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Preface

Since more than half a century, the set theoretical point of view in mathematics has
been supplanted by the categorical perspective. Category theory was introduced by
Samuel Eilenberg and Saunders McLane at more or less at the same time as sheaf
theory was by Jean Leray. Both theories, categories and sheaves, were incredibly
developed by Alexander Grothendieck who made them the natural language for
algebraic geometry, two cornerstones being first his famous Tohoku paper, second
the introduction of the so-called “6 operations”. These new techniques are now basic
in many fields, not only algebraic geometry, but also algebraic topology, analytic
geometry, algebraic analysis and D-module theory, singularity theory, representation
theory, etc. and, more recently, computational geometry.

The underlying idea of category theory is that mathematical objects only take
their full force in relation with other objects of the same type. As we shall see,
category theory is a very nice and natural language, not difficult to assimilate for
any one having a bit of experience in mathematics, someone familiar with linear
algebra and general topology. It opens new horizons in mathematics, a new way,
a “functorial way”, of doing mathematics. A typical example is that of real finite
dimensional vector spaces. One can look at this category as well as at the category
whose objects are the integers and the morphisms are matrices with real coefficients.
A good part of the first year of study at University consists in fact in proving that
these two categories are equivalent. Category theory reveals fundamental concepts
and notions which across all mathematics, such as adjunction formulas, limits and
colimits, or the difference between equalities and isomorphisms. And many theorems
of today’s mathematics are simply expressed as equivalences of categories. The
famous homological mirror symmetry, as formulated by Maxim Kontsevich, is a
good illustration of this trend.

However, a difficulty soon appears: one should be careful with the size of the
objects one manipulates and one is led to work in a given universe, changing of
universe when necessary. An easy and classical illustration of this fact is given in
Remark 2.7.5. We shall not introduce cardinals, preferring to work with universes
and remaining rather sketchy with this notion.

There is a class of categories which plays a central role: these are the additive
categories and among them the abelian categories, in which one can perform ho-
mological algebra. Homological algebra is essentially linear algebra, no more over a
field but over a ring and by extension, in abelian categories. When replacing a field
with a ring, a submodule has in general no supplementary and the classical functors
of tensor product and internal hom are no more exact and one has to consider their
derived functors. Derived functors are of fundamental importance and many phe-
nomena only appear in their light. Two classical examples are local cohomology of
sheaves and duality. The calculation of the derived functor of a composition leads to



technical difficulties, known as “spectral sequences”. Fortunately, the use of derived
categories makes things much more elementary as we shall see in this book which
never uses spectral sequences.

These Notes are a preparation for the reading of [KS24a, KS24b] and may also be
considered as a development of [KS90, Ch. 1] as well as an introduction to [KKS06].
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Introduction

In these Notes, we introduce the reader to the language of categories and we present
the main notions of homological algebra, including triangulated and derived cate-
gories.

After having presented the basic concepts and results of category theory, in
particular the Yoneda lemma and the notion of representable functors, we define
limits and colimits (also called projective and inductive limits). We start with the
particular cases of kernels and products (and the dual notions of cokernels and
co-products) and study directed colimits.

As a fundamental application, one has the so-called Kan extension of functors,
which allows one to construct the natural operations of direct and inverse images of
presheaves, a presheaf being nothing but a contravariant functor, a terminology due
to Grothendieck. (Sheaves on Grothendieck topologies will be studied in forthcoming
notes.)

We also introduce, as a preparation for derived categories, the notion of localiza-
tion of categories. Then we treat additive categories, complexes, shifted complexes,
mapping cones and the homotopy category. In the course of the exposition, we in-
troduce the truncation functors, an essential tool in practice and a substitute to the
famous “spectral sequences” which shall not appear here. We also have a glance to
simplicial constructions. Then we define abelian categories and study complexes in
this framework. We admit without proof the Grothendieck theorem which asserts
that abelian categories satisfying suitable properties admit enough injectives. We
treat in some details Koszul complexes, giving many examples.

We introduce the basic notions on triangulated categories, study their localiza-
tion and state, without proof, the Brown representability theorem. Finally we define
and study derived categories and derived functors and bifunctors.

As it is well-known, it not possible to develop category theory without some
caution about the size of the objects one considers. An easy and classical illus-
tration of this fact is given in Remark 2.7.5. We shall not introduce cardinals,
preferring to work with universes and referring to [KKS06] for details. We shall men-
tion when necessary (perhaps not always!) that a category is “small” or “big” with
respect to a given universe %/, passing to a bigger universe if necessary. Notice that
Grothendieck’s theorem about the existence of injectives is a typical example (and
historically, the first one) where universes play an essential role.

Some historical comments and references.! As already mentioned, category
theory was introduced by Samuel Eilenberg and Saunders McLane [EML45]. At the
prehistory of homological algebra is the book [CE56] by Henri Cartan and Samuel

!These few lines are not written by an historian of mathematics and should be read with caution.
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Eilenberg including the Appendix by David A. Buchsbaum in which abelian cat-
egories are introduced for the first time, before being considerably developed and
systematically studied by Gothendieck in [Gro57,SGA4]. The natural framework of
homological algebra is that of derived categories, whose idea is, once more, due to
Grothendieck and which was written done by his student, Jean-Louis Verdier who
realized the importance of triangulated categories, a notion already used at that
time in algebraic topology. Derived categories are constructed by “localizing” the
homotopy category and the basic reference for localization is the book [GZ67] by
Gabriel and Zisman. Category theory would not exist without the axiom of uni-
verses (or anything equivalent) and this is Grothendieck who introduced this axiom
(see [SGA4]). We refer to [Kr607] for interesting thoughts on this topic.

Category theory is the natural language to develop sheaf theory, a point of view
introduced in the foundational paper by Grothendieck [Gro57].

These Notes are largely inspired by [KS06], a book itself inspired by [SGA4].
Other references for category theory are [Mac98, Bor94] for the general theory,
[MMO92] for links with logic, [GM96, Wei94] and [KS90, Ch. 1] for homological al-
gebra, including derived categories, as well as [Nee01, Yek20] for a more exhaustive
study of triangulated categories and derived categories, the last reference developing
the DG (differential graded) point of view.

Prerequisites. The reader is supposed to have basic knowledges in algebra, essen-
tially with the notions of modules over a ring.

Conventions. In these Notes, all rings are unital and associative but not neces-
sarily commutative. The operations, the zero element, and the unit are denoted by
+,-,0,1, respectively. However, we shall often write for short ab instead of a - b.
All along these Notes, k will denote a commutative ring of finite global dimension
(see [Wei94, 4.1.2] or [KS90, Exe. 1.28]). This means that there exists n € N such
that any k-module M admits an injective (equivalently, a projective) resolution of
length < n. (Sometimes, k will be a field.) We denote by @ the empty set and
by {pt} a set with one element. We denote by N the set of non-negative integers,
N ={0,1,...}, by Q, R and C the fields of rational numbers, real numbers and
complex numbers, respectively.

A comment: co-categories. These Notes are written in the “classical” language
of category theory, that is, 1- or 2-categories. However, some specialists of algebraic
geometry or algebraic topology are now using the language of co-categories, the
homotopical approach replacing the homological one. The difficulty of this last
theory is for the moment of another order of magnitude than that of the classical
theory, this last one being perfectly suited for the applications we have in mind.
References are made to [Cis19,Lan21, Lur09, Lur17, RV22, Toé14].



Chapter 1

The language of categories

Summary

In this chapter we start with some reminders on the categories Set of sets and
Mod(A) of modules over a (not necessarily commutative) ring A. Then we explain
the basic language of categories and functors. A key point is the Yoneda lemma,
which asserts that a category ¥ may be embedded in the category € of contravari-
ant functors from % to the category Set. This naturally leads to the concept of
representable functor and adjoint functors. Many examples are treated, in particu-
lar in the categories Set and Mod(A).

Caution. All along this book, we shall be rather sketchy with the notion of uni-
verses, mentioning when necessary (perhaps not always!) that a category is “small”
or “big” with respect to a universe 7. Indeed, it not possible to develop category
theory without some caution about the size of the objects we consider. An easy and
classical illustration of this fact is given in Remark 2.7.5.

Some references. As already mentioned, Category Theory was invented by Samuel
Eilenberg and Saunders McLane [EML45] and one certainly should quote the seminal
book [CE56] by Henri Cartan and Samuel Eilenberg as well as the fundamental
contribution of Alexander Grothendieck in [Gro57,SGA4]. This is in particular in
this seminar that he introduced the notion of Universes. For a modern treatment,
see [KS06, Wei94], among many others. For more historical comments and other
references, see the introduction.

1.1 Sets and maps

The aim of this section is to fix some notations and to recall some elementary
constructions on sets.

If f: X — Y is a map from a set X to a set Y, we shall often say that f is
a morphism (of sets) from X to Y. We shall denote by Homg,, (X,Y), or simply
Hom (X,Y) or also Y¥, the set of all maps from X to Y. If g: Y — Z is another
map, we can define the composition go f: X — Z. Hence, we get two maps:

go: Hom (X,Y) — Hom (X, Z),

of: Hom (Y, Z) — Hom (X, 7).
If f is bijective we shall say that f is an isomorphism and write f: X =% Y. This
is equivalent to saying that there exists g: Y — X such that g o f is the identity of

9
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X and f o g is the identity of Y. If there exists an isomorphism f: X =% Y, we say
that X and Y are isomorphic and write X ~ Y.

Notice that if X = {z} and Y = {y} are two sets with one element each, then
there exists a unique isomorphism X =% Y. Of course, if X and Y are finite sets
with the same cardinal 7 > 1, X and Y are still isomorphic, but the isomorphism
is no more unique.

Notation 1.1.1. We shall denote by @ the empty set and by {pt} a set with one
element. Note that for any set X, there is a unique map @ — X and a unique map
X — {pt}.

Let {X;}ier be a family of sets indexed by a set I. Their union is denoted by
\U; Xi. The product of the X;’s, denoted [[,.; X;, or simply [[. X;, is defined as

iel
(1.1.1) [ ={f € Hom (1, | X;); f(i) € X; for all i € I}.
iel i

Hence, if X; = X for all 7 € I, we get

[ =Hom (1, x) = X".

iel
If I is the ordered set {1,2}, one sets
(1.1.2) Xy x Xy ={(x1,22);2; € X;,i = 1,2},
and there are natural isomorphisms

X1 x X~ [[Xi~ Xa x X1
i€l

This notation and these isomorphisms extend to the case of a finite ordered set I.
If { X, }ier is a family of sets indexed by a set I as above, one also considers their
disjoint union, also called their coproduct. The coproduct of the X;’s is denoted
| |;c; Xi or simply | |, X;. If X; = X for all i € I, one uses the notation X4YOIf
I ={1,2}, one often writes X; U X5 instead of | |;c(; o Xi.
For three sets I, X, Y, there is a natural isomorphism

(1.1.3) Hom (I, Hom (X,Y)) = Hom (X, Y)! ~Hom (I x X,Y).

For a set Y, there is a natural isomorphism

(1.1.4) Hom (Y, [ [ X:) ~ [ [ Hom (Y, X;).
Note that
(1.1.5) X x I ~X"

For a set Y, there is a natural isomorphism

(1.1.6) Hom (| | X;,Y) ~ [ [ Hom (X;,Y).
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In particular,
Hom (X" Y) ~ Hom (X, Y") ~ Hom (X, Y)’.

Consider two sets X and Y and two maps f,¢g from X to Y. We write for short
f,9: X =Y. The kernel (or equalizer) of (f,g), denoted Ker(f, g), is defined as

(1.1.7) Ker(f,g) = {z € X; f(z) = g(z)}.
Note that for a set Z, one has
(1.1.8) Hom (Z, Ker(f, g)) ~ Ker(Hom (Z, X) = Hom (Z,Y)).

Let us recall a few elementary definitions.

A relation Z on a set X is a subset of X x X. One writes xZy if (z,y) € Z.
e The opposite relation Z°P is defined by: x#°Py if and only if yZx.

e A relation Z is reflexive if it contains the diagonal, that is, xZx for all x € X.
e A relation Z is symmetric if xZy implies yZx.

e A relation Z is transitive if xZy and yZ =z, implies % z.

e A relation & is an equivalence relation if it is reflexive, symmetric and tran-
sitive.

e A relation Z is a preorder if it is reflexive and transitive. A preorder is often
denoted by <. A set endowed with a preorder is called a preordered set.

e Let (1,<) be a preordered set. One says that (I, <) is directed if I is non
empty and for any ¢, 7 € I there exists k£ with ¢ < k and 5 < k.

e Assume (I, <) is a directed preordered set and let J C I be a subset. One
says that J is cofinal to [ if for any ¢ € I there exists j € J with ¢ < j.

If # is a relation on a set X, there is a smallest equivalence relation which
contains Z. (Take the intersection of all subsets of X x X which contain &# and
which are equivalence relations.)

Let #Z be an equivalence relation on a set X. A subset S of X is saturated if
x € S and xZy implies y € S. For z € X, the smallest saturated subset z of X
containing z is called the equivalence class of . One then defines a new set X/%
and a canonical map f: X — X/Z as follows: the elements of X/Z are the sets =
and the map f associates the set Z to x € X.
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1.2 Modules and linear maps

All along this book, a ring A means a unital associative ring, but A is not necessarily
commutative. We shall denote by k a commutative ring. Recall that a k-algebra A
is a ring endowed with a morphism of rings ¢: k — A such that the image of k is
contained in the center of A (i.e., p(x)a = ap(z) for any = € k and a € A). Notice
that a ring A is always a Z-algebra. If A is commutative, then A is an A-algebra.

Since we do not assume that A is commutative, we have to distinguish between
left and right structures. Unless otherwise specified, a module M over A means a
left A-module.

Recall that an A-module M is an additive group (whose operations and zero
element are denoted by +,0) endowed with an external law A x M — M (denoted
by (a,m) — a-m or simply (a, m) — am) satisfying:

where a,b € A and m,m’ € M.

Note that, when A is a k-algebra, M inherits a structure of a k-module via .
In the sequel, if there is no risk of confusion, we shall not write ¢.

We denote by A°? the ring A with the opposite structure. Hence the product ab
in A° is the product ba in A and an A°°-module is a right A-module.

Note that if the ring A is a field (here, a field is always commutative), then an
A-module is nothing but a vector space.

Also note that an abelian group is nothing but a Z-module.

Examples 1.2.1. (i) The first example of a ring is Z, the ring of integers. Since a
field is a ring, Q, R, C are rings. If A is a commutative ring, then A[zy, ..., x,], the
ring of polynomials in n variables with coefficients in A, is also a commutative ring.
It is a sub-ring of A[[x,...,x,]], the ring of formal powers series with coefficients
in A.

(ii) Let k be a field. For n > 1, the ring M, (k) of square (n X n) matrices with
entries in k is non-commutative.

(iii) Let k be a field. The Weyl algebra in n variables, denoted by W, (k), is the
non commutative ring of polynomials in the variables z;, 0; (1 < 4,5 < n) with
coefficients in k and relations :

[xial'j] = 07 [8“8]] = 07 [8j7xi] = 5;

where [p, q] = pq — qp and 6;'- is the Kronecker symbol.

The Weyl algebra W, (k) may be regarded as the ring of differential operators
with coefficients in k[z1, ..., x,], and k[z1, ..., z,] becomes a left W, (k)-module: z;
acts by multiplication and 0; is the derivation with respect to x;.

A morphism f: M — N of A-modules is an A-linear map, i.e., f satisfies:

{f(m—l—m’) = f(m)+ f(m') m,m € M,
flam) =af(m) me M,a € A.
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A morphism f is an isomorphism if there exists a morphism g : N — M with
fog=idy,go f=idy.

If f is bijective, it is easily checked that the inverse map f~!: N — M is itself
A-linear. Hence f is an isomorphism if and only if f is A-linear and bijective.

A submodule N of M is a nonempty subset N of M such that if n,n’ € N, then
n+n" € Nandifn € Nya € A, then an € N. A submodule of the A-module A
is called an ideal of A. Note that if A is a field, it has no non-trivial ideal, i.e., its
only ideals are {0} and A. If A = C[z], then I = {P € C[z]; P(0) = 0} is a non
trivial ideal.

If N is a submodule of M, it defines an equivalence relation: m%Zm’ if and only
if m —m/ € N. One easily checks that the quotient set M /% is naturally endowed

with a structure of a left A-module. This module is called the quotient module and
is denoted by M/N.

Let f: M — N be a morphism of A-modules. One sets:

Ker f = {m € M; f(m) = 0},
Im f={n € N; there exists m € M, f(m)=n}.

These are submodules of M and N respectively, called the kernel and the image of
f, respectively. One also introduces the cokernel and the coimage of f:

Coker f=N/Im f, Coim f = M/ Ker f.
Note that the natural morphism Coim f — Im f is an isomorphism.

Example 1.2.2. Let W, (k) denote as above the Weyl algebra. Consider the left
W, (k)-linear map W, (k) — k[zy,...,x,], Wn(k) > P — P(1) € k[z1,...,z,]. This
map is clearly surjective and its kernel is the left ideal generated by (0y,- - ,0y).
Hence, one has the isomorphism of left W), (k)-modules:

(1.2.1) Wa(k)/ > Wa(k)d; =2 Kz, ..., 2.

Products and direct sums

Let I be a set and let {M;};,c; be a family of A-modules indexed by I. The set
[I; M; is naturally endowed with a structure of a left A-module by setting

(ma)i + (m})s = (mi +my);,
The direct sum @, M; is the submodule of [[, M; whose elements are the (m;);’s
such that m; = 0 for all but a finite number of ¢ € I. In particular, if the set I is

finite, we have @, M; = [[, M;. If M; = M for all i, one writes M® or M@ instead
of @, M.

Linear maps

Let M and N be two A-modules. Recall that an A-linear map f: M — N is also
called a morphism of A-modules. One denotes by Hom , (M, N) the set of A-linear
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maps f: M — N. When A is a k-algebra, Hom ,(M, N) is a k-module. In fact
one defines the action of k on Hom , (M, N) by setting: (Af)(m) = A(f(m)). Hence
(Af)(am) = Xf(am) = Xaf(m) = arf(m) = a(Af)(m), and A\f € Hom ,(M, N).

There is a natural isomorphism Hom ,(A, M) ~ M: to u € Hom ,(A, M) one
associates u(1) and to m € M one associates the linear map A — M, a — am. More
generally, if I is an ideal of A then Hom ,(A/I, M) ~ {m € M;Im = 0}.

Note that if A is a k-algebra and L € Mod(k), M € Mod(A), the k-module
Hom, (L, M) is naturally endowed with a structure of a left A-module. If N is a
right A-module, then Hom, (N, L) is naturally endowed with a structure of a left
A-module.

Tensor product

Consider a right A-module N, a left A-module M and a k-module L. Let us say
that a map f: N x M — L is (A, k)-bilinear if f is additive with respect to each of
its arguments and satisfies f(na,m) = f(n,am) and f(nA,m) = A(f(n,m)) for all
(n,m) € N x M and a € A\ € k.

One naturally identifies a set I with a subset of k). Then the tensor product
N ®, M is the k-module defined as the quotient of k™) by the submodule gen-
erated by the following elements (where n,n’ € Nym,m’ € M,a € A, )\ € k and
N x M is identified with a subset of k(N**)):

n+n',m)— (n,m) — (n',m),
/

(
(n,m+m') — (n,m) — (n,m'),
(na,m) — (n,am),
A(n,m) — (nA\,;m).

The image of (n,m) in N ®, M is denoted by n ® m. Hence an element of N ®, M
may be written (not uniquely!) as a finite sum »_;n; ® m;, n; € N, m; € M and:

nm+n)@m=n®@m+n @m,
n®m+m)=n@m+nem,
na@m=ne am,
A(n®@m)=nA®@m=n® Im.

Denote by 8: N x M — N ®, M the natural map which associates n®@m to (n, m).

Proposition 1.2.3. The map [ is (A, k)-bilinear and for any k-module L and any
(A, k)-bilinear map f: N XM — L, the map f factorizes uniquely through a k-linear
map ¢: N @, M — L.

The proof is left to the reader.
Proposition 1.2.3 is visualized by the diagram:

NxM-L2-Ng, M
r
f v
L.

Consider three A-modules L, M, N and an A-linear map f: M — L. It defines a
linear map idy X f: N xM — N x L, hence a (A, k)-bilinear map N xM — N®, L,
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and finally a k-linear map
idy®@f: N, M - N®, L.

One constructs similarly ¢ ® id,; associated to g: N — L.

There are natural isomorphisms A ®, M ~ M and N ®, A~ N.

Denote by Bil(N x M, L) the k-module of (A, k)-bilinear maps from N x M to
L. One has the isomorphisms

Bil(N x M, L) ~ Hom, (N ®, M, L)
(1.2.2) ~ Hom ,(M,Hom (N, L))
~ Hom ,(N,Hom, (M, L)).
For L € Mod(k) and M € Mod(A), the k-module L &,_M is naturally endowed with

a structure of a left A-module. For M, N € Mod(A) and L € Mod(k), we have the
isomorphisms (whose verification is left to the reader):

(1.2.3) Hom ,(L ®, N, M)~Hom ,(N,Hom, (L, M))
~Hom, (L, Hom ,(N, M)).

If A is commutative, N ®, M is naturally an A-module and there is an isomorphism:
N M ~ M®, N given by n ® m — m ® n. Moreover, the tensor product
is associative, that is, if L, M, N are A-modules, there are natural isomorphisms
Lo, M®,N)~ (Lo, M)®,N. One simply writes L ®, M ®, N.

1.3 Categories and functors

Definition 1.3.1. A category % consists of:

(i) a set Ob(%) whose elements are called the objects of €,

(ii) for each X,Y € Ob(¥), a set Hom,(X,Y) whose elements are called the
morphisms from X to Y,

(ili) for any X,Y,Z € Ob(%¥), a map, called the composition, Hom,(X,Y) x
Hom (Y, Z) — Hom (X, Z), and denoted by (f,g) — go f,

these data satisfying:
(a) o is associative,

(b) for each X € Ob(%), there exists idy € Hom (X, X) such that for all f €
Hom (X,Y) and g € Hom (Y, X), foidy = f, idx og = g.

Note that idx € Hom (X, X) is characterized by the condition in (b).
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Universes

With such a definition of a category, there is no category of sets, since there is no
set of “all” sets. The set-theoretical dangers encountered in category theory will be
illustrated in Remark 2.7.5.

To overcome this difficulty, one has to be more precise when using the word
“set”. One way is to use the notion of universe. We do not give in this book the
precise definition of a universe, only recalling that a universe % is a set (a very big
one) stable by many operations. In particular, @ € Z , Ne %, x € % andy € x
impliesy € %, x € % and y C x implies y € % ,if I € % and u; € % for all i € I,
then J,.;w; € % and [[,.;u; € % . See for example [KS06, Def. 1.1.1].
Definition 1.3.2. Let % be a universe.

(a) A set E is a % -set if it belongs to % .
(b) A set E'is % -small if it is isomorphic to a % -set.

(c) A % -category € is a category such that for any X,Y € €, the set Hom. (X, Y)
is % -small.

(d) A %-category € is % -small if moreover the set Ob(%’) is % -small.

Note that the set % is not % -small.

The crucial point is Grothendieck’s axiom which says that any set belongs to
some universe.

By a “big” category, we mean a category in a bigger universe. Note that, by
Grothendieck’s axiom, any category is an ¥ -category for a suitable universe ¥" and
one even can choose ¥ so that € is #-small.

As far as it has no implication, we shall not always be precise on this matter and
the reader may skip the words “small” and “big”.

Notation 1.3.3. One often writes X € ¢ instead of X € Ob(%) and f: X — Y
(or else f:Y « X) instead of f € Hom(X,Y). One calls X the source and Y the
target of f.

e A morphism f: X — Y is an isomorphism if there exists g: X < Y such that
fog=1idy and go f =idy. In such a case, one writes f: X =5 Y or simply
X ~ Y. Of course ¢ is unique, and one also denotes it by f~.

e A morphism f: X — Y is a monomorphism (resp. an epimorphism) if for any
morphisms g and gz, fo g1 = fogs (resp. g1o f = g2 0 f) implies g1 = go.
One sometimes writes f: X>—Y orelse X — Y (resp. f: X—Y) to denote a
monomorphism (resp. an epimorphism).

e Two morphisms f and g are parallel if they have the same sources and targets,
visualized by f,g: X =2 Y.

e A category is discrete if the only morphisms are the identity morphisms. Note
that a set is naturally identified with a discrete category (and conversely).

e A category ¥ is finite if the family of all morphisms in ¢ (hence, in particular,
the family of objects) is a finite set.
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e A category % is a groupoid if all morphisms are isomorphisms.
One introduces the opposite category € °P:
Ob(€¢°?) = Ob(¥¢), Homg.,(X,Y) = Hom (Y, X),

the identity morphisms and the composition of morphisms being the obvious ones.
A category € is a subcategory of €, denoted by €’ C €, if:

(a) Ob(€") C Ob(%),

(b) Hom,(X,Y) C Hom(X,Y) for any X,Y € ¢, the composition o in ¢” is
induced by the composition in % and the identity morphisms in %"’ are induced
by those in €.

e One says that €” is a full subcategory if for all X,Y € ¢’, Hom.,(X,Y) =
Hom (X,Y).

e One says that a full subcategory € of € is saturated if X € € belongs to €”’
as soon as it is isomorphic to an object of &”.

Examples 1.3.4. (i) Set is the category of sets and maps (in a given universe
U ). If necessary, one calls this category %-Set. Then Set” is the full subcategory
consisting of finite sets.

(ii) Rel is defined by: Ob(Rel) = Ob(Set) and Hompy (X,Y) = Z(X x Y), the
set of subsets of X x Y. The composition law is defined as follows. For f: X — Y
and g: Y — Z, go f is the set

{(z,2) € X x Z; there exists y € Y with (z,y) € f,(y, 2) € g}

Of course, idy = Ax C X x X, the diagonal of X x X.

(iii) Let A be a ring. The category of left A-modules and A-linear maps is denoted
by Mod(A). In particular Mod(Z) is the category of abelian groups.

We shall use the notation Hom ,(«, *) instead of Hom g q.4y(*, *)-

One denotes by Modf(A) the full subcategory of Mod(A) consisting of finitely
generated A-modules.
(iv) One associates to a preordered set (I, <) a category, still denoted by I for short,
as follows. Ob(I) = I, and the set of morphisms from i to j has a single element
if i < j, and is empty otherwise. Note that I°P is the category associated with 1
endowed with the opposite preorder.
(v) We denote by Top the category of topological spaces and continuous maps.
(vi) We denote by Arr the category which consists of two objects, say {a,b}, and
one morphism a — b other than id, and id,. One represents it by the diagram
e —oe.
(vii) We represent by e —= e the category with two objects, say {a,b}, and two
parallel morphisms a = b other than id, and id,.
(viii) Let G be a group. We may attach to it the groupoid ¢ with one object, say
{a}, and morphisms Hom(a,a) = G.
(ix) Let X be a topological space locally arcwise connected. We attach to it a
category X as follows: Ob()~() = X and for x,y € X, a morphism f: z — y is a
path form x to y. (Precise definitions are left to the reader.)
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Definition 1.3.5. (i) An object P € ¢ is called initial if Hom (P, X) ~ {pt}
for all X € €. One often denotes by @« an initial object in %

(ii)) Ome says that P is terminal if P is initial in €°P, ie., for all X € €,
Hom. (X, P) ~ {pt}. One often denotes by pt, a terminal object in €.

(iii) Ome says that P is a zero-object if it is both initial and terminal. In such a case,
one often denotes it by 0. If ¥ has a zero-object, for any objects X,Y € €,
the morphism obtained as the composition X — 0 — Y is still denoted by
0: X =Y.

Note that initial (resp. terminal) objects are unique up to unique isomorphisms.

Examples 1.3.6. (i) In the category Set, @ is initial and {pt} is terminal.
(ii) The zero module 0 is a zero-object in Mod(A).

(iii) The category associated with the ordered set (Z, <) has neither initial nor
terminal object.

Definition 1.3.7. Let € and %" be two categories. A functor F': € — €’ consists
of amap F': Ob(%) — Ob(%”) and for all X|Y € €, of a map still denoted by F":
Hom (X,Y) — Hom.,(F(X), F(Y)) such that

F(idx) =idpx), F(fog)=F(f)oF(9).

A contravariant functor from % to %’ is a functor from €°P to €’. In other
words, it satisfies F'(go f) = F(f) o F(g). If one wishes to put the emphasis on the
fact that a functor is not contravariant, one says it is covariant.

One denotes by idg (or simply id) the identity functor on €. One denotes by
op: ¥ — €°P the natural contravariant functor.

Example 1.3.8. Let € be a category and let X € .

(i) Hom (X, ) is a functor from € to Set. To Y € €, it associates the set
Hom (X,Y’) and to a morphism f: Y — Z in ¢, it associates the map

Hom, (X, f): Hom,(X,Y) £ Hom (X, Z).

<
6

(ii) Homg(+,X) is a functor from €°P to Set. To Y € ¥, it associates the set
Hom, (Y, X) and to a morphism f:Y — Z in ¢, it associates the map

Hom.,(f, X): Hom,(Z, X) <% Hom (Y, X).

Example 1.3.9. Let A be a k-algebra and let M € Mod(A). Similarly as in
Example 1.3.8, we have the functors

Hom , (M, «): Mod(A) — Mod(k),
Hom ,(+, M): Mod(A)°® — Mod(k)

Clearly, the functor Hom ,(M, ) commutes with products in Mod(A), that is,

Hom , (M, HNZ) :HHomA(M, Ni)
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and the functor Hom ,(+, N) commutes with direct sums in Mod(A), that is,

Hom ,(EP M;, N) ~ [ [ Hom ,(M;, N).

(i) Let N be a right A-module. Then N ®, «: Mod(A) — Mod(k) is a functor.
Clearly, the functor N ®, ¢ commutes with direct sums, that is,

N ®, (@ M;) =~ @(N ®, M;),

i

and similarly with the functor « ®, M.

Definition 1.3.10. Let F': € — ¥’ be a functor.

(i) One says that F' is faithful (resp. full, resp. fully faithful) if for X|Y € &
HOII)l(g(X, Y) — Hom,, (F(X), F'(Y)) is injective (resp. surjective, resp. bijec-
tive).

(ii) Ome says that F' is essentially surjective if for each Y € ¢” there exist X € ¢
and an isomorphism F(X) ~ Y.

(iii) One says that F' is conservative if a morphism f: X — Y in % is an isomor-
phism as soon as F'(f) is an isomorphism.

Examples 1.3.11. (i) The forgetful functor for: Mod(A) — Set associates to an
A-module M the set M, and to a linear map f the map f. The functor for is faithful
and conservative but not fully faithful.

(ii) The forgetful functor for: Top — Set (defined similarly as in (i)) is faithful. It
is neither fully faithful nor conservative.

(iii) Consider the functor for: Set — Rel which is the identity on the objects of
these categories and which, to a morphism f: X — Y in Set, associates its graph
I'y € X xY. This forgetful functor is faithful but not fully faithful. It is conservative
(this is left as an exercise).

Definition 1.3.12. Let % be a category. The category Mor(%) of morphisms in ¢
is defined as follows.

Ob(Mor(%)) = {(U,V,s);U,V € €,s € Hom (U, V),
Hom o iy ((s: U = V), (s": U = V')
={u:U—-U,v:V—=>Vivos=sou}.

If (u,v): (U, V,s) = (U, V', ) is as above and (u/,v"): (U, V', ¢') — (U", V", s") is
another morphism in Mor(%), the composition (v, v")o(u, v) is given by (u'ou, v'ov).
The category Mor (%) is defined as follows.

Ob(Mor, (%)) = {(U,V,s); U,V € €x,s € Hom (U, V),
Hom \y, ) ((s: U = V), (s U = V)

={u:U—=U,w: V' =5 V;s=wos ou}.
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A morphism (s: U = V) = (s: U' — V') in Mor(%) (resp. Mory(%)) is visual-
ized by the commutative diagram on the left (resp. on the right) below:

U—=V U—=V

ULy, U=V
If (w,w): (U, V,s) —» (U, V' ¢) is as above and (v/,w’): (U, V' ") — (U", V" s")
is another morphism in Mory(%’), the composition (v’,w’) o (u,w) is given by (v’ o
u), (wow).

Product of categories

One defines the product of two categories ¢ and ¢” by :

Ob(€ x €')=O0b(€) x Ob(¥¢")
Hom, .., ((X,X'),(Y,Y"))=Hom.(X,Y) x Hom., (X', Y’).

A bifunctor F': € x €' — € is a functor on the product category. This means that
for X €e € and X' € €', F(X,*): ¢ — ¢" and F(+,X’) : € — €¢" are functors,
and moreover for any morphisms f: X — Y in ¢, g: X' — Y’ in ¥, the diagram
below commutes:

FX, x) — 9 px, vy
\
F(f,X’)l ¥ (f.) jF(f,m
9\
! !/
Y, X') — s F(Y,Y).

In fact, (f,g) = (idy, g) o (f,idx/) = (f,idy") o (idx, g).

Examples 1.3.13. (i) Hom(+, *) : €°° x € — Set is a bifunctor.
(ii) If A is a k-algebra, we have met the bifunctors

Hom ,(, *): Mod(A)° x Mod(A) — Mod(k),
* ®, *: Mod(A°) x Mod(A) — Mod(k).

Morphisms of functors

Definition 1.3.14. Let Fi, F5 be two functors from 4 to ¢’. A morphism of
functors §: F; — F is the data for all X € € of a morphism 6(X) : F1(X) — F»(X)
such that for all f: X — Y, the diagram below commutes:

(1.3.1) Fl(f)t B (f)
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A morphism of functors is visualized by a diagram:

n
AT
S~ 7

Fy

Hence, by considering the family of functors from % to ¢’ and the morphisms of
such functors, we get a new category.

Notation 1.3.15. (i) We denote by Fct(%,%”) the category of functors from % to
%”. One may also use the shorter notation (4¢”)%.

Examples 1.3.16. Let k be a field and consider the functor

* Mod(k)® — Mod(k),
V= V*=Hom,(Vk), w:V =>W—=u":W" =V~

Then there is a morphism of functors idyoaw) — * o * in Fet(Mod(k), Mod(k)).
Indeed, for any V' € Mod(k), there is a natural morphism V' — V** and for u: V —
W a linear map, the diagram below commutes:

Vﬁ_v**

(1.3.2) l l
g

(ii)) We shall encounter morphisms of functors when considering pairs of adjoint
functors (see (1.5.2)).

In particular we have the notion of an isomorphism of categories. A functor
F: % — %' is an isomorphism of categories if there exists G : €' — € such that:
G o F =idy and F' o G = idgs. This implies that for all X € ¥, Go F(X) = X.
In practice, such a situation rarely occurs and is not really interesting. There is a
weaker notion that we introduce below.

Definition 1.3.17. A functor F: € — %' is an equivalence of categories if there
exists G: €' — % such that: G o F' is isomorphic to id¢ and F o GG is isomorphic to
idgr.

We shall not give the proof of the following important result below.

Theorem 1.3.18. The functor F': € — €' is an equivalence of categories if and
only if F s fully faithful and essentially surjective.

If two categories are equivalent, all results and concepts in one of them have their
counterparts in the other one. This is why this notion of equivalence of categories
plays an important role in Mathematics.

Examples 1.3.19. (i) Let k be a field and let € denote the category defined by
Ob(¥¢) = N and Hom,(n, m) = M,, ,(k), the space of matrices of type (m,n) with
entries in a field k (the composition being the usual composition of matrices). Define
the functor F': € — Mod/ (k) as follows. To n € N, F(n) associates k" € Mod” (k)
and to a matrix of type (m,n), I associates the induced linear map from k" to k™.
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Clearly F'is fully faithful. Since any finite dimensional vector space admits a basis,
it is isomorphic to k™ for some n, hence F' is essentially surjective. In conclusion, F’
is an equivalence of categories.

(ii) Let ¥ and €” be two categories. There is an equivalence
(1.3.3) Fct(€,€")P ~ Fet(€°P, €"°P).
(iii) Let I, J and € be categories. There are equivalences

(1.3.4) Fet(I x J,€) ~ Fet(J, Fet(I,%)) ~ Fet(I, Fet(J,6)).

1.4 The Yoneda Lemma

Definition 1.4.1. Let % be a category. One defines the big categories
¢" = Fct(€°P,Set), €" = Fct(€°P, SetP),
and the functors

hy : € - ¢", X +— Hom,(+,X)
kg : € - €Y, X — Hom,(X,*).

Since there is a natural equivalence of categories
(1.4.1) €V ~ €PNOP

we shall concentrate our study on €.

Theorem 1.4.2 (The Yoneda lemma). For A € €" and X € €, there is an
isomorphism Hom . (he (X), A) ~ A(X), functorial with respect to X and A.

Proof. One constructs the morphism ¢: Hom, (hy(X), A) — A(X) by the chain
of morphisms: Hom,, (hy(X), A) = Homg,, (Hom (X, X), A(X)) = A(X), where
the last map is associated with idy.

To construct ¢: A(X) — Hom,.(hg(X),A), it is enough to associate with
s € A(X) and Y € ¢ a map from Hom (Y, X) to A(Y). It is defined by the
chain of maps Hom (Y, X) — Homg,, (A(X), A(Y)) = A(Y') where the last map is
associated with s € A(X).

One checks that ¢ and ¢ are inverse to each other. O]

Corollary 1.4.3. The functors hy and kg are fully faithful.

Proof. For X,Y € €, one has Hom . (hg(X), he(Y)) ~ he(Y)(X) = Hom (X, Y).
0

One calls hy and kg the Yoneda embeddings.

Hence, one may consider ¢ as a full subcategory of ¢. In particular, for
X € €, he(X) determines X up to unique isomorphism, that is, an isomorphism
he(X) ~ hy(Y) determines a unique isomorphism X ~ Y.

Corollary 1.4.4. Let € be a category and let f: X — 'Y be a morphism in € .
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(i) Assume that for any Z € €, the map Hom(Z, X) AN Hom(Z,Y) is bijec-
tive. Then f is an isomorphism.

(ii) Assume that for any Z € €, the map Hom (Y, Z) LN Hom. (X, Z) is bijective.
Then f is an isomorphism.

Proof. (i) By the hypothesis, hg(f) : hg(X) — he(Y) is an isomorphism in €.
Since hy is fully faithful, this implies that f is an isomorphism (see Exercise 1.3 (ii)).
(ii) follows by replacing € with €°P. ]

Definition 1.4.5. Let % and ¢” be categories, F': 4 — %’ a functor and let Z € €.
(i) The category €7 is defined as follows:

Ob(%z) ={(X,u); X € €,u: F(X)— Z},
Hom,, ((Xi1,u1), (X2, u2)) ={v: X1 = Xojus =ugo F(v)}.

(ii) The category €7 is defined as follows:

Ob(6¢?)={(X,u); X € €,u: Z — F(X))},
Hom.., (X1, w), (Xo,u2)) ={v: X1 = Xojup = F(v) ous}.

Note that the natural functors (X, u) — X from 4, and €7 to ¢ are faithful.
The morphisms in €, (resp. %) are visualized by the commutative diagram on
the left (resp. on the right) below:

)47, Z M F(X,)

/ NI

1.5 Representable functors, adjoint functors

Representable functors

Definition 1.5.1. (i) One says that a functor F': ¥°P — Set is representable if
there exists X € ¢ such that F'(Y) ~ Hom (Y, X) functorially in Y € €. In
other words, F' ~ hy(X) in €”. Such an object X is called a representative of
F.

(ii) Similarly, a functor G: ¥ — Set is representable if there exists X € ¥ such
that G(Y) ~ Hom . (X,Y) functorially in Y € €.

It is important to notice that the isomorphisms above determine X up to unique
isomorphism. More precisely, given two isomorphisms F =5 hy(X) and F =
hy (X') there exists a unique isomorphism 6: X =% X’ making the diagram below

commutative:
»/h \

ho (X) —O_h(x0).
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Representable functors provides a categorical language to deal with universal prob-
lems. Let us illustrate this by an example.

Example 1.5.2. Let A be a k-algebra. Let N be a right A-module, M a left A-
module and L a k-module. Denote by B(N x M, L) the set of (A, k)-bilinear maps
from N x M to L. Then the functor F': L — B(N x M, L) is representable by
N ®, M by (1.2.2).

Adjoint functors

Definition 1.5.3. Let F': € — ¢’ and G: €' — € be two functors. One says that
(F,G) is a pair of adjoint functors or that F' is a left adjoint to G, or that G is a
right adjoint to F' if there exists an isomorphism of bifunctors:

(1.5.1) Hom,, (F(+), *) ~ Hom,(+,G(*)).

If G is an adjoint to F', then G is unique up to isomorphism. In fact, G(Y) is a
representative of the functor X +— Hom,, (F(X),Y).
The isomorphism (1.5.1) gives the isomorphisms

Hom,,(FoG(*+),*) ~Hom,(G(*),G(*)),
Hom.,(F(+),F(+)) ~Hom(+,Go F(*)).

In particular, we have morphisms X — G o F(X), functorial in X € ¢, and mor-
phisms FFoG(Y) — Y, functorial in Y € €”. In other words, we have morphisms of
functors

(1.5.2) e: FoG —idy, t: idgy = G o F.
Moreover,
(1.5.3) idg is the composition G LG GoFoG &5 G,

e eoF

idg is the composition F' oy FoGoF 25 F.

Conversely, if F': € — €' and G: €' — € are two functors and € and ¢ are mor-
phisms of functors as in (1.5.2) satisfying (1.5.3), then (F,G) is a pair of adjoint
functors.

Examples 1.5.4. (i) Let X € Set. Using the bijection (1.1.3), we get that the
functor Homg, (X, ¢): Set — Set is right adjoint to the functor « x X.

(ii) Let A be a k-algebra and let L € Mod(k). Using the first isomorphism in
(1.2.3), we get that the functor Hom, (L, +): Mod(A) to Mod(A) is right adjoint to
the functor &, L.

(iii) Let A be a k-algebra. Using the isomorphisms in (1.2.3) with N = A, we
get that the “forgetful functor” for: Mod(A) — Mod(k) which, to an A-module
associates the underlying k-module, is right adjoint to the “extension of scalars

functor” A ®, «: Mod(k) — Mod(A).
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Exercises to Chapter 1

Exercise 1.1. In a category %, consider three morphisms X Ly % z50hw
Prove that if g o f and h o g are isomorphisms, then f is an isomorphism.

Exercise 1.2. Prove that the categories Set and Set°” are not equivalent and
similarly with the categories Set’ and (Set/)°.

(Hint: if F': Set — Set® were such an equivalence, then F (&) ~ {pt} and
F({pt}) ~ @. Now compare Homg_, ({pt}, X) and Homg_,., (F({pt}), F(X)) when
X is a set with two elements.)

Exercise 1.3. (i) Let F': € — %’ be a faithful functor and let f be a morphism
in €. Prove that if F'(f) is a monomorphism (resp. an epimorphism), then f is a
monomorphism (resp. an epimorphism).

(ii) Assume now that F' is fully faithful. Prove that if F'(f) is an isomorphism, then
f is an isomorphism. In other words, fully faithful functors are conservative.

Exercise 1.4. Is the natural functor Set — Rel full, faithful, fully faithful, conser-
vative?

Exercise 1.5. Prove that the category % is equivalent to the opposite category ¢ °P
in the following cases:

(i) € denotes the category of finite abelian groups,
(ii) € is the category Rel of relations.

Exercise 1.6. (i) Prove that in the category Set, a morphism f is a monomorphism
(resp. an epimorphism) if and only if it is injective (resp. surjective).

(ii) Prove that in the category of rings, the morphism Z — Q is an epimorphism.
(Hint: if f: Q — A is a morphism of rings, then f(p/q) = f(p) x f(¢)™'.)

(iii) In the category Top, give an example of a morphism which is both a monomor-
phism and an epimorphism and which is not an isomorphism.

Exercise 1.7. Let F': ¥ — Set be a functor and let u: X — Y be a morphisms in
%. Assume that F' is faithful. Prove that u is an epimorphism (resp. a monomor-
phism) as soon as F'(u) is surjective (resp. injective).

Exercise 1.8. Let % be a category. We denote by idy : € — % the identity functor
of ¥ and by End (id¢) the set of endomorphisms of the identity functor id¢ : € — €,
that is,

End (1dcg) = Hom Fet(¢,%) <1d§aﬂ, 1dcg)

Prove that the composition law on End (idy) is commutative.
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Chapter 2
Limits

Summary

After treating the particular cases of kernels and cokernels, products and coproducts,
we shall construct limits and colimits, starting with limits in the category Set. We
show that limits may be obtained as a combination of products and kernels, hence
that colimits may be obtained as a combination of coproducts and cokernels. In
particular the category Set of sets (in a given universe) admits small limits and
colimits, as well as the category Mod(A) of modules over a ring A. As a particular
case of the notions of limits and colimits we get those of fiber product and fiber
coproduct. Then we introduce the fundamental notion of directed colimits and
cofinal functors. We show that in the category Set, directed colimits commute with
finite limits. Finally we have a glance to the theory of ind-objects, following [SGA4]
(see also [KS06,KS01]).

Caution. We may sometimes use the terms “projective limit” or “inductive limits”
instead of “limit” or “colimit”.

References for this chapter already appeared at the beginning of Chapter 1.

2.1 Products and coproducts

Let € be a category (in a given universe %) and consider a family { X, };c; of objects
of ¥ indexed by a small set I. Consider the two functors

(2.1.1) € — Set,Y | [ Hom, (Y, X)),
el
(2.1.2) % — Set,Y > [ [ Hom, (X;,Y).
el

Definition 2.1.1. (i) Assume that the functor in (2.1.1) is representable. In this
case one denotes by [[,.; X; a representative and calls this object the product
of the X;’s. In case I = {1,2}, one denotes this object by X; x Xs.

(ii) Assume that the functor in (2.1.2) is representable. In this case one denotes
by [[,c; Xi a representative and calls this object the coproduct of the X;’s. In
case I = {1,2}, one denotes this object by X; [[ X or even X; LI X5.

(iii) If for any family of objects {X,}ics, the product (resp. coproduct) exists, one
says that the category ¢ admits products (resp. coproducts) indexed by 1.

27
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(iv) If X; = X for all i € I, one writes:

XU=1] X, xU=T] x..

el el

(v) One often write [], X; instead of [[,.; X; and similarly with coproducts.
In case of additive categories (see § 4.1 below), one writes @, X; instead of [ [, X;
and XD or X® instead of X7, If 4 = Set, one often writes | |, X; instead of
[1, Xi. and X" instead of XU,

Note that the coproduct in % is the product in €°P.
By this definition, if the product or the coproduct exists, then one has the
isomorphisms, functorial with respect to Y € ¢

(2.1.3) Hom. (Y, H X;) ~ H Hom. (Y, X;),

(2.1.4) Hom%,,(H X, Y) ~ HHom%(Xi7Y).

]

Assume that [ [, X; exists. By choosing Y = [[. X; in (2.1.3), we get the morphisms

(2.1.5) m: [ X = X
J

Similarly, assume that ][, X; exists. By choosing Y = [[. X, in (2.1.4), we get the
morphisms

J
The isomorphism (2.1.3) may be translated as follows. Given an object Y and a
family of morphisms f;: Y — X;, this family factorizes uniquely through []. X;.
This is visualized by the diagram

X;
fi

N

e

Y o T, Xk

™

Sh
/

X;.
The isomorphism (2.1.4) may be translated as follows. Given an object Y and a
family of morphisms f;: X; — Y, this family factorizes uniquely through [, X;.
This is visualized by the diagram
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Example 2.1.2. (i) The category Set (in a given universe) admits small products
(that is, products indexed by small sets) and the two definitions, that given in (1.1.1)
and that given in Definition 2.1.1, coincide.

(ii) The category Set admits coproducts indexed by small sets, namely, the disjoint
union.

(iii) Let A be a ring. The category Mod(A) admits products, as defined in § 1.2.
The category Mod(A) also admits coproducts, which are the direct sums defined in
§ 1.2 and are denoted by €p.

(iv) Let X be a set and denote by X the category of subsets of X. (The set X is
ordered by inclusion, hence defines a category.) For S;,Ss € X, their product in the
category X is their intersection and their coproduct is their union.

Remark 2.1.3. The forgetful functor for: Mod(A) — Set commutes with products
but does not commute with coproducts. The coproduct of two modules is not their
disjoint union. That is the reason why the coproduct in the category Mod(A) is
called the direct sum and is denoted differently, namely by .

2.2 Kernels and cokernels

Let € be a category and consider two parallel arrows f,g: Xo = X7 in ¢. Consider
the two functors (recall 1.1.7)

(2.2.1) ¢°P — Set, Y +— Ker(Hom (Y, Xo) = Hom (Y, X1)),
(2.2.2) % — Set,Y — Ker(Hom(X;,Y) = Hom(X,,Y)).

Definition 2.2.1. (i) Assume that the functor in (2.2.1) is representable. In this
case one denotes by Ker(f,g) a representative and calls this object a kernel
(one also says an equalizer) of (f, g).

(ii) Assume that the functor in (2.2.2) is representable. In this case one denotes
by Coker(f,g) a representative and calls this object a cokernel (one also says
a co-equalizer) of (f,g).

(iii) A sequence Z — Xy =% X (resp. Xo =% X1 — Z) is exact if Z is isomorphic
to the kernel (resp. cokernel) of Xy = Xj.

(iv) Assume that the category % admits a zero-object 0. Let f: X — Y be a
morphism in €. A kernel (resp. a cokernel) of f, if it exists, is a kernel (resp.
a cokernel) of f,0: X =2 Y. It is denoted by Ker(f) (resp. Coker(f)).

Note that the cokernel in € is the kernel in €°P.

By this definition, the kernel or the cokernel of f,g: Xy = X, exists if and only
if one has the isomorphisms, functorial in Y € %
(2.2.3)  Hom(Y,Ker(f,g)) ~ Ker(Hom (Y, Xo) = Hom. (Y, X1)),
(2.2.4)  Hom.(Coker(f,g),Y) ~ Ker(Hom.(X;,Y) = Hom(X,,Y)).

Assume that Ker(f,g) exists. By choosing Y = Ker(f,g) in (2.2.3), we get the
morphism

h: Ke[’(Xo = Xl) — Xo.
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Similarly, assume that Coker(f,g) exists. By choosing Y = Coker(f,¢g) in (2.2.4),
we get the morphism

k: X — Coker(Xo = Xl)

Proposition 2.2.2. The morphism h: Ker(X, = X;) — Xy is a monomorphism
and the morphism k: X; — Coker(Xo = X1) is an epimorphism.

Proof. (i) Let us write Hom instead of Hom.. Note that for Y € &, one has
Hom (Y, Ker(X, = X)) ~ Ker(Hom (Y, Xo) = Hom (Y, X;)). Hence, the map

Hom (h,Y"): Hom (Y, Ker(Xy, = X;)) — Hom (Y, Xj)

is injective.

(ii) The case of cokernels follows, by reversing the arrows. O

The isomorphism (2.2.3) may be translated as follows. Given an objet Y and
a morphism u: Y — X, such that f ou = g o u, the morphism u factors uniquely
through Ker(f,g). This is visualized by the diagram

/
Ker(f,9) I Xy —= X,

(2:2.5) T“/

Y

The isomorphism (2.2.4) may be translated as follows. Given an objet Y and a
morphism v: X; — Y such that vo f = v o g, the morphism v factors uniquely
through Coker(f, g). This is visualized by diagram:

f
Xo——= X; —%= Coker(f, g).

(226) & o

Y

Example 2.2.3. (i) The category Set admits kernels and the two definitions (that
given in (1.1.7) and that given in Definition 2.2.1) coincide.

(ii) The category Set admits cokernels. If f, g: Zy = Z; are two maps, the cokernel
of (f,g) is the quotient set Z; /% where Z is the equivalence relation generated by
the relation © ~ y if there exists z € Z with f(z) =z and ¢(z) = y.

(iii) Let A be a ring. The category Mod(A) admits a zero object. Hence, the kernel
or the cokernel of a morphism f means the kernel or the cokernel of (f,0). As already
mentioned, the kernel of a linear map f: M — N is the A-module f~!(0) and the
cokernel is the quotient module M/Im f. The kernel and cokernel are visualized by
the diagrams

Ker(f) —> X, —f>/ X1, X \—f> X, = Coker(f).
Y Y
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2.3 Limits and colimits

Let us generalize and unify the preceding constructions.

Definition 2.3.1. Let [ and ¥ categories with I small. A projective system (resp.
an inductive system) in ¢ indexed by [ is nothing but a functor g: I°® — %€ (resp.
a:l —F).

For example, if (I, <) is a pre-ordered set, I the associated category, an inductive
system indexed by I is the data of a family (X;);c; of objects of ¢ and for all i < j,
a morphism X; — X; with the natural compatibility conditions.

Projective limits in Set

Assume first that % is the category Set and let us consider a projective system
B: I°° — Set. One sets

(2.31)  lLmp = {(z;); € Hﬁ(i); B(s)(z;) = a; for all s € Hom (i, )}.

The next result is obvious.

Lemma 2.3.2. Let 5: I°? — Set be a functor and let X € Set. There is a natural
1somorphism

Homg,, (X, lim 3) =% lim Hom g, (X, B),

where Homg (X, B) denotes the functor I°® — Set, i — Homg_, (X, B()).

Limits and colimits

Consider now two functors g: I°® — % and a: [ — . For X € €, we get functors
from I°P to Set:

Hom. (X, ): I°? > i — Hom. (X, (i) € Set,
Hom. (o, X): I’ 5 i — Hom (o, X) € Set.

Definition 2.3.3. (i) Assume that the functor X — lim Hom (X, 3) is repre-
sentable. We denote by lim [ its representative and say that the functor (8
admits a limit (or “a projective limit”) in %. In other words, we have the
isomorphism, functorial in X € %

(2.3.2) Hom (X, lim ) ~ lim Hom (X, 3).

(ii) Assume that the functor X ~— lim Hom (a, X) is representable. We denote by
colim «v its representative and say that the functor o admits a colimit (or “an
inductive limit”) in %’. In other words, we have the isomorphism, functorial in

X et:

(2.3.3) Hom, (colim o, X) ~ lim Hom (o, X),
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Remark 2.3.4. The limit of the functor S is not only the object lim # but also the
isomorphism of functors given in (2.3.2), and similarly with colimits.

When % = Set this definition of lim § coincides with the former one, in view of
Lemma 2.3.2.

Notice that both limits and colimits are defined using limits in Set.

Assume that lim S exists in €. One gets:

lim Hom, (lim 3, 8) ~ Hom, (lim 3, lim 3)

and the identity of lim 8 defines a family of morphisms
i im B — B(i0).

Consider a family of morphisms {f;: X — (i) }ie; in € satisfying the compatibility
conditions

(2.3.4) fi = B(s) o f; for all s € Hom (i, j).

This family of morphisms is nothing but an element of lim Hom (X, 3(7)), hence

by (2.3.2), an element of Hom (X, lim ). Therefore, lim 3 is characterized by the
“universal property”:

for all X € ¢ and all family of morphisms {f;: X — 5(7) }ier
(2.3.5) in € satisfying (2.3.4), the morphisms f;’s factorize uniquely
through lim 5.

This is visualized by the diagram:

Similarly, assume that colim « exists in €. One gets:
lim Hom, (v, colim ov) ~ Hom, (colim ¢, colim «)
and the identity of colim o defines a family of morphisms
g+ i) — colim av.
Consider a family of morphisms {f;: a(i) — X }ic; in € satisfying the compatibility
conditions

(2.3.6) fi = fioa(s) for all s € Hom (1, 7).

This family of morphisms is nothing but an element of lim Hom («(i), X), hence by

(2.3.3), an element of Hom (colim o, X'). Therefore, colim « is characterized by the
“universal property”:

for all X € ¥ and all family of morphisms {fi: a(i) = X }ier
(2.3.7) in ¢ satisfying (2.3.6), the morphisms f;’s factorize uniquely
through colim «.
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This is visualized by the diagram:

o(s) colim v -+ > X
//7
a(j)

Example 2.3.5. Let X be a set and let X be the category of subsets of X (see
Example 2.1.2 (iv)). Let 8: I°* — X and a: I — X be two functors. Then

lim 3 ~ ﬂﬁ(i), colim av ~ Ua(i).

Examples 2.3.6. (i) When the category I is discrete, limits and colimits indexed
by I are nothing but products and coproducts indexed by I.

(ii) Consider the category I with two objects and two parallel morphisms other than
identities, visualized by e = e. A functor a: I — % is characterized by two parallel
arrows in ¢

(238) f,g: X():;Xl

In the sequel we shall identify such a functor with the diagram (2.3.8). Then, the
kernel (resp. cokernel) of (f, g) is nothing but the limit (resp. colimit) of the functor
a.

(iii) If 7 is the empty category and «: I — % is a functor, then lim « exists in &
it and only if ¢ has a terminal object pt,, and in this case lim o ~ pt,. Similarly,
colima exists in % if and only if ¥ has an initial object @¢, and in this case
colima ~ Jy.

(iv) If I admits a terminal object, say i, and if 5: [°* — € and a: [ — € are
functors, then

lim 8 ~ $(i,), colim v >~ a(i,).
This follows immediately of (2.3.5) and (2.3.7).

If every functor from I°? to ¥ admits a limit, one says that ¢ admits limits
indexed by I.

Remark 2.3.7. Assume that ¢ admits limits (resp. colimits) indexed by /. Then
lim : Fct(I°P,€) — € (resp. colim : Fct(I, %) — €) is a functor.

Definition 2.3.8. One says that a category % admits small limits (resp. small
colimits) if for any small category I and any functor 5: I°? — € (resp. a: [ — €)
lim /3 (resp. colim ) exists in .

Similarly one says that ¢ admits finite limits or colimits if the preceding condi-
tions hold when assuming that I is finite.

Caution We shall often neglect the adjective “small” before the words “limit” and
“colimit”.
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Limits as kernels and products

We have seen that products and kernels (resp. coproducts and cokernels) are par-
ticular cases of limits (resp. colimits). One can show that conversely, limits can
be obtained as kernels of products and colimits can be obtained as cokernels of
coproducts.

Recall that for a category I, Mor(I) denote the set of morphisms in I. There
are two natural maps (source and target) from Mor(/) to Ob([/):

o: Mor(I) = Ob(I), (s:i—7j) 1,
7: Mor(l) — Ob(I), (s:i—j)— 7.

Let € be a category which admits limits and let §: I°P — % be a functor. For
s: i — j, we get two morphisms in %"
, L sy

from which we deduce the morphisms in €: [].., 8(k) = B(o(s)) x B(7(s)) =
B(o(s)). These morphisms define the two morphisms in %:

(233.9) [ier B) == aentontsy B (5)).

Similarly, assume that % admits colimits and let a: I — % be a functor. By
reversing the arrows, one gets the two morphisms in ¢

(2.3.10) Haentor( (o(5)) :b; [Tee, k).

Proposition 2.3.9. (i) lim S is the kernel of (a,b) in (2.3.9),

(ii) colim v is the cokernel of (a,b) in (2.3.10).

Sketch of proof. By the definition of limits and colimits we are reduced to check (i)
when % = Set and in this case this is obvious. O

In particular, a category € admits finite limits if and only if it satisfies:

(i) € admits a terminal object,
(i) for any X,Y € Ob(%), the product X x Y exists in €,

(iii) for any parallel arrows in %, f,g: X = Y, the kernel exists in €.

There is a similar result for finite colimits, replacing a terminal object by an initial
object, products by coproducts and kernels by cokernels.

Theorem 2.3.10. (a) The category Set admits small limits and colimits.
(b) Let A be a ring. The category Mod(A) admits small limits and colimits and the
forgetful functor for: Mod(A) — Set commutes with limits.

Proof. (i) Both categories admit small products and coproducts as well as kernels
and cokernels (see Example 2.2.3).

(ii) The forgetful functor for commutes with products and kernels. O

Recall that the forgetful functor for does not commute with coproducts (see
Remark 2.1.3).
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2.4 Fiber products and coproducts

Consider the category I with three objects {a, b, c} and two morphisms other than
the identities, visualized by the diagram

Il:a+c—b.

Let € be a category. A functor f: I°® — € (resp. a: I — %) is nothing but the
data of three objects Xo, X7,Y and two morphisms (f, g) (resp. (k,1)) visualized by
the arrows on the left (resp. on the right)

X, Lvex, X, &Ewbhx,.

The fiber product Xy xy X; of Xy and X; over Y, if it exists, is the limit of 3.
The fiber coproduct X, Uy X7 of Xy and X; over W, if it exists, is the colimit
of a.
Consider a commutative diagram in %

W—>X1

(2.4.1) L l

Xoﬁ-y

Definition 2.4.1. The square (2.4.1) is Cartesian if W ~ X, xy X;. It is co-
Cartesian if Y ~ X, Uy X,

Proposition 2.4.2. (a) Assume that ¢ admits products of two objects and kernels.
Then XO Xy X1 >~ Ker(XO X X1 = Y)

(b) Assume that € admits coproducts of two objects and cokernels. Then Xy Uw
X ~ Coker(W = Xy [[ X1).

Proof. 1t follows from the characterizations of limits and colimits given in (2.3.5)
and (2.3.7). O

Proposition 2.4.3. (a) The category € admits finite limits if and only if it admits
fiber products and a terminal object.

(b) The category € admits finite colimits if and only if it admits fiber coproducts
and an initial object.

Proof. (a) If ¥ admits finite limits, then it admits fiber products by Proposi-
tion 2.4.2 (a). Conversely, if ¢ admits a terminal object pt,, and fiber products, then
it admits product of two objects (Xo, X;), namely Xo X, X;. It admits kernels
since given (f,g): X = Y, then Ker(f, g) ~ X Xy X again by Proposition 2.4.2 (a).

(b) is deduced from (a) by reversing the arrows. O
Note that
(242) XO XXl ZXO Xptcg Xl, X0|_|X1 ZXO ng(g Xl
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Definition 2.4.4. Let % be a category which admits finite limits and colimits and
let f: X — Y be a morphism. One sets

(2.4.3) Coim f := Coker(X xy X = X), Im f:=Ker(Y =Y Ux Y).

Here, the fiber product X xy X as well as the fiber coproduct Y Lx Y are associated
with two copies of the map f.
One calls Coim(f) and Im(f) the co-image and the image of f, respectively.

One has a natural epimorphism s: X — Coim f and a natural monomorphism

t: Imf — Y. Moreover, one can construct a natural morphism w: Coim(f) —
Im(f) such that the composition X — Coim(f) — Im(f) — Y is f (see [KS06,
Prop. 5.1.2] and Section 5.1 for a similar construction in the abelian setting).

2.5 Properties of limits

Double limits

For two categories I and €, recall the notation €7 := Fct(I,%) and for a third
category J, recall the equivalence (1.3.4);

Fet(I x J,€) ~ Fet(I,Fet(J, €)).

Consider a bifunctor §: I°? x J°? — € with I and J small. It defines a functor
By I° — €77 as well as a functor B;: J°? — €*". One easily checks that

(2.5.1) lim 8 ~ lim lim 3 ~ lim lim f3;.

Similarly, if a: I x J — € is a bifunctor, it defines a functor a;: I — €7 as well as
a functor a;: J — €' and one has the isomorphisms

(2.5.2) colim v >~ colim (colim avy) ~ colim (colim o).
In other words:

(2.5.3) lim B(4, j) ~ lim lim(B(i, j)) ~ limlim(3(4, 7)),

(2.5.4) colim (1, j) ~ colim(colim(a(%, 7)) ~ colim colim(«(3, 7)).
1,7 ] (2 (2 J

Limits with values in a category of functors

Consider another category &7 and a functor 5: I°° — Fct(of/, €). It defines a functor
B; I°? x o/ — €, hence for each A € &/, a functor B(A): I°? — €. Assuming that
¢ admits limits indexed by I, one checks easily that A +— lim B (A) is a functor, that
is, an object of Fct(o/, %), and is a limit of 3. There is a similar result for colimits.
Hence:

Proposition 2.5.1. Let I be a small category and assume that € admits limits in-
dexed by I. Then for any category <7 , the category Fet(Z,€) admits limits indexed
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by I. Moreover, if 5: I — Fct(/, %) is a functor, then lim 3 € Fct(o/,€) is
given by

(lim B)(A) = lim (8(A)), A€ o.

Similarly, assume that € admits colimits indexed by I. Then for any category <f , the
category Fet(of ,€) admits colimits indexed by 1. Moreover, if a: I — Fet(o/,€)
is a functor, then colima € Fet(o/,€) is given by

(colima)(A) = colim (a(A)), A€ .

Corollary 2.5.2. Let € be a category. Then the categories €" and € admit small
limats and colimits.

Composition of limits

Let I,% and €’ be categories with [ small and let a: [ — €, 5: I°® — € and
F: %€ — %' be functors. When ¥ and ¢’ admit limits or colimits indexed by I,
there are natural morphisms

(2.5.5) F(lim 8) — lim (F o 8),
(2.5.6) colim (F o o) — F(colim o).

This follows immediately from (2.3.7) and (2.3.5).
Definition 2.5.3. Let [ be a small category and let F': € — €’ be a functor.

(i) Assume that ¢ and ¢” admit limits indexed by /. One says that F' commutes
with such limits if (2.5.5) is an isomorphism.

(ii) Similarly, assume that ¢ and ¢’ admit colimits indexed by I. One says that
F commutes with such colimits if (2.5.6) is an isomorphism.

Examples 2.5.4. (i) Let & be a category which admits limits indexed by I and
let X € €. By (2.3.2), the functor Hom (X, +): ¥ — Set commutes with lim-
its indexed by I. Similarly, if ¥ admits colimits indexed by I, then the functor
Hom(+,X): € — Set commutes with limits indexed by I, by (2.3.3).

(ii) Let I and J be two small categories and assume that € admits limits (resp.
colimits) indexed by I x J. Then the functor lim : Fct(J? €) — € (resp. the
functor colim : Fct(J,€¢) — € ) commutes with limits (resp. colimits ) indexed by
I. This follows from the isomorphisms (2.5.1) and (2.5.2).

(iii) Let k be a field, ¥ = ¥ = Mod(k), and let X € ¥. Then the functor
Hom, (X, «) does not commute with colimit if X is infinite dimensional.

Proposition 2.5.5. Let F: € — €' be a functor and let I be a small category.

(i) Assume that € and €' admit limits indexed by I and F admits a left adjoint
G: € — €. Then F commutes with limits indexed by I, that is, F'(lim 5(i)) ~

(i1) Similarly, if € and €' admit colimits indexed by I and F' admits a right adjoint,
then F' commutes with such colimits.
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Proof. 1t is enough to prove the first assertion. To check that (2.5.5) is an isomor-
phism, we apply Corollary 1.4.4. Let Y € €”. One has the chain of isomorphisms

Hom,. (¥, F(1im 5(1))) = Hom,, (G(Y), lim 6
~ lim Hom , (G(Y), A(;
:hmHomW(Y,F( (7)
~ Hom (Y, hmF( (¢

)
)
)
))-

2.6 Directed colimits

As already seen in Theorem 2.3.10, the category Set admits small colimits. In the
category Set one uses the notation | | rather than [].

We shall construct colimits more explicitly.

Let a: I — Set be a functor (with / small) and consider the relation on

Llicr (@):

a(i) > 2Ry € a(j) if there exists k € I, s: i — kand t: j — k

(2.6.1) {Wlth a(s)(z) = alt)(y).

The relation Z is reflexive and symmetric but is not transitive in general.

Proposition 2.6.1. With the notations above, denote by ~ the equivalence relation
generated by Z. Then

colim v ~ (|_| a(i))/

el
Proof. Apply Proposition 2.3.9 and Example 2.2.3 (ii). ]

For a ring A, the category Mod(A) admits coproducts and cokernels. Hence, the
category Mod(A) admits colimits. One shall be aware that the functor for: Mod(A) —]
Set does not commute with colimits. For example, if I is empty and a: I — Mod(A)
is a functor, then «(I) = {0} and for({0}) is not an initial object in Set.

Definition 2.6.2. A category [ is called directed if it satisfies the conditions (i)—(iii)
below.

(i) I is non empty,
(ii) for any ¢ and j in I, there exist k € I and morphisms ¢ — k,j — k,

(iii) for any parallel morphisms f, g: i =% j, there exists a morphism h: j — k such
that ho f =hog.

One says that [ is codirected if I°P is directed.
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The conditions (ii)—(iii) of being directed are visualized by the diagrams:

7 k R

Of course, if (I,<) is a directed ordered set, then the associated category I is
directed.

Proposition 2.6.3. Let a: [ — Set be a functor, with I directed. The relation %
on [, a(i) given by (2.6.1) is an equivalence relation.

Proof. Let z; € a(i;), j = 1,2,3 with x; ~ x5 and x5 ~ x3. There exist morphisms
visualized by the diagram:

Zl—>]1
v

PR
N

13— J2

such that a(sy)z; = a(sz)xse, alts)rs = ats)rs, and v o u; 0 s = v o uy o ty.
Set wq, = vowuy 08y, Wy =VOUL 08 = VOuUy oty and wg = vowuyots. Then
a(wy)r; = a(ws)re = a(ws)rs. Hence xq ~ x3. O

Corollary 2.6.4. Let a: I — Set be a functor, with I small and directed.

(i) Let S be a finite subset in colim. Then there exists i € I such that S is
contained in the image of a(i) by the natural map a(i) — colim .

(ii) Leti € I and let x and y be elements of (i) with the same image in colim .
Then there ezists s: i — j such that a(s)(x) = a(s)(y) in a(j).

Proof. (i) Denote by A: | |;o; (i) — colim a the quotient map. Let S = {zy,...,2,}|
For j =1,...,n, there exists y; € a(i;) such that x; = A(y;). Choose k € I such
that there exist morphisms s;: a(i;) = a(k). Then z; = Aa(s;(y;)))-

(i) For z,y € a(i), 2y if and only if there exists s: i — j with a(s)(z) = a(s)(y)
in a(j). O

Corollary 2.6.5. Let A be a ring and denote by for the forgetful functor Mod(A) —
Set. Then the functor for commutes with directed colimits. In other words, if I is
small and directed and o: [ — Mod(A) is a functor, then

for o (colim a(7)) = colim(for o a(i)).

The proof is left as an exercise (see Exercise 2.8).
Colimits with values in Set indexed by small directed categories commute with
finite limits. More precisely:
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Theorem 2.6.6. For a small directed category I, a finite category J and a functor
a: I x J® — Set, one has colimlim (i, j) == limcolim a(i, j). In other words,
i j j i

the functor
colim : Fet(/, Set) — Set

commutes with finite limits.

Proof. 1t is enough to prove that colim commutes with kernels and with finite
products.

(i) colim commutes with kernels. Let a,f: I — Set be two functors and let
f,g: @ = B be two morphisms of functors. We denote by f;, g;: a(i) = (i) the
morphisms associated with f,¢g and i € I.

Define v as the kernel of (f,g), that is, we have exact sequences

(@) = afi) = B().
Let Z denote the kernel of colima(i) = colim (). We have to prove that the
natural map A: colim~(i) — Z is bijective.
(i) (a) The map A is surjective. Indeed for x € Z, represent x by some x; € (7).
Then f;(x;) and g;(x;) in B(7) having the same image in colim (3, there exists s: i — j
such that B(s)fi(x;) = B(s)gi(z;). Set z; = a(s)z;. Then f;(z;) = g;(x;), which
means that z; € y(j). Clearly, A\(z;) = «.

(i) (b) The map A is injective. Indeed, let z,y € colim~y with A(z) = A(y). We may
represent x and y by elements z; and y; of (i) for some i € I. Since z; and y; have
the same image in colim «, there exists © — j such that they have the same image
in a(j). Therefore their images in (j) will be the same.

(ii) colim commutes with finite products. The proof is similar to the preceding one
and left to the reader. O

Corollary 2.6.7. Let A be a ring and let I be a small directed category. Then the
functor colim : Fet(I, Mod(A)) — Mod(A) commutes with finite limaits.

Exact functors
Definition 2.6.8. Let F': € — €’ be a functor.

(a) Assume that both % and €’ admit finite limits. If F' commutes with such limits,
one says that F'is left exact.

(b) Assume that both ¢ and %’ admit finite colimits. If F' commutes with such
limits, one says that F' is right exact.

(c¢) Assume that both ¢ and ¢’ admit finite limits and colimits. If F' commutes
with such limits, one says that F' is exact.

If € admits limits indexed by a category I, the functor lim : Fct(I,€°P) — €
is left exact and similarly for the functor colim. Moreover, Theorem 2.6.6 and
Corollary 2.6.7 may be translated by saying that in these situations, the functor
colim is left exact.
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Cofinal functors

Let ¢: J — I be a functor. If there are no risk of confusion, we still denote by ¢
the associated functor ¢: J°° — [°P. For two functors a: I — %€ and §: I[P — €,
we have natural morphisms:

(2.6.2) lim (5 0 ¢) + lim 3,
(2.6.3) colim (« o ) — colim «.

This follows immediately of (2.3.7) and (2.3.5).

Definition 2.6.9. (a) Let ¢: J — I be a functor. Assume that I and J are di-
rected. One says that ¢ is cofinal if for any ¢ € I there exists j € J and a
morphism s: 7 — ©(j).

(b) Let I be a directed category. One says that I is cofinally small if there exists a
fully faithful functor ¢: J — I such that J is small and ¢ is cofinal.

Example 2.6.10. A subset J C N defines a cofinal subcategory of (N, <) if and
only if it is infinite.

Proposition 2.6.11. Let ¢: J — I be a fully faithful functor. Assume that I is
directed and ¢ is cofinal. Then

(i) for any category € and any functor B: I°® — €, the morphism (2.6.2) is an
1somorphism,

(ii) for any category € and any functor a: I — €, the morphism (2.6.3) is an
1somorphism.

Proof. Let us prove (ii), the other proof being similar. By the hypothesis, for each
i € I we get a morphism (i) — coli}n(@ op(j)) from which one deduce a morphism
jE

. . . A
colim ai) — C(]?EI}H(Oé o ¢(j))

One checks easily that this morphism is inverse to the morphism in (2.5.6). O

Example 2.6.12. Let X be a topological space, x € X and denote by I, the set
of open neighborhoods of z in X. We endow [, with the order: U < V if V C U.
Given U and V in [, and setting W = U NV, we have U < W and V < W.
Therefore, I, is directed.

Denote by €°(U) the C-vector space of complex valued continuous functions on
U. The restriction maps ¢°(U) — ¢°(V),V C U define an inductive system of
C-vector spaces indexed by I,. One sets

0 0

(2.6.4) Cxp = cgg]rxn% (U).
An element ¢ of €%, is called a germ of continuous function at 0. Such a germ is an
equivalence class (U, py)/ ~ with U a neighborhood of z, ¢y a continuous function
on U, and (U, py) ~ 0 if there exists a neighborhood V' of  with V' C U such that
the restriction of ¢ to V' is the zero function. Hence, a germ of function is zero at
x if this function is identically zeroon a neighborhood of x.
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2.7 Ind-objects

The aim of this section is to have a glance to the notion of ind-objects. Since we
shall almost not use this theory in these notes, we shall be rather sketchy.

By Theorem 2.3.10, the category Set admits small limits and colimits. It follows
from Proposition 2.5.1 that for any category ¢, the big category " also admits
small limits and colimits. One denotes by “colim” the colimit in €.

One could also define “lim” in € but we shall concentrate here on colimits.

In the sequel we identify % to a full subcategory of € by the Yoneda functor hy
and when there is no risk of confusion, we shall write X instead of hy(X). Hence,
for a small a category I and a functors a: I — €, we have:

Hom... (X, “colim” a) ~ colim Hom, (X, a).
Assume that the category ¢ admits small colimits. Then the natural morphism
colim Hom (X, &) — Hom, (X, colim «)
defines the morphism
(2.7.1) “colim” o — colim av.

This morphism is not an isomorphism in general (see Exercise 2.8). In other words,
the Yoneda functor hy does not commute with colimits.

On the other hand, assuming that 4 admits limits, if 5: [°® — % is a functor,
then

Hom.,, (X, lim 3) ~ lim Hom (X, §).

Hence, the Yoneda functor hy commutes with limits in this case.
Let A € €”. Applying Definition 1.4.5 to the Yoneda functor, we get the
category 4.

Lemma 2.7.1. Let A€ €". Then A ~ “colim” X.
(X—A)eCa

Proof. Let B € €”. One has the chain of isomorphisms

Hom.(A,B)~ lim B(X)

(X—A)eba
~ lim  Homg, (X, B) ~ Homg, (“colim” X, B),
(X—A)eB, T (X—=A)

where the first isomorphism follows from the definition of a morphism of functors.
O

Consider a functor F': € — €’. One defines the functor

(2.7.2) [F: %" = %", IF(A) = “colim” F(X).
(X—>A)€%A

We shall not prove here that IF' is well defined.

Definition 2.7.2. One denotes by Ind(%) the full subcategory of € consisting
of objects isomorphic to “colim” « for some functor a: I — ¥ with [ small and
directed. One calls an object of Ind(%’) an ind-object.
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Proposition 2.7.3. (a) Let F': € — €' be a functor. Then IF induces a functor
(we keep the same notation) IF: Ind(€¢) — Ind(¥”).

(b) Let I be small and directed and let o: I — € be a functor. Then “colim” (F o
a) =5 [F(“colim” a).

(c) Let I be small and directed and let a: I — € be a functor. If “colim” « is
representable by X € €, then colim «v exists in € and is isomorphic to X .

Proof. (a)—(b) follow from (2.7.2).
(c) For Y € €, one has

Hom (X,Y)~Hom,(“colim” a,Y")

~lim Hom (o, Y) ~ Hom(colim e, Y").
[l

Since we shall not use the next result, we skip its proof, referring to [KSO06,
Prop. 6.1.5, Th. 6.1.8]. Note that the “if”part of the first statement follows imme-
diately from Lemma 2.7.1.

Proposition 2.7.4. (a) Let A € €". Then A € Ind(%) if and only if the category
G is directed and cofinally small.

(b) The category Ind(€) admits small directed colimits and the embedding Ind(€") —|
€ commutes with colimits (which will still be denoted by “colim” ).

A set-theoretical remark

Remark 2.7.5. As already mentioned, all categories €, €', etc. are % -categories
for some universe %/ and all limits or colimits are indexed by %/ -small categories I,
J, etc. Let us give an example which shows that without some care, we may have
troubles.

Let € be a category which admits products and assume there exist X,Y € &
such that Hom.(X,Y) has more than one element. Set M = Mor(%¢’), where
Mor (%) denotes the big set of all morphisms in ¢. Let m = card(M), the cardinal
of the set M. We have

Hom (X, Y™) ~ Hom (X, V)

and therefore card(Hom. (X,Y?*)) > 27. On the other hand, Hom (X,Y") C
Mor(¢’) which implies card(Hom (X, Y™)) < .

The “contradiction” comes from the fact that % does not admit products indexed
by such a big set as Mor(%’). (This remark is extracted from [Fre64].)

Exercises to Chapter 2

Exercise 2.1. (i) Let I be a small set and {X;};c; a family of sets indexed by I.
Show that [[, X; = | |, X;, the disjoint union of the sets X;.

(ii) Construct the natural map | |, Homg, (Y, X;) = Homg, (Y,[ |, X;) and prove it
is injective and not surjective in general.
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Exercise 2.2. Let X,Y € % and consider the category & whose objects are triplets
Ze€%€,f: Z — X,g: Z — Y, the morphisms being the natural ones. Prove that
this category admits a terminal object if and only if the product X x Y exists in
%, and that in such a case this terminal object is isomorphic to X x Y, X xY —
X, X xY — Y. Deduce that if X xY exists, it is unique up to unique isomorphism.

Exercise 2.3. Let I and % be two categories with [ small and denote by A the
functor from ¢ to ¢’ which, to X € €, associates the constant functor A(X): I
i—Xe%, (i—j)eMor()— idx.

(i) Assume that colimits indexed by I exist. Prove the formula, for a: I — % and
Y e%:

Hom (colim (i), Y') = Hom g,/ ) (o0, A(Y)).

(ii) Assuming that limits exist, deduce the formula for 5: I°? — % and X € €

Hom. (X, lizm B(1)) = Hom . op ) (A(X), B).

Exercise 2.4. Let € be a category which admits small directed colimits. One says
that an object X of € is of finite type if for any functor a: I — % with I directed,
the natural map colim Hom (X,a) — Hom (X, colima) is injective. Show that
this definition coincides with the classical one when € = Mod(A), for a ring A.

(Hint: let X € Mod(A). To prove that if X is of finite type in the categorical
sense then it is of finite type in the usual sense, use the fact that, denoting by
< be the family of submodules of finite type of X ordered by inclusion, we have

colim X/V ~0.)
Ves

Exercise 2.5. Let € be a category which admits small directed colimits. One says
that an object X of % is of finite presentation if for any functor a: I — % with
I small and directed, the natural map colim Hom (X, a) — Hom (X, colima) is
bijective. Show that this definition coincides with the classical one when € =
Mod(A), for a ring A.

Exercise 2.6. In the situation of Definition 2.4.4, construct the natural morphism
w: Coim(f) — Im(f) such that the composition X — Coim(f) — Im(f) — Y is f.
(See [KS06, Prop. 5.1.2].)

Exercise 2.7. Let I be a directed ordered set and let { A; };c; be an inductive system
of rings indexed by I.

(i) Prove that A := colim 4; is naturally endowed with a ring structure.

(ii) Define the notion of an inductive system M; of A;-modules, and define the
A-module colim M;.

(iii) Let N; (resp. M;) be an inductive system of right (resp. left) A; modules. Prove
the isomorphism

colim(N; ®y, M;) = colim N; ®, colim M;.

Exercise 2.8. Prove Corollary 2.6.5.
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Exercise 2.9. (i) Let € be a category which admits colimits indexed by a category
I. Let a: I — % be a functor and let X € €. Construct the natural morhism

(2.7.3) Coliim Hom (X, a(i)) = Hom (X, Coliim a(i)).

(i) Let k be a field and denote by k[z]=" the k-vector space consisting of polynomials
of degree < n. Prove the isomorphism k[z] ~ colim k[x]=" in Mod(k) and, noticing
that idyp, & colim Hom, (k[z], k[z]="), deduce that the morphism (2.7.3) is not an

isomorphism in general.

Exercise 2.10. Let I be a small set and let _# be the set of finite subsets of I,
ordered by inclusion. We consider both I and _# as categories. Let € be a category
which admits small colimits and let a: I — % be a functor. For J € ¢ we denote
by ay: J — € the restriction of a to J.

(i) Prove that the category ¢ is directed.

(ii) Prove the isomorphism colim colim or; =% colim a.
Je g jeJ

Exercise 2.11. Let € be a category which admits a zero-object and kernels. Prove

that if a morphism f: X — Y is a monomorphism then Ker f ~ 0. Prove the
converse when assuming that % is additive (see Chapter 4).

Exercise 2.12. We consider the ordered set N as a category. Hence, for a category
%, a functor a: N — % is defined by the data of the objects a(n) € €, n € N, and
the morphisms a(n <n+1): a(n) = a(n +1).

(i) Consider the functor a: N — Mod(Z) given by a(n) = Z and a(n < n+1) =
2-: Z — Z. Calculate colim a.

(Hint: one can represent this colimit as a subgroup of Q.)

(ii) Give an example of a functor a: N — Mod(Z) in which all a(n) are not 0 and
all morphisms a(n < n+ 1) are not 0 but colim a ~ 0.

Exercise 2.13. Let k be a field and denote as usual by Mod(k) the category of
k-vector spaces (in a given universe % ). Denote by Modf(k) the full subcategory
consisting of finite dimensional vector spaces and set for short Tk = Ind(Mod(k)).

Let V denote an infinite dimensional vector space and denote by ¥/ the category
consisting of finite dimensional vector subspaces of V and linear maps.

(i) Prove that the category ¥/ is small and directed and set V= “colirrfl” W e Ik.
wev

(ii) Construct the morphism V — Vin Ik and prove it is a monomorphism.

(iii) Let L € Mod(k). Prove that the morphism Homlk(L,@') — Homy, (L, V) is an

isomorphism if and only if L. € Mod!(k).

(iv) Set W = V/V. Prove that Homy, (k, W) ~ 0 although W # 0.

(v) Consider the functor a: Ind(Modf(k)) — Mod(k) which, to “chiIm” Vi (I small
1€

and directed), associates CQhIm V;. Prove that « is an equivalence of categories.

1€
Exercise 2.14. Let I be a small and directed category and let a: I — % be a
functor. Assume that for any morphism s: ¢ — j in I, a(s) is an isomorphism. Prove
that “colim” « exists in ¥ and moreover, for any X € %, one has the isomorphism

colim Hom (X, a(¢)) =% Hom (X, colim a(%)).
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Exercise 2.15. Recall Definition 2.7.2.

(i) Prove that the Yoneda functor induces a fully faithful functor ¢ — Ind(%), that
Ind(%) admits small directed colimits and that the functor Ind(%) < ¢ commutes
with such colimits.

(ii) Let k be a field and let ¥ = Mod(k). Prove that the Yoneda functor hy: € —
%" does not commute with colimits.

Exercise 2.16. Recall that Set denotes the category of sets in a given universe % .
Denote by Set’ the full subcategory of the category Set consisting of finite sets.
Prove the equivalence Ind(Set’) ~ Set. (See [KS06, Exa. 6.3.6].)



Chapter 3

Localization

Summary

Consider a category € and a family . of morphisms in %. The aim of localization
is to find a new category s and a functor QQ: ¥ — %» which sends the mor-
phisms belonging to . to isomorphisms in v, (Q, ¢») being “universal” for such
a property.

In this chapter, we shall construct the localization of a category when . satisfies
suitable conditions and we shall construct the localization of functors.
Note that we shall only use the localization of categories in the situation of triangu-
lated categories, essentially in order to define derived categories. Hence, the reading
of this chapter may be skipped until § 6.4.
References. A classical reference for the localization of categories is the book [GZ67]]
Here, we follow the presentation of [KS06]. We shall skip some proofs, referring to
this last item in this case.

3.1 Localization of categories

Let & be a category and let .¥ be a family of morphisms in % .

Definition 3.1.1. A localizaton of ¥ by .% is the data of a category €+ and a
functor Q): € — € satistying:

(a) for all s € ., Q(s) is an isomorphism,

(b) for any functor F': ¥ — & such that F(s) is an isomorphism for all s € .77,
there exists a functor Fy: €% — & and an isomorphism F' ~ Fo o (),

——

4

o
Cy

(c) if G; and G9 are two objects of Fct(€y, o7), then the natural map
(3.1.1) Hom p s, o) (G1,G2) = Hom oy ) (G10Q,G20Q)
is bijective.

47
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Note that (c) means that the functor oQ: Fct(€y, o) — Fct(€, o) is fully
faithful. This implies that Fly in (b) is unique up to unique isomorphism.

Proposition 3.1.2. (i) If € exists, it is unique up to equivalence of categories.

(ii) If €% exists, then, denoting by #°P the image of % in €°P by the functor op,
(€°P) oo exists and there is an equivalence of categories:

(€)= ()00

Proof. (i) is clear.

(ii) Assume o exists. Set (€°P).yop := (€#)°° and define Q°P: €°° — (€°P) yop by
(Q°°? = op o Q o op. Then properties (a), (b) and (c) of Definition 3.1.1 are clearly
satisfied. O

Definition 3.1.3. One says that .% is a right multiplicative system if it satisfies
the axioms S1-S4 below.

S1 For all X € €, idx € .77.
S2 Forall fe ¥, ge .7, if go f exists then go f € ..

S3 Given two morphisms, f: X — Y and s: X — X’ with s € ., there exist
t:Y =Y and g: X' = Y/ witht € . and gos = to f. This can be visualized
by the diagram:

X7 o }A//
sT t

meaning that the dotted arrows may bwe completed, making the diagram
commutative.

S4 Let f,g: X — Y be two parallel morphisms. If there exists s € .: W — X
such that f os = gos then there existst € .: Y — Z such that to f =tog.
This can be visualized by the diagram:

C u o
W—""-sX—=Y " ~7

g

Notice that these axioms are quite natural if one wants to invert the elements
of .. In other words, if the element of . would be invertible, then these axioms
would clearly be satisfied.

Remark 3.1.4. Axioms S1-S2 asserts that .#” is the family of morphisms of a
subcategory . of € with Ob(.¥) = Ob(¥%).

Remark 3.1.5. One defines the notion of a left multiplicative system .% by reversing
the arrows. This means that the condition S3 is replaced by: given two morphisms,
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f: X —=>Yandt:Y =Y, witht € ., there exist s: X’ — X and g: X' — Y’
with s € . and t o g = f o s. This can be visualized by the diagram:

x' 2y
.
\

xJ.y

meaning that the dotted arrows may bwe completed, making the diagram commu-
tative.

Condition S4 is replaced by: if there exists t € .: Y — Z such that to f =tog
then there exists s € .%: W — X such that f os = g os. This is visualized by the
diagram

s 4 t
W .5 > XT‘Yﬁ-Z

In the literature, one often calls a multiplicative system a system which is both right
and left multiplicative.

Definition 3.1.6. Assume that . satisfies the axioms S1-S2 and let X € ¥. One
defines the categories .y and .#% as follows.

Ob(s*) = {s: X = X';s€ .7}
Hom ,x((s: X — X'),(s": X = X)) {h € Hom (X', X");hos ="}
Ob(¥x) = {s: X' = X;s€ .7}
Hom , ((s: X' = X),(s": X" — X)) {h € Hom (X', X");s" o h = s}.

Note that .#% and .x are full subcategories of ¢ and €x (see Definition 1.4.5),
respectively.

Recall the definition of the category .# of Remark 3.1.4. Then one shall be
aware that .#% #£ . 7 and Sx # YX since we do not ask h € . in the preceding
definition.

Proposition 3.1.7. Assume that . is a right (resp. left) multiplicative system.
Then the category S~ (resp. SF) is directed.

Proof. By reversing the arrows, both results are equivalent. We treat the case of
IX

(a) The category . is non empty since it contains idy.

(b) Let s: X — X" and s': X — X" belong to .. By S3, there exists t: X’ — X"

and ': X” — X" such that ' o’ =tos, and t € .. Hence, tos € . by S2 and
(X — X") belongs to .7X.

(c) Let s: X — X" and §': X — X" belong to ., and consider two morphisms
frg: X' — X" with fos=gos=s" By S4 there exists t: X" — W,t € . such
that to f =tog. Hence tos': X — W belongs to .7~. O

One defines the functors:

ax: S =€ (s: X = X)X,
Bx: Iy =€  (s: X = X)— X\

We shall concentrate on right multiplicative system.
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Definition 3.1.8. Let . be a right multiplicative system and let X,Y € Ob(%).
We set

(3.1.2) Hom,, (X,Y) = (Y_cggﬁlyy Hom (X, Y").

Roughly speaking, a morphism in €7, is represented by morphisms X — Y’ Ly
with t € ..

Lemma 3.1.9. Assume that .7 is a right multiplicative system. Let Y € € and let
s: X = X' € . Then s induces an isomorphism

Hom(g;(X',Y) = Hom(g;(X, Y).

[eX]

Proof. (i) The map os is surjective. This follows from S3, as visualized by the
diagram in which s,t,t € .¥:

X i };//
7
)<'_____>'))/-e_£___}/

Indeed, the map (f,t) is the image by os of the map (g,t ot).

(ii) The map os is injective. Since the category .#Y is directed, we may represent
two morphisms in Homf;(X’, Y) by a diagram f,g: X' = Y’ Ly It fos=gos,
there exists by S4 a morphism ¢': Y — Y with ¢/ o f =t 0 g. We get the diagram
in which s,t,t' € .

tT )
= t'ot
Y
This shows that (f,¢) and (g,t) have the same image in Hom%ﬂ;} (X")Y). ]

Using Lemma 3.1.9, we define the composition

(3.1.3) Hom, (X,Y) x Honl(g;(Y7 Z) — Hom,, (X, Z)
as

. / . !/
colim Hom (X, Y”) x %o_h>rZI} Hom (Y, Z')

Y=y
~ . / . !
~ }cf(ggr}l(Hom(g(X,Y) X %%%Hom%(}/, z")
— g()_Y;r}gl/(Hom(g(X, Y') x %(gg} Hom (Y, Z"))
— colim colim Hom (X, Z)
Y=Y =52/ ¢
~ colim Hom (X, Z')
Z—7 g

Lemma 3.1.10. The composition (3.1.3) is associative.
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The verification is left to the reader.

Definition 3.1.11. (a) We denote by %%, the category whose objects are those of
% and morphisms are given by (3.1.2).

(b) We denote by Q»: € — €%, the natural functor. If there is no risk of confusion,
we denote this functor simply by Q.

Note that @ is associated with the natural map

Hom, (X,Y) — li Hom, (X,Y").
om(X,¥) = | cglim, Hom (X, 1)

Lemma 3.1.12. If s: X — Y belongs to .77, then Q(s) is invertible.

Proof. For any Z € €%, the map Hom%;p(Y, Z) = Hom%);(X, Z) is bijective by
Lemma 3.1.9. O

A morphism f: X — Y in €, is thus given by an equivalence class of triplets
(Y t, fYwitht: Y =Y/ t€ ¥ and f': X — Y/, that is:

X—=Y'~—Y,
I t

the equivalence relation being defined as follows: (Y, ¢, f') ~ (Y”, ¢/, f") if there
exists (Y, ¢, f") (t,t',¢t" € S) and a commutative diagram:

v "
(3.1.4) x I Sy Yy

Note that the morphism (Y’ ¢, f') in €7, is Q(t)~' o Q(f’), that is,

(3.1.5) f=Q) " oQ(f).

For two parallel arrows f,g: X = Y in % we have the equivalence
(3.1.6)Q(f) = Q(g9) € €, < thereexits s: Y =Y’ s €. with so f =so0g.

The composition of two morphisms (Y, ¢, f'): X — Y and (7',s,¢'): Y — Z is
defined by the diagram below in which ¢, s, s’ € .7

XV~ Y g7

In other words, this composition is given by (W, s o s, ho f’).

Theorem 3.1.13. Assume that . is a right multiplicative system. Then the cate-
gory €, and the functor Q) define a localization of € by ..
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We refer to [KS06, Th. 7.1.16] for a proof.

Notation 3.1.14. From now on, we shall write €» instead of ¢7,. This is justified
by Theorem 3.1.13.

Remark 3.1.15. (i) In the above construction, we have used the property of . of
being a right multiplicative system. If .% is a left multiplicative system, one sets

H X,Y)= li H X' Y).
omy (X,Y) oSSl om (X", Y)
By Proposition 3.1.2 (i), the two constructions give equivalent categories.
(ii) If .7 is both a right and left multiplicative system,

H X)Y) ~ li H X", Y".
omy, (X, Y) (X X)edn (Y —Yesrr oy (X, 1)

Remark 3.1.16. In general, €& is no more a % -category. However, if one assumes
that for any X € € the category .#% is small (or more generally, cofinally small,
which means that there exists a small category cofinal to it), then €y is a %-
category, and there is a similar result with the .#x’s.

Saturated multiplicative systems

In this subsection, % is a category, . is a right multiplicative system and Q: € —
% is the localization functor.

Proposition 3.1.17 (see [KS06, Prop. 7.1.20]). For a morphism f: X =Y, Q(f)
is an isomorphism in €, if and only if there exist g: Y — Z and h: Z — W such
that go f € ¥ and hog € 7.

Proof. (i) Assume that Q(f) is an isomorphism. Let us represent the inverse of Q(f)
by morphisms (g, s) as on the diagram below, with s € .7

xJtoy . x5 x,

Then Q(s)™* 0 Q(g) is the inverse of Q(f) and Q(g) o Q(f) = Q(f o ) = Q).
By (3.1.6), there exists t: X’ — X" in . such that to go f =t os. Changing our

notations and replacing g with ¢ o g, we have found ¢g: Y — Z such that go f €
<. Then Q(g) o Q(f) is an isomorphism, hence, by the hypothesis, Q(g) is an
isomorphism. By the preceding argument applied to ¢ instead of f, there exists

h: Z — W such that ho g € .7.

(ii) The converse assertion follows from the result of Exercise 1.1 applied to Q(f),

Qg), Q(h). O

Definition 3.1.18. One says that .7 is saturated® if it satisfies

S5 for any morphisms f: X — Y, ¢g: Y — Z and h: Z — W such that go f and
h o g belong to ., the morphism f belongs to ..

1One shall note confuse the notion of a saturated multiplicative system with that of a saturated
subcategory, defined in § 1.3
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Corollary 3.1.19. The two conditions below are equivalent.
(a) The multiplicative system . is saturated.
(b) A morphism f in € belongs to . if and only if Q(f) is an isomorphism.

Proof. (a)=-(b). If f € ., then Q(f) is an isomorphism by Lemma 3.1.12. Con-
versely, assume that Q(f) is an isomorphism. Then f € . by Proposition 3.1.17
and the definition of being saturated.

(b)=-(a). Consider morphisms f, g, h as in Definition 3.1.18, with go f and hog
in .. Then Q(f) is an isomorphism by Proposition 3.1.17 and this implies that f
belongs to . by the hypothesis (b). Therefore, S5 is satisfied. ]

Proposition 3.1.20. Let € and . be as above. Let T be the set of morphisms
f: X =Y in € such that there exist g: Y — Z and h: Z — W, with hog and go f
in .. Then T is a right saturated multiplicative system and the natural functor
Cy — €7 is an equivalence.

The proof is left as an exercise.

3.2 Localization of subcategories

Proposition 3.2.1. Let € be a category, & a full subcategory, . a right multi-
plicative system in €, 7 the family of morphisms in & which belong to .7 .

(i) Assume that 7 is a right multiplicative system in . Then the functor S5 —
€ is well-defined.

(ii) Assume that for every f:Y — X, f € &, Y € Z, there exist W € & and
g: X =W withgo f €. Then J 1is a right multilplicative system and the
functor S5 — € is fully faithful.

Proof. (i) A morphism X — Y in .7 is represented by morphisms X Ioyrdy
in . with t € . Since t € ., we get a morpism in €.

(ii) It is left to the reader to check that .7 is a right multpiplicative system. For X €
&, T is the full subcategory of .* whose objects are the morphisms s: X — Y
with Y € .#. By Proposition 3.1.7 and the hypothesis, the functor 7% — /¥ is
cofinal, and the result follows from Definition 3.1.8. n

Corollary 3.2.2. Let € be a category, & a full subcategory, . a right multiplicative
system in €, 7 the family of morphisms in & which belong to .. Assume that for
any X € € there exists s: X — W with W € % and s € .7.

Then 7 is a right multpiplicative system and %7 is equivalent to €.

Proof. Tt follows from Proposition 3.2.1 that .7 is a right multpiplicative system,
the natural functor £ — € is fully faithful by the same proposition Proposition
and is essentially surjective by the assumption. O
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3.3 Localization of functors

Let € be a category, . a right multiplicative system in ¢ and F': 4 — o/ a functor.
In general, F' does not send morphisms in . to isomorphisms in 7. In other words,
F does not factorize through €¢. It is however possible in some cases to define a
localization of F' as follows.

Definition 3.3.1. A right localization of F' (if it exists) is a functor Flg: €y — o
and a morphism of functors 7: F' — Fy o () such that for any functor G: € — &
the map

(3.3.1) Hom p ¢, o) (Fl7, G) = Hom gy o ) (F, G 0 Q)

is bijective. (This map is obtained as the composition Hom ¢, ,(Fo,G) —

Hom gy, (Fir 0 Q.G 0 Q) — Hom ret(e.o) (s G0 Q).)
We shall say that F'is right localizable if it admits a right localization.

One defines similarly the left localization. Since we mainly consider right lo-
calization, we shall sometimes omit the word “right” as far as there is no risk of
confusion.

If (1, F) exists, it is unique up to unique isomorphism. Indeed, F'» is a repre-
sentative of the functor

G Hom s o (F, G 0 Q).
(This last functor is defined on the category Fct(€y, o7) with values in Set.)

Proposition 3.3.2. Let € be a category, & a full subcategory, . a right multi-
plicative system in €, 7 the family of morphisms in & which belong to .#. Let
F: € — o be a functor. Assume that

(i) for any X € € there exists s: X — W with W € & and s € .7,
(i) for anyt € T, F(t) is an isomorphism.
Then F' is right localizable.

Proof. We shall apply Corollary 3.2.2.
Denote by ¢: .# — € the natural functor. By the hypothesis, the localization
F7 of F o exists. Consider the diagram:

Qs

©
L,
s

Qo
S T

Cy

/

Fo V

of

Denote by Lél a quasi-inverse of (g and set Fly := F7 o Lc_gl. Let us show that Fly
is the localization of F. Let G: ¥+ — & be a functor. We have the chain of
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morphisms:

Hom y ¢ o) (F. G 0 Qr) 2 Hom ret(s ) F 0L, GoQy o)
~ Hom s (F70Q7,GoigoQy)
~ Hom Fct(y9,<¢)<Fﬂ7 G o)
~ Hom FCt((éyﬂ)(Fg o Lél, G)
~ Hom Fct(%y,d)(Fy’ G).
We shall not prove here that A is an isomorphism referring to [KS06, Prop. 7.3.2].

The first isomomorphism above (after \) follows from the fact that Q5 is a local-
ization functor (see Definition 3.1.1 (c¢)). The other isomorphisms are obvious. [

Remark 3.3.3. Let € (resp. €”) be a category and . (resp. ') a right multi-
plicative system in € (resp. ¢”). One checks immediately that .7 x .’ is a right
multiplicative system in the category ¢ x €’ and (€ x €') s« is equivalent to
€y X €. Since a bifunctor is a functor on the product € x €', we may apply
the preceding results to the case of bifunctors. In the sequel, we shall write F'y o
instead of Floy .

Exercises to Chapter 3

Exercise 3.1. Let € be a category, . a right and left multiplicative system. Prove
that .7 is saturated if and only if for any f: X — Y, g: Y — Z, h: Z — W,
hoge . and go f € . imply g € ..

Exercise 3.2. Let % be a category with a zero object 0, . a right and left saturated
multiplicative system.

(i) Show that €’» has a zero object (still denoted by 0).

(ii) Prove that Q(X) ~ 0 if and only if the zero morphism 0: X — X belongs to ..
Exercise 3.3. Let € be a category, . a right multiplicative system. Consider
morphisms f: X — Y and f': X’ — Y’ in ¥ and morphisms a: X — X’ and

B:Y = Y'in €, and assume that f'oa = o f in €». Prove that there exists a
commutative diagram in ¢

P —
|
Ry (R vl
\_/
B
with s and ¢ in .7, a = Q(s) ' o Q(a/) and 8= Q(t)"L 0 Q(B).

Exercise 3.4 (See [KS06, Exe. 7.5]). Let F': € — &7 be a functor and assume that
¢ admits finite colimits and ' commutes with such colimits. Let .7 denote the set
of morphisms s in % such that F(s) is an isomorphism.

(i) Prove that . is a right saturated multiplicative system.
(ii) Prove that the localized functor F'y: €y — &7 is faithful.
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Chapter 4

Additive categories

Summary

Many results or constructions in the category Mod(A) of modules over a ring A are
naturally adapted to other contexts, such as finitely generated A-modules, or graded
modules over a graded ring, or sheaves of A-modules, etc. Hence, it is natural to
look for a common language which avoids to repeat the same arguments. This is
the language of additive and abelian categories.

In this chapter we introduce additive categories and study the category of com-
plexes in such categories. We introduce the shifted complex, the mapping cone of a
morphism, the homotopy category and the simple complex associated with a double
complex. We apply this last construction to the study of bifunctors, particularly
the bifunctor Hom We also briefly study the simplicial category and explain how to
associate complexes to simplicial objects.

References for this chapter already appeared at the beginning of Chapter 1.

4.1 Additive categories

Definition 4.1.1. A category % is additive if it satisfies conditions (i)-(v) below:
(i) for any X,Y € ¢, Hom(X,Y) € Mod(Z),
(ii) the composition law o is bilinear,

(iii) there exists a zero object in €,

(iv) the category € admits finite coproducts,
(v) the category € admits finite products.

Note that Hom(X,Y") # @ since it is a group and for all X € ¢, Hom(X,0) =
Hom (0, X) = 0. (The morphism 0 should not be confused with the object 0.)

Notation 4.1.2. If X and Y are two objects of €, one denotes by X &Y (instead
of X[]Y) their coproduct, and calls it their direct sum. One denotes as usual by
X XY their product. This change of notations is motivated by the fact that if A is a
ring, the forgetful functor for: Mod(A) — Set does not commute with coproducts.

Similarly, if 4" admits coproducts indexed by a category I and {X;}ics is a family
of objects of ¢, one denotes by @,.; X; their coproduct.

57
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Lemma 4.1.3. Let € be a category satisfying conditions (i)—(iii) in Definition 4.1.1.
Consider the condition

(vi) for any two objects X andY in €, there exists Z € € and morphismsi;: X —
Z,ig:Y = Z, p1: Z — X and py: Z —'Y satisfying

(411) ploil :idX, ploig =0
(412) P2 O ig = idy, D2 O le = O,
(413) 11 Opl—i‘ig O D2 :le

Then the conditions (iv), (v) and (vi) are equivalent and the objects X @Y, X xY
and Z are naturally isomorphic.

Proof. (a) Let us assume condition (iv). The identity of X and the zero morphism
Y — X define the morphism p;: X & Y — X satisfying (4.1.1). We construct
similarly the morphism py: X @ Y — Y satisfying (4.1.2). To check (4.1.3), we
use the fact that if f: X @Y — X @Y satisfies f oi; = 47 and f o119 = 19, then
[ =idxay.

(b) Let us assume condition (vi). Let W € ¢ and consider morphisms f: X — W
and g: Y — W. Set h:= fop, ® gopy. Then h: Z — W satisfies hoi; = f and
h o1y = g and such an h is unique. Hence Z ~ X &Y.

(¢) We have proved that conditions (iv) and (vi) are equivalent and moreover that
if they are satisfied, then Z ~ X @ Y. Replacing € with €°P, we get that these
conditions are equivalent to (v) and Z ~ X x Y. O

Example 4.1.4. (i) If A is a ring, Mod(A) and Mod(A) (see Example 1.3.4) are
additive categories.

(ii) Ban, the category of C-Banach spaces and linear continuous maps is additive.
(iii) If ¥ is additive, then €°P is additive.

(iv) Let I be a small category. If € is additive, the category Fct(/, %) of functors
from I to € is additive.

Let F': ¥ — %' be a functor of additive categories. One says that F' is additive
if for X,Y € ¢, Hom(X,Y) = Hom,, (F(X), F'(Y)) is a morphism of groups. We
shall not prove here the following result.

Proposition 4.1.5. Let F': € — €' be a functor of additive categories. Then F is
additive if and only if it commutes with direct sum, that is, for X andY in €:

F(0)~0
F(XaY)~F(X)® F(Y).

Unless otherwise specified, functors between additive categories will be assumed
to be additive.
Generalization. Let k be a commutative unital ring. One defines the notion of a
k-additive category by assuming that for X and Y in ¢, Hom(X,Y) is a k-module
and the composition is k-bilinear.
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4.2 Complexes in additive categories

Let € denote an additive category.

A differential object (X *,d%) in € is a sequence of objects X* and morphisms
d% (k € Z):

(4.2.1) cee— XM —>d§;1 x* ﬁ XL 5

A morphism of differential objects f°: X* — Y ° is visualized by a commutative
diagram:

dx

Xn Xn+1
lfn lfn—‘—l
dy-
yn Xn+1

Hence, the category Diff (%) of differential objects in € is nothing but the category
Fct(Z,%). In particular, it is an additive category.

Definition 4.2.1. (i) A complex in % is a differential object (X °,dy) such that
d% od% ' =0 for all n € Z.

(ii) One denotes by C(%) the full additive subcategory of Diff(%¢") consisting of
complexes in €.

From now on, we shall concentrate our study on the category C(%).

A complex is bounded (resp. bounded below, bounded above) if X" = 0 for
|n| >> 0 (resp. n << 0, n >> 0). One denotes by C*(%)(x = b, +, —) the full ad-
ditive subcategory of C(%) consisting of bounded complexes (resp. bounded below,
bounded above). We also use the notation C*™ (%) = C(%) (ub for “unbounded”).
For a € Z we shall denote by C=%(%’) the full additive subcategory of C(%’) consist-
ing of objects X ° such that X7 ~ 0 for j < a. One defines similarly the categories
C=%(%) and, for a < b, Cl*bl(%).

One considers € as a full subcategory of C*(%’) by identifying an object X € ¢
with the complex X ° “concentrated in degree 07:

X' = 502X =0—---
where X stands in degree 0. In other words, one identifies 4" and CI*%(%).

Notation 4.2.2. In the definitions above of a differential object or a complex, we
assumed that X% is defined for k € Z. If X* is only defined for k € I, I being an
interval of Z, we consider again X ° as a differential object or a complex by setting
Xk =0fork ¢l

From now on, we shall often simply denote by X an object of C(%).
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Shift functor

Let € be an additive category, let X € C(%) and let p € Z. One defines the shifted
complex X |[p] by':

(X[p)" = X", dyy = (—)Pdy”

If f: X — Y isamorphism in C(%) one defines f[p]: X[p] — Y[p] by (f[p])" = f"**.
The shift functor [1]: X — X[1] is an automorphism (i.e. an invertible functor)
of C(¥).

Mapping cone

Definition 4.2.3. Let f: X — Y be a morphism in C(%¢’). The mapping cone of
f, denoted Mc(f), is the object of C(%) defined by:

Mol = (X[ &7, gy = (B g0 )

Of course, before to state this definition, one should check that d&tl od{\‘/[C( n= 0.

()
Indeed:
_an+2 0 _d}‘i’l 0
fn+2 d§+1 © fn+1 d?/ =0.
Notice that although Mc(f)™ = (X[1])" ® Y™, Mc(f) is not isomorphic to X[1] &Y

in C(%) unless f is the zero morphism.
There are natural morphisms of complexes

(4.2.2) alf): Y — Mece(f), PB(f): Mc(f) = X[1].

and B(f) o a(f) = 0.

Example 4.2.4. Let f: X — Y be a morphism in % and let us identify € with
a full subcategory of C(%). Then X and Y are complexes concentrated in degree
0 and f is a morphism of complexes. One checks immediately that Mc(f) is the

complex ---0 = X 5 Y - 0— - where Y stands in degree 0.

If FF: € — % is an additive functor, then F'(Mc(f)) ~ Mc(F(f)).

4.3 Double complexes

Let € be an additive category as above. A double complex (X ** dy) in € is the
data of

(X7 d" d"™ (n,m) € Zox 7}

where X™™ € ¢ and the “differentials” d'y™: X™™ — Xntbm griem . xmm
Xnmtl gatisfy:

(4.3.1) d% =d% =0, dyodl =d% ods.

In these notes, we shall sometimes write (—)? instead of (—1)P
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One can represent a double complex by a commutative diagram:

d// n,m
n,m X
X

(432) dfxnvm d/Xn,m+1

Xn,m—i—l

Xn—i—l,m Xn+1,m+1
d/)/(n-kl,m

One defines naturally the notion of a morphism of double complexes and one obtains
the additive category C?(%) of double complexes.

There is a functor Fy: C*(¢) — C(C(%)) which, to a double complex X, as-
sociates the complex whose objects are the rows of X. More precisely, for n € Z,
consider the simple complex

X}L — {Xn,m’ d//n,m}mez

The family of morphisms {d™™},,cz defines a morphism d: X? — X7 and one
checks that d}"' od? = 0. Therefore, { X7, d} }nez is a complex in C(%’) and we have
constructed the functor

Fr: CX(%) — C(C(¥)).

By reversing the role of the rows and the columns, one constructs similarly the
functor Fy;. Clearly, the two functors F; and Fj; are isomorphisms of categories.
Assume

(4.3.3) ¢ admits countable direct sums.

One can then associate to the double complex X a simple complex totg(X) by
setting:

(41:8%)()();0 = @ner:an,m’ dfot@(X) O&nm = Ent1,m © dmm + €Enm41 © (_)nd//n,m.

(See (2.1.6) for the notation &, ,,.) This is visualized by the diagram:

Xmm (d™™ (=)nd'™™) XnJrl,m D Xn,m+1 — tOt@(X>p+1.

Similarly, assume
(4.3.5) ¢ admits countable products.

One can then associate to the double complex X a simple complex tot.(X) by
setting:

(54)3“69()10 = H Xn,m’ ﬂ-n,m o df(;i(x) = d/n_Lm o 7Tnfl,m + (_)nd”mm_l o 7T-n,mfl-

m+n=p
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This is visualized by the diagram:

m—1,m
foty (X)P~1 = X7bm gy xmm—l ( (_;zn d,,n,m-l)xnvm.

One also encounters the finiteness condition:
(4.3.7) forall pe Z, {(m,n) € Z x Z; X™ #0,m +n = p} is finite.

To such an X one associates its “total complex” tot(X) = totg(X) ~ tot,(X). In
the sequel, we denote by C’fc(%ﬂ) the full subcategory of C?(%’) consisting of objects
X satisfying (4.3.7).

Proposition 4.3.1. Assume (4.3.3). Then the differential object {tote(X)?, di,; _ x }ver]
=0) and totg: C*(€) — C(¥) is a functor of

: p+1 p
is a complex (i.e., di o) © Dot (x

additive categomes
There is a similar result assuming (4.3.5) or assuming that X € C3(%).

Proof. For short, we write simply di or even d instead of dio,(x). We also write
d|xnm instead of &, ,, o d.
For (n,m) € Z x Z, one has

d le) d|X’ﬂ,m = d” (@) dllan,m —|— d, O d,|Xn,m
+(_)n+1d// o d/|X'rL,m 4 (_)ndl o d/,‘Xn,m
=0.

The fact that totg is an additive functor is obvious. O

Example 4.3.2. Let f*: X* — Y "* be a morphism in C(%’). Consider the double
complex Z°* such that Z=%* = X°*, Z%* =Y* Z%° =0 for i # —1,0, with
differentials f7: Z=% — Z%. Then

(4.3.8) tot(Z*") ~ Mc(f").

Bifunctor

Let €,%" and €” be additive categories and let F': € x €' — %" be an additive
bifunctor (i.e., F'(+,«) is additive with respect to each argument). It defines an
additive bifunctor C*(F): C(%) x C(%¢") — C?(¢"). In other words, if X € C(%)
and X' € C(%") are complexes, then C?(F)(X, X’) is a double complex.

Example 4.3.3. Consider the bifunctor « ® ¢ : Mod(A°?) x Mod(A) — Mod(Z). In
the sequel, we shall simply write ® instead of C*(®). Then, for X € C(Mod(A°P))
and Y € C(Mod(A)), one has

(X ®Y)”7m —X"QY™, d"™ =d% @idym, d"™™ = idyn RdY,

(tota (X, V)" = @ X"@Y™,  diyxev)|xmgym = d™™ + (=)"d"™™.
n+m=~k
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The complex Hom"

Consider the bifunctor Hom, : €°° x ¥ — Mod(Z). In the sequel, we shall write
Hom:éj. instead of C*(Hom.,). If X and Y are two objects of C(¢), one has

Hom " (X,Y)"™ = Hom, (X", Y™),
d/n,m — HOHI(’D,/(Xim, dgz/), d//n,m — Hom%}((_)m+1d;{m71’ Yn)

Note that Hom:g" (X,Y) is a double complex in the category Mod(Z) and should
not be confused with the group Hom g (X, Y).

Let X,Y € C(%). Using the fact that Mod(Z) admits countable products, one
sets

(4.3.9) Hom’ (X,Y) = totTrHom:g" (X,Y), an object of C(Mod(Z)).

Hence, Hom (X, Y)" = [, Hom (X7, Y"*/) and d": Hom ,(X,Y)" — Hom(X,Y)"*]

is defined as follows. To f = {f'}; € [];c; Hom (X7, Y™*/) one associates

d"f = {g'}; € [ Hom, (X7, Y™+1), g = qmid i o (<t @rinchimi= i,

jez
In other words, the components of df in Hom. (X, Y)"*! will be given by
(4.3.10) (d"f) = dl ™ o f 4 (=)™ it o .
Note that for XY, Z € C(%), there is a natural composition map
(4.3.11) Hom (X,Y) x Hom_ (Y, Z) = Hom_ (X, Z)
associated with the map

Hom, (X,Y)™ x Hom (Y, Z)" — Hom (X, Z)""",
T Hom (X', x [ Hom, (¥, z¢7%) - T] Hom, (X', 277+),

4.4 'The homotopy category

Let € be an additive category.

Definition 4.4.1. (i) A morphism f: X — Y in C(%) is homotopic to zero if for
all p there exists a morphism s?: X? — Y?~! such that:

frP=sodh +d " o s,
Two morphisms f,g: X — Y are homotopic if f — g is homotopic to zero.
(ii) An object X in C(%¥) is homotopic to 0 if idx is homotopic to zero.

(iii) A morphism f: X — Y in C(%) is a homotopy equivalence if there exists
g: Y — X such that g o f is homotopic to idx and f o g is homotopic to idy.
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A morphism homotopic to zero is visualized by the diagram (which is not com-
mutative):

dp
xr-1___ . xp__X xptl

/p/ pr P+1/
yr-1 F YP i yp+l
Y

Note that an additive functor sends a morphism homotopic to zero to a morphism
homotopic to zero.

Example 4.4.2. (i) Let X,Y € C(%¥). If both X and Y are homotopic to zero,
thensois X @Y.
idx

(ii) Let X € €. Then the complex 0 - X — X — 0 is homotopic to zero.

(iii) In particular, for X', X € €, the complex 0 - X' — X' @ X" — X" — 0 is
homotopic to zero.

Lemma 4.4.3. Let f: X =Y and g: Y — Z be two morphisms in C(€). If f or
g is homotopic to zero, then g o f is homotopic to zero.

Proof. Assume for example that f is homotopic to zero. In this case the proof is
visualized by the diagram below.

dP
Xpr-1___ . xp__ % Yo+l

P/// l 4 p+i//
S

yr-l___ _ypr_ . yp+l

lgp—l lgp lgp+l

Zr -t — s 7P s P
dy

Indeed, the equality f? = sP*' o d% + d& ' o s” implies
g’ o fP :gposp"'lodg(—i—d};l ogPlost.
]

We shall construct a new category by deciding that a morphism in C(%") homo-
topic to zero is isomorphic to the zero morphism. Set:

Ht(X,Y)={f: X =Y, f is homotopic to 0}.
Lemma 4.4.3 allows us to state:
Definition 4.4.4. The homotopy category K(%') is defined by:

Ob(K(%')) = Ob(C(%))
Hom o (X,Y) =Hom (X, Y)/Hi(X,Y).
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In other words, a morphism homotopic to zero in C(%’) becomes the zero mor-
phism in K(%) and a homotopy equivalence becomes an isomorphism.

One defines similarly K*(%¢), (x = b,+,—). They are clearly additive cate-
gories endowed with an automorphism, the shift functor [1]: X — X[1].

Recall (4.3.9).

Proposition 4.4.5. Let € be an additive category and let X, Y € C(€). There are
1somorphisms:

Z°(Hom_ (X,Y)) := Ker d’ =~ Hom (X, Y),
B(Hom (X,Y)) :=Imd ™' ~ Ht(X,Y),
H°(Hom (X,Y)) :=Kerd’/Imd ™' ~Hom . (X,Y).

Proof. (i) Let us calculate Z°(Hom_ (X,Y’)). By (4.3.10), the component of d°{ f/};
in Hom (X7, Y7*1) will be zero if and only if o fi = fitl o &, that is, if the
family {f7}, defines a morphism of complexes.

(i) Let us calculate B’(Hom  (X,Y)). An element f/ € Hom (X7, Y7) will be
in the image of d~! if it is in the sum of the image of Hom (X7, Y7~1) by d} "
and the image of Hom (X7*! Y7) by d%. Hence, if it can be written as f/ =
d{,_l os/ + st o dg(.

ii1) The third isomorphism follows. OJ
(iii) p

Remark 4.4.6. The preceding constructions could be developed in the general
setting of DG-categories. Roughly speaking, a DG-category is an additive category
in which the morphisms are no more additive groups but are complexes of such
groups.

The category C(%) endowed for each X, Y € C(%) with the complex Hom (X, Y) )|
and the composition being given by (4.3.11) is an example of such a DG-category.
More details on this subject, see for example [Kel06, Yek20)].

We shall come back to the category K(%') in § 6.3.

4.5 Simplicial constructions

We shall define the simplicial category and use it to construct complexes and homo-
topies in additive categories.

Definition 4.5.1. (a) The simplicial category, denoted by A, is the category whose
objects are the finite totally ordered sets and the morphisms are the order-
preserving maps.

(b) We denote by A;,; the subcategory of A such that Ob(A;,;) = Ob(A), the
morphisms being the injective order-preserving maps.

For integers n, m denote by [n, m] the totally ordered set {k € Z; n < k < m}.

Proposition 4.5.2. (i) the natural functor A — Set? is faithful,

16 4.5 may be skipped.
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(i) the full subcategory of A consisting of objects {[0,n|},>_1 is equivalent to A,
(iii) A admits an initial object, namely &, and a terminal object, namely {0}.

The proof is obvious.
Let us denote by

d}: [0,n]—[0,n + 1] 0<i<n+1)
the injective order-preserving map which does not take the value ¢. In other words
(ORI
One checks immediately that
(4.5.1) i od =di od)_ for 0 <i<j<n+2.

Indeed, both morphisms are the unique injective order-preserving map which does
not take the values ¢ and j.
The category A;y; is visualized by

0 —dy> oz
(4.5.2) @ —d5"> (0] 97 [0,1] —a}=1[0,1,2] 7
1 —di= -

Let € be an additive category and F': A;,; — € a functor. We set for n € Z:

o {F([O,n]) forn > —1,

0 otherwise,
n+1
dfp: F" — F™ L dp =) (=) F(d]).
i=0
Consider the differential object
1 0 "

Theorem 4.5.3. (i) The differential object F* is a complez.
(ii) Assume that there exist morphisms s%: F™ — F"~! (n > 0)satisfying:
{s}ffloF(dg) = idpn forn > —1,
sptlo F(dr,) = F(d) ") osE  fori>0,n>0.
Then F* is homotopic to zero.

Proof. (i) By (4.5.1), we have

n+2 n+l1

dptodi =Y "% (=)"F(d;* o dy)
7=0 =0
= Y (PR od)+ Y (=)TF(dT ody)
0<j<i<n+1 0<i<j<n+2
= Y ()WF@Ted)+ Y (H)TF(Tod) )
0<j<i<n+1 0<i<j<n+2

=0.
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Here, we have used

Y. (PE@ T edi )= Y ()R odf)

0<i<j<n+2 0<i<j<n+1

_ Z (_)i-i—j-&—lF(d;H—l Od?).

0<j<i<n+1
(ii) We have

splodp +ditos

n+1 n

=Y (~D'spt o F(d)) + ) (=1)'F(dy " o sp)
i=0 =0
= i o F(d) + Y (=)™ it o F(d7,) + Z F(dp" o )
i=0
1an+Z DR o s +Z F(d " osh)
lan

Exercises to Chapter 4

Exercise 4.1. Let € be an additive category and let X € C(%) with differential
dx. Let {a,}nez be a sequence in Z. Define the morphism dx: X — X[1] by setting
0% = and’%. Prove that dx is a morphism in C(%) and is homotopic to zero.

Exercise 4.2 (See [KS06, Exe. 11.4]). Let & be an additive category, f,g: X =Y
two morphisms in C(%’). Prove that f and g are homotopic if and only if there
exists a commutative diagram in C(%)

Y —Me(f) 5 X[1]

[

a(g)

In such a case, prove that u is an isomorphism in C(%).

Exercise 4.3 (See [KS06, Exe. 11.6]). Let € be an additive category and let f: X —
Y be a morphism in C(%).
Prove that the following conditions are equivalent:

a is homotopic to zero,

(a) f

(b) f factors through a(idyx): X — Mec(idx),

(c) f factors through f(idy)[—1]: Mc(idy)[—1] — Y,
)

(d) f decomposes as X — Z — Y with Z a complex homotopic to zero.
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Exercise 4.4. (See [KS06, § 10.1].) A category with translation (.27, T') is a category
o/ together with an equivalence T: &/ — /. A differential object (X,dx) in a
category with translation (&7,T') is an object X € & together with a morphism
dx: X — T(X). A morphism f: (X,dx) — (Y,dy) of differential objects is a
commutative diagram

XX 7rx

e

y 1y

One denotes by .o7; the category consisting of differential objects and morphisms of
such objects. If &7 is additive, one says that a differential object (X,dyx) in (&7, T)

is a complex if the composition X LENYA (X) T, T%(X) is zero. One denotes by
7, the full subcategory of .o7; consisting of complexes.

(i) Let € be a category. Denote by Z, the set Z considered as a discrete category
and still denote by Z the ordered set (Z, <) considered as a category. Prove that
Fct(Zg,€) is a category with translation.

(ii) Show that the category Fct(Z, €) may be identified to the category of differential
objects in Fct(Z4, 6).

(iii) Let € be an additive category. Show that the notions of differential objects
and complexes given above coincide with those in Definition 4.2.1 when choosing
o =C(%) and T = [1].

Exercise 4.5. Consider the category A and for n > 0, denote by
st [0,n]—=[0,n — 1] (0<i<n-—-1)

the surjective order-preserving map which takes the same value at ¢ and 7 + 1. In
other words

k for k <1
s (k) = o
k—1 for k > 1.

Check the relations:

stosi™ =g o™ for0<j<i<n,
n+1 m _ gn—1 n . .
s’ od!' =d; s 4 for 0 <i<j<n,

sittody = idj for 0<i<m+li=jj+1,

st ody =drlos? for1<j+1<i<n+1.



Chapter 5

Abelian categories

Summary

The toy model of abelian categories is the category Mod(A) of modules over a ring
A and for sake of simplicity, we shall argue most of the time as if we were working
in a full abelian subcategory of a category Mod(A). This is not restrictive in view
of a famous theorem of Fred and Mitchell [Mit60, Fre64].

We introduce injective and projective objects and state without proof the famous
Grothendieck theorem which asserts that what is now called a Grothendieck category
admits enough injectives.

We explain the notions of exact sequences and right or left exact functors, we give
some basic lemmas such as “the five lemma” and “the snake lemma”, we construct
the long exact sequence associated with an exact sequence of complexes and we
also study double complexes. We also study the so-called Mittag-Lefler condition
introduced first in [EGA3], an efficient tool to treat projective limits of modules.

Finally, we study with some details Koszul complexes and show how they natu-
rally appear in Algebra and Analysis.

Some references. See [CE56,Gro57| for historical references and [Wei94, KS06] for
a more modern exposition. Here we shall often follow this last reference.

5.1 Abelian categories

Let ¢ be an additive category which admits kernels and cokernels (recall Defini-
tion 2.2.1). Equivalently, ¥ admits finite limits and colimits.

Let f: X — Y be a morphism in 4. We have already defined the image and
co-image of f in Definition 2.4.4. Denote by h: Ker f — X and k: Y — Coker f
the natural morphisms.

Lemma 5.1.1. One has the isomorphisms
Coim f ~ Coker h, Im f ~ Ker k.

Proof. Of course, it is enough to prove the first isomorphism. For Z € %', one has
(see Diagram 2.2.6)

Hom%)(Coimf, Z)={u: X = Zyuop =uopy},

69
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where pi,po: X Xy X — X are the two projections. Since X Xy X is the kernel of
(fop,fops): X x X =2 Y, one also have

Hom (Coim f, Z) ={u: X = Z;uowv; = uow, for any W and (vy,v2): W = X
such that fouv; = fouws.}

Equivalently,

Hom (Coim f, Z) ={u: X = Z;uov =0 for any W and v: W — X
such thatf ov =0.}

Since such a v factorizes uniquely through h, we get

Hom (Coim f, Z) ={u: X = Z;uoh =0}
~ Hom (Coker h, Z).

Since this isomorphism is functorial in Z (this point being left to the reader), we
get the result by the Yoneda lemma. O

Consider the diagram:

Ker f X

Coim f*>Tm f

Since foh = 0, f factors uniquely through Coim f, which defines f (see Dia-
gram 2.2.6) and thus ko f factors through ko f. Since ko f=kofos=0and s is
an epimorphism, we get that ko f = 0. Hence f factors through Ker k = Im f, which
defines u (see Diagram 2.2.5). We have thus constructed a canonical morphism:

(5.1.1) Coim f = Im f.

Examples 5.1.2. (i) For a ring A and a morphism f in Mod(A), (5.1.1) is an
isomorphism.

(ii) The category Ban admits kernels and cokernels. If f: X — Y is a morphism
of Banach spaces, define Ker f = f~'(0) and Coker f = Y/Im f where Im f denotes
the closure of the space Im f. It is well-known that there exist continuous linear
maps f: X — Y which are injective, with dense and non closed image. For such an
f, Ker f = Coker f = 0 although f is not an isomorphism. Thus Coim f ~ X and
Im f ~ Y. Hence, the morphism (5.1.1) is not an isomorphism.

(iii) Let A be a ring, I an ideal which is not finitely generated and let M = A/I.
Then the natural morphism A — M in Mod(A) has no kernel.

Definition 5.1.3. Let % be an additive category. One says that % is abelian if:
(i) any morphism in % admits a kernel and a cokernel,

(ii) for any morphism f in ¢, the natural morphism Coim f — Im f is an isomor-
phism.
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Examples 5.1.4. (i) If A is a ring, Mod(A) is an abelian category. If A is noethe-
rian, then Modf(A) is abelian.

(ii) The category Ban admits kernels and cokernels but is not abelian. (See Exam-
ples 5.1.2 (ii).)

(iii) If € is abelian, then €°P is abelian.

Proposition 5.1.5. Let I be category and let € be an abelian category. Then the
category Fet(1,€) of functors from I to € is abelian.

Proof. (i) Let F,G: I — % be two functors and ¢: F' — G a morphism of functors.
Let us define a new functor H as follows. For i € I, set H(i) = Ker(F (i) — G(7)).
Let s: ¢ — j be a morphism in I. In order to define the morphism H(s): H(i) —
H(j), consider the diagram

hi

H(i) =~ F (i) D Ga)
H()V F(s)l | jcxs)
H(j) = F(j) 22 G ().

Since ¢(j) o F(s)oh; = 0, the morphism F'(s) o h; factorizes uniquely through H (7).
This gives H(s). One checks immediately that for a morphism ¢: j — k in I, one
has H(t) o H(s) = H(tos). Therefore H is a functor and one also easily cheks that
H is a kernel of the morphism of functors ¢.

(ii) One defines similarly the functor Coim . Since, for each ¢ € I, the natural
morphism Coim (i) — Im (i) is an isomorphism, one deduces that the natural
morphism of functors Coim ¢ — Im ¢ is an isomorphism. O]

Corollary 5.1.6. If € is abelian, then the categories of complexes C*(€) (x =
ub, b, +,—) are abelian.

Proof. 1t follows from Proposition 5.1.5 that the category Diff(%’) of differential
objects of ¢ is abelian. One checks immediately that if f°: X — Y * is a morphism
of complexes, its kernel in the category Diff (%) is a complex and is a kernel in the
category C(%), and similarly with cokernels. O

For example, if f: X — Y is a morphism in C(%), the complex Z defined by
Z" = Ker(f": X™ — Y™), with differential induced by those of X, will be a kernel
for f, and similarly for Coker f.

Note the following results.

e An abelian category admits finite limits and finite colimits. (Indeed, an abelian
category admits an initial object, a terminal object, finite products and finite
coproducts and kernels and cokernels.)

e In an abelian category, a morphism f is a monomorphism (resp. an epimor-
phism) if and only if Ker f ~ 0 (resp. Coker f ~ 0) (see Exercise 2.11). More-
over, a morphism f: X — Y is an isomorphism as soon as Ker f ~ 0 and
Coker f ~ 0. Indeed, in such a case, X = Coim f and Im f = Y.

Unless otherwise specified, we assume until the end of this chapter that % is abelian.

Consider a complex X’ I x & xv (hence, go f = 0). It defines a morphism
Coim f — Ker g, hence, € being abelian, a morphism Im f — Ker g.
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Definition 5.1.7. (i) One says that a complex X’ Iy X % X" is exact if Im f =%
Ker g. (Note that this condition is equivalent to Coker f =2 Im g.)

(ii) More generally, a sequence of morphisms X7 & X7 with dtl o di = 0
for all i € [p,n — 1] is exact if Imd’ =2 Kerd'™! for all i € [p,n — 1].

(iii) A short exact sequence is an exact sequence 0 — X' — X — X" — 0
Any morphism f: X — Y may be decomposed into short exact sequences:

0 — Ker f - X — Coim f — 0,
0—Imf—Y — Coker f — 0,

with Coim f ~ Im f.

Proposition 5.1.8. Let

(5.1.2) 0 X' 5H x4 X" 50

be a short exact sequence in €. Then the conditions (a) to (e) are equivalent.

(a) there exists h: X" — X such that g o h = idx».

(b) there exists k: X — X' such that ko f = idx.

(c) there exists p = (k,g) and v = ( £ ) such that X & X'&X" and X'&X" L X

are 1somorphisms inverse to each other.
(d) The complex (5.1.2) is homotopic to 0.

(e) The complex (5.1.2) is isomorphic to the compler 0 - X' - X' X" - X" —
0.

Proof. (a) = (c). Since g = gohog, we get go (idy —hog) = 0, which implies that
idx —hog factors through Ker g, that is, through X’. Hence, there exists k: X — X’
such that idy —hog = fok.

(b) = (c) follows by reversing the arrows.

(c) = (a). Since go f =0, we find g = gohog, that is (goh —idx~)og = 0. Since
g is an epimorphism, this implies g o h — idx» = 0.

(¢) = (b) follows by reversing the arrows.

(d) By definition, the complex (5.1.2) is homotopic to zero if and only if there exists
a diagram

0 X Lo x99 xn 0
a /l
id K i h i
j/ A
0 X' X o X 0

SuChthat ldX/ :k'of’ idX// :gohand ldX :hog+fok
(e) is obvious by (c). O
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Definition 5.1.9. In the above situation, one says that the exact sequence splits.

Note that an additive functor of abelian categories sends split exact sequences
to split exact sequences.

If € = Mod(k) and k is a field, then all exact sequences split, but this is not the
case in general.

Example 5.1.10. The exact sequence of Z-modules

0Z 372 —7/22—0

does not split.

Definition 5.1.11. Let € be an abelian category and _¢ a full additive subcategory.
Denote by _#' the full subcategory of € consisting of objects isomorphic to some
object of #.

(a) One says that ¢ is closed (one also says “stable”) by kernels if for any morphism
u: X =Y in ¢ the kernel of u in € belongs to #’. One defines similarly the
notions of being closed by cokernels.

(b) One says that ¢ is closed by extension if for any exact sequence 0 — X' —
X = X" = 0in ¥, with X', X" in _#, we have X € ¢

(c) Onme says that ¢ is thick in € if it is closed by kernels, cokernels and extensions.

5.2 Exact functors

Recall Definition 2.6.8. Hence, an additive functor of abelian categories F': € — €’
is left exact if it commutes with finite limits, right exact if it commutes with finite
colimits and exact if it is both left and right exact.

Lemma 5.2.1. Consider an additive functor F': € — €.
(a) The conditions below are equivalent:

(i) F is left exact,

(ii) F commutes with kernels, that is, for any morphism f: X — Y, F(Ker(f)) =}
Ker(F(f)),

(iii) for any exact sequence 0 — X' — X — X" in €, the sequence 0 —
F(X') = F(X) = F(X") is exact in €',

(iv) for any exact sequence 0 — X' — X — X" — 0 in €, the sequence
0— F(X') —» F(X) = F(X") is exact in €.

(b) The conditions below are equivalent:

(i) F is exact,

(ii) for any ezact sequence X' — X — X" in €, the sequence F(X') —
F(X)— F(X") is exact in €,

(iii) for any exact sequence 0 — X' — X — X" — 0 in €, the sequence
0— F(X') = F(X) = F(X") = 0 is exact in €.
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There is a similar result to (a) for right exact functors.

Proof. Since F' is additive, it commutes with terminal objects and products of two
objects. Hence, by Proposition 2.3.9, F' is left exact if and only if it commutes with
kernels.

The proof of the other assertions are left as an exercise. O

Proposition 5.2.2. (i) The functor Hom : €°° x € — Mod(Z) is left exact with
respect to each of its arguments.

(i) If a functor F': € — €' admits a left (resp. right) adjoint then F is left (resp.
right) ezact.

(iii) Let I be a small category. If € admits limits indexed by I, then the functor
lim : Fct(IP,€) — € is left exact. Similarly, if € admits colimits indexed by
I, then the functor colim : Fct(I,%4) — € is right exact.

(iv) Let A be a ring and let I be a small set. The two functors [[,.; and @,.; from
Fct(I,Mod(A)) to Mod(A) are exact.

(v) Let A be a ring and let I be a small directed category. The functor colim from
Fet(I,Mod(A)) to Mod(A) is ezact.

Proof. (i) follows from (2.3.2) and (2.3.3).

(ii) Apply Proposition 2.5.5.

(iii) Apply Proposition 2.5.1.

(iv) is left as an exercise (see Exercise 5.1).

(v) follows from Corollary 2.6.7. O

Example 5.2.3. Let A be a ring and let N be a right A-module. Since the functor
N ®, « admits a right adjoint, it is right exact. Let us show that the functors

Hom ,(+, ) and N®, + are not exact in general. In the sequel, we choose A = k|z],

with k a field, and we consider the exact sequence of A-modules:
(5.2.1) 0= A5 A— AJAz — 0,

where -z means multiplication by .
(i) Apply the functor Hom 4,(+, A) to the exact sequence (5.2.1). We get the se-
quence:

0 — Hom ,(A/Az,A) - A= A—0

which is not exact since z- is not surjective. On the other hand, since x- is injective
and Hom ,(+, A) is left exact, we find that Hom ,(A/Az, A) = 0.
(ii) Apply Hom ,(A/Az, +) to the exact sequence (5.2.1). We get the sequence:

0 — Hom ,(A/Az, A) — Hom ,(A/Az, A) — Hom ,(A/Az, AJAz) — 0.

Since Hom ,(A/Axz, A) = 0 and Hom ,(A/Az, A/Ax) # 0, this sequence is not exact.
(iii) Apply » ®, A/Az to the exact sequence (5.2.1). We get the sequence:

0— AJAz =5 AJAr — AJrA®, A/Ax — 0.
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Multiplication by x is 0 on A/Ax. Hence this sequence is the same as:
0— AJAz > AJAx — (A/Az) @, (A/Az) = 0

which shows that (A/Az) ®, (A/Az) ~ A/Az and moreover that this sequence is
not exact.

(iv) Notice that the functor Hom ,(+, A) being additive, it sends split exact se-
quences to split exact sequences. This shows that (5.2.1) does not split.

Example 5.2.4. We shall show that the functor lim : Fct(7°?, Mod(k)) — Mod(k)
is not right exact in general, even if k is a field.

Consider as above the k-algebra A :=k[z| over a field k. Denote by [ = A -z
the ideal generated by z. Notice that A/I""' ~ k[z|<", where k[z]=" denotes
the k-vector space consisting of polynomials of degree < n. For p < n denote by
Upn: A/I"—»A/IP the natural epimorphisms. They define a projective system of
A-modules. One checks easily that

liTILn AT ~ K|[[z]],
the ring of formal series with coefficients in k. On the other hand, for p < n the
monomorphisms I"—I? define a projective system of A-modules and one has
liTan I" ~ 0.
Now consider the projective system of exact sequences of A-modules
0—=I"—>A— A/I" = 0.

By taking the limit of these exact sequences one gets the sequence 0 — 0 — k[z] —
k[[z]] — 0 which is no more exact, neither in the category Mod(A) nor in the
category Mod(k).

5.3 Injective and projective objects

Definition 5.3.1. Let % be an abelian category.
(i) An object I of € is injective if the functor Hom(+, ) is exact.

(ii) One says that ¢ has enough injectives if for any X € ¥ there exists a monomor-
phism X»—1 with [ injective.

(ili) An object P is projective in € if it is injective in €°P, i.e., if the functor
Hom (P, ¢) is exact.

(iv) Ome says that % has enough projectives if for any X € % there exists an
epimorphism P—X with P projective.

Proposition 5.3.2. The object I € € is injective if and only if, for any diagram in
€ in which the row is exvact:

0—x' 1. x

£

I

the dotted arrow may be completed, making the diagram commutative.
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Proof. (i) Assume that I is injective and let X" denote the cokernel of the morphism
X" — X. Applying the functor Hom(+,I) to the sequence 0 — X' = X — X",
one gets the exact sequence:

Hom (X", ) — Hom (X, ) <5 Hom, (X', 1) — 0.

Thus there exists h: X — I such that ho f = k.
(ii) Conversely, consider an exact sequence 0 — X’ I X % X" = 0. Then the

sequence 0 — Hom (X", I) oh, Hom (X, I) L2 Hom (X', I) — 0 is exact by the
hypothesis. Therefore, the functor Hom(+, ) is exact by Lemma 5.2.1. O]

By reversing the arrows, we get that P is projective if and only if for any diagram
in which the row is exact:

.
xJoxr— .9

the dotted arrow may be completed, making the diagram commutative.

Lemma 5.3.3. Let 0 — X' & X % X" 5 0 be an ezact sequence in €, and
assume that X' is injective. Then the sequence splits.

Proof. Applying the preceding result with & = idy/, we find h: X — X’ such that
ko f =idx/. Then apply Proposition 5.1.8. O]

It follows that if F': € — %" is an additive functor of abelian categories, and the
hypotheses of the lemma are satisfied, then the sequence 0 — F(X') — F(X) —
F(X") — 0 splits and in particular is exact.

Lemma 5.3.4. Let X', X" belong to €. Then X' & X" is injective if and only if
X' and X" are injective.

Proof. Tt is enough to remark that for two additive functors of abelian categories F’
and G, the functor F'® G: X — F(X) @& G(X) is exact if and only if the functors
F and G are exact. O

Applying Lemmas 5.3.3 and 5.3.4, we get:

Proposition 5.3.5. Let 0 - X' — X — X” — 0 be an exact sequence in € and
assume X' and X are injective. Then X" is injective.

Example 5.3.6. (i) Let A be a ring. An A-module M is free if it is isomorphic
to a direct sum of copies of A, that is, M ~ A®! for some small set I. It follows
from (2.1.4) and Proposition 5.2.2 (iv) that free modules are projective.

Let M € Mod(A). For m € M, denote by A,, a copy of A and denote by
1,, € A,, the unit. Define the linear map

v P A= M

meM
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by setting 1(1,,) = m and extending by linearity. This map is clearly surjective.
Since the left A-module €,,.,; An is free, it is projective. This shows that the
category Mod(A) has enough projectives.

More generally, if there exists an A-module N such that M & N is free then M
is projective (see Exercise 5.3).

One can prove that Mod(A) has enough injectives (see Exercise 5.4).
(ii) If k is a field, then any object of Mod(k) is both injective and projective.
(iii) Let A be a k-algebra and let M € Mod(A°). One says that M is flat if the
functor M @, «: Mod(A) — Mod(k) is exact. Projective modules are flat (see
Exercise 5.3 ).

Although Proposition 5.3.7 below is a particular case of Theorem 7.2.2, we in-
clude it for pedagogical reasons.
For a category €, denote by Z, the full additive subcategory of injective objects.

Proposition 5.3.7. Let € be an abelian category which admits enough injectives.
Then, for any X € €, there exists an exact sequence

(5.3.1) 0= X —=1%— - = Iy =

with 1% € S for alln > 0.

Proof. We proceed by induction. Assume to have constructed:
0= X =15 — - — I%.

For n = 0 this is the hypothesis. Set B" = Coker(Iy ' — I%) (with Iy! = X). Then
%' — It — B™ — 0 is exact. Embed B™ in an injective object: 0 — B" — I%.
Then Iy ' — I% — I+ is exact, and the induction proceeds. O

The sequence
(5.3.2) Iy =0—= 1% == I% —--.
is called an injective resolution of X.

Remark 5.3.8. Note that, identifying X and Iy with objects of CT(%), the mor-
phism X — Iy in CT(%) induces an isomorphism in the cohomology object, that
is, is a quasi-isomorphism, following the terminology of Definition 5.5.4 below.

Of course, there is a similar result for projective resolutions. If for any X € ¢
there is an exact sequence ¥ — X — 0 with Y projective, then one can construct
a projective resolution of X, that is, a quasi-isomorphism Py — X, where the P{’s
are projective.

5.4 Generators and Grothendieck categories

In this section it is essential to fix a universe %. Hence, a category means a % -
category and small means %/ -small.

Definition 5.4.1. Let % be a category. A system of generators in € is a family
of objects {G;}icr of € such that I is small and a morphism f: X — Y in € is
an isomorphism as soon as Hom (G;, X) — Hom (G5, Y") is an isomorphism for all
1€ .
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If the family contains a single element, say G, one says that GG is a generator.

If {G;}icr is a system of generators, then the functor [[,., Hom(G;, +): € —
Set is conservative. If € is additive, these two conditions are equivalent '. Moreover,
if ¢ is additive, admits small coproducts and a system of generators as above, then
it admits a generator, namely the object @,.; Gi.

Lemma 5.4.2. Let € be an abelian category which admits small coproducts and a
generator G.

(a) The functor Hom (G, *) is faithful.
(b) For any X € €, there exist a small set I and an epimorphism G®'—X .

Proof. In this proof, we write Hom (Y, Z) instead of Hom (Y, Z).

(a) The functor Hom (G, «) is left exact and conservative by the hypothesis. Then
use Exercise 5.13.

(b) There is a natural isomorphism (see Exercise 5.12):

Hom g, (Hom (G, X), Hom (G, X)) ~ Hom (G (@) x).

The identity morphism on the left-hand side defines the morphism GEHom(&X) .y,

This morphism defines the morphism
Hom (G, GZ"™ (¢ — Hom (G, X).

This last morphism being obviously surjective, the result follows from Exercise 5.14.
O

Definition 5.4.3. A Grothendieck category is an abelian category which admits
small limits and small colimits, a generator and such that directed small colimits
are exact.

We shall not give the proof of the important Grothendieck’s theorem below,
referring to [KS06, Th. 9.6.2]. See [Gro57] for the original proof.

Theorem 5.4.4. Let € be an abelian Grothendieck category. Then € admits enough
injectives.

5.5 Complexes in abelian categories

One still denotes by % an abelian category.

Solving linear equations

The aim of this subsection is to illustrate and motivate the constructions which will
appear further. In this subsection, we work in the category Mod(A) for a k-algebra
A. Recall that the category Mod(A) admits enough projectives.

!There was a mistake in [KS06, Def. 5.2.1], see the Errata on the webpage of the author PS.
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Suppose that one is interested in studying a system of linear equations

No
j=1

where the p;;’s belong to the ring A and u;,v; belong to some left A-module S.
Using matrix notations, one can write equations (5.5.1) as

(5.5.2) Pu=v

where Py is the matrix (p;;) with N; rows and Ny columns, defining the A-linear
map Py : SN — SM_ Now consider the right A-linear map

(5.5.3) Py : AN — ANo,

where -P, operates on the right and the elements of AN and AM are written as
rows. Let (eq,...,en,) and (fi,..., fn,) denote the canonical basis of AN and AN,
respectively. One gets:

No
(554) fZP():Zp”e], (’L:]_,,Nl)
j=1

Hence Im F, is generated by the elements Zj\f:ol pije; for i = 1,..., N;. Denote by
M the quotient module AN /ANt . Py and by v : AN — M the natural A-linear
map. Let (uy,...,uy,) denote the images by 1 of (e1,...,en,). Then M is a left A-
module with generators (uq, ..., uy,) and relations Z;V:ol piju; =0fori=1,..., Ny.
By construction, we have an exact sequence of left A-modules:

(5.5.5) AN By ANo By ar s .

Applying the left exact functor Hom ,(+,.S) to this sequence, we find the exact
sequence of k-modules:

(5.5.6) 0 — Hom ,(M, §) — §™o 2, gM

(where Fy- operates on the left). Hence, the k-module of solutions of the homoge-
neous equation associated to (5.5.1) is described by Hom , (M, S).

Assume now that A is left Noetherian, that is, any submodule of a free A-
module of finite rank is of finite type. In this case, arguing as in the proof of
Proposition 5.3.7, we construct an exact sequence

oy ANz P g T aNe Yo,

In other words, we have a projective resolution L* — M of M by finite free left
A-modules:

L': o = L"—=L"' ... L=

Applying the left exact functor Hom ,(+,S) to L®, we find the complex of k-
modules:

(5.5.7) 0 — §No Loy ghi Iy gNe
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Then (see (5.5.8) below for the definition of H° and H'):

{HO(HomA(L' ,9)) ~ Ker Py,
H'(Hom ,(L",S)) ~ Ker(P,)/ Im(F).

Hence, a necessary condition to solve the equation Pyu = v is that Pjv = 0 and this
necessary condition is sufficient if H'(Hom ,(L",S)) ~ 0. As we shall see in § 7.3,
the cohomology groups H’(Hom ,(L*,S)) do not depend, up to isomorphisms, of
the choice of the projective resolution L* of M and are denoted by Extil(M ,S).

Cohomology

Recall that the categories C*(%) are abelian for * = ub, 4+, —, b.
Let X € C(%):

Xi= . a5 X" X" 5 X5
One defines the following objects of €

Z"(X) :=Kerdy,
(5.5.8) B(X):=Imdy ",
H"(X):=27Z"(X)/B"(X) (:= Coker(B"(X)— Z"(X))).

One calls H"(X) the n-th cohomology object of X. If f: X — Y is a morphism
in C(%), then it induces morphisms Z"(X) — Z™(Y) and B"(X) — B™(Y), thus
a morphism H"(f): H"(X) — H™(Y). Clearly, H*( X @ Y) ~ H"(X) & H"(Y).
Hence we have obtained an additive functor:

H"(+): C(€) — €.

Notice that H*(X) = H°(X[n]).
There are exact sequences

Xt P Kerd? — H(X) — 0,
0 — H™(X) — Cokerd% ' L5 x™+1,
The next result is easily checked.
Lemma 5.5.1. Forn € Z, the sequence below is exact:
(559)  0— H™(X) — Coker(d% ) 25 Kerdt! — H™1(X) — 0.

One defines the truncation functors:

TS TS C(€) — C (%)

(5.5.10) 72 O(F) = CFH(E)

as follows. Let X :=--- — X771 5 X7 — X"+l ... One sets:
TS Xi= = X2 X Kerdy =0 — -
TS Xi= o XL X" s Imdy — 0= - -
72" X:= -+ = 0 — Cokerdy ' — X" — X2 5 ...

72X i= = 0= Imdy ' — X" — X"
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There is a chain of morphisms in C(%):
TX 575X =5 X =5 77X = 17X

and there are exact sequences in C(%):
(0 — 7<n1X — 70X — H™(X)[—n] — 0,
0— H"(X)[-n] = 7="X — 72" X — 0,

(5.5.11)
0= 75"X = X = 727X -0,

0= 751X = X = 72" X = 0.
We have the isomorphisms

HI(X) j<mn,

Hi(r="X) = HI(75"X) ~ { _
0 Jj > n.

(5.5.12) |
H(X) j=n,

HI(72"X) ~% HI(12"X) ~ { .
0 7 <n.

The verification is straightforward.

Remark 5.5.2. Let X € C(%) be as above. One also defines the stupid trunctated
complexes at n € Z as
oS Xi= o 5 X2 L X s X 50— -
o= X = e 0 XL X2

Note that there is an exact sequence in C(%)
(5.5.13) 0—=oc=""MX - X = 05"X = 0.

Lemma 5.5.3. Let € be an abelian category and let f: X — 'Y be a morphism in
C(€) homotopic to zero. Then H™(f): H"(X) — H™(Y) is the 0 morphism.

Proof. Let f* = s"*tod% + dy ' o s". Then d% = 0 on Kerd% and the image of
dy'is 0 on Kerdy /Imdy'. Hence H"(f): Kerd%/Imdy ' — Kerdy/Imdy ' is
the zero morphism. O

In view of Lemma 5.5.3, the functor H": C(%¢) — % extends as a functor
H°: K(¢) — ¥.
One shall be aware that the additive category K(%) is not abelian in general.

Definition 5.5.4. One says that a morphism f: X — Y in C(%) is a quasi-
isomorphism (a qis, for short) if H*(f) is an isomorphism for all k¥ € Z. In such a
case, one says that X and Y are quasi-isomorphic. In particular, X € C(%) is qis
to 0 if and only if the complex X is exact.

Remark 5.5.5. By Lemma 5.5.3, a complex homotopic to 0 is qgis to 0, but the
converse is false. In particular, the property for a complex of being homotopic to 0
is preserved when applying an additive functor, contrarily to the property of being
qis to 0.



82 CHAPTER 5. ABELIAN CATEGORIES

Remark 5.5.6. Consider a bounded complex X * and denote by Y° the complex
given by Y7 = H/(X"*),d, = 0. One has:

(5.5.14) Y = H(X")[-i].

The complexes X° and Y° have the same cohomology objects. In other words,
HI(Y") ~ HI(X"). However, in general these isomorphisms are neither induced
by a morphism from X* — Y °, nor by a morphism from Y* — X°, and the two
complexes X ° and Y ° are not quasi-isomorphic.

Long exact sequence

Lemma 5.5.7 (The “five lemma”). Consider a commutative diagram:

X0 @0 x1 1 X2 @2 X3

4 A A A

0 1 2 3
Y /BOY ﬁlY 52Y

and assume that the rows are exact.

(i) If f° is an epimorphism and f, f* are monomorphisms, then f? is a monomor-
phism.

(i) If f2 is a monomorphism and f°, f? are epimorphisms, then f' is an epimor-
phism.

As already mentioned in the introduction of this Chapter, there is a theorem of
Fred and Mitchell [Mit60, Fre64] which asserts that we may assume that % is a full
abelian subcategory of Mod(A) for some ring A, what we will do here. Hence we
may choose elements in the objects of €.

Proof. (i) Let x5 € X, and assume that f%(z5) = 0. Then f3 o ay(z3) = 0 and f3
being a monomorphism, this implies as(z9) = 0. Since the first row is exact, there
exists 71 € X such that ay(z1) = z2. Set y; = f(z1). Since B0 f1(z1) = 0 and the
second row is exact, there exists yo € Y such that 8y(yo) = f*(x1). Since f° is an
epimorphism, there exists 7o € X° such that yo = f°(z¢). Since floag(zg) = f1(x1)
and f! is a monomorphism, ag(z) = x1. Therefore, x9 = a;(x;) = 0.

(ii) is nothing but (i) in €°P. O

Lemma 5.5.8 (The snake lemma). Consider the commutative diagram in € below
with exact rows:

x Lo x L xr 0
@ B
L

Then there exists a morphism §: Kery — Coker a giving rise to an exact sequence:

(5.5.15) Ker o — Ker § — Ker~y % Coker a — Coker § — Coker 7.
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Proof. Here again, we shall assume that ¢ is a full abelian subcategory of Mod(A)
for some ring A.
(i) Let us first prove that the sequence Kera — Ker — Ker~y is exact. Let
z € Ker 8 with g(xz) = 0. Using the fact that the first row is exact, there exists
' € X' with f(2') = z. Then f'oa(a’) = fo f(z') = 0. Since f’ is a monomorphism,
a(z’) =0 and 2’ € Kera.
(ii) The sequence Cokera — Coker 5 — Coker~y is exact. If one works in the
abstract setting of abelian categories, this follows from (i) by reversing the arrows.
Otherwise, if one wishes to remain in the setting of A-modules, one can adapt the
proof of (i)
(iii) Let us construct the map ¢ making the sequence exact. Let 2 € Kery and
choose x € X with g(x) = 2”. Set y = B(y). Since ¢'(y) = 0, there exists y € Y’
with f'(y') = y. One defines §(z”) as the image of ' in Coker v, that is, in Y’/ Im a.
The reader will check that the map § is well-defined (i.e., the construction does
not depend on the various choices) and that the sequence (5.5.15) is exact. O

One shall be aware that the morphism 0 is not unique. Replacing § with —9
does not change the conclusion.

Theorem 5.5.9. Let 0 — X' 5 X % X" — 0 be an ezact sequence in C(€).
(i) For each k € Z, the sequence H*(X') — H*(X) — H*(X") is exact.

(ii) For each k € 7Z, there exists 6 : H*(X") — H**1(X') making the long sequence

(5.5.16) -+ — H*(X) — H*(X") & HLYX) — HFY(X) = -

exact. Moreover, one can construct 6F functorial with respect to short ezact
sequences of C(%).

Proof. Consider the commutative diagrams:

0 0 0
| | |
Hk(X') Hk(X) Hk(X”)

| | |

Coker %! — Coker d%! —; Coker di —=0

d | d | i
0 — Ker dif! ——— Ker di —— Ker a5t}
! | |
Hk+1 (X/) Hk+1 (X) Hk+1 (X//)
| | |
0 0 0

The columns are exact by Lemma 5.5.1 and the rows are exact by the hypothesis.
Hence, the result follows from Lemma 5.5.8. n

2The reader shall be aware that the opposite of an abelian category is still abelian, but in
general, the category Mod(A)°P is not equivalent to a category Mod(B) for some ring B.
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Corollary 5.5.10. Consider a morphism f: X =Y in C(€) and recall that Mc(f)
denotes the mapping cone of f. There is a long exact sequence:

(5.5.17) -+ — HY(Me(f)) = HYX) L H¥Y) = HE (Mc(f)) — -+ .

Proof. Using (4.2.2), we get a complex:

(5.5.18) 0—Y — Mc(f) — X[1] — 0.

Clearly, this complex is exact. Indeed, in degree n, it gives the split exact sequence
0—=Y" = Yr@Xntl » X7 (. Applying Theorem 5.5.9, we find a long exact
sequence

(5.5.19) - — H*'(Mc(f)) — H*Y(X[1)) L5 HE(Y) — HE(Mc(f)) — -
It remains to check that, up to a sign, the morphism 6*~1: H*(X) — Hk(Y) is
H%(f). We shall not give the proof here. O

One shall be aware that although the exact sequences 0 — Y™ — Y @ X"+ —
X+ — 0 split, the exact sequence of complexes (5.5.18) does not split in general.

5.6 Double complexes in abelian categories

In this subsection we shall illustrate the fact that the use of truncation functors is
an alternative to that of spectral sequences (and is much easier). We follow [KS06,
§ 12.5].

Let € denote an abelian category.

Recall that, for a double complex X = X**, the finiteness condition (4.3.7) says
that for all p € Z, the set {(m,n) € Z x Z; m +n = p such that X™™ £ 0} is finite.
From now on,

(5.6.1) We assume that X satisfies (4.3.7).
Note that
(5.6.2) The functor tot: C3(€) — C(%) is exact.
In Section 4.3, we have constructed the functors Fy: C*(¢) — C(C(%)). Since

. . . . < ~< >
now % is abelian, we can consider the truncation functors 77", 77", 77", etc. For
< — . .
example, one defines 77" := F; ' o 75" o Fy, that is, setting X; = Fy(X):

dnfl
(X) = = X} = X} = Kerd} — 0.

For n € Z, we also introduce the simple complex
H} (X) = H"(F(X)).

Of course, the same constructions hold with Fj; instead of F7}.
It follows from (5.5.12) and (5.6.2) that

(5.6.3) the natural morphism tot(7="(X)) — tot(77"(X)) is a qis
for all n.

We deduce from (5.5.11) the exact sequence in C(%), functorial with respect to X:
(5.6.4) 0 — tot(77" (X)) —= tot(r7"(X)) — H(X) [-n] — 0.
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Theorem 5.6.1. Let f: X — Y be a morphism of double complexes in €, both sat-
isfying (4.3.7). Assume that f induces an isomorphism HiH(X) = HH(Y).
Then tot(f): tot(X) — tot(Y) is a quasi-isomorphism.

Proof. The hypothesis is equivalent to
(5.6.5) HP(f): H}X) — H}(Y) is a qis for all n.

Since H?(1;7"X) is isomorphic to H?(X) for n > p or to 0 otherwise, we get the
isomorphisms

Hy H(t7PX) =% Hp Hi(17°Y) for all p.
For n fixed, we have
(5.6.6) H"(tot(X)) ~ H"(tot(17" X)) for p < 0,

and similarly with Y instead of X. Hence, replacing X and Y with TIZP X and lep Y,
we may assume from the beginning that

(5.6.7) X =0and Y* =0 for n < 0.

Using (5.6.4), we get a commutative diagram of exact sequences:

0 — tot (77" (X)) — tot(77"(X)) —= H}X) [-n] —=0
(5.6.8) jtot(f?lgnl(f)) ltot(rlgn(f)) lH}“‘(f)[—n}

0 —— tot(77" (V) —= tot(r7" (V) —= H}(Y) [-n] —=0
By (5.6.5), the vertical arrow on the right is a qis for all n € Z. Thanks to (5.6.

5.6.7),
the vertical arrow on the left is a qis for n < 0. It follows by induction, using (5.6.3),
that all vertical arrows are gis. Then the result follows from (5.6.6). [

Corollary 5.6.2. Let X be a double complex in € satisfying (4.3.7). If H/(X) ~ 0,
then tot(X) is qis to 0.

Proof. Apply Theorem 5.6.1 with Y = 0 and use (5.6.5). O

Corollary 5.6.3. Let X be a double complex in € satisfying (4.3.7). Assume that
all rows X7° are exact for j #n. Then tot(X) is qis to X™" [—n].

Proof. Denote by JIZ" the “stupid” truncation functor which to a double complex
X associates the double complex whose rows are those of X for j > n and are
0 for j < n. Define similarly JIS”. Now apply Theorem 5.6.1 to the morphism
07"(X) = X, next to the morphism 67"(X) — o7 07" (X) ~ X™* [-n]. O

Corollary 5.6.4. Let X** be a double complex. Assume that all rows X7* and
columns X*9 are 0 for j < 0 and are exact for j > 0. Then HP(X**) ~ HP(X*?)

for all p.

Proof. Both X%* and X*? are qis to tot(X). O
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Let us describe the isomorphism H?(X%*) ~ HP(X*Y) in the case where € =
Mod(A) by the so-called “Weil procedure”.

Let 2% € XPY with d'zP° = 0 which represents y € HP(X*?). Define 27! =
d"zP0. Then d’'aP' = 0, and the first column being exact, there exists zP~11 ¢ XP~11
with d’zP~1'! = 271, One can iterate this procedure until getting 2%? € X%, Since
d'd"2%P = 0, and d' is injective on X°? for p > 0 by the hypothesis, we get d"2°? = 0.
The class of 29?7 in HP(X%*) will be the image of y by the Weil procedure. Of course,
one has to check that this image does not depend of the various choices we have
made, and that it induces an isomorphism.

This can be visualized by the diagram:

d//
ey |
 a
xl,pr xl,pfl

v

xp7171 e e
a¥
d// 1
2P0 Lo b
&y
0

5.7 The Mittag-LefHer condition

References are made to [EGA3] (see [KS90, § 1.12]). Consider a projective system
of abelian groups indexed by N, {M,, pnptnen, With p,,: M, = M, (p > n). (In
the sequel we shall simply denote such a system by {M,},.)

Definition 5.7.1. One says that the system {M,},, satisfies the Mittag-Leffler con-
dition (ML for short) if for any n € N the decreasing sequence {p,, , M, } of subgroups
of M, is stationary.

Of course, this condition is in particular satisfied if all maps p,, are surjective.

Notation 5.7.2. For a projective system of abelian groups {M,},, we set M., =
lim M,,.

Consider a projective system of exact sequences of abelian groups indexed by N.
Hence, for each n € N we have an exact sequence

(5.7.1) Ep: 0— M, 2% M, 225 M7 — 0,
and we have morphisms p,, ,: £, = £, satisfying the compatibility conditions.

Lemma 5.7.3. If the projective system {M] }, satisfies the ML condition, then the
sequence

7. i 0 — = My, — —
5.7.2 FBo:0— M_ L Mo S M. -0

15 exact.
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Proof. Since the functor lim is left exact by Proposition 5.2.2; it remains to show
that g is surjective. For simplicity, we shall assume that for each n, the map M;_, —
M is surjective, leaving to the reader the proof in the general situation.

Let us denote by v, the morphisms M, — M, ; which define the projective
system {M,},, and similarly for v, v;. Let (z), € MJ. Hence z; € M, and
" "

vy (1) = 2.

We shall first show that v,: g;'(z”) — g, %, (z”_,) is surjective. Let z,_; €

n n—1

g;ﬂl(:v” ). Take x, € g, '(z). Then g, 1(vy(z,) — Tn_1)) = 0. Hence v,(z,) —

n—1 n

Tpo1 = fn1(2),_;). By the hypothesis f,_1(z/,_;) = fo_1(v),(x})) for some z!, and
thus v, (x, — fu(2))) = Tp_1.

Then we can choose x, € g, !(x”

n

) inductively such that v,(x,) = x,_;. O
Lemma 5.7.4. Consider the projective system of exact sequences (5.7.1).

(a) If {M]}, and {M]'}, satisfy the ML condition, then so does {M,},

(b) If {M,}, satisfies the ML condition, then so does {M"},.

The proof is left as an exercise (or see [KS90, Prop. 1.12.2]).

Mittag-Leffler theorem for complexes

Now, instead of considering an exact sequence of projective systems, we consider a
complex of projective systems:

(5.73)  AM Yo o= (M, S (MR, S (MY,
and its projective limit
(5.7.4) M2 oo — MY ME 5 MR

Hence, we have commutative diagrams for p > n

dk

Mk P MR oL
p p
dl ]
dk
Mrlf n M;f“ ...
Denote by
(5.7.5) p: HY(ML) — lim H*(M,})

the natural morphism.

Proposition 5.7.5 (See [KS90, Prop. 1.12.4]). Assume that for all k € 7Z, the
system {MP*},, satisfies the ML condition. Then

(a) for each k € Z, the map @y in (5.7.5) is surjective,

(b) if moreover, for a given i the system {H'"'(M, )}, satisfies the ML condition,
then ®; is bijective.
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Proof. (i) Set Z¥ = Kerdt: M} — M1 and B = Imd*~': M¥1 — MF. There
are sequences

0— Zk — M*F — BEL — 0,
(5.7.6) 0— B = ZF — HY(M) — 0,
0— B — Z% — lim H*(M,’) — 0.

The two first sequences are clearly exact. The third one is also exact thanks
to Lemma 5.7.3 since the projective system {BF}, satisfies the ML condition by
Lemma 5.7.4,

(ii) The functor lim being left exact, we have:
Z8 ~ Ker(ME — MY,
Consider the diagram

M1~ Ker(ME, — M) — HF(M) ———0

n

(5.7.7) Uy :l @kl
0 Bt Zk, limH* (M) —— 0.

Since the rows are exact, we get that @, is surjective.

(iii) Assume now that for i given, the projective system { H*"(M )}, satisfies the
ML condition. It follows from the second exact sequence in (5.7.6) and Lemma 5.7.4
that the projective system {Z'~1}, satisfies the ML condition. Applying Lemma 5.7.3]
to the first exact sequence in (5.7.6), we get the exact sequence

0— 2= MZt = B — 0.

A basic lemma

The next lemma, although elementary, is extremely useful. It is due to M. Kashi-
wara [Kas83].

Let {X,, pst}ser be a projective system of sets indexed by R. Hence, the X
are sets and pg;: X; — X are maps defined for s < t, satisfying the natural
compatibility conditions. Set

Aot Xy = lim X, e C?lith — X,.
r<s >s

Lemma 5.7.6 (See [KS90, Prop. 1.12.6]). Assume that for each s € R, both maps
s and ps are injective (resp. surjective). Then all maps ps, s, (so < s1) are injective
(resp. surjective).

Proof. (i) The map ps, s, is injective. Let z,y € X, be such that py, s, () = psy.s, (¥)-
Set

I= {S € R; S S 81, Ps,s1 ($> = Ps,s1 (y)}
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Then sy € I and s € I, r < s implies r € I. Let sy = sup . Then p,,, (z) = pss (y)
for all s < so which implies A, (x) = Ag, (y). Since A, is injective, we get that sy € 1.
If sy < sy, the map us, being injective, we find again that there exists some t > s
such that p; s, (z) = prs, (y) which is a contradiction. Therefore, s, = s;. Hence,

r=1y.
(ii) The map ps, s, is surjective. Let zp € X, and let A be the set

A={(s,2);50 < s <s1,2 € Xy and py, 5(x) = 20}
We order A as follows.
(s,2) < (¢',2") & s <& and ps o (2') = z.

Let us show that A is inductively ordered. Let B C A be totally ordered and let us
show that A contains an upper bound of B. Let

I ={seR;sy<s< sy, there exists ¢ € X, with (s,z) € B}.

Let so = supl. If sy € I, then B has a maximal element. If s, ¢ I, then there
exists (sg,x2) € A greater than any element of B by the surjectivity of A\;,. By
Zorn’s lemma, we get that A admits a maximal element (s,z). If s = s, the proof
is complete. Assume s < s7. Since pg is surjective, there exists s’ with s < &' < s
and «’' € Xy with ps ¢(2') = 2. This is a contradiction. Hence, s = s;. O

5.8 Koszul complexes

Recall that k denotes a commutative unital ring. In this section, we do not work in
abstract abelian categories but in the category Mod(k). ‘

If L is a finitely generated free k-module of rank n, one denotes by /A’ L the j-th
exterior power of L. Recall that L* = Hom, (L, k).

Note that A' L ~ L and A" L ~ k. One sets \" L = k.

If (e1,...,e,) isabasisof L and I = {i; <--- <i;} C{l,...,n}, one sets

6126i1/\"'/\6ij~

For a subset I C {1,...,n}, one denotes by |I| its cardinal. Recall that:

J
/\L is free with basis {e;; I C {1,...,n}, |[I| =j}.

If 4y,...,4, belong to the set (1,...,n), one defines e;; A --- A ¢e; by reducing to
the case where 7; < --- <4, using the convention e; A e; = —e; Ae;.

Let M be a k-module and let ¢ = (¢1,...,¢,) be n k-linear endomorphisms of
M which commute with one another:

liv ] =0, 1<4,5<n.

(Recall the notation [a,b] := ab — ba.) Set

MY = Mo [\k".
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Hence M© = M and M™ ~ M. Denote by (ey,...,e,) the canonical basis of k”.
Hence, any element of M) may be written uniquely as a sum

m = Zm1®el.

=y

One defines d € Hom, (M@, MU+D) by:
dm ®ej) = Z wi(m) ®e; Ner
i=1

and extending d by k-linearity. Using the commutativity of the ¢;’s one checks
easily that dod = 0. Hence we get a complex, called a Koszul complex and denoted
by K (M, p):

0= MO L. .. MM .

When n = 1, the cohomology of this complex gives the kernel and cokernel of ;.
More generally,

HO(K" (M, p))~Kerp, N...NKerg,,
H (K" (M, @) = M/(p1(M) + - - + ¢ (M)).

Set ¢ = {¢1,...,pn_1} and denote by d’ the differential in K °(M,¢’). Then ¢,
defines a morphism

(5.8.1) On: K" (M, ') — K" (M, )

Lemma 5.8.1. The complex K* (M, p)[1] is isomorphic to the mapping cone of
— B

Proof. 3 Consider the diagram

MC(SZn)p T) MC(&n)p—H
M
,\pL A\p+1
KPP M, @) — KPP(M, )
K

given explicitly by:

(MONT K @ (M@ A k) (MRAN K @ (M A k)

—d 0
—pond'

id ®(id ®enA) id ®(id ®enA)

M@ AP K" M @ AP K"

3The proof may be skipped
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Then

dla®e;+b@ek) =—d(a®e;)+ (d(b®ek) — pnla) ®ey),
Na®er+b®Rex)=a®e;+bRe, Neg.

(i) The vertical arrows are isomorphisms. Indeed, let us treat the first one. It is
described by:

(582) ZCLJ®€J+Z[)K®€K|—>ZGJ®6J+ZbK®€n/\€K
J K J K

with |J| = p+1 and |K| = p. Any element of M ® A”™ k™ may uniquely be written
as in the right hand side of (5.8.2).
(ii) The diagram commutes. Indeed,

MWHodh (a®e;+bReg) =—d(a®es) +e, Nd(bReg) — pn(a) e, Aey
=—d(a®ey) —d(bRe, Neg) — on(a) @e, Aey,
d’;;rloAp(a®eJ+b®eK) =—da®e;+b®e, Nek)
=—d(a®ey) —ppla)@e, Ney —d(bRe, Aeg).

[
Theorem 5.8.2. There exists a k-linear long exact sequence
(5.8.3) ++ = HI(K"(M,¢)) = HI(K" (M, ¢)) = HTH K" (M, p)) = -
Proof. Apply Lemma 5.8.1 and the long exact sequence (5.5.17). O

Definition 5.8.3. (i) If for each j, 1 < j < n, ¢; is injective as an endomorphism
of M/(o1(M)+---+p;—1(M)), one says that (¢1,. .., ¢,) is a regular sequence.

(ii) If for each j, 1 < j <mn, ¢, is surjective as an endomorphism of Ker¢; N...N

Ker ¢;_1, one says that (¢1,...,p,) is a coregular sequence.
Corollary 5.8.4. (i) If (¢1,...,¢n) is a reqular sequence, then H' (K° (M, p)) ~
0 for j # n.

(i) If (¢1,---,%n) is a coreqular sequence, then HI(K* (M, p)) ~ 0 for j # 0.

Proof. Assume for example that (1, ..., p,) is a regular sequence and let us argue
by induction on n. The cohomology of K° (M, ') is thus concentrated in degree
n — 1 and is isomorphic to M /(@1 (M) + - -+ + ¢,—1(M)). By the hypothesis, ¢, is
injective on this group, and Corollary 5.8.4 follows. m

Second proof in case n = 2. Let us give a direct proof of the Corollary in case n = 2
for coregular sequences. Hence we consider the complex:

O=MEMaoMS M=o

where d(z) = (¢1(x), pao(2)), d(y, 2) = p2(y) — p1(z) and we assume ¢ is surjective
on M, py is surjective on Ker ;.

Let (y,z) € M & M with pa(y) = ¢1(2). We look for x € M solution of
o1(x) =y, @ao(r) = 2. First choose 2’ € M with ¢;(2') = y. Then s 0 ¢1(2') =
©2(y) = v1(2) = w10 pa(a’). Thus @1(z — @2(2')) = 0 and there exists t € M with
©1(t) =0, ao(t) = 2z—o(a'). Hencey = ¢1(t+2'), z=o(t+2')and z =t+2a’
is a solution to our problem. O]
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Example 5.8.5. Let k be a field of characteristic 0 and let A = k[zq,...,z,).
(i) Denote by ;- the multiplication by x; in A. We get the complex:

0— AO L. 94 4m g

where:
n
E a1®61 E g rj-ar®e; Ney.
j=1 1
The sequence (x1-, ..., x,-) is a regular sequence. Hence the Koszul complex is exact

except in degree n where its cohomology is isomorphic to k.
(ii) Denote by 0; the partial derivation with respect to x;. This is a k-linear map
on the k-vector space A. Hence we get a Koszul complex

0— AO L. 4 4m

where:

d(z ar®ey) = ZZ@-(CLI) ®ej Ney.
I j=1 I

The sequence (0;-,...,0,-) is a coregular sequence and the above complex is exact
except in degree 0 where its cohomology is isomorphic to k. Writing dx; instead of
e;j, we recognize the “de Rham complex”.

Example 5.8.6. Let k be a field and let A = k[z,y], M =k ~ A/x A+ yA. Let
us calculate a free (hence, projective) resolution of M. Since (z,y) is a regular
sequence of endomorphisms of A (viewed as a k-module), M is quasi-isomorphic to
the complex:

M :0-A5 A2 A0,

where u(a) = (ya, —za), v(b,c) = xb + yc and the module A on the right stands
in degree 0. Therefore, for N an A-module, Hom ,(M ", N) is represented by the
complex:

0-NL N2 N o,

where v = Hom (v, N), v/ = Hom (u, N) and the module N on the left stands in
degree 0. Since v'(n) = (zn,yn) and u'(m,l) = ym—=zl, we find again a Koszul com-
plex. Choosing N = A, its cohomology is concentrated in degree 2 and isomorphic
to k.

Example 5.8.7. Let W = W, (k) be the Weyl algebra introduced in Example
1.2.2, and denote by -0; the multiplication on the right by d;. Then (-0y,...,-0,) is
a regular sequence on W and we get the Koszul complex:
0 WO L w0
where:
ZCL[@G[ ZZ&I 0; ®e; Ney.
j=1 1

This complex is exact except in degree n where its cohomology is isomorphic to k|z]
(see Exercise 5.10).
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Remark 5.8.8. One may also encounter co-Koszul complexes. For I = (iy, ..., 1),
introduce
e-Le _ O 1f.]€{2177zk}7
aL (1) ler = (=1)!F ey, Ao AG AL Neyyife, = e,

where e;, A... A€, A...Ae; means that e; should be omitted in e;; A... Ae,.
Define ¢ by:

d(m®er) = Z pj(m)e;ler.

Here again one checks easily that § o § = 0, and we get the complex:
Ko(M,p):0— MM A MO,

This complex is in fact isomorphic to a Koszul complex. Consider the isomorphism

o e R

which associates e;m ®e; to m @ey, where I = (1,...,n)\ I and ¢; is the signature
of the permutation which sends (1,...,n) to I U [ (any i € [ is smaller than any
j € I). Then, up to a sign, * interchanges d and §.

De Rham complexes

Let E be a real vector space of dimension n and let U be an open subset of F.
Denote as usual by €>°(U) the C-algebra of C-valued functions on U of class C'*°.
Recall that Q'(U) denotes the €>°(U)-module of C*°-functions on U with values in
E* @ C ~ Homy(F,C). Hence

QN U) ~ E* @, €°(U).

For p € N, one sets

)=\ (U)

~ (N E") & €(U).

(The first exterior product is taken over the commutative ring ¢ (U) and the second
one over R.) Hence, Q%U) = €>=(U), Q*(U) = 0 for p > n and Q*(U) is free of
rank 1 over €>°(U). The differential is a C-linear map

d: €= (U) — QYU).

The differential extends by multilinearity as a C-linear map d: QP(U) — QPTH(U)
satisfying

(5.8.4) @ =0,
o d(wy A we) = dwy A ws + (—)Pwy A dws for any wy € QP(U).
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We get a complex, called the De Rham complex, that we denote by DR(U):

(5.8.5) DR(U):=0— Q(U) % .-+ = Q*(U) — 0.
Let us choose a basis (ej,...,e,) of E and denote by x; the function which, to
r =Y x-e € E, associates its i-th cordinate z;. Then (dz,...,dz,) is the dual

basis on E* and the differential of a function ¢ is given by
dy = Z Oy dzx;.
i=1

0
where 0;p := i By its construction, the Koszul complex of (0, ...,d,) acting on

ox;
¢>°(U) is nothing but the De Rham complex:

K*(€>(U),(d,,...,0,)) = DR(U).

Note that H°(DR(U)) is the space of locally constant functions on U, and there-
fore is isomorphic to C#*(V) where #cc(U) denotes the cardinal of the set of con-
nected components of U. Using sheaf theory, one proves that all cohomology groups
HI(DR(U)) are topological invariants of U.

Holomorphic De Rham complexes

Replacing R™ with C", ¢€°°(U) with &(U), the space of holomorphic functions on
U and the real derivation with the holomorphic derivation, one constructs similarly
the holomorphic De Rham complex.

Example 5.8.9. Let n = 1 and let U = C\ {0}. The holomorphic De Rham
complex reduces to

0— 0U) % o) — 0.

Its cohomology is isomorphic to C in degree 0 and 1.

Exercises to Chapter 5

Exercise 5.1. Prove assertion (iv) in Proposition 5.2.2, that is, prove that for a ring
A and a small set I, the two functors [[ and € from Fct(I, Mod(A)) to Mod(A)

are exact.

Exercise 5.2. Consider two complexes in an abelian category ¢: X| — X7 — XY
and X, — Xy — X/. Prove that the two sequences are exact if and only if the
sequence X| @ X) — X; @ Xy — X! @ X/ is exact.

Exercise 5.3. Let A be a ring.

(i) Prove that a free module is projective.

(ii) Prove that a module P is projective if and only if it is a direct summand of a
free module (i.e., there exists a module K such that P @ K is free).

(ili) An A-module M is flat if the functor « ®, M is exact. (One defines similarly
flat right A-modules.) Deduce from (ii) that projective modules are flat.
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Exercise 5.4 (See [God58, Th. 1.2.2]). If M is a Z-module, set M = Hom (M, Q/Z) ]
(i) Prove that Q/Z is injective in Mod(Z).

(ii) Prove that the map Hom (M, N) — Hom,(N", M") is injective for any M, N €
Mod(Z).

(iii) Prove that if P is a right projective A-module, then PV is left A-injective.

(iv) Let M be an A-module. Prove that there exists an injective A-module I and a
monomorphism M — [.

(Hint: for (iii) Use formula (1.2.3), for (iv) prove that M +— M"Y is an injective
map using (ii), and replace M with MVV.)

Exercise 5.5. Let ¥ be an additive category which admits small colimits. Let
{X:}ier be a family of objects of € indexed by a small set I and let iqg € I. Prove
that the natural morphism X;, — @,.; X; is a monomorphism.

Exercise 5.6. Let ¢ be an abelian category.

(i) Prove that a complex 0 - X — Y — Z is exact iff and only if for any object
W € ¢ the complex of abelian groups 0 — Hom. (W, X) — Hom, (W,Y) —
Hom (W, Z) is exact.

(ii) By reversing the arrows, state and prove a similar statement for a complex
X—=>Y—-27—-0.

Exercise 5.7. Let € be an abelian category, ¢ a full additive subcategory.

(a) Assume that ¢ is closed by kernels and cokernels. Prove that ¢ is abelian
and the embedding functor # — ¢ is exact.

(b) Prove that _# is thick in ¥ if and only if for any exact sequence Xy — X7 —
Xy = X3 — Xy in ¢ with X; € ¢ for j =0,1,3,4, X, is isomorphic to an object
of #. (See [KS06, Rem. 8.3.22].)

Exercise 5.8. Recall Diagram 2.4.1 and Definition 2.4.1. Let % be an abelian
category and consider a commutative diagram:

!
V-2

X
f! lf
y -7

The square is Cartesian if the sequence 0 — V — X XY — Z is exact, that is, if
V >~ X xzY (recall that X xzY = Ker(f — g), where f —g: X @Y — Z). The
square is co-Cartesian if the sequence V. — X @Y — Z — 0 is exact, that is, if
Z ~X @y Y (recall that X @, Y = Coker(f' —¢'), where f'—¢: V - X @Y.

(i) Assume the square is Cartesian and f is an epimorphism. Prove that f’ is an
epimorphism.

(ii) Assume the square is co-Cartesian and f’ is a monomorphism. Prove that f is
a monomorphism.



96 CHAPTER 5. ABELIAN CATEGORIES

Exercise 5.9. Let ¥ be an abelian category and consider a double complexe

0 0 0
T
0— X! — Xog— X/
ol
0— X! —X; — X/
ol
0— X, — Xy — X/

Assume that all rows are exact as well as the middle and right column. Prove that
all columns are exact.

Exercise 5.10. Let k be a field of characteristic 0, W := W, (k) the Weyl algebra
in n variables.

(i) Denote by z;-: W — W the left multiplication by z; on W (hence, the z;-’s are

morphisms of right W-modules). Prove that ¢ = (z1-,...,x,") is a regular sequence
and calculate H7 (K * (W, ¢)).
(ii) Denote -0; the right multiplication by 0; on W. Prove that ¢ = (-0y,...,-0,) is

a regular sequence and calculate H’ (K * (W,1))).

(iii) Now consider the left W, (k)-module & := k[z1,...,z,] and the k-linear map
0; : 0 — O (derivation with respect to z;). Prove that A = (04, ...,0,) is a coregular
sequence and calculate H/(K* (0, \)).

(iv) Let A = Wy(k) be the Weyl algebra in two variables. Construct the Koszul
complex associated to ¢, = -z, o = -0o and calculate its cohomology.

Exercise 5.11. Let k be a field, A = k[z,y] and consider the A-module M =
D,~, k[z]t’, where the action of x € A is the usual one and the action of y € A is
defined by y - 2"t7Tt = 27 for j > 1, y - 2™t = 0. Define the endomorphisms of M,
©1(m) = x-m and po(m) = y-m. Calculate the cohomology of the Kozsul complex
K* (M, ).

Exercise 5.12. Let % be an abelian category which admits small direct sums and
let I be a small set. For X,Y € €, prove the isomorphism

Homg,, (1, Hom (Y, X)) ~ Hom (V¥ X).
(Hint: see (1.1.3) and (1.1.5).)

Exercise 5.13. Let [': € — ¢’ be an additive functor of abelian categories. Prove
that if I is faithful then it is conservative. Conversely, assume that I is conservative
and exact. Prove that F'is faithful. (See [KS06, Exe. 8.25].)

Exercise 5.14. Let € be an abelian category which admits small coproducts and a
generator G. Let f: X — Y be a morphism in ¢ and assume that Hom (G, X) —
Hom (G,Y) is surjective. Prove that f is an epimorphism.

(Hint: use Lemma 5.4.2.)



Chapter 6

Triangulated categories

Summary

Triangulated categories play an iimportant role in mathematics and this subject
would deserve more that the short chapter than we present here. They are a sub-
stitute, in some sense, to abelian categories, the distinguished triangles playing the
role of the exact sequences, and they are naturally associated to additive (not nec-
essarily abelian) categories. Indeed, as we shall see, the homotopy category K(%)
associated with an additive category % is naturally triangulated.

We have restricted ourselves to describe the main properties of triangulated
categories, presenting only the basic results. In particular, we localize triangulated
categories and triangulated functors with the construction of derived categories in
mind.

Some tedious proofs are skipped, referring to [KS06].

Remark that the morphism in TR4 (see below) is not unique and this is the
source of many troubles. This is the main obstacle encountered when trying to
“glue” derived categories. This difficulty is overcome with the theory of co-categories
where stable categories play the role of triangulated categories.

Some references. For historical comments, see the Introduction. For an non

exhaustive list of recent books treating triangulated categories, see [GM96, KS90,
KS06, Nee01, Ver96, Wei94, Yek20).

6.1 Triangulated categories

Definition 6.1.1. A category with translation (2,T) is an additive category &
endowed with an automorphism 7: 2 — & (i.e., an invertible functor), called the
translation functor.

A triangle in (2,7T) is a sequence of morphisms:

(6.1.1) xLy4z5h .

A morphism of triangles is a commutative diagram:
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Example 6.1.2. The triangle X Ly 2%z 7 T'(X) is isomorphic to the triangle

(6.1.1), but the triangle X —5 Y =% Z = T(X) is not isomorphic to the triangle
(6.1.1) in general.

Definition 6.1.3. A triangulated category is an additive category 2 endowed with
an automorphism 7T, called the translation functor, or the shift functor, and a family
of triangles called distinguished triangles (d.t.for short), this family satisfying axioms
TRO - TR5 below.

TRO A triangle isomorphic to a d.t.is a d.t.
TR1 The triangle X “2% X — 0 — T(X) is a d.t.

TR2 For all f: X — Y there exists a d.t.X Ly % 7 T(X).

TR3 A triangle X &Y % Z % T(X) is a d.tif and only if Y % 2 2 7(x) —2,

T(Y) is a d.t.

TR4 Given two dt.X 5 Y % Z 5 7(X) and X' 5 v/ & 77 & 7(X') and
morphisms a: X — X  and f:Y — Y/ with f'oa = o f, there exists a
morphism v: Z — Z’ giving rise to a morphism of d.t.:

X—toy 2oz hopx)
al Bl ’Y T(a)l

/ / 4 ’
x Loy L Mopx),

TR5 (Octahedral axiom) Given three d.t.
xLythzorx),
Y& 725X S TY),
X & 75y & 7(X),

there exists a distinguished triangle 2’ % Y’ 5HX o T(Z') making the
diagram below commutative:

Xty togz L 7(x)
id g 90 id
gof ! !
X Z oY —~T(X)
(6.1.2) f id w ()

Diagram (6.1.2) is often called the octahedron diagram. Indeed, it can be written
using the vertexes of an octahedron.
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In this diagram, the notation A = B means A — T(B).

Remark 6.1.4. The category Z°° endowed with the image by the contravariant
functor op: Z — Z°P of the family of the d.t.in &, is a triangulated category.

6.2 Triangulated and cohomological functors

Definition 6.2.1. (i) A triangulated functor of triangulated categories F': (2,T) —|
(2',T") is an additive functor which satisfies F'oT' ~ T" o F' and which sends
distinguished triangles to distinguished triangles.

(ii) A triangulated subcategory 2’ of Z is a subcategory 2’ of & which is trian-
gulated and such that the functor 2’ — & is triangulated.

(iii) Let (2,T) be a triangulated category, € an abelian category, F': ¥ — €
an additive functor. One says that F' is a cohomological functor if for any
dt.X =Y = Z = T(X) in 2, the sequence F(X) — F(Y) = F(Z) is exact
in €.

Remark 6.2.2. By TR3, a cohomological functor gives rise to a long exact sequence:
(6.2.1) > (X)) FY)= F(Z)— FT(X)) — -

Proposition 6.2.3. (i) If X Ly %z T(X) is a d.t.then go f = 0.
(ii) For any W € 2, the functors Hom ,(W,-) and Hom (-, W) are cohomological.

Note that (ii) means that if ¢ : W — Y (resp. ¢: Y — W) satisfies gop =0
(resp. p o f = 0), then ¢ factorizes through f (resp. through g).

Proof. (i) Applying TR1 and TR4 we get a commutative diagram:

X4 x 0 T(X)
N
X Y Z T(X).

Then g o f factorizes through 0.
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(ii)) Let X - Y — Z - T(X) be ad.t.and let W € 2. We want to show that
Hom (W, X) L% Hom (W, Y) £ Hom (W, 2)

is exact, i.e., for all ¢: W — Y such that g o ¢ = 0, there exists ¢: W — X such
that ¢ = f o¢. This means that the dotted arrow below may be completed, and
this follows from the axioms TR4 and TR3.

W =W 0 T(W)

N

Ty 47 ~T(X).

X

The proof for Hom (-, W) is similar. O
Proposition 6.2.4. Consider a morphism of d.t.:

XLyt z " px)
I
x Loy S Wopixn,

If o and B are isomorphisms, then so is 7.

Proof. Apply Hom (W,-) to this diagram and write X instead of Hom (W, X), &
instead of Hom (W, «), etc. We get the commutative diagram:

z"v\‘;‘/‘\_/

X Y 7 —"T(X) T(Y)
a 5 5 T/(Va)j Fﬁl
x Loy S ooy Ty,

—~

The rows are exact in view of the preceding proposition and @&, 3, T(«), T(B)
are isomorphisms. Therefore 4 = Hom (W, ) : Hom (W, Z) — Hom (W, Z’) is an
isomorphism. This implies that v is an isomorphism by the Yoneda lemma. O

Corollary 6.2.5. Let 2’ be a full triangulated category of 9.

(i) Consider a triangle X Ly sz T(X) in Z' and assume that this triangle
is distinguished in 9. Then it is distinguished in 9'.

(ii) Consider a dt.X =Y — Z = T(X) in 2, with X and Y in 9'. Then there
exists Z' € 9" and an isomorphism Z ~ 7.

Proof. (i) There exists a d.t.X Ly sz 5 T(X) in &'. Then it is isomorphic to
the original triangle by TR4 and Proposition 6.2.4.

(ii) Apply TR2 to the morphism X — Y in 2. ]

Remark 6.2.6. (a) The morphism ~ in TR 4 is not unique and this is the origin of
many troubles.

(b) Similarly, it follows from Proposition 6.2.4 that the object Z given in TR2 is
unique up to isomorphism. However, this isomorphism is not unique, and again this
is the source of many troubles (e.g., glueing problems in sheaf theory).
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6.3 Applications to the homotopy category

Let € be an additive category. Both C(%) and K(%) are endowed with a nat-
ural translation functor. (Recall that the homotopy category K(%) is defined by
identifying to zero the morphisms in C(%’) homotopic to zero.)

Also recall that if f: X — Y is a morphism in C(%), one defines its mapping
cone Mc(f), an object of C(%), and there is a natural triangle

a(f) JELR

(6.3.1) Y Do) 292 xqn) 2 v,

Such a triangle is called a mapping cone triangle. Clearly, a triangle in C(%’) gives
rise to a triangle in the homotopy category K(%).

Definition 6.3.1. A distinguished triangle (d.t.for short) in K(%) is a triangle
isomorphic in K(%) to a mapping cone triangle.

Theorem 6.3.2. The category K(€) endowed with the shift functor [1] and the
family of d.t.is a triangulated category.

We shall not give here the proof of this classical and fundamental result, referring
to [KS06, Th. 11.2.6].

Notation 6.3.3. We shall often write X — Y — Z *% instead of X — Y — Z —
XT1] to denote a d.t.in K(%).

6.4 Localization of triangulated categories

Recall that a full subcategory %’ of a category % is saturated if X € ¢’ and Y ~ X
in  implies Y € €.

Definition 6.4.1. A null system 4" in & is a full triangulated saturated subcategory
of 9.

A null system .4 satisfies:
N1 0e ./,
N2 X € 4 if and only if T(X) € A,
N3ifX—-Y—>2Z->T(X)isadtin Z and X,Y € A then Z € A,

One easily checks that if 4 is a full saturated subcategory of ¥ satisfying N1-N2-
N3, then the restriction of 7" to .4 and the family of d.t.X - Y - Z - T(X) in
2 with XY, Z € A4 make .4/ a null system of . Moreover, it has the property
that given a d.t.as above in &, the three objects X, Y, Z belong to .4 as soon as
two objects among them belong to .A4".

To a null system one associates a family of morphisms as follows. Define:

(6.4.1) & :={f: X =Y, there exists a d.t.X - Y — Z — T(X) with Z € 4}.

Lemma 6.4.2. . is a right and left multiplicative system.
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Proof. By reversing the arrows, it is enough to prove that .# is a right multiplicative
system.

S1 is obvious.
S2 follows from the octahedral axiom TR5 (see (6.1.2)).

S3: There exists a d. t. W 25 X — X’ 4 with W € 4. The morphism ho f: W —

Y givesrisetoad. t. W =Y — Z *L and by TR4 there exists a morphism of
triangles

e

1474 Y 7z -

S4 By replacing f with f—g, it is enough to check that if there exists s € .¥: W — X
such that f os =0 then there exists t € . Y — Z such that t o f = 0. Consider
the diagram in which the row is a d.t.:

By Proposition 6.2.3 the sequence
Hom (Z,Y) 2% Hom (X,Y) 2 Hom (X', Y)

is exact. Since fos = 0, the dotted arrow h may be completed, making the diagram
commutative. Then we embed A in a d. t. and obtain the arrow ¢. Since t o h = 0,
we get to f =0. Since Z € A, t € .7. H

Theorem 6.4.3. Let 2 be a triangulated category, A a null system in 2 and let
& be as in (6.4.1). Then

(i) Denote as usual by P the localization of P by ¥ and by Q the localization
functor. Then P is an additive category endowed with an automorphism (the
image of T, still denoted by T').

(ii) Define a d.t.in D& as being isomorphic to the image by Q of a d.t.in 2. Then
Do is a triangulated category.

(iii) If X € A, then Q(X) ~ 0.

(iv) Let F': 9 — 9’ be a functor of triangulated categories such that F(X) ~ 0 for
any X € A . Then F factors uniquely through Q.

The proof being straightforward but tedious, it will not be given here. For a
complete proof, see for example [KS06].

Notation 6.4.4. We will write /.4 instead of Z.
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Now consider a full triangulated subcategory .# of Z. denote by A4 N.# the full
subcategory of & whose objects are Ob(.4") N Ob(.#). This is clearly a null system
in .7.

Proposition 6.4.5. Let & be a triangulated category, A a null system and & a
full triangulated subcategory of 9. Assume condition (i) or (ii) below

(i) any morphismY — Z withY € % and Z € N factorizes as Y — Z' — Z
with 7' e /' N7,

(ii) any morphism Z — Y with Y € & and Z € N factorizes as Z — 7' —Y
with Z' € ¥/ N .Z.

Then the functor /(N NI) — DN is fully faithful.

Proof. We shall apply Proposition 3.2.1. We may assume (ii), the case (i) being
deduced by considering Z°P. Let f: Y — X be a morphism in . with Y € .. We
shall show that there exists g: X — W with W € .# and go f € .%. The morphism
f is embedded in a d.t.Y — X — Z — T(Y) with Z € 4. By the hypothesis, the
morphism Z — T(Y') factorizes through an object Z’ € A4 N 4. We may embed
Z' — T(Y) into a d.t.and obtain a commutative diagram of d.t.:

Y X Z T(Y)
P
Y w Z' T(Y)

By TR4, the dotted arrow g may be completed and Z’ belonging to .4, this implies
that go f € .. n

Proposition 6.4.6. Let & be a triangulated category, A a null system and & a
full triangulated subcategory of 9. Assume conditions (i) or (ii) below:

(i) for any X € 2, there exists a dt.X — Y — Z — T(X) with Z € A and
Ye s,

(i) for any X € 9, there exists a d.t.Y — X — Z — T(X) with Z € A and
YeJs.

Then F | N NI — D[N is an equivalence of categories.

Proof. Apply Corollary 3.2.2. O

Localization of triangulated functors

Let F': 2 — 2’ be a functor of triangulated categories and let .4 be a null system
in 2. One defines the localization of F' similarly as in the usual case, replacing all
categories and functors by triangulated ones. Applying Proposition 3.3.2, we get:

Theorem 6.4.7. Let F': 9 — 9’ be a functor of triangulated categories. Let A a
null system of & and & a full triangulated subcategory of 9. Assume
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(a) for any X € 2, there exists a dt.X =Y — Z — T(X) with Z € A and
Ye /s,

(b) foranyY e /NI, F(Y)~0.
Then F' is right localizable.

One defines F 4 by the diagram:

_T DN
T ION Fy

Ny

If one replaces condition (a) in Theorem 6.4.7 by the condition

(a)’ for any X € 2, there exists a d.t.Y - X — Z — T(X) with Z € 4 and
Y e s,

one gets that F' is left localizable.
Finally, let us consider triangulated bifunctors, i.e., bifunctors which are additive
and triangulated with respect to each of their arguments.

Theorem 6.4.8. Let F': 9 x 9" — 2" be a triangulated bifunctor. Let A and
N be null systems of P and 9, respectively, and let & and &' be full triangulated
subcategories of 9 and &', respectively. Assume:

(a) for any X € 9, there exists a dt.X — Y — Z — T(X) with Z € A and
YeJs

(b) for any X' € &', there exists a dt.X' = Y' — Z' — T(X') with Z' € A" and
Y'e s

(c) foranyY € F andY' € ' N A", F(Y,Y') ~0,
(d) foranyY €e NN andY' € I, F(Y,Y') ~ 0.
Then F' is right localizable.

The proof is similar to that of Theorem 6.4.7 and left to the reader.

One denotes by F 4 4 its localization.

Of course, there exists a similar result for left localizable functors by reversing
the arrows in the hypotheses (a) and (b) above.

Localization and direct sums

Proposition 6.4.9. Let 2 be a triangulated category admitting small direct sums.

(a) The shift functor commautes with small direct sum and a small direct sum of d.t.
18 again a d.t.
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(b) Let A be a null system in D stable by small direct sums. Then P/A admits
small direct sums and the localization functor Q) commutes with such direct sums.

Proof. We shall follow [KS06, Prop. 10.1.19 , 10.2.8].
(a) The functor T commutes with direct sums since is is an automorphism of 2.
Let I be a small set. Consider a family of d.t.’s indexed by [

and consider the (not necessarily distinguished) triangle in which the composition
of two arrows is 0:

On the other hand, consider a d.t..

By TR3, there exist morphisms of triangles D; — D’ and they induce a morphism
u: D — D' in 2. In order to show that this morphism is an isomorphism, it is
enough to prove that for any W € &, it induces an isomorphism

Hom ,(u, W): Hom (D', W) == Hom (D, W).
Here, we write for short Hom (D, W) instead of the sequence
(6.4.2) --- = Hom ,(®;Z;, W) — Hom ,(®;Y;, W) — Hom ,(®; X;, W) — - -

and similarly with Hom , (D", W).

The sequence Hom (D', W) is exact since the functor Hom is cohomological and
D" is a d.t.. The sequence (6.4.2) is also exact since it is isomorphic to the exact
sequences

co- = [[Hom ,(Z;, W) — [ [ Hom ,(Y;, W) — | [ Hom ,(X;, W) — - -

Hence, the sequence Hom (D, W) is exact by Lemma 5.5.7.

(b)—(i) Let {X;}ier be a small family of objects in & and let Y € 2. A morphism
u: Q(®;X;) — Q(Y) defines for each i a morphism u;: Q(X;) — Q(Y). Hence we
have a natural map

6: Hom,,, ,(Q(®:X,),Q(Y)) = HHom@M/(Q(Xi),Q(Y)).

In order to prove that Q(®;X;) is the direct sum of the family Q(X;), it is enough
to check that 6 is bijective for any Y € 2.

(b)—(ii) The map ¢ is surjective. Consider morphisms u;: Hom, ,(Q(X;), Q(Y)).
We represent each u; by a morphism v;: X; — Y together with a d. t. X] —
X — Z; *L with Z; € . We get a morphism v: @; X — Y and a d. t.

& X! = &, X, = B Z; Ry By the hypothesis, ¢;7; € 4 and it follows that v
defines a morphism Q(#,X;) = Q(Y) in /4.
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(b)(iii) The map 6 is injective. Assume that the composition Q(X;) — Q(®;X;) =
Q(Y) is 0 for all j € I. The morphism u may be represented by morphisms @®;X; —
Y’ &Y with s € . where .7 is the multiplicative system associated with .4 and
the image of the composition X; — @;X; % Y’ is zero in /4. By the result of
Exercise 6.7, for each ¢ there exists Z; € .4 such that this composition factorizes as
X; = Z; = Y'. Therefore, ®;X; — Y’ factorizes as ®,;X; - ®;Z; — Y’ and thus
Q(u) = 0. O

Exercises to Chapter 6

Exercise 6.1. Let Z be a triangulated category and consider a commutative dia-
gram in Z:

x- I 7 —T(x)
R
x ! Iz Mop(x)

Assume that T'(f) o K’ = 0 and the first row is a d.t.Prove that the second row is
also a d.t.under one of the hypotheses:

(i) for any P € 2, the sequence below is exact:
Hom (P, X) — Hom ,(P,Y) — Hom (P, Z') — Hom (P, T (X)),
(ii) for any P € 2, the sequence below is exact:

Hom ,(T'(Y), P) — Hom ,(T(X), P) — Hom ,,(Z’, P) — Hom (Y, P).

Exercise 6.2. Let X LY % 7z 1 T(X) be a d.t.in a triangulated category.

(i) Prove that if h = 0, this d.t.is isomorphic to X — X & Z — Z = T(X).

(ii) Prove the same result by assuming now that there exists k : Y — X with
ko f=idyx.

(Hint: to prove (i), construct the morphism Y — X @ Z by TR4, then use Propo-
sition 6.2.4.)

Exercise 6.3. Let X and Y be objects of a triangulated category. Prove that
X5 XaY>Y LT(X)is adt.

Exercise 6.4. Let X LY & 7 = T(X) be a d.t.in a triangulated category. Prove
that f is an isomorphism if and only if Z is isomorphic to 0.

Exercise 6.5. Let f: X — Y be a monomorphism in a triangulated category Z.
Prove that there exist Z € & and an isomorphism h: Y =% X @ Z such that the
composition X =Y — X @ Z is the canonical morphism.

Exercise 6.6. Let Z be a triangulated category, .4 a null system and let Y be an
object of & such that Hom ,(Z,Y) ~ 0 for all Z € .4". Prove that Hom ,(X,Y) =%
Hom,, ,(X,Y).
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Exercise 6.7. Let & be a triangulated category, .4 a null system and let Q: ¥ —
9/ be the canonical functor.

(i) Let f: X — Y be a morphism in & and assume that Q(f) =0 in Z/.4". Prove
that there exists Z € .4 such that f factorizes as X — Z = Y.

(ii) For X € 2, prove that Q(X) ~ 0 if and only if there exists Y such that
X @Y € 4 and this last condition is equivalent to X & TX € 4.
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Chapter 7

Derived categories

Summary

This chapter is devoted to derived categories. Recall that the homotopy category
K(%) of an additive category ¥ is triangulated. When %’ is abelian, the cohomology
functor H°: K(¢) — % is cohomological and the derived category D(%) of ¢ is
obtained by localizing K(%) with respect to the family of quasi-isomorphisms. We
explain here this construction, with some examples. We also construct the right
derived functor of a left exact functor as well as a bifunctor. Some classical examples
are discussed.

Finally, we state, without proof, the Brown representability theorem, a funda-
mental result for applications.

Some references. We refer to the Introduction for a brief history of the genesis
of theory. Derived categories are constructed in many places, among which [GM96,
Har66, KS90, KS06, Ver96, Wei94, Yek20].

7.1 Derived categories

Construction of the derived category

From now on, ¢ will denote an abelian category.

Recall that if f: X — Y is a morphism in C(%), one says that f is a quasi-
isomorphism (a qis, for short) if H*(f): H*(X) — H*(Y) is an isomorphism for all
k € Z. One extends this definition to morphisms in K(%).

If one embeds f into a d.t.X Ly 5z +—1>, then f is a qis iff H*(Z) ~ 0 for all
k € Z, that is, if Z is qis to 0.

Proposition 7.1.1. Let € be an abelian category. The functor H®: K(%€) — € is
a cohomological functor.

Proof. Let X Yoy & Z % be a d.t.Then it is isomorphic to X — Y ﬂ

Mec(f) SR X[1] 4 Since the sequence in C(%):

0—Y — Mc(f) > X[1] =0

is exact, it follows from Theorem 5.5.9 that the sequence

H*(Y) — H*(Mc(f)) = H"(X)

109
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is exact. Therefore, H*(Y) — H*(Z) — H*"(X) is exact. O

Corollary 7.1.2. Let 0 — X LY % Z 0 be an exact sequence in C(€) and
define ¢: Mc(f) = Z as o™ = (0,g"). Then ¢ is a qis.

Proof. Consider the exact sequence in C(%):

0— M(idy) 5 Mc(f) & Z =0

where v": (X" @ X™) — X"t @ Y™ is defined by: 7" = ( ld)BnH J?n ) Since
H%(Mc(idx)) ~ 0 for all k, we get the result by Proposition 7.1.1. O

We shall localize K(%") with respect to the family of objects qis to zero (see
Section 6.4). Define:

N(€) ={X € K(¥); H*(X) ~0 for all k}.

One also defines N*(¢) = N(¢) NK*(¥) for * = b, +, —.

Clearly, N*(%) is a null system in K*(%). Denote by .#*(%) the multiplica-
tive system associated with N*(%’) as in (6.4.1) and recall Definition 3.1.18 of a
multiplicative system.

Lemma 7.1.3. For * =ub, b, +, —, the multiplicative system /*(€) is saturated.

Proof. 1t is enough to teat the case * = ub. Hence, let f: X - Y, ¢g:Y — 7
and h: Z — W be morphisms in K(%). Assume that g o f and h o g are qis.
This means that for all & € Z, the morphisms H*(g o f): H*(X) — H*(Z) and
H*(hog): H*(Y) — H¥(W) are isomorphisms. Since H*(go f) = H*(g) o H*(f)
and H*(ho g) = H*(h) o H*(G), the result follows from Exercise 1.1. O

Definition 7.1.4. One defines the derived categories D*(%¢) as K*(¢)/N*(%¥),
where x = ub, b, 4+, —. One denotes by @ the localization functor K*(¢) — D*(%).

Remark 7.1.5. One shall be aware that in general, the derived category D' (%) of
a % -category € is no more a % -category (see Remark 7.2.7).

By Theorem 6.4.3, the categories D*(%’) are triangulated.
Applying Lemma 7.1.3 and Corollary 3.1.19, we get:

Proposition 7.1.6. Let X € K(%) and let Q(X) denote its image in D(€). Then
Q(X) ~ 0 in D(€) if and only if X is qis to 0 in K(F).

Recall the truncation functors given in (5.5.10). These functors send a complex
homotopic to zero to a complex homotopic to zero, hence are well defined on K*(%).
Moreover, they send a qis to a qis. Hence the functors below are well defined:

Hi(+): D(¥) = ¢,
(7.1.1) 7S 750 D(%) — D (%),
720 720 D(F) — DH(E).

Note that:
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< ~ > ~>
N ~u ’IL’ n ~u n’

e () is a cohomological functor on D*(%) (apply Proposition 7.1.1).

In particular, if X Jy % 7 X isadtin D(%), we get a long exact sequence:
(7.1.2) o= HYX) = HYY) = HYZ) = H"(X) = -+

Let X € K(%), with H(X) = 0 for j > n. Then the morphism 75"X — X in
K(%) is a qis, hence an isomorphism in D(%).

It follows from Proposition 6.4.5 that D" (%) is equivalent to the full subcategory
of D(%) consisting of objects X satisfying H?(X) ~ 0 for j << 0, and similarly for
D= (%), DP(%). Moreover, € is equivalent to the full subcategory of D(%’) consisting
of objects X satisfying H/(X) ~ 0 for j # 0. For a,b € Z U {—o0} U {+oc} with
a < b, one sets

(7.1.3) DI (@) .= {X € D(¥); H(X) ~ 0 for j ¢ [a,b]}.

One defines similarly D=*(%"), D=F(¥), etc.

Definition 7.1.7. Let X,Y be objects of € and let k € Z. One sets
Ext? (X,Y) = Homy, ., (X, Y[K]).

Of course, Ext]fg(X ,Y') vanishes for k£ < 0.

Notation 7.1.8. Let A be a ring. We shall write for short D*(A) instead of
D*(Mod(A)), for * = &, b, +, —.

Remark 7.1.9. Let f: X — Y be a morphism in C(%). Then f = 0 in D(¥%) iff
there exists X’ and a qis g: X’ — X such that f o g is homotopic to 0, or else iff
there exists Y/ and a qis h: Y — Y’ such that h o f is homotopic to 0.

Remark 7.1.10. Consider an exact sequence 0 - X - Y — Z — 0in %. It gives
rise toa d.t.X - Y — Z — X][1] in D(¥). Consider the morphism v: Z — X|[1] in
D(%). It defines morphisms H*(y): H*(Z) — H*"'(X)is 0 for all k € Z and X and
Z being concentrated in degree 0, we get that H*(y) = 0 for all k € Z. However, v
is not the zero morphism in D(%) in general (this happens only if the short exact
sequence splits). In fact, let us apply the cohomological functor HomD((g)(I/V, *) to
the d.t.above. It gives rise to the long exact sequence:

-+ = Homp gy (W, Y) = Hom o (W, Z) 5 Hom g (W, X[1]) = -+

where 4 = Homp (W, 7). Since Homyp ) (W,Y) — Homy, (W, Z) is not an
epimorphism in general, 4 is not zero. Therefore v is not zero in general (see Theo-
rem 7.4.10 below). The morphism 7 may be described as follows (see Example 4.2.4),
where ¢ is a gis in C(%):

Z= 0 0 A 0
g |, ]
Mec(f) = 0 X Y 0
w
X[1]):= 0—> X —>0—>0,
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By using the exact sequences (5.5.11), we get:
Proposition 7.1.11. Let X € D(¥%).

(i) There are d.t.in D(%):

X = X s r2rx
(7.1.4) rEnmlX o rSnX oy H(X)[—n] 2,
H™(X)|—n] = 727X — 72ntix 2

(i) Moreover, H*(X)[—n] ~ 7=n72"X ~ 72nrSnX,

Corollary 7.1.12. Let € be an abelian category and assume that for any Y, Z € €,
Ext]fg(Y, Z) =0 fork>2. Let X € D*(€). Then:

X o~ @Hj(X) [—3]-

Proof. We may assume that H’(X) ~ 0 if j ¢ [0,n] for some integer n. We argue
by induction on n > 0, the case n = 0 being obvious. The second d.t. in (7.1.4)
gives the d.t.:

X = HYX)[-n] - r=" ' X [1] 5 .
By the induction hypothesis, 75" ' X ~ @,_, H?(X) [—j]. Now we have
Hom . ) (H™(X)[—n], HY(X) [~ + 1) = Hom . ) (H"(X), HY(X) [0 — j + 1]
and these groups are 0 for j < n by the hypothesis. Therefore,
Home(%)(H”(X)[—n],TS"’IX 1]) ~0
and the result follows from the result of Exercise 6.2, O]

Example 7.1.13. If aring A is a principal ideal domain (such as a field, or Z, or k|x]
for k a field), then the category Mod(A) satisfies the hypotheses of Corollary 7.1.12.

7.2 Resolutions

Definition 7.2.1. Let ¢ be a full additive subcategory of €. We say that ¢ is
cogenerating if for all X in ¢, there exist Y € _# and a monomorphism X—Y.

If 7 is cogenerating in ¢°P, one says that ¢ is generating in €.

Theorem 7.2.2. Assume ¢ is cogenerating. Then for any a € Z and X €
C2%(%), there exist Y* € C=%(_#) and a quasi-isomorphism X* — Y ".

Proof. We shall follows the proof of [KS06, Lem. 13.2.1].
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Let X* € C29(%¢). We shall construct by induction on p a complex Y., in ¢ and
a morphism f: X* — Y. such that H*(X*) — H*(Y.)) is an isomorphism for
k < p and is a monomorphism for k = p, visualized by the diagram

drt dP qrtt
X°* = cee—— s XP1 X xp X xptl X
lfpl pr
. dp71
Y<p:: .. ._>Yp_1L>YP

For p < a, choose Y., = 0. Now assume that Y., has been constructed. Set

D _ p—1 p+1
ZP = Coker dy ™ D ¢por & Kerdy

-1 +1
WP = Coker d® "~ & -1 XPT
Y Coker dg(

(Recall that in an abelian category, given two morphisms Z — X and Z — Y,
X ®72Y is the cokernel of Z — X @Y'.) Hence, there is a monomorphism Z? — W?.
Consider the commutative diagram

0— H?(X ") — Coker &, ' — Ker &}/ —— H"*(X ") —=0

e LT

0— H?(X ") — Coker d& " VAL HPPY(X ) —0

The top row is clearly exact. The sequence Coker dy ' — Coker d? " @ Ker %" —
HPT(X*) — 0 defines the morphism Z? — HP™(X*) and one checks that the
sequence Coker d% ' — ZP — HP*1(X*) — 0 is exact. Denote by K? the kernel of
Cokerd? " — ZP. We get a morphism u: H?(X *) — K? which is a monomorphism
by the induction hypothesis and which is an epimorphism thanks to the fact that
the middle square in (7.2.1) is co-Cartesian (see [KKS06, Exe. 8.21]). Therefore,
Diagram 7.2.1 is exact. Since _Z is cogenerating, we may find a monomorphism
WP — YP*! with YP*' € #. The natural morphisms X?*' — W? and Y? — W?
define the morphisms fP*': XP*1 — YP+b and df,: Y? — YP*. Let Y. | be the
complex so constructed. Then

HP(Y.,.1) ~ Ker(Coker dy " — YP*!) ~ Ker(Coker d§ " — ZP) ~ HP(X").
Finally, the monomorphism Z? — YP*! induces the monomorphism
HP"(X ") ~ Coker (Coker df, ' — ZP)
— Coker (Coker LU YPH) ~ HPHH(YZ ).
O
We shall also have to consider the following situation. Consider the hypothesis

(7.2.2) there exists d € Ny such that for any exact sequence
- Yi— Y=Y =0,withY;e #,1<j<d wehaveY € 7.

Corollary 7.2.3. Assume 7 is cogenerating and satisfies (7.2.2). Then for any
X* € Cle¥l(@), there exist Y* € Cleb+dHl( 7Y and a quasi-isomorphism X° —
Y*©.
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Proof. Let X* — Y * be a quasi-isomorphism given by Theorem 7.2.2, with Y* &
C=9(_#). Consider the truncation functor 77 of (5.5.10). It induces an isomorphism
7SI(X*) =% X° for j > b and a quasi-isomorphism for all j:

TEIXT) IS TSy,

Moreover, the sequence Y+ — Y®*2 — ... is exact. Thanks to the hypothesis, we
get that 7=074(Y ) belongs to Cl@t+4+1l(_#) and this complex is qis to X °. O

In the sequel, for ¢ an additive subcategory of €, we set

(7.2.3) N*( 7)== N(&)nK*( 7).

It is clear that NT(_#) is a null system in K*(_#).
Applying Proposition 6.4.6, we get:

Corollary 7.2.4. Let ¢ be an additive subcategory of € and assume that # is
cogenerating. Then

(a) For any X* € K*(¥), there exists Y € K*(_#) and a qis X* — Y ". More-
over, the natural functor : K*(_Z)/N*(_#) — D*(¥) is an equivalence of
categories.

(b) Assume moreover that ¢ satisfies (7.2.2) and X* € K"(%€). Then we may
choose Y* € KP(_#) and the natural functor 6: KP(_#)/N*(_#) — DP(¥) is
an equivalence of categories.

Injective resolutions

In this subsection, % denotes an abelian category and %4 its full additive subcate-
gory consisting of injective objects. We shall asume

(7.2.4) the abelian category € admits enough injectives.

In other words, the category .y is cogenerating.

Proposition 7.2.5. (i) Let f*: X" — I" be a morphism in C*(%). Assume I°
belongs to CT(Fy) and X ° is exact. Then f° is homotopic to 0.

(i) Let I € CT(Hy) and assume 1° is exact. Then I* is homotopic to 0.

Proof. (i) Consider the diagram:

Xk—2 Xk—l Xk Xk’-i—l

k=1 . [ k+1

[k—Z [k—l s Ik - Ik+1

We shall construct by induction morphisms s* satisfying:

fF=s"ody +di o sk



7.3. DERIVED FUNCTORS 115

For j << 0, s/ = 0. Assume we have constructed the s/ for j < k. Define
g" = f¥ —d¥ ' o s*. One has

gk: ° d];(_l :fk ° dI;(_l . dl[c—l o Sk’ Od’;(_l
_ rk k—1 k—1 k—1 k—1 k—2 k—1
=ffody —dj of +d; "od] "os

=0.

Hence, ¢g* factorizes through X*/Im dé“(_l. Since the complex X° is exact, the
sequence 0 — X*/Imd% ' — X**1 is exact. Consider

0 — X*/Imdi ' — X**!

skl

[k:

The dotted arrow may be completed by Proposition 5.3.2.
(ii) Apply the result of (i) with X* =T1° and f = idy. O

Corollary 7.2.6. Assume that € admits enough injectives. Then KT (Fy) —
DT (%) is an equivalence of categories.

Proof. According to Notation 7.2.3, N (%) is the subcategory of K (.#) consist-
ing of complexes qis to 0. By Corollary 7.2.4, the natural functor K+ (%) /N1 (%) —|
DT (%) is an equivalence. To conclude, remark that the objects of N (%) are iso-
morphic to 0 in K(.%). Hence, K*(%) /Nt (F) is equivalent to K (). O

Remark 7.2.7. Assume that € admits enough injectives. Then D* (%) is a % -
category.

7.3 Derived functors

In this section, ¥ and %"’ will denote abelian categories and F': € — % a left exact
functor. We shall construct the right derived functor RF': DT(%) — D*(%”) under
suitable conditions, and in particular the j-th derived functor R'F: ¢ — ¢’. Note
that we do not assume that ¥ admits enough injectives.

The functor F' defines naturally a functor

K*F: KT (¢) = KH(%").

For short, one often writes F' instead of K™ F. Applying the results of § 6.4, we shall
construct (under suitable hypotheses) the right localization of F.

Definition 7.3.1. (a) If the functor KTF: K*(¢) — D" (%") admits a right lo-
calization (with respect to the qis in K* (%)), one says that F' admits a right
derived functor, or is right derivable, and one denotes by RF': DT (%) — D*(%¢”)
the right localization of F'.

(b) If F admits a right derived functor, one sets for X € ¢, R'F(X) = H/(RF(X)).
(Note that R'F ~ F.)

(c) An object X € ¢ satisfying R/F(X) ~ 0 for all j # 0 is called F-acyclic.
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(d) Assume that F' admits a right derived functor. One says that F' has cohomo-
logical dimension < d with d € N if for any X € ¢, RVF(X) ~ 0 for j > d. If
such an integer d exists, one says that F' has finite cohomological dimension.

There is a similar definition for right exact functor. The exact formulation is left
to the reader.

Note that if F': € — ¢’ is exact, it admits a right derived functor as well as
a left derived functor and both coincide. In this case, one still denotes by F' its
localization.

Recall that if RF exists, then it sends distinguished triangles in D™ (%) to dis-
tinguished triangles in DT (%”). In particular, we get:

Proposition 7.3.2. Let F': € — €' a left exact functor as above and let 0 — X' ERN
X L X" — 0 be an exact sequence in €. Then there exists a long exact sequence:

0= FX)—> F(X)— = RFX)— RFX)—= RFX")— -

Definition 7.3.3. Let _# be a full additive subcategory of €. One says that ¢ is
F-injective, or is injective with respect to F, if:

(i) _# is cogenerating (Definition 7.2.1),

(ii) for any exact sequence 0 = X' - X — X" - 0in @, if X', X € ¢Z, then
X" e /7

(iii) for any exact sequence 0 — X' — X — X" — 0in ¢ with X’ € _Z, the
sequence 0 — F(X') —» F(X) — F(X") — 0 is exact.

By considering €°P, one obtains the notion of an F-projective subcategory, F
being right exact.

Example 7.3.4. I the category .4 of injective objects of % is cogenerating, then
it is F-injective.

Lemma 7.3.5. Assume # is F-injective and let X° € CT(_#) be a complex qis
to zero (i.e. X" is exact). Then F(X") is qis to zero.

Proof. We decompose X ° into short exact sequences (assuming that this complex
starts at step 0 for convenience):

0= X"—= X' =7 =0,
02— X*—= 72?0,
0= 2"t = X" 7" —0.
By induction we find that all the Z7’s belong to _#, hence all the sequences:
0— F(Z") = F(X") = F(Z") =0
are exact. Hence the sequence 0 — F(X°) — F(X') — --- is exact. O

Theorem 7.3.6. Let F': € — €' be a left exact functor of abelian categories and
let # C € be a full additive subcategory. Assume that ¢ is F-injective. Then
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(a) F admits a right derived functor RF: DY(€) — DT (¢").
(b) If moreover ¢ satisfies (7.2.2), then RE induces a functor D*(€) — DP(€").
By reversing the arrows, one obtains a similar result for right exact functors.

Proof. (i) We shall apply Theorem 6.4.7. Condition (a) is satisfied thanks to Corol-
lary 7.2.4. Condition (b) is satisfied thanks to Lemma 7.3.5.

(ii) The proof of (b) is similar. O

Recall that the construction of RF' is vizualised by the diagram

KH( 7)) —E K ()
°|
KH(_7)/N*(_7) Q

Nj\

DH(E) v T =D (¢").

Recall that the derived functor RF' is triangulated, and does not depend on the
category _#. Hence, if X' - X — X" *L is a d.tin D*(¥), then RF(X') —
RF(X) — RF(X") ™% is a d.t.in D¥(¥).

Also recall that an exact sequence 0 = X’ — X — X" — 0 in & gives rise
to a d.t.in D(%). Applying the cohomological functor H°, we get the long exact
sequence in ¢”:

.o - RFF(X') = RFF(X) - RFF(X") = R FP(X') — -+

By considering the category €°P, one defines the notion of left derived functor of a
right exact functor F'.

Remark 7.3.7. Consider a functor F': K™(%¢) — K" (%”) and assume that there
exists an additive subcategory .# of € satisfying the following properties:

(i) any X € KT(%) is qis to an object of KT (.%),

7.3.1
( ) (ii) if X € K*(#) is qis to 0, then F(X) is qgis to 0.

Then the conclusion of Theorem 7.3.6 (a) holds. If moreover, any X € KP(%) is qis
to an object of KP(.#), then (b) holds.

Remark 7.3.8. Let F': € — % be a left exact functor and assume that F' admits
a right derived functor. Denote by . the full additive subcategory of € consisting
of F-acyclic objects and assume that this category if cogenerating. Then . is
F-injective. Indeed, conditions (ii) and (iii) of Definition 7.3.3 are satisfied thanks
to Proposition 7.3.2.

The next result follows immediately from the construction of RF and gives an
explicit construction of the derived functor.

Proposition 7.3.9. Assume ¢ is F-injective. Let X € € and let 0 - X — Y*
be a resolution of X withY" € C*(_#). Then for each n, there is an isomorphism
R'F(X)~ H"(F(Y")).
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In other words, in order to calculate the derived functors R/F(X) for X € €,
it is enough to replace X with a right ¢-resolution, apply /' to this complex and
take the j-th cohomology. This construction applies in particular if ¥ has enough
injectives.

Derived functor of a composition

Let F: € — ¢ and G: €' — €" be left exact functors of abelian categories. Then
GoF: % — €' is left exact. Using the universal property of the localization, one
shows that if ), G and GoF are right derivable, then there exists a natural morphism
of functors

(7.3.2) R(G o F) = RG o RF.

Theorem 7.3.10. Assume that there exist full additive subcategories ¢ C € and
J' C € suchthat ¢ is F-injective, #'is G-injective and F(_#7) C ¢'. Then ¢
is (G o F)-injective and the morphism in (7.3.2) is an isomorphism: R(G o F) =%
RG o RF.

Proof. (i) The fact that _# is (G o F') injective follows immediately from the defini-
tion.

(ii) Let X € K*(%) and Y € K*(_#) together with a qis X — Y. Then RF(X) is
represented by the complex F(Y') which belongs to K*(_#’). Hence RG(RF(X))
is represented by G(F(Y)) = (G o F)(Y), and this last complex also represents
R(Go F)(Y) since Y € C*(_#) and ¢ is G o F injective. O

Note that in general F' does not send injective objects of € to injective objects
of ¢’. That is why the notion of an “F-injective” category is important.

Corollary 7.3.11. Assume that there exists a full additive subcategory ¢ C € such
that 7 is F-injective and assume that G is exact. Then ¢ is (G o F)-injective and
the morphism in (7.3.2) is an isomorphism.

Proof. If G is exact, then €” is G-injective. Then apply Theorem 7.3.10 with #' =
¢ O

Corollary 7.3.12. In the situation of Theorem 7.3.10, let X € € and assume that
RIF(X)~0 for j > 0. Then R (G o F)(X) ~ (RG)(F(X)).

Proof. We have RF(X) ~ F(X) in D¥(%”). Then Theorem 7.3.10 gives R(G o
F)(X) ~ (RG o RF)(X) ~ RG(F(X)). O

7.4 Bifunctors
Now consider three abelian categories €,%¢’,¢"” and an additive bifunctor:
F:¢x¥€¢ —%".

We shall assume that F'is left exact with respect to each of its arguments.
Let X € CH(¥),X' € CH(%’). Then the double complex F(X,X') satisfies
the finiteness condition (4.3.7) and tot(F (X, X") € CT(€”) is well-defined. Now
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assume that X or X’ is homotopic to 0. Then one checks easily that tot(F (X, X))
is homotopic to zero. Hence one can naturally define:

KTF: KT (%) x KT(¢') = KT(¢"), K'F(X,X')=tot(F(X,X)).
If there is no risk of confusion, we shall sometimes write F' instead of KT F.

Definition 7.4.1. If the functor Kt F: KT (%) x Kt(¢') — D" (%¢") admits a right
localization (with respect to the qis in KT (%) and K*(%”)), one says that F' admits
a right derived functor and one denotes by RF': DT(%) x DT(¢") — D*(%¢") the
right localization of F'.

One defines similarly the notion of left derived functor for a right exact bifunctor.

Definition 7.4.2. Let ¢ and _¢' be additive subcategories of € and ¢”, respec-
tively. One says (7, #') is F-injective if:

(i) for all X’ € 7', 7 is F(+,X’)-injective,
(ii) for all X € ¢, ¢’ is F(X, *)-injective.

Note that if (_#, #') is F-injective, then ¢ and ¢’ are cogenerating in 4 and
€', respectively.
One defines similarly the notion of being G-projective for a right exact bifunctor

G.

Theorem 7.4.3. Let F: € x €' — €" be a left exact bifunctor of abelian categories
and let # and #' be additive subcategories of € and €', respectively. Assume
that (_#, 7') is F-injective. Then F admits a right derived functor RF: Dt (%) x
Dt (€¢’) — DT (¢").

Proof. Let X € K*(_#) and X' € K*(_#’). If X or X’ is gis to 0, then all rows
or all columns of F(X,X’) are exact and it follows that tot(F(X,X’)) is qis to
zero by Corollary 5.6.2. To conclude, apply Theorem 6.4.8 with .# = K¥(_¢) and
I =Kt (7). O

There is a similar statement for a right exact bifunctor G, replacing F-injective
with G-projective.
The next result is obvious by the construction of RF.

Corollary 7.4.4. In the situation of Theorem 7.4.3, assume moreover that ¢ and
J' satisfy (7.2.2). Then RF induces a functor RF: D*(€¢) x D*(¢") — D"(¢").

Theorem 7.4.5. Let F: € x €' — €" be a left exact bifunctor of abelian categories
and let ¢ and #' be additive subcategories of € and €', respectively. Assume
that for all X' € €', 7 is F(+,X')-injective, and for all X € €, F' is F(X, *)-
injective. Then for all X € €,Y € €', one has:

(7.4.1) RF(X,Y) ~ Ry F(X, *)(Y) ~ R;F(+,Y)(X).

Here, Ri1F(X, *) is the derived functor of the functor F(X, «) and similarly with
RiF(-,Y).
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Proof. Let X € €,Y € ¢ and let 0 » X — Iy and 0 = Y — Iy be resolutions
of X and Y in ¢ and _#’, respectively. The object RF(X, X’) is the image by the
localization functor @ of the object tot(F(Iy, Iy )) of KT(€"). Consider the double
complex:

0 0 0
l | i

0 0 F(I%,Y) — F(IL,Y) —
l ! J

0—F (X, Iy) —F(I%, Iy) — F(Ix, Iy) —

| l l

0— F(X, 1) —F(I%, 1Y) — F(I%, I}) —
! ! l

By the hypotheses, all rows and columns are exact with the exception of the 0-row
and the 0-column (each starting with 0 — 0). By Corollary 5.6.2, tot(F(Iy, Iy )) is
qis to the cohomology of the 0-column, which calculates R F(X, «)(Y), as well as
the cohomology of the 0-row, which calculates Ry F(X,Y). O]

Corollary 7.4.6. Let F': € X% — €" be a left exact bifunctor of abelian categories
and let 7 be an additive subcategory of €. Assume that for any X' € €', the
category # is F(+,X')-injective and for any X € _Z, the functor F(X, ) is
exact. Then F admits a right derived functor RF: DY(€) x DY (¢") — DT (€¢"). If
moreover, ¢ satisfies (7.2.2), then RF induces a functor REF: D*(€¢) x DP(¢") —
DP(¢").

Proof. Apply Theorem 7.4.5 and Corollary 7.4.4 with ¢’ =%". O

Proposition 7.4.7. Let F: € x €' — €" be a left exact bifunctor of abelian cat-
egories and let ¢, ' and Z" be additive subcategories of €, €' and €", respec-
tively. Let G: €" — €" be a left exact functor of abelian categories. Assume that
(7, 7') is F-injective, 7" is G-injective and F( 7, #') C _#". Then the derived
functor R(G o F) exists and moreover, R(G o F') ~ RG o RF.

The proof is straightforward.
One naturally extends Definition 7.3.1 to bifunctors. The exact statement is left
to the reader.

Example 7.4.8. Assume % has enough injectives. Then
RHom,: D™(%)® x D™(¥) — Dt (Z)

exists and may be calculated as follows. Let X € C7 (%) and Y € C*(%). There
exists a qis in K (%), Y — I, the [?’s being injective. Then:

RHom (X, Y) ~ Hom?, (X, I).

If ¢ has enough projectives, and P — X is a qis in K=(%), the P?’s being projective,
one also has:

RHom (X,Y) ~ Hom? (P,Y).
These isomorphisms hold in D*(Z).
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Example 7.4.9. Let A be a k-algebra. By choosing the category of projective
modules for # and _#’ in Theorem 7.4.3, we get that the bifunctor

L
*®,*: D7(A®) x D" (A) — D" (k)
is well defined. Moreover,

L
N&@, M ~tot(N ®, P) ~ tot(Q ®, M)

where P (resp. @)) is a complex of projective A-modules qis to M (resp. to N).

Note that instead of choosing the category of projective modules, we could have
chosen that of flat modules. When working with sheaves, there are not enough
projective modules in general, although there are enough flat modules.

In the preceding situation, one defines:

A rr—k ATl
Torf (N, M) = H™*(N& , M).

The functors RHom. and HomD((g)

Theorem 7.4.10. Let € be an abelian category with enough injectives. Then for
XeD (¥),Y eDNF) and j € Z:

H/RHom,,(X,Y) ~ Hom (X, Y [j]).

Proof. By Proposition 7.2.2, there exists Iy € Ct(#) and a qis Y — Iy. Then we
have the isomorphisms:

HomD(%)(X, Y5]) :HomK(%)(X, Iy[j])
~ HO(Homfg(X, Iy [j]))
~ R’Hom(X,Y),
where the second isomorphism follows from Proposition 4.4.5. O
Recall that one has set

Ext’ (X,Y):= H/RHom (X, Y).

Example 7.4.11. Let W be the Weyl algebra in one variable over a field k of
characteristic 0: W = k[z, J] with the relation [z,0] = —1.

L
Let 6 = W/W -0, Q= W/0-W and let us calculate 2®,,&. We have an
exact sequence: 0 — W LW Q= o0. Therefore, €2 is gis to the complex

0w L w0
L
where W=t = W" = W and W9 is in degree 0. Then Q®,,, 0 is qis to the complex
0012 6% 5o,

where 07! = 0° = 0 and 0V is in degree 0. Since 9: & — O is surjective and has
k as kernel, we obtain:

L
Q®,, 0 ~ k1.
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Example 7.4.12. Let k be a field and let A = k[z1,...,z,]. This is a commutative
Noetherian ring and it is known (Hilbert) that any finitely generated A-module M
admits a finite free presentation of length at most n, i.e., M is qis to a complex:

L= 0oL "= 210 50

where the L’’s are free of finite rank. Consider the left exact functor

Hom ,(+,A): Mod(A)°® — Mod(A)
and denote for short by * its derived functor:
(7.4.2) *:=RHom ,(+, A).
Since free A-modules are projective, we find that RHom ,(M, A) is isomorphic in
DP(A) to the complex

L= 0« L™« ... & 1%

Using (7.3.2), we find a natural morphism of functors

* *

id— " :="0"
Applying * to the object RHom ,(M, A) we find:
RHom ,(RHom ,(M, A), A) ~RHom ,(L*, A)
~ [~ M.
In other words, we have proved the isomorphism M ~ M** in D®(A).

Assume now n = 1, i.e., A = k[z] and consider the natural morphism in Mod(A):
f: A— A/Az. Applying the functor *, we get the morphism in DP(A):

f*: RHom ,(A/Az, A) — A.
Remember that RHom ,(A/Ax, A) ~ A/xzA[—1]. Hence H’(f*) =0 for all j € Z,
although f* # 0 since f** = f.

Let us give an example of an object of a derived category which is not iso-
morphic to the direct sum of its cohomology objects (hence, a situation in which
Corollary 7.1.12 does not apply).

Example 7.4.13. Let k be a field and let A = k[, x5]. Define the A-modules
M = AJ(Az, + Axy), M = A/(Az? + Axyxy), M" = A/Ax,.

There is an exact sequence

(7.4.3) 0—>M —>M—M"—0

and this exact sequence does not split since x7 kills M’ and M” but not M.

Recall the functor * of (7.4.2). We have M™ ~ H?*(M"™)[-2] and M"* ~
H'(M")[—1]. The functor * applied to the exact sequence (7.4.3) gives rise to
the long exact sequence

0— H'(M™) = H'(M*) = 0—=0— H*(M*) — H*(M"™) = 0.

Hence HY'(M*)[—1] ~ HY(M"™)[-1] =~ M"* and H*(M*)[-2] ~ H*(M"™)[-2] ~
M. Assume for a while M* ~ @&,;H’(M*)[—j]. This implies M* ~ M"™ & M"*
hence (by applying again the functor *), M ~ M’ & M”, which is a contradiction.
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7.5 The Brown representability theorem
We shall follow the exposition of [KS06, § 10.5].

Definition 7.5.1. Let & be a triangulated category admitting small direct sums. A
system of t-generators .% in & is a small family of objects of Z satisfying conditions
(i) and (ii) below.

(i) For any X € 2 with Hom ,(C, X) ~ 0 for all C' € #, we have X ~ 0.

(ii) For any countable set I and any family {u;: X; — Y;}ie; of morphisms in
2, the map Hom ,(C, ®;X;) LN Hom ,(C, ®;Y;) vanishes for every C' € F
as soon as Hom ,(C, X;) =% Hom ,(C,Y;) vanishes for every i € I and every
CeZ.

What we call below the Brown representability Theorem is in fact a corollary of
such a theorem. See [KS06, Cor. 10.5.3].

Theorem 7.5.2 (The Brown representability Theorem). Let & be a triangulated
category admitting small direct sums and a system of t-generators. Let F': 9 — 9’
be a triangulated functor of triangulated categories and assume that F' commutes
with small direct sums. Then F admits a right adjoint G and G is triangulated.

Recall Definition 5.4.3 of a Grothendieck category and also recall that such a
definition relies on the notion of universe. Hence, all categories in the sequel belong
to a given universe % .

We shall apply Theorem 7.5.2 in the particular case of derived categories.

Theorem 7.5.3 (see [KS06, Th. 14.3.1]). Let € be a Grothendieck abelian category.
(a) The category D(€) admits small direct sums and a system of t-generators.

(b) Let 2 be a triangulated category and F: K(€) — 2 a triangulated functor.
Then F admits a right localization RE: D(€) — 2.

Note that the existence of small direct sums follows from Proposition 6.4.9.
From now on, we shall follow [GS16, § 2.3].

Lemma 7.5.4. Let € be a Grothendieck category and let d € Z. Then the cohomol-
ogy functor H® and the truncation functors 7<% and 72¢ commute with small direct
sums in D(€). In other words, if {X;}icr is a small family of objects of D(€), then

(7.5.1) P ' x; = =P X))

and similarly with 72¢ and H?.

Proof. (i) Let us treat first the functor H¢. Recall that Q: K(%) — D(%) denotes
the localization functor and @ commutes with small direct sums by Proposition 6.4.9.
Let us denote for a while by H¢: K(%') — % the cohomology functor usually denoted

by He. Then H% ~ H%0 Q.
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Let {X;}; be a small family of objects in K(%"). Then

HY(@iQ(X:)) ~ H(Q(@:.X:)) =~ H (i)
~ @, H(X;) = &, H(Q(X:))).

(ii) The morphism in (7.5.1) is well-defined and it is enough to check that it induces
an isomorphism on the cohomology. This follows from (i) since for any object
Y € D(%), HI(r=9Y) is either 0 or H(Y). O
Lemma 7.5.5. Let € and €’ be two Grothendieck categories and let p: € — €' be

a left exact functor. Let I be a small category. Assume

(i) I is either filtrant or discrete,
(ii) p commutes with inductive limits indexed by I,

(iii) inductive limits indexed by I of injective objects in € are acyclic for the functor
p.

Then for all j € Z, the functor R7p: € — €' commutes with inductive limits indezed
by I.

Proof. Let a: I — € be a functor. Denote by .# the full additive subcategory of &
consisting of injective objects. It follows for example from [KS06, Cor. 9.6.6] that
there exists a functor ¥: I — .# and a morphism of functors & — 1 such that
for each i € I, a(i) — (i) is a monomorphism. Therefore one can construct a
functor ¥: I — C*(.#) and a morphism of functor & — ¥ such that for each i € T,
a(i) — P(i) is a quasi-isomorphism. Set X; = «a(i) and G; = ¥(i). We get a qis
X; — G, hence a qis

colim X; — colim G .
On the other hand, we have
colim R’ p(X;) ~ colim H’ (p(G;))

~ H’p(colim G;")

where the second isomorphism follows from the fact that H? commutes with direct

sums and with filtrant inductive limits. Then the result follows from hypothesis (iii).
O

Lemma 7.5.6. We make the same hypothesis as in Lemma 7.5.5. Let —oo < a <
b < oo, let I be a small set and let X; € DI*(€). Then

(7.5.2) @Rp(Xi) oy Rp(@ X;).

Proof. The morphism in (7.5.2) is well-defined and we have to prove it is an isomor-
phism. If b = a, the result follows from Lemma 7.5.5. The general case is deduced
by induction on b — a by considering the distinguished triangles

HY(X,) [—a] = X; — 72971 x; 5
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Theorem 7.5.7 (see [GS16, Prop. 2.21]). Let € and €' be two Grothendieck cate-
gories and let p: € — €' be a left exact functor. Assume that

(i) p has finite cohomological dimension,
(ii) p commutes with small direct sums,

(i) small direct sums of injective objects in € are acyclic for the functor p.
Then
(a) the functor Rp: D(€) — D(€") commutes with small direct sums,

(b) the functor Rp: D(€) — D(%") admits a right adjoint p': D(€") — D(¥),
(¢) the functor p* induces a functor p': DY (€"') — DH(¥F).

Proof. (a) Let {X;}icr be a family of objects of D(%). It is enough to check that
the natural morphism in D(%”)

(7.5.3) P Ro(x:) = Rp(EP Xi)
el el

induces an isomorphism on the cohomology groups. Assume that p has cohomolog-
ical dimension < d. For X € D(%) and for j € Z, we have

T2 Rp(X) ~ 129 Rp(r=97971 X).
The functor p being left exact we get for k£ > j:
(7.5.4) H*Rp(X) ~ H*Rp(r<Fr2i=d71X),
We have the sequence of isomorphisms:

H*Rp(ED Xi) ~ H* Rp(r=F 729~ IEBX ~ H"Rp( @Tﬁkrzﬂ‘*dflxi)
Q@HkRp TSkTZJ_d_lX @HkRp

The first and last isomorphisms follow from (7.5.4).
The second isomorphism follows from Lemma 7.5.4.
The third isomorphism follows from Lemma 7.5.6.

(b) follows from (a) and the Brown representability theorem 7.5.2.

(c) This follows from hypothesis (i) and (the well-known) Lemma 7.5.8 below. [

Lemma 7.5.8. Let p: € — €' be a left exact functor between two Grothendieck

categories. Assume that p: D(€) — D(€") admits a right adjoint p': D(€") — D(%)

and assume moreover that p has finite cohomological dimension. Then the functor

p' sends DT(€") to D¥(€).

Proof. By the hypothesis, we have for X € D(%¢) and Y € D(%”)
HomD((g,)(,o(X),Y) Homy,, )(X p(Y)).

Assume that the cohomological dimension of the functor pis < r. Let Y € D=%(%").
Then (using Exercise 7.7) Homy ) (X, p'(Y)) =~ 0forall X € D<""(%). This implies
that p'(Y) € D=7"(%¢"). O
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Exercises to Chapter 7

Exercise 7.1. Let € be an abelian category with enough injectives. Prove that the
two conditions below are equivalent.

(i) For all X and Y in %, Ext{g(X, Y) ~0 for all j > n.

(ii) For all X in ¢, there exists an exact sequence 0 - X — X% — ... — X" — 0,
with the X7’s injective.

In such a situation, one says that ¥ has homological dimension < n and one writes
dh(%) < n.

(iii) Assume moreover that € has enough projectives. Prove that (i) is equivalent
to: for all X in €, there exists an exact sequence 0 — X" — --- — X? —+ X — 0,
with the X7’s projective.

Exercise 7.2. Let % be an abelian category with enough injectives and such that
dh(%) < 1. Let F': € — ¢ be a left exact functor and let X € DT(%).

(i) Construct an isomorphism H*(RF (X)) ~ F(H*(X)) ® R'F(H*1(X)).

(ii) Recall that dh(Mod(Z)) = 1. Let X € D7(Z), and let M € Mod(Z). Deduce
the isomorphism

HE (X, M) ~ (H*(X) &, M) & Tor; \(H*1(X), M),

Exercise 7.3. Let ¥ be an abelian category with enough injectives and let 0 —
X' = X — X” — 0 be an exact sequence in ¢. Assuming that Ext}é,(X”,X’) ~ 0,
prove that the sequence splits.

Exercise 7.4. Let ¥ be an abelian category and let X — Y — Z *L be a d.t.
in D(%). Assuming that Ext%(Z, X) ~ 0, prove that Y ~ X & Z. (Hint: use
Exercise 6.2.)

Exercise 7.5. Let ¢ be an abelian category, let X € D?(%) and let a < b € Z.
Assume that H?(X) ~ 0 for j # a,b and Extl;aH(Hb(X), H*(X)) =~ 0. Prove the
isomorphism X ~ H%(X)[—a] ® H*(X)[-b]. (Hint: use Exercise 7.4 and the d.t.
in 7.1.4.

Exercise 7.6. We follow the notations of Exercise 5.10. Hence, k is a field of
characteristic 0 and W := W, (k) is the Weyl algebra in n variables. Let 1 < p <n
and consider the left ideal

L=W- 214+ 4+W-2,+ W-0pp1+---+W-0,.
Define similarly the right ideal
Jy=a1 W tay, WAy - W +0,-W.

L
For 1 < p < ¢ < n, calculate RHom,,,(W/1,,W/I,) and (W/J,) ®,, (W/I,).
Exercise 7.7. Let € be an abelian category.

(a) Let X € D<U(¥) and Y € D=°(¥). Prove that Hom o (X,Y) >~ 0.

(b) Conversely, let Y € D(%) and assume that Homp,(X,Y) ~ 0 for all X €
D<%(%). Prove that Y € D=°(%).
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Exercise 7.8. Let F': € — %’ be a left exact functor of abelian categories and
assume that F' has a right derived functor and has cohomological dimension < d.
Denote by ¢ the additive subcategory of 4" consisting of F-injective objects and
consider an exact sequence 0 = X — X% = X! — ... —» X4 — 0 with X/ € ¢
for 0 < j < d. Prove that X4 € #.

(Hint: decompose the exact sequence into short exact sequences 0 — 7715 X —
77 — 0 with Z7t = X and show that RIF(Z%) ~ 0 for j > d — k.)

Exercise 7.9. Recall Definition 5.1.11 and Exercise 5.7.

Let ¢ be an abelian category and _# a full abelian subcategory, the embedding
J — € being exact. Denote by D}(CK) the full subcategory of DP(%) consisting
of objects X such that for all j € Z, H7(X) is isomorphic to an object of #.

(a) Assume that ¢ is thick in 4. Prove that D‘fj (€) is triangulated.

(b) Assume moreover that for any monomorphism Y — X with ¥ € _#, there
exists a morphism X — Z with Z € _# such that the composition ¥ — X — Z

is a monomorphism. Then prove that the natural functor D*(_#) — D% (%) is an
equivalence of categories. (Hint: use Proposition 6.4.5 or see [KS90, Prop. 1.7.11].)

Exercise 7.10. Assume that k (which has finite global dimension) is Noetherian
and denote by D?(k) the full triangulated subcategory of DP(k) consisting of objects
whose cohomologies are finitely generated. Let L, M € D"(k) and let N e D} (k).
Prove the isomorphism in D~ (k):

L L
RHom (L, M)®N =2 RHom (L, M&N).

(Hint: Represent N by a bounded for above complex of projective modules of finite
rank.)
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