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Abstract
Given a topological space X , a thickening kernel is a monoidal presheaf on (R≥0,+)

with values in themonoidal category of derived kernels on X . A bi-thickening kernel is
defined on (R,+). To such a thickening kernel, one naturally associates an interleaving
distance on the derived category of sheaves on X . We prove that a thickening kernel
exists and is unique as soon as it is defined on an interval containing 0, allowing us
to construct (bi-)thickenings in two different situations. First, when X is a “good”
metric space, starting with small usual thickenings of the diagonal. The associated
interleaving distance satisfies the stability property and Lipschitz kernels give rise to
Lipschitz maps. Second, by using (Guillermou et al. in Duke Math J 161:201–245,
2012), when X is a manifold and one is given a non-positive Hamiltonian isotopy on
the cotangent bundle. In case X is a complete Riemannian manifold having a strictly
positive convexity radius, we prove that it is a good metric space and that the two
bi-thickening kernels of the diagonal, one associated with the distance, the other with
the geodesic flow, coincide.
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Introduction

The aim of this paper is to construct (and then to study) a kernel associated with a small
thickening of the diagonal of a space X and, as a byproduct, an interleaving distance
on the derived category of sheaves on X . Such a kernel is constructed in essentially
two rather different situations: first when X is a metric space by using the distance,
second when X is a manifold and one is given a non-positive Hamiltonian isotopy of
the cotangent bundle. When X is a Riemannian manifold and the isotopy is associated
with the geodesic flow, we prove that the two kernels coincide.

The interleaving distance introduced by Chazal et al. [9] has become a central
element of TDA and has been actively studied since then [3–6]. It was generalised
to multi-persistence modules by M. Lesnick in [23, 24]. Categorical frameworks for
the interleaving distance have then been proposed in [7, 14]. In his thesis [12], J.
Curry proposed an approach of persistence homology via sheaf theory. In [22], the
author developed derived sheaf-technics for persistent homology and defined a new
interleaving distance for the category of derived sheaves on a real normed vector space
by considering thickenings associated with the convolution by closed balls of radius
a ≥ 0. This distance is sometimes called the convolution distance for sheaves and has
recently been applied to question of symplectic topology (see for instance [1]). For
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a survey of the links between the (1-dimensional) interleaving distance, sheaf theory
and symplectic topology, see the book by J. Zhang [32].

Let X be a “good” topological space and denote as usual by Db(kX ) the bounded
derived category of sheaves of k-modules on X , for a commutative unital ring of
finite global dimension k. We define a thickening kernel on X as a monoidal presheaf
K defined on the monoidal category (R≥0,+) with values in the monoidal category
(Db(kX×X ), ◦) of kernels on X (see Definition 1.2.2). When this presheaf extends as
a monoidal presheaf on (R,+), we call it a bi-thickening kernel of the diagonal.

To a thickening kernel, one naturally associates an interleaving distance distX on
Db(kX ).

Our first result (Theorem 1.2.3) asserts that a thickening kernel exists and is unique
(up to isomorphism) as soon as it is constructed on some interval [0, αX ] (withαX > 0).

This theorem allows us to construct a (bi-)thickening kernel in two different sit-
uations. First in Sect. 2, when X is what we call here a good metric space (see
Definition 2.1.1). Second in Sect. 3, when X is a real manifold and one is given a
non-positive C∞-function h : Ṫ ∗X −→ R, where Ṫ ∗X is the cotangent bundle with
the zero-section removed.

(1) Assume that (X , dX ) is a good metric space and denote by �a the closed
thickening of radius a ≥ 0 of the diagonal. The hypothesis that (X , dX ) is good
implies in particular that k�a ◦k�b � k�a+b for a, b sufficiently small (see (1.2)
for the definition of ◦). Applying our first theorem, we get a thickening kernel K on
(R≥0,+) or, under mild extra-hypotheses, a bi-thickening. In this case, for a < 0
small, Ka is, up to a shift and an orientation, the kernel associated with an open
thickening of the diagonal.

We obtain several results on the associated interleaving distance, some of them
generalizing those of [22]. We prove in particular a stability theorem (Theorem 2.4.1)
which asserts that given two kernels K1 and K2 on Y × X and a sheaf F on X ,
then distY (K1 ◦ F, K2 ◦ F) ≤ distY×X/X (K1, K2) where distY×X/X is a relative dis-
tance. We also introduce the notion of a δ-Lipschitz kernel on Y × X and show that
such a kernel induces a Lipschitz map for the interleaving distances (Theorem 2.5.4).
In both cases (stability and Lipschitz) we also obtain similar results for non proper
composition, but then we need to assume that our spaces are manifolds and the differ-
ential of the distance does not vanish. Indeed, in this situation, our proofs are based
on Theorem 1.1.6 which asserts that under some microlocal hypotheses, non proper
composition becomes associative.

(2) Assume now that X is a real manifold and one is given a C∞-function
h : Ṫ ∗X −→ R, homogeneous of degree 1 in the fiber such that the flow � of the
Hamiltonian vector field of h is an Hamiltonian isotopy defined on Ṫ ∗X × I for
some open interval I containing 0. This flow gives rise to a Lagrangian manifold
� ⊂ Ṫ ∗X × Ṫ ∗X × T ∗ I . Thanks to the main theorem of [17], there exists a unique
kernel Kh ∈ Dlb(kX×X×I ) micro-supported by � and whose restriction to t = 0 is
k�. Moreover, since h is not time depending, this kernel satisfies Kh

a ◦ Kh
b � Kh

a+b

for a, b small. Assuming h is non-positive, there are natural morphisms Kh
b −→ Kh

a
for a ≤ b and using our first theorem we get a bi-thickening kernel Kh .



   70 Page 4 of 42 F. Petit, P. Schapira

When X is a complete Riemannian manifold having a strictly positive convexity
radius, we prove (Theorem 3.2.3) that it is a good metric space and the associated
thickening kernel is a bi-thickening, denoted hereKdist .We have thus two bi-thickening
kernels in this case, Kdist and Kh , the last one being associated with the geodesic flow
(corresponding to h(x, ξ) = −||ξ ||x ). We prove in Theorem 3.3.7 that these two
kernels coincide.

In the course of the paper, we treat some easy examples and in particular we prove
that the Fourier-Sato transform, an equivalence of categories for sheaves on a sphere
and the dual sphere, is an isometry when endowing these spheres with their natural
Riemannian metric. Indeed, the Fourier-Sato transform is nothing but the value at π/2
of the thickening kernel of the Riemannian sphere.

1 Sheaves and the interleaving distance

1.1 Sheaves

In the sequel, we denote by pt the topological space with a single element. For a
topological space X , we denote by aX : X −→ pt the unique map from X to pt. We
denote by�X , or simply�, the diagonal of X × X and by δX or simply δ the diagonal
embedding. If X is a C∞-manifold, we denote by πX : T ∗X −→ X its cotangent
bundle and by Ṫ ∗X the cotangent bundle with the zero-section removed. Recall that
a topological space X is good if it is Hausdorff, locally compact, countable at infinity
and of finite flabby dimension.

We consider a commutative unital ring of finite global dimension k and a good
topological space X . We denote by D(kX ) the derived category of sheaves of k-
modules on X and simply call an object of this category “a sheaf”. We shall almost
alwayswork in the bounded derived categoryDb(kX ) butwe shall also need to consider
the full subcategory Dlb(kX ) of D(kX ) consisting of locally bounded objects, that is,
objects whose restriction to any relatively compact open subset U of X belong to
Db(kU ) (see [17, Def. 1.12]).

We shall freely make use of the six Grothendieck operations on sheaves and refer
to [20]. In particular, we denote by ωX the dualizing complex and we use the duality
functors

D′
X = RHom ( • ,kX ), DX = RHom ( • , ωX ).

For a locally closed subset A ⊂ X , we denote by kA the sheaf on X which is the
constant sheaf with stalk k on A and 0 elsewhere. If F is a sheaf on X , one sets
FA := F ⊗kA. We also often simply denote by F ⊗L the derived tensor product when
L is of the type kA up to a shift or an orientation. As usual, we denote by R
(X; • ) and
R
c(X; • ) the derived functors of global sections and global sections with compact
supports.

When X is a C∞-manifold, we shall make use of the microlocal theory of sheaves,
following [20, Ch. V–VI]. Recall that themicro-support SS(F) of a sheaf F is a closed
R

+-conic subset of T ∗X , co-isotropic for the homogeneous symplectic structure of
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T ∗X (we shall not use here this property). We shall also use the notation ṠS(F) :=
SS(F) ∩ Ṫ ∗X . We shall also encounter cohomologically constructible sheaves for
whichwe refer to loc. cit. § 3.4. Recall that, on a real analyticmanifold,R-constructible
sheaves (see loc. cit. Ch. VIII) are cohomologically constructible.

Kernels

Given topological spaces Xi (i = 1, 2, 3)we set Xi j = Xi×X j , X123 = X1×X2×X3.
We denote by qi : Xi j −→ Xi and qi j : X123 −→ Xi j the projections.

We shall often write for short Di instead of DXi , as well as for similar notations
such as for example D′

i or Di j .
For A ⊂ X12 and B ⊂ X23 one sets A ◦ B = q13(q

−1
12 A ∩ q−1

23 B):

X123
q12 q23

q13

X12 X13 X23.

(1.1)

When the spaces Xi ’s are real manifolds, one denotes by pi j : T ∗X123 −→ T ∗Xi j the
projection and we also define

pia j : T ∗X123 −→ T ∗Xi j , (x1, x2, x3; ξ1, ξ2, ξ3) �→ (xi , x j ;−ξi , ξ j )

the composition of pi j with the antipodal map of T ∗Xi .
For A ⊂ T ∗X12 and B ⊂ T ∗X23 one sets

A
a◦ B = p13(p

−1
12 A ∩ p−1

2a3B)

For good topological spaces Xi ’s as above, one often calls an object Ki j ∈ Db(kXi j )

a kernel. One defines as usual the composition of kernels

K12 ◦
2
K23 := Rq13!(q−1

12 K12
L⊗ q−1

23 K23). (1.2)

If there is no risk of confusion, we write ◦ instead of ◦
2
.

It is sometimes natural to permute the roles of Xi and X j .We introduce the notation

v : X12 −→ X21, (x1, x2) �→ (x2, x1),
ν : X123 −→ X321, (x1, x2, x3) �→ (x3, x2, x1).

(1.3)

Since v and ν are involutions, one has

v∗ � v!, v−1 � v ! , ν∗ � ν!, ν−1 � ν ! . (1.4)

Using (1.4), one immediately obtains:
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Proposition 1.1.1 Let Ki j ∈ Db(kXi j ), i = 1, 2, j = i +1 and set K ji :=v∗Ki j . Then

v∗(K12 ◦
2
K23) � K32 ◦

2
K21.

In the sequel, we shall need to control the micro-support of the composition. Let
Xi and Ki j be as above i = 1, 2, j = i + 1. Let Ai j = SS(Ki j ) ⊂ T ∗Xi j and assume
that

{
(i) q13 is proper on q

−1
12 supp(K12) ∩ q−1

23 supp(K23),

(ii) p−1
12 A12 ∩ p−1

2a3A23 ∩ (T ∗
X1

X1 × T ∗X2 × T ∗
X3

X3) ⊂ T ∗
X123

X123.
(1.5)

Proposition 1.1.2 Assume (1.5). Then

SS(K12 ◦
2
K23) ⊂ A12

a◦ A23. (1.6)

Proof This follows from the classical bounds to the micro-supports of proper direct
images and non-characteristic inverse images of [20, § 5.4]. ��
The next lemma will be useful.

Lemma 1.1.3 Let A ⊂ X12 and B ⊂ X23 be two closed subsets.

(a) Assume that q13 is proper on A ×X2 B := q−1
12 A ∩ q−1

23 B. Then there is a natural
morphism kA ◦ B −→ kA ◦kB.

(b) Assume moreover that the fibers of the map q13 : A ×X2 B −→ A ◦ B are con-
tractible. Then kA ◦ B

∼−→ kA ◦kB.

Proof

(a) Set C = q−1
12 A∩q−1

23 B. Then q13(C) = A ◦ B and kC � q−1
12 kA ⊗q−1

23 kB . By the
hypothesis, the set q−1

13 q13(C) is closed and contains C . Therefore, the morphism
q−1
13 kq13(C) −→ kC defines by adjunction the morphism kA ◦ B −→ Rq13∗(q−1

12 kA ⊗
q−1
23 kB) ∼←− kA ◦kB (recall that q13 is proper on C).

(b) is clear. ��
It is easily checked, and well-known, that the composition of kernels is associative,

namely given three kernels Ki j ∈ Db(kXi j ), i = 1, 2, 3, j = i + 1 one has an
isomorphism

(K12 ◦
2
K23) ◦

3
K34 � K12 ◦

2
(K23 ◦

3
K34), (1.7)

this isomorphism satisfying natural compatibility conditions that we shall not make
here explicit.
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Of course, this construction applies in the particular cases where Xi = pt for some
i . For example, if K ∈ Db(kX12) and F ∈ Db(kX2), one usually sets�K (F) = K ◦ F .
Hence

�K (F) = K ◦ F = Rq1!(K
L⊗ q−1

2 F). (1.8)

It is natural to consider the right adjoint functor �K of the functor �K (see [20,
Prop. 3.6.2]) given by

�K (G) = Rq2∗RHom (K , q !
1 G). (1.9)

Given three spaces Xi (i = 1, 2, 3) and kernels K1 on X12 and K2 on X23, one has
(by (1.7) or [20, Prop. 3.6.4])

�K2 ◦ �K1 � �K2 ◦ K1 , �K1 ◦ �K2 � �K2 ◦ K1 . (1.10)

Proposition 1.1.4 Let K ∈ Db(kX×X ) and F ∈ Db(kX ). Then DX (�K (F)) �
�v∗K (DX F).

Proof One has the sequence of isomorphisms

DX (�K (F)) � RHom (Rq1!(K
L⊗ q−1

2 F), ωX )

� Rq1∗RHom (K
L⊗ q−1

2 F, ωX×X )

� Rq1∗RHom (K ,RHom (q−1
2 F, q !

2 ωX ))

� Rq1∗RHom (K , q !
2 DX F).

��
Also note that when X2 = pt, that is, F, K ∈ Db(kX ), then

F ◦ K � R
c(X; F L⊗ K ). (1.11)

Non proper composition

In many situations, the non proper composition is useful. For K1 ∈ Db(kX12) and
K2 ∈ Db(kX23), one sets

K1
np◦ K2 = Rq13∗(q−1

12 K1
L⊗ q−1

23 K2). (1.12)

One shall be aware that in general, this composition is not associative. However, under
suitable hypotheses, it becomes associative.
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Consider the diagram of good topological spaces

X123

q12 q13 q23

X12

q1 q2

X13

p2p1

X23

r1 r2

X1 X2 X3

(1.13)

Note that the squares (X12, X2, X23, X123), (X12, X1, X13, X123) and (X13, X3, X23,

X123) are Cartesian.

Lemma 1.1.5 Let Xi (i = 1, 2, 3) be three C∞-manifolds. Let K1 ∈ Db(kX12) and
K2 ∈ Db(kX23). Assume that K1 is cohomologically constructible and SS(K1) ∩
(T ∗

X1
X1 × T ∗X2) ⊂ T ∗

X12
X12. Then

Rq12∗(q−1
12 K1

L⊗ q−1
23 K2) � K1

L⊗ Rq12∗q−1
23 K2.

Proof Applying [20, Prop. 5.4.1], we have

SS(q−1
23 K2) ⊂ T ∗

X1
X1 × T ∗X23,

SS(q !
2 Rr1∗K2) ⊂ T ∗

X1
X1 × T ∗X2.

Since Rq12∗q !
23 K2 � q !

2 Rr1∗K2 and SS(Rq12∗q−1
23 K2) = SS(Rq12∗q !

23 K2), we get:

SS(Rq12∗q−1
23 K2) ⊂ T ∗

X1
X1 × T ∗X2. (1.14)

Applying [20, Cor. 6.4.3] we get by the hypothesis and (1.14)

K1
L⊗ Rq12∗q−1

23 K2 � RHom (D′
12K1,Rq12∗q−1

23 K2). (1.15)

Moreover, the hypothesis implies SS(D′
12K1) ∩ (T ∗

X1
X1 × T ∗X2) ⊂ T ∗

X12
X12, hence

SS(q−1
12 D

′
12K1) ∩ T ∗

X1
X1 × T ∗X23 ⊂ T ∗

X123
X123.

The sheaf K1 being cohomologically constructible on X12, the sheaf q
−1
12 K1 � K1 �

kX3 is cohomologically constructible on X123. Applying again [20, Cor. 6.4.3], we
get

RHom (q−1
12 D

′
12K1, q

−1
23 K2) � D′

123q
−1
12 D

′
12K1

L⊗ q−1
23 K2

� q−1
12 K1

L⊗ q−1
23 K2.
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To conclude, note that

RHom (D′
12K1,Rq12∗q−1

23 K2) � Rq12∗RHom (q−1
12 D

′
12K1, q

−1
23 K2)

� Rq12∗(q−1
12 K1

L⊗ q−1
23 K2).

Using (1.15), the proof is complete. ��

Theorem 1.1.6 Let Xi (i = 1, 2, 3, 4) be four C∞-manifolds and let Ki ∈ Db(kXi,i+1)

( i = 1, 2, 3). Assume that K1 is cohomologically constructible, q1 is proper on
supp(K1) and SS(K1) ∩ (T ∗

X1
X1 × T ∗X2) ⊂ T ∗

X12
X12. Then

K1
np◦
2
(K2

np◦
3
K3) � (K1

np◦
2
K2)

np◦
3
K3.

Proof We shall assume for simplicity that X4 = pt. Consider Diagram 1.13. Then:

K1
np◦
2
(K2

np◦
3
K3) = Rq1∗

(
K1

L⊗ q−1
2 (K2

np◦ K3)
)

= Rq1∗
(
K1

L⊗ q−1
2 Rr1∗(K2

L⊗ r−1
2 K3)

)
� Rq1∗

(
K1

L⊗ Rq12∗q−1
23 (K2

L⊗ r−1
2 K3)

)
� Rq1∗Rq12∗

(
q−1
12 K1

L⊗ q−1
23 K2

L⊗ q−1
23 r

−1
2 K3

)
� Rp1∗Rq13∗

(
q−1
12 K1

L⊗ q−1
23 K2

L⊗ q−1
13 p−1

2 K3
)

� Rp1∗(Rq13!(q−1
12 K1

L⊗ q−1
23 K2)

L⊗ p−1
2 K3

)
� Rp1∗

(
(K1 ◦

2
K2)

L⊗ p−1
2 K3

) � Rp1∗
(
(K1

np◦
2
K2)

L⊗ p−1
2 K3

)
.

In the first isomorphism, we have used q−1
2 Rr1∗ � Rq12∗q−1

23 , which follows from
the isomorphism q !

2 Rr1∗ � Rq12∗q !
23 . In the second isomorphism, we have used

Lemma 1.1.5. In the fourth isomorphism, we have used the fact that q13 is proper on
supp(q−1

12 K1). Finally, in the sixth isomorphism we have again used the fact that q13
is proper on supp q−1

12 (K1).
Note that the same proof holds without assuming X4 = pt. In this case replace

Xi , Xi j and X123 with Xi4, Xi j4 and X1234, respectively. ��

1.2 Monoidal presheaves

We shall use the theory of monoidal categories and refer to [19] and [21, Ch. IV]. Note
that

• monoidal categories are called tensor categories in [21],
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• to a monoidal category (C ,⊗) is naturally attached an isomorphism of functors
([21, Def. 4.2.1]) a(X ,Y , Z) : (X ⊗Y )⊗ Z ∼−→ X ⊗ (Y ⊗ Z) satisfying the usual
compatibility conditions,

• to a monoidal category with unit (C ,⊗, 1) are naturally attached two functorial
isomorphisms r : X ⊗ 1 −→ X and l : 1 ⊗ X −→ X , denoted respectively α and β

in [21, Lem. 4.2.6].

Example 1.2.1

(i) We regard the ordered set (R,≤) as a category that we simply denote by R and
we regardR≥0 as a full subcategory. The categoriesR andR≥0 endowed with the
additionmap+ are monoidal categories with unit, denoted (R,+) and (R≥0,+),
respectively.

(ii) Let X be a good topological space. The category (Db(kX×X ), ◦) is a monoidal
category with unit the sheaf k�.

(iii) IfA is a category, then the category (Fct(A ,A ), ◦) is a monoidal category with
unit the object idA .

Let I be a closed interval of R. We assume

either I = [0, α] or I = [−α, α] for some α > 0. (1.16)

We consider I as an ordered set and we denote by I≤ or simply I the associated
category, a full subcategory of (R,≤). Hence, Ob(I≤) = I and Hom I≤(a, b) = pt or
= ∅ according whether a ≤ b or not. Although it has not been precisely defined, we
shall look at I≤ as a “partially monoidal subcategory of (R,+)”.

Let (C ,⊗) be a monoidal category and consider a presheaf K on I≤ with values in
C . For a ∈ I , we write Ka instead of K (a). Hence, we have “restriction” morphisms
ρa,b : Kb −→ Ka for a, b ∈ I , a ≤ b satisfying the usual compatibility relations
ρa,b ◦ ρb,c = ρa,c for a ≤ b ≤ c and ρa,a = id.

Definition 1.2.2 Let (C ,⊗, 1) be a monoidal category with unit.

(a) A monoidal presheaf (K , φ0, φ2) on I≤ with values in C is the data of:

(1) a presheaf K on I≤ with value in C ,
(2) an isomorphism φ0 : 1 ∼−→ K0,
(3) an isomorphism φ2(a, b) : Ka ⊗Kb

∼−→ Ka+b, for a, b such that a, b, a+b ∈
I , these data satisfy the following conditions:

(i) the diagram below commutes for all a, b, a′, b′ ∈ I such that a ≤ a′, b ≤ b′,
a, b, a′, b′, a + b, a′ + b′ ∈ I :

Ka′ ⊗ Kb′

ρa,a′⊗ρb,b′

∼
φ2(a′,b′)

Ka′+b′

ρa+b,a′+b′

Ka ⊗ Kb ∼
φ2(a,b)

Ka+b.

Here, the vertical arrows are induced by the restriction morphisms.
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(ii) For all a, b, c ∈ I such that a + b, b + c, a + b + c ∈ I , the diagram below
commutes

(Ka ⊗ Kb) ⊗ Kc
a(Ka ,Kb,Kc)

φ2(a,b)⊗id

Ka ⊗ (Kb ⊗ Kc)

id⊗φ2(b,c)

Ka+b ⊗ Kc

φ2(a+b,c)

Ka ⊗ Kb+c

φ2(a,b+c)

Ka+b+c Ka+b+c .

The notation a(Ka, Kb, Kc) is defined in the second item aboveExample 1.2.1.
(iii) For all a ∈ I , the diagrams below commute

1 ⊗ Ka
lKa

φ0⊗idKa

Ka Ka ⊗ 1
rKa

idKa ⊗φ0

Ka

K0 ⊗ Ka
φ2(0,a)

Ka, Ka ⊗ K0
φ2(a,0)

Ka .

(b) Let K and K ′ be two monoidal presheaves on I≤. A morphism of monoidal
presheaves η : K −→ K ′ is a morphism such that for every a, b ∈ I such that
a + b ∈ I the following diagram commutes

Ka ⊗ Kb
ηa⊗ηb

φ2(a,b)

K ′
a ⊗ K ′

b

φ′
2(a,b)

Ka+b
ηa+b

K ′
a+b.

(c) We denote by Fun⊗(I op,C ) the category whose objects are the monoidal
presheaves on I≤ with values in C and the morphisms are the morphisms of
monoidal presheaves.

Assuming that I = [0, α], the inclusion functor iα : I≤ ↪→ R≥0 induces a functor

i∗α : Fun⊗(R
op
≥0,C ) −→ Fun⊗(I op,C ), F �→ F ◦ iα. (1.17)

Similarly, if I = [−α, α], the inclusion functor jα : I≤ ↪→ R≥0 induces a functor

j∗α : Fun⊗(Rop,C ) −→ Fun⊗(I op,C ), F �→ F ◦ jα. (1.18)

Theorem 1.2.3 Assuming that I = [0, α], the functor i∗α in (1.17) is an equivalence
of categories. Similarly, assuming that I = [−α, α], the functor j∗α in (1.18) is an
equivalence of categories.
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Proof (A) Let us first treat the case I = [0, α].
It follows from [19, Ch XI.5] that we can assume that C is a strict monoidal category.
We set λ = α

2 .
(i) We start by showing that i∗α is essentially surjective. For that purpose, given a
monoidal presheaf K on I , we will construct a monoidal presheaf K : R≥0 −→ C such
that i∗αK � K .
(i)–(a) For a ≥ 0 we write a = nλ + ra with 0 ≤ ra < λ. Then, one sets

Ka := Kλ ⊗ · · · ⊗ Kλ︸ ︷︷ ︸
n

⊗ Kra . (1.19)

(i)–(b) We now construct the restriction morphisms ρa,b. For a ≤ b ≤ λ, ρa,b is given
by the definition of the presheaf K . Let us write a = m · λ + ra and b = n · λ + rb
with 0 ≤ ra, rb < λ. Since 0 ≤ a ≤ b, m ≤ n. If m = n, then ra ≤ rb and we set
ρa,b := (idKλ)

◦m ◦ ρra ,rb .
Now assume m > n. Notice that

Kb � (Kλ)
◦m ◦ Kλ ◦(Kλ)

◦(n−m−1) ◦ Krb

Ka � (Kλ)
◦m ◦ Kra ◦(K0)

◦(n−m−1) ◦ K0.

Hence, we set ρa,b := (idKλ)
◦m ◦ ρra ,λ ◦(ρ0,λ)

◦ n−m−1 ◦ ρ0,rb .
(i)–(c) Let us construct the isomorphisms φ2(a1, a2) : Ka1 ⊗ Ka2 −→ Ka1+a2 , for
a1, a2 ∈ R≥0. Write

ai = ni · α + ri , 0 ≤ ri < λ, i = 1, 2.

Since ri + λ ≤ α, Kri ⊗ Kλ

φ2(ri ,λ)� Kri+λ

φ−1
2 (λ,ri )� Kλ ⊗ Kri . We set

si := φ−1
2 (λ, ri ) ◦ φ2(ri , λ)

Let n ∈ N and consider the map

ψi,n := (id⊗n−1
Kλ

⊗si ) ◦ . . . ◦ (id⊗p
Kλ

⊗si ⊗ id⊗n−1−p
Kλ

) ◦ . . . ◦ (si ⊗ id⊗n−1
Kλ

).

We now define the map φ2(a1, a2) : Ka1 ⊗ Ka2 −→ Ka1+a2 by setting

φ2(a1, a2) := (id
K

⊗(n1+n2)

λ

⊗φ2(r1, r2)) ◦ (id⊗n1
Kλ

⊗ψ1,n2 ⊗ idKr2
).

By construction, φ2(a1, a2) is an isomorphism.
It is straightforward to check thatK is amonoidal presheaf onR≥0 and that i∗αK � K .

(ii)-(a) Let us prove that i∗α is faithful. Let f , g : K −→ K′ be two monoidal morphisms
between monoidal presheaves on R≥0. Assume that i∗α( f ) = i∗α(g). Hence, for every
0 ≤ a ≤ α, fa = ga and it follows from the definition of a monoidal morphism that
for every b ∈ R≥0, fb = gb.
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(ii)-(b) Let us show that i∗α is full. Let K,K′ ∈ Fun⊗(R
op
≥0,C ) and let f : i∗αK −→ i∗αK′

be a monoidal morphism. For a ∈ R≥0, we write a = nλ + ra with 0 ≤ ra < λ. We
define the morphism fa as the composition

Ka � K⊗n
λ ⊗ Kra

f ⊗n
λ ⊗ fra

K′⊗n
λ ⊗ K′

ra � K′
a .

The family of morphisms (fa)a∈R≥0 defines a monoidal morphism f : K −→ K′ such
that iα(f) = f .
(B) Assume now that I = [−α, α]. Part (A) of the proof applies when replacing the
interval [0, α] and R≥0 with the interval [−α, 0] and R≤0. Then combine these two
cases. ��

1.3 Thickening kernels and interleaving distance

Let us first recall that a categorical axiomatic for interleaving distances was developed
in [7, 14]. Here, we do not work in an abstract categorical setting but restrict ourselves
to the study of kernels for sheaves, a natural framework for applications.

Definition 1.3.1 Let X be a good topological space.

(a) A thickening kernel is a monoidal presheaf K on (R≥0,+) with values in the
monoidal category (Db(kX×X ), ◦).

(b) The thickening kernel K is a bi-thickening kernel if it extends as a monoidal
presheaf on (R,+).

In the sequel, for a thickening (resp. a bi-thickening) kernel K, one sets Ka = K(a)

for a ≥ 0 (resp. for a ∈ R).
In otherwords, a thickening kernel is a family of kernelsKa ∈ Db(kX×X ) satisfying

Ka ◦Kb � Ka+b, K0 � k� for a ∈ R≥0

and the compatibility conditions of Definition 1.2.2.
We shall often simply write “a thickening” instead of “a thickening kernel ”.

Remark 1.3.2 Let I = [0, α] with α > 0. Note that if the thickening (or the bi-
thickening) K exists, then it is uniquely defined by its restriction to [0, α], up to
isomorphism. More precisely, given two thickenings K1 and K2 and an isomorphism
of monoidal presheaves

θ : K1|I ∼−→ K2|I ,

then there exists a unique isomorphism of monoidal presheaves λ : K1
∼−→ K2 such

that λ|I = θ .

Example 1.3.3

(i) The constant presheaf a �→ k� is a thickening kernel called the constant thick-
ening on X and simply denoted k� (or k�X if necessary).
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(ii) Let Xi (i = 1, 2) be two good topological spaces and let Ki be a thickening
kernel on Xi . Then K1 � K2 is a thickening kernel on X1 × X2. This applies in
particular when Ki is the constant thickening on X1 or X2.

(iii) Let (X , dX ) be a metric space. We shall prove in Theorem 2.1.6 below that,
under suitable hypotheses, there exists a thickening kernel K with Ka = k�a for
0 ≤ a ≤ αX . For S a good topological space, we sometimes denote by KS×X/S

the thickening kernel k�S � K.
(iv) Another example of a thickening kernel will be given in Sect. 3.1 in which we

use the kernel of [17] associated with a Hamiltonian isotopy.

The next definition is mimicking [22, Def. 2.2].

Definition 1.3.4 Let K be a thickening kernel on X , let F,G ∈ Db(kX ) and let a ≥ 0.

(a) One says that F and G are a-isomorphic if there are morphisms f : Ka ◦ F −→ G
and g : Ka ◦G −→ F which satisfy the following compatibility conditions: the
composition

K2a ◦ F
Ka ◦ f−−−−→ Ka ◦G g−→ F

and the composition

K2a ◦G Ka ◦ g−−−−→ Ka ◦ F
f−−→ G

coincide with the morphisms induced by the canonical morphism ρ0,2a : K2a −→
K0.

(b) One sets

distK(F,G) = inf
(
{+∞} ∪ {a ∈ R≥0 ; F and G are a-isomorphic}

)
and calls distK( • , • ) the interleaving distance (associated with K).

Note that if F and G are a-isomorphic, then they are b-isomorphic for any b ≥ a.
The next result show that the interleaving distance distK is a pseudo-distance on

Db(kX ).

Proposition 1.3.5 Let K be a thickening kernel on X and let F,G, H ∈ Db(kX ). Then

(i) F and G are 0-isomorphic if and only if F � G,
(ii) distK(F,G) = distK(G, F),
(iii) distK(F,G) ≤ distK(F, H) + distK(H ,G).

The proof is straightforward.

Remark 1.3.6 It is proved in [27] that if X∞ is a b-analyticmanifold (see [30]) endowed
with a good distance, then, under suitable hypotheses, the pseudo-distance distK
becomes a distancewhen restricted to the categoryDb

R-c(kX∞) of sheaves constructible
up to infinity. In particular, on any real analytic manifold X , distK becomes a distance
when restricted to constructible sheaves with compact support. Let us also mention
the paper [11] in which the completeness of the category Db(kRn ) is discussed in the
case of the convolution distance.
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2 The interleaving distance onmetric spaces

From now on and until the end of this section, unless otherwise stated, we assume that
X is a good topological space and that k is either a field or k = Z.

2.1 Thickening of the diagonal

Let (X , dX ) be a metric space. For a ≥ 0, x0 ∈ X and some αX to be defined in
Definition 2.1.1, set

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ba(x0) = {x ∈ X; dX (x0, x) ≤ a},
B◦
a (x0) = {x ∈ X; dX (x0, x) < a}, (here, a > 0),

�a = {(x1, x2) ∈ X × X; dX (x1, x2) ≤ a},
�◦

a = {(x1, x2) ∈ X × X; dX (x1, x2) < a}, (here, a > 0),
Z = {(x1, x2, t) ∈ X × X × R≥0; dX (x1, x2) ≤ t, t < αX },
�+ = {(x1, x2, t) ∈ X × X × R>0; dX (x1, x2) < t, t < αX }.

(2.1)

Definition 2.1.1 A metric space (X , dX ) is good if the underlying topological space
is good and moreover there exists some αX > 0 such that for all 0 ≤ a, b with
a + b ≤ αX , one has

⎧⎪⎨
⎪⎩
(i) for any x1, x2 ∈ X , Ba(x1) ∩ Bb(x2) is contractible or empty (in par-
ticular, for any x ∈ X , Ba(x) is contractible),
(ii) the two projections q1 and q2 are proper on �a ,
(iii) �a ◦ �b = �a+b.

(2.2)

Clearly, in this definition, αX is not unique. In the sequel, if we want to mention
which αX we choose, we denote the good metric space by (X , dX , αX ).

Let U be an open subset of a real C0-manifold M . Recall (see [20, Exe. III.4])
that U is locally cohomologically trivial (l.c.t. for short) in M if for each x ∈ U\U ,
(R
U (kM ))x � 0 and (R
U (kM ))x � k.

We shall say thatU is locally topologically convex (l.t.c. for short) in M if each x ∈
M admits an open neighborhood W such that there exists a topological isomorphism
φ : W ∼−→ V , with V open in a real vector space, such that φ(W ∩ U ) is convex.
Clearly, if U is l.t.c. then it is l.c.t.

The naturalmorphismkU −→ kM defines a section ofHom (kU ,kM ) � Hom (kU⊗
kU ,kM ), hence defines the morphisms:

kU −→ D′
MkU , kU −→ D′

MkU .

WhenU is l.c.t., then these morphisms are isomorphisms. If moreover,U is l.t.c., then
these sheaves are cohomologically constructible.
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We shall also encounter the hypotheses:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

The good metric space X is a C0-manifold and

a. for x ∈ X and 0 < a ≤ αX , the set B◦
a (x) is l.t.c. in X ,

b. for 0 < a ≤ αX , the set �◦
a is l.t.c. in X × X ,

c. the set �+ is l.t.c. in X × X×] − ∞, αX [.
d. For x, y ∈ X , setting Za(x, y) = Ba(x) ∩ B◦

a (y), one has
R
(X;kZa(x,y)) � 0 for x �= y and 0 < a ≤ αX .

(2.3)

Lemma 2.1.2 Let (X , dX ) be a good metric space satisfying (2.3) and let 0 < a ≤ αX .

(a) For x ∈ X, the sheaves kBa(x) and kB◦
a (x) are cohomologically constructible and

dual one to each other for the duality functor D′
X .

(b) The sheaves k�a and k�◦
a
are cohomologically constructible and dual one to each

other for the duality functor D′
X×X .

(c) The sheaves kZ and k�+ are cohomologically constructible and dual one to each
other for the duality functor D′

X×X×R
.

(d) For x ∈ X one has the isomorphism k ∼−→ R
c(B◦
a (x);ωX )

Proof (a)–(b)–(c) follow immediately from the hypothses.
(d) denote by (·)∗ the duality functor RHom (·,k). By Poincaré duality (see e.g., [20,
(3.1.8)]) one has

R
c(B
◦
a (x);ωX )∗ � RHom (kB◦

a (x),kX )

� R
(X;kBa(x)) � k.

The last isomorphism follows from the fact that Ba(x) is contractible. This completes
the proof when k is a field. Otherwise, when k = Z, use [20, Exe. I 31]. ��
The next hypothesis will be used in order to apply Theorem 1.1.6 and we shall give
in Lemma 2.1.3 below a natural criterion in order that it is satisfied.{

The good metric space X is a C∞-manifold and, for 0 < a ≤ αX ,
SS(k�a ) ∩ (T ∗

X X × T ∗X) ⊂ T ∗
X×X X × X . (2.4)

Lemma 2.1.3 Let (X , dX ) be a good metric space. Assume that X is a C∞-manifold,
the distance function f :=dX : X × X −→ R is of class C1 on W :=�◦

a\� for a ≤ αX

and the partial differentials dx f and dy f do not vanish on W. Then (2.4) is satisfied.

Proof Apply [20, Prop. 5.3.3]. ��
We shall obtain in Theorems 2.6.1 and 3.2.3 large classes of examples in which

hypotheses (2.2), (2.3) and (2.4) are satisfied.

Lemma 2.1.4 Let (X , dX ) be a good metric space.

(a) For every a, b ≥ 0, k�a ◦k�b � k�b ◦k�a .
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(b) For any 0 ≤ a, b with a + b ≤ αX ,

k�a ◦k�b � k�a+b , (2.5)

and the correspondence a �→ k�a defines a monoidal presheaf on [0, αX ] with
values in the monoidal category (Db(kX×X ), ◦).

Proof

(a) Recall notations (1.3). Since v−1k�a � kv−1(�a)
� k�a , the result follows.

(b) We shall follow the notations of (1.1) (with Xi = X for all i). Setting�a ×2�b =
q−1
12 �a ∩ q−1

23 �b, we have

q−1
12 k�a

L⊗ q−1
23 k�b � k�a×2�b .

The map q13 : �a ×2 �b −→ �a+b is proper, surjective and has contractible fibers
by Hypothesis (2.2). Therefore, Rq13!k�a×2�b � k�a+b by Lemma 1.1.3. The
other conditions in Definition 1.2.2 are easily checked. ��
We shall refine Definition 1.3.1.

Definition 2.1.5 Let (X , dX , αX ) be a good metric space.

(a) Ametric thickening kernel of the diagonal is a thickening kernel whose restriction
to [0, αX ] is isomorphic to the monoidal presheaf a �→ k�a on [0, αX ].

(b) A metric bi-thickening kernel is a bi-thickening kernel whose restriction to R≥0
is a metric thickening kernel.

When there is no risk of confusion, (that is, almost always) we shall simply call a
metric thickening kernel, “a thickening”.

Note that if the metric thickening (or bi-thickening) exists, then it is unique up to
isomorphism. This last isomorphism is unique in the sense of Remark 1.3.2.

Theorem 2.1.6 Let (X , dX , αX ) be a good metric space. There exists a metric thicken-
ingK of the diagonal. Moreover, for each a ≥ 0, the two projections q1, q2 : X×X −→
X are proper on suppKa.

Proof The first part of the statement follows from Lemma 2.1.4 and Theorem 1.2.3.
The properness of q1 and q2 on suppKa for 0 ≤ a ≤ α follows from Hypothesis (2.2).
The general case follows from the construction of the kernel. ��
Corollary 2.1.7 In the preceding situation, let Y be a good topological space and let
L ∈ Db(kX×Y ). Then

Ka ◦ L ∼−→ Ka
np◦ L for a ≥ 0.

(See (1.12) for the notation
np◦ .)
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Non proper composition for the distance kernels

Proposition 2.1.8 Let (X , dX , αX ) be a good metric space satisfying (2.3) and (2.4).
Then for a ≥ 0, and for smooth real manifolds Xi (i = 2, 3) setting X = X1, we have
for any Li ∈ Db(kXi j ) with i = 1, 2, j = i + 1,

Ka ◦(L1
np◦ L2) � (Ka ◦ L1)

np◦ L2.

Proof

(i) Assume first that 0 ≤ a < αX . In this case, Ka = k�a is cohomologically
constructible and q1 is proper on its support. Using hypothesis (2.4), we may
apply Theorem 1.1.6.

(ii) Assume that the result has been proved for Kb (for any kernels L1 and L2) for
some b ≥ 0 and let us prove that it is true for Kb+a as soon as 0 ≤ a < αX . We
have

Kb+a ◦(L1
np◦ L2) � Kb ◦(Ka ◦(L1

np◦ L2)) � Kb ◦((Ka ◦ L1)
np◦ L2)

� (Kb ◦(Ka ◦ L1))
np◦ L2 � (Ka+b ◦ L1)

np◦ L2

��

Thickening and convolution

In [22], the space X is the Euclidian space R
n and the composition k�a ◦ is replaced

by the convolution kBa� where Ba is the closed ball of center 0. One can proceed
similarly if the good metric space (X , dX ) is a topological group.

Definition 2.1.9 A good metric group (X , dX ,m, e), or simply (X , dX ) for short, is a
good metric space (X , dX ) which is a topological group for the topology induced by
the distance, with multiplication m and neutral element e, and such that the distance
is bi-invariant. In other words,

dX (x1, x2) = dX (x1x3, x2x3) = dX (x3x1, x3x2) for x1, x2, x3 ∈ X .

One defines the convolution of F,G ∈ Db(kX ) by

F�G := Rm!(F � G).

Proposition 2.1.10 Assume that X is a good metric group. Let Ba be the closed ball
of radius a centered at the unit e. There is a canonical isomorphism of functor

k�a ◦ � kBa�.
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Proof Consider the map v : X × X −→ X × X , (x1, x2) �→ (x1x
−1
2 , x2). One has

�a = v−1q−1
1 (Ba), v−1 ◦ q−1

2 � q−1
2 and m ◦ v = q1. Therefore, for F ∈ Db(kX ),

kBa�F = Rm!(kBa � F)

� Rm!Rv!(v−1q−1
1 kBa ⊗ q−1

2 F) � k�a ◦ F .

We have used Rv!(v−1q−1
1 kBa ⊗q−1

2 F) � q−1
1 kBa ⊗Rv!q−1

2 F � kBa �q−1
2 F which

follows from v! ◦ v−1 � id. ��

2.2 Bi-thickening of the diagonal

In this subsection, (X , dX , αX ) is a goodmetric space satisfying (2.3).Whennecessary,
we denote by Xi (i = 1, 2, . . . ) various copies of X .

For a ≥ 0, we define the functors La and Ra by

La = �Ka = Ka ◦ = Rq1!
(
Ka

L⊗ q−1
2 ( • )

)
, Ra = �Ka = Rq2∗RHom

(
Ka, q

!
1 ( • )

)
.

(2.6)

Recall that the functor Ra is right adjoint to the functor La (see [20, Proposition
3.6.2]).

Lemma 2.2.1 Let (X , dX , αX ) be a good metric space satisfying (2.3). For 0 < a ≤
αX , k�a ◦(k�◦

a
⊗ q−1

2 ωX ) � k�.

Proof Set Sa = q−1
12 �a ∩ q−1

23 �◦
a . We have

k�a ◦k�◦
a

= Rq13!
(
q−1
12 k�a ⊗ q−1

23 k�◦
a

) � Rq13!kSa .

Let (x1, x3) ∈ X1 × X3 and set Za = q−1
13 (x1, x3) ∩ Sa . Then Za = Ba(x1) ∩ B◦

a (x3)
and it follows from the hypothesis that (Rq13!kSa )(x1,x3) � R
(X2;kZa ) � 0 for
x1 �= x3. Therefore, Rq13!kSa is supported by � ⊂ X13 and we get

Rq13!(kSa ⊗ q−1
2 ωX ) � Rq13!((kSa ⊗ q−1

13 k�) ⊗ q−1
2 ωX )

� Rq13!(kSa∩q−1
13 �

⊗ q−1
2 ωX ) ∼−→ k�.

The last morphism is associated with the morphism kSa∩q−1
13 �

⊗ q−1
2 ωX −→ q !

13 k�

which is deduced from the morphism kSa∩q−1
13 �

−→ q−1
13 k�. (Recall that Sa ∩ q−1

13 � is

open in q−1
13 �.) It is an isomorphism by Lemma 2.1.2 (d). ��

For 0 ≤ a ≤ αX , set Ka = k�a and for 0 < a ≤ αX , set K−a = k�◦
a
⊗ q−1

2 ωX .

Lemma 2.2.2 Let (X , dX , αX ) be a good metric space satisfying (2.3). The map a �→
Ka defines a monoidal presheaf on [−αX , αX ] with values in the monoidal category
(Db(kX×X ), ◦).
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Proof

(i) For 0 < b ≤ a, k�a ◦(k�◦
b
⊗q−1

2 ωX ) � k�a−b . This follows from Lemmas 2.1.4
and 2.2.1 and k�a ◦k�◦

b
� k�a−b ◦k�b ◦k�◦

b
.

(ii) For 0 < a, b, a + b < αX , k�◦
b
◦(k�◦

a
⊗ q−1

2 ωX ) � k�◦
a+b

. This follows from

(i), Lemma 2.1.4 and (k�◦
b
⊗ q−1

2 ωX ) ◦(k�◦
a
⊗ q−1

2 ωX )
L⊗ k�a+b � k�.

(iii) For 0 < b ≤ a ≤ αX , k�◦
a
◦k�b � k�◦

a−b
. Indeed, apply k�◦

a−b

L⊗ q−1
2 ωX ◦ to

both sides of (ii). ��
Applying Theorem 1.2.3, we get:

Proposition 2.2.3 Let (X , dX , αX ) be a good metric space satisfying (2.3). Then K
extends as a metric bi-thickening kernel and, for 0 < a ≤ αX , one has K−a �
k�◦

a
⊗ q−1

2 ωX . Moreover, Ra � K−a ◦ for a ≥ 0.

There is indeed a better result. Set

I = (−αX , αX ). (2.7)

Theorem 2.2.4 Let (X , dX , αX ) be a good metric space satisfying (2.3). There exists
an object K d ∈ Db(kX×X×I ) and a distinguished triangle

k{dX (x,y)<−t} ⊗ q−1
2 ωX −→ Kd −→ k{dX (x,y)≤t}

+1−−→
ψ

. (2.8)

In particular, K d |{t=a} � Ka for a ∈ I .

Proof We shall mimick the construction in [17, Exa. 3.10]. We have the isomorphism

RHom (k�×{t=0},kX×X×R) � k�×{t=0} ⊗ q−1
2 ω⊗−1

X [−1]. (2.9)

Indeed, k�×{t=0} � k� � k{t=0} and it follows from [20, Prop. 3.4.4] that
D′

X×X×R
(k��k{t=0}) � D′

X×Xk��D′
R
k{t=0}.Moreover,D′

X×Xk� � δX !δ !
X kX×X �

k� ⊗ q−1
2 ωX and D′

R
k{t=0} � k{t=0} [−1].

By Lemma 2.1.2, we also have the isomorphism

RHom (k{dX (x,y)≤−t},kX×X×R) � k{dX (x,y)<−t} t ∈ (−a, 0). (2.10)

These isomorphisms together with themorphism k{dX (x,y)≤−t} −→ k�×{t=0} induce
the morphism k�×{t=0} ⊗ q−1

2 ω⊗−1
X [−1] −→ k{dX (x,y)<−t}. Hence, we obtain

k{dX (x,y)≤t} −→ k�×{t=0} −→ k{dX (x,y)<−t} ⊗ q−1
2 ωX [+1]

Denoting by ψ the composition, we get the distinguished triangle (2.8). ��
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Remark 2.2.5 It would be possible to extend Kd to a sheaf Kdist ∈ Dlb(kX×X×R) by

using Theorem 1.2.3 and using the monoidal category (Db(kX×X×R),
+◦), where

+◦ is

an operation adapted from [31], composition with respect to X and convolution with
respect to R.

2.3 Properties of the interleaving distance

We shall extend to metric spaces a few results of [22, § 2.2]. In this section, (X , dX )

is a good metric space and K is the metric thickening of the diagonal. Recall the
interleaving distance distK of Definition 1.3.4. We set

distX = distK. (2.11)

Lemma 2.3.1 Let F ∈ Db(kX ) and let a ≥ 0. Then

R
(X;Ka ◦ F) ∼−→ R
(X; F) and R
c(X;Ka ◦ F) ∼−→ R
c(X; F).

Proof It follows from the definition of the functor Ka that is it enough to check these
isomorphisms for 0 ≤ a ≤ αX , thus replacing Ka with k�a . Consider the Cartesian
diagram

X × X
q1 q2

X

q ′
2

X

q ′
1pt

Using the fact that q1 and q2 are proper on �a we get the isomorphisms

R
(X;k�a ◦ F) � Rq ′
2∗Rq1!(k�a

L⊗ q−1
2 F) � Rq ′

2∗Rq1∗(k�a

L⊗ q−1
2 F)

� Rq ′
1∗Rq2∗(k�a

L⊗ q−1
2 F) � Rq ′

1∗Rq2!(k�a

L⊗ q−1
2 F)

� Rq ′
1∗(Rq2!k�a

L⊗ F)

� Rq ′
1∗F � R
(X; F).

Here we use the isomorphism Rq2!k�a � kX which follows from the fact that the
fibers of q2 : �a −→ X are compact and contractible.

A similar proof holds for R
c(X; F). ��
Proposition 2.3.2 Let F,G ∈ Db(kX ). If distX (F,G) < +∞, then R
(X; F) �
R
(X;G) and R
c(X; F) � R
c(X;G).

Proof This follows immediately from the definition of the distance and Lemma 2.3.1.
��
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Proposition 2.3.3 Let F ∈ Db(kX )andassume that supp(F) ⊂ B(x0, a)witha ≤ αX .
Set M = R
(X; F) and denote by Mx0 the sky-scraper sheaf at {x0} with stalk M.
Then distX (F, Mx0) ≤ a.

We shall mimick the proof of [22, Exa. 2.4].

Proof We have

k�a ◦ Mx0 � MB(x0,a),

the constant sheaf on B(x0, a) with stalk M extended by 0 outside of B(x0, a).
Denote by aX : X −→ pt the uniquemap from X to pt. Themorphism a−1

X RaX ∗F −→
F defines the map MX −→ F and F being supported in B(x0, a), we get the morphism
g : k�a ◦ Mx0 � MB(x0,a) −→ F .

On the other hand, we have

(k�a ◦ F)x0 � R
(q−1
1 (x0);k�a

L⊗ q−1
2 F)

� R
({x0} × X; {x0} × kB(x0,a)

L⊗ q−1
2 F)

� R
(B(x0, a); F) � M

(2.12)

which defines f : k�a ◦ F −→ Mx0 . One easily checks that f and g satisfy the com-
patibility conditions in Definition 1.3.4. Therefore distX (F, Mx0) ≤ a. ��
In particular, a non-zero object can be a-isomorphic (see Definition 1.3.4) to the zero
object.

Corollary 2.3.4 Let F,G ∈ Db(kX ) and assume that there exists a ball Bx0(a) with
a ≤ αX which contains the supports of F and G. Then distX (F,G) < ∞ if and only
if R
(X; F) � R
(X;G).

Proof

(i) Assume M := R
(X; F) � R
(X;G). Then

distX (F,G) ≤ distX (F, Mx0) + distX (G, Mx0)

and it remains to apply Proposition 2.3.3.
(ii) The converse assertion is nothing but Proposition 2.3.2. ��

Corollary 2.3.5 Consider two distinguished triangles F1 −→ F2 −→ F3
+1−→ and G1 −→

G2 −→ G3
+1−→ in Db(kX ). Assume that there exists a ball Bx0(a) with a ≤ αX

which contains the supports of all sheaves Fi ,Gi (i = 1, 2, 3) and also assume that
distX (Fi ,Gi ) < ∞ for i = 1, 2. Then distX (F3,G3) < ∞.

Proof It follows from Corollary 2.3.4 that R
(X; Fi ) � R
(X;Gi ) for i = 1, 2.
Since the functor R
(X; • ) is triangulated, this isomorphism still holds for i = 3.
Then the result follows again from Corollary 2.3.4. ��
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Locally constant sheaves

Recall that an object L ∈ Db(kX ) is locally constant (resp. constant) if, for all j ∈ Z,
H j (L) is a locally constant (resp. constant) sheaf.

Lemma 2.3.6 Let L ∈ Db(kX ) and assume that L is locally constant. Let a ≥ 0. Then
Ka ◦ L ∼−→ L.

Proof We may choose a such that a < αX and replace Ka with k�a . It is then enough
to prove that, for x ∈ X , the natural morphism (k�a ◦ L)x −→ Lx is an isomorphism.
We may also assume that L is a constant sheaf in a neighborhood of Ba(x). Then
by (2.12), we get

(k�a ◦ L)x � R
(Ba(x); L) � Lx .

��
Proposition 2.3.7 Let F,G ∈ Db(kX ). Assume that F is locally constant and that
distX (F,G) is finite. Then F is a direct summand of G. In particular, if both F and
G are locally constant, then F � G.

Proof By the hypothesis and Lemma 2.3.6 we have morphisms F −→ G −→ F such
that the composition is an isomorphism. ��
It follows that the interleaving distance is not really interesting when considering
locally constant sheaves.

2.4 The stability theorem

Let X be a good topological space and let (Y , dY ) be a good metric space. We denote
by KY

a the kernel on Y ×Y . It defines an endofunctor of Db(kX×Y ), K �→ K ◦KY
a . We

then get a pseudo-distance on Db(kX×Y ) that we call a relative distance and denote by
distX×Y/X (see Example 1.3.3).

Theorem 2.4.1 (The stability theorem) Let X be a good topological space and let
(Y , dY ) be a good metric space. Let K1, K2 ∈ Db(kY×X ) and let F ∈ Db(kX ). Then

(a) distY (K1 ◦ F, K2 ◦ F) ≤ distY×X/X (K1, K2).
(b) Assume moreover that X and Y are C∞-manifolds and that (Y , dY ) satisfies (2.3)

and (2.4). Then distY (K1
np◦ F, K2

np◦ F) ≤ distY×X/X (K1, K2).

Proof

(a) We have

KY
a ◦(Ki ◦ F) � (KY

a ◦ Ki ) ◦ F, i = 1, 2.

Then the result follows immediately from Definition 1.3.4.
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(b) The proof is the same as in (a) after replacing ◦with np◦ and using Proposition 2.1.8.

��
Let X and Y be as above and let f1, f2 : X −→ Y be two continuous maps. As usual,

one sets

dist( f1, f2) = sup
x∈X

dY ( f1(x), f2(x)).

Corollary 2.4.2 ((The metric stability theorem, see [22, Th. 2.7])) Let X be a good
topological space and let Y be a ( real, finite dimensional) normed vector space, dY
the associated distance. Then distY (R f1!F,R f2!F) ≤ dist( f1, f2). If X is a C∞-
manifold and Y is an Euclidian vector space, the same result holds with R f! replaced
with R f∗.

Proof Let a = dist( f1, f2). Of course, we may assume that a < ∞. Denote by 
i the
graph of fi in Y × X . Then


 fi ⊂ �Y
a ◦ 
 f j , i, j ∈ {1, 2}. (2.13)

Moreover, for f = f1 or f = f2, one has

k�Y
a

◦k
 f � k�Y
a ◦ 
 f

. (2.14)

Set Ki = k
 fi
(i = 1, 2). By (2.13) and (2.14), we get morphisms k�Y

a
◦ K f1 −→ K f2

and k�Y
a

◦ K f2 −→ K f1 satisfying the conditions of Definition 1.3.4. Therefore,

distY×X/X (K f1, K f2) ≤ a = dist( f1, f2). (2.15)

Since R fi !F � Ki ◦ F and R fi ∗F � Ki
np◦ F , the result follows from Theorem 2.4.1

since hypotheses (2.3) and (2.4) are satisfied if Y is an Euclidian vector space. ��
Remark 2.4.3 In [22, Th. 2.7] the proof for R f∗ and R f! is almost the same and X is
only assumed to be a good topological space. The reason why the non proper case is
easier in the situation of [22] is that these authors use the convolution functor kBa�

instead of k�a ◦.
More precisely, consider the diagram in which Y is a real finite dimensional normed

vector space, Y1 and Y2 are two copies of Y and s is the map (y1, y2) �→ y1 + y2, s13
is the map (y1, x, y2) �→ (y1 + y2, x):

Y1 × X × Y2
p12 s13

p23

Y12

s

Y × X

p1
p2

X × Y2

q1
q2

Y X Y2.
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Let F ∈ Db(kX ), K ∈ Db(kY2×X ) and denote by Ba the closed ball of Y1 with center
0 and radius a ≥ 0. Set for short kB := kBa . Then

kB�(K
np◦ F) � Rs∗(kB � Rq2∗(K

L⊗ q−1
1 F))

� Rs∗Rp12∗(kB � (K
L⊗ q−1

1 F))

� Rp1∗Rs13∗(kB � (K
L⊗ q−1

1 F))

� Rp1∗Rs13∗((kB � K )
L⊗ s−1

13 p−1
2 F)

� Rp1∗(Rs13∗(kB � K )
L⊗ p−1

2 F) � (kB�K )
np◦ F .

Here, the 2nd isomorphism follows from the fact that kB being cohomologically
constructible, the functor kB � • commutes with (non proper) direct images thanks
to [20, Prop. 3.4.4]. The 5th isomorphism follows from the fact that s is proper on
supp(kB � K ).

2.5 Lipschitz kernels

A general setting

We consider two good metric spaces (X , dX ) and (Y , dY ). To avoid confusion, we
denote by αX and αY the constants appearing in (2.2), by �X

a and �Y
a the thickenings

of the diagonals, by KX
a and KY

a the associated thickening kernels and by ρX
a,b and ρY

a,b

the restriction functors. Recall the notation for F ∈ Db(kX )

�K (F) = K ◦ F .

Definition 2.5.1 Let δ > 0 and let K ∈ Db(kY×X ). We say that K is a δ-Lipschitz
kernel from X to Y if there exists ρ > 0 such that ρ ≤ αX and δρ ≤ αY and there are
morphisms of sheaves σa : KY

δa ◦ K −→ K ◦KX
a for 0 ≤ a ≤ ρ satisfying the following

compatibility relations:

(i) for 0 ≤ a ≤ b ≤ ρ, the diagram of sheaves commutes:

KY
δb ◦ K

ρY
δa,δb

σb
K ◦KX

b

ρX
a,b

KY
δa ◦ K

σa
K ◦KX

a ,

(2.16)
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(ii) for 0 ≤ a, b and a + b ≤ ρ, the diagram of sheaves commutes:

KY
δ(a+b) ◦ K

KY
δb ◦ σa

σa+b

KY
δb ◦ K ◦KX

a
σb ◦KX

a
K ◦KX

a+b. (2.17)

A Lipschitz kernel is a δ-Lipschitz kernel for some δ > 0.

Note that thanks to the hypothesis that a ≤ αX , we could have written k�X
a
instead of

KX
a and similarly with Y instead of X . We have chosen to use the notation K thanks to

the next lemma.

Remark 2.5.2 Of course, a Lipschitz kernel from X to Y is not necessarily a Lipschitz
kernel from Y to X . However, when there is no risk of confusion, we shall simply call
K “a Lipschitz kernel”.

Lemma 2.5.3 If K is a Lipschitz kernel, then for all a ≥ 0 there are morphisms of
sheaves σa : KY

δa ◦ K −→ K ◦KX
a and moreover (2.16) and (2.17) are satisfied for all

a, b ≥ 0.

Sketch of proof Assume we have constructed the morphisms σa for a ≤ A and let
0 ≤ b ≤ ρ. One defines the morphism

σa+b : KY
δ(a+b) ◦ K � k�Y

δb
◦KY

δa ◦ K

−→ k�Y
δb

◦ K ◦KX
a

−→ K ◦k�X
b

◦KX
a � K ◦KX

a+b.

The fact that σa is well-defined and the verification of the compatibility relations (2.16)
and (2.17) are left to the reader. ��

The next result is essentially a reformulation in the language of kernels of [14,
Th. 4.3].

Theorem 2.5.4 (The functorial Lipschitz theorem) Let (X , dX ) and (Y , dY ) be good
metric spaces and let K ∈ Db(kY×X ) be a δ-Lipschitz kernel from X to Y . Let F1, F2 ∈
Db(kX ).

(a) One has distY (K ◦ F1, K ◦ F2) ≤ δ · distX (F1, F2).
(b) Assume moreover that X and Y are C∞-manifolds satisfying (2.3) and (2.4).

Then distY (K
np◦ F1, K

np◦ F2) ≤ δ · distX (F1, F2).

Proof

(a) Let F1, F2 ∈ Db(kX ) and assume that F1 and F2 are a-isomorphic. Hence, there
are morphisms

f : KX
a ◦ F1 −→ F2, g : KX

a ◦ F2 −→ F1
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satisfying the conditions of Definition 1.3.4. Applying the functor K ◦ we get the
morphisms given by the dotted arrows

K ◦KX
a ◦ F1

�K ( f )
K ◦ F2

KY
δa ◦ K ◦ F1

σa

K ◦KX
a ◦ F2

�K (g)
K ◦ F1

KY
δa ◦ K ◦ F2

σa

Now consider the diagram

K ◦KX
2a ◦ F1

�K (La( f ))
K ◦KX

a ◦ F2
�K (g)

K ◦ F1.

KY
δa ◦ K ◦KX

a ◦ F1
LY

δa(�K ( f ))

LX
a (σa)

KY
δa ◦ K ◦ F2

σa

KY
2δa ◦ K ◦ F1

LY
δa(σa)

The two diagrams with dotted arrows commute by the definition of the dotted
arrows and the square diagram commutes by Definition 2.5.1 (i). The composition
of the two vertical arrows is given by σ2a by Definition 2.5.1 (ii). The composition
of the two horizontal arrows is given by ρX

0,2a . Therefore, the composition of the

two dotted arrows is given by ρX
0,2aσ2a = ρY

0,2δa . The same result holds when
interchanging the roles of F1 and F2.

(b) The proof is the same as in (a) after replacing ◦with np◦ and using Proposition 2.1.8.
��

In particular, we get:

Corollary 2.5.5 Assume that K ∈ Db(kY×X ) is a δ-Lipschitz kernel from X to Y
and that there exists a δ−1-Lipschitz kernel L ∈ Db(kX×Y ) from Y to X such that
�L ◦ K � idDb(kX ). Then for F1, F2 ∈ Db(kX ), one has distY (K ◦ F1, K ◦ F2) =
δ · distX (F1, F2).

If X and Y are C∞-manifolds satisfying (2.3) and (2.4), then the same result holds

for K ◦ F replaced with K
np◦ F.

Lipschitz correspondences

As above, we denote by Xi and Yi (i = 1, 2) two copies of X or Y . We keep the
assumptions and notations of the beginning of this section.
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We assume to be given a subset S of Y × X and consider the diagram

Y12 × X1
p12 p23

p13

Y2 × X12
q12 q23

q13�Y
b ⊂ Y12 S ⊂ Y2 × X1 �X

a ⊂ X12

Y1 × X1 Y2 × X2

(2.18)

We set

�Y
b ×Y S = p−1

12 (�Y
b ) ∩ p−1

23 (S) ⊂ Y12 × X1,

S ×X �X
a = q−1

12 (S) ∩ q−1
23 (�X

a ) ⊂ Y2 × X12.

Note that �Y
b ◦ S = p13(�Y

b ×Y S) and S ◦ �X
a = q13(S ×X �X

a ) are contained in
Y1×X1 = Y2×X2 = Y ×X . We shall consider one of the hypotheses (2.19) or (2.20)
below for some constants ρ, δ > 0 such that ρ ≤ αX and δρ ≤ αY .

⎧⎪⎨
⎪⎩
(a) S is a closed subset of Y × X ,
(b) the fibers of the projection p13 : �Y

b ×Y S −→ �Y
b ◦ S are contractible or empty

for 0 ≤ b ≤ αY ,
(c) S ◦ �X

a ⊂ �Y
δa ◦ S for a ≤ ρ.

(2.19)

⎧⎨
⎩
(a) S is a closed subset of Y × X ,
(b) there a closed embedding ι : Y2 × X12 ↪→ Y12 × X1 such that p13 ◦ ι = q13,
(c) ι(S ×X �X

a ) ⊂ �Y
δa ×Y S for a ≤ ρ.

(2.20)

Theorem 2.5.6 Let S ⊂ Y × X and consider constants ρ, δ > 0 such that ρ ≤ αX

and δρ ≤ αY . One makes either hypothesis (2.19) or hypothesis (2.20). Then kS ∈
Db(kY×X ) is a δ-Lipschitz kernel from X to Y .

Proof (i) It is enough to construct a natural morphism of sheaves

k�Y
δa

◦kS −→ kS ◦k�X
a
for a ≤ ρ (which implies δa ≤ αY ). (2.21)

(ii)–(a) Assume (2.19). Since the closed set �Y
δa ◦ S contains the closed set S ◦ �X

a ,
we have a morphism of sheaves

k�Y
δa ◦ S −→ kS ◦�X

a
. (2.22)

By Lemma 1.1.3 and the hypothesis, there is an isomorphism and a morphism

k�Y
δa ◦ S � k�Y

δa
◦kS, kS ◦ �X

a
−→ kS ◦k�X

a
.

Together with (2.22), this defines (2.21).
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(ii) –(b) Assume (2.20). By this hypothesis, there is a natural morphism

k�Y
δa×Y S

−→ ι∗kS×X�X
a
. (2.23)

Now remark that

kS×X�X
a

� q−1
12 kS

L⊗ q−1
23 k�X

a
, k�Y

δa×Y S
� p−1

12 k�X
a

L⊗ p−1
23 kS .

By (2.23), we get the morphisms

k�Y
δa

◦kS � Rp13!(p−1
12 k�X

a

L⊗ p−1
23 kS) � Rp13!k�Y

δa×Y S

−→ Rp13!ι∗kS×X�X
a

� Rp13!ι∗(q−1
12 kS

L⊗ q−1
23 k�X

a
)

� Rq13!(q−1
12 kS

L⊗ q−1
23 k�X

a
) � kS ◦k�X

a
.

We have thus constructed the morphism (2.21). ��
Let f : X −→ Y be a continuous map. We set 
 f = {( f (x), x) ∈ Y × X}.

Corollary 2.5.7 Let f : (X , dX ) −→ (Y , dY ) be a δ-Lipschitz map. Then k
 f is a δ-
Lipschitz kernel from X to Y .

Proof

(i) We shall check (2.19) with S = 
 f . Of course, this set is closed in Y × X .
(ii) Let us check (2.19) (b). One has

�Y
b ×Y S = {(y1, y2, x) ∈ Y × Y × X; dY (y1, y2) ≤ b, y2 = f (x)}.

For (y1, x) ∈ �Y
b ◦ S, q−1

13 (y1, x) ∩ �Y
b ×Y S is the set (y1, y2 = f (x), x) if

dY (y1, y2) ≤ b and is empty otherwise.
(iii) Let us check (2.19) (c). One has

�Y
δa ◦ S = {(y, x) ∈ Y × X; ∃y′ ∈ Y , dY (y, y′) ≤ δa, y′ = f (x)},

S ◦ �X
a . = {(y, x) ∈ Y × X; ∃x ′ ∈ X , dX (x, x ′) ≤ a, y = f (x ′)}.

Let (y, x) ∈ S ◦ �X
a and let x ′ ∈ X be such that dX (x, x ′) ≤ a, y = f (x ′). Set

y′ = f (x). Then dY (y, y′) ≤ δa since f is δ-Lipschitz and therefore (y, x) ∈ �Y
δa ◦ S.

��
Example 2.5.8 Let X = S

1, Y = R
2 and denote by S the graph of the embedding

j : S
1 ↪→ R

2. Then kS ∈ Db(kY×X ) is a δ-Lipschitz kernel from X to Y with δ = π√
2

and defines a fully faithful functor.

Corollary 2.5.9 Let (X , dX ) and (Y , dY ) be good metric spaces and let f : X −→ Y be
a δ-Lipschitz map. Let F1, F2 ∈ Db(kX ).
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(a) One has distY (R f!F1,R f!F2) ≤ δ · distX (F1, F2).
(b) If moreover, X and Y are C∞-manifolds satisfying hypotheses (2.3) and (2.4),

then
distY (R f∗F1,R f∗F2) ≤ δ · distX (F1, F2).

Proof First remark that for every F ∈ Db(kX ), R f!F � k
 f ◦ F and R f∗F �
k
 f

np◦ F . Then apply Corollary 2.5.7 and Theorem 2.5.4. ��

2.6 Some elementary examples

Vector spaces

The interleaving distance for sheaves on a (finite dimensional) real normed vector
space has been studied with great details in [22] and in fact this paper is a special case
and a guide for the present one. In loc. cit. the composition k�a ◦ was replaced by
the convolution kBa� which is equivalent (see Proposition 2.1.10). When the norm
is not Euclidian, we get an example where the whole theory developed here applies
although the metric space is not associated with a Riemannian manifold.

The next result is obvious.

Proposition 2.6.1 Let X = V be a real n-dimensional Euclidian vector space and let
dX be the associated distance. Then (X , dX ) satisfies hypotheses (2.2), (2.3) and (2.4).

In the situation of Proposition 2.6.1, the bi-thickening kernel is given by

Ka �
{
k�a if a ≥ 0,

k�◦−a
[n] if a < 0.

More precisely, in this situation, the sheaf Kdist is described, up to isomorphism, in
[17, Exa. 3.11] by the distinguished triangle in Db(kRn×Rn×R):

k{|x−y|<−t}[n] −→ Kdist −→ k{|x−y|≤t}
+1−→

The real line

Let X = R be the real line. Recall that, k being a field, one has an isomorphism

F �
⊕
j

H j (F) [− j] for F ∈ Db(kX ). (2.24)

Hence, the study of objects of Db(kX ) is reduced to that of objects of Mod(kX ). But,
as it is well-known, there exist non zero morphisms between objects concentrated in
different degrees.

Constructible sheaves with compact support on R (over a field) are classified via
the famous theorem of Crawley-Boevey [10]. See also [16] for a formulation in the
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language of constructible sheaves and see [22, Th. 1.17] for the case of not necessarily
compactly supported sheaves. Distances on such sheaves are studied with great details
in [3]. Recall that in this setting the thickening of the identity is provided by the
following family of endofunctors of Db(kR), kBa�, a ≥ 0, where Ba = [−a, a].

2.7 Example: the Fourier–Sato transform

Consider first the topological n-sphere (n > 0) defined as follows. Let V be a real
vector space of dimension n + 1, set V̇ = V\{0} and S := V̇/R

+ where R
+ is the

multiplicative group R>0. Define similarly the dual sphere S∗, starting with V
∗. The

sets

P = {(y, x) ∈ S∗ × S; 〈y, x〉 ≥ 0}, I = {(y, x) ∈ S∗ × S; 〈y, x〉 > 0},
(2.25)

are well-defined. We define the kernel

KI = kI
L⊗ (ωS∗ � kS). (2.26)

Note that KI � RHom (kP , ωS∗ � kS), which is in accordance with [17, eq (1.21)].
Moreover, KI � kI [n] up to the choice of an orientation on S

∗.
The Fourier-Sato transform F∧ and its inverse F∨ are the functors

F∧ := kP ◦: Db(kS) Db(kS∗) : ◦ KI := F∨ (2.27)

Theorem 2.7.1 (see [29]) The functor F∧ and the functor F∨ are equivalences of
categories quasi-inverse to each other.

We shall give a proof of this result at the same time as we shall prove Theorem 2.7.4
below.

Now,we consider the n-sphereS
n of radius 1 embedded in the Euclidian spaceR

n+1

and endowed with its canonical Riemannian metric. Denoting by || · || the Euclidian
norm on R

n+1, the map

R
n+1 \ {0} −→ S

n, x �→ x/||x ||

identifies the topological sphere Sn = (Rn+1 \ {0})/R
+ and the Euclidian sphere S

n .
The isomorphism R

n � R
n∗ induces the isomorphism S

n � S
n∗ and we shall

identify these two spaces. When there is no risk of confusion, we write for short
S := S

n . Recall that (using the notations defined in (3.8)):

rinj(S
n) = π, rconv(S

n) = π/2.

The next result is obvious and is also a corollary of Theorem 3.2.3.
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Proposition 2.7.2 The metric space S satisfies (2.2), (2.3) and (2.4) when choosing
αS < π/2.

In particular, S
n admits a bi-thickening {Lb}b∈R.

Lemma 2.7.3 For 0 < a ≤ b ≤ π/2, one has k�◦
a
◦k�b [n] � k�b−a .

Proof Consider the diagram

S × S × S

q12 q23
q13

�◦
a ⊂ S × S S × S S × S ⊃ �b

For x1, x3 ∈ S, set for short

Pb
x3 = �b ∩ (S × {x3}), I ax1 = �◦

a ∩ ({x1} × S).

Denote by q̃13 the restriction of q13 to �◦
a ×S �b. Then

q̃−1
13 (x1, x3) = {x2 ∈ S; dS(x1, x2) < a, dS(x2, x3) ≤ b}.

In other words, q̃−1
13 (x1, x3) is the intersection of an open ball of radius a and a closed

ball of radius b with a ≤ b. It follows that

R
c(I
a
x1 ×S Pb

x3;kS×S×S) =
{
k [−n] if dS(x1, x3) ≤ b − a,

0 otherwise.

��
Theorem 2.7.4 The equivalence F∧ given by Theorem 2.7.1 induces an isometry

(Db(kS), distS) ∼−→ (Db(kS∗), distS∗).

Proof of both Theorems 2.7.1 and 2.7.4. Let us identify S
n and the dual sphere S

n∗.
Then the sets P and I of (2.25) may be also defined as:

P = {(x, y) ∈ S × S; dS(x, y) ≤ π/2}, I = {(x, y) ∈ S × S; dS(x, y) < π/2}.
(2.28)

Since k�π/2 � k�π/4 ◦k�π/4 we have kP � Kπ/2. (It was not possible to deduce
directly this result form (2.28) since αS < π/2.) Therefore kP ◦ is an isometry and
the inverse of kP is given by K−π/2 which is isomorphic to KI . ��
Remark 2.7.5 A similar result holds for the Radon transform on real projective spaces.
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3 The interleaving distance associated with a Hamiltonian isotopy

3.1 General case

Let us briefly recall the main result of [17] § 3. Consider a real C∞-manifold X , its
cotangent bundle πX : T ∗X −→ X endowed with the Liouville form αX and an open
interval I of R containing 0. Set as above Ṫ ∗X = T ∗X \ T ∗

X X , where T ∗
X X is the

zero-section, and still denote by πX : Ṫ ∗X −→ X the projection. When there is no risk
of confusion, we may write π instead of πX .

Assume to be given a real C∞-function h : Ṫ ∗X × I −→ R homogeneous of degree
1 with respect to the fiber variable. Let �h denote the flow associated with the Hamil-
tonian vector field Hh . We assume that�h is well-defined on the open interval I ⊂ R.
Hence,

�h : Ṫ ∗X × I −→ Ṫ ∗X (3.1)

and [17, hypothesis (3.1)] is satisfied, that is, setting ϕh,t = �h(·, t), ϕh,t is a homo-
geneous symplectic isomorphism of Ṫ ∗X for each t ∈ I and ϕh,0 = idṪ ∗X . To �h ,
one associates

v�h = ∂�h

∂t
: Ṫ ∗X × I −→ T Ṫ ∗X .

One recovers h by h = 〈αX , v�h 〉.
Denote by �h ⊂ Ṫ ∗X × Ṫ ∗X × T ∗ I the smooth conic Lagrangian manifold

associated with �h (see [17, Lem. A.2]):

�h = {(�h(x, ξ, t), (x,−ξ), (−h(�h(x, ξ, t), t))); (x, ξ) ∈ Ṫ ∗X , t ∈ I }.
(3.2)

The main result of loc. cit. (see [17, Th. 3.7]) is the existence of an object Kh ∈
Dlb(kX×X×I ) (denoted K therein) characterized by the two properties:

SS(Kh) ⊂ �h ∪ T ∗
X×X×I (X × X × I ) and Kh |{t=0} � k�. (3.3)

Now we assume that

{h is not time-depending, homogeneous of degree 1 with respect to the fiber
variable and the hamiltonian flow � is well-defined on Ṫ ∗X × R.

(3.4)

Note that since h is not time-depending, the hamiltonian flow � is well-defined on
Ṫ ∗X ×R as soon as it is well-defined on Ṫ ∗X × I for some open interval I containing
0.

One has

φh,a ◦ φh,b = φh,a+b. (3.5)
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Therefore the object Kh belongs to Dlb(kX×X×R).
For a ∈ R, we set Kh

a = Kh |t=a .

Lemma 3.1.1 Assuming (3.4), we have the isomorphisms

Kh
a ◦ Kh

b � Kh
a+b for a, b ∈ R. (3.6)

Proof By (3.5), the two isotopies {�h,a ◦ �h,t }t∈R and {�h,a+t }t∈I coincide. Their
associated kernels are respectively Kh

a ◦ Kh and Ta∗(Kh), where Ta is the translation
(x, x ′, t) �→ (x, x ′, t + a). These two kernels are micro-supported by � and their
restriction at t = −a are isomorphic to k�. They are thus isomorphic by the unicity
of kernels satisfying (3.3) and restricting to t = b, we get (3.6). ��

Now we assume:

the function h is non-positive. (3.7)

In the sequel, we denote by (t; τ) the coordinates on T ∗
R. Therefore, �h ⊂ Ṫ ∗X ×

Ṫ ∗X × T ∗
τ≥0R and it follows from [17, Prop. 4.8] that for a ≤ b ∈ R there are natural

morphisms

ρa,b : Kh
b −→ Kh

a ,

satisfying the compatibility conditions of Theorem 1.2.2. Therefore we have:

Theorem 3.1.2 Assume to be given a real non-positive C∞-function h : Ṫ ∗X −→ R

homogeneous of degree 1 in the fiber variable such that the associated flow �h is
defined on Ṫ ∗X × I for an open interval I containing 0. Then the family {Kh

a }a∈R
defines a monoidal presheaf Kh on (R,+) with values in (Db(kX×X ), ◦).

(Recall that for a monoidal presheaf K on (R,+) one sets Ka := K(a).)

Remark 3.1.3 One shall not confuse the monoidal presheaf Kh , a presheaf on the
monoidal ordered set (R≥,+) with values in Db(kX×X ) and Kh , an object of
Dlb(kX×X×R). The object Kh is explicitly calculated in [17, Exa. 3.10, 3.11] for
the cases of the Euclidean space and the Euclidian sphere.

Definition 3.1.4 Let h : Ṫ ∗X −→ R be a real non-positive C∞-function homogeneous
of degree 1 in the fiber variable such that the associated flow�h is defined on Ṫ ∗X× I
for an open interval I containing 0.We denote by disth the pseudo-distance onDb(kX )

associated with the monoidal presheaf Kh (see Definition 1.3.4).

Remark 3.1.5 The notion of non-positive isotopy is due to [15]. Let us also mention
that several distances naturally appear in symplectic topology (see for example the
recent paper [28]). As far as we know, the pseudo-distance disth on sheaves on X is
new.



Thickening of the diagonal and interleaving distance Page 35 of 42    70 

3.2 The case of Riemannianmanifolds

In this Section, we shall use some classical results of Riemannian geometry, referring
to [8, 13].

Consider aRiemannianmanifold (X , g) of classC∞ and denote by dX its associated
distance. We assume

(X , g) is complete and has a strictly positive convexity radius rconv, hence strictly
positive injectivity radius rinj.

(3.8)

Recall that rconv ≤ rinj
2 (see [2]).

For (X , g) satisfying (3.8), we choose 0 < αX < rconv. (3.9)

Note that a compact Riemannian manifold satisfies hypothesis (3.8).
Consider the cotangent bundle T ∗X and its zero-section T ∗

X X . The isomorphism
T X ∼−→ T ∗X endows T ∗X with a metric and we denote by ||ξ ||x the norm of the
vector ξ ∈ T ∗

x X .
For the reader’s convenience, we recall some of the notations (2.1) and introduce

some new ones: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ba(x0) = {x ∈ X; dX (x0, x) ≤ a},
B◦
a (x0) = {x ∈ X; dX (x0, x) < a},

�a = {(x1, x2) ∈ X × X; dX (x1, x2) ≤ a},
�◦

a = {(x1, x2) ∈ X × X; dX (x1, x2) < a},
Sa(x0) = {x ∈ X; dX (x0, x) = a},
B∗
X (r) = {(x; ξ) ∈ T ∗X; ||ξ ||x < r},

S∗
X (r) = {(x; ξ) ∈ T ∗X; ||ξ ||x = r}.

(3.10)

We also introduce the sets:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I =] − rinj, rinj[, I+ =]0, rinj[, I− = ]−rinj, 0[,
J = X × X × I , J± = X × X × I±,

Z = {(x, y, t) ∈ J ; dX (x, y) ≤ t < rinj},
�+ = {(x, y, t) ∈ J ; dX (x, y) < t},
�− = {(x, y, t) ∈ J ; dX (x, y) < −t},
A = {((x; ξ), t) ∈ T ∗X × I ; ||ξ ||x ≤ t < rinj}

(3.11)

Let us recall the construction of the exponential map. Consider the function

f : T ∗X −→ R, f (x, ξ) = −1

2
||ξ ||2x . (3.12)

Denote by X f the Hamiltonian vector fields of f and by � f the flows associated to
this vector fields. In the literature (see e.g., [25, Exa. 1.1.23], [26, p. 15]), the flow � f

is known (via the isomorphism T X � T ∗X ) as the geodesic flow of the Riemannian
manifold (X , g).
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The exponential map e f , given by

e f (x, ξ, t) = πX ◦ � f (x, ξ, t),

is well-defined for t ∈ R. The well-known theorem (see loc. cit.) which asserts that the
geodesic flow coincides with the Hamiltonian flow of the function f may be translated
as follows.

Lemma 3.2.1 The map

E f : T ∗X × I −→ J = X × X × I , E f (x, ξ, t) = (e f (x, ξ, 1), x, t)

(3.13)

is well-defined and induces C∞-isomorphisms

B∗
X (r) × {t} � �◦

r × {t} for r < rinj and all t .

The proof of the next lemma is due to Stéphane Guillermou. It is much simpler
than an earlier proof of ours.

Lemma 3.2.2 Let (X , g) be a Riemannian manifold satisfying (3.8) and let αX be as
in (3.9). Let x and y in X with x �= y and set Za(x, y) = B◦

a (x) ∩ Ba(y). Then
R
(X;kZa(x,y)) � 0. In other words, (2.3)(d) is satisfied.

Proof

(i) We may assume

{for any x1, x2 in W with x1 �= x2, there exists a unique geodesic l(x1, x2) ⊂ W
with x1, x2 ∈ l(x1, x2),
for x1, x2, x3 in W , if d(x1, x3) = d(x1, x2) + d(x2, x3) then x2 ∈ l(x1, x3).

(3.14)

Let us introduce some notations:

Za = Za(x, y),

M = {z; d(x, z) = d(y, z)},
Mx = {z; d(x, z) < d(y, z)}, My = {z; d(x, z) > d(y, z)},
Z ′ = Mx ∩ Ba(y), Z ′′ = B◦

a (x) ∩ My .

Note that Za = Z ′ � Z ′′, Z ′ is open in Za and Z ′′ is closed in Za .
(ii) It follows from (3.14) that

{
for any geodesic l(x, z), l(x, z) ∩ M has at most one point, and similarly with
l(y, z).

(3.15)

Indeed, let z1, z2 ∈ l(x, z) ∩ M . Then d(x, z1) = d(x, z2) + d(z2, z1) or
d(x, z2) = d(x, z1) + d(z1, z2) or d(z1, z2) = d(z1, x) + d(x, z2). Assume
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for example the first equality. Since z1, z2 ∈ M , we get d(y, z1) = d(y, z2) +
d(z2, z1) which implies that the geodesic (y, z1) contains z2. Since there is at
most one geodesic containing both z1 and z2, we find that y ∈ l(x, z) which
implies z1 = z2.

(iii) Let us prove that R
(X;kZ ′) � 0. Let p : Ba(y) \ {y} −→ Sa(y) be the map
which sends z ∈ Ba(y)\{y} to p(z) ∈ l(y, z)∩ Sa(y). It follows from (3.15) that
the fibers of p intersect Z ′ along a unique interval and this interval is half-open.
Since y /∈ Z

′
, we have R
(X;kZ ′) � R
(Ba(y);kZ ′) � R
(Ba(y)\{y};kZ ′).

Moreover, R
(Ba(y)\{y};kZ ′) � R
(Sa(y);Rp!kZ ′) � 0.
(iv) Let us prove that R
(X;kZ ′′) � 0. Let q : Ba(x) \ {x} −→ Sa(x) be the map

which sends z ∈ Ba(x)\{y} to p(z) ∈ l(x, z)∩ Sa(x). It follows from (3.15) that
the fibers of q intersect Z ′′ along a unique interval and this interval is half-open.
Since x /∈ Z

′′
, we have R
(X;kZ ′′) � R
(Ba(x);kZ ′′) � R
(Ba(x) \

{x};kZ ′′). Moreover, R
(Ba(x) \ {x};kZ ′′) � R
(Sa(x);Rq!kZ ′′) � 0.

(v) The result then follows from the distinguished triangle kZ ′ −→ kZa −→ kZ ′′
+1−→.

��
Theorem 3.2.3 Let (X , g) be a real Riemannian manifold satisfying (3.8) and let αX

be as in (3.9). Then hypotheses (2.2), (2.3) and (2.4) are satisfied.

Proof (A) Let us prove (2.2).
(a)–(i) Let x1 and x2 in X . Since a, b ≤ αX < rconv, the ball Ba(x1) and Ba(x2)
are geodesically convex. Hence, their intersection is either empty or also geodesically
convex and geodesically convex sets are contractible.
(a)–(ii) The closed and bounded subsets are compact by the Hopf–Rinow Theorem.
Therefore, condition (ii) is satisfied.
(a)–(iii) Let us prove that for (x1, x3) ∈ �a+b, there exists x2 ∈ X such that
dX (x1, x2) ≤ a and dX (x2, x3) ≤ b. Without loss of generality we can assume that
dX (x1, x3) = a + b. Since X is complete, it follows from the Hopf–Rinow Theorem
that x1 and x3 can be joined by a minimal geodesic γ : [0, 1] −→ X . Then d(x1, γ (t))
will take all values between 0 and a + b. Let t2 ∈ [0, 1] such that d(x1, γ (t2)) = a.
Since γ is also minimal on every subinterval of [0, 1] it is minimal on [t2, 1]. Then,
dX (x2, x3) = b.
(B) Let us prove (2.3)(c). The set �+ is, in a neighborhood of � × {0} and locally in
X×X×R,C∞-isomorphic to the open set {(x, ξ, t); ||ξ ||x < t}. By theMorse lemma
with parameters (see [18, Lem. C.6.1 and its proof]) this last set is locally topologically
convex since, in a local chart, it is isomorphic to a constant cone {((x; ξ), t); ||ξ || < t}
associated with the standart Euclidian metric.
(C) Let us prove (2.3)(a) and (b). By Lemma 3.2.1, we are reduced to prove the result
after replacing �a with B∗

X (a) in which case the proof is similar to (B).
(D) The hypothesis (2.3)(d) is satisfied thanks to Lemma 3.2.2.
(E) The hypothesis (2.4) follows from Lemma 2.1.3. Indeed, the distance function
f := dX : X × X −→ R is of class C∞ onW :=�◦

a\� for a ≤ αX and we are reduced
to check that for anygiven y ∈ X , the differential of the function x �→ g(x) = dX (y, x)
does not vanish for 0 < dX (x, y) < αX . By composing with the exponential map, we
are reduced to prove the same result on T ∗

y X in which case it is clear. ��
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Notation 3.2.4 We shall denote by a �→ Kdist
a , a ∈ R the bithickening of the diagonal

given by Theorems 3.2.3 and Proposition 2.2.3.

3.3 Comparison of the two kernels on Riemannianmanifolds

In this subsection, (X , g) denotes a Riemannian manifold with associated distance
dX . We shall always assume (3.8).

Recall the function f and the flow � f defined in (3.12), and consider the function

h : Ṫ ∗X −→ R, h(x, ξ) = −||ξ ||x . (3.16)

Denote by Xh the Hamiltonian vector fields of h and by �h the flow associated to
this vector fields. Since h is homogeneous of degree 1 in ξ and f is homogeneous of
degree 2 in ξ , we have for λ > 0

{
�h(x, t; λξ) = λ · �h(x, t; ξ),

� f (x, t; λξ) = λ · � f (x, λt; ξ).
(3.17)

(Of course, in the formula above, λ acts on the fiber variables.)
Since f = − 1

2h
2, the Hamiltonian vector fields of f and h are related by X f =

−hXh = ||ξ ||Xh . In particular, we see that X f and Xh are tangent to the unit co-
sphere S∗

X (r) and their restrictions to S∗
X (1) coincide. It follows that �h(x, t; ξ) =

� f (x, t; ξ) if ||ξ || = 1 and, by homogeneity, using (3.17)

�h(x, t; ξ) = ||ξ ||x · � f

(
x, t; ξ

||ξ ||x
)

= ||ξ ||x · � f

(
x, 1; t

||ξ ||x ξ

)
for ξ �= 0.

(3.18)

By the hypothesis (3.8), we get

Lemma 3.3.1 Hypothesis (3.4) is satisfied for h.

Denote as above by �h the Lagrangian manifold given by (3.2). One has

�h = {(�h(x, ξ, t), (x,−ξ), (t, ||ξ ||x )); (x, ξ) ∈ Ṫ ∗X , t ∈ R}. (3.19)

Denote by Kh the quantization of�h and byKh the monoidal presheaf on (R,+)with
values in Db(kX×X , ◦) associated with Kh constructed in Theorem 3.1.2 and denote
by Kdist the monoidal presheaf associated with the good metric space (X , dX ) (see
Theorem 3.2.3 and Notation 3.2.4).

With Notations (3.11), the distinguished triangle (2.8) reads as

k�− ⊗ q−1
2 ωX −→ Kd −→ kZ

+1−→ . (3.20)

Lemma 3.3.2 Assume (3.8). One has �h ∩ T ∗ J+ = ṠS(kZ ) ∩ T ∗ J+.
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Proof

(i) Recall that

�h = {(�h(x, ξ, t), (x,−ξ), (t,−h(�h(x, ξ, t)); (x, ξ)) ∈ Ṫ ∗X , t ∈ I }.
(3.21)

In particular,

πJ+(�h ∩ T ∗ J+) = E f ({||ξ ||x ≤ t}) = ∂�+.

(ii) The set ∂�+ is a smooth hypersurface of J+ and it follows from [20, Prop. 8.3.10]
that �h ∩ T ∗ J+ is one half of Ṫ ∗

∂�+ J+. Since �h ⊂ {τ ≥ 0}, �h is the interior
conormal to ∂�+. ��

Denote by j : J+ ↪→ J the open embedding.

Lemma 3.3.3 One has kZ � R j∗ j−1kZ .

Proof One has k�+ � j! j−1k�+ . Applying the duality functor D′
X×X×R

we get the
result by Lemma 2.1.2. (Recall that, setting M = X × X × R, D′

M ◦ j! � R j∗ ◦D′
M .)

��
In the proof of the next lemma, we shall use the operation +̂ defined in [20, § 6.2].

Lemma 3.3.4 One has

(a) SS(kZ ) ∩ π−1(X × X × {0}) ⊂ {(x, x, 0; ξ,−ξ, τ ); τ ≥ ||ξ ||x },
(b) One has SS(k�−) ∩ π−1(X × X × {0}) ⊂ {(x, x, 0; ξ,−ξ, τ ); τ ≥ ||ξ ||x }.
Proof

(a) Recall (3.19). We have in a neighborhood of t = 0

�h =
{
(x − t

||ξ ||x ξ + t2ε(x, t, ξ), x, t; ξ + tη(x, t, ξ),

−ξ, ||ξ ||x ); (x, ξ) ∈ Ṫ ∗X , t ∈ R

}
.

This implies

(�h ∩ T ∗ J+)+̂{(x, y, 0; 0, 0, τ ≥ 0)} ⊂ {(x, x, 0; ξ,−ξ, τ ); τ ≥ ||ξ ||x }.

To conclude, apply [20, Th. 6.3.1] together with Lemmas 3.3.2 and 3.3.3.
(b) follows from (a) by applying the duality functor (using Lemma 2.1.2) together

with v∗ where v is the map (x, y, t) �→ (x, y,−t). ��
Lemma 3.3.5 Let p = (x, x, 0; ξ,−ξ, τ ) with τ > ||ξ ||x . Then
(a) the natural morphism kZ −→ k�×{0} is an isomorphism in Db(kJ ; p).
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(b) the natural morphism k�×{t=0} ⊗ q−1
2 ω⊗−1

X [−1] −→ k{dX (x,y)<−t} is an isomor-
phism in Db(kJ ; p).

Proof

(a) Similarly as in part (C) of the proof ofTheorem3.2.3, the set Z is, in a neighborhood
of � × {0} and locally on X × X × R, C∞-isomorphic to the set A of (3.11). We
are thus reduced to prove a similar result with Z and � × {0} replaced with A and
T ∗
X X × {0}. In this case, the result follows from Lemma 3.3.6 below.

(b) follows from (a) by applying the duality functor, using Lemma 2.1.2. ��
Lemma 3.3.6 Let E be a vector bundle over X and let γ ⊂ E be a closed convex
proper cone containing the zero-section X. Let p ∈ T ∗E ×E X with p ∈ Int(γ ◦).
Then the natural morphism kγ −→ kX is an isomorphism in Db(kE ; p).
Proof We may assume that E = X × V for a real vector space V. Let us choose
local coordinates on X and identify T ∗

V with V × V
∗. Then p = ((x; ξ), (0, η)) ∈

T ∗X × V × V
∗. By [20, Lem. 3.7.10], the Fourier-Sato transform interchanges the

two objects kγ and kX×{0} of Db(kE ) with the two objects kIntγ ◦ and kE∗ of Db(kE∗).
Hence, applying Theorem 5.5.5 and formula (5.5.6) of loc. cit., we are reduced to
prove that the natural morphism kInt(γ ◦) −→ kE is an isomorphism in Db(kE∗; q) with
q = ((x; ξ), (η, 0)) ∈ T ∗X × V

∗ × V, which is obvious since the two sheaves are
isomorphic in a neighborhood of any point (x, η) ∈ X × Int(γ ◦). ��

Recall the sheaf Kd constructed in Theorem 2.2.4 and the monoidal presheaf Kdist.

Theorem 3.3.7 Let (X , g) be a complete Riemannian manifold satisfying (3.8). Then

(a) One has the isomorphism Kh |J � Kd |J .
(b) the two monoidal presheaves Kh and Kdist are isomorphic.

Proof

(i) Of course, (b) follows from (a). By the unicity result in [17, Prop. 3.2 (iii)], it
remains to prove that

ṠS(Kd) ⊂ �h . (3.22)

(ii) It follows from the distinguished triangle (3.20) that Kd |J+ � kZ |J+ and it then
follows from Lemma 3.3.2 that (3.22) is true on J+. Moreover, ṠS(Kd |J−) =
v(ṠS(Kd |J+)) where v is the map (x, y, t; ξ, η, τ ) �→ (y, x,−t; η, ξ, τ ). Since
v(�h) = �h , we get that (3.22) is true on J−.

(iii) One has SS(Kd)∩π−1(X × X ×{0}) ⊂ {(x, x, 0; ξ,−ξ, τ ); τ ≥ ||ξ ||x } thanks
to Lemma 3.3.5. The natural morphism ψ : kZ −→ k�− ⊗ q−1

2 ωX [+1] is an
isomorphism by Lemma 3.3.5. This implies (3.22). ��
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