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Abstract

This paper is essentially an overview of a forthcoming paper in

which we study coherent modules over deformation quantization alge-

broids on complex Poisson manifolds.

First, we construct the convolution of coherent kernels over such

algebroids, and prove that this convolution preserves coherency and

commutes with duality.

Next, we define the Hochschild class of coherent modules and prove

that the Hochschild class of the convolution of two coherent kernels is

the convolution of their Hochschild classes.

Finally, we study with some details the case of symplectic deforma-

tions and apply these results to the Euler class of coherent D-modules.

Mathematics Subject Classification: 53D55, 46L65, 32C38

Introduction

The notion of a star product is now a classical subject studied by many
authors and naturally appearing in various contexts. Two cornerstones of
its history are the paper [3] (see also [1, 2]) who defines ⋆-products and the
fundamental result of [21] which, roughly speaking, asserts that any real
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Poisson manifold may be “quantized”, that is, endowed with a star algebra
to which the Poisson structure is associated. It is now a well-known fact (see
[15, 22]) that, in order to quantize complex Poisson manifolds, sheaves of
algebras are not well-suited and have to be replaced by algebroid stacks. We
refer to [9, 32] for further developments.

In this paper, we consider complex manifolds endowed with DQ-algebroids,
that is, algebroid stacks locally associated to sheaves of star-algebras, and
study modules over such algebroids. Our main results are a finiteness theo-
rem, which asserts that the convolution of two coherent kernels is coherent
under suitable properness assumptions (a kind of Grauert’s theorem), the
construction of the dualizing complex and a duality theorem, which asserts
that duality commutes with convolution, the construction of the Hochschild
class of coherent DQ-modules and the theorem which asserts that Hochschild
class commutes with convolution. We also make a link (in the symplectic
case) with D-module theory and the Euler classes of D-modules of [29].

Let us describe this paper with some details.
Set k0 := C[[~]], k := C((~)) = k0[~

−1]. In [19], we define a DQ-algebra
AX on a complex manifold X as a sheaf of k0-algebras locally isomorphic
to (OX [[~]], ⋆), where ⋆ is a star-product, and we define a DQ-algebroid as
a k0-algebroid stack locally equivalent to the algebroid associated with a
DQ-algebra. (Here, DQ stands for “deformation quantization”.)

For a DQ-algebroid AX , we denote by AXa the opposite algebroid (AX)op

and we denote by AX1×X2 the external product of the algebroids AXi
(i =

1, 2). An object of Db(AX1×Xa
2
), the bounded derived category of the abelian

category of AX1×Xa
2
-modules, is sometimes called a kernel.

There exist a canonical AX×Xa-module CX on X × Xa supported by
the diagonal, and a dualizing complex ω A

X associated to AX . Consider now
three complex manifolds Xi endowed with DQ-algebroids AXi

(i = 1, 2, 3).
Let Ki ∈ Db(AXi×Xa

i+1
) (i = 1, 2) be two kernels. Their convolution is defined

as

K1 ◦K2 := Rp14!

(
(K1⊠K2)

L
⊗

AX2×Xa
2

CX2

)
.

Here, p14 denotes the projection of the product X1 × Xa
2 × X2 × Xa

3 to
X1×Xa

3 . The main results of [19] assert that if K1 and K2 are coherent and
Supp(K1)×X2 Supp(K2) is proper over X1 ×Xa

3 , then K1 ◦K2 is coherent
and the convolution commutes with duality.
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In [20], we introduce the Hochschild homology HH(AX) of the algebroid
AX :

HH(AX) := CXa

L
⊗

AX×Xa
CX , an object of Db(k0X),

and, using the dualizing complex, we construct a natural convolution mor-
phism

◦
X2

: Rp13!(p
−1
12HH(AX1×Xa

2
)

L
⊗p−1

23HH(AX2×Xa
3
)) −→ HH(AX1×Xa

3
).

To an object M of Db
coh(AX), we naturally associate its Hochschild class

hhX(M ), an element of H0
Supp(M )(X;HH(AX)). The main result of [20] is

Theorem 2.8 which asserts that taking the Hochschild class commutes with
the convolution:

hhX1×Xa
3
(K1 ◦K2) = hhX1×Xa

2
(K1) ◦

X2

hhX2×Xa
3
(K2).

When the Poisson structure associated to the deformation is symplectic, we
prove that the dualizing complex ω A

X is isomorphic to CX shifted by dX , the
complex dimension of X, and we construct canonical morphisms

~
dX/2k0X [dX ] −→ HH(AX) −→ ~

−dX/2k0X [dX ](0.1)

whose composition coincides with the canonical inclusion.
The first morphism in (0.1) gives an intrinsic construction of a canonical

class in H−dX (X;HH(AX)) studied and used by several authors (see [5, 4,
12]).

Setting A loc
X := k⊗

k0
AX , there is an isomorphism HH(A loc

X ) ≃ kX [dX ]

which allows us to define the Euler class euX(M ) ∈ HdX

Supp(M )(X;kX) of

M ∈ Db
coh(A

loc
X ). Again, the Euler class of the convolution is the convolution

of the Euler classes.
When X = T ∗M

π
−→M is the cotangent bundle to a complex manifold M ,

there is a canonical DQ-algebra denoted by ŴX and a well-defined morphism

of C-algebras π−1DM →֒ ŴX . Then the Euler class of ŴX -modules allows us
to recover the Euler class of D-modules and to recover the results of [29] on
the functoriality of these Euler classes.

The results of § 1 and § 2 are presented, with complete proofs, in [19] and
[20], respectively.
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1 Modules over DQ-algebroids

In this section, we shall review the main constructions and results of [19].
Recall that we set k0 := C[[~]] and k = C((~)), the fraction field of k0.

Algebroid

Let X be a topological space and K a commutative unital ring.
Recall that a K-algebroid (introduced in [22]) A on X is a K-linear stack

(see [18] for an exposition on stacks) locally non empty and such that for any
open subset U of X, two objects of A (U) are locally isomorphic.

For a K-algebra A, we denote by A+ the category with one object and
having A as the set of endomorphisms of this object. If A is a sheaf of K-
algebras, we denote by A + the stack associated to the prestack U 7→ A (U)+

(U open in X). Then A + is an algebroid and is called the K-algebroid
associated with A . The category A +(X) is equivalent to the full subcategory
of Mod(A op) consisting of objects locally isomorphic to A op.

Convention 1.1. If A is a sheaf of algebras and if there is no risk of confu-

sion, we shall keep the same notation A to denote the associated algebroid.

For an algebroid A , one defines the K-abelian category Mod(A ), whose
objects are called A -modules, by setting

Mod(A ) := FctK(A , Mod(KX)).(1.1)

Here Mod(KX) is the stack of sheaves of K-modules on X, and FctK is the cat-
egory of K-linear functors of stacks. For a K-algebroid A , Mod(A ⊗

K
A op)

has a canonical object given by

A ⊗
K

A
op ∋ (σ, σ′op) 7→Hom

A
(σ′, σ) ∈Mod(KX).

We denote this object by the same letter A .
We denote by Db(A ) the bounded derived category of the category

Mod(A ).

DQ-algebras and DQ-algebroids

From now on, X will be a complex manifold. We denote by dX its complex
dimension.
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Set OX [[~]] := lim
←−

n

OX ⊗C (k0/~nk0). An associative multiplication law ⋆

on OX [[~]] is a star-product if it is k0-bilinear and satisfies

f ⋆ g =
∑

i≥0

Pi(f, g)~i for f, g ∈ OX,(1.2)

where the Pi’s are bi-differential operators, P0(f, g) = fg and Pi(f, 1) =
Pi(1, f) = 0 for i > 0.

We call (OX [[~]], ⋆) a star-algebra.
Let ⋆′ be another star-product and let ϕ : (OX[[~]], ⋆) −→ (OX [[~]], ⋆′)

be a morphism of C[[~]]-algebras. Then there exists a unique sequence of
differential operators {Ri}i≥0 such that R0 = 1 and ϕ(f) =

∑
i≥0 Ri(f)~i for

any f ∈ OX. In particular, ϕ is an isomorphism.

Definition 1.2. (a) A DQ-algebra A on X is a k0-algebra locally isomor-
phic, as a k0-algebra, to a star-algebra.

(b) A DQ-algebroid A on X is a k0-algebroid such that for each open set
U ⊂ X and each σ ∈ A (U), the k0-algebra Hom

A
(σ, σ) is a DQ-algebra

on U .

For a DQ-algebra, there is a C-algebra isomorphism A /~A ∼−→ OX . We
denote by σ0 : A −→ OX the k0-algebra morphism so defined.

Theorem 1.3. Any DQ-algebra A is right and left Noetherian (in par-

ticular, coherent). Moreover, an A -module M is coherent if and only if

~nM /~n+1M is a coherent OX-module for any n ≥ 0 and M −→ lim
←−

n

(M /~nM )

is an isomorphism.

If X is endowed with a DQ-algebroid AX , then we denote by Xa the
manifold X endowed with the DQ-algebroid AXa := (AX)op.

Let X and Y be complex manifolds endowed with DQ-algebroids AX and
AY respectively. There is a canonical DQ-algebroid AX⊠AY on X×Y which
contains AX ⊠ AY as a subalgebroid, and we set AX×Y := AX⊠AY .

Let AX be a DQ-algebroid on X and let M ∈ Db(AX). Its dual D′
A

M ∈
Db(AXa) is defined by

D′
A M := RHom

AX
(M , AX).(1.3)

Here, AX is regarded as an AX ⊗AXa-module.
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Let AX be a DQ-algebroid on X. We denote by gr~(AX) the C-algebroid
locally associated with the sheaf of algebras AX/~AX . Then Mod(gr~(AX))
is equivalent to the full subcategory of Mod(AX) consisting of objects M such
that ~ : M −→ M vanishes. The functor for : Mod(gr~(AX)) −→ Mod(AX)
admits a left adjoint functor M 7→M /~M ≃ C⊗

k0
M .

The left derived functor of the functor M 7→ M /~M is denoted by
gr~ : Db(AX) −→ Db(gr~(AX)). For M ∈ Db(AX), we call gr~(M ) the graded
module associated to M .

The functor gr~ induces a functor:

gr~ : Db
coh(AX) −→ Db

coh(gr~(AX)).(1.4)

Proposition 1.4. The functor gr~ in (1.4) is conservative.

Let Ki ∈ Db(AXi×Xa
i+1

) (i = 1, 2). Then

gr~(K1

L
⊗

AX2
K2) ≃ gr~(K1)

L
⊗

gr~(AX2
)
gr~(K2).(1.5)

Let Ki ∈ Db(AXi×Xi+1
) (i = 1, 2). Then

gr~(RHom
AX2

(K1, K2)) ≃ RHom gr~(AX2
)(gr~(K1), gr~(K2)).(1.6)

Let Λ be a smooth submanifold of X and let L be a coherent AX -module
supported by Λ. One says that L is simple along Λ if gr~(L ) is concentrated
in degree 0 and H0(gr~(L )) is an invertible OΛ ⊗OX

gr~(AX)-module. (In
particular, L is without ~-torsion.)

Proposition 1.5. Let Λ be a closed smooth submanifold of X of codimension

l and let L be a coherent AX-module simple along Λ. Then E xtj
AX

(L , AX)

vanishes for j 6= l, and it is a simple AXa-module along Λ for j = l.

Recall that dX denotes the complex dimension of X.

Proposition 1.6. Let AX be a DQ-algebra. Then, any coherent AX-module

locally admits a resolution by free modules of finite rank of length ≤ dX + 1.
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DQ-modules supported by the diagonal

We denote by ∆X the diagonal of X×Xa, by δX : X →֒ X×Xa the diagonal
embedding, and by Mod∆X

(AX ⊠AXa) the category of (AX ⊠AXa)-modules
supported by the diagonal. Then

δX∗ : Mod(AX ⊗AXa) −→ Mod∆X
(AX ⊠ AXa)

gives an equivalence of categories and we shall often identify these two cate-
gories.

The algebroid AX may be regarded as an object of Mod(AX ⊗AXa), and
the AX ⊠ AXa-module δX∗AX has a natural structure of an AX×Xa-module,
simple along the diagonal. We set

CX := δX∗AX , an object of Mod(AX×Xa).(1.7)

A coherent AX×Xa-module simple along the diagonal is called a bi-invertible

AX×Xa-module. Then, the category of bi-invertible AX×Xa-modules is a ten-
sor category and CX is a unit object. More generally, we say that P ∈
Db(AX×Xa) is bi-invertible if it is concentrated in a single degree, say n, and
Hn(P) is bi-invertible. If P is bi-invertible, we set

P
⊗−1 := RHom

AX
(P, AX).(1.8)

Then we have

P
⊗−1

L
⊗

AX
P ≃P

L
⊗

AX
P

⊗−1 ≃ CX .

~-localization

To a DQ-algebroid AX we associate its ~-localization, the k-algebroid

A
loc

X = k⊗
k0

AX .(1.9)

There exists a pair of adjoint exact functors (k⊗
k0

• , for):

Mod(A loc
X )

for // Mod(AX).
k⊗

k0

•

oo(1.10)

The algebroid A loc
X is Noetherian.
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If M0 is an AX -submodule of an A loc
X -module M and M0 ⊗k0

k ∼−→M ,
then we shall say that M0 generates M .

A coherent A loc
X -module M is good if, for any relatively compact open

subset U of X, there exists a coherent (AX |U)-module which generates M |U .
One denotes by Modgd(A

loc
X ) the full subcategory of Modcoh(A

loc
X ) con-

sisting of good modules. As in [16, Prop. 4.23], one proves that Modgd(A
loc
X )

is a thick subcategory of Modcoh(A
loc
X ).

We denote by Db
coh(A

loc
X ) (resp. Db

gd(A
loc

X )) the full triangulated subcate-

gory of Db(A loc
X ) consisting of objects M such that Hj(M ) is coherent (resp.

good) for all j ∈ Z. The notion of good A loc
X -module is similar to that of

good D-module of loc. cit.

Deformation quantization of DX and dualizing complex

The ring DX [[~]] of differential operators on OX [[~]] is naturally regarded as a
subsheaf of Endk0(OX [[~]]). There is a canonical equivalence of k0-algebroids
Endk0(OX [[~]]) ≃ Endk0(AX). (In particular, the algebroid Endk0(AX)
is associated to a sheaf of algebras.) We denote by DA

X the substack of
Endk0(AX), the image of DX [[~]] by this equivalence. This is a k0-algebroid
that we call the algebroid of differential operators (associated with AX).
Then AX may be regarded as an object of Mod(DA

X ). We have morphisms of
algebroids: AX⊗AXa −→ δ−1

X AX×Xa −→ DA
X . The object RHom

DA

X
(AX , DA

X )

of Db((DA
X )op) is concentrated in degree dX . Through AX×Xa −→ (DA

X )op, we
set:

ΩA
X = E xtdX

DA

X

(AX , DA
X ) ∈ Mod(AX×Xa),

ω A
X := ΩA

X [dX ] ∈ Db(AX×Xa).
(1.11)

We call ω A
X the AX-dualizing sheaf. It is a bi-invertible AX×Xa-module. Note

that one has the morphisms:

ΩA
X

L
⊗

AX×Xa
CX [−dX ] −→ ΩA

X

L
⊗

DA

X

AX [−dX ]

≃ RHom
DA

X
(AX , AX) ≃ k0X .

(1.12)

In [19, Theorem 8.5], one proves the isomorphism

ω A

X ≃ (D′
A (CXa))⊗−1 in Db(AX×Xa).(1.13)

Note that in this formula, D′
A

is the dual over AX×Xa and ( • )⊗−1 is given
in (1.8).
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Remark 1.7. The fact that D′
A

CX is concentrated in a single degree and
plays the role of a dualizing complex in the sense of [31] was already proved
by [10].

Let Y be another manifold endowed with a DQ-algebroid AY . We intro-
duce the notation:

ω A

X×Y/Y = ω A

X

L

⊠CY ∈ Db(AX×Xa×Y ×Y a).

Then ω A

X×Y/Y also belongs to Db(DA
X

op
⊠AY ×Y a), and we have ω A

X×Y/Y

L
⊗

DA

X

AX ≃

k0X ⊠ AY . Hence we have a canonical morphism

ω A

X×Y/Y

L
⊗

AX×Xa
CX −→ (k0X ⊠ CY )[2dX ](1.14)

in Db(k0X ⊠ AY ×Y a).

Convolution of kernels

For two complex manifolds Xi (i = 1, 2) endowed with DQ-algebroids AXi

and for Mi ∈ Db(AXi
), we defined their external product

M1

L

⊠M2 := AX1×X2 ⊗(AX1
⊠AX2

) (M1

L

⊠ M2).

Consider now three complex manifolds Xi (i = 1, 2, 3) endowed with DQ-
algebroids AXi

. We denote by pi the i-th projection and by pij the (i, j)-th
projection. For Λi ⊂ Xi ×Xi+1 (i = 1, 2), we set

Λ1 ◦ Λ2 = p13(p
−1
12 Λ1 ∩ p−1

23 Λ2).(1.15)

We shall write for short Ai instead of AXi
, Aija instead of AXija , etc. (See

also Notations 2.5 below.)
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Definition 1.8. Let Ki ∈ Db(AXi×Xa
i+1

) (i = 1, 2). We set

K1

L
⊗

A2
K2 := p−1

12 K1

L
⊗

p−1
2 A2

p−1
23 K2(1.16)

≃ (K1

L

⊠ K2)
L
⊗

A2⊠A2a
C2 ∈ Db(p−1

13 (A1 ⊠ A3a)),

K1

L
⊗

A2
K2 := (K1

L

⊠K2)
L
⊗

A22a
C2(1.17)

≃ p−1
12 K1

L
⊗

p−1
12 A1a2

A123

L
⊗

p23A23a
p−1

23 K2 ∈ Db(p−1
13 A13a),

K1 ◦
X2

K2 := Rp13!(K1

L
⊗

A2
K2) ∈ Db(AX1×Xa

3
),(1.18)

K1 ∗
X2

K2 := Rp13∗(K1

L
⊗

A2
K2) ∈ Db(AX1×Xa

3
).(1.19)

If there is no risk of confusion we write K1 ◦K2 for K1 ◦
X2

K2 and similarly

with ∗. We call K1 ◦K2 and K1 ∗K2 the convolution product of the kernels

K1 and K2.

When X1 = pt or X3 = pt we get K1 ⊗A2
K2
∼−→ K1

L
⊗

A2
K2.

There are canonical isomorphisms

K1 ◦
X2

CX2 ≃ K1 and CX1 ◦
X1

K1 ≃ K1.(1.20)

One shall be aware that ◦ and ∗ are not associative in general. However, if

L is an invertible AX2-module, E is a bi-invertible AX2×Xa
2
-module and the

Ki are as above (i = 1, 2), then there are natural isomorphisms

K1 ◦
X2

L ≃ K1

L
⊗

AX2
L , L ◦

X2

K2 ≃ L
L
⊗

AX2
K2,

(K1 ◦
X2

E ) ◦
X2

K2 ≃ K1 ◦
X2

(E ◦
X2

K2).

Note that the functor gr~ in (1.4) commutes with the convolution of
kernels.

Theorem 1.9. Let Ki ∈ Db
coh(AXi×Xa

i+1
) (i = 1, 2). Assume that the projec-

tion p13 defined on X1×X2×X3 is proper on p−1
12 Supp(K1)∩p−1

23 Supp(K2).
Then
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(a) the object K1 ◦ K2 belongs to Db
coh(AX1×Xa

3
) and Supp(K1 ◦ K2) ⊂

Supp(K1) ◦ Supp(K2),

(b) we have a natural isomorphism

D′
A (K1) ◦

Xa
2

ω A

Xa
2
◦

Xa
2

D′
A (K2) ∼−→ D′

A (K1 ◦
X2

K2)(1.21)

in Db(AXa
1×X3).

Corollary 1.10. Let M and N be two objects of Db
coh(AX) and assume that

Supp(M ) ∩ Supp(N ) is compact. Then RHom
AX

(M , N ) ∈ Db
f(k0), and

there is a natural isomorphism in Db
f(k0):

RHom
AX

(N , ω A

X

L
⊗

AX
M ) ≃ (RHom

AX
(M , N ))⋆,

where ⋆ is the duality functor in Db
f(k0).

In particular, if X is compact, then M 7→ ω A
X ⊗AX

M is a Serre functor

of the triangulated category Db
coh(AX).

2 Hochschild class

In this section, we shall review with some details the main constructions and
results of [20].

Construction of the Hochschild class

Let X be a complex manifold and let AX be a DQ-algebroid. Recall that
δ : X −→ X × Xa is the diagonal embedding. We define the Hochschild
homology HH(AX) of AX by:

HH(AX) := δ−1(CXa

L
⊗

AX×Xa
CX), an object of Db(k0X).(2.1)

Note that, using (1.13), we get the isomorphisms:

HH(AX) ≃ δ−1RHom
AX×Xa

(D′
A (CXa), CX)

≃ δ−1RHom
AX×Xa

(ω A ⊗−1
X , CX).
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We have also the isomorphisms

RHom
AX×Xa

(ω A ⊗−1
X , CX) ≃ RHom

AX×Xa
(ω A

X ◦
X

ω A ⊗−1
X , ω A

X ◦
X

CX)

≃ RHom
AX×Xa

(CX , ω A

X ).

One shall be aware that there are two different isomorphisms

RHom
AX×Xa

(ω A ⊗−1
X , CX) ≃ RHom

AX×Xa
(CX , ω A

X )

according as one applies the functor • ◦
X

ω A
X or the functor ω A

X ◦
X

• .

Let M ∈ Db
coh(AX). We have the chain of morphisms

RHom
AX

(M , M )
∼
←− D′

A
M

L
⊗

AX
M

≃ CXa

L
⊗

AX×Xa
(M⊠D′

A
M )

−→ CXa

L
⊗

AX×Xa
CX = HH(AX).

(2.2)

We get a map

Hom
AX

(M , M ) −→ H0
Supp(M )(X;HH(AX)).

For u ∈ End(M ), the image of u gives an element

hhX((M , u)) ∈ H0
Supp(M )(X;HH(AX)).(2.3)

Definition 2.1. Let M ∈ Db
coh(AX). We set hhX(M ) = hhX((M , idM ))

and call it the Hochschild class of M .

Let M ∈ Db
coh(AX). There are natural morphisms in Db

coh(AX×Xa):

ω A ⊗−1
X −−→M

L

⊠D′
A M −−→CX .(2.4)

Lemma 2.2. The composition of the two morphisms in (2.4) coincides with

the Hochschild class hhX(M ) when identifying RHom
AX×Xa

(ω A ⊗−1
X , CX)

with HH(AX).

Remark 2.3. For the additivity of the Hochschild class with respect to
distinguished triangles, that is, for the equality hhX(M ) = hhX(M ′) +

hhX(M ′′) when M ′ −→M −→M ′′ +1
−→ is a distinguished triangle in Db

coh(AX),
we refer to May [25].
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Composition of Hochschild classes

Let Xi be complex manifolds endowed with DQ-algebroids AXi
(i = 1, 2, 3)

and we denote as usual by pij the projection from X1 ×X2 ×X3 to Xi ×Xj

(1 ≤ i < j ≤ 3).

Proposition 2.4. There is a natural morphism

◦ : Rp13!(p
−1
12HH(AX1×Xa

2
)

L
⊗p−1

23HH(AX2×Xa
3
)) −→ HH(AX1×Xa

3
).

Sketch of proof. (i) Set Zi = Xi × Xa
i . We shall denote by the same letter

pij the projection from Z1 × Z2 × Z3 to Zi × Zj.
We have

HH(AXi×Xa
j
) ≃ RHom

AZi×Za
j

(ω A ⊗−1
Xi

L

⊠CXa
j
, CXi

L

⊠ω A

Xj
a).

Set Sij :=ω A ⊗−1
Xi

L

⊠CXa
j
∈ Db

coh(AZi×Za
j
) and Kij :=CXi

L

⊠ω A
Xa

j
∈ Db

coh(AZi×Za
j
).

Then we get

HH(AXi×Xa
j
) ≃ RHom

AZi×Za
j

(Sij, Kij).

Thus we obtain

p−1
12HH(AX1×Xa

2
)

L
⊗p−1

23HH(AX2×Xa
3
)

≃ p−1
12 RHom

AZ1×Za
2

(S12, K12)
L
⊗p−1

23 RHom
AZ2×Za

3

(S23, K23)

−→ RHomp−1
13 AZ1×Za

3

(
S12

L
⊗

AZ2
S23, K12

L
⊗

AZ2
K23

)
.

Hence, we get a chain of morphisms

Rp13!(p
−1
12HH(AX1×Xa

2
)

L
⊗p−1

23HH(AX2×Xa
3
))

−→ Rp13!RHomp−1
13 AZ1×Za

3

(
S12

L
⊗

AZ2
S23, K12

L
⊗

AZ2
K23

)

−→ RHom
AZ1×Za

3

(
Rp13∗(S12

L
⊗

AZ2
S23), Rp13!(K12

L
⊗

AZ2
K23)

)
.

(2.5)

(ii) To conclude, we construct the morphisms

S13 −→ Rp13∗(S12

L
⊗

AZ2
S23),(2.6)

Rp13!(K12

L
⊗

AZ2
K23) −→ K13.(2.7)

Q.E.D.
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Main theorem

Consider four manifolds Xi endowed with DQ-algebroids AXi
(i = 1, 2, 3, 4).

Notation 2.5. In the sequel and until the end of this section, when there is
no risk of confusion, we use the following conventions.

(i) For i, j ∈ {1, 2, 3, 4}, we set Xij :=Xi×Xj , Xija :=Xi×Xa
j and similarly

with Xijk, etc.

(ii) We sometimes omit the symbols pij, pij∗, p
−1
ij , etc.

(iii) We write Ai instead of AXi
, Aija instead of AXija and similarly with

Ci, ω
A
i , etc. Moreover, we even sometimes write Hom i instead of

Hom
Ai

and ⊗i instead of ⊗
Ai

and similarly with ija, ijk, etc.

(iv) We write D′ instead of D′
A

and ωX instead of ω A
X .

(v) We often identify an invertible object of Db(AX ⊗AXa) with an object
of Db(AX×Xa) supported by the diagonal.

(vi) We identify (Xi ×Xa
j )a with Xj ×Xa

i .

For a closed subset Λ of X, we set

HHΛ(AX) := H0RΓΛ(X;HH(AX)).(2.8)

Let Λij ⊂ Xij (i = 1, 2, j = i + 1) be a closed subset and assume that
p−1

12 Λ12∩p−1
23 Λ23 is proper over X1×X3. Using Proposition 2.4, we get a map

◦
2

: HHΛ12(AX12a )× HHΛ23(AX23a )−−→HHΛ12◦Λ23(AX13a ).(2.9)

For Cij ∈ HHΛij
(AXija ) (i = 1, 2, j = i + 1), we obtain a class

C12 ◦
2
C23 ∈ HHΛ12◦Λ23(AX13a ).(2.10)

The morphism (C1a

L
⊗11aC1)

L

⊠ (C2a

L
⊗22aC2) −→ (C2a1a

L
⊗121a2aC12) induces the

exterior product

⊠ : HHΛ1(AX1)× HHΛ2(AX2) −→ HHΛ1×Λ2(AX1×X2)(2.11)

for Λi ⊂ Xi (i = 1, 2).
Now let Λij ⊂ Xij (i = 1, 2, 3, j = i+1) and assume that p−1

ij Λij ∩p−1
jk Λjk

is proper over Xik (i = 1, 2, j = i + 1, k = j + 1).

14



Lemma 2.6. Let Cij ∈ HHΛij
(AXija ) (i = 1, 2, 3, j = i + 1).

(a) One has (C12 ◦
2
C23) ◦

3
C34 = C12 ◦

2
(C23 ◦

3
C34).

(b) for C245 ∈ HH(AX245a ) we have

(C12 ⊠ C34) ◦
24

C245 = C12 ◦
2
(C34 ◦

4
C245).

(c) Set C∆i
= hhXiia

(CXi
). Then C12 ◦

2
C∆2 = C∆1 ◦

1
C12 = C12.

(d) (C12 ⊠C∆3) ◦
23a

C23 = C12 ◦
2
C23. Here C12 ⊠C∆3 ∈ HHΛ12×∆3(AX12a33a ) is

regarded as an element of HHΛ12×∆3(AX(13a)(23a)a
).

Let K ∈ Db
coh(AX12a ). Using (2.4) one constructs natural morphisms in

Db(AX11a ):

ω⊗−1
1 −→ K ∗

2
D′

K ,(2.12)

K ◦
2
ω2 ◦

2
D′

K −→ C1.(2.13)

For the sake of brevity, we shall write ΓΛHom instead of H0(RΓΛRHom ).
Let Λ12 be a closed subset of X1 ×Xa

2 and Λ2 a closed subset of X2. Let
K ∈ Db

coh(AX12a ) with support Λ12. We assume

Λ12 ×X2 Λ2 is proper over X1.(2.14)

We define the map

ΦK : HHΛ2(AX2)−−→HHΛ12◦Λ2(AX1)(2.15)

as the composition of the sequence of maps

HHΛ2(A2) ≃ ΓΛ2Hom22a(ω
⊗−1
2 , C2)

−→ ΓΛ12×X2
Λ2Hom11a(K

L
⊗2ω

⊗−1
2 ◦

2
ω2 ◦

2
D′

K , K
L
⊗2C2 ◦

2
ω2 ◦

2
D′

K )

−→ ΓΛ12◦Λ2Hom11a

(
Rp1∗(K

L
⊗2(ω

⊗−1
2 ◦

2
ω2 ◦

2
D′

K )), Rp1!(K
L
⊗2(C2 ◦

2
ω2 ◦

2
D′

K ))
)

≃ ΓΛ12◦Λ2Hom11a(K ∗
2
D′

K , K ◦
2
ω2 ◦

2
D′

K )

−→ ΓΛ12◦Λ2Hom11a(ω
⊗−1
1 , C1) ≃ HHΛ12◦Λ2(A1).

The first arrow is obtained by applying the functor L 7→ K
L
⊗2(L ◦2

ω2 ◦
2
D′K ),

The last arrow is associated with the morphisms in (2.12) and (2.13).
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Lemma 2.7. The map ΦK : HHΛ2(AX2)−−→HHΛ12◦Λ2(AX1) in (2.15) is the

map hhX12a (K ) ◦ given in (2.10).

Theorem 2.8. Let Ki ∈ Db
coh(AXi×Xa

i+1
) (i = 1, 2) and set Λi = Supp(Ki).

Assume that Λ1 ×X2 Λ2 is proper over X1 ×X3. Then

hhX13a (K1 ◦K2) = hhX12a (K1) ◦ hhX23a (K2)(2.16)

as elements of HHΛ1◦Λ2(AX1×Xa
3
).

Proof. For the sake of simplicity, we assume that X3 = pt. Consider the
diagram in which we set λ2 = hh2(K2):

ω⊗−1
1

// K1 ◦
2
ω⊗−1

2 ◦
2
ω2 ◦

2
D′K1

λ2 //

��

K1 ◦
2
C2 ◦

2
ω2 ◦

2
D′K1 // C1

K1 ◦
2
(K2⊠D′K2) ◦

2
ω2 ◦

2
D′K1

44iiiiiiiiiiiiiiiii

∼

��
(K1 ◦

2
K2)⊠D′K2 ◦

2
ω2 ◦

2
D′K1

∼

��
// (K1 ◦

2
K2)⊠D′(K1 ◦

2
K2)

OO

Here, the left horizontal arrow on the top is the composition of morphisms
ω⊗−1

1 −→ K1 ◦
2
D′K1 −→ K1 ◦

2
ω⊗−1

2 ◦
2
ω2 ◦

2
D′K1. The composition of the arrows

on the bottom is hh1(K1 ◦K2) by Lemma 2.2 and the composition of the
arrows on the top is ΦK1(hh2(K2)) by Lemma 2.7. Hence, the assertion
follows from the commutativity of the diagram. Q.E.D.

Remark 2.9. (i) The fact that Hochschild homology of O-modules is func-
torial is well-known, see e.g., [6, 14].
(ii) In [8], its authors interpret Hochschild homology as a morphism of func-
tors and the action of kernels as a 2-morphism in a suitable 2-category. Its
authors claim that the the relation ΦK1 ◦ΦK1 = ΦK1 ◦K2 follows by gen-

eral arguments on 2-categories. Their result applies in a general framework
including in particular O-modules in the algebraic case and presumably DQ-
modules but the precise axioms are not specified in loc. cit. See also [30] for
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related results. Note that, as far as we understand, these authors do not in-
troduce the convolution of Hochschild homologies and they did not consider
Lemma 2.7 nor Theorem 2.8.

As a particular case of Theorem 2.8, consider two objects M and N

in Db
coh(AX) and assume that Supp(M ) ∩ Supp(N ) is compact. Then the

cohomology groups of the complex RHom
AX

(M , N ) are finitely generated
k0-modules and

χ(RHom
AX

(M , N )) = hhXa(D′
A M ) ◦

X
hhX(N )

= hhX(M ) ◦
X

hhX(N ).

Graded and localized Hochschild classes

Similarly to the case of AX , one defines

HH(gr~(A X)) := gr~(CXa)
L
⊗

gr~(AX×Xa )
gr~(CX),

HH(A loc
X ) := A

loc
Xa

L
⊗

A loc
X×Xa

A
loc

X .

Note that

HH(gr~(A X)) ≃ C
L
⊗

k0
HH(AX), HH(A loc

X ) ≃ k⊗
k0
HH(AX)

and there are natural morphisms

gr~ : HH(AX) −→ HH(gr~(A X)), loc : HH(AX) −→ HH(A loc
X ).

For F ∈ Db
coh(gr~(AX)) (resp. F ∈ Db

coh(A
loc

X )), one defines its Hochschild
class hhgr

X (F ) (resp. hhloc
X (F )) by the same construction as for AX-modules.

For M ∈ Db
coh(AX), setting M loc = k⊗

k0
M , we have:

gr~(hhX(M )) = hhgr
X (gr~(M )), (hhX(M ))loc = hhloc

X (M loc).(2.17)

Hochschild class on symplectic manifolds

Consider first the case where X is an open subset of T ∗M , M being affine,
that is, M is open in some finite-dimensional C-vector space. Denote by
(x) = (x1, . . . , xn) a coordinate system on M and by (x; u) the associated

17



symplectic coordinate system on T ∗M . Let f, g ∈ OX [[~]]. One defines a

star-product on OX [[~]], hence a DQ-algebra ŴT ∗M(0), by setting:

f ⋆ g =
∑

α∈Nn

~|α|

α!
(∂α

u f)(∂α
x g).(2.18)

This product is similar to the product of the total symbols of differential
operators (see § 3).

It is a well-known fact that if AX is a DQ-algebra and the associated
Poisson structure is symplectic, then X is locally isomorphic to an open
subset of a cotangent bundle T ∗M (Darboux’s theorem) and AX is locally

isomorphic to ŴT ∗M(0).
Throughout this section, X denotes a complex manifold endowed with a

DQ-algebroid AX such that the associated Poisson structure is symplectic.
Hence, X is symplectic and we denote by αX the symplectic 2-form on X.

We set 2n = dX , Z = X ×Xa and we denote by dv the volume form on
X given by dv = αn

X/n!. Recall that the objects ΩA
X and ω A

X are defined in
(1.11).

It follows from a classical result of [28] that two simple AX-modules Li

(i = 0, 1) along a smooth Lagrangian submanifold Λ of X are locally isomor-
phic and the natural morphism k0 −→ Hom

AX
(L0, L0) is an isomorphism.

It follows that there exists a local system L of rank one over k0X such that
ΩA

X ≃ L⊗
k0X

CX in Mod(AX×Xa). Hence we obtain

HH(AX) = CXa

L
⊗

AZ
CX ≃ RHom

AZ
(D′

A CX , CX)

≃ L⊗RHom
AZ

(CX , CX)[dX ]

and

HH(AX) = CXa

L
⊗

AZ
CX ≃ L⊗−1 ⊗ΩA

X

L
⊗

AZ
CX

−→ L⊗−1 ⊗ΩA

X

L
⊗

DA

Z

CX ≃ L⊗−1[dX ].

Therefore, we get the morphisms:

L[dX ] −→ HH(AX) −→ L⊗−1[dX ].(2.19)

Moreover, one proves the isomorphism

L ≃ ~
dX/2k0X ,(2.20)

from which one deduces:
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Theorem 2.10. Assume that X is symplectic.

(i) There is a canonical AZ-linear isomorphism ΩA
X
∼−→ ~dX/2k0 ⊗k0

CX .

(ii) This isomorphism induces canonical morphisms

~
dX/2k0X [dX ]

ιX−→ HH(AX)
τX−→ ~

−dX/2k0X [dX ](2.21)

and the composition τX ◦ιX is the canonical morphism ~dX/2k0X [dX ] −→
~−dX/2k0X [dX ].

(iii) Hj(HH(AX)) ≃ 0 unless −dX ≤ j ≤ 0 and the morphism ιX induces

an isomorphism

ιX : ~
dX/2k0X

∼−→ H−dX (HH(AX)).(2.22)

In particular, there is a canonical non-zero section in H−dX (X;HH(AX)).

Remark 2.11. The existence of a canonical section in H−dX(X;HH(AX)) is
well known (see in particular [5, 12]). It is intensively used by many authors
(see in particular [4, 11]), some of them calling it the “trace density map”.

Remark 2.12. The Hochschild class of coherent O-modules has been studied
by many authors. Let us quote in particular [6, 7, 8, 14, 24, 27, 30].

3 Euler class and applications to D-modules

Euler class on symplectic manifolds

Denote as above by X a complex manifold endowed with a DQ-algebroid AX

such that the associated Poisson structure is symplectic.
Recall (see (1.9)) that k := C((~)) and A loc

X = k⊗
k0

AX .
The following result is easily deduced from Theorem 2.10.

Theorem 3.1. The complex HH(A loc
X ) is concentrated in degree −dX , the

morphisms ιX and τX in Theorem 2.10 induce isomorphisms

kX [dX ] ∼−→
ιX
HH(A loc

X ) ∼−→
τX

kX [dX ](3.1)

and the composition τX ◦ ιX is the identity.

19



Definition 3.2. Let M ∈ Db
coh(A

loc
X ). We set

euX(M ) = τX(hhX(M )) ∈ HdX

Supp(M )(X;kX)(3.2)

and call euX(M ) the Euler class of M .

Consider the diagram

p13!(p
−1
12HH(A loc

X1×Xa
2
)⊗ p−1

23HH(A loc
X2×Xa

3
)) ⋆ //

τ12a⊗τ23a

��

HH(A loc
X1×Xa

3
)

τ13a

��
p13!(p

−1
12 kX12 [d12]⊗ p−1

23 kX23 [d23])

R

2(·∪·)
// kX13 [d13].

(3.3)

Here, the horizontal arrow in the bottom denoted by
∫
2
( • ∪ • ) is obtained

by taking the cup product and integrating on X2 (Poincaré duality), using
the fact that the manifold X2 has real dimension 2 d2 and is oriented. The
arrow in the top denoted by ⋆ is obtained by Proposition 2.4 (ii). The two
vertical arrows are given by the Euler classes.

Proposition 3.3. Diagram 3.3 commutes.

Proof. Since X1 and X3 play the role of parameter spaces, we may assume
that X1 = X3 = {pt}. We set X2 = X, dX = d and denote by aX the
projection X −→ {pt}. We are reduce to prove the commutativity of the
diagram below:

aX !(HH(A loc
X )⊗HH(A loc

X ))

τ⊗τ

��
⋆

**UUUUUUUUUUUUUUUUUUUUU

aX !(kX [dX ]⊗kX [dX ])
R

X
(·∪·)

// k.

(3.4)

This will follow by applying the functor aX ! to Diagram 3.5 bellow. Q.E.D.

Lemma 3.4. The diagram below commutes.

HH(A loc
X )⊗HH(A loc

X )

⋆

))R
RR

RR
RR

RR
RR

RR
R

τ⊗τ

��
kX [d]⊗kX [d] // kX [2d].

(3.5)
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Corollary 3.5. Let Ki ∈ Db
coh(A

loc
Xi×Xa

i+1
) (i = 1, 2). Assume that the projec-

tion p13 defined on X1×X2×X3 is proper on p−1
12 Supp(K1)∩p−1

23 Supp(K2).
Then

euX13a (K1 ◦
2
K2) =

∫

X2

euX12a (K1) ∪ euX23a (K2).(3.6)

Applications to D-modules

From now on, (M, OM) denotes a complex manifold. As usual, we denote
by DM the C-algebra of differential operators on M . This is a right and left
Noetherian sheaf of rings.

One says that a coherent DM -module M is good (see [16]) if, for any open
relatively compact set U ⊂ M , there exists a coherent sub-OU -module F of
M |U which generates it on U as a DM -module. One denotes by Db

gd(DM) the

full sub-triangulated category of Db
coh(DM) consisting of objects with good

cohomology.
Let π : T ∗M −→M denote the cotangent bundle to M . The manifold T ∗M

is naturally endowed with the conic sheaf ÊT ∗M of formal microdifferential
operators of [28] and with its subring ÊT ∗M(0) consisting of operators of order

≤ 0. It is also endowed with a canonical DQ-algebra, denoted by ŴT ∗M(0),

which may be constructed using the sheaf ÊT ∗(M×C)(0) (see [26]). Its local-

ization is denoted by ŴT ∗M and there are natural morphisms of algebras

π−1
M DM →֒ ÊT ∗M →֒ ŴT ∗M .(3.7)

If M is endowed with a local coordinate systems (x) = (x1, . . . , xn), the
composition of the morphisms in (3.7) is given by

ϕ(x) 7→ ϕ(x), ∂xi
7→ ~

−1ui.

Recall that for a coherent DM -module M , the support of ÊT ∗M⊗π−1
M

DM
π−1

M M

is called its characteristic variety and denoted by char(M ).
From now on, we set X = T ∗M . One defines the Hochschild homology

HH(ÊX) of ÊX and the Hochschild class hhX(M ) of a coherent ÊX -module
M similarly as for HH(AX).

In the sequel, we identify a coherent DM -module with its image in π∗(ÊX).
In particular, we define by this way the Hochschild class hhX(M ) of a co-
herent D-module M . Hence

hhX(M ) ∈ HdX

char(M )(X;HH(ÊX)).(3.8)
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Lemma 3.6. There is a natural isomorphism

HH(ÊX) ∼−→ CX [dX ](3.9)

which makes the diagram below commutative:

HH(ÊX)

��

∼ // CX [dX ]

��

HH(ŴX)
∼
τ

// kX [dX ].

Definition 3.7. Let M ∈ Db
coh(ÊX). We denote by euX(M ) the image of

hhX(M ) in HdX

char(M )(X; CX) by the morphism in (3.9) and call it the Euler
class of M .

We now introduce the functor

( • )W : Mod(DM) −→ Mod(ŴX)(3.10)

M 7→ ŴX ⊗π−1
M

DM
π−1

M M .(3.11)

The next result shows that one can, in some sense, reduce the study of D-

modules to that of Ŵ-modules.

Proposition 3.8. The functor M 7→M W|M is exact and faithful.

It follows that ( • )W sends Db
coh(DM) to Db

coh(ŴX) and Db
gd(DM) to Db

gd(ŴX).
The next result immediately follows from Lemma 3.6.

Proposition 3.9. For M ∈ Db
coh(DM), euX(M W ) is the image of euX(M )

by the natural map HdX

char(M )(X; CX) −→ HdX

char(M )(X;kX).

Let M and N be two complex manifolds, set X = T ∗M , Y = T ∗N . De-
note by qi the i-th projection defined on M ×N and by pi the i-th projection
defined on X × Y (i = 1, 2). Let M ∈ Db(DM) and L ∈ Db(DMa×N). Set

M ◦
M

L := Rq2!(L
L
⊗

D
q−1
1 M ).

Theorem 3.10. Assume that M ∈ Db
gd(DM), L ∈ Db

gd(DMa×N ) and assume

that p2 is proper on p−1
1 char(M ) ∩ char(L ). Then M ◦

M
L ∈ Db

gd(DN ) and

(M ◦
M

L )W ∼−→M
W ◦

X
L

W.(3.12)

22



The proof is straightforward and is left to the reader.

Corollary 3.11. Let M and L be as above. Then

euY (M ◦
M

L ) = euX(M ) ◦ euX×Y (L ).(3.13)

This formula is equivalent to the results of [29] on the functoriality of the
Euler class of D-modules. Note that the results of loc. cit. also deal with
constructible sheaves.

Remark 3.12. Recall that the functoriality of the Chern class of the graded
modules associated to coherent D-modules (in the algebraic settings) is
proved in [23] as a corollary of the Riemann-Roch-Grothendieck theorem.
It can be shown that the Hochschild class of DQ-modules allows us to re-
cover this result.
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