −→ FlM −→ 0

where the FlLj’s are filtered finite free. We denote by dj the differential. Set:

FlL• := · · · −→ FlL1 −→ FlL0 −→ 0,

GrL• := · · · −→ GrL1 −→ GrL0 −→ 0.

Then

· · · −→ GrL1 −→ GrL0 −→ GrM −→ 0

is exact. Put

L ∗
j = HomD(Lj,DX),

L ∗
• = HomD(L•,DX) = 0 −→ L ∗

0 −→ L ∗
1 −→ · · ·

One defines a filtration FlL ∗
j on L ∗

j by setting

FlmL ∗
j = {ϕ ∈HomD(Lj,DX);ϕ(FlkLj) ⊂ Flk+mDX for all k}.

Clearly, this filtration on L ∗
j is good and moreover HomGrD(GrLj,GrD) ' GrL ∗

j .
In other words,

HomGrD(GrL•,GrD) ' GrL ∗
• .

Put

Z k = ker(Lk
dk−→ Lk+1), I k = Im(Lk−1 −→ Lk) Hk(L ∗

• ) = Z k/I k.

We endow Z k with the induced filtration and Hk(L ∗
• ) with the filtration image of

FlZ k. Since Extk
D

(M ,DX) ' Hk(L ∗
• ), we get a filtration FlExtk

D
(M ,DX) on this

module. Moreover Extk
GrD

(GrM ,GrDX)) ' Hk(GrL ∗
• ).

In order to complete the proof, we need a lemma.
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Lemma 1.5.3. GrHk(L ∗
• ) is a subquotient of Hk(GrL ∗

• ).

Proof of Lemma 1.5.3.

Hk(GrmL ∗
• ) =

Flm(L ∗
k ) ∩ (dk)

−1
Flm−1L ∗

k+1

Flm−1(L ∗
k ) + dk−1FlmL ∗

k−1

⊃ Flm(Z k)

Flm−1(Zk) + dk−1FlmL ∗
k−1

.

On the other-hand,

GrmH
k(L ∗

• ) =
Flm(Z k)

Flm−1(Zk) + I k ∩ Flm(Zk)
.

The result then follows from

Flm−1(Zk) + dk−1FlmL ∗
k−1 ⊂ Flm−1(Zk) + I k ∩ Flm(Zk).

End of proof of Theorem 1.5.1. It follows that

char(Extk
D

(M ,DX)) ⊂ supp(Extk
GrD

(GrM ,GrDX))).(1.5.1)

(i) By Theorem 3.5.6, Extk
O

(G̃rM ,OT ∗X)) = 0 for k < codim(char(M )). By (1.5.1),

we get that Extk
D

(M ,DX) = 0 for k < codim(char(M )).

(ii) By Theorem 3.5.6, codim(supp(Extk
GrD

(GrM ,GrDX))) ≥ k. By (1.5.1), we get

that codim(char(Extk
D

(M ,DX))) ≥ k.

(iii) follows from the inclusion

supp(Extk
GrD

(GrM ,GrDX)) ⊂ supp(GrM ).

(iv) follows from (ii) and the involutivity of the characteristic variety of Extk
D

(M ,DX).

Example 1.5.4. Let dX = 1. Then any coherent ideal I of DX is projective since
Extj

D
(DX/I ,DX) = 0 for j > 1.

Let t denote a local holomorphic coordinate. The left ideal of DX generated by
t2 and t∂t − 1 is projective. By Theorem 1.3.4, its characteristic is T ∗X. Since it is
contained in DX , its multiplicity on T ∗X is 1. This module does not admits a single
generator, and it follows that it is not free.

Free resolutions

Theorem 1.5.5. Let M be a coherent DX-module. Then, locally on X, M admits
a finite free resolution of length ≤ dX . In other words, there locally exists an exact
sequence

0 −→ L dX −→ · · · −→ L 0 −→M −→ 0,

where the L i’s are free of finite rank over DX .
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Proof. Set n = dX . Since we argue locally, we may endow M with a good filtration
FlM . We may locally find a finite free filtered resolution

· · · −→ FlL n −→ · · · −→ FlL 0 −→ FlM −→ 0.

On the other-hand, we know that Extj
GrD

(GrM ,GrDX) = 0 for j > n. Set K n =

ker(L n−1 −→ L n−2) and let us endow Kn with the induced filtration. Then the
sequence

0 −→ GrK n −→ GrL n−1 −→ · · · −→ GrL 0 −→ GrM −→ 0

is exact and it follows that GrK n is projective. Since projective modules over GrDX

are stably free, there exists a finite free DX module L such that GrK n ⊕ GrL is
free and this implies that K n ⊕L is a free DX-module. The sequence

0 −→ K n ⊕L −→ L n−1 ⊕L −→ · · · −→ L 0 −→M −→ 0

is a finite free resolution of M .

Homological dimension

Let R be a ring. Recall that the global homological dimension of R, gld(R), is
the biggest d ∈ N ∪ {∞} such that there exist left R-modules M and N with
Extd

R
(M,N) 6= 0.

For a sheaf of rings R on a topological space X, the global homological dimension
of R, gld(R), is the biggest d ∈ N∪{∞} such that there exist sheaves of R-modules
M and N with Extd

R
(N ,M ) 6= 0.

The weak global homological dimension of R, wgld(R), also called the Tor-
dimension of R, is the biggest d ∈ N∪ {∞} such that there exists a right R-module
N and a left R-module M with Tor[R]d(N,M) 6= 0.

For a sheaf of rings R, wgld(R) is the maximum of wgld(Rx), for x ∈ X.

Lemma 1.5.6. (i) The OX-module DX is flat.

(ii) If a DX-module I is injective in the category Mod(DX), then it is injective in
the category Mod(OX).

Proof. (i) Locally, DX is isomorphic to OX
(N).

(ii) follows from (i). Indeed, if N is a DX-module, then

HomO(N ,I ) ' HomD(DX ⊗O N ,I ).

Recall that if M and N are two left DX-modules, HomO(M ,N ) has a natural
structure of a left DX-modules. By Lemma 1.5.6 we get that the natural forgetful
functor Db(DX) −→ Db(OX) commutes with RHomO .

Lemma 1.5.7. Let M ,N ∈ Mod(DX). Then

RHomD(M ,N ) ' RHomD(OX ,RHomO(M ,N )).
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Proof. Since this formula is true when replacing RHom with Hom , it is enough
to show that if N is an injective DX-module, then

Hj(RHomD(OX ,HomO(M ,N ))) = 0 for j > 0.

Choose a finite free DX-resolution L • of OX (for example, take L • = SPX(DX)).
Notice that L • ⊗O M −→M is a quasi-isomorphism of left DX-modules. Using the
fact that N is OX and DX-injective, we get:

RHomD(OX ,HomO(M ,N ))'RHomD(OX ,RHomO(M ,N ))

'RHomD(L •,HomO(M ,N ))

'RHomD(L • ⊗O M ,N )

'RHomD(M ,N ) 'HomD(M ,N ).

Theorem 1.5.8. Let x ∈ X. The global homological dimension gld(DX,x) is dX . In
other words, the conditions (i)–(ii) below are satisfied:

(i) let M and N be two DX,x-modules. Then ExtjDX,x(M,N) = 0 for j > dX ,

(ii) there exist two DX,x-modules M and N such that ExtjDX,x(M,N) 6= 0, with
j = dX .

Proof. (i) By classical results (see [We94, Th. 4.1.2]), it is enough to prove the result
when assuming that M is finitely generated. Since DX,x is noetherian, there exists a
coherent DX module M defined in a neighborhood of x such that M = Mx. Then
the result follows from Theorem 1.5.5 in this case.

(ii) Choose M = OX,x and N = DX,x.

Theorem 1.5.9. The weak global dimension wgld(DX,x) of DX is equal to dX . In
other words, the conditions (i)–(ii) below are satisfied:

(i) for any left (resp. right) DX-module M (resp. N ), one has TorD
j (N ,M ) = 0

for j > dX ,

(ii) there exist a left DX-module M and a right DX-module N , such that Tor[D ]dX(N ,M ) 6=
0.

Proof. (i) It is well known that if R is a ring, wgld(R) is less or equal to gld(R) (see
[We94, Ch. 4]). Therefore, wgld(DX) is bounded by gld(DX,x), that is, by dX .

(ii) Choose N = ΩX and M = OX .

Theorem 1.5.10. The global dimension of DX is 2dX + 1. In other words, the
conditions (i)–(ii) below are satisfied:

(i) let M and N be two DX-modules. Then Extj
D

(M ,N ) = 0 for j > 2dX + 1,

(ii) there exist two DX-modules M and N such that Ext2dX+1

D
(M ,N ) 6= 0.
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Proof. Let n = dimX.

(i) By Lemma 1.5.7 one has

RHomD(M ,N ) ' RHomD(OX ,RHomO(M ,N )).

Let SPX(DX) be the Spencer complex of DX . This complex has length n, is locally
free and is qis to OX .

On the other hand, consider a resolution in the category Mod(DX):

0 −→ N n+1 −→ N n −→ · · · −→ N 0 −→ N −→ 0

such that N 0, . . . ,N n are DX-injective. Then these modules will be OX-injective
and it follows from Theorem 3.5.7 that N n+1 is OX-injective. Set L i = HomOX

(M ,N i).
This is a left DX-module, and a flabby sheaf. Consider the complex

L • := 0 −→ L 0 −→ · · · −→ L n+1 −→ 0.

Then RHomD(M ,N ) is represented by the complex HomD(SPX(DX),L •). This
complex has length 2n+ 1 and its components are flabby sheaves. Therefore

RHomD(M ,N ) ' RΓ(X; HomD(SPX(DX),L •))

is concentrated in degree [0, 2n+ 1].

(ii) Let x ∈ X. One has

Extj
D

(OX,x,D
(N)
X ) 6= 0 for j = 2n+ 1.

Indeed, RHomD(OX,x,DX) ' ΩX [−n], we get

Extj+n
D

(OX,x, (DX)(N)) ' Hj(RΓ{x}(X; Ω
(N)
X )).

Then the result follows from Proposition 3.5.8.

1.6 Derived category and duality

Recall that Mod(DX) is a Grothendieck category (see for example [KS06, Th. 18.1.6])
and thus has enough injectives. One denotes by Modc(DX) the thick abelian sub-
category of Mod(DX) consisting of coherent modules and by Db

coh(DX) the full tri-
angulated category of the bounded derived category Db(DX) consisting of objects
with coherent cohomology.

If M ∈ Db
coh(DX), we set

char(M ) =
⋃
j

char(Hj(M )).(1.6.1)
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Internal operations

We denote by RHomO the right derived functor of HomO and by
L
⊗ the left derived

functor of ⊗O acting on D-modules. Hence, we get the functors

•
L
⊗ • : Db(DX)×Db(DX) −→ Db(DX),

•
L
⊗ • : Db(Dop

X )×Db(DX) −→ Db(Dop
X ),

RHomO( • , • ) : Db(DX)op ×Db(DX) −→ Db(DX),

RHomO( • , • ) : Db(Dop
X )op ×Db(Dop

X ) −→ Db(DX).

The tensor product is commutative and associative, that is, for L ,M ,N in Db(DX)

there are natural isomorphisms M
L
⊗N ' N

L
⊗M and (M

L
⊗N )

L
⊗L 'M

L
⊗(N

L
⊗L ).

Moreover OX

L
⊗M 'M .

There are also natural functors

RHomD( • , • ) : Db(DX)op ×Db(DX) −→ Db(CX),

•
L
⊗

D
• : Db(Dop

X )×Db(DX) −→ Db(CX).

These functors are related by the formulas (1.6.2) and (1.6.3) below.

Proposition 1.6.1. For L ,M ,N in Db(DX) and K in Db(Dop
X ) there are natural

isomorphisms

K
L
⊗

D
(M

L
⊗N ) ' (K

L
⊗M )

L
⊗

D
N ,(1.6.2)

RHomD(L ,RHomO(M ,N )) ' RHomD(L
L
⊗M ,N ).(1.6.3)

Duality

We define the duality functors on Db(DX) or Db(Dop
X ), all denoted by D′D and DD ,

by setting

D′D(M ) := RHomD(M ,DX) (M ∈ Db(DX) or M ∈ Db(Dop
X )),(1.6.4)

DD(M ) := RHomD(M ,DX ⊗O Ω
⊗−1

X [dX ]) (M ∈ Db
coh(DX)),(1.6.5)

DD(M ) := RHomD(M ,ΩX [dX ]⊗O DX) (M ∈ Db
coh(Dop

X )).(1.6.6)

Proposition 1.6.2. For M ,N in Db(DX), we have a natural morphism

RHomD(OX ,DDM
L
⊗N ) −→ RHomD(M ,N )(1.6.7)

and if M of N belongs to Db
coh(DX), this morphism is an isomorphism.

Proof. We have the isomorphism

RHomD(OX ,DDM
L
⊗N )'RHomD(OX ,DX)

L
⊗

D
(DDM

L
⊗N )

'ΩX

L
⊗

D
(DDM

L
⊗N ) [−dX ]

' (ΩX

L
⊗DDM )

L
⊗

D
N [−dX ]

'D′DM
L
⊗

D
N −→ RHomD(M ,N ).

Cleary, if M of N belongs to Db
coh(DX), the last morphism is an isomorphism.
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Proposition 1.6.3. (i) The functor D′D : Db
coh(DX)op −→ Db

coh(Dop
X ) is well-defined

and satisfies D′D ◦ D′D ' id and similarly with DD .

(ii) If M ∈ Db
coh(DX), then char(D′D(M )) = char(M ).

Proof. (i) There is a natural morphism id −→ D′D ◦D′D . To prove it is an isomorphism,
we argue by induction on the amplitude of M and reduce to the case where M is
a coherent DX-module. More precisely, assume Hj(M ) = 0 for j /∈ [j0, j1] and
the result has been proved for modules with amplitude j1 − j0 − 1. Consider the
distinguished triangle (d.t. for short)

Hj0(M )[−j0] −→M −→ τ>j0(M )
+1−→(1.6.8)

and apply the functor D′D ◦ D′D . We get a new d.t. with two objects isomorphic
to two objects of the d.t. (1.6.8). hence the third objects of these d.t. will be
isomorphic.

Hence, we are reduced to treat the case of M ∈ Modc(DX). We may argue locally
and replace M with a bounded complex of finite free DX-modules. It reduces to
the case where M = DX .

(ii) It is enough to prove the inclusion char(D′D(M )) ⊂ char(M ). We argue by
induction on the amplitude of M . Assume Hj(M ) = 0 for j /∈ [j0, j1]. Consider
the distinguished triangle (1.6.8) Applying the functor D′D we find the d.t.

D(τ>j0M ) −→ D′DM −→ D′D(Hj0(M ))[j0]
+1−→

Since char(M ) = char(Hj0(M )) ∪ char(τ>j0(M )), the induction proceeds, and we
are reduced to the case where M is a coherent DX-module. Then the result follows
from Theorem 1.5.1 (iii).
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Operations on D-modules

2.1 External product

Let X and Y be two manifolds. For a DX-module M and a DY -module N , we
define their external product, denoted M�N , by

M�N := DX×Y ⊗DX�DY
(M � N ).

Note that the functor M 7→M�N is exact.

Theorem 2.1.1. Let M ∈ Db
coh(DX) and N ∈ Db

coh(DY ). Then M�N ∈
Db

coh(DX×Y ) and char(M�N ) = char(M )× char(N ).

Proof. (i) By dévissage, one reduces to the case where M ∈ Modc(DX) and N ∈
Modc(DY ).

(ii) Let us show that M�N is coherent. Consider finite free presentations of M
and N :

DM1
X

·P−→ DM0
X −→M −→ 0, DN1

Y

·Q−→ DN0
Y −→ N −→ 0.

Then

(DX � DY )N1+M1

(
P 0
0 Q

)
−−−−→ (DX � DY )N0+M0 −→M � N −→ 0

is a finite free presentation of M �N over DX �DY . To conclude, apply the exact
functor DX×Y ⊗DX�DY

• to this sequence.

(iii) Let us endow M and N with good filtrations FlM and FlN . Set

Flk(M�N ) =
∑
i+j=k

Fli(M )�Flj(N ).

Then {Flk(M�N )}k is a good filtration on M�N and the result follows from

Gr(M�N ) ' Gr(M )
GrD

� Gr(N )

where
GrD

� is defined similarly as �.

25



26 CHAPTER 2. OPERATIONS ON D-MODULES

2.2 Transfert bimodule

Let f : X −→ Y be a morphism of complex manifolds. Recall (see (3.1.14)) that to
f are associated the maps

TX
f ′−→ X ×Y TY

fτ−→ TY.(2.2.1)

We shall construct a (DX , f
−1DY )-bimodule denoted DX−→Y which shall allow one

to pass from left DY -modules to left DX-modules and from right DX-modules to
right DY -modules.

Set

DX−→Y = OX ⊗f−1OY
f−1DY .

This sheaf on X is naturally endowed with a structure of an (OX , f
−1DY )-bimodule.

We shall endow it of a structure of a left DX-module by defining the action ΘX and
verifying that this action satisfies the hypothesis of Corollary 1.1.3. Let v ∈ ΘX .
Then f ′∗v ∈ OX ⊗f−1OY

f−1ΘY . Hence

f ′∗v =
∑
j

aj ⊗wj,

with aj ∈ OX and wj ∈ f−1ΘY . Define the action of v on a⊗P ∈ OX⊗f−1OY
f−1DY

by setting

v(a⊗P ) = v(a)⊗P +
∑
j

aaj ⊗wj ◦ P.(2.2.2)

If one chooses a local coordinate system (y1, . . . , ym) on Y and writes f = (f1, . . . , fm),
then

v(f ∗ϕ) =
m∑
j=1

v(fj)
∂ϕ

∂yj
,

which implies

f ′∗v =
m∑
j=1

v(fj)⊗ ∂yj .

A section P of DX−→Y may formally be written as P =
∑

α aα(x)∂αy .
By composing the monomorphism DY ↪→ HomCY (OY ,OY ) with DX−→Y =

OX ⊗f−1OY
f−1DY we get the monomorphisms

DX−→Y ↪→OX ⊗f−1OY
f−1HomCY (OY ,OY )

↪→HomCX (f−1OY ,OX)

and the section 1X−→Y := 1⊗ 1 ∈ DX−→Y corresponds to the canonical morphism

f−1OY −→OX

ϕ 7→ϕ ◦ f.
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Note that DY being flat over OY ,

DX−→Y ' OX

L
⊗
f−1OY

f−1DY .

One also introduces the (f−1DY ,DX)-bimodule DY←−X by setting

DY←−X = ΩX ⊗OX
DX−→Y ⊗f−1OY

f−1Ω
⊗−1

Y .

Proposition 2.2.1. Let f : X −→ Y , g : Y −→ Z be morphisms of manifolds and set
h = g ◦ f : X −→ Z. Then there is an isomorphism of (DX , h

−1DZ)-bimodules

DX−→Y

L
⊗
f−1DY

f−1DY−→Z ' DX−→Z .(2.2.3)

In particular, the left hand side is concentrated in degree zero.

Proof. One has the isomorphisms of (OX , h
−1DZ)-bimodules:

DX−→Y

L
⊗
f−1DY

f−1DY−→Z = (OX

L
⊗
f−1OY

f−1DY )
L
⊗
f−1DY

f−1(OY

L
⊗
g−1OZ

g−1DZ)

'OX

L
⊗
f−1OY

(f−1DY

L
⊗
f−1DY

f−1OY

L
⊗
h−1OZ

h−1DZ)

'OX

L
⊗
h−1OZ

h−1DZ ' OX ⊗h−1OZ
h−1DZ .

(Recall that DZ is flat over OZ .) Then, one checks that these isomorphisms extend
as isomorphisms of (DX , h

−1DZ)-bimodules.

Proposition 2.2.2. (i) Assume f is submersive. Then DX−→Y is DX-coherent
and f−1DY -flat.

(ii) Assume f is a closed embedding. Then DX−→Y is DY -coherent and DX-flat.

Proof. (i) Since the problem is local on X, we may assume that X = Z × Y and f
is the second projection. In this case, DX−→Y ' OZ�DY . Note that if x = (t, y) is
a local coordinate system on Z × Y with t = (t1, . . . , tm), then

DX−→Y ' DX/DX · ∂t
where DX · ∂t denotes the left ideal generated by (∂t1 , . . . , ∂tm).
(ii) For a local coordinate system y = (t, x) on Y such that X = {t = 0}, we have

DX−→Y ' DY /t ·DY

where t ·DY denotes the right ideal generated by (t1, . . . , tm).

If f is submersive, one has

DX−→Y ' DX/DX ·Θf

where DX · Θf denotes the left ideal generated by the vector fields tangent to the
leaves of f .

If f is a closed embedding, one has

DX−→Y ' DY /IX ·DY

where IX ·DY denotes the right ideal generated sections of OY vanishing on X.
Notice that any morphism f : X −→ Y may be decomposed as

f : X ↪→ X × Y −→ Y

where the first map is the graph (closed) embedding and the second map is the
projection.

Example 2.2.3. One has DX−→pt ' OX and Dpt←−X ' ΩX .
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Inverse and direct images of D-modules

Definition 2.2.4. Let f : X −→ Y be a morphism of complex manifolds.

(i) One defines the inverse image functor f−1
D : Db(DY ) −→ Db(DX) by setting for

N ∈ Db(DY ):

f−1
D N := DX−→Y

L
⊗
f−1DY

f−1N .

(ii) One defines the direct image functors fD
∗ , f

D
! : Db(DX) −→ Db(DY ) by setting

for M ∈ Db(Dop
X ):

fD
∗ M := Rf∗(M

L
⊗

D
DX−→Y ), fD

! M := Rf!(M
L
⊗

D
DX−→Y ).

Using the bimodule DY←−X , one defines similarly the inverse image of a right
DY -module or the direct images of a left DX-module. Note that, if g : Y −→ Z is
another morphism of complex manifolds, we have

(g ◦ f)−1
D ' f−1

D ◦ g
−1
D ,(2.2.4)

(g ◦ f)D
∗ ' gD

∗ ◦ fD
∗ ,(2.2.5)

(g ◦ f)D
! ' gD

! ◦ fD
! .(2.2.6)

2.3 Inverse images

Definition 2.3.1. Let N be a coherent DY -module. One says that f is non char-
acteristic for N (or N is non characteristic for f) if f is non characteristic for
char(N ). (See Definition 3.1.10.)

Example 2.3.2. (i) Since char(OY ) = T ∗Y Y , the DY -module OY is non characteristic
for any morphism f : X −→ Y . Note that f−1

D OY ' OX .
(ii) See Exercise 2.2.

Example 2.3.3. Assume to be given a coordinate system (y) = (x1, . . . , xn, t) =
(x, t) on Y such that X = {t = 0}. Let P be a differential operator of order m.
Then X is non-characteristic with respect to P (i.e., for the DY -module DY /DY ·P )
in a neighborhood of (x0, 0) ∈ X if and only if P is written as

P (x, t; ∂x, ∂t) =
∑

0≤j≤m

aj(x, t, ∂x)∂
j
t(2.3.1)

where aj(x, t, ∂x) is a differential operator not depending on ∂t of order ≤ m− j and
am(x, t) (which is a holomorphic function on Y ) satisfies: am(x0, 0) 6= 0.

Lemma 2.3.4. Let X, Y and P be as in Example 2.3.3. Let N = DY /DY · P .
Then DX−→Y ⊗DY

N ' Dm
X .

Proof. Notice that

DX−→Y ⊗D N ' DY /(t ·DY + DY · P ).
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By the Weierstrass preparation theorem, any Q(x, t, ∂x, ∂t) ∈ DY may be written
uniquely as

Q(x, t, ∂x, ∂t) = S(x, t, ∂x, ∂t) · P (x, t, ∂x, ∂t) +
m−1∑
j=0

Rj(x, t, ∂x)∂
j
t .

Hence, Q(x, t, ∂x, ∂t) ∈ DY may be written uniquely as

Q(x, t, ∂x, ∂t) =

S(x, t, ∂x, ∂t) · P (x, t, ∂x, ∂t) + t · T (x, t, ∂x) +
m−1∑
j=0

Pj(x, ∂x)∂
j
t .

Proposition 2.3.5. . For M ,N ∈ Db(DX), one has

M
L
⊗N ' δ−1

D (M�N ),

where δ : X −→ X ×X is the diagonal embedding.

Proof. Let us identify X with ∆, the diagonal of X × X. One has the chain of
isomorphisms

δ−1
D (M�N )'O∆

L
⊗

O
DX×X

L
⊗

D
(M�N )

'O∆

L
⊗

O
(M�N ) 'M

L
⊗N .

Corollary 2.3.6. Let f : X −→ Y be a morphism of complex manifolds. For N1,N2 ∈
Db(DY ), one has

f−1
D (N1

L
⊗N2) ' f−1

D N1

L
⊗f−1

D N2.

Proof. Denote by δX the diagonal embedding X −→ X × X and similarly with δY ,
and denote by f̃ : X ×X −→ Y × Y the map associated with f . One has the chain
of isomorphisms

f−1
D (N1

L
⊗N2)' f−1

D δY
−1
D (N1�N2) ' δX

−1
D f̃−1

D (N1�N2)

' δX−1
D (f−1

D N1�f
−1
D N2) ' f−1

D N1

L
⊗f−1

D N2.

Theorem 2.3.7. Let N ∈ Modc(DY ) and assume that f is non characteristic for
N . Then

(a) f−1
D N is concentrated in degree 0,

(b) f−1
D N is DX-coherent,

(c) char(f−1
D N ) ⊂ fdf

−1
π char(N ).
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Remark 2.3.8. In fact, there is a better result, namely char(f−1
D N ) = fdf

−1
π char(N )

and the characteristic cycle of f−1
D N is the image by fdf

−1
π of the characteristic cycle

of N (see [Ka83]).

Proof. The map f : X −→ Y decomposes as

X
h−→ X × Y p−→ Y

where h is the graph embedding and p is the projection. Using (2.2.4) and Lemma 3.1.13,
it is enough to prove the result for p and for h. Hence, we shall treat separately the
case where f is submersive and the case where f is a closed embedding.

(i) Assume f : X −→ Y is submersive. The problem is local on X. Hence, we may
assume X = Y × Z and f is the projection. In this case, f−1

D ( • ) ' OX� • . Hence,
this functor is exact and the result follows from Theorem 2.1.1.

(ii) Assume f : X −→ Y is a closed embedding. Let d denote the codimension of
X in Y . Since our problem is local, we may assume that there are submanifolds
X = X0 ⊂ X1 ⊂ · · · ⊂ Xd = Y . Using (2.2.4) and Lemma 3.1.13 again, we are
reduced to treat the case d = 1. Since the problem is local we may assume to be given
a local coordinate system in a neighborhood of x0 ∈ X, (y) = (x1, . . . , xn, t) = (x, t)
on Y such that X = {t = 0}. Let (x, t; ξ, τ) denote the associated coordinate system
on T ∗Y . Set Λ = char(N ). By the hypothesis, (x0, 0; 0, 1) /∈ Λ. By Corollary 1.3.6,
for each section u of N defined in a neighborhood of (x0, 0), there exists a differential
operator P , say of order m, such that

Pu = 0, σm(P )(x0, 0; 0, 1) 6= 0.(2.3.2)

(iii) Let us prove that f−1
D N is concentrated in degree 0. Since DX−→Y ' DY /t ·DY ,

f−1
D N is isomorphic to the complex N

t·−→ N . Hence, we have to show that t·
acting on N is injective. Let u ∈ N with tu = 0. Let P satisfying (2.3.2). Set
Ad(P ) = [P, • ]. We obtain

Adm(P )(t)u = m!u = 0.

Hence, u = 0.

(iv) Let us prove that f−1
D N is DX-coherent. Let (u1, . . . , uN) be a system of

generators of N in a neighborhood of (x0, 0). For each j, 1 ≤ j ≤ N , there exists a
differential operator Pj of order mj, such that Pjuj = 0 and σmj(Pj)(x0, 0; 0, 1) 6= 0.
Set

M = ⊕Nj=1DY /DY · Pj.

It follows from (iii) and Lemma 2.3.4 that f−1
D M is concentrated in degree 0 and is

DX-coherent.
Denote by vj the canonical generator of DY /DY · Pj, the image of 1 ∈ DY .

There is a well-defined DY -linear epimorphism ψ : M�N which associates uj to
vj. The functor f−1

D being right exact, the epimorphism ψ defines the epimorphism
f−1

D M�f−1
D N . Therefore, f−1

D N is locally finitely generated.
Define the coherent DY -module L by the exact sequence

0 −→ L −→M −→ N −→ 0.(2.3.3)
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It follows from (iii) that the sequence

0 −→ f−1
D L −→ f−1

D M −→ f−1
D N −→ 0(2.3.4)

is exact. Since X is non-characteristic for M , it is non-characteristic for its sub-
module L . Therefore, f−1

D L is locally finitely generated and f−1
D M being coherent,

this implies that f−1
D N is coherent.

(v) Let us prove (c).
(v)–(a) Let us choose a local coordinate system (x, t) on Y such that X = {(x, t); t =
0}. Then f−1

D N ' N /t ·N . Set

M := f−1
D N .

Let FlN = {Nj}j∈Z be a good filtration on N . We define a filtration on FlM =
{Mj}j∈Z by setting

Mj = Nj/(t ·N ∩Nj).(2.3.5)

(v)–(b) Let us show that FlM is a good filtration. It is enough to check that the
Mj’s are OX-coherent. Since

t ·N ∩Nj =
⋃
k

(t ·Nk ∩Nj),

and Nj is OY -coherent, this sequence is locally stationary. It follows that Mj is
OY -coherent. Being supported by X, Mj is OX-coherent.

(v)–(c) The exact sequence 0 −→ Nj−1 −→ Nj −→ GrjN −→ 0 gives rise to the exact
sequence

Nj−1/t ·Nj−1 −→ Nj/t ·Nj −→ GrjN /t ·GrjN −→ 0.(2.3.6)

We deduce from (2.3.5) and (2.3.6) an epimorphism GrjN /t·GrjN �GrjM , hence,
an epimorphism

GrN /t ·GrN �GrM .(2.3.7)

It follows that the support of GrM in X×Y T ∗Y (i.e., as an OX⊗OY
GrDY -module)

is contained in f−1
π char(N ). Since fd is finite over f−1

π char(N ), the support of
GrM as a GrDY -module is contained in fdf

−1
π char(N ).

Corollary 2.3.9. Let M ,N ∈ Modcoh(DX) and assume that char(M )∩char(N ) ⊂
T ∗XX. Then M

L
⊗N is DX-coherent and

char(M
L
⊗N ) ⊂ char(M ) +

X
char(N ).

Recall that for two conic subsets Λ1 and Λ2 of T ∗X ,

Λ1 +
X

Λ2 := {(x; ξ1 + ξ2); (x; ξj ∈ Λj, j = 1, 2}.

Proof. Apply Proposition 2.3.5 and Theorem 2.3.7.
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Duality and inverse images

Let N ∈ Db(DY ). Recall that its dual, DDN ∈ Db(DY ) has been constructed in
(1.6.6)

Theorem 2.3.10. Let f : X −→ Y be a morphism of complex manifolds and let
N ∈ Db

coh(DY ). Assume that f is non characteristic for N . Then there exists a
natural isomorphism :

ψ : DDf
−1
D N ∼−→ f−1

D DDN .

Proof. First, we shall construct the morphism ψ. By Proposition 1.6.2, we have an
isomorphism

HomDb(DY )(N ,N ) ∼−→ HomDb(DY )(OY ,DDN
L
⊗N ).

It defines the morphism OY −→ DDN
L
⊗N . Applying the functor f−1

D we get the
morphisms

f−1
D OY ' OX −→ f−1

D DDN
L
⊗f−1

D N

−→ f−1
D DDN

L
⊗DDDDf

−1
D N .

Hence, we have obtained a morphism

ψ ∈ HomDb(DX)(OX , f
−1
D DDN

L
⊗DDDDf

−1
D N )

'HomDb(DX)(DDf
−1
D N , f−1

D DDN ).

To prove that ψ is an isomorphism, we proceed as in the proof of Theorem 2.3.7 and
reduce to the case where X is a closed hypersurface of Y and N = DY /DY · P for
a differential operator P of order m. In this case, f−1

D N ' Dm
X and DDf

−1
D N '

Dm
X [dX ]. On the other hand, N is represented by the complex 0 −→ DY

·P−→ DY −→ 0
and it follows that

DDN ' N [dY − 1].

Therefore, f−1
D DDN ' Dm

X [dY − 1].

2.4 Holomorphic solutions of inverse images

Let f : X −→ Y be a morphism of complex manifolds and let N1,N2 ∈ Mod(DY ).
There is a natural morphism

f−1RHomDY
(N1,N2)−→RHomDX

(f−1
D N1, f

−1
D N2).(2.4.1)

obtained as the composition

f−1RHomDY
(N1,N2)−→RHomf−1DY

(f−1N1, f
−1N2)

−→ RHomDX
(DX−→Y

L
⊗
f−1D

f−1N1,DX−→Y

L
⊗
f−1D

f−1N2).

Also recall the natural isomorphism

f−1
D OY ' OX .(2.4.2)
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Theorem 2.4.1. (Cauchy-Kowalevski-Kashiwara) Let f : X −→ Y be a morphism
of complex manifolds and let N ∈ Mod(DY ). Assume that f is non characteristic
for N . Then there exists a natural isomorphism :

f−1RHomDY
(N ,OY ) ∼−→ RHomDX

(f−1
D N ,OX).(2.4.3)

Proof. As in the proof of Theorem 2.3.7, we may check separately the case of a
projection and a closed embedding.

(a) If f is submersive, the morphism (2.4.1) is an isomorphism. Indeed, we may
reduce to the case where N1 = N2 = DY . In such a case, the isomorphism reduces
to:

f−1DY 'RHomDX
(DX−→Y ,DX−→Y ).

We may assume f is the projection X = Y × Z −→ Y , and the result is a relative
version of the De Rham isomorphism CZ ' RHomDZ

(OZ ,OZ).

(b) Now assume f is a closed embedding. Again, we reduce to the case where X is a
hypersurface. First we treat the case where N = DY /DY ·P . We may assume that
we have a local coordinate system (x, t) such that X = {(x, t); t = 0} and P is a
differential operator of order m as in Lemma 2.3.3. The complex RHomDY

(N ,OY )

is represented by the complex 0 −→ OY |X
P ·−→ OY |X −→ 0, where OY |X on the left is

in degree 0. Since N −1
D ' Dm

X , the complex RHomDX
(N −1

D ,OX) is represented by
the complex Om

X in degree 0. The morphism (2.4.3) reduces to the morphism

0 // OY |X P //

γ

��

OY |X

��

// 0

0 // Om
X

// 0 // 0

Here, the vertical arrow γ is the morphism which, to f ∈ OY |X associates the first
m traces of f

γ(f) = f |X , ∂tf |X , . . . , ∂m−1
t f |X .

Then the theorem asserts that P acting on OY |X is an epimorphism and kerP acting
on this sheaf is isomorphic by γ to Om

X . This is the Cauchy-Kovalevski theorem.

(c) As in the proof of Theorem 2.3.7, we construct an exact sequence (2.3.3) 0 −→
L −→ M −→ N −→ 0 where M is a finite direct sum of modules of the type
DY /DY · P . let us apply the functor RHomDY

( • ,OY ) to the sequence (2.3.3) and

the functor RHomDX
( • ,OX) to the image by (−1

D
• ) of the sequence (2.3.3). Let us

set for short

SolY ( • ) := RHomDY
( • ,OY )

and similarly with SolX( • ). We find the morphism of distinguished triangles

f−1SolY (N ) //

��

f−1SolY (M ) //

��

f−1SolY (L )
+1 //

��
SolY (f−1

D N ) // SolY (f−1
D M ) //SolY (f−1

D L )
+1 //
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Let us apply the cohomology functor H0 to this morphism of distinguished tri-
angles. We find a morphism of long exact sequences

0 // H0(A1) //

u01
��

H0(A2) //

u02
��

H0(A3) //

u03
��

H1(A1) //

u11
��

· · ·

0 // H0(B1) // H0(B2) // H0(B3) // H1(B1) // · · ·.

By (b), all morphisms un2 , n ≥ 0 are isomorphisms. It follows that u0
1 is a monomor-

phism, and the module M satisfying the non characteristicity hypothesis, the mor-
phism u0

3 is also a monomorphism. Therefore, u0
1 is an isomorphism, hence u0

3 is also
an isomorphism. By induction, we get that all un1 are isomorphism.

2.5 Direct images

Good D-modules

Definition 2.5.1. (i) Let F ∈ Mod(OX). One says that F is good if for any rel-
atively compact open subset U ⊂⊂ X, there exists a small and filtrant category
I, an inductive system {Fi}i∈I of coherent OU -modules and an isomorphism
colim

i
Fi
∼−→ F |U .

(ii) One denotes by Modγ◦a(OX) the full subcategory of Mod(OX) consisting of
good OX-modules.

(iii) A coherent DX-module M is good if it is good as an OX-module.

(iv) One denotes by Modγ◦a(DX) the full subcategory of Modcoh(DX) consisting of
good OX-modules.

Note that DX is good. For generally, if a coherent DX-module may be endowed
with a good filtration, then it is good. However, there exist coherent DX-modules
which are not good.

Lemma 2.5.2. The category Modγ◦a(OX) is a thick abelian subcategory of the cate-
gory Modcoh(DX). In particular, the full subcategory Db

gd(DX) of Db
coh(DX) consist-

ing of objects M such that Hj(M ) is good for all j is triangulated.

Proof. For the proof, we refer to [Ka03].

Lemma 2.5.3. Let M ∈ Modcoh(DX). Then M is good if and only if, for any rela-
tively compact open subset U ⊂⊂ X, there exists F ⊂M |U with F ∈ Modcoh(OU)
and an epimorphism of DU -modules F ⊗OU

DU�M |U .

Proof. After replacing X with a relatively compact open subset of X containing the
closure of U , we may assume that M = colim

i
Fi where I is small and filtrant and

Fi is OX-coherent. Set

Li = Im(Fi ⊗OX
DX −→M ).

Since M is DX-coherent, the family {Li}i∈I of coherent DX-modules is locally
stationary hence is stationary on the closure of U .
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Coherency

Theorem 2.5.4. Let f : X −→ Y be a morphism of complex manifolds and let M ∈
Db

gd(Dop
X ). Assume that f is proper on supp(M ). Then

(i) fD
∗ M ∈ Db

gd(Dop
Y ),

(ii) char(fD
∗ M ) ⊂ fπfd(char(M )).

(iii) Moreover, if f is finite on supp(M ), the above inclusion is an equality.

Proof. (i)–(a) By “dévissage”, we reduce to the case where M is a good DX-module.
More precisely, assume Hj(M ) = 0 for j /∈ [j0, j1] and the result has been proved
for modules with amplitude j1 − j0 − 1. Consider the distinguished triangle

Hj0(M )[−j0] −→M −→ τ>j0(M )
+1−→

Applying the functor fD
! to this d.t., we get the d.t.:

fD
! (Hj0(M ))[−j0] −→ fD

! M −→ fD
! (τ>j0(M ))

+1−→

It follows from the induction hypothesis and Lemma 2.5.2 that fD
! M belongs to

Db
gd(Dop

Y ).

(i)–(b) First, assume that M ' F ⊗O DX for a coherent OX-module F and f is
proper on supp(F ). Then

fD
∗ M 'Rf!(F ⊗O DX ⊗DX

DX−→Y )

'Rf!(F ⊗O OX ⊗f−1OY
f−1DY )

'Rf!F ⊗O DY .

The coherence of Rf!F follows from Grauert’s theorem.

(i)–(c) Since the problem is local on Y and f is proper on supp(M ), we may assume
by Lemma 2.5.3 that there exists an exact sequence in Mod(Dop

X ):

0 −→M ′ −→ F ⊗O DX −→M −→ 0

and f is proper on supp(F ). We apply the functor fD
! to this sequence and take

the cohomology. Setting L = F ⊗O DX we find a long exact sequence

· · · −→ Hj(fD
! M ′) −→ Hj(fD

! L ) −→ Hj(fD
! M ) −→ Hj+1(fD

! M ′) −→ · · · .

Assume Hj(fD
! M ) is good for all M and all j > j0. Set

K j := ker(Hj0+1(fD
! M ′) −→ Hj0+1(fD

! L )).

Then K j is good. Moreover, we have an exact sequence

Hj(fD
! L ) −→ Hj(fD

! M ) −→ K j −→ 0

from which we deduce that Hj(fD
! M ) is locally finitely generated over Dop

Y . Set

Rj := CokerHj(fD
! M ′) −→ Hj(fD

! L ).
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Being a quotient of a good Dop
Y -module by a finitely generated module, it is a good

Dop
Y -module. By the exact sequence

0 −→ Rj −→ Hj(fD
! M ) −→ K j −→ 0

we conclude that Hj0(fD
! M ) is a good DX-module and the induction proceeds.

(ii)–(iii) The proof is similar to that of Theorem 2.3.7 and left to the reader.

Example 2.5.5. (i) Assume X is compact and let M ∈ Db
gd(Dop

X ). Denote by aX

the projection X −→ {pt}. Then aX
D
∗ M ' RΓ(X; M

L
⊗

D
OX) and for all j ∈ Z,

Hj(RΓ(X; M
L
⊗

D
OX) is a finite-dimensional C-vector space.

(ii) Let f : X −→ Y be a proper map and assume that Y is a curve (i.e., dY = 1).
The object fD

! OX is called the Gauss-Manin connection on Y associated with f . It
is of particular importance when f is finite (hence, X is again a curve). Note that
the characteristic variety of the Gauss-Manin connection satisfies

char(fD
! OX)⊂ fπf−1

d (T ∗XX)

= {(y; η) ∈ T ∗Y ; there exist x ∈ X with fd(x)η = 0}.

In other words, this characteristic variety is contained in the union of the zero-section
of T ∗Y and the conormal bundles to the points y ∈ Y which are critical values of f .

We state without proof an important result due to Kashiwara.

Theorem 2.5.6. Let j : Z ↪→ X be a closed embedding of a smooth manifold. Then
the functor jD

∗ induces an equivalence of categories Mod(DZ) ∼−→ ModZ(DX), where
ModZ(DX) denotes the full abelian subcategory of Mod(DX) consisting of objects
with support contained in Z. Moreover, this equivalence induces an equivalence of
the subcategories consisting of coherent modules.

A quasi-inverse functor to jD
∗ is given by j−1HomD(DX←−Z , • ).

Although we do not give the proof here and refer to [Ka03, Th. 4.28], the next
result will be used in the sequel.

Theorem 2.5.7. Projection formula for D-modules Let f : X −→ Y be a morphism
of complex manifolds. Let M ∈ Db(Dop

X ) and let N ∈ Db(DY ). There is a natural
isomorphism in Db(DY )

fD
! (M

L
⊗f−1

D N ) ' fD
! M

L
⊗N .(2.5.1)

Proof.

2.6 Trace morphism

Theorem 2.6.1. For each morphism of complex manifolds f : X −→ Y , there exists
a “trace morphism” in Db(Dop

Y )

trf : fD
! ΩX [dX ] −→ ΩY [dY ](2.6.1)

with the following properties:
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(i) trf is functorial in f , that is, tridX = id and trg◦f = trg ◦ trf for morphisms

X
f−→ Y

g−→ Z,

(ii) when X is a curve and Y = {pt}, trf induces the residues morphism on
H1
c (X; ΩX).

Using the direct images functor for left D-modules, (2.6.1) gives the functorial
morphism

trf : fD
! OX [dX ] −→ OY [dY ].(2.6.2)

Proof. Recall that ΩX [−dX ] is quasi-isomorphic in Db(Dop
X ) to the De Rham complex

DRX(DX) (see (1.4.4)):

DRX(DX) := 0 −→ Ω0
X ⊗O DX

d−→ · · · −→ ΩX ⊗O DX −→ 0,

where the differential d is characterized by:

d(ω ⊗m) = dω ⊗P + (−)pω ∧ dP, ω ∈ Ωp
X , P ∈ DX

and dP =
∑

i dxi ⊗ ∂i ◦ P in a local coordinate system.
Let us identify XR, the real analytic manifold underlying the complex manifold

X with the diagonal of X ×X. Hence, the real tangent bundle TXR is isomorphic
to TX ×XR TX and the differential dXR splits as

dXR = ∂ ⊕ ∂.

Denote by DbXR the sheaf of distributions on the real analytic manifold XR. The
sheaf Ωp

X is quasi-isomorphic to the Dolbeault complex

0 −→ Db(p,0)
XR

∂−→ · · · ∂−→ Db(p,dX)
XR

−→ 0,

where Db(p,q)
XR

is the sheaf of forms of type (p, q) with coefficients in DbXR . It follows
that there is a qis

ΩX [−dX ] −→ Db
• , •

XR
⊗O DX , (∂, ∂)(2.6.3)

where the bidifferential (∂, ∂) satisfies

∂(u⊗P ) = ∂u⊗P + (−)pu ∧ dP,(2.6.4)

∂(u⊗P ) = ∂u⊗P.(2.6.5)

Denote by C∞(p,q)
XR

the sheaf of forms of type (p, q) with coefficients in the sheaf C∞XR
of complex valued C∞-functions on XR. There is a natural morphism

f ∗ : f−1C∞(p,q)
YR

−→ C∞(p,q)
XR

.(2.6.6)

Since Γc(X; Db(p+dX ,q+dX)
XR

) is the dual of the space Γc(X; C∞(p,q)
XR

), the morphism
(2.6.6) defines the morphism∫

f

: f!Db
(p+dX ,q+dX)
XR

−→ Db(p+dY ,q+dY )
YR

.(2.6.7)
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Moreover,
∫
f

commutes with ∂ and ∂.

The object ΩX [dX ]
L
⊗

D
DX−→Y of Db(Dop

X ) is isomorphic to the complex Db
• , •

XR
⊗O

f−1DY [2dX ] where ∂(u ⊗P ) = ∂u ⊗P and the action of ∂ is given by (2.6.4) and

(2.2.2). Noticing that the sheaves Db(p,q)
XR

are soft, we get the chain of morphisms
and isomorphisms

fD
! ΩX [dX ] ' f!(Db

• , •

XR
⊗O DX ⊗D OX ⊗f−1OY

f−1DY )[2dX ]

' f!(Db
• , •

XR
⊗f−1OY

f−1DY )[2dX ]∫
f−→Db

• , •

YR
⊗O DY [2dY ]

' ΩY [dY ].

The properties (i) and (ii) of the morphism trf are easily checked.

Corollary 2.6.2. Let N ∈ Db(DY ). There exists a canonical morphism in Db(DY ):

fD
! (f−1

D N ⊗O ΩX [dX ]) −→ N ⊗O ΩY [dY ].(2.6.8)

Proof. By Theorem 2.5.7, we have an isomorphism

fD
! (f−1

D N ⊗O ΩX [dX ]) = fD
! (f−1

D N
L
⊗ΩX [dX ])

'N
L
⊗fD

! ΩX [dX ].

To conclude, apply the trace morphism fD
! ΩX [dX ] −→ ΩY [dY ].

Corollary 2.6.3. Let M ∈ Db(DX) and let N ∈ Db(DY ). There is a canonical
morphism

Rf∗RHomD(M , f−1
D N ) [dX ] −→ RHomD(fD

! M ,N ) [dY ].(2.6.9)

Proof. Consider the chain of morphisms

Rf∗RHomD(M , f−1
D N ) [dX ]

−→ Rf∗RHomD(DY←−X ⊗D M ,DY←−X ⊗D f
−1
D N ) [dX ]

−→ RHomD(Rf!(DY←−X ⊗D M ),Rf∗(DY←−X ⊗D f
−1
D N )) [dX ]

' RHomD(fD
! M , fD

! f
−1
D N ) [dX ]

−→ RHomD(fD
! M ,N ) [dY ]

where the last morphism follows from (2.6.8).

Duality and direct images

Let again f : X −→ Y be a morphism of complex manifolds.

Lemma 2.6.4. Let M ∈ Db(Dop
X ). There is a canonical morphism in Db(Dop

Y ):

fD
! DDM −→ DDf

D
! M .(2.6.10)
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Proof. By choosing N = DY in Corollary 2.6.3, we get the chain of morphisms

fD
! DDM = Rf!(RHomD(M ,DX ⊗O ΩX [dX ])⊗D DX−→Y )

−→Rf!(RHomD(M ,ΩX ⊗O DX−→Y ) [dX ]

' Rf!(RHomD(M , f−1
D ΩY ) [dX ])

−→RHomD(fD
! M ,DY ⊗O ΩY ) [dY ]

= DDf
D
! M .

Theorem 2.6.5. Let M ∈ Db
gd(Dop

X ) and assume that f is proper on supp(M ).
Then the morphism (2.6.10) is an isomorphism.

Proof. We may reduce to the case where M ∈ Modγ◦a(D
op
X ) and, as in the proof of

Theorem 2.5.4, that M = F ⊗O DX for a coherent OX-module F . In this case,

fD
! DDM 'Rf!(RHomD(F ⊗O DX ,DY←−X ⊗O f

−1ΩY ) [dX ]

'Rf!RHomO(F ,OX)⊗O DY [dX ]⊗O ΩY

'RHomO(Rf!F ,OY )⊗O DY ⊗O ΩY [dY ]

'RHomD(Rf!F ⊗O DY ,DY )⊗O ΩY [dY ]

'DDf
D
! M .

Here, we have used the fact that proper direct images commute with duality for
O-modules (Theorem 3.5.11).

Theorem 2.6.6. Let M ∈ Db
gd(Dop

X ) and assume that f is proper on supp(M ).
Then the morphism (2.6.8) is an isomorphism.

Proof. Since M and fD
! M have coherent cohomologies, we have the isomorphisms

RHomD(M , f−1
D N )'RHomD(M ,DX←−Y )

L
⊗
f−1DY

f−1N ,

RHomD(fD
! M ,N )'RHomD(fD

! M ,DY )
L
⊗

D
N .

Hence, we are reduced to prove the result when N = DY , and it follows immediately
from Theorem 2.6.5.

Corollary 2.6.7. Let M ∈ Db
gd(DX) and assume f is proper on supp(M ). There

is a canonical isomorphism

Rf∗RHomD(M ,OX) [dX ] ∼−→ RHomD(fD
! M ,OY ) [dY ].

2.7 D-modules associated with a submanifold

Let Z be a hypersurface of X. One denotes by OX(∗Z) the sheaf of meromorphic
functions on X with poles in Z. Hence, if {f = 0} is a local equation of Z, a section
u of OX(∗Z) is locally written as a quotient u = g/fm, for some m ∈ N and g a
section of OX . Clearly, OX(∗Z) is a left DX-module.
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One also introduces the left DX-module BZ|X by the exact sequence

0 −→ OX −→ OX(∗Z) −→ BZ|X −→ 0.

If {f = 0} is a local equation of Z, then

BZ|X ' (OX [1/f ])/OX .

More generally, let Z = {fj = 0; j = 1, . . . , d} be a complete intersection. One
sets

BZ|X ' OX [1/f1 . . . fd]/
∑
i

OX [1/f1 . . . f̂i . . . fd].(2.7.1)

We shall see that this does not depend on the choice of the f ′js. For that purpose,
we recall the construction of the functor Γ[Z] and its derived functors.

The functor Γ[Z] for O-modules

Let X be a complex manifold, Z a closed analytic subset, IZ its defining ideal. Let
F be an OX-module. Recall that ΓZF denotes the subsheaf of sections supported
by Z.

Definition 2.7.1. One sets

Γ[Z]F ' colim
j

HomO(OX/I
j
Z ,F ),

Γ[X\Z]F = colim
j

HomO(I j
Z ,F ).

Notice that

• Γ[Z]F is the subsheaf of ΓZF consisting of sections s such that, locally on X,

there exists j ≥ 0 such that I j
Zs = 0,

• there is a monomorphism Γ[Z]F�ΓZF ,

• in Definition 2.7.1, one may replace the defining ideal IZ with any coherent
ideal I such that supp(OX/I ) = Z. Indeed, for such an ideal, there exists
locally an integer k such that I k

Z ⊂ I ⊂ IZ ,

• the functors Γ[Z]( • ) and Γ[X\Z]( • ) are left exact,

• there is an exact sequence of sheaves

0 −→ Γ[Z]F −→ F −→ Γ[X\Z]F .(2.7.2)

We shall concentrate our study on the functor Γ[Z].

Proposition 2.7.2. Let Z1 and Z2 be two closed subsets of X. There is a natural
isomorphism

Γ[Z1]Γ[Z2]F 'Γ[Z1∩Z2]F .
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Proof. One has the chain of isomorphisms

Γ[Z1]Γ[Z2]F = colim
j1

HomO(OX/I
j1
Z1
, colim

j2
HomO(OX/I

j2
Z2
,F ))

' colim
j1

colim
j2

HomO(OX/I
j1
Z1
,HomO(OX/I

j2
Z2
,F ))

' colim
j1

colim
j2

HomO(OX/(I
j1
Z1

+ I j2
Z2

),F )

' colim
j

HomO(OX/(IZ1 + IZ2)
j,F ).

Here, we have used

(IZ1 + IZ2)
2j ⊂ I j

Z1
+ I j

Z2
⊂ (IZ1 + IZ2)

j

Since supp(IZ1 + IZ2) = Z1 ∩ Z2, the result follows from Lemma ??.

Let x ∈ X and let F ∈ Mod(OX). Denote by jx : {x} ↪→ X the inclusion. One
shall be aware that one uses the notation Fx for both the stalk of F at x, an object
of Mod(OX,x) and for the sheaf jx∗j

−1
x F , an object of Mod(OX).

Proposition 2.7.3. Let F be an OX-module and let x ∈ X. Then there is a natural
isomorphism (Γ[Z]F )x ' Γ[Z]Fx.

Proof. By the the coherence of OX/I m
Z we have the isomorphisms

(HomO(OX/I
j
Z ,F ))x'HomOX,x

((OX/I
j
Z)x,Fx)

'HomO(OX/I
j
Z ,Fx).

Proposition 2.7.4. Let G be a coherent OX-module and let F be an OX-module.
There are natural isomorphisms

HomO(G ,Γ[Z]F )'Γ[Z]HomO(G ,F )

' colim
j

HomO(G /I j
ZG ,F ).(2.7.3)

Proof. (i) Since G is coherent, the functor HomO(G , • ) commutes with filtrant
inductive limits. Hence

HomO(G ,Γ[Z]F )'HomO(G , colim
j

HomO(OX/I
j
Z ,F ))

' colim
j

HomO(G ,HomO(OX/I
j
Z ,F ))

' colim
j

HomO(OX/I
j
Z ,HomO(G ,F )).

(ii) The second isomorphism follows from

G ⊗O OX/I
j
Z ' G /I j

ZG .
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The functor Γ[Z] for D-modules

Note that DX being flat over OX ,

DXI j
Z ' DX ⊗O I j

Z ,

DX/DXI j
Z ' DX ⊗O OX/I

j
Z .

Hence, if M is a DX-module:

Γ[Z]M ' colim
j

HomD(DX/DXI j
Z ,M ).(2.7.4)

Proposition 2.7.5. Let M be a left DX-module. Then Γ[Z]M is naturally endowed
with a strucure of a left DX-module.

Proof. The proof decomposes into several steps.
(i) Let I be an ideal of OX . Then

I n+mFlmDX ⊂ FlmDXI n.(2.7.5)

First, we treat the case m = 1. Let v ∈ Fl1DX and let a1, . . . , an ∈ I . Then

a0 · · · anv = va0 · · · an −
n∑
i=0

[v, ai]a0 · · · âi · · · an ∈ F1I
n.

The inclusion (2.7.5) follows by induction. Indeed, FlmDX = Fl1DXFlm−1DX , and
we get

I n+mFlmDX 'I n+mFl1DXFlm−1DX

⊂Fl1DXI n+m−1Flm−1DX

⊂Fl1DXFlm−1DXI n.

(ii) Let Z be a closed analytic subset. It follows that if P ∈ FmDX , then ·P defines

a morphism DXI n+m
Z

·P−→ DXI n
Z , hence a morphism

P · : HomD(DX/DXI j+m
Z ,M ) −→HomD(DX/DXI j

Z ,M ).

It follows from (2.7.4) that P acts on Γ[Z]M ..

Definition 2.7.6. We denote by J the full additive subcategory of DX consisting
of objects M such that Mx is OX,x-injective for all x ∈ X.

Lemma 2.7.7. Let Z be an closed analytic subset. The category J satisfies:

(i) for any M ∈ Mod(DX), there exists N ∈J and a monomorphism M�N ,

(ii) for any exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0 with M and M ′ in J ,
then M ′′ ∈J ,

(iii) for any exact sequence as above with M ′ in J , the sequence 0 −→ Γ[Z]M
′ −→

Γ[Z]M −→ Γ[Z]M
′′ −→ 0 is exact,

(iv) for any M ∈J , Γ[Z]M ∈J .
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Proof. (i)–(ii) are easy and left to the reader.

(iii) It is enough to check that this sequence is exact after applying the functor
( • )x for x ∈ X. Indeed, the sequence 0 −→ M ′

x −→ Mx −→ M ′′
x −→ 0 is exact and

the sequence obtained by applying the functor HomO(O/I j
Z , • ) will remain exact

since M ′
x is OX,x-injective. Then the result follows from Proposition 2.7.3.

(iv) By Proposition 2.7.3, it is enough to check that Γ[Z]Mx is OX,x-injective. By
classical results (see [We94, Ch. 2 § 3]) we are thus reduced to show that if G ′ ⊂
G are coherent OX-modules, then HomO(G ,Γ[Z]M ) −→ HomO(G ′,Γ[Z]M ) is an
epimorphism. Since Mx is injective for all x ∈ X and G , G ′ are coherent, the
sequence

HomO(G /I j
ZG ,M ) −→HomO(G ′/(G ′ ∩I j

ZG ),M ) −→ 0

is exact. Hence, it is enough to prove the isomorphism

colim
j

HomO(G ′/I j
ZG ′,M ) ∼−→ colim

j
HomO(G ′/(G ′ ∩I j

ZG ),M ).

This follows from the Artin-Rees theorem (see Theorem 3.5.10) which asserts that
there locally exists r � 0 such that G ′ ∩ (I j+r

Z G ) ⊂ I j
ZG ′.

We can define the right derived functor RΓ[Z] : Db(DX) −→ Db(DX). Using the
category J , we obtain

Proposition 2.7.8. Let F ∈ Db(OX).

(i) RΓ[Z1] ◦ RΓ[Z2] ' RΓ[Z1∩Z2],

(ii) if G is O-coherent, RHomO(G ,RΓ[Z]F ) ' RΓ[Z]RHomO(G ,F ).

Proof. Remark first that it follows from Lemma 2.7.7 that if F ∈ Mod(DX) and
F −→ F • is a qis with F • ∈ C+(J ), then RΓ[Z]F ' Γ[Z]F

• in Db(DX).

(i) By Proposition 2.7.2, it is enough to prove that the derived functor of Γ[Z1] ◦Γ[Z2]

is the composition RΓ[Z1] ◦ RΓ[Z2]. This follows from Lemma 2.7.7 (iv).
(ii) We may assume that F ∈ J . In this case the formula reduce to the first
isomorphism in Proposition 2.7.4.

Proposition 2.7.9. Let N ∈ Db(DX) and M ∈ Db
gd(DX) . Then there is a natural

isomorphism RΓ[Z](N
L
⊗M ) ' (RΓ[Z]N )

L
⊗

O
M in Db(DX).

Proof. (i) First, we construct the morphism. One proves the isomorphism

RΓ[Z](RΓ[Z]N
L
⊗M ) ' RΓ[Z]N

L
⊗M .

(We shall not give the proof here.) Hence, the morphism RΓ[Z]N
L
⊗M −→ N

L
⊗M

factorizes uniquely through RΓ[Z]N
L
⊗M −→ RΓ[Z](N

L
⊗M ).

(ii) Then, we prove the isomorphism in Db(OX), that is, for the functor
L
⊗

O
. By

dévissage, we reduce to the case where N and M belong to Mod(OX). Then, we
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may reduce to the case where M is coherent. Set M ∗ = RHomO(M ,O). In this
case,

(RΓ[Z]N )
L
⊗

O
M 'RHomO(M ∗,RΓ[Z]N )

'RΓ[Z]RHomO(M ∗,N )

'RΓ[Z](N
L
⊗

O
M ).

(iii) The morphism in (i) is an isomorphism by (ii).

The DX-module BZ|X

Lemma 2.7.10. Let Z be a closed analytic subset of X. Then

Hk(RΓ[Z]OX) ' colim
j

Extk
O

(OX/I
j
Z ,OX).(2.7.6)

Proof. Let F • be a resolution of OX with F j ∈ J . Then the left hand side of
(2.7.6) is the k-th cohomology object of colim

j
HomO(OX ,F •). Sincve the inductive

limit is filtrant, it commutes with Hk. Moreover,

Hk(HomO(OX/I
j
Z ,F

•)) ' Extk
O

(OX/I
j
Z ,OX),

since the germs of the F j’s are OX,x-injective and OX/I
j
Z is OX-coherent.

Recall that if Z is a closed complex analytic hypersurface of X and j : (X \Z) ↪→
X is the open embedding, the sheaf j∗j

−1OX describes the sheaf of holomorphic
functions on X \ Z, with essential singularities on Z. It contains the subsheaf
OX [∗Z] of meromorphic functions with poles in Z. If {f = 0} is an equation of Z
(such an f exists locally), then OX [∗Z] ' OX [1/f ].

Proposition 2.7.11. (i) Let Z be a closed analytic subset of codimension ≥ l.
Then Hj(RΓ[Z]OX) = 0 for j < l.

(ii) If Z is a hypersurface, then Hj(RΓ[Z]OX) = 0 for j 6= 1 and if {f = 0} is an
equation of Z then H1(RΓ[Z]OX) ' OX [1/f ]/OX .

Proof. (i) using (2.7.6), this is a particular case of Theorem 3.5.6.
(ii) For j > 0, let us apply the left exact functor HomO( • ,OX) to the exact sequence

0 −→ OX
fj−→ OX −→ OX/I

j
Z −→ 0. We get the sequence

0 −→ OX
fj−→ OX −→ Ext1

O
(OX/I

j
Z ,OX) −→ 0.

Hence, H1(RΓ[Z]OX) ' colim
j

OX/f
jOX . The isomorphism colim

j
OX/f

jOX
∼−→

OX [1/f ]/OX associates 1/f j ∈ OX [1/f ]/OX to the image of 1 ∈ OX in OX/f
jOX .

Recall that Hd
Z( • ) is the d-th derived functor of the functor ΓZ( • ) : Mod(CX) −→

Mod(CX).

Definition 2.7.12. When Z is a closed subset of pure codimension d, one sets

BZ|X = Hd(RΓ[Z]OX), B∞Z|X = Hd
Z(OX).
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Note that

BX|X = OX .

Also note that the morphism of functors RΓ[Z]( • ) −→ ΓZ( • ) defines the morphism
RΓ[Z]( • ) −→ RΓZ( • ) and in particular, the morphism

BZ|X −→ B∞Z|X .

Recall that a closed analytic subvariety of codimension d is called a local complete
intersection if locally on X there exists d holomorphic functions f1, . . . , fd such that,
setting Zj = {x ∈ X; fj = 0}, Z =

⋂d
j Zj.

Proposition 2.7.13. Assume Z =
⋂d
j Zj is a local complete intersection of codi-

mension d. Then Hj(RΓ[Z]OX) = 0 for j 6= d and

BZ|X ' BZ1|X
L
⊗ · · ·

L
⊗BZd|X .(2.7.7)

Proof. Since BZ|X is concentrated in degree ≥ 0 and the right-hand side of (2.7.7)
is concentrated in degree ≤ 0, it is enough to prove this formula. One has

RΓ[Z]OX [d] ' RΓ[Z1]OX [1]
L
⊗ · · ·

L
⊗RΓ[Zd]OX [1].(2.7.8)

Since each RΓ[Zi]OX [1] is concentrated in degree 0, the result follows.

Corollary 2.7.14. Let Z = {fj = 0; j = 1, . . . , d} be a complete intersection. Then

BZ|X ' OX [1/f1 . . . fd]/
∑
i

OX [1/f1 . . . f̂i . . . fd].(2.7.9)

Corollary 2.7.15. Let x = (x′, x′′) be a local coordinate system on X, with x′ =
(x1, . . . , xd). Assume Z = {x′ = 0}. Then

BZ|X ' DX/DX(x′, ∂x′′).

Corollary 2.7.16. Let Z be a closed smooth submanifold of X. Then BZ|X is a
coherent DX-module and its characteristic variety is T ∗ZX, the conormal bundle to
Z in X.

Notation 2.7.17. Let f be a non zero section of OX (on a connected open set)
and let Z = {f = 0}. One denotes by δ(f) the generator of BZ|X ' OX [∗Z]/OX

associated with 1/f .

Let Z1 and Z2 be hypersurfaces and assume Z1∩Z2 has codimension 2. Consider
the diagram below in which all morphisms are isomorphisms:

BZ1|X ⊗O BZ2|X
//

��

BZ1∩Z2|X

BZ2|X ⊗O BZ1|X
//BZ1∩Z2|X

Note that δ(f1)⊗ δ(f2) is a generator of BZ1∩Z2|X and

δ(f1)⊗ δ(f2) = −δ(f2)⊗ δ(f1).(2.7.10)
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Remark 2.7.18. One proves similarly that Z =
⋂d
j Zj being a local complete

intersection of codimension d, then Hj
Z(OX) = 0 for j 6= d and

B∞Z|X ' B∞Z1|X
L
⊗ · · ·

L
⊗B∞Zd|X .(2.7.11)

Proposition 2.7.19. Let Z be a complete intersection of codimension d and assume
IZ = OXf1 + · · ·+ OXfd. Then the section

δ(f1)⊗ · · · ⊗ δ(fd)⊗ df1 ∧ · · · ∧ dfd ∈ BZ|X ⊗O Ωd
X

does not depend on the choice of the sequence (f1, . . . , fd).

Proof. Let (f ′1, . . . , f
′
d) be another sequence defining the ideal IZ . There exists a

section A ∈ Gl(OX , d) which interchanges these two sequences. The group Gl(OX , d)
is generated by the transformations

(i) (f1, . . . , fd) 7→ (af1, . . . , fd), with a ∈ O×X ,

(ii) (f1, . . . , fi, fi+1, . . . fd) 7→ (f1, . . . , fi+1, fi, . . . , fd)

(iii) (f1, . . . , fd) 7→ (f1, f2 + bf1, . . . , fd)

Then, it is enough to notice that

1/af1 · 1/f2d(af1) ∧ df2 = 1/f1 · 1/f2df1 ∧ df2,

1/f2 · 1/f1df2 ∧ df1 = 1/f1 · 1/f2df1 ∧ df2

1/f1 · 1/(f2 + bf1)df1 ∧ d(f2 + bf1) = 1/f1 · 1/f2df1 ∧ df2.

Definition 2.7.20. Assume that Z is smooth of codimension d. We shall denote
by δ(Z)dx the canonical section of BZ|X ⊗O Ωd

X constructed in Proposition 2.7.19.
One calls it the fundamental class of Z in X.

Note that δ(Z)dx belongs to
∧dLZ where LZ denotes the subsheaf of Ω1

X con-
sisting of sections with values in the conormal bundle T ∗ZX.

Denote by ∆ the diagonal in X × X and by q1 and q2 the first and second
projections X × X −→ X. The projection q2 allows us to identify T ∗∆X × X with
T ∗X. There is a natural DX ⊗Dop

X -linear morphism

DX −→ B∆|X×X ⊗q−1
2 O q

−1
2 ΩX ,(2.7.12)

given by 1 7→ δ(∆)dx

Proposition 2.7.21. The morphism (2.7.12) is an isomorphism.

Proof. We may choose a local coordinate system (x) on X and denote by (y) a
copy of this system. Then (x, y) is a local coordinate system on X × X. Replace
this coordinate system by the new system (u, v) = (x + y, x− y). Then B∆|X×X is
isomorphic to DX×X/(v, ∂u) and the result follows.
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Exercises to Chapter 2

Exercise 2.1. Let Z1 and Z2 be two smooth submanifolds of X and assume they
are transversal. Calculate
(i) RHomD(BZ1|X ,BZ2|X),

(ii) BZ1|X
L
⊗BZ2|X .

Exercise 2.2. Let f : X −→ Y be a morphism of complex manifolds and let Z be
a smooth closed submanifold of Y . Assume that f is transversal to Z, that is, f is
non characteristic for T ∗ZY , or, equivalently, for BZ|Y . Prove that S := f−1Z is a
smooth closed submanifold of X and that f−1

D BZ|Y ' BS|X .

Exercise 2.3. Denote by j : Z ↪→ X the closed embedding of a smooth submanifold
Z of X.
(i) Prove that BZ|X ' jD

! OZ .
(ii) Calculate RHomD(BZ|X ,DX) for a smooth submanifold Z of X.

Exercise 2.4. Let M ∈ Modc(DX) and assume that char(M ) ⊂ T ∗XX. Prove that
locally on X, there is an isomorphism of DX-modules M ' ON

X for some integer N .
(Hint: see [Ka03, Prop. 4.43]).

Exercise 2.5. Let f : X −→ Y be a morphism of complex manifolds. Let M ∈
Db(Dop

X ) and let N ∈ Db(DY ). Prove that there is a natural isomorphism in
Db(CY )

Rf!(M
L
⊗

D
f−1

D N ) ' fD
! M

L
⊗

D
N .

Exercise 2.6. Let X and Y be two complex manifolds and denote by qi the i-th
projection defined on X × Y and by pi the i-th projection defined on T ∗X × T ∗Y
(i = 1, 2). Let M ∈ Db(DX) and L ∈ Db(Dop

X×Y ).
(i) Prove the isomorphism

L ◦M := q2
D
! (L

L
⊗q1

−1
D M ) ' Rq2!(L

L
⊗

D
q−1

1 M ).

(ii) Assume now that M ∈ Db
gd(DX), L ∈ Db

gd(Dop
X×Y ) and that p2 is proper on

p−1
1 char(M ) ∩ char(L ). Prove that p−1

1 char(M ) ∩ char(L ) ⊂ T ∗X×YX × Y and
that L ◦MM ∈ Db

gd(Dop
Y ).

(iii) Show that the construction of the inverse or direct image of a D-module can be
obtained by this procedure.
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Chapter 3

Appendix

In this Appendix, we collect basic and classical results of various fields of Mathe-
matics which are of constant use in D-modules theory.

We give a few proofs of results that, although elementary, are not always well-
known. Here, k denotes a commutative ring.

3.1 Symplectic geometry

The theory developed in this section works for real vector spaces and real manifolds,
as well as for complex vector spaces and complex manifolds.

Linear symplectic geometry

A finite dimensional symplectic vector space (E, θ) is a finite dimensional vector
space E endowed with a non degnerate skew symmetric 2-form θ. In such a case E
has even dimension.

Definition 3.1.1. A symplectic basis on a symplectic vector space (E, θ) is a basis
(e; f) = (e1, . . . , en; f1, . . . , fn) such that denoting by (e∗; f ∗) = (e∗1, . . . , e

∗
n; f ∗1 , . . . , f

∗
n)

the dual basis, on E∗, one has

θ =
n∑
i=1

f ∗i ∧ e∗i .

One proves easily that any finite dimensional symplectic vector space (E, θ)
admits a symplectic basis.

Example 3.1.2. Let V be a finite dimensional vector space. The space E = V ⊕V ∗
is endowed with a symplectic structure, by setting for (x; ξ) ∈ V ⊕ V ∗:

θ((x; ξ)(x′; ξ′)) = 〈x′, ξ〉 − 〈x, ξ′〉.

Since θ is non degenerate, it defines an isomorphism

H : E∗ ∼−→ E

〈ξ, v〉 = θ(v,H(ξ)), v ∈ E, ξ ∈ E∗.

The isomorphism H is called the Hamiltonian isomorphism. If ξ ∈ E∗, one also
writes Hξ instead of H(ξ) and calls Hξ the Hamiltonian vector of ξ.

49
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The Poisson bracket. denoted {·, ·}, is the symplectic form on E∗, the image of
θ by H. It is thus given by:

{ξ, η} = θ(H−1(ξ), H−1(η)).

If E is endowed with a symplectic basis and one calculates the image by H of
the dual symplectic basis, one finds

H(e∗i ) = −fi, H(f ∗i ) = ei.(3.1.1)

Let ρ be a linear subspace of E. One sets

ρ⊥ = {v ∈ E; θ(v, ρ) = 0.

Note that

ρ⊥⊥ = ρ, (ρ1 + ρ2)⊥ = ρ⊥1 ∩ ρ⊥2 , (ρ1 ∩ ρ2)⊥ = ρ⊥1 + ρ⊥2 .

Definition 3.1.3. A linear subspace ρ of E is called

(i) isotropic if ρ ⊂ ρ⊥,

(ii) involutive (or else, co-isotropic) if ρ⊥ ⊂ ρ,

(iii) Lagrangian if ρ = ρ⊥.

Note that if dimE = 2n and ρ is isotropic (resp. involutive, resp. Lagrangian),
then dim ρ ≤ n (resp. dim ρ ≥ n, resp. dim ρ = n). A line is always isotropic and a
hyperplane is always involutive.

Symplectic manifolds

A real or complex symplectic manifold (X, θ) is a manifold X endowed with a closed
2-form θ such that θn never vanishes.

At each p ∈ T ∗X, the 2-form θX(p) is a bilinear skew symmetric non degenerate
form on TpT

∗X, hence induces a linear isomorphism H(p) : T ∗pX ' TpX. Hence θ
defines an isomorphism of vector bundles

H : T ∗X ' TX,

or, equivalenly, a sheaf isomorphism

H : ΘX ' ΩX.(3.1.2)

Definition 3.1.4. (i) Let f be a section of the sheaf OX, one sets

Hf = H(df),

the section of ΘX associated with df by the isomorphism (3.1.2). One calls Hf

the Hamiltonian vector field of f .

(ii) Given two sections f and g of OX, one defines their Poisson bracket {f, g} as

{f, g} = Hf (g).(3.1.3)
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The Poisson bracket satisfies the Jacobi identities:
{f, g} = −{g, f}
{f, hg} = h{f, g}+ g{f, h}
{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

(3.1.4)

Moreover,

[Hf , Hg] = H{f,g}.(3.1.5)

Definition 3.1.5. A symplectic local coordinate system (x; ξ) is a local coordinate
system (x1, . . . , xn; ξ1 . . . , ξn) on X such that

θ =
∑
i

dξi ∧ dxi.(3.1.6)

The Darboux Theorem asserts that a symplectic local coordinate system always
locally exists.

In a symplectic local coordinate system, one finds, using (3.1.1):

Hxi = −∂ξi , Hξi = ∂xi(3.1.7)

Hf =
n∑
i=1

(∂f
∂ξi

∂

∂xi
− ∂f

∂xi

∂

∂ξi

)
(3.1.8)

{f, g} =
n∑
i=1

(∂f
∂ξi

∂g

∂xi
− ∂f

∂xi

∂g

∂ξi

)
.(3.1.9)

If S is a locally closed analytic subvariety of a smooth complex manifold X, one
denotes by Sreg the manifold given by the non singular points of S, and by IS the
defining sheaf of ideals of S.

Definition 3.1.6. Let V be a locally closed analytic subset of X. One says that V
isotropic (resp. involutive, resp. Lagrangian) if for each p ∈ Vreg, the vector space
TpVreg is isotropic (resp. involutive, resp. Lagrangian) in TpX.

One can prove that V is involutive if and only if its symbol ideal IV is stable
by the Poisson product, that is, if for any f, g vanishing on V , the function {f, g}
also vanishes on V . If V is involutive, then all irreductible components of V have
dimension at least n.

If V is smooth, then V is involutive if and only if for any function f which
vanishes on V , then Hf is tangent to V . Indeed, TV ⊥ is generated by the vector
fieldsHf , with f |V = 0. By (3.1.5), it follows that the sub-bundle TV ⊥ of TV is table
by brackets, that is, satisfies the Frobenius integrability conditions. Therefore there
exists a foliation of V , and the leaves of this foliations are called the “bicharacteristic
leaves” of V .

An involutive manifold has dimension ≥ n. A hypersurface is always involutive.
One proves that V is isotropic if and only if, for any manifold S and any morphism

f : S −→ V , the 2-form f ∗θX vanishes. If V is isotropic, then all irreductible
components of V have dimension at most n. A curve is always isotropic.

If V is Lagrangian, then it is pure dimensional.



52 CHAPTER 3. APPENDIX

Realification of complex cotangent bundles

For a complex manifold X we denote by XR the real underlying submanifold to X.
When there is no risk of confusion, we simply write X instead of XR.

We denote by X the complex conjugate manifold to X. (Recall that X = X
as a topological space, but the sheaf of holomorphic functions on X is the sheaf of
anti-holomorphic functions on X.) Then, identifying X with the diagonal of X×X,
the complex manifold X ×X is a complexification of XR.

Denote by dαX the symplectic form on T ∗X and by dαXR the symplectic form
on T ∗XR. Then

dαXR = 2< dαX .

Homogeneous symplectic manifolds

A homogeneous symplectic manifold is the data of a symplectic manifold (X, θ)
together with a vector field v on X such that

Lvθ = θ.(3.1.10)

Define the 1-form ω by

ω = ivθ.(3.1.11)

Since Lv = d ◦ iv + iv ◦ d, we get

dω = θ, H(ω) = −v.(3.1.12)

In such a case one calls X a homogeneous symplectic manifold.

Definition 3.1.7. A homogeneous symplectic local coordinate system (x; ξ) is a
local coordinate system (x1, . . . , xn; ξ1 . . . , ξn) such that

ω =
∑
i

ξidxi.(3.1.13)

It follows from Darboux’s theorem that such a local coordinate system always
locally exists.

Cotangent bundle

Let X be a manifold and let E −→ X be a real vector bundle over X. Then E is
endowed with an action of R× and in particular, an action of R+. One says that a
subset Λ ⊂ E is R+ conic if it is invariant by this action. One defines similarly the
C×-conic subsets of a complex vector bundle.

If X is a manifold, we denote by τ : TX −→ X and π : T ∗X −→ X the tangent
and cotangent bundles, respectively.

Let f : X −→ Y be a morphism of manifolds. To f are associated the tangent
morphisms

TX
f ′−→ X ×Y TY

fτ−→ TY.(3.1.14)
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Taking the dual bundles, we find the canonical morphisms

T ∗X

π

��

X ×Y T ∗Y
π
��

fdoo fπ // T ∗Y

π

��
X X

f // Y.

(3.1.15)

The projection π : T ∗X −→ X defines ππ : T ∗X ×X T ∗X −→ T ∗T ∗X. By compos-
ing with the diagonal embedding T ∗X ↪→ T ∗X ×X T ∗X, we find the map

T ∗X −→ T ∗T ∗X,

which is a section of the projection T ∗T ∗X −→ T ∗X. We have thus constructed a
canonical 1-form ωX on T ∗X.

Let x = (x1, . . . , xn) a local coordinate system on X. It defines canonically a
local coordinate system on T ∗X,

(x; ξ) = (x1, . . . , xn; ξ1, . . . , ξn)(3.1.16)

and the 1-form ωX associates (x; ξ; ; ξ; 0) to (x; ξ) ∈ T ∗X. Therefore

ωX =
n∑
i=1

ξidxi,

H(ω) =
n∑
i=1

−ξi
∂

∂ξi
.

The vector field H(ω) is called the Euler vector field and denoted euT∗X. It is the
vector field associated with the action of C× (in case of complex manifolds, R× in
case of real manifolds) on the vector bundle T ∗X.

Set θX = dωX . In local coordinates,

θX =
n∑
i=1

dξi ∧ dxi.

Hence, (T ∗X, θ, euT∗X) is a homogeneous symplectic manifold.

Definition 3.1.8. (i) One denotes by T ∗XX the zero-section of the vector bundle
T ∗X.

(ii) Consider a morphism f : X −→ Y of manifolds. The conormal bundle to X in
Y is the sub-vector bundle of X ×Y T ∗Y given by f−1

d (T ∗XX).

When Z is a smooth submanifold of X, the conormal bundle T ∗ZX is identified
with a sub-bundle of T ∗X. Note that the zero-section T ∗X X is also the conormal
bundle to X in X.

Let Z be a smooth submanifold to X. Then T ∗ZX is a Lagrangian submanifold
of T ∗X and Z ×X T ∗X is an involutive submanifold.

Example 3.1.9. Assume we have a local coordinate system (x) = (x′, x′′) on X,
with (x′) = (x1, . . . , xp) and (x′′) = (xp+1, . . . , xn). Let (x; ξ) = (x′, x′′; ξ′, ξ′′) denote
the associate coordinates on T ∗X and let Z = {x ∈ X;x′ = 0}. Then

T ∗ZX = {(x; ξ) ∈ T ∗X;x′ = 0, ξ′′ = 0},
Z ×X T ∗X = {(x; ξ) ∈ T ∗X;x′ = 0}.
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Non characteric morphisms

Definition 3.1.10. Consider a morphism f : X −→ Y of real manifolds and let
Λ ⊂ T ∗Y be a closed R+-conic subset. One says that f is non-caracteristic for Λ (or
else, Λ is non-caracteristic for f , or f and Λ are transversal) if, with the notations
in (3.1.15),

f−1
π (Λ) ∩ T ∗XY ⊂ X ×Y T ∗Y Y.

Lemma 3.1.11. (i) Let Λ be a closed R+-conic subset of T ∗Y . Then a morphism
f : X −→ Y is non characteristic for Λ if and only if fd : X ×Y T ∗Y −→ T ∗X is
proper on f−1

π (Λ).

(ii) In particular, if f is non characteristic for Λ, then fdf
−1
π (Λ) is closed and

R+-conic in T ∗X.

(iii) If f is a morphism of complex manifolds and Λ is a complex analytic C×-conic
subset, then fd is finite on f−1

π (Λ) and fdf
−1
π (Λ) is a complex analytic C×-conic

subset of T ∗X.

Proof. The first assertion follows from the fact that if λ is a closed cone in a vector
space E and u : E −→ F is a linear map, then u|λ is proper if and only if λ∩u−1(0) ⊂
{0}, and the others are easily deduced.

Example 3.1.12. Let Z be a closed and smooth submanifold of Y . Then f is
non-characteristic for T ∗ZY if and only if f is transversal to Z.

Lemma 3.1.13. Consider morphisms of real manifolds X
f−→ Y

g−→ Z and set
h = g ◦ f . Let Λ be a closed R+-conic subset of T ∗Z.

(i) Assume that g is non characteristic for Λ and f is non characteristic for
gdg
−1
π (Λ). Then h is non characteristic for Λ.

(ii) Assume that h is non characteristic for Λ. Then g is non characteristic for Λ
on a neighborhhod of f(X) and f is non characteristic for gdg

−1
π Λ.

Proof. Set Λ0 = g−1
π Λ. Consider the diagram in which the square labelled � is

Cartesian:

T ∗X X ×Y T ∗Yfd
oo

fπ
��

X ×Z T ∗Zϕ
oo

ψ
��

�

T ∗Y Y ×Z T ∗Z ⊃ Λ0gd
oo

gπ
��

T ∗Z ⊃ Λ.

(3.1.17)

Note that

(g ◦ f)d = fd ◦ ϕ, (g ◦ f)π = gπ ◦ ψ,
ψ−1(T ∗YZ) ⊂ T ∗XZ, ϕ

−1(T ∗XY ) = T ∗XZ,

Λ0 := g−1
π (Λ) f−1

π gd(Λ0) = ϕψ−1(Λ0).
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It follows that

(g ◦ f)d(g ◦ f)−1
π (Λ) = fdf

−1
π gdg

−1
π (Λ).

(i) Since f is non characteristic for gdg
−1
π (Λ) and f−1

π gdg
−1
π (Λ) = ϕψ−1g−1

π (Λ), we
get

f−1
d (T ∗XX) ∩ ϕψ−1g−1

π (Λ) ⊂ X ×Y T ∗Y Y.

Hence

ϕ−1f−1
d (T ∗XX) ∩ ψ−1g−1

π (Λ) = (g ◦ f)−1
d (T ∗XX) ∩ (g ◦ f)−1

π (Λ)

⊂X ×Z T ∗ZZ.

(ii)–(a) By the hypothesis,

ψ−1(g−1
π (Λ) ∩ T ∗YZ) ⊂ (g ◦ f)−1

π (Λ) ∩ T ∗XZ ⊂ X ×Z T ∗ZZ.

Therefore, g is non characteristic for Λ on a neighborhood of f(X).
(ii)–(b) We have

f−1
π (gdg

−1
π (Λ)) ∩ T ∗XY =ϕψ−1g−1

π (Λ) ∩ T ∗XY
=ϕ((g ◦ f)−1

π (Λ) ∩ T ∗XZ)

⊂ϕ(X ×Z T ∗ZZ) ⊂ X ×Y T ∗Y Y.

(Note that we have used the equality ϕ(A) ∩B = ϕ(A ∩ ϕ−1B).)

3.2 Coherent sheaves

Let X be a topological space and let R be a k-algebra (i.e., a sheaf of k-algebras)
on X. Let us recall a few classical definitions.

• An R-module M is locally finitely generated if there locally exists an exact
sequence

L0 −→M −→ 0(3.2.1)

such that L0 is locally free of finite rank over R.

• An R-module M is locally of finite presentation if there locally exists an exact
sequence

L1 −→ L0 −→M −→ 0(3.2.2)

such that L1 and L0 are locally free of finite rank over R. This is equivalent
to saying that there locally exists an exact sequence

0 −→ K
u−→ N −→M −→ 0(3.2.3)

where N is locally free of finite rank and K is locally finitely generated. This
is also equivalent to saying that there locally exists an exact sequence

K −→ N −→M −→ 0(3.2.4)

where N is locally of finite presentation and K is locally finitely generated.
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• An R-module M is pseudo-coherent if for any locally defined morphism u : N −→
M with N of finite presentation, keru is locally finitely generated. This is
also equivalent to saying that any locally defined R-submodule of M is locally
of finite presentation as soon as it is locally finitely generated.

• An R-module M is coherent if it is locally finitely generated and pseudo-
coherent. A ring is a coherent ring if it is so as a module over itself. One
denotes by Modcoh(R) the full additive subcategory of Mod(R) consisting
of coherent modules. Note that Modcoh(R) is a full abelian subcategory of
Mod(R), stable by extension, and the natural functor Modcoh(R) −→ Mod(R)
is exact (see [?K-S3, Exe. 8.23]).

• An R-module M is Noetherian (see [?Ka2, Def. A.7]) if it is coherent, Mx

is a Noetherian Rx-module for any x ∈ X, and for any open subset U ⊂ X,
any filtrant family of coherent submodules of M |U is locally stationary. (This
means that given a family {Mi}i∈I of coherent submodules of M |U indexed
by a filtrant ordered set I, with Mi ⊂Mj for i ≤ j, there locally exists i0 ∈ I
such that Mi0

∼−→Mj for any j ≥ i0.) A ring is a Noetherian ring if it is so
as a left module over itself.

Let M and N be two R-modules. Consider the natural morphism

ϕx : (HomR(M ,N ))x −→ HomRx
(Mx,Nx).

If M is locally finitely generated (resp. of finite presentation), then ϕx is injective
(resp. bijective). By choosing N = M , one gets that if M is locally of finite
presentation and Mx = 0, then there exists an open neighborhood U of x such that
M |U = 0.

Example 3.2.1. Let U be an open subset of X with U 6= U . Then the sheaf RU is
not of finite presentation since, choosing x ∈ U \ U , (RU)x ' 0.

Proposition 3.2.2. If R is Noetherian, then all coherent R-modules are Noethe-
rian.

Proposition 3.2.3. Let X = Y × Z be a product of topological spaces and let
f : X −→ Y be the projection. Let R be a sheaf of kY -algebras on Y .

(i) If R is coherent, then f−1R is coherent.

(ii) If R is Noetherian and moreover Z is a topological manifold, then f−1R is
Noetherian.

3.3 Filtered sheaves

As above, k denotes a commutative unitary ring and X a topological space.

Definition 3.3.1. (i) A graded sheaf GrM on X is a sheaf of k-modules together
with a familly GrjM , j ∈ Z of subsheaves satisfying :

GrM '
⊕
j

GrjM .
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(ii) The shifted graduation Gr[p]M is given by Gr
[p]
j M = Grp+jM .

(iii) A morphism of graded sheaves Grf : GrM −→ GrN is a morphism of sheaves
such that Grf(GrjM ) ⊂ GrjN for all j ∈ Z.

(iv) A graded ring GrR on X is a graded sheaf of rings satisfying: 1 ∈ Gr0R and
GriR ·GrjR ⊂ Gri+jR for all i, j.

(v) A graded GrR-module GrM is a graded sheaf of GrR-modules satisfying:

GriR ·GrjM ⊂ Gri+jM for all i, j.

(vi) We denote by Modgr(GrR) the abelian category of graded GrR-modules.

Definition 3.3.2. (i) A filtered sheaf FlM on X is a sheaf M of k-modules
together with a familly FljM , j ∈ Z of subsheaves satisfying :

FljM ⊂ Flj+1M , colim
j

FljM = M .

One calls M the underlying sheaf.

(ii) The shifted filtration Fl[p]M is given by Fl
[p]
j M = Flp+jM .

(iii) A morphism of filtered sheaves Flf : FlM −→ FlN is a morphism of sheaves
f : M −→ N such that f(FljM ) ⊂ FljN for all m.

(iv) The graded sheaf GrM associated to FlM is the sheaf
⊕

j GrjM , where
GrjM = FljM /Flj−1M . If Flf : FlM −→ FlN is a filtered morphism, one
denotes by Grf : GrM −→ GrN the associated morphism of graded sheaves.

(v) One denote by σj : FljM −→ GrjM the canonical morphism and calls it
the“symbol of order j” morphism. One denotes by σ : FlM −→ GrM the
morphism deduced from the σj and calls it the“principal symbol” morphism.
(One shall be aware that σj is an additive morphism, contrarily to σ.)

(vi) A filtered ring FlR on X is a filtered sheaf of rings satisfying: 1 ∈ Fl0R and
FliR · FljR ⊂ Fli+jR for all i, j.

(vii) A filtered R-module FlM , or equivalently an FlR-module, is an R-module
endowed with a filtration satisfying: FliR · FljM ⊂ Fli+jM .

Consider an exact sequence of sheaves

0 −→M ′ f−→M
g−→M ′′ −→ 0

and assume that M is endowed with a filtration FlM . The induced filtration on
M ′ is given by FljM ′ = f−1(FljM ). The image filtration on M ′′ is given by
FljM ′′ = g(FljM ).

Let us denote by Modfil(kX) the category of filtered sheaves. Clearly, the category
Modfil(kX) is additive and admits kernels and cokernels.
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Remark 3.3.3. One shall be aware that the category Modfil(kX) is not abelian, even
when X = pt. Indeed, consider a filtered k-module FlM and the identity morhism
u : FlM −→ Fl[1]M . Its kernel and cokernel are zero, although this morphism is not
an isomorphism in general.

Here, we shall assume that the filtration is positive, that is,

FlmR = 0 for m� 0.(3.3.1)

Definition 3.3.4. Let FlR be a filtered ring and M an R-module.

(i) A filtration FlM on M is locally finite free if it is locally isomorphic to a finite
direct sum of Fl[i]R.

(ii) A filtration FlM on M is locally finitely generated if it is locally the image of
a finite free filtration.

(iii) One defines similarly the notion of a filtration locally of finite presentation.

(iv) A locally finitely generated filtration is called a good filtration.

If M�N is an epimorphism and M is endowed with a good filtration, then the
image filtration on N is good. Note that if M is a finitely generated R-module, then
M may be endowed with a good filtration. Namely, if Rm�M is an epimorphism,
one endows M with the image filtration.

We shall give conditions in order that the induced filtration on a submodule is
good.

Recall that if R is a sheaf of rings, then R[T ] is the sheaf of rings associated
with the presheaf R ⊗k k[T ].

Theorem 3.3.5. Let R be a filtered ring. Assume

(i) Gr0R and GrR are Noetherian sheaves of rings,

(ii) all GriR are locally finitely generated over Gr0R.

Then the sheaves R and R[T ] are Noetherian.

Corollary 3.3.6. We make the hypotheses of Theorem 3.3.5.

(i) Let FlM be an FlR-module with FlmM = 0 for m << 0 and assume that
GrM is locally finitely generated (resp. coherent). Then M is locally finitely
generated (resp. coherent).

(ii) Let M be a coherent R-module endowed with a good filtration FlM and let N
be a coherent submodule. Then the induced filtration FlN on N is good.

(iii) Let M be a coherent R-module endowed with a good filtration FlM . Then
GrM is a coherent GrR-module.

3.4 Almost commutative filtered rings

In this section, for simplicity, we shall not consider sheaves of filtered rings, but
simply filtered rings.

If FlA is a filtered ring with FliA = 0 for i << 0 and a ∈ A, the order of a,
denoted ord(a) is the smallest integer m such that a ∈ FlmA.
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Poisson bracket

From now on and until the end of this section, we shall assume that

[FliA,FljA] ⊂ Fli+j−1A.(3.4.1)

Hence, for any a, b ∈ FlA one has:

ord[a, b] ≤ ord(a) + ord(b)− 1.(3.4.2)

Clearly, condition (3.4.1) is equivalent to the fact that GrA is commutative. One
defines a Poisson bracket on GrA by setting for homogeneous element āi and āj of
order i and j, respectively:

{āi, āj} = σi+j−1([ai, aj]),(3.4.3)

where ai ∈ FliA, aj ∈ FljA, σi(ai) = āi and σj(aj) = āj. Clearly, the right hand
side of (3.4.3) does not depend on the choice of ai and aj. The relations

[f, g] = −[g, f ]
[f, hg] = h[f, g] + g[f, h]
[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0

(3.4.4)

tell us that the bracket { • , • } satisfies the Jacobi identities (3.1.4).

Definition 3.4.1. A graded ideal GrI of GrA is involutive if it is stable by the
Poisson bracket, that is, a, b ∈ GrI implies {a, b} ∈ GrI.

Additivity

Recall that an additive semi-group S is a set endowed with an associative, commu-
tative law S ×S −→ S , (a, b) 7→ a + b and a zero element 0, such that 0 + a = a
for all a.

Examples 3.4.2. (i) If S is a set and S = P(S) is the set of subsets of S, then
the map S ×S −→ S , (a, b) 7→ a ∪ b makes S an additive semi-group. The zero
element is the empty set.
(ii) Let B be a commutative ring and let S denote the family of its ideals. Then
the map S ×S −→ S , (I, J) 7→ I · J makes S an additive semi-group. The zero
element is B.

Definition 3.4.3. Let C be an abelian category

(i) The Grothendieck group K(C ) of C is the additive group generated by the
isomorphy classes [X] of objects of C wih relations [X] = [X ′] + [X ′′] if there
exists an exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0.

(ii) Let C ′ a full additive subcategory of C stable by isomorphisms in C . One
denotes by K(C ′) the semigroup of K(C ) of elements [X] with X ∈ C ′.

(iii) Let χ : Ob(C ′) −→ S a function. One says that χ is additive if for any exact
sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C , with X ′, X,X ′′ in C ′, one has

χ(X) = χ(X ′) + χ(X ′′).(3.4.5)



60 CHAPTER 3. APPENDIX

Clearly, an additive function χ as above defines an additive function χ : K(C ′) −→
S .

Let FlA be a filtered ring with GrA commutative. We denote by Modgr
f (GrA) the

full additive subcategory of the abelian category Modgr(GrA) consisting of finitely
generated graded modules.

Theorem 3.4.4. Let χ : Modgr
f (GrA) −→ S be an additive function. We assume

that χ is invariant by the shift functors [i]. Let M be an A-module of finite type.
Let us endow M with a finite filtration FlM . Then χ(GrM) does not depend on the
choice of the finite filtration.

Proof. (i) Let FlM and Fl′M be two finite filtrations on M . There exists an n0 ∈ N
such that Fl′iM ⊂ Fli+n0M for all i. Replacing FlM by Fl[n0]M , we may assume
from the beginning that

Fl′iM ⊂ FliM ⊂ Fl′i+n0
M for all i.(3.4.6)

We shall argue by induction on n0. If n0 = 0 the result is clear.
(ii) Assume n0 = 1. Consider the exact sequences

0 −→ ⊕iFl′iM/Fli−1M −→ ⊕iFliM/Fli−1M −→ ⊕iFliM/Fl′iM −→ 0,

0 −→ ⊕iFli−1M/Fl′i−1M −→ ⊕iFl′iM/Fl′i−1M −→ ⊕iFl′iM/Fli−1M −→ 0.

Set GrL′ = ⊕iFl′iM/Fli−1M , GrL′′ = ⊕iFliM/Fl′iM . We get exact sequences

0 −→ GrL′ −→ GrM −→ GrL′′ −→ 0,

0 −→ Gr[−1]L′ −→ Gr′M −→ GrL′′ −→ 0.

(iii) Assume n0 > 1. Set Fl′′iM = Fli−1M + Fl′iM . Then

Fl′′iM ⊂ FliM ⊂ Fl′′i+1M,

Fl′iM ⊂ Fl′′iM ⊂ Fl′i+n0−1M.

Since χ(GrM) = χ(Gr′′M) by (ii), the induction proceeds.

Corollary 3.4.5. We make the hypotheses of Theorem 3.3.5. Let 0 −→M ′ −→M −→
M ′′ −→ 0 be an exact sequence of finitely generated A-modules. Then

χ(M) = χ(M ′) + χ(M ′′).(3.4.7)

Gabber’s theorem

Recall that if B is a commutative ring and I an ideal, the radical
√
I of I is the

ideal

x ∈
√
I ⇔ there exists k ≥ 0 with xk ∈ I.

If N is a B-module, the annihilator IN of N is the ideal given by

x ∈ IN ⇔ xu = 0 for all u ∈ N.
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If 0 −→M ′ −→M −→M ′′ −→ 0 is an exact sequence in Mod(B), then clearly√
IM =

√
IM ′ ∩

√
IM ′′ =

√
IM ′ · IM ′′ .(3.4.8)

In other words, the map M 7→
√
IM is additive. If GrM is a graded GrA-module,

then
√
IGrM is a graded ideal.

Let FlA be a filtered ring with GrA commutative. Let M be a finitely generated
A-module. Let us endow M with a finite filtration FlM . Applying Theorem 3.4.4,
we can state:

Definition 3.4.6. Let M is a finitely generated A-module. One sets

Icar(M) =
√
IGrM ,(3.4.9)

where GrM is the graded module associated with a finite filtration FlM on M .

Let us give a direct proof of the fact that Icar(M) does not depend on the choice
of the filtration. Let ā ∈

√
IGrM of order p. There exists q such that āq ∈ IGrM and

there exists a ∈ FlpM such that σ(a) = ā. Then

aqFlkM ⊂ Flk+pq−1 for all k,

alqFlkM ⊂ Flk+lpq−l for all k.

If Fl′M is another filtration, there exists r such that Fl′k−rM ⊂ FlkM ⊂ Fl′k+rM .
Hence, alqFl′k ⊂ Fl′k+lpq−1 for l >> 0.

As an application, assume moreover that GrA has no zero divisors. let a 6= 0, b 6=
0 in A. Then

A · a ∩ A · b 6= {0}.

Indeed, the sequence below of left A-modules is exact.

0 −→ A/(A · a ∩ A · b) −→ A/A · a⊕ A/A · b −→ A/(A · a+ A · b) −→ 0

It follows that

0 6= Icar(A/A · a) ∩ Icar(A/A · b) ⊂ Icar(A/(A · a ∩ A · b).

Theorem 3.4.7. (Gabber’s Theorem.) Assume that GrA is a commutative Noethe-
rian Q-algebra. Let M be a finitely generated A-module. Then Icar(M) is involutive.

Note that if ā and b̄ belong to IGrM , then {ā, b̄} obviously belongs to IGrM . The
difficulty is that one assumes that ā and b̄ belong to the radical of IGrM .

Involutive basis

Let FlA and GrA be as in Theorem 3.3.5 with GrA commutative.

Definition 3.4.8. Let I be an ideal of A and {u1, . . . , uN0} a system of generators.
One says that this system is an involutive basis if {σ(u1), . . . , σ(uN0)} is a system
of generators of GrI.
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Let mj denote the order of uj. We endow I with the induced filtration by FlA.
Consider the sequences

⊕N0
j=1Fl[−mj ]A

Flf−−→ FlI −→ 0, where Flf(⊕jbj) =
∑
j

bjuj,(3.4.10)

⊕N0
j=1Gr[−mj ]A

Grf−−→ GrI −→ 0, where Grf(⊕j b̄j) =
∑
j

b̄jūj.(3.4.11)

Proposition 3.4.9. The following conditions are equivalent.

(i) (u1, . . . , uN0) is an involutive basis of I,

(ii) the sequence (3.4.10) is filtered exact,

(iii) the sequence (3.4.11) is exact,

(iv) for any l ∈ Z and b̄j ∈ Grl−mjA such that
∑

j b̄jσ(uj) = 0, there exists bj ∈
Fll−mjA such that

∑
j bjuj = 0.

Proof. (i) ⇔ (iii) by definition and (ii) ⇔ (iii) by Proposition ??.

Let us prove that (iv)⇔ (iii). Let GrI ′ denote the ideal generated by {σ(u1), . . . , σ(uN0)}.
Consider the exact sequences

0 −→ GrK ′ −→ ⊕N0
j=1Gr[−mj ]A

Grf−−→ GrI ′ −→ 0

0 −→ Fl ker(f) −→ ⊕N0
j=1Fl[−mj ]A

Flf−−→ FlI −→ 0,

where ker f is endowed with the induced filtration. Then GrI ′ ∼−→ GrI if and only
if GrK ′

∼←− Gr ker(f).

Note that since GrA is Noetherian, there always exist involutive basis.

3.5 O-modules

Coherency

Let X be a complex manifold of complex dimension dX , OX it structural sheaf.

Theorem 3.5.1. The sheaf OX is Noetherian.

If Z is a closed complex analytic subset, we shall denote by IZ its defining ideal.
Note that IZ is coherent.

One denotes by Modc(OX) the abelian category of coherent sheaves of OX-
modules. If S is a closed analytic subset of X, we shall denote by Modc(OX)S
the abelian category of coherent sheaves with support in S.
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Cycles

Let Z be a closed analytic irreducible component of S. To each F ∈ Modc(OX)S
one can associates a number multZ(F ), the multiplicity of F along Z, as follows.
First, assume that IZF = 0. Then F is an OZ-module, and generically, Z is
smooth and F is free of finite rank r over OZ . Then we set multZ(F ) = r. In the
general case, since locally at generic points of Z, supp F ⊂ Z, there locally exists
an integer N such that I N

Z F = 0 and one sets

multZ(F ) =
∑
j≥0

multZ(I j
ZF/I j+1

Z F ).

Proposition 3.5.2. Let S a closed analytic subset of X and let Z be an irreducible
component of S. The function multZ( • ) on Modc(OX)S is additive.

Let us introduce the group ZdX of cycles of codimension d as the free abelian
group generated by the symbols [S] where S is a closed irreducible subset of X of
codimension d. One sets

ZX =
⊕
d

ZdX

and calls this graded group the group of cycles of X.
If F is a coherent sheaf, S its support, {Zj}j the (locally finite) family of closed

irreducible components of S, the cycle associated with F is defined by

[F ] =
∑
j

multZj(F )[Zj].

One shall be aware that [ • ] is not additive on the category Modc(OX).

Example 3.5.3. Let X = C with holomorphic coordinate x and let F = OX/x
2OX .

Let Z = {0}. Then multZ(F ) = 2 and [F ] = 2[{0}]. On the other hand [OX⊕F ] =
[OX ] = [X].

One denotes by [F ]d the homogeneous part of degree d of the cycle [F ]. Then
the function [ • ]d is additive on the full category of Modc(OX) consisting of sheaves
F such that codim(supp(F )) ≥ d.

Operations on O-modules

For a complex manifold X, one denotes by Modc(OX) the thick abelian subcategory
of Mod(OX) consisting of coherent modules. One denotes by Db

coh(OX) the full
triangulated category of the bounded derived category Db(OX) consisting of objects
with coherent cohomology.

We shall also encounter the duality functors for O-modules:

D′OF := RHomO(F ,OX),

DOF := RHomO(F ,ΩX [dX ]).

Recall that dX is the complex dimension of X and ΩX = ΩdX
X .
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Let X and Y be two manifolds. For an OX-module F and an OY -module G , we
define their external product, denoted F�G , by

F�G = OX×Y ⊗OX�OY
(F � G ).

Note that the functor F 7→ F�G is exact. Clearly, if F ∈ Db
coh(OX) and G ∈

Db
coh(OY ), then F�G ∈ Db

coh(OX×Y ).
Let f : X −→ Y be a morphism of complex manifolds. There is a natural mor-

phism of rings f−1OY −→ OX . Using this morphism, the direct images f∗F and
f!F of an OX-module are well defined as OY -modules. One denotes as usual by Rf∗
and Rf! their derived functors. The inverse image of an OY -module G is defined
by f ∗ := OX ⊗f−1OY

f−1G . Its right derived functor is denoted Lf ∗. The following
result is left as an exercise.

Proposition 3.5.4. Let G ∈ Db
coh(OY ). Then Lf ∗G ∈ Db

coh(OX) and there is a
natural isomorphism

Lf ∗D′OG ' D′OLf ∗G .

There is a similar result for direct images:

Theorem 3.5.5. Grauert’s theorem. Let F ∈ Db
coh(OX) and assume that f is

proper on supp(F ). Then Rf!F ∈ Db
coh(OY ) and there is a natural isomorphism

Rf!DOF ' DORf!F .

Note that Grauert’s theorem is a relative version of the Cartan-Serre’s finiteness
theorem and the Serre’s duality theorem.

Homological properties

Recall the well known results.

Theorem 3.5.6. Let X be a smooth manifold and let F be a coherent OX-module.
Then

(i) Extk
O

(F ,OX) = 0 for k < codim supp(F ),

(ii) codim(supp(Extk
O

(F ,OX))) ≥ k.

Theorem 3.5.7. (Golovin)The global homological dimension of OX is dX + 1.

In other words, any OX-module F admits an injectve resolution of length ≤
dimX + 1, or equivalently, for any OX-modules F and G , one has Extj

O
(F ,G ) = 0

for j > dX + 1.
Let us only show that this dimension is at least dX + 1.

Proposition 3.5.8. Let x ∈ X. Then Hj(RΓ{x}(X; O(N)
X )) 6= 0 for j = dX + 1.

We may assume X = Cn. Let Y = Cn−1 and let f : X −→ Y be the projection.

We have a short exact sequence 0 −→ f−1OY −→ OX
∂n−→ OX −→ 0 form wich we

deduce the exact sequence

· · · −→ Hn+1(RΓ{x}(X; O(N)
X )) −→ Hn+2(RΓ{x}(X; f−1O(N)

Y ))

−→ Hn+2(RΓ{x}(X; O(N)
X )) = 0.
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Since for any sheaf F on Y

Hj+2(RΓ{0}(X; f−1F )) ' Hj(RΓ{0}(Y ; F )),

we are reduced to prove the result for n = 1. Let X = P1(C) denote the Riemann
sphere. Since X is compact, Hj(X; OX [T ]) ' Hj(X; OX)[T ] and this group is zero

for j > 0. Therefore, H2
{x}(X; O(N)

X ) ' H1(X \ {0}; OX [T ]).

Lemma 3.5.9. Set X = A(C), the affine line. Then H1(X; OX [T ]) 6= 0.

Proof. Let δ(n) denote the Dirac mass at n ∈ X and set u = Σnδ(n)T n ∈ Γ(X; Db
X [T ]).

The equation ∂v = u has no solution in Γ(X; Db
X [T ]). The exact sequence of sheaves

0 −→ OX [T ] −→ Db
X [T ]

∂−→ Db
X [T ] −→ 0

and the vanishing of H1(X; Db
X [T ]) give the result.

The Artin-Rees theorem

Theorem 3.5.10. Let I be a coherent ideal of OX and let F be a coherent OX-
module. Then, locally, there exists m0 ≥ 0 such that for any m ≥ m0, the morphism

I m ⊗O F −→ I m−m0 ⊗O F

factorizes uniquely through

I m ⊗O F −→ I mF −→ I m−m0 ⊗O F .

In fact, there is a similar theorem in the more general setting of commutative
Noetherian rings.

The Grauert theorem

Theorem 3.5.11. Let f : X −→ Y be a morphism of complex manifolds and let
F ∈ Db

coh(OX). Assume that f is proper on supp(F ). Then Rf!F belongs to
Db

coh(OY ).

Theorem 3.5.12. Let f : X −→ Y be a morphism of complex manifolds and let
F ∈ Db

coh(OX). Assume that f is proper on supp(F ). Then there is a canonical
isomorphism

Rf!RHomO(F ,OX) [dX ]'RHomO(Rf!F ,OY ) [dY ].
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