Regular holonomic $\mathcal{D}[[\hbar]]$ -modules

Dedicated to Professor Mikio Sato on the occasion of his 80th birthday with our deep admiration and warmest regards

By

Andrea D'Agnolo, Stéphane Guillermou** and Pierre Schapira***

Abstract

We describe the category of regular holonomic modules over the ring $\mathcal{D}[[\hbar]]$ of linear differential operators with a formal parameter \hbar . In particular, we establish the Riemann-Hilbert correspondence and discuss the additional t-structure related to \hbar -torsion.

Introduction

On a complex manifold X, we will be interested in the study of holonomic modules over the ring $\mathcal{D}_X[[\hbar]]$ of differential operators with a formal parameter \hbar . Such modules naturally appear when studying deformation quantization modules (DQ-modules) along a smooth Lagrangian submanifold of a complex symplectic manifold (see [13, Chapter 7]).

In this paper, after recalling the tools from loc. cit. that we shall use, we explain some basic notions of $\mathcal{D}_X[[\hbar]]$ -modules theory. For example, it follows easily from general results on modules over $\mathbb{C}[[\hbar]]$ -algebras that given two

Communicated by xxx

²⁰⁰⁰ Mathematics Subject Classification(s): 32C38, 46L65

^{*}Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, via Trieste 63, 35121 Padova, Italy

e-mail: dagnolo@math.unipd.it; web page: www.math.unipd.it/~dagnolo

^{**}Institut Fourier, Université de Grenoble I, BP 74, 38402 Saint-Martin d'Hères, France e-mail: Stephane.Guillermou@ujf-grenoble.fr
web page: www-fourier.ujf-grenoble.fr/~guillerm

^{***}Institut de Mathématiques, Université Pierre et Marie Curie, 175 rue du Chevaleret, 75013 Paris, France

e-mail: schapira@math.jussieu.fr; web page: people.math.jussieu.fr/~schapira

[©] Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

holonomic $\mathscr{D}_X[\![\hbar]\!]$ -modules \mathscr{M} and \mathscr{N} , the complex $R\mathscr{H}om_{\mathscr{D}_X[\![\hbar]\!]}(\mathscr{M},\mathscr{N})$ is constructible over $\mathbb{C}[\![\hbar]\!]$ and that the microsupport of the solution complex $R\mathscr{H}om_{\mathscr{D}_X[\![\hbar]\!]}(\mathscr{M},\mathscr{O}_X[\![\hbar]\!])$ coincides with the characteristic variety of \mathscr{M} .

Then we establish our main result, the Riemann-Hilbert correspondence for regular holonomic $\mathscr{D}_X[[\hbar]]$ -modules, an \hbar -variant of Kashiwara's classical theorem. In other words, we show that the solution functor with values in $\mathscr{O}_X[[\hbar]]$ induces an equivalence between the derived category of regular holonomic $\mathscr{D}_X[[\hbar]]$ -modules and that of constructible sheaves over $\mathbb{C}[[\hbar]]$. A quasi-inverse is obtained by constructing the "sheaf" of holomorphic functions with temperate growth and a formal parameter \hbar in the subanalytic site. This needs some care since the literature on this subject is written in the framework of sheaves over a field and does not immediately apply to the ring $\mathbb{C}[[\hbar]]$.

We also discuss the t-structure related to \hbar -torsion. Indeed, as we work over the ring $\mathbb{C}[\![\hbar]\!]$ and not over a field, the derived category of holonomic $\mathscr{D}_X[\![\hbar]\!]$ -modules (or, equivalently, that of constructible sheaves over $\mathbb{C}[\![\hbar]\!]$) has an additional t-structure related to \hbar -torsion. We will show how the duality functor interchanges it with the natural t-structure.

We end this paper by describing some natural links between the ring $\mathcal{D}_X[[\hbar]]$ and deformation quantization algebras, as mentioned above.

Historical remark. As it is well-known, holonomic modules play an essential role in Mathematics. They appeared independently in the work of M. Kashiwara [4] and J. Bernstein [1], but they were first invented by Mikio Sato in a series of (unfortunately unpublished) lectures at Tokyo University in the 60's. (See [17] for a more detailed history.)

Notations and conventions

We shall mainly follow the notations of [12]. In particular, if \mathscr{C} is an abelian category, we denote by $\mathsf{D}(\mathscr{C})$ the derived category of \mathscr{C} and by $\mathsf{D}^*(\mathscr{C})$ (* = +, -, b) the full triangulated subcategory consisting of objects with bounded from below (resp. bounded from above, resp. bounded) cohomology.

For a sheaf of rings \mathscr{R} on a topological space X, or more generally a site, we denote by $\operatorname{Mod}(\mathscr{R})$ the category of left \mathscr{R} -modules and we write $\mathsf{D}^*(\mathscr{R})$ instead of $\mathsf{D}^*(\operatorname{Mod}(\mathscr{R}))$ (* = \emptyset , +, -, b). We denote by $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{R})$ the full abelian subcategory of $\operatorname{Mod}(\mathscr{R})$ of coherent objects, and by $\mathsf{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{R})$ the full triangulated subcategory of $\mathsf{D}^{\mathrm{b}}(\mathscr{R})$ of objects with coherent cohomology groups.

If R is a ring (a sheaf of rings over a point), we write for short $\mathsf{D}^{\mathsf{b}}_f(R)$ instead of $\mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(R)$.

§1. Formal deformations (after [13])

We review here some definitions and results from [13] that we shall use in this paper.

Modules over $\mathbb{Z}[\hbar]$ -algebras. Let X be a topological space. One says that a sheaf of $\mathbb{Z}_X[\hbar]$ -modules \mathscr{M} has no \hbar -torsion if $\hbar \colon \mathscr{M} \to \mathscr{M}$ is injective and one says that \mathscr{M} is \hbar -complete if $\mathscr{M} \to \varprojlim \mathscr{M}/\hbar^n \mathscr{M}$ is an isomorphism.

Let $\mathscr R$ be a sheaf of $\mathbb Z_X[\hbar]$ -algebras, and assume that $\mathscr R$ has no \hbar -torsion. One sets

$$\mathscr{R}^{\mathrm{loc}} := \mathbb{Z}[\hbar, \hbar^{-1}] \otimes_{\mathbb{Z}[\hbar]} \mathscr{R}, \qquad \mathscr{R}_0 := \mathscr{R}/\hbar \mathscr{R},$$

and considers the functors

$$(\bullet)^{\mathrm{loc}} \colon \mathrm{Mod}(\mathscr{R}) \to \mathrm{Mod}(\mathscr{R}^{\mathrm{loc}}), \quad \mathscr{M} \mapsto \mathscr{M}^{\mathrm{loc}} := \mathscr{R}^{\mathrm{loc}} \otimes_{\mathscr{R}} \mathscr{M},$$

$$\mathrm{gr}_{\hbar} \colon \mathsf{D}(\mathscr{R}) \to \mathsf{D}(\mathscr{R}_{0}), \quad \mathscr{M} \mapsto \mathrm{gr}_{\hbar}(\mathscr{M}) := \mathscr{R}_{0} \overset{\mathrm{L}}{\otimes_{\mathscr{R}}} \mathscr{M}.$$

Note that $(\bullet)^{\mathrm{loc}}$ is exact and that for $\mathcal{M}, \mathcal{N} \in \mathsf{D}^{\mathrm{b}}(\mathcal{R})$ and $\mathcal{P} \in \mathsf{D}^{\mathrm{b}}(\mathcal{R}^{\mathrm{op}})$ one has isomorphisms:

(1.1)
$$\operatorname{gr}_{\hbar}(\mathscr{P} \overset{\operatorname{L}}{\otimes}_{\mathscr{R}} \mathscr{M}) \simeq \operatorname{gr}_{\hbar} \mathscr{P} \overset{\operatorname{L}}{\otimes}_{\mathscr{R}_{0}} \operatorname{gr}_{\hbar} \mathscr{M},$$

$$(1.2) \operatorname{gr}_{\hbar}(R\mathcal{H}om_{\mathscr{R}}(\mathscr{M},\mathscr{N})) \simeq R\mathcal{H}om_{\mathscr{R}_{0}}(\operatorname{gr}_{\hbar}(\mathscr{M}),\operatorname{gr}_{\hbar}(\mathscr{N})).$$

Here, the functor $\operatorname{gr}_{\hbar}$ on the left hand side acts on $\mathbb{Z}_X[\hbar]$ -modules.

Cohomologically \hbar -complete sheaves.

Definition 1.1. One says that an object \mathcal{M} of $\mathsf{D}(\mathscr{R})$ is cohomologically $\hbar\text{-complete}$ if $\mathsf{R}\mathscr{H}om_{\mathscr{R}}(\mathscr{R}^{\mathrm{loc}},\mathscr{M})=0$.

Hence, the full subcategory of cohomologically \hbar -complete objects is triangulated. In fact, it is the right orthogonal to the full subcategory $\mathsf{D}(\mathscr{R}^{\mathrm{loc}})$ of $\mathsf{D}(\mathscr{R})$.

Remark that $\mathcal{M} \in \mathsf{D}(\mathcal{R})$ is cohomologically \hbar -complete if and only if its image in $\mathsf{D}(\mathbb{Z}_X[\hbar])$ is cohomologically \hbar -complete.

Proposition 1.2. Let $\mathcal{M} \in \mathsf{D}(\mathcal{R})$. Then \mathcal{M} is cohomologically \hbar -complete if and only if

$$\lim_{\substack{U\ni x\\U\ni x}} \operatorname{Ext}_{\mathbb{Z}[\hbar]}^{j} (\mathbb{Z}[\hbar, \hbar^{-1}], H^{i}(U; \mathscr{M})) = 0,$$

for any $x \in X$, any integer $i \in \mathbb{Z}$ and any j = 0, 1. Here, U ranges over an open neighborhood system of x.

Corollary 1.3. Let $\mathscr{M} \in \operatorname{Mod}(\mathscr{R})$. Assume that \mathscr{M} has no \hbar -torsion, is \hbar -complete and there exists a base \mathfrak{B} of open subsets such that $H^i(U;\mathscr{M}) = 0$ for any i > 0 and any $U \in \mathfrak{B}$. Then \mathscr{M} is cohomologically \hbar -complete.

The functor $\operatorname{gr}_{\hbar}$ is conservative on the category of cohomologically $\hbar\text{-}$ complete objects:

Proposition 1.4. Let $\mathcal{M} \in \mathsf{D}(\mathcal{R})$ be a cohomologically \hbar -complete object. If $\operatorname{gr}_{\hbar}(\mathcal{M}) = 0$, then $\mathcal{M} = 0$.

Proposition 1.5. If $\mathcal{M} \in \mathsf{D}(\mathcal{R})$ is cohomologically \hbar -complete, then $\mathsf{R}\mathcal{H}om_{\mathcal{R}}(\mathcal{N},\mathcal{M}) \in \mathsf{D}(\mathbb{Z}_X[\hbar])$ is cohomologically \hbar -complete for any $\mathcal{N} \in \mathsf{D}(\mathcal{R})$.

Proposition 1.6. Let $f: X \to Y$ be a continuous map, and $\mathscr{M} \in D(\mathbb{Z}_X[\hbar])$. If \mathscr{M} is cohomologically \hbar -complete, then so is $Rf_*\mathscr{M}$.

Reductions to $\hbar = 0$. Now we assume that X is a Hausdorff locally compact topological space.

By a basis \mathfrak{B} of compact subsets of X, we mean a family of compact subsets such that for any $x \in X$ and any open neighborhood U of x, there exists $K \in \mathfrak{B}$ such that $x \in \text{Int}(K) \subset U$.

Let \mathscr{A} be a $\mathbb{Z}[\hbar]$ -algebra, and recall that we set $\mathscr{A}_0 = \mathscr{A}/\hbar\mathscr{A}$. Consider the following conditions:

- (i) \mathscr{A} has no \hbar -torsion and is \hbar -complete,
- (ii) \mathscr{A}_0 is a left Noetherian ring,
- (iii) there exists a basis \mathfrak{B} of compact subsets of X and a prestack $U \mapsto \operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_U)$ (U open in X) such that
 - (a) for any $K \in \mathfrak{B}$ and any open subset U such that $K \subset U$, there exists $K' \in \mathfrak{B}$ such that $K \subset \operatorname{Int}(K') \subset K' \subset U$,
 - (b) $U \mapsto \operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_U)$ is a full subprestack of $U \mapsto \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_0|_U)$,
 - (c) for any $K \in \mathfrak{B}$, any open set U containing K, any j > 0 and any $\mathscr{M} \in \operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_U)$, one has $H^j(K;\mathscr{M}) = 0$,
 - (d) for any open subset U and any $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_0|_U)$, if $\mathscr{M}|_V$ belongs to $\operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_V)$ for any relatively compact open subset V of U, then \mathscr{M} belongs to $\operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_U)$,

- (e) for any U open in X, $\operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_U)$ is stable by subobjects, quotients and extensions in $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_0|_U)$,
- (f) for any U open in X and any $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_0|_U)$, there exists an open covering $U = \bigcup_i U_i$ such that $\mathscr{M}|_{U_i} \in \operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_{U_i})$,
- (g) $\mathscr{A}_0 \in \operatorname{Mod}_{good}(\mathscr{A}_0)$,
- (iii)' there exists a basis \mathfrak{B} of open subsets of X such that for any $U \in \mathfrak{B}$, any $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{A}_0|_U)$ and any j > 0, one has $H^j(U; \mathscr{M}) = 0$.

We will suppose that \mathcal{A} and \mathcal{A}_0 satisfy either Assumption 1.7 or Assumption 1.8.

Assumption 1.7. \mathscr{A} and \mathscr{A}_0 satisfy conditions (i), (ii) and (iii) above.

Assumption 1.8. \mathscr{A} and \mathscr{A}_0 satisfy conditions (i), (ii) and (iii)' above.

Theorem 1.9.

- (i) \mathscr{A} is a left Noetherian ring.
- (ii) Any coherent \mathscr{A} -module \mathscr{M} is \hbar -complete.
- (iii) Let $\mathscr{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{A})$. Then \mathscr{M} is cohomologically \hbar -complete.

Corollary 1.10. The functor $\operatorname{gr}_{\hbar}\colon \mathsf{D}^{b}_{\operatorname{coh}}(\mathscr{A})\to \mathsf{D}^{b}_{\operatorname{coh}}(\mathscr{A}_{0})$ is conservative.

Theorem 1.11. Let $\mathcal{M} \in D^+(\mathcal{A})$ and assume:

- (a) \mathcal{M} is cohomologically \hbar -complete,
- (b) $\operatorname{gr}_{\hbar}(\mathcal{M}) \in \mathsf{D}^+_{\operatorname{coh}}(\mathscr{A}_0).$

Then, $\mathscr{M} \in \mathsf{D}^+_{\mathrm{coh}}(\mathscr{A})$ and for all $i \in \mathbb{Z}$ we have the isomorphism

$$H^i(\mathscr{M}) \xrightarrow{\sim} \varprojlim_n H^i(\mathscr{A}/\hbar^n\mathscr{A} \overset{\mathcal{L}}{\otimes}_\mathscr{A} \mathscr{M}).$$

Theorem 1.12. Assume that $\mathscr{A}_0^{\mathrm{op}} = \mathscr{A}^{\mathrm{op}}/\hbar\mathscr{A}^{\mathrm{op}}$ is a Noetherian ring and the flabby dimension of X is finite. Let \mathscr{M} be an \mathscr{A} -module. Assume the following conditions:

- (a) \mathcal{M} has no \hbar -torsion,
- (b) \mathcal{M} is cohomologically \hbar -complete,

(c) $\mathcal{M}/\hbar\mathcal{M}$ is a flat \mathcal{A}_0 -module.

Then \mathcal{M} is a flat \mathcal{A} -module.

If moreover $\mathcal{M}/\hbar\mathcal{M}$ is a faithfully flat \mathcal{A}_0 -module, then \mathcal{M} is a faithfully flat \mathcal{A} -module.

Theorem 1.13. Let $d \in \mathbb{N}$. Assume that \mathscr{A}_0 is d-syzygic, i.e., that any coherent \mathscr{A}_0 -module locally admits a projective resolution of length $\leq d$ by free \mathscr{A}_0 -modules of finite rank. Then

- (a) \mathscr{A} is (d+1)-syzygic.
- (b) Let \mathcal{M}^{\bullet} be a complex of \mathscr{A} -modules concentrated in degrees [a,b] and with coherent cohomology groups. Then, locally there exists a quasi-isomorphism $\mathscr{L}^{\bullet} \to \mathscr{M}^{\bullet}$ where \mathscr{L}^{\bullet} is a complex of free \mathscr{A} -modules of finite rank concentrated in degrees [a-d-1,b].

Proposition 1.14. Let $\mathscr{M} \in \mathsf{D}^b_{\mathrm{coh}}(\mathscr{A})$ and let $a \in \mathbb{Z}$. The conditions below are equivalent:

- (i) $H^a(\operatorname{gr}_{\hbar}(\mathcal{M})) \simeq 0$,
- (ii) $H^a(\mathcal{M}) \simeq 0$ and $H^{a+1}(\mathcal{M})$ has no \hbar -torsion.

Cohomologically \hbar -complete sheaves on real manifolds. Let now X be a real analytic manifold. Recall from [9] that the microsupport of $F \in \mathsf{D}^{\mathsf{b}}(\mathbb{Z}_X)$ is a closed involutive subset of the cotangent bundle T^*X denoted by $\mathsf{SS}(F)$. The microsupport is additive on $\mathsf{D}^{\mathsf{b}}(\mathbb{Z}_X)$ (cf Definition 3.3 (ii) below). Considering the distinguished triangle $F \xrightarrow{\hbar} F \to \mathsf{gr}_{\hbar} F \xrightarrow{+1}$, one gets the estimate

(1.3)
$$SS(gr_{\hbar}(F)) \subset SS(F).$$

Proposition 1.15. Let $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{Z}_X[\hbar])$ and assume that F is cohomologically \hbar -complete. Then

(1.4)
$$SS(F) = SS(gr_{\hbar}(F)).$$

Proof. It is enough to show that $SS(F) \subset SS(gr_{\hbar}(F))$. For $V \subset U$ open subsets, consider the distinguished triangle

$$R\Gamma(U; F) \to R\Gamma(V; F) \to G \xrightarrow{+1}$$
.

By Proposition 1.6, $R\Gamma(U; F)$ and $R\Gamma(U; F)$ are cohomologically \hbar -complete, and thus so is G. One has the distinguished triangle

$$R\Gamma(U; \operatorname{gr}_{\hbar} F) \to R\Gamma(V; \operatorname{gr}_{\hbar} F) \to \operatorname{gr}_{\hbar} G \xrightarrow{+1}.$$

By the definition of microsupport, it is enough to prove that $\operatorname{gr}_{\hbar} G = 0$ implies G = 0. This follows from Proposition 1.4.

For \mathbb{K} a commutative unital Noetherian ring, one denotes by $\operatorname{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_X)$ the full subcategory of $\operatorname{Mod}(\mathbb{K}_X)$ consisting of \mathbb{R} -constructible sheaves and by $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}\text{-c}}(\mathbb{K}_X)$ the full triangulated subcategory of $\mathsf{D}^{\mathrm{b}}(\mathbb{K}_X)$ consisting of objects with \mathbb{R} -constructible cohomology (see [9, §8.4]). In this paper, we shall mainly be interested with the case where \mathbb{K} is either \mathbb{C} or the ring of formal power series in an indeterminate \hbar , that we denote by

$$\mathbb{C}^{\hbar} := \mathbb{C}[[\hbar]].$$

Proposition 1.16. Let $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{R}^{-c}}(\mathbb{C}^{\hbar}_{X})$. Then F is cohomologically \hbar -complete.

Proof. This follows from Proposition 1.2 since for any $x \in X$ one has $R\Gamma(U; F) \xrightarrow{\sim} F_x$ for U in a fundamental system of neighborhoods of x.

Corollary 1.17. The functor $\operatorname{gr}_{\hbar} \colon \mathsf{D}^{\operatorname{b}}_{\mathbb{R}\text{-}c}(\mathbb{C}^{\hbar}_X) \to \mathsf{D}^{\operatorname{b}}_{\mathbb{R}\text{-}c}(\mathbb{C}_X)$ is conservative.

Corollary 1.18. For $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{R}_{-c}}(\mathbb{C}^{\hbar}_{X})$, one has the equality

$$SS(gr_{\hbar}(F)) = SS(F).$$

Proposition 1.19. For $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{R}_{-c}}(\mathbb{C}^{\hbar}_{X})$ and $i \in \mathbb{Z}$ one has $\operatorname{supp} H^{i}(F) \subset \operatorname{supp} H^{i}(\operatorname{gr}_{\hbar} F)$. In particular if $H^{i}(\operatorname{gr}_{\hbar} F) = 0$ then $H^{i}(F) = 0$.

Proof. We apply Proposition 1.14 to F_x for any $x \in X$.

§2. Formal extension

Let X be a topological space, or more generally a site, and let \mathcal{R}_0 be a sheaf of rings on X. In this section, we let

$$\mathscr{R} := \mathscr{R}_0[[\hbar]] = \prod_{n \ge 0} \mathscr{R}_0 \hbar^n$$

be the formal extension of \mathscr{R}_0 , whose sections on an open subset U are formal series $r = \sum_{n=0}^{\infty} r_n \hbar^n$, with $r_n \in \Gamma(U; \mathscr{R}_0)$. Consider the associated functor

(2.1)
$$(\bullet)^{\hbar} \colon \operatorname{Mod}(\mathscr{R}_{0}) \to \operatorname{Mod}(\mathscr{R}),$$

$$\mathscr{N} \mapsto \mathscr{N}[[\hbar]] = \varprojlim_{n} (\mathscr{R}_{n} \otimes_{\mathscr{R}_{0}} \mathscr{N}),$$

where $\mathscr{R}_n := \mathscr{R}/\hbar^{n+1}\mathscr{R}$ is regarded as an $(\mathscr{R},\mathscr{R}_0)$ -bimodule. Since \mathscr{R}_n is free of finite rank over \mathscr{R}_0 , the functor $(\bullet)^{\hbar}$ is left exact. We denote by $(\bullet)^{R\hbar}$ its right derived functor.

Proposition 2.1. For $\mathcal{N} \in \mathsf{D}^{\mathsf{b}}(\mathcal{R}_0)$ one has

$$\mathcal{N}^{\mathrm{R}\hbar} \simeq \mathrm{R}\mathcal{H}om_{\mathcal{R}_0}(\mathcal{R}^{\mathrm{loc}}/\hbar\mathcal{R},\mathcal{N}),$$

where $\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R}$ is regarded as an $(\mathscr{R}_0,\mathscr{R})$ -bimodule.

Proof. It is enough to prove that for $\mathcal{N} \in \text{Mod}(\mathcal{R}_0)$ one has

$$\mathcal{N}^{\hbar} \simeq \mathcal{H}om_{\mathcal{R}_0}(\mathcal{R}^{\mathrm{loc}}/\hbar\mathcal{R}, \mathcal{N}).$$

Using the right \mathcal{R}_0 -module structure of \mathcal{R}_n , set $\mathcal{R}_n^* = \mathcal{H}om_{\mathcal{R}_0}(\mathcal{R}_n, \mathcal{R}_0)$. Then \mathcal{R}_n^* is an $(\mathcal{R}_0, \mathcal{R})$ -bimodule, and

$$\mathscr{N}^{\hbar} = \varprojlim_{n} (\mathscr{R}_{n} \otimes_{\mathscr{R}_{0}} \mathscr{N}) \simeq \mathscr{H}om_{\mathscr{R}_{0}}(\varinjlim_{n} \mathscr{R}_{n}^{*}, \mathscr{N}).$$

Since

$$\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R} \simeq \varinjlim_{n} (\hbar^{-n}\mathscr{R}/\hbar\mathscr{R}),$$

it is enough to prove that there is an isomorphism of $(\mathcal{R}_0, \mathcal{R})$ -bimodules

$$\mathscr{H}om_{\mathscr{R}_0}(\mathscr{R}_n,\mathscr{R}_0) \simeq \hbar^{-n}\mathscr{R}/\hbar\mathscr{R}.$$

Recalling that $\mathcal{R}_n = \mathcal{R}/\hbar^{n+1}\mathcal{R}$, this follows from the pairing

$$(\mathscr{R}/\hbar^{n+1}\mathscr{R}) \otimes_{\mathscr{R}_0} (\hbar^{-n}\mathscr{R}/\hbar\mathscr{R}) \to \mathscr{R}_0, \quad f \otimes g \mapsto \operatorname{Res}_{\hbar=0}(fg \, d\hbar/\hbar).$$

Note that the isomorphism of $(\mathcal{R}, \mathcal{R}_0)$ -bimodules

$$\mathscr{R} \simeq (\mathscr{R}_0)^{\hbar} = \mathscr{H}om_{\mathscr{R}_0}(\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R},\mathscr{R}_0)$$

induces a natural morphism

(2.2)
$$\mathscr{R} \overset{L}{\otimes}_{\mathscr{R}_0} \mathscr{N} \to \mathscr{N}^{R\hbar}, \text{ for } \mathscr{N} \in \mathsf{D}^{\mathrm{b}}(\mathscr{R}_0).$$

Proposition 2.2. For $\mathcal{N} \in \mathsf{D}^{\mathsf{b}}(\mathscr{R}_0)$, its formal extension $\mathcal{N}^{\mathsf{R}\hbar}$ is cohomologically \hbar -complete.

Proof. The statement follows from $(\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R})\overset{\mathrm{L}}{\otimes}_{\mathscr{R}}\mathscr{R}^{\mathrm{loc}}\simeq 0$ and from the isomorphism

$$\mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{R}}(\mathscr{R}^{\mathrm{loc}}, \mathscr{N}^{\mathrm{R}\hbar}) \simeq \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{R}_{0}}((\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R}) \overset{\mathrm{L}}{\otimes}_{\mathscr{R}} \mathscr{R}^{\mathrm{loc}}, \mathscr{N}).$$

Lemma 2.3. Assume that \mathscr{R}_0 is an \mathscr{S}_0 -algebra, for \mathscr{S}_0 a commutative sheaf of rings, and let $\mathscr{S} = \mathscr{S}_0[[\hbar]]$. For $\mathscr{M}, \mathscr{N} \in \mathsf{D}^b(\mathscr{R}_0)$ we have an isomorphism in $\mathsf{D}^b(\mathscr{S})$

$$\mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{R}_0}(\mathscr{M},\mathscr{N})^{\mathrm{R}\hbar} \simeq \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{R}_0}(\mathscr{M},\mathscr{N}^{\mathrm{R}\hbar}).$$

Proof. Note the isomorphisms

$$\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R}\simeq\mathscr{R}_0\otimes_{\mathscr{S}_0}(\mathscr{S}^{\mathrm{loc}}/\hbar\mathscr{S})\simeq\mathscr{R}_0\overset{\mathrm{L}}\otimes_{\mathscr{S}_0}(\mathscr{S}^{\mathrm{loc}}/\hbar\mathscr{S})$$

as $(\mathcal{R}_0, \mathcal{S})$ -bimodules. Then one has

$$\begin{split} \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{R}_0}(\mathscr{M},\mathscr{N})^{\mathrm{R}\hbar} &= \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{S}_0}(\mathscr{S}^{\mathrm{loc}}/\hbar\mathscr{S},\mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{R}_0}(\mathscr{M},\mathscr{N})) \\ &\simeq \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{R}_0}(\mathscr{M},\mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{S}_0}(\mathscr{S}^{\mathrm{loc}}/\hbar\mathscr{S},\mathscr{N})) \\ &\simeq \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{R}_0}(\mathscr{M},\mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{R}_0}(\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R},\mathscr{N})) \\ &= \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{R}_0}(\mathscr{M},\mathscr{N}^{\mathrm{R}\hbar}). \end{split}$$

Lemma 2.4. Let $f: X \to Y$ be a morphism of sites, and assume that $(f^{-1}\mathcal{R}_0)^\hbar \simeq f^{-1}\mathcal{R}$. Then the functors Rf_* and $(\bullet)^{R\hbar}$ commute, that is, for $\mathscr{P} \in \mathsf{D}^{\mathrm{b}}(f^{-1}\mathcal{R}_0)$ we have $(Rf_*\mathscr{P})^{R\hbar} \simeq Rf_*(\mathscr{P}^{R\hbar})$ in $\mathsf{D}^{\mathrm{b}}(\mathscr{R})$.

Proof. One has the isomorphism

$$\begin{split} \mathbf{R} f_*(\mathscr{P}^{\mathbf{R}\hbar}) &= \mathbf{R} f_* \mathbf{R} \mathscr{H} om_{f^{-1}\mathscr{R}_0}(f^{-1}(\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R}), \mathscr{P}) \\ &\simeq \mathbf{R} \mathscr{H} om_{\mathscr{R}_0}(\mathscr{R}^{\mathrm{loc}}/\hbar\mathscr{R}, \mathbf{R} f_*\mathscr{P}) \\ &= \mathbf{R} f_*(\mathscr{P})^{\mathbf{R}\hbar}. \end{split}$$

Proposition 2.5. Let \mathscr{T} be either a basis of open subsets of the site X or, assuming that X is a locally compact topological space, a basis of compact subsets. Denote by $J_{\mathscr{T}}$ the full subcategory of $\operatorname{Mod}(\mathscr{R}_0)$ consisting of \mathscr{T} -acyclic objects, i.e., sheaves \mathscr{N} for which $H^k(S;\mathscr{N})=0$ for all k>0 and all $S\in\mathscr{T}$. Then $J_{\mathscr{T}}$ is injective with respect to the functor $(\bullet)^\hbar$. In particular, for $\mathscr{N}\in J_{\mathscr{T}}$, we have $\mathscr{N}^\hbar\simeq \mathscr{N}^{\mathrm{R}\hbar}$.

- *Proof.* (i) Since injective sheaves are \mathscr{T} -acyclic, $J_{\mathscr{T}}$ is cogenerating.
- (ii) Consider an exact sequence $0 \to \mathcal{N}' \to \mathcal{N} \to \mathcal{N}'' \to 0$ in $\operatorname{Mod}(\mathcal{R}_0)$. Clearly, if both \mathcal{N}' and \mathcal{N} belong to $J_{\mathcal{T}}$, then so does \mathcal{N}'' .
- (iii) Consider an exact sequence as in (ii) and assume that $\mathcal{N}' \in J_{\mathcal{T}}$. We have to prove that $0 \to \mathcal{N}', \hbar \to \mathcal{N}^{\hbar} \to \mathcal{N}'', \hbar \to 0$ is exact. Since $(\bullet)^{\hbar}$ is left exact, it is enough to prove that $\mathcal{N}^{\hbar} \to \mathcal{N}'', \hbar$ is surjective. Noticing that $\mathcal{N}^{\hbar} \simeq \prod_{\mathbb{N}} \mathcal{N}$ as \mathcal{R}_0 -modules, it is enough to prove that $\prod_{\mathbb{N}} \mathcal{N} \to \prod_{\mathbb{N}} \mathcal{N}''$ is surjective.
- (iii)-(a) Assume that \mathscr{T} is a basis of open subsets. Any open subset $U \subset X$ has a cover $\{U_i\}_{i\in I}$ by elements $U_i \in \mathscr{T}$. For any $i \in I$, the morphism $\mathscr{N}(U_i) \to \mathscr{N}''(U_i)$ is surjective. The result follows taking the product over \mathbb{N} .
- (iii)-(b) Assume that \mathscr{T} is a basis of compact subsets. For any $K \in \mathscr{T}$, the morphism $\mathscr{N}(K) \to \mathscr{N}''(K)$ is surjective. Hence, there exists a basis \mathscr{V} of open subsets such that for any $x \in X$ and any $V \ni x$ in \mathscr{V} , there exists $V' \in \mathscr{V}$ with $x \in V' \subset V$ and the image of $\mathscr{N}(V') \to \mathscr{N}''(V')$ contains the image of $\mathscr{N}''(V)$ in $\mathscr{N}''(V')$. The result follows as in (iii)-(a) taking the product over \mathbb{N} .

Corollary 2.6. The following sheaves are acyclic for the functor $(\bullet)^{\hbar}$:

- (i) \mathbb{R} -constructible sheaves of \mathbb{C} -vector spaces on a real analytic manifold X,
- (ii) coherent modules over the ring \mathcal{O}_X of holomorphic functions on a complex analytic manifold X,
- (iii) coherent modules over the ring \mathscr{D}_X of linear differential operators on a complex analytic manifold X.

Proof. The statements follow by applying Proposition 2.5 for the following choices of \mathcal{T} .

(i) Let F be an \mathbb{R} -constructible sheaf. Then for any $x \in X$ one has $F_x \stackrel{\sim}{\leftarrow} \mathrm{R}\Gamma(U_x;F)$ for U_x in a fundamental system of open neighborhoods of x. Take for \mathscr{T} the union of these fundamental systems.

- (ii) Take for \mathcal{T} the family of open Stein subsets.
- (iii) Let \mathscr{M} be a coherent \mathscr{D}_X -module. The problem being local, we may assume that \mathscr{M} is endowed with a good filtration. Then take for \mathscr{T} the family of compact Stein subsets.

Example 2.7. Let $X = \mathbb{R}$, $\mathscr{R}_0 = \mathbb{C}_X$, $Z = \{1/n \colon n = 1, 2, \dots\} \cup \{0\}$ and $U = X \setminus Z$. One has the isomorphisms $(\mathbb{C}^{\hbar})_X \simeq (\mathbb{C}_X)^{\hbar} \simeq (\mathbb{C}_X)^{\mathbb{R}^{\hbar}}$ and $(\mathbb{C}^{\hbar})_U \simeq (\mathbb{C}_U)^{\hbar}$. Considering the exact sequences

$$0 \to (\mathbb{C}^{\hbar})_{U} \to (\mathbb{C}^{\hbar})_{X} \to (\mathbb{C}^{\hbar})_{Z} \to 0,$$

$$0 \to (\mathbb{C}_{U})^{\hbar} \to (\mathbb{C}_{X})^{\hbar} \to (\mathbb{C}_{Z})^{\hbar} \to H^{1}(\mathbb{C}_{U})^{R\hbar} \to 0,$$

we get $H^1(\mathbb{C}_U)^{R\hbar} \simeq (\mathbb{C}_Z)^{\hbar}/(\mathbb{C}^{\hbar})_Z$, whose stalk at the origin does not vanish. Hence \mathbb{C}_U is not acyclic for the functor $(\bullet)^{\hbar}$.

Assume now that

$$\mathscr{A}_0 = \mathscr{R}_0$$
 and $\mathscr{A} = \mathscr{R}_0[[\hbar]]$

satisfy either Assumption 1.7 or Assumption 1.8 (where condition (i) is clear) and that \mathscr{A}_0 is syzygic. Note that by Proposition 2.5 one has $\mathscr{A} \simeq (\mathscr{A}_0)^{R\hbar}$.

Proposition 2.8. For $\mathcal{N} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{A}_0)$:

- (i) there is an isomorphism $\mathscr{N}^{R\hbar} \xrightarrow{\sim} \mathscr{A} \overset{L}{\otimes}_{\mathscr{A}_0} \mathscr{N}$ induced by (2.2)
- (ii) there is an isomorphism $\operatorname{gr}_{\hbar}(\mathcal{N}^{R\hbar}) \simeq \mathcal{N}$.

Proof. Since \mathscr{A}_0 is syzygic, we may locally represent \mathscr{N} by a bounded complex \mathscr{L}^{\bullet} of free \mathscr{A}_0 -modules of finite rank. Then (i) is obvious. As for (ii), both complexes are isomorphic to the mapping cone of $\hbar: (\mathscr{L}^{\bullet})^{\hbar} \to (\mathscr{L}^{\bullet})^{\hbar}$.

In particular, the functor $(\bullet)^\hbar$ is exact on $\mathrm{Mod_{coh}}(\mathscr{A}_0)$ and preserves coherence. One thus gets a functor

$$(\, \bullet \,)^{\mathrm{R}\hbar} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}_0) \to \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{A}).$$

The subanalytic site. The subanalytic site associated to an analytic manifold X has been introduced and studied in [11, Chapter 7] (see also [15] for a detailed and systematic study as well as for complementary results). Denote by Op_X the category of open subsets of X, the morphisms being the inclusion

morphisms, and by $\operatorname{Op}_{X_{\operatorname{sa}}}$ the full subcategory consisting of relatively compact subanalytic open subsets of X. The site X_{sa} is the presite $\operatorname{Op}_{X_{\operatorname{sa}}}$ endowed with the Grothendieck topology for which the coverings are those admitting a finite subcover. One calls X_{sa} the subanalytic site associated to X. Denote by $\rho\colon X\to X_{\operatorname{sa}}$ the natural morphism of sites. Recall that the inverse image functor ρ^{-1} , besides the usual right adjoint given by the direct image functor ρ_* , admits a left adjoint denoted $\rho_!$. Consider the diagram

$$\begin{array}{c}
\mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}) \xrightarrow{\mathsf{R}\rho_{*}} \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X_{\mathrm{sa}}}) \\
\downarrow^{(\bullet)^{\mathsf{R}\hbar}} \qquad (\bullet)^{\mathsf{R}\hbar} \downarrow \\
\mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}^{\hbar}) \xrightarrow{\mathsf{R}\rho_{*}} \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}).
\end{array}$$

Lemma 2.9.

- (i) The functors ρ^{-1} and $(\bullet)^{\mathrm{R}\hbar}$ commute, that is, for $G \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X_{\mathrm{sa}}})$ we have $(\rho^{-1}G)^{\mathrm{R}\hbar} \simeq \rho^{-1}(G^{\mathrm{R}\hbar})$ in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$.
- (ii) The functors $R\rho_*$ and $(\bullet)^{R\hbar}$ commute, that is, for $F \in D^b(\mathbb{C}_X)$ we have $(R\rho_*F)^{R\hbar} \simeq R\rho_*(F^{R\hbar})$ in $D^b(\mathbb{C}_{X_{23}}^{\hbar})$.

Proof. (i) Since it admits a left adjoint, the functor ρ^{-1} commutes with projective limits. It follows that for $G \in \operatorname{Mod}(\mathbb{C}_{X_{\operatorname{sa}}})$ one has an isomorphism

$$\rho^{-1}(G^{\hbar}) \to (\rho^{-1}G)^{\hbar}.$$

To conclude, it remains to show that $(\rho^{-1}(\bullet))^{\mathbb{R}\hbar}$ is the derived functor of $(\rho^{-1}(\bullet))^{\hbar}$. Recall that an object G of $\operatorname{Mod}(\mathbb{C}_{X_{\operatorname{sa}}})$ is quasi-injective if the functor $\operatorname{Hom}_{\mathbb{C}_{X_{\operatorname{sa}}}}(\bullet, G)$ is exact on the category $\operatorname{Mod}_{\mathbb{R}\text{-c}}(\mathbb{C}_X)$. By a result of [15], if $G \in \operatorname{Mod}(\mathbb{C}_{X_{\operatorname{sa}}})$ is quasi-injective, then $\rho^{-1}G$ is soft. Hence, $\rho^{-1}G$ is injective for the functor $(\bullet)^{\hbar}$ by Proposition 2.5.

§3. $\mathcal{D}[[\hbar]]$ -modules and propagation

Let now X be a complex analytic manifold of complex dimension d_X . As usual, denote by \mathbb{C}_X the constant sheaf with stalk \mathbb{C} , by \mathscr{O}_X the structure sheaf and by \mathscr{D}_X the ring of linear differential operators on X. We will use the

notations

$$\begin{split} & \mathrm{D}' \colon \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X)^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X), \qquad F \mapsto \mathrm{R}\mathscr{H}om_{\mathbb{C}_X}(F,\mathbb{C}_X), \\ & \mathbb{D} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X), \quad \mathscr{M} \mapsto \mathrm{R}\mathscr{H}om_{\mathscr{D}_X}(\mathscr{M}, \mathscr{D}_X \otimes_{\mathscr{O}_X} \Omega_X^{\otimes -1}) \, [d_X], \\ & \mathrm{Sol} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X), \qquad \mathscr{M} \mapsto \mathrm{R}\mathscr{H}om_{\mathscr{D}_X}(\mathscr{M}, \mathscr{O}_X), \\ & \mathrm{DR} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X) \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X), \qquad \mathscr{M} \mapsto \mathrm{R}\mathscr{H}om_{\mathscr{D}_X}(\mathscr{O}_X, \mathscr{M}), \end{split}$$

where Ω_X denotes the line bundle of holomorphic forms of maximal degree and $\Omega_X^{\otimes -1}$ the dual bundle.

As shown in Corollary 2.6, the sheaves \mathbb{C}_X , \mathscr{O}_X and \mathscr{D}_X are all acyclic for the functor $(\bullet)^{\hbar}$. We will be interested in the formal extensions

$$\mathbb{C}^{\hbar}_X = \mathbb{C}_X[[\hbar]], \quad \mathscr{O}^{\hbar}_X = \mathscr{O}_X[[\hbar]], \quad \mathscr{D}^{\hbar}_X = \mathscr{D}_X[[\hbar]].$$

In the sequel, we shall treat left \mathscr{D}_X^{\hbar} -modules, but all results apply to right modules since the categories $\operatorname{Mod}(\mathscr{D}_X^{\hbar})$ and $\operatorname{Mod}(\mathscr{D}_X^{\hbar,\operatorname{op}})$ are equivalent.

Proposition 3.1. Assumption 1.7 is satisfied by the \mathbb{C}^{\hbar} -algebras \mathscr{D}_{X}^{\hbar} and $\mathscr{D}_{X}^{\hbar,\mathrm{op}}$.

Proof. Assumption 1.7 holds for $\mathscr{A} = \mathscr{D}_X^{\hbar}$, $\mathscr{A}_0 = \mathscr{D}_X$, $\operatorname{Mod}_{\operatorname{good}}(\mathscr{A}_0|_U)$ the category of good \mathscr{D}_U -modules (see [7]) and for \mathfrak{B} the family of Stein compact subsets of X.

In particular, by Theorem 1.9 one has that \mathscr{D}_X^{\hbar} is right and left Noetherian (and thus coherent). Moreover, by Theorem 1.13 any object of $\mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}_X^{\hbar})$ can be locally represented by a bounded complex of free \mathscr{D}_X^{\hbar} -modules of finite rank.

We will use the notations

$$\begin{split} & \mathbf{D}_{\hbar}' \colon \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}^{\hbar})^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}^{\hbar}), \qquad F \mapsto \mathbf{R}\mathscr{H}\!\mathit{om}_{\mathbb{C}_{X}^{\hbar}}(F, \mathbb{C}_{X}^{\hbar}), \\ & \mathbb{D}_{\hbar} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_{X}^{\hbar})^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_{X}^{\hbar}), \quad \mathscr{M} \mapsto \mathbf{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}_{X}^{\hbar}}(\mathscr{M}, \mathscr{D}_{X}^{\hbar} \otimes_{\mathscr{O}_{X}} \Omega_{X}^{\otimes -1}) \, [d_{X}], \\ & \mathrm{Sol}_{\hbar} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_{X}^{\hbar})^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}), \qquad \mathscr{M} \mapsto \mathbf{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}_{X}^{\hbar}}(\mathscr{M}, \mathscr{O}_{X}^{\hbar}), \\ & \mathrm{DR}_{\hbar} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_{X}^{\hbar}) \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}), \qquad \mathscr{M} \mapsto \mathbf{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}_{X}^{\hbar}}(\mathscr{O}_{X}^{\hbar}, \mathscr{M}). \end{split}$$

By Proposition 2.8 and Lemma 2.3, for $\mathcal{N} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}_X)$ one has

(3.1)
$$\mathscr{N}^{\mathrm{R}\hbar} \simeq \mathscr{D}_{X}^{\hbar} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{Y}} \mathscr{N},$$

(3.2)
$$\operatorname{gr}_{\hbar}(\mathcal{N}^{\mathrm{R}\hbar}) \simeq \mathcal{N},$$

(3.3)
$$\operatorname{Sol}_{\hbar}(\mathscr{N}^{R\hbar}) \simeq \operatorname{Sol}(\mathscr{N})^{R\hbar}.$$

Definition 3.2. For $\mathscr{M} \in \operatorname{Mod}(\mathscr{D}_X^{\hbar})$, denote by $\mathscr{M}_{\hbar\text{-tor}}$ its submodule consisting of sections locally annihilated by some power of \hbar and set $\mathscr{M}_{\hbar\text{-tf}} = \mathscr{M}/\mathscr{M}_{\hbar\text{-tor}}$. We say that $\mathscr{M} \in \operatorname{Mod}(\mathscr{D}_X^{\hbar})$ is an $\hbar\text{-torsion}$ module if $\mathscr{M}_{\hbar\text{-tor}} \xrightarrow{\sim} \mathscr{M}$ and that \mathscr{M} has no $\hbar\text{-torsion}$ (or is $\hbar\text{-torsion}$ free) if $\mathscr{M} \xrightarrow{\sim} \mathscr{M}_{\hbar\text{-tf}}$.

Denote by ${}_{n}\mathcal{M}$ the kernel of ${}^{\hbar^{n+1}}:\mathcal{M}\to\mathcal{M}$. Then $\mathcal{M}_{\hbar\text{-tor}}$ is the sheaf associated with the increasing union of the ${}_{n}\mathcal{M}$'s. Hence, if \mathcal{M} is coherent, the increasing family $\{{}_{n}\mathcal{M}\}_{n}$ is locally stationary and $\mathcal{M}_{\hbar\text{-tor}}$ as well as $\mathcal{M}_{\hbar\text{-tf}}$ are coherent.

Characteristic variety. Recall the following definition

Definition 3.3. (i) For \mathscr{C} an abelian category, a function $c \colon \operatorname{Ob}(\mathscr{C}) \to \operatorname{Set}$ is called additive if $c(M) = c(M') \cup c(M'')$ for any short exact sequence $0 \to M' \to M \to M'' \to 0$.

(ii) For \mathscr{T} a triangulated category, a function $c \colon \mathrm{Ob}(\mathscr{T}) \to \mathrm{Set}$ is called additive if c(M) = c(M[1]) and $c(M) \subset c(M') \cup c(M'')$ for any distinguished triangle $M' \to M \to M'' \xrightarrow{+1}$.

Note that an additive function c on $\mathscr C$ naturally extends to the derived category $\mathsf D(\mathscr C)$ by setting $c(M)=\bigcup_i c(H^i(M))$.

For \mathscr{N} a coherent \mathscr{D}_X -module, denote by $\operatorname{char}(\mathscr{N})$ its characteristic variety, a closed involutive subvariety of the cotangent bundle T^*X . The characteristic variety is additive on $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X)$. For $\mathscr{N} \in \mathsf{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X)$ one sets $\operatorname{char}(\mathscr{N}) = \bigcup_i \operatorname{char}(H^i(\mathscr{N}))$.

Definition 3.4. The characteristic variety of $\mathcal{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}_X^\hbar)$ is defined by

$$\operatorname{char}_{\hbar}(\mathscr{M}) = \operatorname{char}(\operatorname{gr}_{\hbar}(\mathscr{M})).$$

To $\mathcal{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathcal{D}_X^{\hbar})$ one associates the coherent \mathcal{D}_X -modules

$$(3.4) 0\mathcal{M} = \operatorname{Ker}(\hbar \colon \mathcal{M} \to \mathcal{M}) = H^{-1}(\operatorname{gr}_{\hbar} \mathcal{M}),$$

(3.5)
$$\mathcal{M}_0 = \operatorname{Coker}(\hbar \colon \mathcal{M} \to \mathcal{M}) = H^0(\operatorname{gr}_{\hbar} \mathcal{M}).$$

Lemma 3.5. For $\mathcal{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathcal{D}_X^{\hbar})$ an \hbar -torsion module, one has

$$\operatorname{char}_{\hbar}(\mathscr{M}) = \operatorname{char}(\mathscr{M}_0) = \operatorname{char}({}_0\mathscr{M}).$$

Proof. By definition, $\operatorname{char}_{\hbar}(\mathscr{M}) = \operatorname{char}(\mathscr{M}_0) \cup \operatorname{char}({}_0\mathscr{M})$. It is thus enough to prove the equality $\operatorname{char}(\mathscr{M}_0) = \operatorname{char}({}_0\mathscr{M})$.

Since the statement is local we may assume that $\hbar^N \mathcal{M} = 0$ for some $N \in \mathbb{N}$. We proceed by induction on N.

For N=1 we have $\mathscr{M}\simeq \mathscr{M}_0\simeq {}_0\mathscr{M},$ and the statement is obvious.

Assume that the statement has been proved for N-1. The short exact sequence

$$(3.6) 0 \to \hbar \mathcal{M} \to \mathcal{M} \to \mathcal{M}_0 \to 0$$

induces the distinguished triangle

$$\operatorname{gr}_{\hbar} \hbar \mathcal{M} \to \operatorname{gr}_{\hbar} \mathcal{M} \to \operatorname{gr}_{\hbar} \mathcal{M}_0 \xrightarrow{+1} .$$

Noticing that $\mathcal{M}_0 \simeq (\mathcal{M}_0)_0 \simeq {}_0(\mathcal{M}_0)$, the associated long exact cohomology sequence gives

$$0 \to 0(\hbar \mathcal{M}) \to 0 \mathcal{M} \to \mathcal{M}_0 \to (\hbar \mathcal{M})_0 \to 0.$$

By inductive hypothesis we have $\operatorname{char}(0(\hbar \mathscr{M})) = \operatorname{char}((\hbar \mathscr{M})_0)$, and we deduce $\operatorname{char}(\mathscr{M}_0) = \operatorname{char}(\mathscr{M}_0)$ by additivity of char.

Proposition 3.6. (i) For $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$ one has

$$\operatorname{char}_{\hbar}(\mathcal{M}) = \operatorname{char}(\mathcal{M}_0).$$

(ii) The characteristic variety char_{\hbar} is additive both on $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$ and on $\mathsf{D}^{\operatorname{b}}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$.

Proof. (i) As $\operatorname{char}(\operatorname{gr}_{\hbar} \mathcal{M}) = \operatorname{char}(\mathcal{M}_0) \cup \operatorname{char}(_0 \mathcal{M})$, it is enough to prove the inclusion

$$(3.7) \operatorname{char}(_{0}\mathcal{M}) \subset \operatorname{char}(\mathcal{M}_{0}).$$

Consider the short exact sequence $0 \to \mathcal{M}_{\hbar\text{-tor}} \to \mathcal{M} \to \mathcal{M}_{\hbar\text{-tf}} \to 0$. Since $\mathcal{M}_{\hbar\text{-tf}}$ has no \hbar -torsion, $_0(\mathcal{M}_{\hbar\text{-tf}}) = 0$. The associated long exact cohomology sequence thus gives

$$_{0}(\mathcal{M}_{\hbar\text{-tor}}) \simeq _{0}\mathcal{M}, \quad 0 \to (\mathcal{M}_{\hbar\text{-tor}})_{0} \to \mathcal{M}_{0} \to (\mathcal{M}_{\hbar\text{-tf}})_{0} \to 0.$$

We deduce

$$\operatorname{char}({}_{0}\mathscr{M}) = \operatorname{char}({}_{0}(\mathscr{M}_{\hbar\text{-tor}})) = \operatorname{char}((\mathscr{M}_{\hbar\text{-tor}})_{0}) \subset \operatorname{char}(\mathscr{M}_{0}),$$

where the second equality follows from Lemma 3.5.

(ii) It is enough to prove the additivity on $\operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar})$, i.e. the equality

$$\operatorname{char}_{\hbar}(\mathscr{M}) = \operatorname{char}_{\hbar}(\mathscr{M}') \cup \operatorname{char}_{\hbar}(\mathscr{M}'')$$

for $0 \to \mathcal{M}' \to \mathcal{M} \to \mathcal{M}'' \to 0$ a short exact sequence of coherent \mathscr{D}_X^{\hbar} -modules.

The associated distinguished triangle $\operatorname{gr}_{\hbar} \mathcal{M}' \to \operatorname{gr}_{\hbar} \mathcal{M} \to \operatorname{gr}_{\hbar} \mathcal{M}'' \xrightarrow{+1}$ induces the long exact cohomology sequence

$$_0(\mathcal{M}'') \to (\mathcal{M}')_0 \to \mathcal{M}_0 \to (\mathcal{M}'')_0 \to 0.$$

By additivity of $char(\bullet)$, the exactness of this sequence at the first, second and third term from the right, respectively, gives:

$$\operatorname{char}_{\hbar}(\mathcal{M}'') \subset \operatorname{char}_{\hbar}(\mathcal{M}),$$

$$\operatorname{char}_{\hbar}(\mathcal{M}) \subset \operatorname{char}_{\hbar}(\mathcal{M}') \cup \operatorname{char}_{\hbar}(\mathcal{M}''),$$

$$\operatorname{char}_{\hbar}(\mathcal{M}') \subset \operatorname{char}_{(0}(\mathcal{M}'')) \cup \operatorname{char}_{\hbar}(\mathcal{M}).$$

Finally, note that
$$\operatorname{char}({}_0(\mathscr{M}'')) \subset \operatorname{char}_{\hbar}(\mathscr{M}'') \subset \operatorname{char}_{\hbar}(\mathscr{M}).$$

In view of Proposition 3.6 (i), in order to define the characteristic variety of a coherent \mathscr{D}_X^{\hbar} -module \mathscr{M} one could avoid derived categories considering $\operatorname{char}(\mathscr{M}_0)$ instead of $\operatorname{char}(\operatorname{gr}_{\hbar}\mathscr{M})$. The next lemma shows that these definitions are still compatible for $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$.

Lemma 3.7. For
$$\mathscr{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}^{\hbar}_{X})$$
 one has
$$\bigcup_{i} \mathsf{char}(H^{i}(\mathsf{gr}_{\hbar} \mathscr{M})) = \bigcup_{i} \mathsf{char}((H^{i} \mathscr{M})_{0}).$$

Proof. By additivity of char, the short exact sequence

$$(3.8) 0 \to (H^i \mathcal{M})_0 \to H^i(\operatorname{gr}_{\hbar} \mathcal{M}) \to {}_0(H^{i+1} \mathcal{M}) \to 0$$

from [13, Lemma 1.4.2] induces the estimates

$$\operatorname{char}((H^{i}\mathscr{M})_{0}) \subset \operatorname{char}(H^{i}(\operatorname{gr}_{\hbar}\mathscr{M})),$$

$$\operatorname{char}(H^{i}(\operatorname{gr}_{\hbar}\mathscr{M})) = \operatorname{char}((H^{i}\mathscr{M})_{0}) \cup \operatorname{char}(_{0}(H^{i+1}\mathscr{M})).$$

One concludes by noticing that (3.7) gives

$$\operatorname{char}(_0(H^{i+1}\mathcal{M})) \subset \operatorname{char}((H^{i+1}\mathcal{M})_0).$$

Proposition 3.8. Let $\mathscr{M} \in \operatorname{Mod}(\mathscr{D}_X^{\hbar})$ be an \hbar -torsion module. Then \mathscr{M} is coherent as a \mathscr{D}_X^{\hbar} -module if and only if it is coherent as a \mathscr{D}_X -module, and in this case one has $\operatorname{char}_{\hbar}(\mathscr{M}) = \operatorname{char}(\mathscr{M})$.

Proof. As in the proof of Lemma 3.5 we assume that $\hbar^N \mathcal{M} = 0$ for some $N \in \mathbb{N}$. Since coherence is preserved by extension and since the characteristic varieties of \mathcal{D}_X^{\hbar} -modules and \mathcal{D}_X -modules are additive, we can argue by induction on N using the exact sequence (3.6). We are thus reduced to the case N = 1, where $\mathcal{M} = \mathcal{M}_0$ and the statement becomes obvious.

It follows from (3.2) that

Proposition 3.9. For
$$\mathcal{N} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}_X)$$
 one has $\mathsf{char}_{\hbar}(\mathcal{N}^{\hbar}) = \mathsf{char}(\mathcal{N})$.

Holonomic modules. Recall that a coherent \mathscr{D}_X -module (or an object of the derived category) is called holonomic if its characteristic variety is isotropic. We refer e.g. to [7, Chapter 5] for the notion of regularity.

Definition 3.10. We say that $\mathscr{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}^{\hbar}_{X})$ is holonomic, or regular holonomic, if so is $\mathsf{gr}_{\hbar}(\mathscr{M})$. We denote by $\mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}^{\hbar}_{X})$ the full triangulated subcategory of $\mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}^{\hbar}_{X})$ of holonomic objects and by $\mathsf{D}^{\mathsf{b}}_{\mathsf{rh}}(\mathscr{D}^{\hbar}_{X})$ the full triangulated subcategory of regular holonomic objects.

Note that a coherent \mathscr{D}_X^{\hbar} -module is holonomic if and only if its characteristic variety is isotropic.

- **Example 3.11.** Let \mathscr{N} be a regular holonomic \mathscr{D}_X -module. Then (i) \mathscr{N} itself, considered as a \mathscr{D}_X^{\hbar} -module, is regular holonomic, as follows from the isomorphism $\operatorname{gr}_{\hbar} \mathscr{N} \simeq \mathscr{N} \oplus \mathscr{N}[1];$
- (ii) \mathcal{N}^{\hbar} is a regular holonomic \mathcal{D}_{X}^{\hbar} -module, as follows from the isomorphism $\operatorname{gr}_{\hbar} \mathcal{N}^{\hbar} \simeq \mathcal{N}$. In particular, \mathcal{O}_{X}^{\hbar} is regular holonomic.
- **Remark 3.12.** We denote by $\operatorname{Mod_{rh}}(\mathscr{D}_X)$ the category of regular holonomic \mathscr{D}_X -modules and by $\operatorname{Mod_{rh}}(\mathscr{D}_X^\hbar)$ the subcategory of $\operatorname{Mod}(\mathscr{D}_X^\hbar)$ of regular holonomic objects in the above sense. The proofs of Lemma 3.5 and Proposition 3.6 adapt to the notion of regular holonomy and give the following results:
- (i) For $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$ an $\hbar\text{-torsion module},$

$$\mathscr{M} \in \operatorname{Mod}_{\operatorname{rh}}(\mathscr{D}_X^{\hbar}) \Longleftrightarrow \mathscr{M}_0 \in \operatorname{Mod}_{\operatorname{rh}}(\mathscr{D}_X) \Longleftrightarrow {}_0 \mathscr{M} \in \operatorname{Mod}_{\operatorname{rh}}(\mathscr{D}_X).$$

(ii) For $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$,

$$\mathcal{M} \in \operatorname{Mod}_{\operatorname{rh}}(\mathscr{D}_X^{\hbar}) \Longleftrightarrow \mathcal{M}_0 \in \operatorname{Mod}_{\operatorname{rh}}(\mathscr{D}_X).$$

In this case, $_{0}\mathcal{M} \in \operatorname{Mod_{rh}}(\mathcal{D}_{X})$.

Now for $\mathscr{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}^{\hbar}_X)$ the exact sequence (3.8) shows that, for any i,

$$H^{i}(\operatorname{gr}_{\hbar} \mathscr{M}) \in \operatorname{Mod}_{\operatorname{rh}}(\mathscr{D}_{X}) \iff (H^{i} \mathscr{M})_{0} \ and \ _{0}(H^{i+1} \mathscr{M}) \in \operatorname{Mod}_{\operatorname{rh}}(\mathscr{D}_{X}).$$

By the above we deduce that $\mathscr{M} \in \mathsf{D}^{\mathsf{b}}_{\mathrm{rh}}(\mathscr{D}_{X}^{\hbar})$ if and only if $(H^{i}\mathscr{M})_{0} \in \mathrm{Mod}_{\mathrm{rh}}(\mathscr{D}_{X})$ for all i. This is again equivalent to $H^{i}\mathscr{M} \in \mathrm{Mod}_{\mathrm{rh}}(\mathscr{D}_{X}^{\hbar})$ for all i.

Propagation. Denote by $\mathsf{D}^{\mathsf{b}}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)$ the full triangulated subcategory of $\mathsf{D}^{\mathsf{b}}(\mathbb{C}^{\hbar}_X)$ consisting of objects with \mathbb{C} -constructible cohomology over the ring \mathbb{C}^{\hbar} .

Theorem 3.13. Let $\mathcal{M}, \mathcal{N} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}_X^{\hbar})$. Then

$$\mathrm{SS}\big(\mathrm{R}\mathscr{H}\hspace{-0.05cm}\mathit{om}\,_{\mathscr{D}^{\hbar}_{\mathbf{x}}}(\mathscr{M},\mathscr{N})\big) = \mathrm{SS}\big(\mathrm{R}\mathscr{H}\hspace{-0.05cm}\mathit{om}\,_{\mathscr{D}_{\mathbf{X}}}(\mathrm{gr}_{\hbar}(\mathscr{M}),\mathrm{gr}_{\hbar}(\mathscr{N}))\big).$$

If moreover \mathcal{M} and \mathcal{N} are holonomic, then $\mathrm{R}\mathcal{H}om_{\mathscr{D}_X^\hbar}(\mathcal{M},\mathcal{N})$ is an object of $\mathsf{D}^\mathrm{b}_{\mathbb{C}\text{-}c}(\mathbb{C}^\hbar_X)$.

Proof. Set $F = \mathbb{R}\mathscr{H}om_{\mathscr{D}_X^\hbar}(\mathscr{M},\mathscr{N})$. By Theorem 1.9 and Proposition 1.5, F is cohomologically \hbar -complete. Hence $\mathrm{SS}(F) = \mathrm{SS}(\mathrm{gr}_\hbar(F))$ by Proposition 1.15. If moreover \mathscr{M} and \mathscr{N} are holonomic, then $\mathrm{gr}_\hbar F$ is \mathbb{C} -constructible. The equality $\mathrm{SS}(F) = \mathrm{SS}(\mathrm{gr}_\hbar(F))$ implies that F is weakly \mathbb{C} -constructible. Moreover, the finiteness of the stalks $\mathrm{gr}_\hbar(F)_x \simeq \mathrm{gr}_\hbar(F_x)$ over \mathbb{C} implies the finiteness of F_x over \mathbb{C}^\hbar by Theorem 1.11 applied with $X = \{\mathrm{pt}\}$ and $\mathscr{A} = \mathbb{C}^\hbar$.

Applying Theorem 3.13, and [9, Theorem 11.3.3], we get:

Corollary 3.14. Let $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$. Then

$$SS(Sol_{\hbar}(\mathscr{M})) = SS(DR_{\hbar}(\mathscr{M})) = char_{\hbar}(\mathscr{M}).$$

If moreover \mathscr{M} is holonomic, then $\mathrm{Sol}_{\hbar}(\mathscr{M})$ and $\mathrm{DR}_{\hbar}(\mathscr{M})$ belong to $\mathsf{D}^{\mathrm{b}}_{\mathbb{C}\text{-}c}(\mathbb{C}^{\hbar}_X)$.

Theorem 3.15. Let $\mathscr{M} \in \mathsf{D}^{\mathsf{b}}_{\mathrm{hol}}(\mathscr{D}^{\hbar}_{X})$. Then there is a natural isomorphism in $\mathsf{D}^{\mathsf{b}}_{\mathbb{C}\text{-}c}(\mathbb{C}^{\hbar}_{X})$

(3.9)
$$\operatorname{Sol}_{\hbar}(\mathscr{M}) \simeq \operatorname{D}'_{\hbar}(\operatorname{DR}_{\hbar}(\mathscr{M})).$$

Proof. The natural \mathbb{C}^{\hbar} -linear morphism

$$\mathbf{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\mathscr{O}_{X}^{\hbar},\mathscr{M})\overset{\mathbf{L}}{\otimes}_{\mathbb{C}_{X}^{\hbar}}\mathbf{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\mathscr{M},\mathscr{O}_{X}^{\hbar})$$

$$\rightarrow\mathbf{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\mathscr{O}_{X}^{\hbar},\mathscr{O}_{X}^{\hbar})\simeq\mathbb{C}_{X}^{\hbar}$$

induces the morphism in $\mathsf{D}^{\mathrm{b}}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)$

$$(3.10) \qquad \alpha \colon \mathbf{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{\mathbf{X}}}(\mathscr{M},\mathscr{O}^{\hbar}_{X}) \to \mathbf{D}'_{\hbar}(\mathbf{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{\mathbf{X}}}(\mathscr{O}^{\hbar}_{X},\mathscr{M})).$$

(Note that, choosing $\mathcal{M} = \mathcal{D}_X^{\hbar}$, this morphism defines the morphism $\mathcal{O}_X^{\hbar} \to \mathcal{D}_{\hbar}'(\Omega_X^{\hbar}[-d_X])$.) The morphism (3.10) induces an isomorphism

$$\operatorname{gr}_{\hbar}(\alpha) \colon \operatorname{R}\mathscr{H}om_{\mathscr{D}_{\mathbf{Y}}}(\operatorname{gr}_{\hbar}(\mathscr{M}), \mathscr{O}_{X}) \to \operatorname{D}'(\operatorname{R}\mathscr{H}om_{\mathscr{D}_{\mathbf{Y}}}(\mathscr{O}_{X}, \operatorname{gr}_{\hbar}(\mathscr{M}))).$$

It is thus an isomorphism by Corollary 1.17.

§4. Formal extension of tempered functions

Let us start by reviewing after [11, Chapter 7] the construction of the sheaves of tempered distributions and of C^{∞} -functions with temperate growth on the subanalytic site.

Let X be a real analytic manifold, and U an open subset. One says that a function $f \in \mathscr{C}^{\infty}_{X}(U)$ has polynomial growth at $p \in X$ if, for a local coordinate system (x_{1}, \ldots, x_{n}) around p, there exist a sufficiently small compact neighborhood K of p and a positive integer N such that

$$\sup_{x \in K \cap U} \left(\operatorname{dist}(x, K \setminus U) \right)^{N} |f(x)| < \infty.$$

One says that f is tempered at p if all its derivatives are of polynomial growth at p. One says that f is tempered if it is tempered at any point of X. One denotes by $\mathscr{C}_X^{\infty,t}(U)$ the \mathbb{C} -vector subspace of $\mathscr{C}^{\infty}(U)$ consisting of tempered functions. It then follows from a theorem of Lojaciewicz that $U \mapsto \mathscr{C}_X^{\infty,t}(U)$ $(U \in \operatorname{Op}_{X_{\operatorname{sa}}})$ is a sheaf on X_{sa} . We denote it by $\mathscr{C}_{X_{\operatorname{sa}}}^{\infty,t}$ or simply $\mathscr{C}_X^{\infty,t}$ if there is no risk of confusion.

Lemma 4.1. One has $H^j(U;\mathscr{C}_X^{\infty,t})=0$ for any $U\in \operatorname{Op}_{X_{\operatorname{sa}}}$ and any j>0.

This result is well-known (see [10, Chapter 1]), but we recall its proof for the reader's convenience.

Proof. Consider the full subcategory \mathscr{J} of $\operatorname{Mod}(\mathbb{C}_{X_{\operatorname{sa}}})$ whose objects are sheaves F such that for any pair $U, V \in \operatorname{Op}_{X_{\operatorname{sa}}}$, the Mayer-Vietoris sequence

$$0 \to F(U \cup V) \to F(U) \oplus F(V) \to F(U \cap V) \to 0$$

is exact. Let us check that this category is injective with respect to the functor $\Gamma(U; \bullet)$. The only non obvious fact is that if $0 \to F' \to F \to F'' \to 0$ is an exact sequence and that F' belongs to \mathscr{J} , then $F(U) \to F''(U)$ is surjective. Let $t \in F''(U)$. There exist a finite covering $U = \bigcup_{i \in I} U_i$ and $s_i \in F(U_i)$ whose image in $F''(U_i)$ is $t|_{U_i}$. Then the proof goes by induction on the cardinal of I using the property of F' and standard arguments. To conclude, note that $\mathscr{C}_X^{\infty,t}$ belongs to \mathscr{J} thanks to Lojaciewicz's result (see [14]).

Let $\mathscr{D}b_X$ be the sheaf of distributions on X. For $U \in \mathrm{Op}_{X_{\mathrm{sa}}}$, denote by $\mathscr{D}b_X^t(U)$ the space of tempered distributions on U, defined by the exact sequence

$$0 \to \Gamma_{X \setminus U}(X; \mathscr{D}b_X) \to \Gamma(X; \mathscr{D}b_X) \to \mathscr{D}b_X^t(U) \to 0.$$

Again, it follows from a theorem of Lojaciewicz that $U\mapsto \mathscr{D}b^t(U)$ is a sheaf on X_{sa} . We denote it by $\mathscr{D}b^t_{X_{\operatorname{sa}}}$ or simply $\mathscr{D}b^t_X$ if there is no risk of confusion. The sheaf $\mathscr{D}b^t_X$ is quasi-injective, that is, the functor $\mathscr{H}om_{\mathbb{C}_{X_{\operatorname{sa}}}}(\bullet,\mathscr{D}b^t_X)$ is exact in the category $\operatorname{Mod}_{\mathbb{R}\text{-c}}(\mathbb{C}_X)$. Moreover, for $U\in\operatorname{Op}_{X_{\operatorname{sa}}},\mathscr{H}om_{\mathbb{C}_{X_{\operatorname{sa}}}}(\mathbb{C}_U,\mathscr{D}b^t_X)$ is also quasi-injective and $R\mathscr{H}om_{\mathbb{C}_{X_{\operatorname{sa}}}}(\mathbb{C}_U,\mathscr{D}b^t_X)$ is concentrated in degree 0. Note that the sheaf

$$\Gamma_{[U]} \mathscr{D}b_X := \rho^{-1} \mathscr{H}om_{\mathbb{C}_{X_{\mathrm{op}}}}(\mathbb{C}_U, \mathscr{D}b_X^t)$$

is a \mathscr{C}_X^{∞} -module, so that in particular $\mathrm{R}\Gamma(V;\Gamma_{[U]}\mathscr{D}b_X)$ is concentrated in degree 0 for $V\subset X$ an open subset.

Formal extensions. By Proposition 2.5 the sheaves $\mathscr{C}_X^{\infty,t}$, $\mathscr{D}b_X^t$ and $\Gamma_{[U]}\mathscr{D}b_X$ are acyclic for the functor $(\bullet)^{\hbar}$. We set

$$\mathscr{C}_X^{\infty,t,\hbar} := (\mathscr{C}_X^{\infty,t})^\hbar, \qquad \mathscr{D}b_X^{t,\hbar} := (\mathscr{D}b_X^t)^\hbar, \qquad \Gamma_{[U]} \mathscr{D}b_X^\hbar := (\Gamma_{[U]} \mathscr{D}b_X)^\hbar.$$

Note that, by Lemmas 2.3 and 2.9,

$$\Gamma_{[U]} \mathscr{D} b_X^{\hbar} \simeq \rho^{-1} \mathscr{H} om_{\mathbb{C}_X} \ (\mathbb{C}_U, \mathscr{D} b_X^{t,\hbar}).$$

By Proposition 2.2 we get:

Proposition 4.2. The sheaves $\mathscr{C}_X^{\infty,t,\hbar}$, $\mathscr{D}_X^{t,\hbar}$ and $\Gamma_{[U]}\mathscr{D}_X^{\hbar}$ are cohomologically \hbar -complete.

Now assume X is a complex manifold. Denote by \overline{X} the complex conjugate manifold and by $X^{\mathbb{R}}$ the underlying real analytic manifold, identified with the diagonal of $X \times \overline{X}$. One defines the sheaf (in fact, an object of the derived category) of tempered holomorphic functions by

$$\mathscr{O}_X^t := R\mathscr{H}om_{\rho_!\mathscr{D}_{\overline{X}}}(\rho_!\mathscr{O}_{\overline{X}}, \mathscr{C}_X^{\infty,t}) \xrightarrow{\sim} R\mathscr{H}om_{\rho_!\mathscr{D}_{\overline{X}}}(\rho_!\mathscr{O}_{\overline{X}}, \mathscr{D}b_X^t).$$

Here and in the sequel, we write $\mathscr{C}_X^{\infty,t}$ and $\mathscr{D}b_X^t$ instead of $\mathscr{C}_{X^{\mathbb{R}}}^{\infty,t}$ and $\mathscr{D}b_{X^{\mathbb{R}}}^t$, respectively. We set

$$\mathscr{O}_X^{t,\hbar} := (\mathscr{O}_X^t)^{\mathrm{R}\hbar},$$

a cohomologically \hbar -complete object of $\mathsf{D}^{\mathsf{b}}(\mathbb{C}^{\hbar}_{X_{-}})$. By Lemma 2.3,

$$\mathscr{O}_X^{t,\hbar} \simeq \mathrm{R}\mathscr{H}\!\mathit{om}_{\rho_!\mathscr{D}_{\overline{X}}}(\rho_!\mathscr{O}_{\overline{X}},\mathscr{C}_X^{\infty,t,\hbar}) \xrightarrow{\sim} \mathrm{R}\mathscr{H}\!\mathit{om}_{\rho_!\mathscr{D}_{\overline{X}}}(\rho_!\mathscr{O}_{\overline{X}},\mathscr{D}b_X^{t,\hbar}).$$

Note that $\operatorname{gr}_{\hbar}(\mathscr{O}_{X}^{t,\hbar}) \simeq \mathscr{O}_{X}^{t}$ in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X_{\operatorname{sa}}})$.

§5. Riemann-Hilbert correspondence

Let X be a complex analytic manifold. Consider the functors

TH:
$$\mathsf{D}^{\mathrm{b}}_{\mathbb{C}\text{-c}}(\mathbb{C}_X) \to \mathsf{D}^{\mathrm{b}}_{\mathrm{rh}}(\mathscr{D}_X)^{\mathrm{op}}, \qquad F \mapsto \rho^{-1} \mathsf{R}\mathscr{H}om_{\mathbb{C}_{X_{\mathrm{Sa}}}}(\rho_* F, \mathscr{O}_X^t),$$
TH_{\(\hat{h}\)}: $\mathsf{D}^{\mathrm{b}}_{\mathbb{C}\text{-c}}(\mathbb{C}_X^{\hbar}) \to \mathsf{D}^{\mathrm{b}}(\mathscr{D}_X^{\hbar})^{\mathrm{op}}, \qquad F \mapsto \rho^{-1} \mathsf{R}\mathscr{H}om_{\mathbb{C}_{X_{\mathrm{Sa}}}^{\hbar}}(\rho_* F, \mathscr{O}_X^{t,\hbar}).$

The classical Riemann-Hilbert correspondence of Kashiwara [6] states that the functors Sol and TH are equivalences of categories between $\mathsf{D}^{\mathsf{b}}_{\mathbb{C}-\mathsf{c}}(\mathbb{C}_X)$ and $\mathsf{D}^{\mathsf{b}}_{\mathsf{rh}}(\mathscr{D}_X)^{\mathsf{op}}$ quasi-inverse to each other. In order to obtain a similar statement for \mathbb{C}_X and \mathscr{D}_X replaced with \mathbb{C}_X^\hbar and \mathscr{D}_X^\hbar , respectively, we start by establishing some lemmas.

Lemma 5.1. For $\mathcal{M}, \mathcal{N} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}_X^{\hbar})$ one has a natural isomorphism in $\mathsf{D}^{\mathsf{b}}_{\mathbb{C}-c}(\mathbb{C}_X^{\hbar})$

$$\mathrm{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M},\mathscr{N}) \xrightarrow{\sim} \mathrm{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_{X}}(\mathrm{Sol}_{\hbar}(\mathscr{N}),\mathrm{Sol}_{\hbar}(\mathscr{M})).$$

Proof. Applying the functor $\operatorname{gr}_{\hbar}$ to this morphism, we get an isomorphism by the classical Riemann-Hilbert correspondence. Then the result follows from Corollary 1.17 and Theorem 3.13.

Note that there is an isomorphism in $\mathsf{D}^{\mathrm{b}}(\mathscr{D}_X)$

(5.1)
$$\operatorname{gr}_{\hbar}(\operatorname{TH}_{\hbar}(F)) \simeq \operatorname{TH}(\operatorname{gr}_{\hbar}(F)).$$

Lemma 5.2. The functor TH_{\hbar} induces a functor

(5.2)
$$TH_{\hbar} \colon \mathsf{D}^{\mathsf{b}}_{\mathbb{C}^{-c}}(\mathbb{C}^{\hbar}_{X}) \to \mathsf{D}^{\mathsf{b}}_{\mathsf{rh}}(\mathscr{D}^{\hbar}_{X})^{\mathsf{op}}.$$

Proof. Let $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_{X})$. By (5.1) and the classical Riemann-Hilbert correspondence we know that $\operatorname{gr}_{\hbar}(\operatorname{TH}_{\hbar}(F))$ is regular holonomic, and in particular coherent. It is thus left to prove that $\operatorname{TH}_{\hbar}(F)$ is coherent. Note that our problem is of local nature.

We use the Dolbeault resolution of $\mathscr{O}_X^{t,\hbar}$ with coefficients in $\mathscr{D}b_X^{t,\hbar}$ and we choose a resolution of F as given in Proposition A.2 (i). We find that $\mathrm{TH}_{\hbar}(F)$ is isomorphic to a bounded complex \mathscr{M}^{\bullet} , where the \mathscr{M}^i are locally finite sums of sheaves of the type $\Gamma_{[U]}\mathscr{D}b^{t,\hbar}$ with $U\in\mathrm{Op}_{X_{\mathrm{sa}}}$. It follows from Proposition 4.2 that $\mathrm{TH}_{\hbar}(F)$ is cohomologically \hbar -complete, and we conclude by Theorem 1.11 with $\mathscr{A}=\mathscr{D}_X^{\hbar}$.

Lemma 5.3. We have
$$\mathbb{R}\mathscr{H}om_{\rho_{\mathbb{I}}\mathscr{D}_{X}^{\hbar}}(\rho_{\mathbb{I}}\mathscr{O}_{X}^{\hbar},\mathscr{O}_{X}^{t,\hbar})\simeq\mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}.$$

Proof. This isomorphism is given by the sequence

$$\begin{split} \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\rho_{!}\mathscr{D}_{X}^{\hbar}}(\rho_{!}\mathscr{O}_{X}^{\hbar},\mathscr{O}_{X}^{t,\hbar}) &\simeq \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\rho_{!}\mathscr{D}_{X}}(\rho_{!}\mathscr{O}_{X},\mathscr{O}_{X}^{t,\hbar}) \\ &\simeq \mathbf{R}\mathscr{H}\!\mathit{om}_{\,\rho_{!}\mathscr{D}_{X}}(\rho_{!}\mathscr{O}_{X},\mathscr{O}_{X}^{t})^{\mathrm{R}\hbar} \\ &\simeq (\rho_{*}\mathbf{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{D}_{X}}(\mathscr{O}_{X},\mathscr{O}_{X}))^{\mathrm{R}\hbar} \simeq (\mathbb{C}_{X_{\mathrm{sa}}})^{\mathrm{R}\hbar} \simeq \mathbb{C}_{X_{\mathrm{sa}}}^{\hbar}, \end{split}$$

where the first isomorphism is an extension of scalars, the second one follows from Lemma 2.3 and the third one is given by the adjunction between $\rho_!$ and ρ^{-1} .

Theorem 5.4. The functors $\operatorname{Sol}_{\hbar}$ and $\operatorname{TH}_{\hbar}$ are equivalences of categories between $\mathsf{D}^{\mathrm{b}}_{\mathbb{C}^{-c}}(\mathbb{C}^{\hbar}_X)$ and $\mathsf{D}^{\mathrm{b}}_{\mathrm{rh}}(\mathscr{D}^{\hbar}_X)^{\mathrm{op}}$ quasi-inverse to each other.

Proof. In view of Lemma 5.1, we know that the functor $\operatorname{Sol}_{\hbar}$ is fully faithful. It is then enough to show that $\operatorname{Sol}_{\hbar}(\operatorname{TH}_{\hbar}(F)) \simeq F$ for $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{C}-\mathsf{c}}(\mathbb{C}^{\hbar}_X)$. Since we already know by Lemma 5.2 that $\operatorname{TH}_{\hbar}(F)$ is holonomic, we may use (3.9). We have the sequence of isomorphisms:

$$\begin{split} \rho_* \mathbf{R} \mathscr{H}om_{\mathscr{D}_X^\hbar}(\mathscr{O}_X^\hbar, \mathrm{TH}_\hbar(F)) &= \rho_* \mathbf{R} \mathscr{H}om_{\mathscr{D}_X^\hbar}(\mathscr{O}_X^\hbar, \rho^{-1} \mathbf{R} \mathscr{H}om_{\mathbb{C}_{X_{\mathrm{sa}}}^\hbar}(\rho_* F, \mathscr{O}_X^{t,\hbar})) \\ &\simeq \mathbf{R} \mathscr{H}om_{\rho_! \mathscr{D}_X^\hbar}(\rho_! \mathscr{O}_X^\hbar, \mathbf{R} \mathscr{H}om_{\mathbb{C}_{X_{\mathrm{sa}}}^\hbar}(\rho_* F, \mathscr{O}_X^{t,\hbar})) \\ &\simeq \mathbf{R} \mathscr{H}om_{\mathbb{C}_{X_{\mathrm{sa}}}^\hbar}(\rho_* F, \mathbf{R} \mathscr{H}om_{\rho_! \mathscr{D}_X^\hbar}(\rho_! \mathscr{O}_X^\hbar, \mathscr{O}_X^{t,\hbar})) \\ &\simeq \mathbf{R} \mathscr{H}om_{\mathbb{C}_{X_{\mathrm{sa}}}^\hbar}(\rho_* F, \mathbb{C}_{X_{\mathrm{sa}}}^\hbar) \simeq \mathbf{R} \mathscr{H}om_{\mathbb{C}_{X_{\mathrm{sa}}}^\hbar}(\rho_* F, \rho_* \mathbb{C}_X^\hbar) \\ &\simeq \rho_* \mathbf{D}_h' F, \end{split}$$

where we have used the adjunction between $\rho_!$ and ρ^{-1} , the isomorphism of Lemma 5.3 and the commutation of ρ_* with R $\mathscr{H}om$. One concludes by recalling the isomorphism of functors $\rho^{-1}\rho_* \simeq \mathrm{id}$.

t-structure. Recall the definition of the middle perversity t-structure for complex constructible sheaves. Let \mathbb{K} denote either the field \mathbb{C} or the ring \mathbb{C}^{\hbar} . For $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{C}\text{-c}}(\mathbb{K}_X)$, we have $F \in {}^p\mathsf{D}^{\leq 0}_{\mathbb{C}\text{-c}}(\mathbb{K}_X)$ if and only if

$$(5.3) \forall i \in \mathbb{Z} \dim \operatorname{supp} H^i(F) \le d_X - i,$$

and $F \in {}^p\mathsf{D}^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{K}_X)$ if and only if, for any locally closed complex analytic subset $S \subset X$,

(5.4)
$$H_S^i(F) = 0 \text{ for all } i < d_X - \dim(S).$$

One denotes by $\operatorname{Perv}(\mathbb{K}_X)$ the heart of this *t*-structure. With the above convention, the de Rham functor

$$\mathrm{DR} \colon \mathsf{D}^{\mathrm{b}}_{\mathrm{hol}}(\mathscr{D}_X) \to {}^p\mathsf{D}^{\mathrm{b}}_{\mathbb{C}^{-c}}(\mathbb{C}_X)$$

is t-exact, when $\mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}_X)$ is equipped with the natural t-structure.

Theorem 5.5. The de Rham functor $DR_{\hbar}: D^b_{hol}(\mathscr{D}^{\hbar}_X) \to {}^pD^b_{\mathbb{C}\text{-}c}(\mathbb{C}^{\hbar}_X)$ is t-exact, and induces an equivalence of categories when restricted to $D^b_{rh}(\mathscr{D}^{\hbar}_X)$.

Proof. (i) Let $\mathscr{M} \in \mathsf{D}^{\leq 0}_{\mathrm{hol}}(\mathscr{D}^{\hbar}_{X})$. Let us prove that $\mathsf{DR}_{\hbar}\mathscr{M} \in {}^{p}\mathsf{D}^{\leq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_{X})$. Since $\mathsf{DR}_{\hbar}\mathscr{M}$ is constructible, by Proposition 1.19 it is enough to check (5.3) for $\mathsf{gr}_{\hbar}(\mathsf{DR}_{\hbar}\mathscr{M}) \simeq \mathsf{DR}(\mathsf{gr}_{\hbar}\mathscr{M})$. In other words, it is enough to check that $\mathsf{DR}(\mathsf{gr}_{\hbar}\mathscr{M}) \in {}^{p}\mathsf{D}^{\leq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}_{X})$. Since $\mathsf{gr}_{\hbar}\mathscr{M} \in \mathsf{D}^{\leq 0}_{\mathrm{hol}}(\mathscr{D}_{X})$, this result follows from the t-exactness of the functor DR .

(ii) Let $\mathscr{M} \in \mathsf{D}^{\geq 0}_{\mathrm{hol}}(\mathscr{D}^{\hbar}_X)$. Let us prove that $\mathrm{DR}_{\hbar}\mathscr{M} \in {}^p\mathsf{D}^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)$. We set $\mathscr{N} = (H^0\mathscr{M})_{\hbar\text{-tor}}$. We have a morphism $u \colon \mathscr{N} \to \mathscr{M}$ induced by $H^0\mathscr{M} \to \mathscr{M}$ and we let \mathscr{M}' be the mapping cone of u. We have a distinguished triangle

$$\mathrm{DR}_{\hbar} \mathscr{N} \to \mathrm{DR}_{\hbar} \mathscr{M} \to \mathrm{DR}_{\hbar} \mathscr{M}' \xrightarrow{+1}$$

so that it is enough to show that $DR_{\hbar}\mathcal{N}$ and $DR_{\hbar}\mathcal{M}'$ belong to ${}^pD^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)$. (ii-a) By Proposition 3.6 (ii) and Proposition 3.8, \mathcal{N} is holonomic as a \mathscr{D}_X -module. Hence $DR_{\hbar}\mathcal{N} \simeq DR\mathcal{N}$ is a perverse sheaf (over \mathbb{C}) and satisfies (5.4). Since (5.4) does not depend on the coefficient ring, $DR_{\hbar}\mathcal{N} \in {}^pD^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)$. (ii-b) We note that $H^0 \mathcal{M}' \simeq (H^0 \mathcal{M})_{\hbar\text{-tf}}$. Hence by Proposition 1.14, $\operatorname{gr}_{\hbar} \mathcal{M}' \in \mathsf{D}^{\geq 0}_{\operatorname{hol}}(\mathscr{D}_X)$ and $\operatorname{DR}(\operatorname{gr}_{\hbar} \mathcal{M}') \in {}^p\mathsf{D}^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}_X)$, that is, $\operatorname{DR}(\operatorname{gr}_{\hbar} \mathcal{M}')$ satisfies (5.4). Let $S \subset X$ be a locally closed complex subanalytic subset. We have

$$R\Gamma_S(DR(\operatorname{gr}_{\hbar} \mathscr{M}')) \simeq \operatorname{gr}_{\hbar}(R\Gamma_S(DR_{\hbar} \mathscr{M}'))$$

and it follows from Proposition 1.19 that $\mathrm{DR}_\hbar\mathscr{M}'$ also satisfies (5.4) and thus belongs to ${}^p\mathsf{D}^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^\hbar_X)$.

(iii) The fact that DR_{\hbar} is an equivalence follows from Theorems 5.4 and 3.15, in view of Lemma A.1.

§6. Duality and \hbar -torsion

The duality functors \mathbb{D} on $\mathsf{D}_{\mathrm{rh}}(\mathscr{D}_X)$ and D' on ${}^p\mathsf{D}^{\mathsf{b}}_{\mathbb{C}\text{-c}}(\mathbb{C}_X)$ are t-exact. We will discuss here the finer t-structures needed in order to obtain a similar result when replacing \mathbb{C}_X and \mathscr{D}_X by their formal extensions \mathbb{C}_X^\hbar and \mathscr{D}_X^\hbar .

Following [2, Chapter I.2], let us start by recalling some facts related to torsion pairs and t-structures. We need in particular Proposition 6.2 below, which can also be found in [3].

Definition 6.1. Let \mathscr{C} be an abelian category. A torsion pair on \mathscr{C} is a pair $(\mathscr{C}_{tor}, \mathscr{C}_{tf})$ of full subcategories such that

- (i) for all objects T in \mathscr{C}_{tor} and F in \mathscr{C}_{tf} , we have $\operatorname{Hom}_{\mathscr{C}}(T,F)=0$,
- (ii) for any object M in \mathcal{C} , there are objects M_{tor} in \mathcal{C}_{tor} and M_{tf} in \mathcal{C}_{tf} and a short exact sequence $0 \to M_{tor} \to M \to M_{tf} \to 0$.

Proposition 6.2. Let D be a triangulated category endowed with a t-structure $({}^pD^{\leq 0}, {}^pD^{\geq 0})$. Let us denote its heart by $\mathscr C$ and its cohomology functors by ${}^pH^i\colon D\to\mathscr C$. Suppose that $\mathscr C$ is endowed with a torsion pair $(\mathscr C_{tor},\mathscr C_{tf})$. Then we can define a new t-structure $({}^\piD^{\leq 0}, {}^\piD^{\geq 0})$ on D by setting:

$$\begin{split} ^{\pi}\mathsf{D}^{\leq 0} &= \{M \in {}^{p}\mathsf{D}^{\leq 1} \colon {}^{p}H^{1}(M) \in \mathscr{C}_{tor}\}, \\ ^{\pi}\mathsf{D}^{\geq 0} &= \{M \in {}^{p}\mathsf{D}^{\geq 0} \colon {}^{p}H^{0}(M) \in \mathscr{C}_{tf}\}. \end{split}$$

With the notations of Definition 3.2, there is a natural torsion pair attached to $\operatorname{Mod}(\mathscr{D}_X^{\hbar})$ given by the full subcategories

$$\operatorname{Mod}(\mathscr{D}_X^{\hbar})_{\hbar\text{-tor}} = \{\mathscr{M} : \mathscr{M}_{\hbar\text{-tor}} \xrightarrow{\sim} \mathscr{M}\},$$
$$\operatorname{Mod}(\mathscr{D}_X^{\hbar})_{\hbar\text{-tf}} = \{\mathscr{M} : \mathscr{M} \xrightarrow{\sim} \mathscr{M}_{\hbar\text{-tf}}\}.$$

Definition 6.3.

- (a) We call the torsion pair on $\operatorname{Mod}(\mathscr{D}_X^{\hbar})$ defined above, the \hbar -torsion pair.
- (b) We denote by $(\mathsf{D}^{\leq 0}(\mathscr{D}_X^\hbar), \mathsf{D}^{\geq 0}(\mathscr{D}_X^\hbar))$ the natural t-structure on $\mathsf{D}(\mathscr{D}_X^\hbar)$.
- (c) We denote by $({}^t\mathsf{D}^{\leq 0}(\mathscr{D}_X^\hbar), {}^t\mathsf{D}^{\geq 0}(\mathscr{D}_X^\hbar))$ the t-structure on $\mathsf{D}^\mathsf{b}(\mathscr{D}_X^\hbar)$ associated via Proposition 6.2 with the \hbar -torsion pair on $\mathrm{Mod}(\mathscr{D}_X^\hbar)$.

Proposition 1.14 implies the following equivalences for $\mathscr{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{coh}}(\mathscr{D}^{\hbar}_X)$:

(6.1)
$$\mathscr{M} \in {}^{t}\mathsf{D}^{\geq 0}(\mathscr{D}_{X}^{\hbar}) \Longleftrightarrow \operatorname{gr}_{\hbar} \mathscr{M} \in \mathsf{D}^{\geq 0}(\mathscr{D}_{X}),$$

(6.2)
$$\mathscr{M} \in \mathsf{D}^{\leq 0}(\mathscr{D}_X^{\hbar}) \Longleftrightarrow \operatorname{gr}_{\hbar} \mathscr{M} \in \mathsf{D}^{\leq 0}(\mathscr{D}_X).$$

Proposition 6.4. Let \mathcal{M} be a holonomic \mathcal{D}_X^{\hbar} -module.

- (i) If \mathcal{M} has no \hbar -torsion, then $\mathbb{D}_{\hbar}\mathcal{M}$ is concentrated in degree 0 and has no \hbar -torsion.
- (ii) If \mathcal{M} is an \hbar -torsion module, then $\mathbb{D}_{\hbar}\mathcal{M}$ is concentrated in degree 1 and is an \hbar -torsion module.

Proof. By (1.2) we have $\operatorname{gr}_{\hbar}(\mathbb{D}_{\hbar}\mathscr{M}) \simeq \mathbb{D}(\operatorname{gr}_{\hbar}\mathscr{M})$. Since $\operatorname{gr}_{\hbar}\mathscr{M}$ is concentrated in degrees 0 and -1, with holonomic cohomology, $\mathbb{D}(\operatorname{gr}_{\hbar}\mathscr{M})$ is concentrated in degrees 0 and 1. By Proposition 1.14, $\mathbb{D}_{\hbar}\mathscr{M}$ itself is concentrated in degrees 0 and 1 and $H^0(\mathbb{D}_{\hbar}\mathscr{M})$ has no \hbar -torsion.

(i) The short exact sequence

$$0 \to \mathscr{M} \xrightarrow{\hbar} \mathscr{M} \to \mathscr{M}/\hbar \mathscr{M} \to 0$$

induces the long exact sequence

$$\cdots \to H^1(\mathbb{D}_{\hbar}(\mathcal{M}/\hbar\mathcal{M})) \to H^1(\mathbb{D}_{\hbar}\mathcal{M}) \xrightarrow{\hbar} H^1(\mathbb{D}_{\hbar}\mathcal{M}) \to 0.$$

By Nakayama's lemma $H^1(\mathbb{D}_{\hbar}\mathscr{M}) = 0$ as required.

(ii) Since \mathscr{M} is locally annihilated by some power of \hbar , the cohomology groups $H^i(\mathbb{D}_{\hbar}\mathscr{M})$ also are \hbar -torsion modules. As $H^0(\mathbb{D}_{\hbar}\mathscr{M})$ has no \hbar -torsion, we get $H^0(\mathbb{D}_{\hbar}\mathscr{M}) = 0$.

Theorem 6.5. The duality functor $\mathbb{D}_{\hbar} \colon \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar})^{\mathsf{op}} \to {}^{t}\mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar})$ is t-exact. In other words, \mathbb{D}_{\hbar} interchanges $\mathsf{D}^{\leq 0}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar})$ with ${}^{t}\mathsf{D}^{\geq 0}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar})$ and $\mathsf{D}^{\geq 0}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar})$ with ${}^{t}\mathsf{D}^{\leq 0}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar})$.

Proof. (i) Let us first prove for $\mathcal{M} \in \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}^{\hbar}_X)$:

$$(6.3) \mathcal{M} \in \mathsf{D}^{\leq 0}_{\mathsf{hol}}(\mathcal{D}^{\hbar}_{X}) \Longleftrightarrow \mathbb{D}_{\hbar}(\mathcal{M}) \in {}^{t}\mathsf{D}^{\geq 0}_{\mathsf{hol}}(\mathcal{D}^{\hbar}_{X}).$$

By (1.2) we have $\operatorname{gr}_{\hbar}(\mathbb{D}_{\hbar}\mathscr{M}) \simeq \mathbb{D}(\operatorname{gr}_{\hbar}\mathscr{M})$ and we know that the analog of (6.3) holds true for \mathscr{D}_X -modules:

$$\mathscr{N} \in \mathsf{D}^{\leq 0}_{\mathrm{hol}}(\mathscr{D}_X) \Longleftrightarrow \mathbb{D}(\mathscr{N}) \in \mathsf{D}^{\geq 0}_{\mathrm{hol}}(\mathscr{D}_X).$$

Hence (6.3) follows easily from (6.1) and (6.2).

(ii) We recall the general fact for a t-structure $(D, D^{\leq 0}, D^{\geq 0})$ and $A \in D$:

$$A \in \mathsf{D}^{\leq 0} \Longleftrightarrow \mathrm{Hom}\,(A,B) = 0 \text{ for any } B \in \mathsf{D}^{\geq 1},$$

 $A \in \mathsf{D}^{\geq 0} \Longleftrightarrow \mathrm{Hom}\,(B,A) = 0 \text{ for any } B \in \mathsf{D}^{\leq -1}.$

Since \mathbb{D}_{\hbar} is an involutive equivalence of categories we deduce from (6.3) the dual statement:

$$\mathscr{M} \in \mathsf{D}^{\geq 0}_{\mathsf{hol}}(\mathscr{D}_X^{\hbar}) \Longleftrightarrow \mathbb{D}_{\hbar}(\mathscr{M}) \in {}^t\mathsf{D}^{\leq 0}_{\mathsf{hol}}(\mathscr{D}_X^{\hbar}).$$

Remark 6.6. The above result can be stated as follows in the language of quasi-abelian categories of [19]. We will follow the same notations as in [8, Chapter 2]. The category $\mathscr{C} = \operatorname{Mod}(\mathscr{D}_X^{\hbar})_{\hbar\text{-tf}}$ is quasi-abelian. Hence its derived category has a natural generalized t-structure $(\mathsf{D}^{\leq s}(\mathscr{C}),\mathsf{D}^{>s-1}(\mathscr{C}))_{s\in\frac{1}{2}\mathbb{Z}}$. Note that $\mathsf{D}^{[-1/2,0]}(\mathscr{C})$ is equivalent to $\operatorname{Mod}(\mathscr{D}_X^{\hbar})$, and that $\mathsf{D}^{[0,1/2]}(\mathscr{C})$ is equivalent to the heart of ${}^t\mathsf{D}^{\mathrm{b}}(\mathscr{D}_X^{\hbar})$. Then Theorem 6.5 states that the duality functor \mathbb{D}_{\hbar} is t-exact on $\mathsf{D}^{\mathrm{b}}_{\mathrm{bol}}(\mathscr{C})$.

Recall that $\operatorname{Perv}(\mathbb{C}^{\hbar}_X)$ denotes the heart of the middle perversity t-structure on $\mathsf{D}^{\mathrm{b}}_{\mathbb{C}^{-c}}(\mathbb{C}^{\hbar}_X)$. Consider the full subcategories of $\operatorname{Perv}(\mathbb{C}^{\hbar}_X)$

$$\begin{split} \operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tor}} &= \{F \colon \operatorname{locally} \, \hbar^N F = 0 \text{ for some } N \in \mathbb{N}\}, \\ \operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tof}} &= \{F \colon F \text{ has no non zero subobjects in } \operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tor}}\}. \end{split}$$

Lemma 6.7.

- (i) Let $F \in \operatorname{Perv}(\mathbb{C}^{\hbar}_X)$. Then the inductive system of sub-perverse sheaves $\operatorname{Ker}(\hbar^n \colon F \to F)$ is locally stationary.
- (ii) The pair $\left(\operatorname{Perv}(\mathbb{C}^{\hbar}_{X})_{\hbar\text{-tor}}, \operatorname{Perv}(\mathbb{C}^{\hbar}_{X})_{\hbar\text{-tf}}\right)$ is a torsion pair.

Proof. (i) Set $\mathcal{M} = \mathbb{D}_{\hbar} TH_{\hbar}(F)$. By the Riemann-Hilbert correspondence, one has $Ker(\hbar^n \colon F \to F) \simeq DR_{\hbar}(Ker(\hbar^n \colon \mathcal{M} \to \mathcal{M}))$. Since \mathcal{M} is coherent, the inductive system $Ker(\hbar^n \colon \mathcal{M} \to \mathcal{M})$ is locally stationary. Hence so is the system $Ker(\hbar^n \colon F \to F)$.

(ii) By (i) it makes sense to define for $F \in \text{Perv}(\mathbb{C}^{\hbar}_X)$:

$$F_{\hbar\text{-tor}} = \bigcup_{n} \operatorname{Ker}(\hbar^{n} \colon F \to F), \quad F_{\hbar\text{-tf}} = F/F_{\hbar\text{-tor}}.$$

It is easy to check that $F_{\hbar\text{-tor}} \in \operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tor}}$ and $F_{\hbar\text{-tf}} \in \operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tf}}$. Then property (ii) in Definition 6.1 is clear. For property (i) let $u \colon F \to G$ be a morphism in $\operatorname{Perv}(\mathbb{C}^{\hbar}_X)$ with $F \in \operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tor}}$ and $G \in \operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tf}}$. Then $\operatorname{Im} u$ also is in $\operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tor}}$ and so it is zero by definition of $\operatorname{Perv}(\mathbb{C}^{\hbar}_X)_{\hbar\text{-tf}}$. \square

Denote by $\left({}^{\pi}\mathsf{D}^{\leq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X), {}^{\pi}\mathsf{D}^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)\right)$ the t-structure on $\mathsf{D}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)$ induced by the perversity t-structure and this torsion pair as in Proposition 6.2. We also set ${}^{\pi}\mathsf{Perv}(\mathbb{C}^{\hbar}_X) = {}^{\pi}\mathsf{D}^{\leq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X) \cap {}^{\pi}\mathsf{D}^{\geq 0}_{\mathbb{C}\text{-c}}(\mathbb{C}^{\hbar}_X)$.

Theorem 6.8. There is a quasi-commutative diagram of t-exact functors

$$\mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar})^{\mathsf{op}} \xrightarrow{\mathsf{DR}_{\hbar}} {}^{p} \mathsf{D}^{\mathsf{b}}_{\mathbb{C}-c}(\mathbb{C}_{X}^{\hbar})^{\mathsf{op}} \\
\downarrow \mathbb{D}_{\hbar} & \downarrow \mathsf{D}'_{\hbar} \\
{}^{t} \mathsf{D}^{\mathsf{b}}_{\mathsf{hol}}(\mathscr{D}_{X}^{\hbar}) \xrightarrow{\mathsf{DR}_{\hbar}} {}^{\pi} \mathsf{D}^{\mathsf{b}}_{\mathbb{C}-c}(\mathbb{C}_{X}^{\hbar})$$

where the duality functors are equivalences of categories and the de Rham functors become equivalences when restricted to the subcategories of regular objects.

Example 6.9. Let $X = \mathbb{C}$, $U = X \setminus \{0\}$ and denote by $j: U \hookrightarrow X$ the embedding. Let L be the local system on U with stalk \mathbb{C}^{\hbar} and monodromy $1 + \hbar$. The sheaf $Rj_*L \simeq D'_h(j_!(D'_hL))$ is perverse for both t-structures, as is the sheaf $H^0(Rj_*L) = j_*L \simeq j_!L$. The sheaf $H^1(Rj_*L) \simeq \mathbb{C}_{\{0\}}$ has \hbar -torsion. From the distinguished triangle $j_*L \to Rj_*L \to \mathbb{C}_{\{0\}}[-1] \xrightarrow{+1}$, one gets the short exact sequences

$$0 \to j_*L \to Rj_*L \to \mathbb{C}_{\{0\}}[-1] \to 0 \quad in \text{ Perv}(\mathbb{C}_X^{\hbar}),$$

$$0 \to \mathbb{C}_{\{0\}}[-2] \to j_*L \to Rj_*L \to 0 \quad in \ {}^{\pi}\text{Perv}(\mathbb{C}_X^{\hbar}).$$

§7.
$$\mathcal{D}((\hbar))$$
-modules

Denote by

$$\mathbb{C}^{\hbar,\mathrm{loc}} := \mathbb{C}(\!(\hbar)\!) = \mathbb{C}[\hbar^{-1},\hbar]]$$

the field of Laurent series in \hbar , that is the fraction field of \mathbb{C}^{\hbar} . Recall the exact functor

$$(7.1) \qquad (\bullet)^{\mathrm{loc}} \colon \mathrm{Mod}(\mathbb{C}_X^{\hbar}) \to \mathrm{Mod}(\mathbb{C}_X^{\hbar,\mathrm{loc}}), \quad F \mapsto \mathbb{C}^{\hbar,\mathrm{loc}} \otimes_{\mathbb{C}^{\hbar}} F,$$

and note that by [9, Proposition 5.4.14] one has the estimate

(7.2)
$$SS(F^{loc}) \subset SS(F).$$

For $G \in \mathsf{D}^{\mathsf{b}}(\mathbb{C}_X)$, we write $G^{\hbar,\mathrm{loc}}$ instead of $(G^{\hbar})^{\mathrm{loc}}$. We will consider in particular

$$\mathscr{O}_X^{\hbar,\mathrm{loc}} = \mathscr{O}_X((\hbar)), \qquad \mathscr{D}_X^{\hbar,\mathrm{loc}} = \mathscr{D}_X((\hbar)).$$

Lemma 7.1. Let \mathscr{M} be a coherent $\mathscr{D}_{X}^{\hbar,\mathrm{loc}}$ -module. Then \mathscr{M} is pseudo-coherent over \mathscr{D}_{X}^{\hbar} . In other word, if $\mathscr{L} \subset \mathscr{M}$ is a finitely generated \mathscr{D}_{X}^{\hbar} -module, then \mathscr{L} is \mathscr{D}_{X}^{\hbar} -coherent.

Proof. The proof follows from
$$[7, Appendix. A1]$$
.

Definition 7.2. A lattice \mathcal{L} of a coherent $\mathcal{D}_X^{\hbar, \text{loc}}$ -module \mathcal{M} is a coherent \mathcal{D}_X^{\hbar} -submodule of \mathcal{M} which generates it.

Since \mathscr{M} has no \hbar -torsion, any of its lattices has no \hbar -torsion. In particular, one has $\mathscr{M} \simeq \mathscr{L}^{\mathrm{loc}}$ and $\mathrm{gr}_{\hbar} \mathscr{L} \simeq \mathscr{L}_0 = \mathscr{L}/\hbar \mathscr{L}$.

It follows from Lemma 7.1 that lattices locally exist: for a local system of generators (m_1, \ldots, m_N) of \mathcal{M} , define \mathcal{L} as the \mathcal{D}_X^{\hbar} -submodule with the same generators.

Lemma 7.3. Let $0 \to \mathcal{M}' \to \mathcal{M} \to \mathcal{M}'' \to 0$ be an exact sequence of coherent $\mathcal{D}_X^{\hbar, \text{loc}}$ -modules. Locally there exist lattices \mathcal{L}' , \mathcal{L} , \mathcal{L}'' of \mathcal{M}' , \mathcal{M}'' , respectively, inducing an exact sequence of \mathcal{D}_X^{\hbar} -modules

$$0 \to \mathcal{L}' \to \mathcal{L} \to \mathcal{L}'' \to 0.$$

Proof. Let $\mathscr L$ be a lattice of $\mathscr M$ and let $\mathscr L''$ be its image in $\mathscr M''$. We set $\mathscr L':=\mathscr L\cap\mathscr M'$. These sub- $\mathscr D^\hbar_X$ -modules give rise to an exact sequence.

Since \mathscr{L}'' is of finite type over \mathscr{D}_X^{\hbar} , it is a lattice of \mathscr{M}'' . Let us show that \mathscr{L}' is a lattice of \mathscr{M}' . Being the kernel of a morphism $\mathscr{L} \to \mathscr{L}''$ between coherent \mathscr{D}_X^{\hbar} -modules, \mathscr{L}' is coherent. To show that \mathscr{L}' generates \mathscr{M}' , note

that any $m' \in \mathcal{M}' \subset \mathcal{M}$ may be written as $m' = \hbar^{-N} m$ for some $N \geq 0$ and $m \in \mathcal{L}$. Hence $m = \hbar^N m' \in \mathcal{M}' \cap \mathcal{L} = \mathcal{L}'$.

For an abelian category \mathscr{C} , we denote by $\mathrm{K}(\mathscr{C})$ its Grothendieck group. For an object M of \mathscr{C} , we denote by [M] its class in $\mathrm{K}(\mathscr{C})$. We let $\mathscr{K}(\mathscr{D}_X)$ be the sheaf on X associated to the presheaf

$$U \mapsto \mathrm{K}(\mathrm{Mod}_{\mathrm{coh}}(\mathscr{D}_X|_U)).$$

We define $\mathscr{K}(\mathscr{D}_X^{\hbar,\mathrm{loc}})$ in the same way.

Lemma 7.4. Let \mathscr{L} be a coherent \mathscr{D}_X^{\hbar} -module without \hbar -torsion. Then, for any i > 0, the \mathscr{D}_X -module $\mathscr{L}/\hbar^i\mathscr{L}$ is coherent, and we have the equality $[\mathscr{L}/\hbar^i\mathscr{L}] = i \cdot [\operatorname{gr}_{\hbar}(\mathscr{L})]$ in $K(\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X))$.

Proof. Since the functor $(\bullet) \otimes_{\mathbb{C}^{\hbar}} \mathbb{C}^{\hbar}/\hbar^{i}\mathbb{C}^{\hbar}$ is right exact, $\mathscr{L}/\hbar^{i}\mathscr{L}$ is a coherent \mathscr{D}_{X} -module. Since \mathscr{L} has no \hbar -torsion, multiplication by \hbar^{i} induces an isomorphism $\mathscr{L}/\hbar\mathscr{L} \xrightarrow{\sim} \hbar^{i}\mathscr{L}/\hbar^{i+1}\mathscr{L}$. We conclude by induction on i with the exact sequence

$$0 \to \hbar^i \mathcal{L}/\hbar^{i+1} \mathcal{L} \to \mathcal{L}/\hbar^{i+1} \mathcal{L} \to \mathcal{L}/\hbar^i \mathcal{L} \to 0.$$

Lemma 7.5. For $\mathscr{M} \in \operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar, \operatorname{loc}}), \ U \subset X \ an \ open \ set \ and \ \mathscr{L} \subset \mathscr{M}|_{U} \ a \ lattice \ of \ \mathscr{M}|_{U}, \ the \ class \ [\operatorname{gr}_{\hbar}(\mathscr{L})] \in \operatorname{K}(\operatorname{Mod_{coh}}(\mathscr{D}_X|_{U})) \ only \ depends \ on \ \mathscr{M}. \ This \ defines \ a \ morphism \ of \ abelian \ sheaves \ \mathscr{K}(\mathscr{D}_X^{\hbar, \operatorname{loc}}) \to \mathscr{K}(\mathscr{D}_X).$

Proof. (i) We first prove that $[\operatorname{gr}_{\hbar}(\mathcal{L})]$ only depends on \mathcal{M} . We consider another lattice \mathcal{L}' of $\mathcal{M}|_{U}$. Since \mathcal{L} is a \mathcal{D}_{X}^{\hbar} -module of finite type, and \mathcal{L}' generates \mathcal{M} , there exists n>1 such that $\mathcal{L}\subset \hbar^{-n}\mathcal{L}'$. Similarly, there exists m>1 with $\mathcal{L}'\subset \hbar^{-m}\mathcal{L}$, so that we have the inclusions

$$\hbar^{m+n+2}\mathcal{L} \subset \hbar^{m+n+1}\mathcal{L} \subset \hbar^{m+1}\mathcal{L}' \subset \hbar^m\mathcal{L}' \subset \mathcal{L}.$$

Any inclusion $A \subset B \subset C$ yields an identity [C/A] = [C/B] + [B/A] in the Grothendieck group, and we obtain in particular:

$$\begin{split} [\hbar^m \mathcal{L}'/\hbar^{m+n+1} \mathcal{L}] &= [\hbar^m \mathcal{L}'/\hbar^{m+1} \mathcal{L}'] + [\hbar^{m+1} \mathcal{L}'/\hbar^{m+n+1} \ shl] \\ [\mathcal{L}/\hbar^{m+n+1} \mathcal{L}] &= [\mathcal{L}/\hbar^{m+1} \mathcal{L}'] + [\hbar^{m+1} \mathcal{L}'/\hbar^{m+n+1} \ shl] \\ [\mathcal{L}/\hbar^{m+n+2} \mathcal{L}] &= [\mathcal{L}/\hbar^{m+1} \mathcal{L}'] + [\hbar^{m+1} \mathcal{L}'/\hbar^{m+n+2} \ shl]. \end{split}$$

Note that we have isomorphisms of the type $\hbar^k \mathcal{M}_1/\hbar^k \mathcal{M}_2 \simeq \mathcal{M}_1/\mathcal{M}_2$ for modules without \hbar -torsion. Then Lemma 7.4 and the above equalities give:

$$\begin{split} [\mathcal{L}'/\hbar^{n+1}\mathcal{L}] &= [\operatorname{gr}_{\hbar}(\mathcal{L}')] + [\mathcal{L}'/\hbar^{n}\mathcal{L}] \\ (m+n+1)[\operatorname{gr}_{\hbar}(\mathcal{L})] &= [\mathcal{L}/\hbar^{m+1}\mathcal{L}'] + [\mathcal{L}'/\hbar^{n}\mathcal{L}] \\ (m+n+2)[\operatorname{gr}_{\hbar}(\mathcal{L})] &= [\mathcal{L}/\hbar^{m+1}\mathcal{L}'] + [\mathcal{L}'/\hbar^{n+1}\mathcal{L}]. \end{split}$$

A suitable combination of these lines gives $[\operatorname{gr}_{\hbar}(\mathcal{L})] = [\operatorname{gr}_{\hbar}(\mathcal{L}')]$, as desired.

(ii) Now we consider an open subset $V \subset X$ and $\mathscr{M} \in \operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar,\operatorname{loc}}|_V)$. We choose an open covering $\{U_i\}_{i\in I}$ of V such that for each $i\in I$ $\mathscr{M}|_{U_i}$ admits a lattice, say \mathscr{L}^i . We have seen that $[\operatorname{gr}_{\hbar}(\mathscr{L}^i)] \in \operatorname{K}(\operatorname{Mod_{coh}}(\mathscr{D}_X|_{U_i}))$ only depends on \mathscr{M} . This implies that

$$[\operatorname{gr}_{\hbar}(\mathscr{L}^i)]|_{U_{i,j}} = [\operatorname{gr}_{\hbar}(\mathscr{L}^j)]|_{U_{i,j}} \text{ in } K(\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X|_{U_{i,j}})).$$

Hence the $[\operatorname{gr}_{\hbar}(\mathscr{L}^i)]$'s define a section, say $c(\mathscr{M})$, of $\mathscr{K}(\mathscr{D}_X)$ over V. By Lemma 7.3, $c(\mathscr{M})$ only depends on the class $[\mathscr{M}]$ in $\operatorname{K}(\operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar,\operatorname{loc}}|_V))$, and $\mathscr{M}\mapsto c(\mathscr{M})$ induces the morphism $\mathscr{K}(\mathscr{D}_X^{\hbar,\operatorname{loc}})\to\mathscr{K}(\mathscr{D}_X)$.

By Lemma 7.5, the following definition is well posed.

Definition 7.6. The characteristic variety of a coherent $\mathscr{D}_X^{\hbar,\mathrm{loc}}$ -module \mathscr{M} is defined by

$$\operatorname{char}_{\hbar,\operatorname{loc}}(\mathscr{M}) = \operatorname{char}_{\hbar}(\mathscr{L}),$$

 $\begin{array}{lll} for \ \mathscr{L} \in \operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar}) \ a \ (local) \ lattice. & For \ \mathscr{M} \in \operatorname{\mathsf{D}^b_{coh}}(\mathscr{D}_X^{\hbar,\operatorname{loc}}), \ one \ sets \\ \operatorname{char}_{\hbar,\operatorname{loc}}(\mathscr{M}) = \bigcup_j \operatorname{char}_{\hbar,\operatorname{loc}}(H^j(\mathscr{M})). \end{array}$

Proposition 7.7. The characteristic variety $\operatorname{char}_{\hbar,\operatorname{loc}}$ is additive both on $\operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar,\operatorname{loc}})$ and on $\operatorname{\mathsf{D}^b_{coh}}(\mathscr{D}_X^{\hbar,\operatorname{loc}})$.

Proof. This follows from Proposition 3.6 (ii) and Lemma 7.3.

Consider the functor

$$\mathrm{Sol}_{\hbar,\mathrm{loc}} \colon \mathsf{D}^{\mathrm{b}}(\mathscr{D}_{X}^{\hbar,\mathrm{loc}})^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}^{\hbar,\mathrm{loc}}), \quad \mathscr{M} \mapsto \mathrm{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar,\mathrm{loc}}}(\mathscr{M},\mathscr{O}_{X}^{\hbar,\mathrm{loc}}).$$

Proposition 7.8. Let $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_{X}^{\hbar,\mathrm{loc}})$. Then

$$\mathrm{SS}\big(\mathrm{Sol}_{\hbar,\mathrm{loc}}(\mathscr{M})\big)\subset\mathrm{char}_{\hbar,\mathrm{loc}}(\mathscr{M}).$$

Proof. By dévissage, we can assume that $\mathscr{M} \in \operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar,\operatorname{loc}})$. Moreover, since the problem is local, we may assume that \mathscr{M} admits a lattice \mathscr{L} .

One has the isomorphism $\operatorname{Sol}_{\hbar,\operatorname{loc}}(\mathscr{M}) \simeq \operatorname{R}\mathscr{H}om_{\mathscr{D}_X^\hbar}(\mathscr{L},\mathscr{O}_X^{\hbar,\operatorname{loc}})$ by extension of scalars. Taking a local resolution of \mathscr{L} by free \mathscr{D}_X^\hbar -modules of finite type, we deduce that $\operatorname{Sol}_{\hbar,\operatorname{loc}}(\mathscr{M}) \simeq F^{\operatorname{loc}}$ for $F = \operatorname{Sol}_{\hbar}(\mathscr{L})$. The statement follows by (7.2) and Corollary 3.14.

One says that \mathcal{M} is holonomic if its characteristic variety is isotropic.

Proposition 7.9. The functor $Sol_{\hbar,loc}$ induces a functor

$$\operatorname{Sol}_{\hbar,\operatorname{loc}}\colon \mathsf{D}^{\operatorname{b}}_{\operatorname{hol}}(\mathscr{D}_{X}^{\hbar,\operatorname{loc}})^{\operatorname{op}} \to \mathsf{D}^{\operatorname{b}}_{\mathbb{C}^{-c}}(\mathbb{C}_{X}^{\hbar,\operatorname{loc}}).$$

Proof. By the same arguments and with the same notations as in the proof of Proposition 7.8, we reduce to the case $\mathrm{Sol}_{\hbar,\mathrm{loc}}(\mathscr{M}) \simeq F^{\mathrm{loc}}$, for $F = \mathrm{Sol}_{\hbar}(\mathscr{L})$ and \mathscr{L} a lattice of $\mathscr{M} \in \mathrm{Mod}_{\mathrm{hol}}(\mathscr{D}_X^{\hbar,\mathrm{loc}})$. Hence \mathscr{L} is a holonomic \mathscr{D}_X^{\hbar} -module, and $F \in \mathsf{D}_{\mathbb{C}^-\mathbb{C}}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$.

Remark 7.10. In general the functor

$$\mathrm{Sol}_{\hbar,\mathrm{loc}}\colon \mathsf{D}^{\mathrm{b}}_{\mathrm{hol}}(\mathscr{D}_{X}^{\hbar,\mathrm{loc}})^{\mathrm{op}}\to \mathsf{D}^{\mathrm{b}}_{\mathbb{C}\text{-}\mathrm{c}}(\mathbb{C}_{X}^{\hbar,\mathrm{loc}})$$

is not locally essentially surjective. In fact, consider the quasi-commutative diagram of categories

By the local existence of lattices the left vertical arrow is locally essentially surjective. If $Sol_{\hbar,loc}$ were also locally essentially surjective, so should be the right vertical arrow. The following example shows that it is not the case.

One can interpret this phenomenon by remarking that $\mathsf{D}^{\mathsf{b}}_{\mathrm{hol}}(\mathscr{D}_{X}^{\hbar,\mathrm{loc}})$ is equivalent to the localization of the category $\mathsf{D}^{\mathsf{b}}_{\mathrm{hol}}(\mathscr{D}_{X}^{\hbar})$ with respect to the morphism \hbar , contrarily to the category $\mathsf{D}^{\mathsf{b}}_{\mathbb{C}-c}(\mathbb{C}_{X}^{\hbar,\mathrm{loc}})$.

Example 7.11. Let $X = \mathbb{C}$, $U = X \setminus \{0\}$ and denote by $j: U \hookrightarrow X$ the embedding. Set $F = \mathrm{R} j_! L$, where L is the local system on U with stalk $\mathbb{C}^{\hbar,\mathrm{loc}}$ and monodromy \hbar around the origin. Since \hbar is not invertible in \mathbb{C}^{\hbar} , there is no $F_0 \in \mathsf{D}^{\mathrm{b}}_{\mathbb{C}^{-c}}(\mathbb{C}^{\hbar}_X)$ such that $F \simeq (F_0)^{\mathrm{loc}}$.

§8. Links with deformation quantization

In this last section, we shall briefly explain how the study of deformation quantization algebras on complex symplectic manifolds is related to \mathscr{D}_X^{\hbar} . We follow the terminology of [13].

The cotangent bundle $\mathfrak{X}=T^*X$ to the complex manifold X has a structure of a complex symplectic manifold and is endowed with the \mathbb{C}^{\hbar} -algebra $\widehat{\mathscr{W}}_{\mathfrak{X}}$, a non homogeneous version of the algebra of microdifferential operators. Its subalgebra $\widehat{\mathscr{W}}_{\mathfrak{X}}(0)$ of operators of order at most zero is a deformation quantization algebra. In a system (x,u) of local symplectic coordinates, $\widehat{\mathscr{W}}_{\mathfrak{X}}(0)$ is identified with the star algebra $(\mathscr{O}_{\mathfrak{X}}^{\hbar},\star)$ in which the star product is given by the Leibniz product:

(8.1)
$$f \star g = \sum_{\alpha \in \mathbb{N}^n} \frac{\hbar^{|\alpha|}}{\alpha!} (\partial_u^{\alpha} f) (\partial_x^{\alpha} g), \quad \text{for } f, g \in \mathscr{O}_{\mathfrak{X}}.$$

In this section we will set for short $\mathscr{A} := \widehat{\mathscr{W}}_{\mathfrak{X}}(0)$, so that $\mathscr{A}^{\mathrm{loc}} \simeq \widehat{\mathscr{W}}_{\mathfrak{X}}$. Note that \mathscr{A} satisfies Assumption 1.8.

Let us identify X with the zero section of the cotangent bundle \mathfrak{X} . Recall that X is a local model for any smooth Lagrangian submanifold of \mathfrak{X} , and that \mathscr{O}_X^\hbar is a local model of any simple \mathscr{A} -module along X. As \mathscr{O}_X^\hbar has both a \mathscr{D}_X^\hbar -module and an $\mathscr{A}|_X$ -module structure, there are morphisms of \mathbb{C}^\hbar -algebras

(8.2)
$$\mathscr{D}_{X}^{\hbar} \to \mathscr{E}nd_{\mathbb{C}^{\hbar}}(\mathscr{O}_{X}^{\hbar}) \leftarrow \mathscr{A}|_{X}.$$

Lemma 8.1. The morphisms in (8.2) are injective and induce an embedding $\mathscr{A}|_X \hookrightarrow \mathscr{D}_X^{\hbar}$.

Proof. Since the problem is local, we may choose a local symplectic coordinate system (x,u) on $\mathfrak X$ such that $X=\{u=0\}$. Then $\mathscr A|_X$ is identified with $\mathscr O_{\mathfrak X}^\hbar|_X$. As the action of u_i on $\mathscr O_X^\hbar$ is given by $\hbar\partial_{x_i}$, the morphism $\mathscr A|_X\to \mathscr End_{\mathbb C^\hbar}(\mathscr O_X^\hbar)$ factors through $\mathscr D_X^\hbar$, and the induced morphism $\mathscr A|_X\to \mathscr D_X^\hbar$ is described by

(8.3)
$$\sum_{i \in \mathbb{N}} f_i(x, u) \hbar^i \mapsto \sum_{j \in \mathbb{N}} \left(\sum_{\alpha \in \mathbb{N}^n, |\alpha| \le j} \partial_u^{\alpha} f_{j-|\alpha|}(x, 0) \partial_x^{\alpha} \right) \hbar^j,$$

which is clearly injective.

Consider the following subsheaves of \mathscr{D}_X^{\hbar}

$$\mathscr{D}_X^{\hbar,m} = \prod_{i \geq 0} \left(F_{i+m} \mathscr{D}_X \right) \hbar^i, \quad \mathscr{D}_X^{\hbar,\mathrm{f}} = \bigcup_{m \geq 0} \mathscr{D}_X^{\hbar,m}.$$

Note that $\mathscr{D}_{X}^{\hbar,0}$ and $\mathscr{D}_{X}^{\hbar,\mathrm{f}}$ are subalgebras of \mathscr{D}_{X}^{\hbar} , that $\mathscr{D}_{X}^{\hbar,0}$ is \hbar -complete while $\mathscr{D}_{X}^{\hbar,\mathrm{f}}$ is not and that $\mathscr{D}_{X}^{\hbar,0,\mathrm{loc}} \simeq \mathscr{D}_{X}^{\hbar,\mathrm{f,loc}}$. By (8.3), the image of $\mathscr{A}|_{X}$ in \mathscr{D}_{X}^{\hbar} is contained in $\mathscr{D}_{X}^{\hbar,0}$. (The ring $\mathscr{D}_{X}^{\hbar,0}$ should be compared with the ring \mathscr{D}_{X}^{K} of [16].)

Remark 8.2. More precisely, denote by $\mathscr{O}_{\mathfrak{X}}^{\hbar}|_{X} \simeq (\mathscr{O}_{\mathfrak{X}}|_{X})^{\hbar}$ the formal completion of $\mathscr{O}_{\mathfrak{X}}^{\hbar}$ along the submanifold X. Then the star product in (8.1) extends to this sheaf, and (8.3) induces an isomorphism $(\mathscr{O}_{\mathfrak{X}}^{\hbar}|_{X}, \star) \simeq \mathscr{D}_{X}^{\hbar,0}$.

Summarizing, one has the compatible embeddings of algebras

$$\mathcal{A}^{\mathrm{loc}}|_{X} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{X}^{\hbar,0,\mathrm{loc}} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{X}^{\hbar,\mathrm{f,loc}} \stackrel{\sim}{\longrightarrow} \mathcal{D}_{X}^{\hbar,\mathrm{loc}}$$

One has

$$\mathrm{gr}_{\hbar}\,\mathscr{A}|_{X}\simeq\mathscr{O}_{\mathfrak{X}}|_{X},\quad \mathrm{gr}_{\hbar}\,\mathscr{D}_{X}^{\hbar,0}\simeq\mathscr{O}_{\mathfrak{X}}|_{X},\quad \mathrm{gr}_{\hbar}\,\mathscr{D}_{X}^{\hbar,\mathrm{f}}\simeq\mathrm{gr}_{\hbar}\,\mathscr{D}_{X}^{\hbar}\simeq\mathscr{D}_{X}.$$

Proposition 8.3.

- (i) The algebra $\mathscr{D}_{X}^{\hbar,0}$ is faithfully flat over $\mathscr{A}|_{X}$.
- (ii) The algebra $\mathscr{D}_X^{\hbar,\mathrm{loc}}$ is flat over $\mathscr{A}^{\mathrm{loc}}|_X$.

Proof. (i) follows from Theorem 1.12.

(ii) follows from (i) and the isomorphism $(\mathscr{D}_{X}^{\hbar,0})^{\mathrm{loc}} \simeq \mathscr{D}_{X}^{\hbar,\mathrm{loc}}$.

The next examples show that the scalar extension functor

$$\operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar,0}) \to \operatorname{Mod_{coh}}(\mathscr{D}_X^{\hbar})$$

is neither exact nor full.

Example 8.4. Let $X = \mathbb{C}^2$ with coordinates (x,y). Then $\hbar \partial_y$ is injective as an endomorphism of $\mathscr{D}_X^{\hbar,0}/\langle \hbar \partial_x \rangle$ but it is not injective as an endomorphism of $\mathscr{D}_X^{\hbar}/\langle \hbar \partial_x \rangle$, since ∂_x belongs to its kernel. This shows that \mathscr{D}_X^{\hbar} is not flat over $\mathscr{D}_X^{\hbar,0}$.

Example 8.5. This example was communicated to us by Masaki Kashiwara. Let $X = \mathbb{C}$ with coordinate x, and denote by (x,u) the symplectic coordinates on $\mathfrak{X} = T^*\mathbb{C}$. Consider the cyclic \mathscr{A} -modules

$$\mathcal{M} = \mathcal{A}/\langle x - u \rangle, \quad \mathcal{N} = \mathcal{A}/\langle x \rangle,$$

and their images in $\operatorname{Mod}(\mathscr{D}_X^{\hbar})$

$$\mathcal{M}' = \mathcal{D}_X^{\hbar}/\langle x - \hbar \partial_x \rangle, \quad \mathcal{N}' = \mathcal{D}_X^{\hbar}/\langle x \rangle.$$

As their supports in \mathfrak{X} differ, \mathscr{M} and \mathscr{N} are not isomorphic as \mathscr{A} -modules. On the other hand, in $\mathscr{D}_{\mathbf{X}}^{\hbar}$ one has the relation

(8.4)
$$x \cdot e^{\hbar \partial_x^2/2} = e^{\hbar \partial_x^2/2} \cdot (x - \hbar \partial_x),$$

and hence an isomorphism $\mathcal{M}' \xrightarrow{\sim} \mathcal{N}'$ given by $[P] \mapsto [P \cdot e^{-\hbar \partial_x^2/2}]$. In fact, one checks that

$$\mathscr{H}\!\mathit{om}_{\mathscr{A}}(\mathscr{M},\mathscr{N})|_{X}=0,\quad \mathscr{H}\!\mathit{om}_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M}',\mathscr{N}')\simeq\mathbb{C}^{\hbar}_{X}.$$

§A. Complements on constructible sheaves

Let us review some results, well-known from the specialists (see *e.g.*,[18, Proposition 3.10]), but which are usually stated over a field, and we need to work here over the ring \mathbb{C}^{\hbar} .

Let \mathbb{K} be a commutative unital Noetherian ring of finite global dimension. Assume that \mathbb{K} is syzygic, i.e. that any finitely generated \mathbb{K} -module admits a finite projective resolution by finite free modules. (For our purposes we will either have $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{C}^{\hbar}$).

Let X be a real analytic manifold. Denote by $\operatorname{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_X)$ the abelian category of \mathbb{R} -constructible sheaves on X and by $\mathsf{D}^b_{\mathbb{R}\text{-c}}(\mathbb{K}_X)$ the bounded derived category of sheaves of \mathbb{K} -modules with \mathbb{R} -constructible cohomology. Under the above assumptions on the base ring, by [9, Propositions 3.4.3, 8.4.9] one has

Lemma A.1. The duality functor $D'_{\mathbb{K}}(\bullet) = R \mathcal{H}om_{\mathbb{K}_X}(\bullet, \mathbb{K}_X)$ induces an involution of $D^b_{\mathbb{R}_{-c}}(\mathbb{K}_X)$.

For the next proposition we recall some notations and results of [6, 9]. We consider a simplicial complex $\mathbf{S} = (S, \Delta)$, with set of vertices S and set of simplices Δ . We let $|\mathbf{S}|$ be the realization of \mathbf{S} . Thus $|\mathbf{S}|$ is the disjoint union of the realizations $|\sigma|$ of the simplices. For a simplex $\sigma \in \Delta$, the open set $U(\sigma)$ is defined in [9, (8.1.3)]. A sheaf F of \mathbb{K} -modules on $|\mathbf{S}|$ is said weakly \mathbf{S} -constructible if $F|_{|\sigma|}$ is constant for any $\sigma \in \Delta$. An object $F \in \mathsf{D}^{\mathsf{b}}(\mathbb{K}_{|\mathbf{S}|})$ is said weakly \mathbf{S} -constructible if its cohomology sheaves are so. If moreover, all stalks F_x are perfect complexes, F is said \mathbf{S} -constructible. By [9, Proposition 8.1.4] we have isomorphisms, for a weakly \mathbf{S} -constructible sheaf F and for any $\sigma \in \Delta$

and $x \in |\sigma|$:

(A.1)
$$\Gamma(U(\sigma); F) \xrightarrow{\sim} \Gamma(|\sigma|; F) \xrightarrow{\sim} F_x,$$

(A.2)
$$H^{j}(U(\sigma); F) = H^{j}(|\sigma|; F) = 0, \text{ for } j \neq 0.$$

It follows that, for a weakly S-constructible $F \in \mathsf{D}^{\mathsf{b}}(\mathbb{K}_{|\mathbf{S}|})$, the natural morphisms of complexes of \mathbb{K} -modules

(A.3)
$$\Gamma(U(\sigma); F) \to \Gamma(|\sigma|; F) \to F_x$$

are quasi-isomorphisms.

For $U \subset X$ an open subset, we denote by $\mathbb{K}_U := (\mathbb{K}_X)_U$ the extension by 0 of the constant sheaf on U.

Proposition A.2. Let $F \in D^b_{\mathbb{R}-c}(\mathbb{K}_X)$. Then

(i) F is isomorphic to a complex

$$0 \to \bigoplus_{i_a \in I_a} \mathbb{K}_{U_{a,i_a}} \to \cdots \to \bigoplus_{i_b \in I_b} \mathbb{K}_{U_{b,i_b}} \to 0,$$

where the $\{U_{k,i_k}\}_{k,i_k}$'s are locally finite families of relatively compact sub-analytic open subsets of X.

(ii) F is isomorphic to a complex

$$0 \to \bigoplus_{i_a \in I_a} \Gamma_{V_{a,i_a}} \mathbb{K}_X \to \cdots \to \bigoplus_{i_b \in I_b} \Gamma_{V_{b,i_b}} \mathbb{K}_X \to 0,$$

where the $\{V_{k,i_k}\}_{k,i_k}$'s are locally finite families of relatively compact subanalytic open subsets of X.

Proof. (i) By the triangulation theorem for subanalytic sets (see for example [9, Proposition 8.2.5]) we may assume that F is an **S**-constructible object in $\mathsf{D}^{\mathsf{b}}(\mathbb{K}_{|\mathbf{S}|})$ for some simplicial complex $\mathbf{S} = (S, \Delta)$. For i an integer, let $\Delta_i \subset \Delta$ be the subset of simplices of dimension $\leq i$ and set $\mathbf{S}_i = (S, \Delta_i)$. We denote by $\mathsf{K}^{\mathsf{b}}(\mathbb{K})$ (resp. $\mathsf{K}^{\mathsf{b}}(\mathbb{K}_{|\mathbf{S}|})$) the category of bounded complexes of \mathbb{K} -modules (resp. sheaves of \mathbb{K} -modules on $|\mathbf{S}|$) with morphisms up to homotopy. We shall prove by induction on i that there exists a morphism $u_i \colon G_i \to F$ in $\mathsf{K}^{\mathsf{b}}(\mathbb{K}_{|\mathbf{S}|})$ such that:

- (a) the G_i^k are finite direct sums of $\mathbb{K}_{U(\sigma_\alpha)}$'s for some $\sigma_\alpha \in \Delta_i$,
- (b) $u_i|_{|\mathbf{S}_i|} : G_i|_{|\mathbf{S}_i|} \to F|_{|\mathbf{S}_i|}$ is a quasi-isomorphism.

The desired result is obtained for i equal to the dimension of X.

(i)-(1) For i=0 we consider $F|_{|\mathbf{S}_0|} \simeq \bigoplus_{\sigma \in \Delta_0} F_{\sigma}$. The complexes $\Gamma(U(\sigma); F)$, $\sigma \in \Delta_0$, have finite bounded cohomology by the quasi-isomorphisms (A.3). Hence we may choose bounded complexes of finite free \mathbb{K} -modules, $R_{0,\sigma}$, and morphisms $u_{0,\sigma} \colon R_{0,\sigma} \to \Gamma(U(\sigma); F)$ which are quasi-isomorphisms.

We have the natural isomorphism $\Gamma(U(\sigma); F) \simeq a_* \mathscr{H}om_{\mathsf{K}^{\mathrm{b}}(\mathbb{K}_{|\mathbf{S}|})}(\mathbb{K}_{U(\sigma)}, F)$ in $\mathsf{K}^{\mathrm{b}}(\mathbb{K})$, where $a \colon |\mathbf{S}| \to \mathrm{pt}$ is the projection and $\mathscr{H}om$ is the internal Hom functor. We deduce the adjunction formula, for $R \in \mathsf{K}^{\mathrm{b}}(\mathbb{K})$, $F \in \mathsf{K}^{\mathrm{b}}(\mathbb{K}_{|\mathbf{S}|})$:

(A.4)
$$\operatorname{Hom}_{\mathsf{K}^{\mathsf{b}}(\mathbb{K})}(R, \Gamma(U(\sigma); F)) \simeq \operatorname{Hom}_{\mathsf{K}^{\mathsf{b}}(\mathbb{K}_{(\sigma)})}(R_{U(\sigma)}, F).$$

Hence the $u_{0,\sigma}$ induce $u_0: G_0 := \bigoplus_{\sigma \in \Delta_0} (R_{0,\sigma})_{U(\sigma)} \to F$. By (A.3) $(u_0)_x$ is a quasi-isomorphism for all $x \in |\mathbf{S}_0|$, so that $u_0|_{|\mathbf{S}_0|}$ also is a quasi-isomorphism, as required.

(i)-(2) We assume that u_i is built and let $H_i = M(u_i)[-1]$ be the mapping cone of u_i , shifted by -1. By the distinguished triangle in $\mathsf{K}^{\mathsf{b}}(\mathbb{K}_{|\mathbf{S}|})$

$$(A.5) H_i \xrightarrow{v_i} G_i \xrightarrow{u_i} F \xrightarrow{+1}$$

 $H_i|_{\mathbf{S}_i|}$ is quasi-isomorphic to 0. Hence $\bigoplus_{\sigma \in \Delta_{i+1} \setminus \Delta_i} (H_i)_{|\sigma|} \to H_i|_{\mathbf{S}_{i+1}|}$ is a quasi-isomorphism. As above we choose quasi-isomorphisms $u_{i+1,\sigma} : R_{i+1,\sigma} \to \Gamma(U(\sigma); H_i), \ \sigma \in \Delta_{i+1} \setminus \Delta_i$, where the $R_{i+1,\sigma}$ are bounded complexes of finite free \mathbb{K} -modules. By (A.4) again the $u_{i+1,\sigma}$ induce a morphism in $\mathsf{K}^{\mathsf{b}}(\mathbb{K}_{|\mathbf{S}|})$

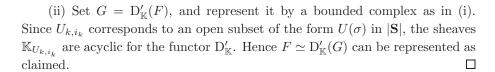
$$u'_{i+1} : G'_{i+1} := \bigoplus_{\sigma \in \Delta_{i+1} \setminus \Delta_i} (R_{i+1,\sigma})_{U(\sigma)} \to H_i.$$

For $x \in |\mathbf{S}_{i+1}| \setminus |\mathbf{S}_i|$, $(u'_{i+1})_x$ is a quasi-isomorphism by (A.3), and, for $x \in |\mathbf{S}_i|$, this is trivially true. Hence $u'_{i+1}|_{|\mathbf{S}_{i+1}|}$ is a quasi-isomorphism.

Now we let H_{i+1} and G_{i+1} be the mapping cones of u'_{i+1} and $v_i \circ u'_{i+1}$, respectively. We have distinguished triangles in $\mathsf{K}^\mathsf{b}(\mathbb{K}_{|\mathbf{S}|})$

$$(A.6) G'_{i+1} \xrightarrow{u'_{i+1}} H_i \to H_{i+1} \xrightarrow{+1}, G'_{i+1} \xrightarrow{v_i \circ u'_{i+1}} G_i \to G_{i+1} \xrightarrow{+1}.$$

By the construction of the mapping cone, the definition of G'_{i+1} and the induction hypothesis, G_{i+1} satisfies property (a) above. The octahedral axiom applied to triangles (A.5) and (A.6) gives a morphism $u_{i+1}: G_{i+1} \to F$ and a distinguished triangle $H_{i+1} \to G_{i+1} \xrightarrow{u_{i+1}} F \xrightarrow{+1}$. By construction $H_{i+1}|_{|\mathbf{S}_{i+1}|}$ is quasi-isomorphic to 0 so that u_{i+1} satisfies property (b) above.



Lemma A.3. Let $F \to G \to 0$ be an exact sequence in $\operatorname{Mod}_{\mathbb{R}^{-c}}(\mathbb{K}_X)$. Then for any relatively compact subanalytic open subset $U \subset X$, there exists a finite covering $U = \bigcup_{i \in I} U_i$ by subanalytic open subsets such that, for each $i \in I$, the morphism $F(U_i) \to G(U_i)$ is surjective.

Proof. As in the proof of Proposition A.2 we may assume that F, G and \mathbb{K}_U are constructible sheaves on the realization of some finite simplicial complex (S, Δ) . For $\sigma \in \Delta$ the morphism $\Gamma(U(\sigma); F) \to \Gamma(U(\sigma); G)$ is surjective, by (A.1). Since the image of U in $|\mathbf{S}|$ is a finite union of $U(\sigma)$'s, this proves the lemma.

§B. Complements on subanalytic sheaves

We review here some well-known results (see [11, Chapter 7] and [15]) but which are usually stated over a field, and we need to work here over the ring \mathbb{C}^{\hbar} .

Let \mathbb{K} be a commutative unital Noetherian ring of finite global dimension (for our purposes we will either have $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{C}^{\hbar}$). Let X be a real analytic manifold, and consider the natural morphism $\rho \colon X \to X_{\mathrm{sa}}$.

Lemma B.1. The functor $\rho_* \colon \operatorname{Mod}_{\mathbb{R}\text{-}c}(\mathbb{K}_X) \to \operatorname{Mod}(\mathbb{K}_{X_{\operatorname{sa}}})$ is exact and $\rho^{-1}\rho_*$ is isomorphic to the canonical functor $\operatorname{Mod}_{\mathbb{R}\text{-}c}(\mathbb{K}_X) \to \operatorname{Mod}(\mathbb{K}_X)$.

Proof. Being a direct image functor, ρ_* is left exact. It is right exact thanks to Lemma A.3. The composition $\rho^{-1}\rho_*$ is isomorphic to the identity on $\operatorname{Mod}(\mathbb{K}_X)$ since the open sets of the site X_{sa} give a basis of the topology of X.

In the sequel, we denote by $\mathrm{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_{X_{\mathrm{sa}}})$ the image by the functor ρ_* of $\mathrm{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_X)$ in $\mathrm{Mod}(\mathbb{K}_{X_{\mathrm{sa}}})$. Hence ρ_* induces an equivalence of categories $\mathrm{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_X) \simeq \mathrm{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_{X_{\mathrm{sa}}})$. We also denote by $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}\text{-c}}(\mathbb{K}_{X_{\mathrm{sa}}})$ the full triangulated subcategory of $\mathsf{D}^{\mathrm{b}}(\mathbb{K}_{X_{\mathrm{sa}}})$ consisting of objects with cohomology in $\mathrm{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_{X_{\mathrm{sa}}})$.

Corollary B.2. The subcategory $\operatorname{Mod}_{\mathbb{R}_{-c}}(\mathbb{K}_{X_{\operatorname{sa}}})$ of $\operatorname{Mod}(\mathbb{K}_{X_{\operatorname{sa}}})$ is thick.

Proof. Since ρ_* is fully faithful and exact, $\operatorname{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_{X_{\operatorname{sa}}})$ is stable by kernel and cokernel. It remains to see that, for $F, G \in \operatorname{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_X)$

$$\operatorname{Ext}^1_{\operatorname{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_X)}(F,G) \simeq \operatorname{Ext}^1_{\operatorname{Mod}(\mathbb{K}_{X_{\operatorname{sp}}})}(\rho_*F,\rho_*G).$$

By [6] we know that the first Ext^1 may as well be computed in $\operatorname{Mod}(\mathbb{K}_X)$. Note that the functors ρ^{-1} and $\operatorname{R}\rho_*$ between $\operatorname{D}^{\operatorname{b}}(\mathbb{K}_X)$ and $\operatorname{D}^{\operatorname{b}}(\mathbb{K}_{X_{\operatorname{sa}}})$ are adjoint, and moreover $\rho^{-1}\operatorname{R}\rho_* \simeq \operatorname{id}$. Thus, for $F', G' \in \operatorname{D}^{\operatorname{b}}(\mathbb{K}_X)$ we have

$$\operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}(\mathbb{K}_{X_{-*}})}(\mathrm{R}\rho_{*}F',\mathrm{R}\rho_{*}G') \simeq \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}(\mathbb{K}_{X})}(F',G'),$$

and this gives the result.

This corollary gives the equivalence $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}\text{-c}}(\mathbb{K}_X) \simeq \mathsf{D}^{\mathrm{b}}_{\mathbb{R}\text{-c}}(\mathbb{K}_{X_{\mathrm{sa}}})$, both categories being equivalent to $\mathsf{D}^{\mathrm{b}}(\mathrm{Mod}_{\mathbb{R}\text{-c}}(\mathbb{K}_X))$.

References

- [1] J. Bernstein, Modules over a ring of differential operators. Study of fundamental solutions of equations with constant coefficients, Funct. Analysis Appl. 5 (1971) 89–101.
- [2] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120, 575, (1996).
- [3] D. Juteau, Decomposition numbers for perverse sheaves, Ann. Inst. Fourier 59 2 p. 1177– 1229 (2009).
- [4] M. Kashiwara, Algebraic study of systems of partial diffential equations, Thesis, Tokyo Univ. (1970), translated by A. D'Agnolo and J-P. Schneiders, Mémoires Soc. Math. France 63 (1995).
- [5] ______, On the maximally overdetermined systems of linear differential equations, Publ. RIMS, Kyoto Univ. 10 p. 563–579 (1975).
- [6] _____, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ. 20 p. 319–365,(1984).
- [7] _____, D-modules and Microlocal Calculus, Translations of Mathematical Monographs, 217 American Math. Soc. (2003).
- [8] ______, Equivariant derived category and representation of real semisimple Lie groups, in Representation theory and complex analysis, p. 137–234, Lecture Notes in Math., 1931, Springer, Berlin, 2008.
- [9] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren der Math. Wiss. 292 Springer-Verlag (1990).
- [10] _____, Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France, 64 (1996).
- [11] ______, Ind-sheaves, Astérisque Soc. Math. France, **271** (2001).
- [12] _____, Categories and sheaves, Grundlehren der Math. Wiss. **332** Springer-Verlag (2006).
- [13] ______, Deformation quantization modules, to appear. (See arXiv:0802.1245 and arXiv:0809.4309).
- [14] B. Malgrange, *Ideals of differentiable functions*, Tata Institute for Fundamental Study in Mathematics, Oxford University Press (1966).
- [15] L. Prelli, Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova, 120 p. 167–216 (2008).

- [16] C. Sabbah, Polarizable twistor \mathcal{D} -modules, Astérisque Soc. Math. France, **300** (2005). [17] P. Schapira, Mikio Sato, a visionary of mathematics, Notices of the AMS, February
- [18] P. Schapira and J-P. Schneiders, Elliptic pairs I, Astérisque Soc. Math. France, 224
- [19] J-P. Schneiders, Quasi-abelian categories and sheaves, Mémoires Soc. Math. France, 76 (1999).