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Introduction

The aim of these Notes is to provide a short and self-contained presentation
of the main concepts of general topology.

Of course, we certainly do not claim for any originality here. Indeed,
when writing these Notes, we have been deeply influenced by the excellent
book [3] of Jacques Dixmier.

We have included a few exercises at the end of the chapters. Here again
no originality should be expected.

Besides Dixmier’s book, and among a vast literature on the subject, let
us only mention the few books below.

For the French students who would learn Mathematical English, we reco-
mmand the Notes [5] by Jan Nekovar.
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Chapter 1

Topological spaces

1.1 A short review of Set Theory

Let us recall a few notations, results and formulas of Set Theory which are
of constant use.

• One denotes by ∅ the empty set and by {pt} a set with a single element.

• For a set X , one denotes by P(X) the set of all subsets of X .

• For two sets X1 and X2, one denotes by X1 ×X2 their product. There
are natural maps pi : X1 × X2 −→ Xi (i = 1, 2) called the projections.
The set X1 ×X2 is the set {(x1, x2); xi ∈ Xi, i = 1, 2}.

• More generally, if I is a set and {Xi}i∈I is a family of sets indexed by
i ∈ I, one denotes by

∏
i∈I Xi their product. An element x ∈ ∏

i∈I Xi

is a family x = {xi}i∈I with xi ∈ Xi for all i ∈ I. If Xi ≡ X for all
i one writes XI instead of

∏
i∈I X . For example, XN is the set of all

sequences in X .

• For two sets X1 and X2, one denotes by X1 ⊔X2 their disjoint union.
There are natural maps εi : Xi −→ X1 ⊔X2 (i = 1, 2). If X1 and X2 are
subsets of another set X , one shall not confuse X1 ⊔X2 and X1 ∪X2.

• If X is a set and R is an equivalence relation on X , one denotes by
X/R the quotient set which consists in identifying two elements x and
x′ when xRx′. The map γ : X −→ X/R is surjective and xRx′ if and
only if γ(x) = γ(x′). Conversely, if f : X −→ Y is a surjective map, it
defines an equivalence relation R on X by xRx′ if and only if f(x) =

f(x′). The map f factorizes uniquely as X
γ−→ X/R f̃−→ Y and the map

f̃ : X/R −→ Y is bijective.
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8 CHAPTER 1. TOPOLOGICAL SPACES

• If X and Y are two sets and f : X −→ Y is a map, its graph Γf is
the subset of X × Y given by Γf = {(x, y) ∈ X × Y ; y = f(x)}. In
particular, the graph of the identity map idX : X −→ X is the diagonal
∆X of X ×X .

• For two sets X and Y , a map f : X −→ Y and a subset A ⊂ X , one
denotes by f |A the restriction of f to A, a map A −→ Y .

• For a set X , there exists a unique map ∅ −→ X .

• For a set X , there exists a unique map X −→ {pt}.

• For a set X and two subsets A,B of X , one denotes by B \ A the set
of points of X which belong to B and not to A (in particular, X \A is
the complement of A in X).

• Given two families of sets {Ai}i∈I and {Bj}j∈J , one has
(
⋃

iAi) ∩ (
⋃

j Bj) =
⋃

i,j(Ai ∩Bj).

Let f : X −→ Y be a map, let {Ai}i∈I be a family of subsets of X and let
{Bj}j∈J be a family of subsets of Y .

• f−1(
⋃

j Bj) =
⋃

j(f
−1(Bj),

• f−1(
⋂

j Bj) =
⋂

j f
−1(Bj),

• f−1(Y ) = X , f−1(∅) = ∅,

• for B ⊂ Y , f−1(Y \B) = f−1(Y ) \ f−1(B),

• f(
⋃

iAi) =
⋃

i f(Ai).

One shall be aware that for subsets A,A1, A2 of X , one has

f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2),

f(X) \ f(A) ⊂ f(X \ A),

but these inclusions are not equalities in general.
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1.2 Review: norms and distances

Normed spaces

Let E be a vector space over the field k = R or k = C. A quasi-norm || · ||
on E is a map E −→ R≥0 ⊔ {+∞} satisfying




N1: ||x|| = 0 ⇔ x = 0 for all x ∈ E,
N2: ||λ · x|| = |λ| · ||x|| for all x ∈ E and λ ∈ k,
N3: ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ E.

(1.1)

One calls the inequality in N3, the triangular inequality. It implies ||x|| ≤
||x− y||+ ||y||, hence, after interchanging x and y:

|(||x|| − ||y||)| ≤ ||x− y|| for all x, y ∈ X.(1.2)

If the quasi-norm || · || takes its values in R≥0, then it is called a norm.
A vector space endowed with a norm is called a normed space.
If F is a vector subspace of E, a quasi-norm on E induces a quasi-norm

on F , called the induced quasi-norm.

Example 1.2.1. Let CN denote the space of all sequences x = (an)n∈N with
an ∈ C. One may endow CN with the quasi-norms below:

||x||∞ = sup
n

|an|, ||x||2 =
(∑

n

|an|2
) 1

2 , ||x||1 =
∑

n

|an|.

The fact that ||x||1 and ||x||∞ are quasi-norms is obvious as well as the fact
that ||x||2 satisfies N1 and N2. As for N3, see Exercise 1.1.

Example 1.2.2. Let X be a set. The set RX of all real valued functions on
X is endowed with the quasi-norm

||f ||X = sup
x∈X

|f(x)|.(1.3)

Definition 1.2.3. One denotes by lp(C) (p = 1, 2,∞) the subspace of CN

consisting of sequences x for which ||x||p <∞. One also denote by lp(R) the
subspace of lp(C) consisting of real sequences.

Note that the quasi-norm || · ||p becomes a norm when restricted to the
space lp(C). Hence, (lp(C), || · ||p) is a normed space. Also note that for
n ∈ N, Rn and Cn are subspaces of lp(C). In particular, Rn is endowed with
the norms || · ||p (p = 1, 2,∞). The norm || · ||2 is called the Euclidian norm.
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Definition 1.2.4. Let E be a k-vector space and let || · ||1 and || · ||2 be two
norms on E. One says that these two norms are equivalent if there exists a
constant c with 0 < c ≤ 1 such that

c|| · ||1 ≤ || · ||2 ≤ c−1|| · ||1

Clearly, this relation is an equivalence relations. We shall see later that
all the norms on a finite dimensional vector space are equivalent.

Metric spaces

Let X be a set. A quasi-distance, or generalized distance, d on X is a map
d : X ×X −→ R≥0 ⊔ {+∞} satisfying




D1: d(x, y) = d(y, x) for all x, y ∈ X ,
D2: d(x, y) = 0 ⇔ x = y for all x, y ∈ X ,
D3: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

(1.4)

One often calls the inequality in D3, the triangular inequality.

If the generalized distance d takes its values in R≥0, then it is called a
distance. A set X endowed with a distance d is called a metric space and
denoted (X, d). In the sequel, unless otherwise specified, we shall consider
distances, not quasi-distances.

Using D1 and D3, we get

|d(x, z)− d(y, z)| ≤ d(x, y) for all x, y, z ∈ X.(1.5)

One also encounters spaces endowed with a distance satisfying a property
stronger than D3, namely

D4: d(x, y) ≤ max(d(x, z), d(z, y)) for all x, y, z ∈ X .(1.6)

Such spaces are called ultrametric spaces.

If A is a subset of X and d is a distance on X , then d defines a distance
on A.

Definition 1.2.5. Let d1 and d2 be two distances on the same space X .
One says that d1 and d2 are equivalent if there exist a positive real numbers
0 < c ≤ 1 such that

c · d1 ≤ d2 ≤ c−1d1.
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Clearly, this relation is an equivalence relation.

Given a norm || · || on a vector space E, one associates a distance on E
by setting

d(x, y) = ||x− y||.(1.7)

Such a distance is invariant by translation:

d(x, y) = d(x+ z, y + z).

Clearly, two equivalent norms define two equivalent distances.

Definition 1.2.6. Let f : X −→ Y be a map and assume that X is endowed
with a distance dX and Y with a distance dY . One says that f is an isometry
if dY (f(x1), f(x2)) = dX(x1, x2) for all x1, x2 ∈ X .

Note that an isometry is necessarily injective.

1.3 Topologies

Definition 1.3.1. Let X be a set. A topology on X is the data of a subset
T ⊂ P(X), called the family of open subsets ofX , satisfying the axioms (1.8)
below. A topological space is a set endowed with a topology.





T1: ∅ and X are open (that is, ∅ ∈ T and X ∈ T ),
T2: for any family {Ui}i∈I of open subsets (that is, Ui ∈ T ), the
union

⋃
i Ui is open (that is,

⋃
i Ui ∈ T ),

T3: for any finite family {Uj}j∈J of open subsets (that is, Uj ∈ T ),
the intersection

⋂
j Uj is open (that is,

⋂
j Uj ∈ T ).

(1.8)

The complementary of an open subset is called a closed subset:

A is closed if and only if X \ A is open.

Hence, the family of closed subsets satisfies:





(i) ∅ and X are closed,
(ii) for a family {Si}i∈I of closed subsets, the intersection

⋂
i Si is

closed,
(iii) for a finite family {Sj}j∈J of closed subsets, the union

⋃
i Si

is closed.

(1.9)
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Example 1.3.2. (i) The family P(X) of all subsets of X defines a topology
on X , called the discrete topology on X . Note that for this topology, each
point {x} is open in X .
(ii) The topology on X for which the only open subsets are X and ∅ is called
the trivial topology.
(iii) On X = {pt} there is a unique topology, the open sets being pt and ∅.
(iv) Let X = R and recall that an open interval is an interval ]a, b[ with
−∞ ≤ a ≤ b ≤ +∞. Let us call open the subsets which are union of open
intervals. This clearly defines a topology on R, called the usual topology.
Similarly, an open subset of Rn for the usual topology is by definition a
union of products of open intervals.
(iv) The family of subsets ]−∞, c[ with −∞ ≤ c ≤ +∞ defines a topology
on R.
(v) Let X = C and let us say that a set U if open if there exists a polynomial
P ∈ C[z] such that U = {z ∈ C;P (z) 6= 0}. In other words, U is open if
either U is empty or C \ U is finite. One gets a topology on C called the
Zariski topology.

Topology associated with a distance

Let (X, d) denote a metric space. For a ∈ X and ε ≥ 0, one sets

B(a, ε) = {x ∈ X ; d(x, a) < ε},
B(a, ε) = {x ∈ X ; d(x, a) ≤ ε}.

One calls B(a, ε) (resp. B(a, ε)) the open (resp. closed) ball with center a
and radius ε.

Example 1.3.3. Draw the picture of the closed ball of center 0 and radius
1 for X = R2 endowed with one of the norms || · ||p, p = 1, 2,∞.

Definition 1.3.4. A subset U of X is called an open subset if it is a union
of open balls.

This definition will be justified by Proposition 1.3.6 below.

Lemma 1.3.5. Let U be an open subset and let x ∈ U . Then there exists
εx > 0 such that the open ball B(x, εx) is contained in U .

Proof. Since U is a union of open balls, there exist a ∈ X and η > 0 such
that x ∈ B(a, η). Hence, d(x, a) < η. Choose 0 < εx < η − d(a, x). Then
B(x, εx) ⊂ B(a, η) ⊂ U . q.e.d.

In particular, we get U =
⋃

xB(x; εx).
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Proposition 1.3.6. The family of open subsets of X satisfies the axioms
T1-T2-T3, hence defines a topology on X.

Proof. The axioms T1 and T2 are clearly satisfied. Let us prove T3. Let U1

and U2 be two open subsets and let x ∈ U1 ∩ U2. By Lemma 1.3.5, there
exist εi such that B(x, εi) ⊂ Ui (i = 1, 2). Setting ε = inf(ε1, ε2) we get that
B(x, ε) ⊂ U1 ∩ U2. Hence, U1 ∩ U2 is a union of open balls. q.e.d.

From now on, we shall consider a metric space as a topological space for the
topology defined by this proposition.

Proposition 1.3.7. (i) An open ball is open in X.

(ii) A closed ball is closed in X.

Proof. (i) is obvious.
(ii) Let B(a, ε) be a closed ball and let x /∈ B(a, ε). Then d(x, a) > ε.
Choose 0 < η < d(x, a) − ε. Then B(x, η) ⊂ X \ B(a, ε). This shows that
the complementary set of B(a, ε) is a union of open balls, hence is open.
q.e.d.

Proposition 1.3.8. Two equivalent distances on X define the same topology
on X.

The proof is obvious and left as an exercise.
However, one shall be aware that two non equivalent distances may induce

the same topology on X . See Example 1.4.7 below.

Example 1.3.9. Let X be a space and define a distance d on X by setting
d(x, x) = 0 and d(x, y) = 1 for x 6= y. Then the associated topology is the
discrete topology on X .

Neighborhoods

Definition 1.3.10. Let V ⊂ X and let x ∈ X . One says that V is a
neighborhood of x if V contains an open set U which contains x, that is,
there exists U open with x ∈ U ⊂ V .

Note that a set V is open if and only if it is a neighborhood of each of its
points. In fact, if V is open and x ∈ V , then V is a neighborhood of x, and
conversely, if for each x ∈ V there exists an open set Ux with x ∈ Ux ⊂ V ,
then V =

⋃
x∈V Ux is a union of open subset, hence is open.

Also note that the family of neighborhoods of x ∈ X is stable by finite
intersection.
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Definition 1.3.11. Let x ∈ X . A family {Vi}i∈I of subsets of X is a fun-
damental system of neighborhoods of x, or simply, a neighborhoods system
of x if any Vi is a neighborhood of x and for any neighborhood V of x, there
exists i ∈ I with Vi ⊂ V .

For example, the family of open subsets of X which contain x is a funda-
mental system of neighborhoods of x.

Proposition 1.3.12. Let (X, d) be a metric space and let a ∈ X. The family
{B(a, 1

n
)}n∈N>0

is a fundamental system of neighborhoods of a in X.

Proof. This follows from Lemma 1.3.5. q.e.d.

Note that the family {B(a, 1
n
)}n∈N>0

is also a fundamental system of neigh-
borhoods of a.

Interior and closure

Definition 1.3.13. Let A ⊂ X .

(i) The closure of A, (“la fermeture” or “l’adhérence” in French) denoted
A is the smallest closed subset of X which contains A, that is, A =

⋂
S

where S ranges through the family of all closed subsets of X which
contain A.

(ii) The interior of A, denoted Int(A) or IntA or also Å is the biggest open
subset contained in A, that is, IntA =

⋃
U where U ranges through the

family of open subsets of X contained in A.

(iii) The boundary of A, denoted ∂A is the set A \ IntA. Hence ∂A is the
closed subset X \ (IntA ∪ (Int(X \ A)).

Note that, for two subsets A and B of X :





IntA ⊂ A ⊂ A,
A is open ⇔ A = IntA,
A is closed ⇔ A = A,
IntA = X \ (X \A),
A = X \ Int(X \ A),
x ∈ A if and only if any neighborhood of x intersects A,
A ∪ B = A ∪B,
Int(A ∩ B) = IntA ∩ IntB.

Definition 1.3.14. (a) A subset A is dense in X if A = X .
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(b) A subset A has no interior points if Int(A) = ∅ or equivalently, X \ A is
dense in X .

For example, Q is dense in R and has no interior points.
Note that x ∈ A if and only if any neighborhood of x intersects A.
One shall be aware that in a metric space (X, d) the closed ball B(a, R)

is not necessarily the closure of the open ball B(a, R).

Example 1.3.15. On Z endowed with the distance induced by that of R,
consider the open ball B(0; 1) of center 0 and radius 1. Then B(0; 1) = {0}
and this ball is a closed set. Hence B(0; 1) 6= B(0; 1).

Definition 1.3.16. Let A ⊂ X and let x ∈ X .

(a) One says that x is an accumulation point of A if any neighborhood of x
intersects A \ {x}.

(b) One says that x is isolated in A if x ∈ A and x is not an accumulation
point of A, that is, there exists an open set U in X with x ∈ U and
(A \ {x}) ∩ U = ∅.

Hausdorff spaces

Definition 1.3.17. A topological space X is Hausdorff (“séparé” in French)
if for any x, y ∈ X with x 6= y, there exist a neighborhood Vx of x and a
neighborhood Vy of y with Vx ∩ Vy = ∅.

Example 1.3.18. (i) The space Rn endowed with its natural topology is
Hausdorff.
(ii) If a topological space X has more than one element, then the trivial
topology on X is not Hausdorff.

Proposition 1.3.19. Let (X, d) be a metric space. Then X is Hausdorff.

Proof. Let x, y ∈ X with x 6= y. Then d(x, y) > 0. Choose ε < d(x,y)
2

. Then
B(x, ε) ∩ B(y, ε) = ∅. q.e.d.

Induced topology

Let X be a topological space and let A ⊂ X . The induced topology on A is
defined as follows: a set V ⊂ A is open in A if and only if there exists U
open in X such that V = U ∩ A. It follows that a set S ⊂ A is closed in A
if and only if there exists Z closed in X such that S = Z ∩ A.
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Moreover, if A is open (resp. closed) in X , then the open (resp. closed)
sets in A are exactly the open (resp. closed) sets in X contained in A.

Note that if X is a Hausdorff space and A is a subset of X endowed with
the induced topology, then A is Hausdorff.

Definition 1.3.20. A subset A of X is discrete if the induced topology by
X on A is the discrete topology, or equivalently, if any point of A is isolated
in A.

Example 1.3.21. (i) We endow Z or N with the topology induced by that
of R. Hence, Z and a fortiori N are discrete.

(ii) Let A = { 1
n
}n∈N,n>0. Then A is discrete for the induced topology by R.

Note that A ∪ {0} is no longer discrete.

Example 1.3.22. Set N := N ∪ {+∞}. We endow N with the following
topology. The open sets of N are the union of the subsets of N and the sets
[n,+∞] (n ∈ N). Then N induces on N its discrete topology but N is not
discerete.

1.4 Continuous maps

Definition 1.4.1. Let X and Y be two topological spaces and f : X −→ Y a
map. One says that f is continuous if for any open subset V ⊂ Y , the set
f−1(V ) is open in X .

Note that f is continuous if and only if for any closed subset Z ⊂ Y , the
set f−1(Z) is closed in X . This is also equivalent to the following property:

for any x ∈ X and any neighborhoodW of f(x) in Y , f−1(W )
is a neighborhood of x in X .

(1.10)

It follows immediately from the definition that if f : X −→ Y and g : Y −→ Z
are continuous maps, then the composition g ◦ f : X −→ Z is continuous.

Example 1.4.2. (i) If X is endowed with the discrete topology and Y is a
topological space, any map f : X −→ Y is continuous.
(ii) If Y is endowed with the trivial topology and X is a topological space,
any map f : X −→ Y is continuous.

Definition 1.4.3. Let X and Y be two topological spaces and f : X −→ Y a
map. One says that f is continuous at a ∈ X if for any neighborhood W of
b = f(a) in Y , f−1(W ) is a neighborhood of a in X .
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Using (1.10), one gets that f is continuous if and only if f is continuous
at each x ∈ X .

One can obtain Definition 1.4.3 as a particular case of Definition 1.4.1 as
follows. Denote by X̃ the space X endowed with the new topology for which
the open subsets are ∅ and the open sets which contain a. Defines similarly
Ỹ , replacing a with f(a), and denote by f̃ : X̃ −→ Ỹ the map f . Then f is

continuous at a if and only if f̃ is continuous. In particular, we get that if
f : X −→ Y is continuous at a ∈ X and g : Y −→ Z is continuous at f(a), then
the composition g ◦ f : X −→ Z is continuous at a.

One also introduces the notion of an open (resp. closed) map.

Definition 1.4.4. A map f : X −→ Y is open (resp. closed) if the image by
f of any open (resp. closed) subset of X is open (resp. closed) in Y .

Example 1.4.5. (i) Let a, b ∈ R and let us endow the interval ]a, b] of R
with the induced topology. The embedding j : ]a, b] →֒ R is continuous, but
it is neither open nor closed.
(ii) IfX is an open (resp. a closed) subset of a topological space endowed with
the induced topology, then the embedding X →֒ Y is open (resp. closed).
(iii) Let n ≥ 1. The projections Rn −→ R are open.
(iv) The projection R2 −→ R is not closed. Indeed, consider the closed subset
of R2:

Z = {(x, y) ∈ R2; xy = 1, y > 0}.

The image of Z by the projection p1 : (x, y) 7→ x is the set ]0,+∞[ which is
not closed in R.

Definition 1.4.6. Let X and Y be two topological spaces. A topological iso-
morphism f : X −→ Y is a continuous map such that there exists a continuous
map g : Y −→ X satisfying g ◦ f = idX and f ◦ g = idY .

In the literature, topological isomorphisms are often called “homeomor-
phisms”.

Example 1.4.7. (i) Let X =] − π
2
,+π

2
[. Then the map tan: ] − π

2
,
π

2
[−→ R

is a topological isomorphism.
(ii) Let d1 denote the distance on X induced by that of R, that is, d1(x, y) =
|x − y|. Let d2 be the distance d2(x, y) = | tan(x) − tan(y)|. Since d1 is
bounded and d2 is not, these distances are not equivalent. Since the map
tan: (X, d2) −→ (R, | · |) is an isometry, the topology on X induced by d2 is
the inverse image topology of R by the map tan, and we have seen in (i) that
this is the usual topology of X . Hence, d1 and d2 induce the same topology
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on X =]− π
2
,+π

2
[. Hence, two distances may be not equivalent although they

define the same topology.

If two spaces X and Y are topologically isomorphic, then, as far as one is
interested in their topological properties, they can be identified, similarly as
two real vector spaces of the same dimension can be identified as far as one

is only interested in their linear properties. However, if the spaces ]− π

2
,
π

2
[

and R can be identified as topological spaces, they cannot be identified as
metric spaces (see below).

Note that a topological isomorphism is bijective. However, a continuous
map can be bijective without being a topological isomorphism. For example
denote by Y the space R endowed with its natural topology and denote by
X the space R endowed with the discrete topology. Then the identity map
X −→ Y is bijective and continuous without being a topological isomorphism.

Consider a continuous and bijective map f : X −→ Y . Then f is a topo-
logical isomorphism if and only if f is open (resp. closed).

Limits and sequences

Let X and Y be two topological spaces, A ⊂ X , a ∈ A (in general, a /∈ A),
b ∈ Y and let f : A −→ Y be a map.

Definition 1.4.8. One says that f(x) converges (or goes) to b when x goes
to a with x ∈ A, if for any neighborhood V of b in Y , f−1(V ) = U ∩ A for
some neighborhood U of a in X . In this case, one writes: f(x) −→ b when

A ∋ x −→ a or, for short, f(x)
x−→a−−−→ b.

Consider the space X̃ = X∪{a}, endowed with the induced topology and

define the map f̃ : X̃ −→ Y by setting f̃(x) = f(x) for x ∈ A and f̃(a) = b.

Then f(x) converges to b when x goes to a if and only if the map f̃ is
continuous at a.

Now consider a sequence (yn)n∈N in a topological space Y . This is nothing
but a map χ : N −→ Y where χ(n) = yn. Let b ∈ Y . Now embed N in N

where this last space is endowed with the topology of Example 1.3.22, and
extends χ to N by setting χ(∞) = b:

χ : N −→ X, χ(n) = yn, χ(∞) = b.(1.11)

The sequence (yn)n∈N in Y converges to b when n goes to infinity (one writes
writes yn

n−→ b) if and only if χ(n) goes to b when n goes to infinity. In other
words

the sequence (yn)n∈N converges to b when n goes to in-
finity if and only if for any neighborhood V of b there
exists N ∈ N such that yn ∈ V for all n ≥ N .

(1.12)
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1.5 Inverse image topology

Let X and Y be two sets and let f : X −→ Y be a map. Assume that Y
is endowed with a topology. One then defines a topology on X , called the
inverse image topology, by deciding that the open subsets ofX are the inverse
image by f of the open subsets of Y , that is,

U ⊂ X is open in X if and only if U = f−1(V ) for an open subset V of Y

One checks easily that the axioms (1.8) are satisfied and moreover, the map
f is continuous.

Example 1.5.1. (i) The induced topology is a particular case of the inverse
image topology. Denote by j : A →֒ X the injection of a subset A of X . The
induced topology on A is the inverse image topology by j.
(ii) Set X = Y = R and consider the map f : X −→ Y , x 7→ x2. Endow Y
with its natural topology and X with the inverse image topology. Then a set
A is open in X if and only if it is open for the usual topology and moreover
A = −A, that is, x ∈ A if and only if −x ∈ A.

Proposition 1.5.2. Let f : X −→ Y be a continuous map and assume that the
topology on X is the inverse image topology. Let S be a topological space and
let g : S −→ X be a map. Then g is continuous if and only if h :=f ◦g : S −→ Y
is continuous.

S

g

��

h

  ❆
❆❆

❆❆
❆❆

❆

X
f

// Y.

Proof. The map g is continuous if and only if for any U open in X , g−1(U)
is open in S. Since any U open in X is of the type f−1(V ) for V open in Y ,
this is equivalent to saying that for any V open in Y , g−1(f−1(V )) = h−1(V )
is open in S. q.e.d.

1.6 Product topology

Let X1 and X2 be two topological spaces 1 and let X = X1 × X2 be their
product. Hence, X is the set of points (x1, x2) with xi ∈ Xi (i = 1, 2). One
denotes by

pi : X1 ×X2 −→ Xi (i = 1, 2)(1.13)

1The reader will extend the definitions and results of this section to the case of n

topological spaces X1, X2, . . . , Xn.
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the projections.

Definition 1.6.1. An elementary open subset of X is a product U1 × U2

with Ui open in Xi (i = 1, 2).
An open subset of X is a union of elementary open subsets.

Proposition 1.6.2. The family of open subsets of X defines a topology on
X.

The topology defined by the above proposition is called the product topol-
ogy.

Proof. Let us check the axioms of (1.8).
T1: ∅ = ∅ ×X2 and X = X1 ×X2,
T2: is obvious,
T3: Let U and V be two open subsets of X . Then U =

⋃
i Ui and V =

⋃
j Vj

where the Ui’s and the Vj’s are elementary open subsets. Hence Ui = U1
i ×U2

i

and Vj = V 1
j × V 2

j . Then U ∩ V =
⋃

i,j(Ui ∩ Vj) and each Ui ∩ Vj is an
elementary open set since

Ui ∩ Vj = (U1
i ∩ V 1

j )× (U2
i ∩ V 2

j ).

q.e.d.

Proposition 1.6.3. The projections pi (see (1.13)) are continuous. More-
over, given a topological space Z, a map f : Z −→ X is continuous if and only
if the two compositions pi ◦ f (i = 1, 2) are continuous.

X1

Z

p1◦f

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

p2◦f
))❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚ f // X1 ×X2

p1

::✉✉✉✉✉✉✉✉✉

p2

$$■
■■

■■
■■

■■
■

X2

(1.14)

Proof. (i) Let U be an open subset of X1. Then p−1
1 (U) = U × X2 is an

elementary open subset of X .
(ii) If f : Z −→ X is continuous, then the compositions pi ◦ f (i = 1, 2) are
continuous by (i). Conversely, assume that the compositions pi ◦ f (i = 1, 2)
are continuous. Let U be an open subset of X . Then U is a union of
elementary open subsets and since f−1 commutes with unions, it is enough
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to check that the inverse image of an elementary open subset U1×U2 is open
in Z. This follows from

f−1(U1 × U2) = f−1(U1 ×X2) ∩ f−1(X1 × U2)

= (p1 ◦ f)−1(U1) ∩ (p2 ◦ f)−1(U2).

q.e.d.

Proposition 1.6.4. The space X is Hausdorff if and only if each space Xi

(i = 1, 2) is Hausdorff.

Proof. (i) Assume X1 and X2 are Hausdorff. Let x, y ∈ X with x 6= y.
Setting x = (x1, x2) and y = (y1, y2), we have x1 6= y1 or x2 6= y2 (or
both). Assume x1 6= y1 and choose two open subsets U1 and V1 in X1 with
x1 ∈ U1, y1 ∈ V1 and U1 ∩ V1 = ∅. Then x ∈ U1 × X2, y ∈ V1 × X2 and
(U1 ×X2) ∩ (V1 ×X2) = ∅.
(ii) The proof of the converse statement is similar and left to the reader.
q.e.d.

For a set X , recall that one denotes by ∆X the diagonal of X ×X :

∆X = {(x, y) ∈ X ×X ; x = y}.

If X is a topological space, one endows ∆X with the topology induced by
X × X . Then one checks easily that the projections pi (i = 1, 2) induce
topological isomorphisms pi : ∆X

∼−→X .

Proposition 1.6.5. The space X is Hausdorff if and only if the diagonal
∆X is closed in X ×X.

Proof. (i) Assume X is Hausdorff. Let us prove that the complementary set
of ∆X is a union of elementary open sets, hence is open. Let (x, y) ∈ X ×X
with (x, y) /∈ ∆X , that is, x 6= y. Let U ∈ x, V ∋ y be two open sets with
U ∩ V = ∅. Then (x, y) ∈ U × V and ∆X ∩ (U × V ) = ∅.
(ii) The proof of the converse statement is similar and left to the reader.
q.e.d.

Corollary 1.6.6. Let f, g : X −→ Y be two continuous maps and let A ⊂ X
be a dense subset. Assume that f = g on A and Y is Hausdorff. Then f = g.

Proof. The map (f, g) : X −→ Y × Y is continuous. Hence the inverse image
of the diagonal ∆Y by this map is closed in X . Since its contains A, it is
equal to X . q.e.d.
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Example 1.6.7. Consider the Euclidian circle S1 ⊂ R2. One sets T:=S1×S1

and calls it the torus. It is naturally a subset of R4 but it can be drawn in
R3, visualized by the picture below.

(1.15)

1.7 Direct image topology

Let X and Y be two sets and let f : X −→ Y be a map. Assume that X
is endowed with a topology. One then defines a topology on Y , called the
direct image topology, by deciding that a subset V of Y is open if and only if
f−1(V ) is open in X .

V ⊂ Y is open in Y if and only if f−1(V ) is open in X .

One checks easily that the axioms (1.8) are satisfied.

Proposition 1.7.1. Let f : X −→ Y be a map and assume that the topology on
Y is the direct image topology. Let Z be a topological space and let g : Y −→ Z
be a map. Then g is continuous if and only if h:=g◦f : X −→ Z is continuous.

X
f

//

h
  ❆

❆❆
❆❆

❆❆
❆ Y

g

��
Z.

Proof. The map g is continuous if and only if for any W open in Z, g−1(W )
is open in Y . By the definition of the image topology on Y , this is equivalent
to saying that f−1g−1(W ) = h−1(W ) is open in X . q.e.d.

Example 1.7.2. Set T :=R/2πZ endowed with the quotient topology. Here,
R/2πZmeans the quotient of R by the equivalence relation x ∼ y ⇔ (x−y) ∈
2πZ. As a topological space, one also have T = [0, 2π]/ ∼ where ∼ is the
equivalence relation which identifies the two points 0 and 2π, that is, 0 ∼ 2π
and otherwise x ∼ y if and only if x = y. The space T endowed with the
quotient topology is Hausdorff. Indeed, consider x 6= y in T. If x and y are
both different from the image of 0, we choose two open neighborhoods U and
V of x and y in ]0, 2π[ with U ∩ V = ∅. If x is the image of 0 (hence, y is
not) we choose two open neighborhoods U and V of 0 ∪ 2π and y in [0, 2π]
with U ∩ V = ∅.
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Example 1.7.3. Denote by Sn the Euclidian n-sphere, that is, the unit
sphere of the space Rn+1 endowed with its Euclidian norm. On the other
hand, consider the space (Rn+1 \ {0})/R+, endowed with the quotient topol-
ogy and denote by g the quotient map:

g : Rn+1 \ {0} −→ (Rn+1 \ {0})/R+.

Here, (Rn+1 \ {0})/R+ means the quotient of Rn \ {0} by the equivalence
relation x ∼ y ⇔ x = λy for some λ ∈ R+. We call this quotient space, the
topological n-sphere.

Clearly, the quotient map g induces an isomorphism from the Euclidian n-
sphere to the topological n-sphere and this last one is in particular Hausdorff.
In the sequel, we shall often identify the Euclidian and the topological n-
spheres, and denote them by Sn.

Example 1.7.4. Consider the map

f : T −→ S1, θ 7→ exp(iθ).

This map is bijective, and one checks that it is a topological isomorphism.
(See also Example 3.1.10.)

Glueing topological spaces

Assume we have two topological spaces X1 and X2. One endows the disjoint
union X1⊔X2 of a topology by taking as open subsets the union of the open
subsets of X1 and of X2. We have natural maps εi : Xi −→ X1 ⊔X2.

The next result is obvious.

Proposition 1.7.5. The maps εi are continuous. Moreover, given a topo-
logical space Z, a map f : X1 ⊔X2 −→ Z is continuous if and only if the two
compositions f ◦ εi (i = 1, 2) are continuous.

X1

ε1
$$■

■■
■■

■■
■■

f◦ε1

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

X1 ⊔X2 f // Z

X2

ε2

::✉✉✉✉✉✉✉✉✉
f◦ε2

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Now suppose that we also have two closed subsets S1 ⊂ X1 and S2 ⊂ X2 and
a topological isomorphism H : S1

∼−→S2. Then one can consider the space

X1 ⊔S X2 := (X1 ⊔X2)/R



24 CHAPTER 1. TOPOLOGICAL SPACES

where R is the equivalence relation which identifies S1 and S2. We do not
give more details, referring to the picture below as an example.

(1.16)

Exercises to Chapter 1

Exercise 1.1. (i) For (aj)j∈N and (bj)j∈N in CN, prove the Cauchy-Schwarz’s
inequality:

N∑

j=1

|ajbj | ≤
( N∑

j=1

|aj |2
) 1

2

( N∑

j=1

|bj |2
) 1

2 ,(1.17)

(ii) Deduce the inequality

( N∑

j=1

|aj + bj |2
) 1

2 ≤
( N∑

j=1

|aj |2
) 1

2 +
( N∑

j=1

|bj |2
) 1

2 .

(iii) Prove that || · ||2 is a quasi-norm on CN.
(Hint: for (i), use the fact that for any real λ,

∑N

j=1(aj+λbj)
2 ≥ 0 and deduce

that the discrimant of the polynomial
∑N

j=1 a
2
j + 2λ

∑N

j=1 ajbj + λ2
∑N

j=1 b
2
j

is negative.)

Exercise 1.2. Let X be a topological space and let A ⊂ X . One sets α(A) =
Int(A) and β(A) = Int(A). Prove that if A is open, then A ⊂ α(A) and if A
is closed, then β(A) ⊂ A. Deduce that for any A ⊂ X , α(α(A)) = α(A) and
β(β(A)) = β(A).

Exercise 1.3. let X and Y be two topological spaces and let f : X −→ Y be
a map. One denotes by Γf = {(x, y) ∈ X × Y ; y = f(x)} the graph of f ,
endowed with the induced topology by X × Y .
(i) Prove that f is continuous if and only if the map X −→ Γf given by
x 7→ (x, f(x)) is a topological isomorphism.
(ii) Prove that if f is continuous and Y is Hausdorff, then Γf is closed in
X × Y .
(iii) Give an example in which X and Y are Hausdorff, Γf is closed but f is
not continuous.
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Exercise 1.4. Let us denote by R the space {−∞}∪R∪{+∞}. One endows
R with a structure of a topological space by taking for open subsets those
which are a union of open subsets of R and the sets [−∞, a[ and ]b,+∞].
Prove that the topological isomorphism tan: ] − π

2
,+π

2
[ ∼−→R extends as a

topological isomorphism

tan: [−π
2
,+

π

2
] ∼−→R.(1.18)

Exercise 1.5. Let X be a topological space and let A ⊂ X , x ∈ A. Let
f, g : X −→ R be two continuous maps and assume that f |A ≤ g|A. Prove
that f(x) ≤ g(x).

Exercise 1.6. Let X be a set with two elements X = {a, b}. Describe all
possible topologies on X .

Exercise 1.7. Let f : X −→ Y be a continuous map and let Z ⊂ X . Prove
the inclusion f(Z) ⊂ f(Z). (Hint: otherwise, there exists x ∈ Z and an open
neighborhood V of f(x) such that V ∩ f(Z) = ∅.)

Exercise 1.8. Let E be a finite dimensional real vector space and let γ be a
closed convex cone in E with 0 ∈ E. (Recall that a subset A of E is convex
if x, y ∈ A implies tx + (1 − t)y ∈ A for all t ∈ [0, 1], that is, the segment
[x, y] is containbed in A.)

Let us say that a subset U ⊂ E is γ-open if U = U + γ.
(i) Prove that the family of γ-open subsets defines a topology on E.
(i) Assume that γ contains no line. (One says that γ is a proper cone.) Prove
that for x 6= y, there exists a γ-open set U such that x ∈ U and y /∈ U or
y ∈ U and x /∈ U .
(iii) Prove that the γ-topology is Hausdorff if and only if γ = {0}.
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Chapter 2

Metric spaces

2.1 Basic properties of metric spaces

We have defined the notions of a distance and a metric space in Section 1.2.
Let (X, d) be a metric space. Consider a sequence (xn)n∈N in X and let

a ∈ X . As a particular case of (1.12), we have that xn
n−→ a if and only if for

any ε > 0 there exists N ∈ N such that d(a, xn) ≤ ε for all n ≥ N . Hence

Proposition 2.1.1. Let (xn)n be a sequence in the metric space (X, d) and
let a ∈ X. Then xn

n−→ a if and only if d(a, xn) goes to 0 when n goes to
infinity.

Definition 2.1.2. Consider a sequence (xn)n in the metric space (X, d).
One says that a ∈ X is a limit point (valeur d’adhérence, in French) of the
sequence if for any neighborhood U of a in X and any N ∈ N, there exists
n ≥ N such that xn ∈ U .

Proposition 2.1.3. Consider a sequence (xn)n and set Fp :=
⋃

n≥p{xn}.
Then the set F of limit points of (xn)n is the set F =

⋂
p Fp.

Proof. By the definition, a ∈ X is a limit point if and only if a belongs to
the closure of all Fp’s. q.e.d.

Consider a sequence (xn)n∈N in X . Recall that an extracted sequence is a
sequence (xp(n))n∈N where the map n −→ p(n) is strictly increasing (hence,
p(n) ≥ n).

Corollary 2.1.4. Consider a sequence (xn)n and let a ∈ X. Then a is a
limit point of the sequence if and only if there exists an extracted sequence
which converges to a.

27
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Proof. (i) If there exists an extracted sequence (xp(n))n of the sequence (xn)n
which converges to a then, for each neighborhood U of a there exists N ∈ N

such that xp(n) ∈ U for all n ≥ N . Since p(n) ≥ n, this implies that a is a
limit point of the sequence.
(ii) Conversely, let a be a limit point. By Proposition 2.1.3, a ∈ ⋃

p Fp.
Define a sequence by choosing xn ∈ Fn. then the sequence converges to a.
q.e.d.

Proposition 2.1.5. Let A ⊂ X. Then x ∈ A if and only if there exists a
sequence (xn)n in A with xn

n−→ x.
In particular, a is a limit point of a sequence (xn)n if and only if there

exists an extracted sequence (xn(p))p which goes to a when p goes to infinity.

Proof. (i) Assume that x ∈ A. Then any ball B(x, 1
n
) intersects A. Hence

there exists xn ∈ A with d(x, xn) <
1
n
.

(ii) Assume xn
n−→ x with xn ∈ A for all n. Let U be a neighborhood of x.

There exists some xn ∈ U . Hence, U ∩ A 6= ∅. q.e.d.

Proposition 2.1.6. Let X and Y be two metric spaces and let f : X −→ Y
be a map. Then f is continuous at a ∈ X if and only if, for any sequence
(xn)n in X with xn

n−→ a, the sequence (f(xn))n converges to f(a).

Proof. First, note that f is continuous at a if and only if, for any ε > 0,
f−1(B(f(a), ε)) is a neighborhood of a, that is, contains a ball B(a, η) for
some η > 0. In other words, f is continuous at a if and only if for any ε > 0
there exists η > 0 such that

d(a, x) < η ⇒ d(f(a), f(x)) < ε.(2.1)

(i) Assume f is continuous at a and let (xn)n be a sequence inX with xn
n−→ a.

Let ε > 0 and let us choose η > 0 such that (2.1) is satisfied. Let N ∈ N

such that d(a, xn) < η for n ≥ N . Then d(f(a), f(xn)) < ε which proves
that f(xn)

n−→ f(a).
(ii) Conversely, assume that for any sequence (xn)n in X with xn

n−→ a,
the sequence f(xn) converges to f(a). Assume that f is not continuous at
a. Then there exists ε > 0 such that for any η > 0 there exists xη with
d(a, xη) < η and d(f(a), f(xη)) ≥ ε. Choosing η = 1

n
and setting x′n = x 1

n
,

we get a sequence (x′n)n with x′n
n−→ a and d(f(x′n), f(a)) ≥ ε. This is a

contradiction. q.e.d.

Proposition 2.1.7. Let (X, d) be a metric space. Then the map d : X×X −→
R+ is continuous. (Here, X ×X is endowed with the product topology.)
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Proof. Let (x0, y0) ∈ X ×X and let ε > 0. Set for short δ := d(x0, y0). We
have to check that d−1(]δ − ε, δ + ε[), the inverse image by d of the interval
]δ− ε, δ+ ε[), is a neighborhood of (x0, y0). Let us show that it contains the
set B(x0,

ε
2
)× B(y0,

ε
2
). Indeed,

d(x, y) ≤ d(x, x0) + δ + d(y0, y),

δ ≤ d(x0, x) + d(x, y) + d(y, y0).

Hence, for x ∈ B(x0,
ε
2
) and y ∈ B(y0,

ε
2
), we have

d(x, y) < δ +
ε

2
+
ε

2
,

δ < d(x, y) +
ε

2
+
ε

2
.

Therefore |d(x, y)− d(x0, y0)| < ε. q.e.d.

Distances of sets and diameters

Definition 2.1.8. (i) Let A ⊂ X . The diameter of A, denoted δ(A), is
given by δ(A) = supx,y∈A d(x, y).

(ii) Let A,B ⊂ X . The distance from A to B, denoted d(A,B), is given by
d(A,B) = infx∈A,y∈B d(x, y).

Proposition 2.1.9. (i) Let A ⊂ X. Then δ(A) = δ(A).

(ii) Let A,B ⊂ X. Then d(A,B) = d(A,B).

Proof. (i) Denote by ImA the image in R of the set A×A by the map d. Since
this map is continuous, we have ImA ⊂ ImA by the result of Exercise 1.7.
Therefore,

δ(A) = sup(ImA) = sup(ImA) ≥ sup(ImA) = δ(A).

On the other hand, δ(A) ≥ δ(A).
(ii) Denote by Im(A × B) the image in R of the set A × B by the map d.
Since d is continuous, we have Im(A × B) ⊂ Im(A×B) by the result of
Exercise 1.7. Therefore

d(A,B) = inf(Im(A,B)) = inf(Im(A,B)) ≤ inf(Im(A,B)) = d(A,B).

On the other hand, d(A,B) ≤ d(A,B).

q.e.d.
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One shall be aware that d(A,B) = 0 does not imply that A = B and even,
does not imply that A ∩ B is non empty. For example, take X = R2

endowed with its Euclidian distance and consider the sets A = R × {0},
B = {(x, y); y = exp(−x)}. Then d(A,B) = 0.

Uniformly continuous maps

Let (X, dX) and (Y, dY ) be two metric spaces and let f : X −→ Y be a map.

Definition 2.1.10. One says that f is uniformly continuous if

for any ε > 0, there exist η > 0 such that for any x, x′ ∈ X ,
dX(x, x

′) < η implies dY (f(x), f(x
′)) < ε.

The difference with the notion of being continuous is that in general, if f
is only continuous at each x ∈ X , then the number η above depends on the
point x. The notion of uniform continuity depends on the distances and has
no meaning on general topological spaces.

Example 2.1.11. The map f : R −→ R given by x 7→ x2 is continuous but is
not uniformly continuous for the usual distance on R.

Definition 2.1.12. One says that f : X −→ Y is Lipschitzian (or simply, f
is Lipschitz) if there exists a real number λ ≥ 0 such that

dY (f(x), f(x
′)) ≤ λdX(x, x

′) for all x, x′ ∈ X.(2.2)

If moreover λ < 1, one says that f is contracting.

We shall study contracting maps in § 2.4.
Clearly, if f is Lipschitz, then it is uniformly continuous.

Uniform convergence

Recall that a generalized distance d is a map with values in [0,+∞] satisfying
the axioms D1-D2-D3 of (1.4). The notion of a Cauchy sequence and of a
complete space still makes sense for such a distance.

Let X be a set and let (Y, d) be a metric space. Denote by Y X the set of
maps from X to Y . One defines a generalized distance on Y X by setting, for
f, g ∈ Y X :

δ(f, g) = sup
x∈X

d(f(x), g(x)).(2.3)

The generalized distance given by (2.3) is called the distance of uniform
convergence.
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Hence, we have now two different notions of convergence for functions
from X to Y . Consider a sequence (fn)n in Y X an let f ∈ Y X . Then




(i) (fn)n converges simply to f if for any x ∈ X ,
d(f(x), fn(x))

n−→ 0,
(ii) (fn)n converges uniformly to f if δ(f, fn)

n−→ 0.
(2.4)

One translates (i) as follows:
for any x ∈ X and any ε > 0 there exists N ∈ N such that for any n ≥ N ,
d(f(x), fn(x)) ≤ ε.

One translates (ii) as follows:
for any ε > 0 ther exists N ∈ N such that for any n ≥ N and any x ∈ X ,
d(f(x), fn(x)) ≤ ε.

Of course, saying that d(f(x), fn(x)) ≤ ε for any x ∈ X is equivalent to
saying that supx∈X d(f(x), fn(x)) ≤ ε.

Proposition 2.1.13. Let X be a topological space, x0 ∈ X, and let (Y, d) be
a metric space. Let (fn)n be a sequence of functions from X to Y . Assume
that the sequence converges uniformly to a function f : X −→ Y and each fn
is continuous at x0. Then f is continuous at x0.

Proof. Let ε > 0. There exists N > 0 such that

d(f(x), fn(x)) ≤
ε

3
for all n ≥ N and all x ∈ X.(2.5)

Let us choose such an n ≥ N and let us choose a neighborhood V of x0 such
that

d(fn(x), fn(x0)) ≤
ε

3
for all x ∈ V .

Then

d(f(x), f(x0)) ≤ d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(fn(x0), f(x0))

≤ ε

3
+
ε

3
+
ε

3
= ε.

Therefore, f(x) −→ f(x0) when x −→ x0. q.e.d.

2.2 Complete metric space

Let (X, d) be a metric space.
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Definition 2.2.1. (i) A sequence (xn)n∈N in X is a Cauchy sequence if
for all ε > 0 there exists N ∈ N such that for any n,m ≥ N one has
d(xn, xm) ≤ ε.

(ii) A metric space is complete if any Cauchy sequence is convergent.

(iii) A Banach space over the field R or C is a vector space endowed with a
norm and complete for the distance defined by this norm.

Example 2.2.2. (i) The space R endowed with its usual distance, is com-
plete.

(ii) The space Rn endowed with one of the norms of Example 1.2.1 is a
Banach space.

(iii) If two distances d1 and d2 are equivalent, then (X, d1) is complete if and
only if (X, d2) is complete.

(iv) If f : (X, dX) −→ (Y, dY ) is a surjective isometry, then X is complete if
and only if Y is complete.

(v) The space ] − π
2
,+π

2
[ endowed with the distance induced by the one of

R, that is, d(x, y) = |x − y| is not complete. However, the same space
endowed with the distance d2(x, y) = | tan(x) − tan(y)| is complete since it
is isomorphic to R as a metric space.

Proposition 2.2.3. (i) A convergent sequence is a Cauchy sequence.

(ii) If a Cauchy sequence admits an extracted sequence which converges,
then the Cauchy sequence converges.

The proof is left as an exercise.

Proposition 2.2.4. (i) Let X be a metric space and let Y be a subspace.
Assume that Y is complete. Then Y is closed in X.

(ii) Let X be a complete metric space and let Y be a closed subspace. Then
Y is complete.

Proof. (i) Let us prove that Y = Y . Let x ∈ Y . For any n there exists
xn ∈ B(x, 1

n
) ∩ Y . The sequence (xn)n is clearly a Cauchy sequence. Hence

it converges in Y , which implies x ∈ Y .

(ii) A Cauchy sequence in Y converges in X since X is complete, and the
limit belongs to Y since Y is closed in X . Hence, it converges in Y . q.e.d.
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Product

Let (Xi, di) (i = 1, 2) be metric spaces. One may endow X1×X2 with various
distances. For example, setting x = (x1, x2) and y = (y1, y2), we set:

δ1(x, y) = d1(x1, y1) + d2(x2, y2),(2.6)

δ2(x, y) =
√
d1(x1, y1)2 + d2(x2, y2)2,(2.7)

δ∞(x, y) = max(d1(x1, y1), d2(x2, y2)).(2.8)

These distances are clearly equivalent and we shall simply denote by d one
of them.

Proposition 2.2.5. Assume that (X1, d1) and (X2, d2) are complete. Then
(X1 ×X2, d) is complete.

Proof. Let us denote by x = (x′, x′′) a point of X1×X2. If (xn)n is a Cauchy
sequence in X1 ×X2, then (x′n)n is a Cauchy sequence in X1 and (x′′n)n is a
Cauchy sequence in X2. Therefore there exists x = (x′, x′′) such that x′n

n−→ x′

and x′′n −→ x′′. This implies that xn
n−→ x. q.e.d.

Prolongation of continuous maps

Proposition 2.2.6. Let X and Y be two metric spaces. Let A ⊂ X and
let f : A −→ Y be a map. We assume that A is dense in X, f is uniformly
continuous and Y is complete. Then there exists a unique continuous map
f̃ : X −→ Y such that f̃ |A = f . Moreover f is uniformly continuous.

Proof. (i) The unicity follows from Corollary 1.6.6.

(ii) Let x ∈ X . We define f̃(x) as follows. Let (xn)n be a sequence in A with
xn

n−→ x. Then (xn)n is a Cauchy sequence. Since f is uniformly continuous
on A, the sequence (f(xn))n is a Cauchy sequence in Y . Indeed, given ε > 0
there exists η > 0 such that

dX(x
′, x′′) ≤ η, x′, x′′ ∈ A⇒ d(f(x′), f(x′′)) ≤ ε.(2.9)

Moreover, there exists N ∈ N such that

dX(xn, xm) ≤ η for n,m ≥ N.

This implies

dY (f(xn), f(xm)) ≤ ε for n,m ≥ N.

Since Y is complete, there exists y ∈ Y such that f(xn)
n−→ y.
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(iii) Let us show that y depends only on x, not on the choice of the sequence
(xn)n. Consider two sequences (x′n)n and (x′′n)n which converge to x and let
f(x′n)

n−→ y′, f(x′′n)
n−→ y′′. Define the sequence (xn)n by setting

x2n = x′n, x2n+1 = x′′n.

Then xn
n−→ x and f(xn) has a limit y. Since {f(x′n)}n and (f(x′′n))n are

extracted sequences from (f(xn))n, they have the same limit. Hence, y′ =
y = y′′.
(iv) Let us define f̃ on X as follows. For x ∈ X , choose a sequence (xn)n in
A with xn

n−→ x and define f(x) as the limit of the sequence (f(xn))n. Then

f̃ |A = f . Indeed, if x ∈ A we may choose xn = x for all n.

(v) It remains to show that f̃ is uniformly continuous. Given ε > 0, let
us choose η > 0 as in (2.9). Let x′, x′′ ∈ X with dX(x

′, x′′) ≤ η

2
. Choose

sequences (x′n)n and (x′′n)n in A with x′n
n−→ x′ and x′′n

n−→ x′′. There exists
N such that n ≥ N implies dX(x

′
n, x

′) ≤ η

4
and dX(x

′′
n, x

′′) ≤ η

4
. There-

fore, dX(x
′
n, x

′′
n) ≤ η and this implies dY (f(x

′
n), f(x

′′
n)) ≤ ε. The sequence

((x′n, x
′′
n))n converges to (x′, x′′) in X × X and the function dY ◦ (f, f) is

continuous on X ×X . Therefore dY (f(x
′), f(x′′)) ≤ ε. q.e.d.

Remark 2.2.7. Let (X, d) be a metric space. Then one can prove that there

exists (ι, X̂, d̂) such that: (X̂, d̂) is a complete metric space and ι : (X, d) −→
(X̂, d̂) is an isometry with dense image. Moreover (X̂, d̂) is unique up to a
bijective isometry.

For example, taking X = Q with the usual distance (that is, d(x, y) =

|x− y|), one obtains X̂ = R endowed with its usual distance.

Intervertion of limits

1 Let X and Z be topological spaces and let (Y, d) be a metric space. Let
A ⊂ X and B ⊂ Z. Consider a map

f : A× B −→ Y.

Proposition 2.2.8. Let x0 ∈ A and z0 ∈ B. Assume

(a) Y is complete,

(b) for each z ∈ B, f(x, z) has a limit denoted f(x0, z) when x −→ x0, x ∈ A
(that is, for any z ∈ B, any ε > 0, there exists a neighborhood U of x0
in X such that d(f(x, z), f(x0, z)) ≤ ε for any x ∈ U ∩A),

1The subsection “Intervertion of limits” may be skipped by the students.
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(c) for each x ∈ A, f(x, z) has a limit denoted f(x, z0) when z −→ z0, z ∈ B
and the limit f(x, z) −→ f(x, z0) is uniform with respect to x ∈ A (that
is, for any ε > 0, there exists a neighborhood V of z0 in Z such that
d(f(x, z), f(x, z0)) ≤ ε for any x ∈ A, z ∈ V ∩B).

Then f(x, z0) has a limit f(x0, z0) ∈ Y when x −→ x0 and f(x0, z) converges
to f(x0, z0) when z −→ z0.

Proof. Let ε > 0. Using hypothesis (c), we find a neighborhood V of z0 in Z
such that

d(f(x, z), f(x, z0)) ≤
ε

3
for any x ∈ A, z ∈ V ∩ B.(2.10)

Let us choose z1 ∈ V ∩B. Using hypothesis (b), there exists a neighborhood
U of x0 in X such that

d(f(x, z1), f(x
′, z1)) ≤

ε

3
for any x, x′ ∈ U ∩A.(2.11)

It follows that for x, x′ ∈ U ∩A
d(f(x, z0), f(x

′, z0)) ≤ d(f(x, z0), f(x, z1)) + d(f(x, z1), f(x
′, z1))

+d(f(x′, z1), f(x
′, z0))

≤ ε

3
+
ε

3
+
ε

3
= ε.

Choosing ε = 1
n
, we choose x2n = x and x2n+1 = x′ in U ∩ A. Then the

sequence (f(xn, z0))n is a Cauchy sequence in Y , hence converges to some
limit l ∈ Y . This limit does not depend of the choice of the sequence (xn)n
(we skip this point) and we denote it by f(x0, z0). We have thus proved that
f(x, z0) has a limit f(x0, z0) ∈ Y when x −→ x0. Using (2.10) and passing to
the limit when x −→ x0, we get

d(f(x0, z), f(x0, z0)) ≤
ε

3
for z ∈ V ∩B.

Therefore, f(x0, z) converges to f(x0, z0) when z −→ z0. q.e.d.

One should be aware that, given three topological spaces X, Y, Z, a function
f : X × Z −→ Y may be separately continuous without being continuous.
Separately continuous means that for any x ∈ X , z 7→ f(x, z) is continuous
and for any z ∈ Z, x 7→ f(x, z) is continuous.

Example 2.2.9. Consider the function f : R2 −→ R given by f(x1, x2) =
x1x2
x21 + x22

for (x1, x2) 6= (0, 0) and f(0, 0) = 0. Then for any x1 fixed, f(x1, ·)
is continuous and for any x2 fixed, f(·, x2) is continuous. However, f(·, ·) is
not continuous since f(x, x) = 1

2
for x 6= 0 and f(0, 0) = 0.

In Exercise 2.5, we give a sufficient condition in order that a separately
continuous function be continuous.
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2.3 The Baire Theorem

Proposition 2.3.1. Let (X, d) be a complete metric space. Let F1 ⊃ F2 ⊃
· · · ⊃ Fn ⊃ · · · be a decreasing sequence of non empty closed subspaces.
Assume that the diameter δ(Fn) converges to 0. Then there exists x ∈ X
such that

⋂
n Fn = {x}.

Proof. Set F =
⋂

n Fn. Then δ(F ) = 0 and it is enough to check that F 6= ∅.
For each n, choose an ∈ Fn. For p ≥ n, ap ∈ Fn. Hence, d(ap, an) ≤ δ(Fn).

Since δ(Fn)
n−→ 0, the sequence (an)n is a Cauchy sequence. Denote by a its

limit. Since the sequence (ap)p≥n is contained in Fn, its limit a belongs to
Fn. Hence a ∈ F . q.e.d.

Remark that the condition δ(Fn)
n−→ 0 is necessary. For example, the sequence

of closed subsets ([n,+∞[)n in R has an empty intersection.

Theorem 2.3.2. (The Baire theorem.) Let X be a complete metric space
and let (Un)n be a sequence of subsets of X. Assume that all Un are open
and dense in X. Then the intersection

⋂
n Un is dense in X.

Proof. Set A =
⋂

n Un and let B(a, ε) be a non empty open ball. One has
to show that A ∩ B(a, ε) 6= ∅. Since B(a, ε) ∩ U1 is open and non empty,
it contains a closed ball B(a1, ε1) for some a1 ∈ U1 and ε1 > 0. Since
B(a1, ε1) ∩ U2 is open and non empty, it contains a closed ball B(a2, ε2) for
some a2 ∈ U2 and ε2 > 0. By induction, we find a sequence (an)n with
an ∈ Un and a sequence (εn)n of positive numbers such that

B(an, εn) ∩ Un+1 ⊃ B(an+1, εn+1).

We may choose the sequence (εn)n decreasing to 0. Then consider the
sequence of subsets (B(an, εn))n: this is a decreasing sequence of closed
subsets whose diameters tends to 0. Applying Proposition 2.3.1, we find
x ∈ ⋂

nB(an, εn) ⊂ B(a, ε) ∩A. q.e.d.

There is an equivalent formulation of the Baire’s theorem using closed sets
instead of open sets:

Theorem 2.3.3. Let X be a complete metric space and let (Zn)n be a se-
quence of subsets of X. Assume that all Zn’s are closed and without interior
points (that is, Int(Zn) = ∅). Then ⋃

n Zn has no interior points.

Proof. Apply Theorem 2.3.2 with Un = X \ Zn. q.e.d.
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Corollary 2.3.4. Let E be a Banach space and let (En)n∈N be an increasing
sequence of closed vector subspaces. Assume that E =

⋃
nEn. Then, there

exists some n ∈ N such that E = En. In other words, the sequence is
stationnary.

Proof. Let F be a vector subspace of E and assume that F admits an interior
point. This means that there exists a non empty open subset U of E with
U ⊂ F . Hence there exist some ε > 0 and a ∈ F with B(a; ε) contained in
F . Since F is invariant by translation, B(0; ε) is contained in F . Since F is
invariant by scalar multiplication, this implies F = E.

Now assume that the sequence (En)n−inN is not stationnary. This implies
that the En’s have no interior points. Applying Theorem 2.3.3, we get that⋃

nEn has no interior points and hence is not egual to E. q.e.d.

2.4 Contracting maps

Let us repeat Definition 2.1.12 in a particular case.

Definition 2.4.1. LetX be a metric space and let f : X −→ X be a map. One
says that f is contracting if there exists 0 ≤ λ < 1 such that d(f(x), f(y)) ≤
λd(x, y) for all x, y ∈ X .

Theorem 2.4.2. Let X be a complete metric space and let f : X −→ X be
a contracting map. Then there exists a ∈ X such that f(a) = a and such
an element a is unique. Moreover, for any y0 ∈ X, the sequence defined by
induction by setting x0 = y0 and xn = f(xn−1) converges to a.

Proof. (i) Unicity. Assume that f(a) = a and f(b) = b. Then d(a, b) =
d(f(a), f(b)) ≤ λd(a, b), which implies d(a, b) = 0 since λ < 1.
(ii) Consider a sequence (xn)n as in the statement, that is, xn = f(xn−1).
We have

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ λd(xn−1, xn)

Therefore,

d(xn, xn+1) ≤ λd(xn−1, xn) ≤ λ2d(xn−2, xn−1) ≤ · · · ≤ λnd(x0, x1).

Hence,

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ (λn + λn+1 + · · ·+ λn+p−1)d(x1, x0)

≤ λn

1− λ
d(x1, x0),



38 CHAPTER 2. METRIC SPACES

and this quantity converges to 0 when n −→ ∞. We have thus proved that
the above sequence (xn)n is a Cauchy sequence. Denote by a its limit. Since
xn

n−→ a and f is continuous, f(xn)
n−→ f(a). The sequence (f(xn))n is nothing

but the sequence (xn+1)n. Since the sequences (xn)n and (xn+1)n have the
same limit, we have f(a) = a. q.e.d.

Let us give an important application to differential equations. In the
sequel, || · || is one of the norms || · ||p (p = 1, 2,∞) on Rn.

Theorem 2.4.3. (A particular case of the Cauchy-Lipschitz theorem.) Let
f : R × Rn −→ Rn be a continuous map and assume that there exists C ≥ 0
such that

||f(t, x)− f(t, y)|| ≤ C||x− y|| for all (t, x, y) ∈ R× Rn × Rn.(2.12)

Then there exists α > 0 such that, for all x0 ∈ Rn, there exists a unique
continuously derivable function x : [−α, α] −→ Rn which is a solution of the
system:

{
x′(t) = f(t, x(t)),
x(0) = x0.

(2.13)

In the classical Cauchy-Lipschitz theorem, one only assumes that f is
defined in an open subset of R× Rn and it makes the proof more delicate.

Proof. Let I be a closed bounded interval of R. It follows from Proposi-
tion 2.1.13 that the space C0(I;Rn) endowed with the distance of uniform
convergence

d(x, y) = sup
t∈I

||(x(t)− y(t)||

is complete. We shall prove this result in a more general setting in Proposi-
tion 3.2.4.

Set for short Xα := C0([−α, α];Rn). Proving that (2.13) has a unique
solution is equivalent to proving that the equation

x(t) = x0 +

∫ t

0

f(s, x(s))ds(2.14)

has a unique solution x ∈ Xα.
Consider the map

F : Xα −→ Xα, x 7→ x0 +

∫ t

0

f(s, x(s))ds.
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For x, y ∈ Xα and t ∈ [−α, α], we have

||F (x)(t)− F (y)(t)|| ≤ ||
∫ t

0

f(s, x(s))ds−
∫ t

0

f(s, y(s))ds||

≤ C

∫ t

0

||x(s)− y(s)||ds

≤ Cαd(x, y).

Hence,

d(F (x), F (y)) ≤ Cαd(x, y).

Choosing α such that Cα < 1, we may apply Theorem 2.4.2 to the map F
and get the result. q.e.d.

Exercises to Chapter 2

Exercise 2.1. Let (X, d) be a metric space and let Z0 and Z1 be two closed
subsets with Z0 ∩ Z1 = ∅. Using the distance d, construct a continuous
function f : X −→ R such that f |Z0

≡ 0 and f |Z1
≡ 1.

Exercise 2.2. Let (X, d) be a metric space, let F ⊂ X be a closed subspace
and let a ∈ X . Denote by δ the distance from {a} to F . Show that δ = 0 if
and only if a ∈ F .

Exercise 2.3. Let (X, d) be a metric space and assume d is bounded (that
is, X has a finite diameter). Denote by F the family of closed subsets of X .
For A,B ∈ F , set

ρ(A,B) = sup
x∈A

d(x,B), λ(A,B) = sup(ρ(A,B), ρ(B,A)).

(i) Prove that λ is a distance on F .
(ii) Assume that X is complete and let (Fn)n be a Cauchy sequence in F .
For n ∈ N, set Yn =

⋃
p∈N Fn+p and Y =

⋂
n Y n. Prove that Fn

n−→ Y when
n −→ ∞ and deduce that F is complete.

Exercise 2.4. Let (X, d) be a complete metric space.
(i) For (x, t) and (x′, t′) in X×R, one sets d1((x, t), (x

′, t′)) = d(x, x′)+|t−t′|.
Prove that d1 is a distance on X × R and that X × R is complete for d1.
(ii) Let U be an open subset of X and let Z = X \ U . Consider the set A
and the map h

A = {(x, t) ∈ X × R; 1− t · d(x, Z) = 0},
h : U −→ A, x 7→ (x,

1

d(x, Z)
).
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Prove that the map X × R −→ R, (x, t) 7→ 1 − t · d(x, Z) is continuous and
deduce that A is closed in X × R.
(iii) Prove that h : U −→ A is well defined and is a topological isomorphism.
(iii) One endows U with the distance d2(x, x

′) = d1(h(x), h(x
′)). Prove that

(U, d2) is complete.

Exercise 2.5. LetX and Z be topological spaces and let (Y, d) be a complete
metric space. Let A ⊂ X , B ⊂ Z, x0 ∈ A and z0 ∈ B. Consider a map
f : A× B −→ Y and assume that
(i) for each z ∈ B, f(x, z) has a limit denoted f(x0, z) when x −→ x0, x ∈ A
and the limit f(x, z) −→ f(x0, z) is uniform with respect to z ∈ B
(ii) for each x ∈ A, f(x, z) has a limit denoted f(x, z0) when z −→ z0, z ∈ B
and the limit f(x, z) −→ f(x, z0) is uniform with respect to x ∈ A.

Prove that f(x, z) has a limit when (x, z) −→ (x0, z0) with (x, z) ∈ A×B.
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Compact spaces

3.1 Basic properties of compact spaces

Let X be a set. Recall that a family {Ai}i∈I of subsets of X is a covering
of X if X =

⋃
i∈I Ai. Let now X be a topological space. Consider the two

conditions below.




K1: For any open covering X =
⋃

i∈I Ui, there exists a finite subset
J ⊂ I such that X =

⋃
j∈J Uj .

K2: For any family {Fi}i∈I of closed subsets with
⋂

i∈I Fi = ∅,
there exists a finite subset J ⊂ I such that

⋂
j∈J Fj = ∅.

(3.1)

By choosing Fi = X \ Ui, one sees that the conditions K1 and K2 are equiv-
alent.

Definition 3.1.1. A topological space X is compact if it is Hausdorff and
satisfies one of the equivalent conditions K1 or K2 above.

If Y is a subset of a topological space X , one says that Y is compact if it
is so for the induced topology.

Proposition 3.1.2. Let X be a topological space and let Y ⊂ X. Assume
Y is Hausdorff (for the induced topology). Then Y is compact if and only
if, for any family {Ui}i∈I of open subsets of X such that Y ⊂ ⋃

i∈I Ui, there
exists a finite set J ⊂ I with Y ⊂ ⋃

j∈J Uj.

The easy proof is left to the reader.

Proposition 3.1.3. Let X be a Hausdorff space and let Y ⊂ X.

(i) If X is compact and Y is closed, then Y is compact.

41
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(ii) If Y is compact, then Y is closed in X.

Proof. (i) Let {Fi}i∈I be a family of closed subsets of Y with empty inter-
section. Since the Fi’s are closed in X , there exists J ⊂ I with J finite such
that the family {Fj}j∈J has an empty intersection.
(ii) Let us show that X \Y is open. Let us choose x ∈ X \Y . For each y ∈ Y ,
there exists an open neighborhood Vy of y in X and an open neighborhood
Uy
x of x in X such that Vy ∩Uy

x = ∅. The family {Vy}y∈Y is an open covering
of Y . Hence, we may extract a finite covering:

Y ⊂
n⋃

j=1

Vyj .

Set Ux =
⋂n

i=1 U
yi
x . Then Ux ∩ Y = ∅ and Ux is an open neighborhood of x.

q.e.d.

Proposition 3.1.4. Let X be a Hausdorff space and let A,B two compact
subsets of X with A ∩ B = ∅. Then there exist two open sets U, V such that
A ⊂ U , B ⊂ V and U ∩ V = ∅.

Proof. As in the proof of Proposition 3.1.3 (ii), for each x ∈ A, we construct
an open neighborhood Ux of x and an open neighborhood Vx of B such that
Ux ∩ Vx = ∅. The family {Ux}x∈A is an open covering of A from which we
extract a finite covering {Uxj

}j=1,...,m. It remains to set U =
⋃m

j=1 Uxj
and

V =
⋂m

j=1 Vxj
. q.e.d.

Corollary 3.1.5. Let X be a compact space and let x ∈ X. Then x admits
a fundamental system of closed neighborhoods.

Proof. Let V be an open neighborhood of x. Then X \V is compact. Hence,
there exists open neighborhoods U of x and W of X \ V with U ∩W = ∅.
Therefore, U ∩W = ∅, that is, U ⊂ V . The family {U} so constructed is a
fundamental system of closed neighborhoods of x. q.e.d.

Proposition 3.1.6. Let X and Y be two compact spaces. Then X × Y is
compact.

Proof. We have already proved in Proposition 1.6.4 that X×Y is Hausdorff.
Let {Wi}i∈I be an open covering of X × Y . For each z = (x, y) ∈ X × Y ,
let us choose an elementary open set Uz × Vz contained in one of the Wi’s.
Let x0 ∈ X . The space {x0} × Y is topologically isomorphic to Y , thus is
compact. Consider the open covering {Ux0,y × Vx0,y}y∈Y of {x0} × Y . We
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may extract a finite covering {Ux0,yj×Vx0,yj}j∈J(x0). Set Ux0
=

⋂
j∈J(x0)

Ux0,yj .
Then

{x0} × Y ⊂
⋃

j∈J(x0)

Ux0
× Vx0,yj .

The family {Ux0
}x0∈X is an open covering of X from which we extract a finite

covering {Uxk
}k∈K . Then

X × Y =
⋃

k∈K

⋃

j∈J(xk)

(Uxk
× Vxk,yj).

q.e.d.

Corollary 3.1.7. A finite product of compact spaces is compact.

Proposition 3.1.8. Let X and Y be topological spaces, with X compact and
Y Hausdorff. Let f : X −→ Y be a continuous map. Then f(X) ⊂ Y is
compact.

Proof. Let {Vi}i∈I be an open covering of f(X). Since {f−1(Vi)}i∈I is an
open covering of X , there exists a finite subset J ⊂ I such that {f−1(Vj)}j∈J
is an open covering. Then {Vj}j∈J be an open covering of f(X). q.e.d.

Proposition 3.1.9. Let f : X −→ Y be a continuous map. Assume that X is
compact, Y is Hausdorff and f is bijective. Then f−1 is continuous, that is,
f is a topological isomorphism.

Proof. It is enough to prove that f is closed. Let A ⊂ X be a closed subset.
Then A is compact. Therefore, f(A) is compact by Proposition 3.1.8, hence
closed. q.e.d.

Example 3.1.10. Recall (see Example 1.7.2) that T = R/2πZ. Denote by
f : [0, 2π] −→ T the quotient map. Since T is Hausdorff and T = f([0, 2π]),
this space is compact.

On the other hand, we have seen that the topological circle is isomorphic
to the Euclidian circle. Hence, it is compact. It follows that the map

f : T −→ S1, θ 7→ exp(iθ)

is a topological isomorphism.

Example 3.1.11. Denote by Sn the Euclidian n-sphere (see Example 1.7.3),
that is, the unit sphere of the space Rn+1 endowed with its Euclidian norm.
Being closed and bounded in Rn+1, it is a compact space. Being topologi-
cally isomorphic to the topological sphere (Rn+1 \ {0})/R+, this last space is
compact.
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Remark 3.1.12. A topological space which is both compact and discrete
is finite. Indeed, the points are open, hence the family of points is an open
covering from which one can extract a finite covering.

Remark 3.1.13. The space R is not compact. However, the space R intro-
duced in Exercise 1.4 is compact since it is isomorphic to [−π

2
,+π

2
].

3.2 Compact spaces and real numbers

Theorem 3.2.1. (The Borel-Lebesgue Theorem.) Let a ≤ b be two real
numbers. Then the closed interval [a, b] is compact.

Proof. Let {Ui}i∈I be an open covering of [a, b]. Set

A = {x ∈ [a, b]; [a, x] is contained in a finite subcovering}.

Then A 6= ∅ since a ∈ A. Set m = supA, a ≤ m ≤ b. There exists i0 ∈ I
such that m ∈ Ui0 . If m /∈ A, then ]m − ε,m] ∩ A 6= ∅ for all ε > 0. Let
ε > 0 such that ]m − ε,m] ⊂ Ui0 and let x ∈ A∩]m − ε,m]. There exists a
finite subset J ⊂ I such that [a, x] ⊂ ⋃

j∈J Uj . Therefore,

[a,m] ⊂
⋃

j∈J

Uj ∪ Ui0 .

This shows that m ∈ A. If m < b, there exists ε > 0 such that [m,m+ ε] ⊂
Ui0 , which contradicts m = supA. Hence, m = b. q.e.d.

Proposition 3.2.2. Let A ⊂ Rn. Then A is compact if and only if A is
closed and bounded.

Proof. (i) Assume A is compact. We already know that it implies that A is
closed. If A were not bounded, A would not be contained in some open ball
B(a, R) (R ∈ R). Hence it would not be possible to extract a finite covering
from the open covering A =

⋃
R>0(B(0, R) ∩A).

(ii) Assume that A is closed and bounded. Then A is closed in some set
[−R,+R]n and this last set is compact by the Borel-Lebesgue theorem and
Corollary 3.1.7. Therefore A is compact by Proposition 3.1.3 (i). q.e.d.

Proposition 3.2.3. Let X be a compact space and let f : X −→ R be a
continuous map. Then f is bounded and there exist x0 and x1 in X such that
inf f = f(x0) and sup f = f(x1).

Proof. This follows from Proposition 3.1.8. q.e.d.
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The space C0(X ; Y ) for X compact

For two topological spaces X and Y , let us denote by C0(X ; Y ) the sub-
space of Y X consisting of continuous maps. Now assume that (Y, d) is a
metric space and let us endow C0(X ; Y ) with the quasi-distance of uniform
convergence defined in (2.3).

δ(f, g) = sup
x∈X

d(f(x), g(x)).

If X is compact, this quasi-distance is a true distance. Indeed, consider
two continuous functions f, g : X −→ Y . The function dY on Y × Y being
continuous, the function

Φ: X −→ R, x 7→ dY (f(x), g(x))

is continuous. Hence, Φ(X) ⊂ R is compact and in particular bounded. by
Proposition 3.1.8.

Proposition 3.2.4. Let X be a compact topological space and let (Y, dY ) be
a complete metric space. Then the space C0(X ; Y ) endowed with the distance
of uniform convergence is complete.

Proof. Consider a Cauchy sequence {fn}n in C0(X ; Y ). For any ε > 0, there
exists N > 0 such that for any n, p ≥ N , one has

sup
x∈X

dY (fn(x), fp(x)) ≤ ε.(3.2)

For each x ∈ X , the sequence (fn(x))n is thus a Cauchy sequence in Y , hence
converges. Denote by f(x) this limit. This defines a function f : X −→ Y .
Making p goes to ∞ in (3.2), we get

sup
x∈X

dY (fn(x), f(x)) ≤ ε.

Hence, the sequence (fn)n converges uniformly to f . Then f is continuous
by Proposition 2.1.13. q.e.d.

Now let (E, || · ||) be a normed space. We endow the space C0(X ;E) of the
norm of uniform convergence:

||f || = sup
x∈X

||f(x)||.(3.3)

Corollary 3.2.5. Let X be a compact topological space and let (E, || · ||) be a
Banach space. Then the space C0(X ;E) endowed with the norm of uniform
convergence is a Banach space.

This result will be particularly important when considering the case E =
R or E = C. In this case, C0(X ;E) is a Banach algebra (see Definition 4.2.3).
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3.3 Compact metric spaces

In this section, (X, d) is a metric space.

Proposition 3.3.1. The conditions below are equivalent:

(i) the space X is compact,

(ii) any sequence (an)n in X admits at least one limit point,

(iii) for any sequence (an)n in X, there exists an extracted sequence which
converges.

Proof. (i) ⇒ (ii). Let (an)n be a sequence in X . Set

Fp = (an)n≥p.

The set of limits points of the sequence (an)n is the set
⋂

p Fp and this set is
non empty by the hypothesis that X is compact.
(ii) ⇒ (i). Consider an open covering {Ui}i∈I of X . First, we shall show that

There exists α > 0 such that for any x ∈ X there exists i ∈ I with
B(x, α) ⊂ Ui.

(3.4)

If (3.4) were false, there would exists a sequence (xn)n∈N such that the balls
B(xn,

1
n
) are not contained in any of the Ui’s. Let x be a limit point of the

sequence (xn)n. Then x ∈ Ui0 for some i0 ∈ I, hence there exists some integer
N such that B(x, 1

N
) ⊂ Ui0 . On the other hand, there exists n ≥ 2N such

that xn ∈ B(x, 1
2N

). Then

B(xn,
1

n
) ⊂ B(xn,

1

2N
) ⊂ B(x,

1

N
) ⊂ Ui0 .

This is a contradiction and this proves (3.4).
Consider now the covering X =

⋃
x∈X B(x, α). Since any B(x, α) is

contained in some Ui, it is enough to prove that one can extract a finite
covering of this last covering. Let us argue by contradiction and assume
there is no extracted finite covering. Then one constructs by induction a
sequence (xn)n such that

xn /∈ B(x1, α) ∪ B(x2, α) ∪ · · · ∪ B(xn−1, α).

Clearly, such a sequence has no limit points.
(ii) ⇔ (iii) by Corollary 2.1.4. q.e.d.
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Proposition 3.3.2. The conditions below are equivalent.

(i) The space X is compact,

(ii) the space X is complete and moreover, for any ε > 0 there exists a
finite covering by open balls of radius ε.

Proof. (i) ⇒ (ii). Let (xn)n be a Cauchy sequence. There exists an extracted
sequence which converges, and this implies that the sequence itself converges.
(ii) ⇒ (i). Let (xn)n be a sequence in X . By Proposition 3.3.1, it is enough
to show that the sequence admits at least one limit point. Consider a finite
covering of X by open balls of radius 1

2
. One of these balls contains infinite

many xn. Hence, we find an extracted sequence in which the distance of two
elements is ≤ 1. We may apply the same argument to this sequence, after
replacing the open balls of radius 1

2
by open balls of radius 1

4
, 1

6
, etc.

Therefore, we find sequences, each one being extracted from the previous
one:

(x11, x
1
2, . . . , x

1
n, . . . ) with d(x

1
n, x

1
m) ≤ 1 for all n,m,

(x21, x
2
2, . . . , x

2
n, . . . ) with d(x

2
n, x

2
m) ≤

1

2
for all n,m,

· · · · · ·
(xp1, x

p
2, . . . , x

p
n, . . . ) with d(x

p
n, x

p
m) ≤

1

p
for all n,m,

· · · · · · .

Consider the diagonal sequence

(x11, x
2
2, . . . , x

n
n, . . . ).

Since d(xnn, x
m
m) ≤ 1

p
for any n,m ≥ p, this diagonal sequence is a Cauchy

sequence. Its limit x will be a limit point of the initial sequence (xn)n. q.e.d.

Proposition 3.3.3. Let X and Y be two metric spaces, let f : X −→ Y
be a continuous map and assume that X is compact. Then f is uniformly
continuous.

Proof. Since f is continuous at each x ∈ X , for any ε > 0 and any x ∈ X ,
there exists η(x) such that d(x′, x) ≤ η(x) implies d(f(x′), f(x)) ≤ ε

2
.

Consider the covering X =
⋃

x∈X B(x, η(x)
2
). One can extract a finite

covering:

X = B(x1,
η(x1)

2
) ∪ · · · ∪ B(xn,

η(xn)

2
).
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We set η = inf i
η(xi)
2

. Let x′, x′′ ∈ X with d(x′, x′′) ≤ η. There exists

i ∈ {1, . . . , n} such that x′ ∈ B(xi,
η(xi)
2

). Since η ≤ η(xi)
2

, x′′ ∈ B(xi,
η(xi)
2

).
Therefore,

d(f(xi), f(x
′)) ≤ ε

2
, d(f(xi), f(x

′′)) ≤ ε

2
,

which implies d(f(x′), f(x′′)) ≤ ε. q.e.d.

One shall be aware not to confuse the notion of uniform continuity (for a
function) and the notion of uniform convergence (for a sequence of functions).

3.4 Locally compact spaces

Definition 3.4.1. A topological space is locally compact if it is Hausdorff
and any point admits a compact neighborhood.

• In a locally compact space, any point admits a fundamental system of
compact neighborhoods.

• A compact space is clearly locally compact.

• The space Rn is locally compact. Indeed, closed balls with finite radius
are compact.

• An open subset U of a locally compact space X is locally compact.
Indeed, let x ∈ U . Since x admits a fundamental system of compact
neighborhoods, there exists a compact neighborhood K of x with K ⊂
U and K is compact in U .

• A closed subset Z of a locally compact space X is locally compact.
Indeed, let x ∈ Z and let K be a compact neighborhood of x in X .
Then K ∩ Z is a compact neighborhood of x in Z.

If X is compact and x ∈ X , then X \ {x} is locally compact and one can
recover the topology of X from that of X \ {x}. Indeed, U is open in X if
and only if U = X \K for a compact subset K of X . Hence, the open subsets
of X are either the open sets of X \ {x} or the sets (X \ {x} \ K) ∪ {x},
with K compact in X \ {x}. We shall show that any locally compact space
is isomorphic to a space Y \ {x}, with Y compact.

Let X be a locally compact space and set Y = X ⊔ {ω} where {ω} is a
set with one point. Let us call “open” the subsets of Y defined as follows:

U is open ⇔ (i) if ω /∈ U , then U is open in X , (ii) if ω ∈ U ,
then U \ {ω} = X \K, K compact in X .

(3.5)
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Proposition 3.4.2. (i) The family of open sets given in (3.5) defines a
topology on Y ,

(ii) this topology on Y induces its previous topology on X,

(iii) Y is compact.

The space Y so constructed is called the Alexandroff compactification of
X .

Proof. (i) and (ii) are easily checked and left to the reader.
(iii)-(a) First, let us show that Y is Hausdorff. Let x 6= y in Y . If x and
y belong to X , there exist open neighborhoods U and V in X of x and y
respectively with U ∩ V = ∅. We get the result in this case since U and V
are open in Y . Now assume for example that y = ω. Let K be a compact
neighborhood of x in X . Set U = (X \ K) ⊔ {ω}. Then U is an open
neighborhood of ω and U ∩K = ∅.
(iii)-(b) Let {Ui}i∈I be an open covering of Y . There exists i0 ∈ I with
ω ∈ Ui0 . Then Ui0 = (X \K) ⊔ {ω}. Let us choose J ⊂ I, J finite such that
K ⊂ ⋃

j∈J Uj . Then Y =
⋃

j∈J Uj ∪ Ui0 . q.e.d.

Example 3.4.3. (i) The space ]− π
2
,+π

2
[ is locally compact. One can embed

it in a compact space by choosing the embedding

]− π

2
,+

π

2
[→֒ [−π

2
,+

π

2
]

but its Alexandroff compactification is obtained by identifying −π
2
and +π

2
, a

space isomorphic to the circle S1. Similarly, one can compactify R by adding
two points, −∞ and +∞, but one can also add a single point by identifying
−∞ and +∞.
(ii) The n-sphere Sn is isomorphic to the Alexandroff compactification of Rn.
Indeed, denote by (x0, x1, . . . , xn) the coordinates on Rn+1 and recall that
the n-sphere is the set

Sn = {x ∈ Rn+1;
n∑

i=0

x2i = 1}.

Denote by N the “north pole” of Sn, N = (1, 0, . . . , 0). The stereographic
projection is the map

ρ : Sn \ {N} −→ Rn,

(x0, x1, . . . , xn) 7→ yi =
xi

1− x0
.
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Clearly, this maps is bijective and is a topological isomorphism. The result
follows since Sn is a Alexandroff compactification of Sn \ {N}.
(iii) Recall Example 1.3.22: we have set N :=N∪{+∞} and we have endowed
N with the topology for which the open sets are the union of the subsets of
N and the sets [n,+∞] (n ∈ N). Then N is the Alexandroff compactification
of N.

Exercises to Chapter 3

Exercise 3.1. Let X be a compact space and let Y = X ⊔ {ω} be its
Alexandroff compactification. Prove that ω is isolated in Y .

Exercise 3.2. Let X be a Hausdorff space and let (xn)n be a convergent
sequence in X . Denote by x∞ its limit.
(i) Prove that the set A =

⋃
n{xn} ∪ {x∞} is compact.

(ii) Prove that the space B = { 1
n
}n∈N>0

⊂ R is discrete.

Exercise 3.3. Let X be a compact space and let Y = X ⊔ {ω} be its
Alexandroff compactification. Prove that ω is isolated in Y .

Exercise 3.4. Let X = B(0, R) be the open ball of Rn with radius R >
0. Define the space Y as the quotient space B(0, R)/R where R is the
equivalence relation which identifies x and y if and only if x, y ∈ ∂B(0, R).
Prove that Y is topologically isomorphic to the Alexandroff compactification
of X .

Exercise 3.5. LetX and Y be two locally compact spaces and let f : X −→ Y
be a continuous map. One says that f is proper if the inverse image by f of
any compact set of Y is compact in X .
(i) Prove that a proper map is closed.
(ii) Let E and F be two real vector spaces of finite dimension. Prove that a
linear map u : E −→ F is proper if and only if it is injective.
(iii) Let (x1, . . . , xn) denote the coordinates on Rn. Let εi = ±1. Give a
necessary and sufficient condition on the εi’s in order that the map f : Rn −→
R, x 7→ ∑n

i=1 εix
2
i be proper.

Exercise 3.6. Let X be a compact space and let (fn)n∈N be an deacreasing
sequence of continuous real valued functions defined on X , meaning that
fn ∈ C0(X ;R) and fn+1(x) ≤ fn(x) for all n ∈ N and all x ∈ X . Assume
that the sequence (fn)n converges simply to a continuous function f , that is,
fn(x)

n−→ f(x) for all x ∈ X . Prove that the convergence is uniform.
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(Hint: Replacing fn with fn − f , we may assume from the beginning that
f ≡ 0. Let ε > 0 be given. Set En = {x ∈ X ; fn(x) < ε}. Since the
sequence {fn}n is deacreasing, En+1 ⊂ En for all n. On the other hand, the
hypothesis that fn converges to 0 implies that X =

⋃
nEn. Conclude by

using the compactness hypothesis.)
This result is known as the Dini theorem.
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Chapter 4

Banach spaces

4.1 Normed spaces

Let k denote either the field R or the field C and let E be a k-vector space.
Recall that we have already defined in Section 1.2 the notions of a quasi-
norm and a norm on E. A normed space is a metric space for the distance
d(x, y) = ||x− y||, hence it is a topological space.

Example 4.1.1. Let E be a real finite dimensional vector space endowed
with a basis (e1, . . . , en). We may endow E with the norm || · ||1 defined as
follows. For x =

∑n

i=1 xiei, we set ||x||1 =
∑n

i=1 |xi|.
Consider the linear isomorphism u : Rn ∼−→E,

x = (x1, . . . , xn) 7→
n∑

i=1

xiei.

The norm || · ||1 on E is nothing but the image of the norm || · ||1 on Rn by
this isomorphism.

One defines similarly the norms || · ||2 and || · ||∞ on E.

Example 4.1.2. Recall (see Example 1.2.1) that CN denote the space of
all sequences x = (an)n∈N with an ∈ C. We have already introduced the
quasi-norms || · ||p on CN when p = 1, 2∞. For p ∈ [1,∞[, one sets

||x||p =
(∑

n

|an|p
) 1

p ,

We shall admit that these are quasi-norms for all p. One defines the spaces
lp(C) as

lp(C) = {x ∈ CN; ||x||p <∞.

53
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Hence, lp(C) is a normed space.
One denotes by k(N) the subspace of kN consisting of sequences x = (an)n

such that all an but a finite number are 0. For p 6= q ∈ [1,∞], the norms
||x||p and ||x||q on k(N) are not equivalent (see Example 1.2.1).

Example 4.1.3. Let (E, || · ||) be a normed space and let X be a compact
space. We have already endowed the space C0(X ;E) of the norm of uniform
convergence, also called the “the sup norm” (see (3.3)):

||f || = sup
x∈X

||f(x)||.

This applies in particular when E = R or E = C.

Proposition 4.1.4. Let E be a k-vector space endowed with a norm || · ||.
Then

(a) x 7→ ||x|| is a continuous function from E to R,

(b) (λ, x) 7→ λx is a continuous function from k× E to E,

(c) (x, y) 7→ x+ y is a continuous function from E × E to E.

Proof. (i) Let x0 ∈ E. Then x 7→ ||x|| is continuous at x0 since

|||x0|| − ||x||| ≤ ||x− x0||.

(ii) Let (λ0, a) ∈ k×E. The map (λ, x) 7→ λx is a continuous at (λ0, a) since

||λx− λ0x0|| ≤ |λ− λ0|||x||+ |λ0|||x− x0||.

(iii) The map (x, y) 7→ x+ y is continuous at (x0, y0) since

||(x+ y)− (x0 + y0)|| ≤ ||x− x0||+ ||y − y0||.

q.e.d.

Let E and F be two normed spaces over k. For short, we denote by the
same symbol || · || the norm on E and the norm on F . Let u : E −→ F be a
linear map. One sets

||u|| = sup
||x||≤1

||u(x)||.(4.1)

This function is clearly a quasi-norm on the space of all linear maps from E
to F .
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Proposition 4.1.5. The conditions below are equivalent.

(i) u is continuous at 0 ∈ E,

(ii) u is continuous,

(iii) u is uniformly continuous,

(iv) ||u|| <∞.

Proof. (iii) ⇒ (ii) ⇒ (i) is obvious.
(i) ⇒ (iv). For any ε > 0, there exists η > 0 such that ||x|| ≤ η implies
||u(x)|| ≤ ε. Hence, ||x|| ≤ 1 implies ||u(x)|| ≤ ε

η
.

(iv) ⇒ (iii). Set A = ||u|| and let ε > 0. Then ||x − y|| ≤ ε
A

implies
||u(x)− u(y)|| ≤ ε. q.e.d.

Notation 4.1.6. Let E and F be two normed spaces over k. One denotes
by L(E, F ) the k-vector space of continuous linear maps from E to F . One
endows this space with the norm given in (4.1).

Definition 4.1.7. Let E be a normed space. A subset A ⊂ E is bounded if
supx∈A ||x|| <∞.

• A subset A is bounded if and only if it is contained in some ball B(0, R)
of radius R <∞.

• A compact subset of E is bounded since it is contained in some ball
B(0, R) of radius R <∞.

• A linear map u : E −→ F is continuous if and only if the image by u of
any bounded set in E is bounded in F .

Example 4.1.8. Denote by E the R-linear space of functions f : [0, 1] −→ R

such that f is continuously derivable. Let us endow E with the norm induced
by that of C0([0, 1],R) (see Example 4.1.3). Consider the linear map

u : E −→ R, f 7→ f ′(0).

Then u is not continuous. In fact, consider the subset A = {fc}c≥0 of E

where fc(t) =
ct

1 + ct
. Then A is bounded since ||fc|| ≤ 1. On the other hand

the set u(A) is not bounded since u(fc) = c.

Lemma 4.1.9. Let E be a finite dimensional real vector space endowed with
a basis (e1, . . . , en) and with the norm ||·||1 of Example 4.1.1. Let (F, ||·||F ) be
a real normed space and let u : E −→ F be a linear map. Then u is continuous.
More precisely, ||u|| ≤ supn

i=1 ||u(ei)||F .
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Proof. One has

||u(x)||F = ||u(
n∑

i=1

xiei)||F

≤
n∑

i=1

|xi|||u(ei)||F .

q.e.d.

Theorem 4.1.10. On a real or complex vector space of finite dimension all
the norms are equivalent.

Proof. (i) Since a complex vector space of finite dimension is in particular a
real vector space of finite dimension and a norm on a complex vector space
induces a norm on the real associated vector space, we may assume from the
beginning that E is a real vector space.
(ii) We choose a basis (e1, . . . , en) on E and we endow E with the norm || · ||1
of Example 4.1.1. Let || · || be another norm on E. We shall prove that || · ||1
and || · || are equivalent.

By Lemma 4.1.9 applied with F = E, setting A = supi ||ei||, we have

||x|| ≤
n∑

i=1

|xi|A = A||x||1.

(iii) Set S = {x ∈ E; ||x||1 = 1}. Since E endowed with the norm || · ||1 is
topologically isomorphic to Rn endowed with its usual topology, the set S is
compact in (E, || · ||1). By (ii), the identity map (E, || · ||1) −→ (E, || · ||) is
continuous. Therefore, the set S is compact in (E, || · ||). The function || · ||
being continuous on this space by Proposition 4.1.4 (i), it takes its minimum
on S. Hence, there exists B > 0 such that

B ≤ ||x|| for any x ∈ S.

Since ||x||1 = 1 for x ∈ S, we get

B||x||1 ≤ ||x|| for any x ∈ S.

Replacing x with λx for any scalar λ, we get:

B||λx||1 ≤ ||λx|| for any x ∈ S.

Now let y ∈ E with y 6= 0. Set λ = ||y||1. Then y = λx with x ∈ S.
Therefore

||y|| ≥ B||y||1.
q.e.d.
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The above theorem shows that on a finite dimensional vector space, there
exists only one topology of normed space. Hence, when working on a finite
dimensional vector space, unless otherwise specified, we shall always assume
that it is endowed with this topology.

Corollary 4.1.11. A finite dimensional normed vector space E is complete
for the distance associated with the norm.

Proof. Since all the norm are equivalent, it is enough to prove the result
for the norm || · ||1 associated with a basis. But in this case, (E, || · ||1) is
isomorphic, as a metric space, to (Rn, || · ||1) and this last space is complete.

q.e.d.

Corollary 4.1.12. Let u : E −→ F be a linear map and assume that E is
finite dimensional. Then u is continuous.

Proof. By Lemma 4.1.9 the result is true if E is endowed with the norm || · ||1
associated with a basis. By Theorem 4.1.10 it is true for any norm on E.
q.e.d.

Corollary 4.1.13. Let F be a normed space and let L be a finite dimensional
subspace of F . Then L is closed in F .

Proof. The space L is complete by Corollary 4.1.11. q.e.d.

Theorem 4.1.14. (The Riesz Theorem.) Let E be a normed space. Then
E is finite dimensional if and only if its unit closed ball B(0, 1) is compact.

Proof. (i) If E is finite dimensional, it is isomorphic to Rn and we have
already proved that the unit ball of Rn (for any norm) is compact.
(ii) Assume that the closed unit ball B(0, 1) of E is compact. Note that this
immediately implies that any closed ball is compact. Let ε > 0 and consider
the open covering of B(0, 1) by the open balls {B(a, ε)}a∈B(0,1). We may
extract a finite covering

B(0, 1) ⊂
N⋃

i=1

B(ai, ε).(4.2)

Denote by L the vector subspace of E generated by {a1, . . . , aN}. Let us
show that

for any x ∈ E there exists y ∈ L such that ||x− y|| ≤ ε||x||.(4.3)
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Indeed, if x = 0 this is clear (choose y = 0) and otherwise there exists
i ∈ {1, . . . , N} such that || x

||x||
− ai|| ≤ ε by (4.2). Therefore,

||x− ||x|| · ai|| ≤ ε||x||

which proves (4.3).

Now assume that L 6= E and choose u ∈ E \ L. Set δ = d(u, L). Since L
is closed (by Corollary 4.1.13) and u /∈ L, δ = d(u, L) is stricly positive (see
Exercise 2.2). Hence there exists z ∈ L with

||u− z|| ≤ 2δ.(4.4)

By (4.3) applied to x = u− z, there exists y ∈ L such that

||u− z − y|| ≤ ε||u− z||.(4.5)

By (4.4) and (4.5), we get

||u− (z + y)|| ≤ 2εδ.

Choosing ε = 1
4
, we get a contradiction since z + y ∈ L. q.e.d.

4.2 Banach spaces

As above, k is the field R or C.

Recall that a Banach space over the field k is a k-vector space endowed
with a norm and complete for the distance defined by this norm.

Example 4.2.1. (i) Any finite dimensional normed space is a Banach space.

(ii) The spaces lp (1 ≤ p ≤ +∞) are complete. (The proof is not given here.)

(iii) Let X be a compact topological space and let E be a Banach space.
Then the space C0(X ;E) endowed with the norm of uniform convergence
given in (4.1) is a Banach space by Corollary 3.2.5.

(iv) Let E be a normed space and let F be a Banach space. The space
L(E, F ) of continuous linear maps endows with the norm (4.1) is a Banach
space. For the proof, see Exercise 4.5.

Proposition 4.2.2. Let E be a Banach space and let (xn)n be a sequence
in E. Assume that

∑∞
n=0 ||xn|| < ∞. Then the sequence {∑p

n=0 xn}p has a
limit when p −→ ∞. In other words, the series

∑∞
n=0 xn is convergent in E.
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Proof. Set yp =
∑p

n=0 xn. Then

||yp+m − yp|| = ||
p+m∑

i=p+1

xi||

≤
p+m∑

i=p+1

||xi||.

The sequence (yp)p being a Cauchy sequence, it converges. q.e.d.

Banach algebras

Definition 4.2.3. A Banach algebra A is a Banach space which is also a
unital algebra, and such that, denoting by x·y the product in A, this product
satisfies ||x · y|| ≤ ||x|| · ||y||.

We shall often denote by 1 the unit in A.

Example 4.2.4. (i) Let E be a Banach space. Then L(E,E) is a Banach
algebra. In particular, consider E = Rn endowed with the norm || · ||1. We
may identify the algebra L(Rn,Rn) with the algebra Mn,n(R), of n × n real
matrices. As a vector space,Mn,n(R) is isomorphic to Rn2

and we may endow
it with the norm || · ||1 of Rn2

. One shall be aware that this norm does not
coincide (if n > 1) with the norm (4.1) on L(Rn,Rn). Also note that for
n > 1, the algebra Mn,n(R) is not commutative.
(ii) Let X be a compact space. Then C0(X ;k) (k = C of R) is a Banach
algebra. Note that this algebra is commutative.
(iii) LetX be a compact space and let A be a Banach algebra. Then C0(X ;A)
is a Banach algebra.

Proposition 4.2.5. Let A be a Banach algebra and let a ∈ A with ||a|| < 1.
Then 1−a is invertible in A.

Proof. The series
∑∞

n=0 a
n is convergent by Proposition 4.2.2. Since

(1−a)(1+a+ · · ·+ an) = 1−an+1,

(1+a+ · · ·+ an)(1−a) = 1−an+1,

this series converges to (1−a)−1. q.e.d.

Corollary 4.2.6. Let A be a Banach algebra and denote by Ω the subset of
A consisting of invertible elements. Then Ω is open in A and denoting by
J : Ω −→ Ω the map a 7→ a−1, then J is continuous.
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Note that Ω is multiplicative, that is, if a and b belong to Ω then aḃ also
belongs to Ω.

Proof. (i) Ω is open. Let a ∈ Ω. Then a + h = a(1+a−1h) and 1+a−1h is
invertible as soon as ||h|| · ||a−1|| < 1, hence as soon as ||h|| < (||a−1||)−1.
Therefore, the ball B(a, ε) is contained in Ω as soon as ε < (||a−1||)−1.
(ii) J is continuous. This is equivalent to saying that (a+h)−1− a−1 goes to
0 when h goes to 0. When multiplying (a+h)−1−a−1 by a, this is equivalent
to saying that (1−u)−1 goes to 1 when u goes to 0. Since

|| 1−(1−u)−1|| = ||
∑

n≥1

un|| ≤
∑

n≥1

||u||n,

this follows from the fact that
∑

n≥1 ε
n goes to 0 when ε goes to 0. q.e.d.

4.3 Study of the space C0(K;R)

Let K be a compact topological space. We have already proved that the
space C0(K;R) endowed with the sup norm (see (4.1))

||f || = sup
x∈K

|f(x)|.

is a Banach space. Hence, it is a Banach algebra.

Theorem 4.3.1. (The Stone-Weierstrass theorem.) Let H be a unital sub-
algebra of C0(K;R) with the property that for any x 6= y in K, there exists
f ∈ H with f(x) 6= f(y). Then H is dense in C0(K;R).

In order to prove this result, we need a few lemmas.

Lemma 4.3.2. Let L be a vector subspace of C0(K;R) satisfying:
(i) f, g ∈ Limplies sup(f, g) ∈ L and inf(f, g) ∈ L,
(ii) for any x, y ∈ K and any α, β ∈ R satisfying α = β if x = y, there exists
f ∈ L such that f(x) = α and f(y) = β.

Then L is dense in C0(K;R).

Proof. Let f ∈ C0(K;R) and let ε > 0.
(i) Let y ∈ K. For any x ∈ K, there exists gx ∈ L such that gx(y) = f(y)
and gx(x) = f(x). Set

Ux = {z ∈ K; gx(z) > f(z)− ε}.
1Section 4.3 will not be treated during the course 2010/2011
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Then Ux is an open neighborhood of x. Since K =
⋃

x∈K Ux, there exist
x1, . . . , xn such that K =

⋃n

i=1 Uxi
. Set

hy = sup
i=1,...,n

gxi
.

Then hy ∈ L, hy(y) = f(y) and hy ≥ f − ε.
(ii) Set

Vy = {z ∈ K; hy(z) < f(z) + ε}.

Then Vy is an open neighborhood of y. Since K =
⋃

y∈K Vx, there exist
y1, . . . , ym such that K =

⋃m
j=1 Vyj . Set

k = inf
j=1,...,m

hyj .

Then k ∈ L and k ≤ f + ε.
(iii) Since hyj ≥ f − ε, we have k ≥ f − ε. Therefore ||k − f || ≤ ε. q.e.d.

Lemma 4.3.3. On the interval [0, 1] endowed with the coordinate t, the func-
tion

√
t is the uniform limit of a sequence of real polynomials.

Proof. Define the sequence of polynomials pn(t) by induction, by setting:

p0(t) = 0, pn+1(t) = pn(t) +
(t− p2n(t))

2
.(4.6)

Let us prove by induction that

t ≥ p2n(t).(4.7)

This is true for n = 0. Assuming this is true for n, we have

pn+1(t)−
√
t = (pn(t)−

√
t)
(
1− 1

2
(
√
t+ pn(t))

)
.(4.8)

Since pn(t) ≤
√
t, (

√
t + pn(t)) ≤ 2. Therefore, the left hand side in (4.8) is

≤ 0 and the induction proceeds.
From (4.6) and (4.7) we deduce that the sequence of functions (pn)n

is increasing. Hence, for each t the sequence (pn(t))n has a limit p(t) which
satisfies

p(t) = p(t) +
1

2
(t− p2(t)).

Therefore, p(t) =
√

(t). In other words, for each t ∈ [0, 1],
√
t − pn(t)

converges to 0. The fact that the convergence is uniform will follow from
Lemma 4.3.4 below. q.e.d.
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Lemma 4.3.4. (Dini’s lemma.) Let I be a compact space and let gn : I −→ R

(n ∈ N) be a sequence of continuous functions satisfying
(i) gn+1 ≤ gn,
(ii) for any t ∈ I, gn(t)

n−→ 0.
Then gn

n−→ 0 uniformly.

Proof. Let ε > 0. Set

In = {t ∈ I; gn(t) ≥ ε}.

The In’s are closed, In+1 ⊂ In and
⋂

n In = ∅. Therefore, I being compact,
there exists N such that In = ∅ for any n ≥ N . This is equivalent to saying
that there exists N such that |gn(t)| ≤ ε for any t ∈ I and any n ≥ N . q.e.d.

Proof of Theorem 4.3.1. Denote by H the closure of H in C0(K;R). Then
H is an algebra. Let x, y ∈ K with x 6= y and let α, β ∈ R. Let g ∈ H with
g(x) 6= g(y). Set

f(·) = α− β

g(x)− g(y)

(
g(·)− g(y)

)
+ β.

Then f ∈ H, f(x) = α and f(y) = β. In order to apply Lemma 4.3.2 to H,
it remains to check that H is stable by sup and inf of two functions. Since

sup(f, g) =
1

2
(f + g + |f − g|,

inf(f, g) =
1

2
(f + g − |f − g|,

it is enough to check that f ∈ H implies |f | ∈ H.
One has |f | =

√
f 2. Moreover, after multiplying f by a scalar, we may

assume that |f | ≤ 1. Let ε > 0. By Lemma 4.3.3 there exists a polynomial
pn(t) such that supt(

√
t− pn(t)) ≤ ε. Therefore,

||
√
f 2 − pn(f

2)|| ≤ ε.

Since pn(f
2) belongs to H, this proves that

√
f 2 belongs to H. q.e.d.

Applications

Corollary 4.3.5. Let H be a unital C-sub-algebra of C0(K;C) with the prop-
erty that
(i) for any x 6= y in K, there exists f ∈ H with f(x) 6= f(y),
(ii) if f ∈ H then f ∈ H (recall that f denotes the complex conjugate of f).
Then H is dense in C0(K;R).
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Proof. Denote by HR the R-sub-algebra of H consisting of R-valued func-
tions. Let x 6= y. There exists f ∈ H such that f(x) 6= f(y). Then either
ℜf(x) 6= ℑf(y) or ℑf(x) 6= ℑf(y) and both belong to HR by the second
hypothesis. Therefore, HR satisfies the hypothesis of the Stone-Weierstrass
theorem, hence, is dense in C0(K;R). Now let f ∈ C0(K;C). There exists
sequences (f 1

n)n and (f 2
n)n in HR such that f 1

n

n−→ ℜf and f 2
n

n−→ ℑf . Then
f 1
n + f 2

n

n−→ f . q.e.d.

Corollary 4.3.6. Let K be a compact subset of Rn. Then R[x1, . . . , xn] is
dense in C0(K;R) and C[x1, . . . , xn] is dense in C0(K;C).

Proof. It is enough to check that the polynomials separate the points, but
the linear functions already separate points. Indeed, if x 6= y, then there
exists i ∈ {1, . . . , n) such that xi 6= yi. q.e.d.

Now denote by C[exp i θ] the C-algebra of trigonometric polynomials in one
variable θ ∈ R. An element f of this algebra is a finite sum

f =
∑

n

an exp(inθ), an ∈ C and the sum is finite.

Recall (see Example 1.7.2) that we have denoted by T the space R/2πZ, that
is, the quotient R/ ∼ where ∼ is the equivalence relation which identifies
x, y ∈ R if x − y = 2πn, n ∈ Z. We may identify the space C0(T;C) with
the subspace of C0(R;C) consisting of periodic functions of period 2π, that
is, the space of functions f satisfying f(x) = f(x+ 2πn). Clearly, C[exp iθ]
is a C-sub-algebra of C0(T;C).

Corollary 4.3.7. The space C[exp iθ] is dense in C0(T;C).

Proof. Recall that, denoting by S1 the unit circle in the Euclidian space R2,
the map

ϕ : T −→ S1, θ 7→ exp(iθ)

is an isomorphism (see Example 1.7.4). The map ϕ defines by composition,
an isomorphism of Banach algebras

ϕ∗ : C0(S1;C) ∼−→C0(T;C).

Denote by (x, y) the coordinates on R2. Since ϕ∗(C[x, y]) = C[exp iθ], it
is enough to check that C[x, y] is dense in C0(S1;C), which follows from
Corollary 4.3.5. q.e.d.
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Exercises to Chapter 4

Exercise 4.1. Let us endow Rn with the norm || · ||1. After identifying
L(Rn,Rn) with Mn,n(R), describe the associated norm on L(Rn,Rn) given
in (4.1).

Exercise 4.2. Let E be a normed space and F a Banach space.
(i) Prove that the space L(E, F ) is a Banach space for the norm (4.1).

(ii) Let Ê be a normed space and assume that E is a dense subspace of

Ê and the norm of E is induced by that of Ê. Prove that the natural
map L(Ê, F ) −→ L(E, F ) (which, to a linear map u : Ê −→ F , associates its
restriction to E) is an isomorphism of Banach spaces.
(Hint: for (ii), use Proposition 2.2.6.)

Exercise 4.3. Denote by E the Banach space C0([0, 1];R) endowed with the
sup-norm. Set

Xn = {f ∈ E; ∃t ∈ [0, 1] such that ∀s ∈ [0, 1], |f(t)− f(s)| ≤ n|t− s|}.

(i) Prove that Xn is closed in E.
(ii) Prove that Xn has no interior points, that is, Int(Xn) = ∅, and deduce
by Corollary 2.3.4 that

⋃
nXn has no interior points.

(iii) let f ∈ E and assume that f ′(t0) exists for some t0 ∈ [0, 1]. Prove that
f ∈ Xn for some n ∈ N.
(iv) Deduce that there exists a continuous function f on [0, 1] which is
nowhere derivable.

Exercise 4.4. Denote by E the Banach space C0([0, 1];R) endowed with the
sup-norm. Denote by P the vector subspace consisting of polynomial func-
tions and, for n ∈ N, denote by Pn vector subspace consisting of polynomial
of order ≤ n. One endows P and Pn of the norms induced by that of E.
(i) Show that Pn is a Banach space and is closed in E.

(ii) Show that the series
∑∞

j=0(
x

2
)j converges uniformly on [0, 1] to the func-

tion
2

2− x
and deduce that P is not a Banach space.

(iii) Let λ be the linear form on P given by P 7→ ∑∞
j=0 P

(j)(0), where P (j)

denotes the j-th derivative of the polynomial P . Show that the restriction
of λ to each Pn is continuous but λ is not continuous on P.

Exercise 4.5. Let X be a topological space and let (F, || · ||) be a Banach
space. Let us denote by C0,b(X,F ) the subspace of C0(X,F ) consisting of
bounded functions, that is, functions f : X −→ F such that f(X) is bounded
in F .
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(i) Prove that the quasi-norm of uniform convergence is a norm on C0,b(X,F )
and that C0,b(X,F ) is complete for the associated distance, hence is a Banach
space.
(ii) Let (E, || · ||) be a normed space and denote by X its closed unit ball.
Prove that the natural map L(E, F ) −→ C0,b(X,F ) is injective and that the
image of L(E, F ) in C0,b(X,F ) by this map is closed. Deduce that L(E, F )
is a Banach space.
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Chapter 5

Connectness and homotopy

5.1 Connectness

Let X be a topological space.

Proposition 5.1.1. The following conditions are equivalent:

(i) there does not exist A ⊂ X, A 6= ∅, A 6= X, A is both open and closed,

(ii) there does not exist A ⊂ X, B ⊂ X such that A and B are both open
and non empty, A ∩ B = ∅, A ∪B = X,

(iii) same as in (ii) when replacing the hypothesis that A and B are open by
the hypothesis that A and B are closed.

The proof is obvious.

Definition 5.1.2. Let X be a topological space.

(a) One says thatX is connected if one of the equivalent conditions in Propo-
sition 5.1.1 is satisfied.

(b) One says that X is locally connected if any x ∈ X admits a fundamental
system of connected neighborhoods.

One shall be aware that there exist spaces which are connected without
being locally connected (see Example 5.1.14).

Theorem 5.1.3. The space R is connected.

67
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Proof. Let us argue by contradiction and assume R is not connected. Let
A ⊂ R such that ∅ 6= A, R 6= A, A is closed and open in R. Let x ∈
R \ A and assume for example that A ∩ [x,+∞[6= ∅. Denote by B the
set A ∩ [x,+∞[. Then B is non empty, closed and bounded from below.
Hence, it admits a smallest element, say b. On the other hand, since x /∈ A,
A ∩ [x,+∞[= A∩]x,+∞[. Therefore, B is open. Hence there exists ε > 0
such that ]b − ε, b+ ε] ⊂ B. This contradicts the fact that b is the smallest
element in B. q.e.d.

• An open interval of R is connected. Indeed, if it is not empty, then it
is isomorphic to R.

• R \ {0} is not connected, but (see below) Rn \ {0} is connected for
n > 1.

One says that a subset A of a topological space X is connected if it is con-
nected for the induced topology.

Proposition 5.1.4. Let A ⊂ B ⊂ A ⊂ X and assume that A is connected.
Then B is connected.

Proof. Assume B = U1 ∪ U2 with Ui (i = 1, 2) open in B and U1 ∩ U2 = ∅.
We shall show that either U1 or U2 is empty.

There exist U ′
i (i = 1, 2) open in X such that U ′

i ∩B = Ui. On the other
hand, A∩Ui is open in A, A = (U1∩A)∪ (U2 ∩A) and (U1∩A)∩ (U2 ∩A) =
∅. Hence A ∩ U1 or A ∩ U2 is empty. For example, A ∩ U1 = ∅. Since
A ∩ U1 = A ∩ U ′

1 = ∅, A is contained in X \ U ′
1 which is closed and this

implies A ⊂ X \ U ′
1. Hence, B ⊂ X \ U ′

1 and B ∩ U ′
1 = B ∩ U1 = ∅. q.e.d.

Corollary 5.1.5. A subset of R is connected if and only if it is an interval.

Proof. (i) We have already seen that an open interval is connected. Hence,
any interval is connected by Proposition 5.1.4.
(ii) Conversely, let A be a connected subset of R. By using the map t 7→
tan(t), we may assume that A is contained in the interval ] − 1,+1[. Set
a = inf A, b = supA. Then A ⊂ [a, b] and it is enough to prove that
]a, b[⊂ A. Let us argue by contradiction and assume there exists x ∈]a, b[
with x /∈ A. Then A = (]−∞, x[∪]x,+∞[. Hence, A would be the union of
two non empty open subsets with empty intersection. This contradicts the
hypothesis that A is connected. q.e.d.

Remark 5.1.6. The closure A of a set A may be connected although A is
not connected. For example R \ {0} is not connected and R is connected.
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Proposition 5.1.7. Let f : X −→ Y be a continuous map and assume that
X is connected. Then f(X) is connected.

Proof. Let V1 and V2 be two non empty open subsets of Y such that V1∩V2 =
∅ and f(X) ⊂ V1∪V2. ThenX = f−1(V1)∪f−1(V2). Therefore, either f

−1(V1)
of f−1(V2) is empty. Then either f(X) ⊂ V1 or f(X) ⊂ V2. q.e.d.

Corollary 5.1.8. Let f : X −→ R be a continuous map and assume that X
is connected. Then for any x, x′ ∈ X, f takes all values between f(x) and
f(x′).

Connected components

Proposition 5.1.9. Let {Ai}i∈I be a family of connected subsets of A, let
A =

⋃
iAi and assume that for any i, j ∈ I, Ai ∩ Aj 6= ∅. Then A is

connected.

Proof. Let us argue by contradiction. Assume U1 and U2 are two non empty
open subsets such that U1 ∩ U2 = ∅ and U1 ∪ U2 = A. Since the Ai’s are
connected and Ai = (Ai ∩U1)∪ (Ai∩U2), any Ai is contained either in U1 or
in U2. Let I = I1 ⊔ I2, with i ∈ Ij ⇔ Ai ⊂ Uj (j = 1, 2). Then Al ∩ Ak = ∅
if l ∈ I1 and k ∈ I2. this contradicts the hypothesis. q.e.d.

Definition 5.1.10. Let x ∈ X . Denote by Cx the union of all connected
subsets of X which contain x. Then Cx is called the connected component
of x in X and is also called “a connected component of X”.

• A connected component is connected since the union of all connected
subsets of X which contain a point x is connected by Proposition 5.1.9.

• Any connected component of X is closed in X by Proposition 5.1.4.
One shall be aware that a connected component of X is not necessarily
open in X as seen in Example 5.1.11.

• Two connected components are equal or disjoint (again by Proposi-
tion 5.1.9) and the relation x ∼ y if and only if x and y belong to the
same connected component, is an equivalence relation. Hence X is the
disjoint union of its connected components.

Example 5.1.11. (i) Let X be a topological space and let a ∈ X be an
isolated point, that is, the set {a} is open and closed in X . Assume X 6= {a}.
Then X = (X \ {a})⊔ {a} is the disjoint union of two non empty open sets,
hence is not connected.



70 CHAPTER 5. CONNECTNESS AND HOMOTOPY

(ii) Let X be the set {0}⊔ { 1
n
;n ∈ N>0} endowed with the topology induced

by R. Let A be the connected component of 0. If some point 1
n
belongs to

A, then A is not connected by (i). Hence, {0} is the connected component
of the point 0 ∈ X , although this set is not open in X .

Proposition 5.1.12. The space X is locally connected if and only if, for
each open set U of X, the connected components of the space U are open.

Proof. (i) Assume X is locally connected, let U be an open subset of X and
let C ⊂ U be a a connected component of U . Let x ∈ C. By the hypothesis,
there exists a connected neighborhood V of x contained in U . Since C ∪ V
is connected, V is contained in C. Hence, C, being a neighborhood of each
of its points, is open.
(ii) Let us prove the converse. Let x ∈ X and let U be an open neighborhood
of x. Denote by V the connected component of x in U . By the hypothesis,
V is open. Hence, V is an connected neighborhood of x contained in U .
q.e.d.

Corollary 5.1.13. Assume X is compact and locally connected. Then X
has only finite many connected components.

Proof. Consider the covering of X by its connected components. By the
hypothesis and Proposition 5.1.12, this is an open covering. The space X
being compact, we may extract a finite covering. q.e.d.

Example 5.1.14. Let

A = {(x, y) ∈ R2; x > 0, y = sin(
1

t
)},

B = {(x, y) ∈ R2; x = 0, |y| ≤ 1}.

(i) The set A is connected. Indeed, this follows from Proposition 5.1.7 since
A is the image of R>0 by the continuous map f : R>0 −→ R2, t 7→ (t, sin( 1

x
)).

Then X = A ⊔ B is connected. Indeed, X = A and we may apply
Proposition 5.1.4.
(ii)X is not locally connected. In fact consider the open set U = X∩{(x, y) ∈
R2; |y| < 1

2
}. The set {(x, y) ∈ R2; x = 0, |y| < 1

2
} is a connected component

of U and is not open.

5.2 Homotopy

In the sequel, we denote by I the closed interval I = [0, 1].
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Definition 5.2.1. Let X and Y be two topological spaces.

(i) Let f0 and f1 be two continuous maps from X to Y . One says that f0
and f1 are homotopic if there exists a continuous map h : I ×X −→ Y
such that h(0, ·) = f0 and h(1, ·) = f1.

(ii) Let f : X −→ Y be a continuous map. One says that f is a homotopy
equivalence if there exists g : Y −→ X such that f ◦ g is homotopic to
idY and g ◦ f is homotopic to idX . In such a case one says that X and
Y are homotopically equivalent, or simply, are homotopic.

(iii) One says that a topological space X is contractible if X is homotopic
to a point {x0}.

Lemma 5.2.2. The relation “f0 is homotopic to f1” is an equivalence rela-
tion.

Proof. (i) Let f : X −→ Y be a continuous map. Then f is homotopic to f .
Indeed, define h : I ×X −→ Y by h(t, x) = f(x).
(ii) Let f0 and f1 be continuous maps from X to Y . Assume that f0 and f1
are homotopic by a map h : I ×X −→ Y . Then f1 and f0 are homotopic by
the map h̃ given by h̃(t, x) = h(1− t, x).
(iii) If f0 and f1 are homotopic by a map h1 : I × X −→ Y and f1 and f2
are homotopic by a map h2 : I × X −→ Y , then f0 and f2 are homotopic
by the map h : I × X −→ Y given by h(t, x) = h1(2t, x) for 0 ≤ t ≤ 1

2
and

h(t, x) = h2(2t− 1, x) for 1
2
≤ t ≤ 1. q.e.d.

Of course, the relation of being homotopic is much weaker than the relation
of being topologically isomorphic. For example, Rn is homotopic to {0} (see
below) but certainly not topologically isomorphic.

A topological space is contractible if and only if there exist g : {x0} −→ X
and f : X −→ {x0} such that f ◦ g is homotopic to idX . Replacing x0 with
g(x0), this means that there exists h : I × X −→ X such that h(1, x) = idX

and h(0, x) is the map x 7→ x0. Note that contractible implies non empty.

Examples 5.2.3. (i) Let V be a real vector space. Recall that a set A is
convex if for any a, b ∈ A we have [a, b] ⊂ A. Recall that the segment [a, b]
denotes the set

[a, b] = {ta+ (1− t)b; 0 ≤ t ≤ 1}.

Also recall that a set A is star-shaped if there exists a ∈ A such that for any
b ∈ A, the segment [a, b] is contained in A.
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A non empty convex set is star-shaped and a star-shaped is contractible.
Indeed, choose a ∈ A. Then h(t, x) = ta + (1− t)x is a homotopy.

In particular, let γ ⊂ V be a closed non empty cone. Then γ is con-
tractible. Indeed, γ is star-shaped at 0.
(ii) Let X = Sn be the unit sphere of the Euclidian space Rn+1 and let Y =
Rn+1 \ {0}. The embedding f : Sn →֒ Rn+1 \ {0} is a homotopy equivalence.
Indeed, denote by g : Rn+1\{0} −→ Sn the map x 7→ x/||x||. Then g◦f = idX

and f ◦ g is homotopic to idY . The homotopy is given by the map h(x, t) =
(t/||x||+ 1− t)x.
(iii) Consider the truncated closed cone

A = {x = (x1, x2, x3) ∈ R3; x21 + x22 = x23, 0 ≤ x3 ≤ 1}.

Clearly, it is homotopic to the origin, the homotopy being given by x 7→ tx.
However, the circle {x; x21 + x22 = 1} is not homotopic to a point. This last
fact is not obvious and follows for example from the result in Example 5.3.7
below.

Arcwise connected spaces

Definition 5.2.4. Let X be a topological space.

(a) A path in X is a continuous map γ : [0, 1] −→ X . One calls γ(0) and γ(1)
the ends of the path. One also calls γ(0) the origin of the path and γ(1)
its end.

(b) One says that X is arcwise connected if for any x and y in X , there exists
a path in X with ends x and y.

(c) One says that X is locally arcwise connected if each x ∈ X admits a
fundamental system of arcwise connected neighborhoods.

One often identifies a path with its image γ([0, 1]) in X .
A path is connected by Proposition 5.1.7.

Lemma 5.2.5. The relation on X given by x0 ∼ x1 if there is a path which
starts at x0 and ends at x1 is an equivalence relation.

Proof. Denote by pt a set with a single point. A point x ∈ X may be regarded
as a continuous map f : pt −→ X . By this identification, a path from x0 to
x1 may be considered as an homotopy from the constant map f0 : pt −→ X ,
f0(pt) = x0, to the constant map f1 : pt −→ X , f1(pt) = xt. Hence, the result
follows from Lemma 5.2.2. q.e.d.
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Proposition 5.2.6. If X is arcwise connected, then X is connected.

Proof. We may assume that X is not empty. Let x0 ∈ X . By the hypothesis,
for any x ∈ X , there exists a path γx with ends x0 and x. Then X =

⋃
x∈X γx

is connected by Proposition 5.1.9. q.e.d.

Proposition 5.2.7. If X is locally arcwise connected and connected, then X
is arcwise connected.

Proof. We may assume that X is not empty. Let x0 ∈ X and denote by A
the set of points x such that there exists a path with ends x0 and x.

(i) By the hypothesis, for any x ∈ X there exists an open neighborhood Ux

of x such that any point y ∈ Ux may be joined to x by a path. Hence, if
x ∈ A and y ∈ Ux, y may be joined to x0 by a path, which shows that A is
open.

(ii) It remains to show that A is closed. Let z ∈ A and let Uz be an arcwise
connected neighborhood of z. Let y ∈ Vz ∩A. There exists a path with ends
z and y and there exists a path with ends x0 and y. Hence, there exists a
path with ends x0 and z. q.e.d.

Consider the hypothesis

X is locally arcwise connected.(5.1)

Definition 5.2.8. Assume (5.1). The set of connected components of X is
denoted by π0(X).

Let X and Y be two topological spaces satisfying (5.1) and let f : X −→ Y
be a continuous map. Then f defines a map

π0(f) : π0(X) −→ π0(Y ).(5.2)

Indeed, if x1 and x2 in X are connected by a path γ : I −→ X , then f(x1) and
f(x2) in Y are connected by the path f ◦ γ. Moreover,

• if f0 and f1 are homotopic, they define the same map:

π0(f0) = π0(f1) : π0(X, x0) −→ π0(Y, y0),(5.3)

Indeed, consider an homotopy {ft}t∈[0,1] from f0 to f1. Let x ∈ X .
Then f0(x) and f1(x) belong to the same connected component of Y
since they are connected by the arc γ where γ(t) = ft(x).
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• if g : Y −→ Z is a continuous map and Z satisfies (5.1), then

π0(g ◦ f) = π0(g) ◦ π0(f).(5.4)

This means that for x ∈ X , the connected component of (g ◦ f)(x) is
the image by g of the connected component of f(x), which is clear.

Using (5.3) and (5.4), we get that the group π0(·) is an homotopy invari-
ant. More precisely:

Proposition 5.2.9. Let X and Y be two topological spaces satisfying (5.1).
Assume that X and Y are homotopic. Then the sets π0(X) and π0(Y ) are
isomorphic.

In other words, the cardinals of the set of connected components of X
and Y are the same.

5.3 Fundamental group

Recall that I is the closed interval I = [0, 1].

For the reader’s convenience, we partly recall Definition 5.2.4.

Definition 5.3.1. (i) A path from x0 to x1 in X is a continuous map
σ : I −→ X , with σ(0) = x0 and σ(1) = x1. The two points x0 and x1
are called the ends of the path.

(ii) Two paths σ0 and σ1 are called homotopic if there exists a continuous
function ϕ : I × I −→ X such that ϕ(i, t) = σi(t) for i = 0, 1. (See
Definition 5.2.1.)

(iii) If the two paths have the same ends, x0 and x1, one says they are
homotopic with fixed ends if moreover ϕ(s, 0) = x0, ϕ(s, 1) = x1 for all
s. This is equivalent to saying that there exists a continuous function
ψ : D −→ X such that ψ(i, t) = σi(t) for i = 0, 1.

(iv) A loop in X is continuous map γ : S1 −→ X . One can also consider a
loop as a path γ such that γ(0) = γ(1). A trivial loop is a constant
map γ : S1 −→ {x0}. Two loops are homotopic if they are homotopic as
paths.

1Section 5.3 is out of the scope of the course 2010/2011
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By Lemma 5.2.5, being homotopic is an equivalence relation.
If σ is a path from x0 to x1 and τ a path from x1 to x2 one can define

a new path τσ (in this order) from x0 to x2 by setting τσ(t) = σ(2t) for
0 ≤ t ≤ 1/2 and τσ(t) = τ(2t− 1) for 1/2 ≤ t ≤ 1.

If σ is a path from x0 to x1, one can define the path σ−1 from x1 to x0
by setting σ−1(t) = σ(1− t).

Let us denote by [σ] the homotopy class of a path σ. It is easily checked
that the homotopy class of τσ depends only on the homotopy classes of σ and
τ . Hence, we can define [τ ][σ] as [τσ]. The next result is left as an exercise.

Lemma 5.3.2. The product [σ][τ ] is associative, and [σσ−1] is the homotopy
class of the trivial loop at x0.

By this lemma, the set of homotopy classes of loops at x0 is a group.

Definition 5.3.3. The set of homotopy classes of loops at x0 endowed with
the above product is called the fundamental group of X at x0 and denoted
π1(X ; x0).

Let X and Y be two topological spaces satisfying (5.1) and let f : X −→ Y
be a continuous map. Let x0 ∈ X and set y0 = f(x0). Then f defines a map

π1(f) : π1(X, x0) −→ π1(Y, y0).(5.5)

Indeed, if γ is a loop at x0, then f ◦ γ is a loop at y0, and if two loops are
homotopic, their images by f will remain homotopic. Moreover,

• if f0 and f1 are homotopic, they define the same map:

π1(f0) = π1(f1) : π1(X, x0) −→ π1(Y, y0),(5.6)

• if g : Y −→ Z is a continuous map and Z satisfies (5.1), then

π1(g ◦ f) = π1(g) ◦ π1(f).(5.7)

Assume (5.1). If σ is a path from x0 to x1 in X , then the map γ 7→ σ−1γσ
defines an isomorphism

π1(X ; x0) ≃ π1(X ; x1).

Hence, if X is connected, all groups π1(X ; x) are isomorphic for x ∈ X . In
this case, one sometimes denote simply by π1(X) one of these groups and
calls it the fundamental group of X .

Using (5.6) and (5.7), we get that the group π1(·) is an homotopy invari-
ant. More precisely:
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Proposition 5.3.4. Let X and Y be two spaces satisfying (5.1). Assume
that X and Y are homotopic. Then the two groups π1(X) and π1(Y ) are
isomorphic.

Definition 5.3.5. Let X be a topological space satisfying (5.1). One says
that X is simply connected if any loop in X is homotopic to a trivial loop.

If X is non empty, connected and simply connected, then π1(X) ≃ pt.

Example 5.3.6. Let n > 1. Then π1(S
n) ≃ pt. In other words, Sn is simply

connected for n > 1.

Example 5.3.7. One has π1(S
1) ≃ Z.

Although this result is rather intuitive, its proof is not so easy, and will
not be given here.

5.4 C0-manifolds

Definition 5.4.1. Let n ∈ N. A C0-manifold, or topological manifold, of
dimension n is a Hausdorff topological space X countable at infinity (which
means that X is a countable union of compact subsets) and locally topolog-
ically isomorphic to an open subset of Rn.

To be locally topologically isomorphic to an open subset of Rn means that
there exists an open covering U = {Ui}i∈I of X , each Ui being topologically
isomorphic to an open subset of Rn. The Ui’s are called local charts of X .

Example 5.4.2. (i) A non empty open subset of Rn is a C0-manifold of
dimension n.
(ii) The Euclidian sphere Sn is a C0-manifold of dimension n.
(iii) A finite or countable discrete set is a C0-manifold of dimension 0.
(iv) If X is a C0-manifold of dimension n and Y is C0-manifold of dimension
p then X × Y is C0-manifold of dimension n + p. In particular, the torus T
is a C0-manifold of dimension 2.
(v) The subset

Z = {(x, y) ∈ R2; y = 0, x ≤ 0 ∪ x = 0, y ≥ 0}

is a C0-manifold of dimension 1.

1Section 5.4 is out of the scope of the course 2010/2011
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(vi) Consider the closed cone in Rn+1 (n ≥ 1):

γ = {(x0, x1, . . . , xn) ∈ Rn+1;

n∑

i=1

x2i = x20}.

One checks easily that γ \ {0} is a C0-manifold of dimension n. Let us
show that γ is not a C0-manifold. Otherwise, there exists a connected open
neighborhood U of 0 topologically isomorphic to an open set V ⊂ Rn. Then
U \{0} would be topologically isomorphic to V \{x} for some x ∈ V . This is
not possible since such an open set V \ {x} would be connected, and U \ {0}
is not.

Since a C0-manifold is locally isomorphic to an open subset of Rn, a
C0-manifold is locally arcwise connected.

In particular, if X is a compact C0-manifold, its has a finite number of
connected components.

The study and the classification of compact C0-manifolds is an important
problem, extremely difficult as soon as the dimension is ≥ 3. If X is a
compact connected C0-manifold of dimension 0, then X is a point, X = {x}.

Theorem 5.4.3. Let X be a non empty compact connected C0-manifold of
dimension 1. Then X is isomorphic to the circle S1.

Sketch of proof. (i) First, consider two open subsets U and V of X , each of
them being isomorphic to a non empty open interval of R with a non empty
intersection. Then the intersection U ∩V is either connected and in this case
U ∪ V is isomorphic to a non empty open interval of R, or U ∩ V has two
connected components and in this case, U ∪ V is isomorphic to S1. We shall
admit this fact.
(ii) Now, consider an open covering X =

⋃
i∈I Ui where the Ui’s are isomor-

phic to a non empty open interval of R. We may extract a finite covering
X =

⋃N
i=1 Ui. We have N ≥ 2 otherwise, X would be isomorphic to an

open interval and such an interval is not compact. Let us prove the result
by induction on N .
(iii) Assume N = 2. Hence, X = U1 ∪ U2. Then U1 ∩ U2 has two connected
components and U1 ∪ U2 ≃ S1.
(iv) Consider U1. There exists 2 ≤ i ≤ N with U1 ∩ Ui 6= ∅. By reordering
the set {2, . . . , N}, we may assume i = 2. If U1 ∩ U2 has a single connected
component, U1∪U2 is isomorphic to an interval and replacing U1 with U1∪U2,
the induction proceeds. Otherwise, U1∪U2 is isomorphic to S1. Since U1∪U2

is open in X and S1 is compact, S1 is a connected component of X . Since X
is connected, X = U1 ∪ U2. q.e.d.
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Remark 5.4.4. A compact connected and simply connected C0-manifold
of dimension 2 is topologically isomorphic to the 2-sphere. Although this
theorem is not considered as very difficult, its proof will not be given here.
A similar result holds in dimension 3: a compact connected and simply
connected C0-manifold of dimension 3 is topologically isomorphic to the 3-
sphere, but this problem, known as the Poincaré conjecture, has only been
solved very recently by Perelmann. In order that a compact connected and
simply connected C0-manifold of dimension n > 3 be isomorphic to the n-
sphere, other conditions, whose formulation is out of the scope of this course,
are necessary.

Exercises to Chapter 5

Exercise 5.1. Prove the assertions in Example 5.1.14.

Exercise 5.2. LetX be a connected space and let f : X −→ Z be a continuous
function. Here, Z is endowed with the discrete topology. Prove that f is
constant.

Exercise 5.3. Prove that the connected components of Q are the sets {x},
x ∈ Q.

Exercise 5.4. Let X =
⋃

n∈NAn. Assume that all An’s are connected and
An ∪ An+1 6= ∅ for all n ∈ N. Prove that X is connected.

Exercise 5.5. Let X be a Hausdorff topological space and let (Kn)n be a
decreasing sequence of compact subsets ofX . Assume all Kn’s are connected.
Prove that K :=

⋂
nKn is connected.

Exercise 5.6. Let X be a topological space satisfying (5.1). Recall that a
map f : X −→ R is locally constant if any x ∈ X admits a neighborhood on
which f is constant. Denote by LC(X,R) the real vector space of R-valued
locally constant functions.
(i) Prove that LC(X,R) ≃ C0(X ;Rdis) where Rdis is the set R endowed with
the discrete topology.
(ii) Prove that there is an isomorphism LC(X,R) ≃ Rπ0(X).

Exercise 5.7. Let n ≥ 1 and let a1, a2 ∈ Rn with a1 6= a2. Prove that
Rn \ {a1, a2} is homotopic to the union A ∪ B ∪ I where A and B are two
disjoint n − 1-spheres and I is a closed interval [a, b] with I ∩ A = {a} and
I ∩B = {b}.


