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INTEGRAL TRANSFORMS WITH EXPONENTIAL KERNELS

AND LAPLACE TRANSFORM

MASAKI KASHIWARA AND PIERRE SCHAPIRA

1. Introduction

An integral transform associates to each section of some sheaf on a manifold X

a section of another sheaf on a manifold Y , by a formula like:

u �→ v =

�

g

f
∗(u)k ,(1.1)

where k is a kernel defined on a third manifold Z (usually Z = X×Y ) and we have
two morphisms

Z

f g

X Y.

(1.2)

The language of sheaves and D-modules is well adapted to this situation and
many classical results may be interpreted in this framework. In the language of
sheaves, equation (1.1) should be read as:

F �→ F ◦K = g!(f
−1
F ⊗K) ,(1.3)

where F is a sheaf on X , K is a sheaf on Z, and g!, f−1 and ⊗ are the usual
operations in the derived categories of sheaves. In the case of D-modules (on
complex manifolds) there is a similar construction, using the operations on D-
modules. When combining both languages one gets a nice adjunction formula
which asserts, roughly speaking, that if F is a sheaf on X and N a D-module on Y ,
K a regular holonomic D-module on Z and K the associated perverse sheaf, then
there is a natural isomorphism between the complex of holomorphic solutions of
(F ◦K)⊗N on Y and the complex of holomorphic solutions of F ⊗ (K ◦N ) on X

(see [D’A-S1], [D’A-S2], [K-S2], [K-Sm]).
Our aim in this paper is the study of the Laplace transform. If V is an n-

dimensional complex vector space (more generally, a complex vector bundle) and
V
∗ its dual, this transform is described by the formula:

u(z) �→
�

exp(�z, w�)u(z)dz.

If we want to interpret this formula in the framework described above, a serious
difficulty appears: the D-module generated by the kernel exp(�z, w�) on P×P ∗, the
projective compactification of V ×V ∗, is holonomic, but not regular. In fact, this is
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the reason why Fourier transform does not apply to hyperfunctions nor distributions
on a real vector space, and why one has to consider tempered distributions or rapidly
decreasing functions.

Fortunately, the functorial analogue of such distributions or functions already
exists: these are the functors Thom( · ,O) of moderate cohomology and the functor

·
w

⊗O of formal cohomology, introduced in [K] and [K-S2], respectively.
Hence we begin by making a study of general integral transforms in the situation

(1.2) associated to a kernel

L = (DZ exp(ϕ)) (∗S)(1.4)

where ϕ is a meromorphic function on Z with poles in S ⊂ Z. Our main result
(Proposition 4.2.1) are adjunction formulas in this context.

Coming back to the Laplace transform, let us denote by j : V �→ P the projective
compactification of the vector space V . If F is R-constructible and R+-conic on V ,
set for short:

F
W

⊗OV = R Γ(P ; j!F
w

⊗OP ),(1.5)

THom(F,OV ) = R Γ(P ; Thom(j!F,OP )).(1.6)

As a particular case of our adjunction formulas we obtain the Laplace isomorphisms

L : F
W

⊗OV

∼−→ F
∧[n]

W

⊗OV ∗ ,(1.7)

t
L : THom(F,OV )

∼←− THom(F∧[n],OV ∗)(1.8)

where F∧ denotes the Fourier-Sato transform of F . Moreover these isomorphisms
are linear over the Weyl algebraD(V ) (identifying D(V ∗) with D(V ) by the Fourier
transform), and admit inverses, associated with the kernel exp(−�z, w�).

We discuss some applications of these formulas.
a) Let U be an open convex subanalytic cone in V , and set

Z = U
◦a = {w ∈ V ∗; Re�z, w� ≤ 0}.

We get the isomorphism

R Γ[U ](V ;OV ) � R Γ[Z](V
∗;OV ∗)[n](1.9)

where we have set, for a locally closed subanalytic cone S,

R Γ[S](V ;OV ) = THom(CS ,OV ).

Both sides of (1.9) are concentrated in degree 0. If V = C ⊗R VR is the complex-
ification of a real vector space VR and U = U

� ⊕
√
−1VR is an open convex tube,

one recovers a well-known result, since the right hand side of (1.9) is the space
ΓZ(S�(V ∗R )) of Schwartz’s tempered distributions on V

∗

R supported by Z, and the
left hand side is the space of holomorphic functions on U with tempered growth on
the boundary (including infinity).

b) If λ is a non-degenerate quadratic solid cone in VR with p positive eigenval-
ues and if λ◦ denotes the closed tube associated with the dual cone, we find the
isomorphism:

Γλ(S�(VR)) � H
p

[λ◦](V
∗;OV ∗)(1.10)

(a situation already considered by [F-G]).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



LAPLACE TRANSFORM 941

c) In §6.3, we introduce the conic sheaf Ot

V
associated with the presheaf U �→

THom(CU ,OV ), and we show that the Laplace transform induces an isomorphism
of conic sheaves:

(Ot

V
)∧[n] � Ot

V ∗ .(1.11)

As a corollary, we recover the result of [B-M-V] and [H-K]: if M is a monodromic
module over the Weyl algebra D(V ) and M

∨ denotes the D(V ∗)-module obtained
by Fourier transform, then there is a natural isomorphism of conic sheaves

RHomD(V )(M,OV )∧[n] � RHomD(V ∗)(M
∨
,OV ∗).

d) Let Ω = {x ∈ Mn(C); x is symmetric and Rex is positive definite}. The
integral

u(t) �→ v(x) =

�

Rn
e
−�t,xt�

u(t)dt

allows us to identify S �(Rn) with the space of tempered holomorphic functions on Ω
satisfying some system of differential equations that we calculate explicitly. This is
an interpretation of the embedding of the Weil representation into the degenerate
principal series.

2. Notations and review

2.1. Notations. We refer to [K-S1] for an exposition of the sheaf theory, and we
shall mainly follow the notations of this book.

If X is a topological space, we denote by Db(CX) the bounded derived category
of sheaves of C-vector spaces on X . We denote as usual by f

−1, f !, R f!, R f∗,
RHom and ⊗ the six operations on sheaves of C-vector spaces, and we set:

D
�

X
( · ) = RHom( · ,CX).

If τ : V → X is a real vector bundle, we denote by Db
R+(CV ) the full subcategory of

Db(CV ) consisting of objects F such thatHj(F ) is locally constant on the R+-orbits
for all j. We will recall later the construction of the Fourier-Sato transform.

Now assume that X is real analytic. We denote by R-cons(CX) the abelian
category of R-constructible sheaves of C-vector spaces on X . By a result of [K],
its bounded derived category is equivalent to Db

R−c(CX), the full subcategory of

Db(CX) consisting of objects F with H
j(F ) in R-cons(CX) for all j.

If τ : V → X is a real vector bundle over X , we set Db
R+,R−c(CV ) = Db

R+(CV ) ∩
Db

R−c(CV ).
On a real analytic manifold X , we shall encounter the sheaves:

• AX : the sheaf of real analytic functions,
• C∞

X
: the sheaf of C∞-functions,

• DbX : the sheaf of distributions,
• BX : the sheaf of hyperfunctions.

Let A be a sheaf of rings on X . We denote by A
opp the ring A with the opposite

multiplication rule. An A-module will mean a left A-module. Hence an A
opp-

module is a right A-module. We denote by Db(A) the bounded derived category of
sheaves of A-modules.

Now let X be a complex manifold, OX its structural sheaf, and dX its complex
dimension. We denote by Ωp

X
the sheaf of holomorphic p-forms on X , and we set
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ΩX = ΩdX
X

. We denote by DX the sheaf of rings of finite-order differential operators
on X .

If Z is a smooth submanifold of codimension d in X , recall that one denotes by
BZ|X the regular holonomic DX -module Hd

[Z] (OX).
If M is a DX -module, we set for short:

Sol(M) = RHomDX (M,OX).

We denote by Db
q-good(DX) the full triangulated subcategory of Db(DX) consisting

of objects M such that Hj(M) is quasi-good for all j. Here, an OX -module F
is called quasi-good if any compact subset of X has a neighborhood U such that
F|U is a union of an increasing countable family of coherent OX |U -submodules. A
DX -module M is quasi-good if it is quasi-good as an OX -module. This definition
coincides with the one given in [K-S2] by the following lemma.

Lemma 2.1.1. The subcategory of quasi-good OX-modules is closed under exten-
sions, kernels and cokernels.

Proof. It is easy to see that this subcategory is closed under kernels and cokernels.

Let us show that if 0 → F � f→ F g→ F �� → 0 is an exact sequence ofOX -modules and
if F � and F �� are quasi-good, then so is F . Since the union of an increasing sequence
of quasi-good submodules is quasi-good, we may assume from the beginning that
F �� is coherent. For a compact set K of X , take finitely many open subsets Ui of
X and a locally finitely generated submodule Gi of F|Ui such that K ⊂ U =

�
i
Ui

and g(Gi) = F ��|Ui . Since 0 → Gi ∩Ker g → Gi → F ��|Ui → 0 is exact, Gi ∩Ker g is
locally finitely generated. Therefore shrinking Ui if necessary, we may assume that
there is a coherent submodule H ⊂ F �|U such that Gi ∩Ker g ⊂ H|Ui . Replacing Gi
with Gi +H|Ui , we may assume from the beginning that Gi ∩ Ker g = H|Ui . Then
we have an exact sequence

0 → H|Ui → Gi → F|Ui → 0.

Hence we have Gi|Ui∩Uj = Gj |Ui∩Uj , and there exists a coherent submodule G of
F|U such that G|Ui = Gi. Then F|U = G + F �|U , and F is quasi-good.

Let f : X → Y be a morphism of complex manifolds. We set dX/Y = dX − dY .
We denote by DX→Y the transfer (DX , f

−1DY )-bimodule and we denote by f
∗
, f

!

and f
−1 the functors of direct image, proper direct image and inverse image for

D-modules. For example, if N ∈ Db(DY ), then f
−1N = DX→Y

L
⊗f−1DY

f
−1N .

Notations 2.1.2. (a) We write for short ⊗O, ⊗D, HomO, HomD instead of ⊗OX ,
⊗DX , HomOX , HomDX .

(b) In §§3–5, when there is no risk of confusion, we shall not write the symbols
“R” and “L” of right and left derived functors, for short.

(c) Recall that:
R Hom( · , · ) = R Γ(X ; RHom( · , · )).

2.2. Review on formal and moderate cohomology. We shall briefly recall
some constructions of [K] and [K-S2]. Let X be a real analytic manifold. The
functors:

·
w

⊗C∞
X

: R-cons(CX) → Mod(DX),

Thom( · ,DbX) : R-cons(CX)opp → Mod(DX)
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are characterized by the following properties:

(1) they are exact functors,

(2) if U is an open subanalytic subset of X and Z = X \U , then CU

w

⊗C∞
X

is the
sheaf of C∞-functions vanishing up to infinite order on Z, and Thom(CZ ,DbX)
is the sheaf ΓZ(DbX) of distributions supported by Z.

These functors being exact, they extend naturally as functors on the derived cate-
gories:

·
w

⊗C∞
X

: Db
R−c(CX) → Db(DX),

Thom( · ,DbX) : (Db
R−c(CX))opp → Db(DX).

Now let X be a complex manifold, XR the real analytic underlying manifold and
X̄ the complex conjugate manifold. If there is no risk of confusion, we write X

instead of XR (e.g.: we write C∞
X

). The functors

·
w

⊗OX : Db
R−c(CX) → Db(DX),

Thom( · ,OX) : (Db
R−c(CX))opp → Db(DX)

are defined as the Dolbeault complexes of the preceding ones, that is:

F
w

⊗OX = RHomDX̄
(O

X̄
, F

w

⊗C∞
X

),

Thom(F,OX) = RHomDX̄
(O

X̄
, Thom(F,DbX)).

We call these functors the functors of formal and moderate cohomology, respec-
tively. Recall that the functor of moderate cohomology was introduced in [K] and
that of formal cohomology in [K-S2].

There are natural morphisms

F ⊗OX → F
w

⊗OX → Thom(D�

X
F,OX) → RHom(D�

X
F,OX).(2.2.1)

Example 2.2.1. Let M be a real analytic manifold, and let

i : M �→ X

be a complexification of M . Let F ∈ D
b

R−c (CM ). Then we have isomorphisms

i∗F
w

⊗OX � i∗ (F
w

⊗C∞
M

),

Thom(D�

X
(i∗F ),OX) � i∗Thom(D�

M
(F ),DbM ).

The last isomorphism is due to Andronikof [A]. In particular, we have

CM

w

⊗OX � i∗C∞M ,

Thom(D�

X
(CM ),OX) � DbM ,

and (2.2.1) gives the classical morphisms

AM → C∞
M
→ DbM → BM .

Example 2.2.2. Let Z be a closed complex analytic subset of X . Then there are
isomorphisms:

CZ

w

⊗OX � OX
�|Z ,

Thom(CZ ,OX) � R Γ[Z]OX ,

where OX
�|Z denotes the formal completion of OX along Z, and R Γ[Z]OX denotes

the algebraic relative cohomology of OX with supports in Z.
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Example 2.2.3. Let U be a relatively compact Stein open subanalytic subset of
X . Then RΓ(X ; Thom(CU ,OX)) is concentrated in degree 0 and coincides with
the subspace of Γ(U ;OX) of holomorphic functions with tempered growth at the
boundary.

We have a kind of multiplication of the functors of formal and moderate co-
homology. For F,G ∈ Db

R−c(CX), we have functorial morphisms ([K-S2, (5.21),
(5.22), Prop. 10.6]):

(F
w

⊗OX)⊗O (G
w

⊗OX) → (F ⊗G)
w

⊗OX ,(2.2.2)

Thom(F,OX)⊗O ((F ⊗G)
w

⊗OX) → G
w

⊗OX ,(2.2.3)

Thom(F,OX)⊗O Thom(G,OX) → Thom(F ⊗G,OX).(2.2.4)

The functors of formal and moderate cohomology are dual to each other in
the following sense. Let Db(FN) (resp. Db(DFN)) denote the bounded derived
category of the additive category of C-vector spaces of Fréchet nuclear (resp. dual
of Fréchet nuclear) type (see [K-S2] for a precise construction).

Proposition 2.2.4 ([K-S2], Prop. 5.2). Let F ∈ Db
R−c(CX). Then we can define

R Γ(X ;F
w

⊗OX) and R Γc(X ; Thom(F,ΩX))[dX ]

as objects of Db(FN) and Db(DFN) respectively, and they are dual to each other.

3. Integral transforms with exponential kernels

In this section, if there is no risk of confusion, we shall not write the symbols R
and L of right and left derived functors, for short.

3.1. Construction of morphisms. Let Z be a complex manifold, S a closed
hypersurface of Z and OZ(∗S) the sheaf of meromorphic functions on Z whose
poles are contained in S. For an OZ -module F , set

F(∗S) = OZ(∗S)⊗OZ F .
Let ϕ be a global section of OZ(∗S). We introduce the sets:

A ={x ∈ Z \ S; Reϕ(x) ≥ 0},(3.1.1)

U ={x ∈ Z \ S; Reϕ(x) > −1}.(3.1.2)

We introduce the left DZ -modules

L =(DZe
ϕ)(∗S),

L� =(DZe
−ϕ)(∗S).

More precisely, DZe
ϕ is the DZ -module DZ/I where I is the left coherent ideal

{P ∈ DZ ;Peϕ = 0 on Z \ S}. Hence L is a holonomic DZ-module which satisfies:

L � L ⊗O OZ(∗S).

Moreover, L is an invertible OZ(∗S)-module and

L� � HomOZ(∗S)(L,OZ(∗S))

as an OZ(∗S)-module.
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Lemma 3.1.1. For G ∈ Db
R−c(CZ), we have isomorphisms

HomO(L, GX\S

w

⊗OZ)
∼→ HomO(L, G

w

⊗OZ),

Thom(G,ΩZ)⊗O L ∼→ Thom(GX\S ,ΩZ)⊗O L.

Proof. We have the chain of isomorphisms

HomO(L, G
w

⊗OZ) � HomO(L ⊗O OZ(∗S), G
w

⊗OZ)

� HomO(L,HomO(O(∗S), G
w

⊗OZ))

� HomO(L, GZ\S

w

⊗OZ),

where the last isomorphism follows from a theorem of Björk (see [B] and also [K-S2,
Th. 10.7]).

The second isomorphism is proved similarly.

Lemma 3.1.2. For G ∈ Db
R−c(CZ), there are natural DZ-linear morphisms:

L� → Thom(CU ,OZ),(3.1.3)

HomO(L, G
w

⊗OZ) → GA

w

⊗OZ ,(3.1.4)

Thom(GA,OZ) → L⊗O Thom(G,OZ).(3.1.5)

Proof. (i) Since Re(−ϕ) is bounded on U , the holomorphic function e
−ϕ defines

a section of the sheaf Thom(CU ,OZ). Hence it induces a DZ -linear morphism
DZe

−ϕ → Thom(CU ,OZ). Since U ∩ S = ∅, this morphism factorizes through L�.
(ii) Since GZ\S

w

⊗OZ is an OZ(∗S)-module, we have:

HomO(L, GZ\S

w

⊗OZ) � HomOZ(∗S)(L, GZ\S

w

⊗OZ)

� L� ⊗OZ(∗S) (GZ\S

w

⊗OZ)

� L� ⊗O (GZ\S

w

⊗OZ).

Similarly, one has:

L ⊗O Thom(GZ\S ,OZ) � HomO(L�, Thom(GZ\S ,OZ)).

(iii) Let us construct the morphism (3.1.4). Since A is closed in Z \S, we have
the morphism:

GZ\S

w

⊗OZ → GA

w

⊗OZ .

Applying Thom(CU ,OZ)⊗O · and using (3.1.3) we get:

L� ⊗O (GZ\S

w

⊗OZ) → Thom(CU ,OZ)⊗O (GA

w

⊗OZ).(3.1.6)

Since A = A ∩ U , we have CA � CU ⊗ CA, and the morphism (2.2.3) sends the

right hand side of (3.1.6) to GA

w

⊗OZ . Then the result follows from Lemma 3.1.1
and (ii).

(iv) Let us construct the morphism (3.1.5). By the results of Lemma 3.1.1 and
(ii), it is enough to construct

L� ⊗O Thom(GA,OZ) → Thom(GZ\S ,OZ).

This last morphism is deduced from (3.1.3) and (2.2.4).
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In the sequel, we shall have to consider two meromorphic functions ϕ1 and ϕ2

with poles in S. We set:
ϕ0 = ϕ1 + ϕ2

and we define for j = 0, 1, 2:

Aj ={x ∈ Z \ S; Reϕj ≥ 0},
Lj =(DZe

ϕj )(∗S).

Lemma 3.1.3. (i) We have:

L1 ⊗O L2 � L0.

(ii) The diagram below commutes:

HomO(L1 ⊗O L2, G
w

⊗OZ)
∼→ HomO(L0, G

w

⊗OZ)
↓

HomO(L2,HomO(L1, G
w

⊗OZ))
↓

HomO(L2, GA1

w

⊗OZ)
↓

�

GA1∩A2

w

⊗OZ ←− GA0

w

⊗OZ .

Here, the horizontal arrow in the bottom row is induced by CA0 → CA1∩A2 .

There is a similar result with Thom( · ,O).

Proof. The proof is straightforward.

Now consider a correspondence of complex manifolds

Z

p1 p2

X Y.

We shall assume:

p1 and p2 are proper.(3.1.7)

(This hypothesis could be weakened, see [K-S2, §7] and §4.)
Let F ∈ Db

R−c(CX), K ∈ Db
R−c(CZ), N ∈ Db

q-good(DY ) and K ∈ Db
q-good(DZ).

We set: �
K ◦ N = p

1∗
(K ⊗O p

−1
2
N ),

F ◦K = p2!(p
−1
1 F ⊗K).

(3.1.8)

Assume for a while that K is regular holonomic and that K = Sol (K) (hence
K = Thom(K,OZ) by [K]). We have the chain of isomorphisms:

HomD(K ◦ N , F
w

⊗OX)[dX ] � HomD(K ⊗O p
−1
2
N , p

−1
1 F

w

⊗OZ)[dZ ]

� HomD(p−1
2
N ,HomO(K, p−1

1 F
w

⊗OZ))[dZ ]

� HomD(p−1
2
N , (p−1

1 F ⊗K)
w

⊗OZ)[dZ ]

� HomD(N , (F ◦K)
w

⊗OY )[dZ ].
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The first isomorphism is obtained in [K-S2, Th. 7.3], the third one in [K-S2, Th.
10.7], and the fourth one in [K-S2, Th. 7.2].

Similarly, we have the chain of isomorphisms:

Γ(Y ; Thom(F ◦K,ΩY )⊗D N )[dY ] � Γ(Z; Thom(p−1
1 F ⊗K,ΩZ)⊗D p

−1
2
N )[dZ ]

� Γ(Z; (Thom(p−1
1 F,ΩZ)⊗O K)⊗D p

−1
2
N )[dZ ]

� Γ(Z; Thom(p−1
1 F,ΩZ)⊗D (K ⊗O p

−1
2
N ))[dZ ]

� Γ(X ; Thom(F,ΩX)⊗D (K ◦ N ))[dZ ].

Summarizing, we have constructed the isomorphisms:

Γ(X ;HomD(K ◦ N , F
w

⊗OX))
∼→ Γ(Y ;HomD(N , (F ◦K)

w

⊗OY ))[dZ/X ],(3.1.9)

Γ(Y ; Thom(F ◦K,ΩY )⊗D N )
∼→ Γ(X ; Thom(F,ΩX)⊗D (K ◦N ))[dZ/Y ](3.1.10)

(see [K-S2, Th. 10.8]).
Next we consider the case of irregular kernels. Let ϕ be a meromorphic function

on Z with poles in a closed hypersurface S of Z, and set as above:

A ={x ∈ Z \ S; Reϕ(x) ≥ 0},
L =(DZe

ϕ)(∗S).

In the construction of the isomorphism (3.1.9), if we take L as K, the isomorphism

HomO(K, p−1
1 F

w

⊗OZ) � (p−1
1 F ⊗K)

w

⊗OZ

does not hold any more, but we may replace it by the morphism (3.1.4):

HomO(L, p−1
1 F

w

⊗OZ) → (p−1
1 F ⊗ CA)

w

⊗OZ .

Hence, we get the morphism Lϕ:

Γ(X ;HomD(L ◦ N , F
w

⊗OX))(3.1.11)

−→
Lϕ

Γ(Y ;HomD(N , (F ◦CA)
w

⊗OY ))[dZ/X ].

Similarly, using (3.1.5), we get the morphism t
Lϕ:

Γ(Y ; Thom(F ◦ CA,ΩY )⊗D N )(3.1.12)

−→
tLϕ

Γ(X ; Thom(F,ΩX)⊗D (L ◦ N ))[dZ/Y ].

3.2. Comparison with regular kernels. We shall have to compare the mor-
phisms (3.1.11) and (3.1.12) with the adjunction morphisms associated to regular
holonomic kernels.

Let L, ϕ,A be as above and let K be a regular holonomic DZ-module, K =
Sol (K). We assume to be given a DZ -linear morphism:

K → L.(3.2.1)

This morphism defines morphisms:

CX\S � Sol (L)X\S → KX\S → K.
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We shall assume:

The morphism CX\S → K factorizes as:(3.2.2)

CX\S K

CA

K ⊗O L� is regular holonomic.(3.2.3)

Proposition 3.2.1. Let N ∈ Db
q-good(DY ), F ∈ Db

R−c(CX) and consider a mor-
phism (3.2.1). Assume (3.2.2) and (3.2.3). Then the diagram below commutes:

HomD(L ◦ N , F
w

⊗OX)[dX ] → HomD(K ◦ N , F
w

⊗OX)[dX ]� �
�

HomD(N , (F ◦ CA)
w

⊗OY )[dZ ] → HomD(N , (F ◦K)
w

⊗OY )[dZ ].

There is a similar result for Thom.

Proof. Set G = p
−1
1 F ∈ Db

R−c(CZ). We can reduce the proposition to the commu-
tativity of the diagram

HomO(L, G
w

⊗OZ) → HomO(K, G
w

⊗OZ)�
�

(CA ⊗G)
w

⊗OZ → (K ⊗G)
w

⊗OZ ,

or equivalently the commutativity of

K ⊗O HomO(L, G
w

⊗OZ) → G
w

⊗OZ�
�

K ⊗O (CA ⊗G)
w

⊗OZ → K⊗O (K ⊗G)
w

⊗OZ .

(3.2.4)

Setting U as in (3.1.2), consider the diagram:

K ⊗O L� → L⊗O L� → OZ(∗S)
↓ ↓

Thom(K,OZ)⊗O Thom(CU ,OZ) → Thom(K ⊗ CU ,OZ) → Thom(CZ\S ,OZ)

(3.2.5)

It obviously commutes on Z \ S. On the other hand, we have

HomDb(DZ)(K ⊗O L�, Thom(CZ\S ,OZ))

� HomDb(DZ)(K ⊗O L�,Hom(CZ\S ,OZ))

� HomDb(DZ\S)(K ⊗O L�|Z\S ,Hom(CZ\S ,OZ\S))

� HomDb(DZ\S)(K ⊗O L�|Z\S , Thom(CZ\S ,OZ\S)).

Here the first isomorphism follows from the regularity of K ⊗O L� by [K]. Hence
we obtain the commutativity of (3.2.5).
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From (3.2.5) we deduce the commutative diagram:

A

� �
K⊗O L� ⊗O (GZ\S

w

⊗OZ) → B → OZ(∗S)⊗O (GZ\S

w

⊗OZ)�
�

�
K ⊗O L�
⊗O((K ⊗ CU ⊗G)

w

⊗OZ) → C → OZ(∗S)⊗O ((K ⊗ CU ⊗G)
w

⊗OZ)
� ↓ �

G
w

⊗OZ

where

A = L ⊗O L� ⊗O (GZ\S

w

⊗OZ),

B = Thom(K ⊗ CU ,OZ)⊗O (GZ\S

w

⊗OZ),

C = Thom(K ⊗ CU ,OZ)⊗O ((K ⊗ CU ⊗G)
w

⊗OZ).

Hence we get the commutative diagram:

(K ⊗O L�)⊗O (GZ\S

w

⊗OZ) −−→ (L ⊗O L�)⊗O (GZ\S

w

⊗OZ)
↓

(K ⊗O L�)⊗O ((CU ⊗GA)
w

⊗OZ)

�

↓ OZ(∗S)⊗O (GZ\S

w

⊗OZ)

(K ⊗O L�)⊗O (GA

w

⊗OZ)
↓

�

K⊗O (K ⊗G
w

⊗OZ) −−−→ G
w

⊗OZ .

This implies the commutativity of (3.2.4).

3.3. The inversion formula. In this section we shall compose integral transforms
in order to obtain an inversion formula. For the sake of brevity, we concentrate our

study on the functor ·
w

⊗O, leaving the details for Thom(·,O) to the reader. We
consider three compact complex manifolds X,Y, Z and the projections:

X × Y × Z

r1
r3

r2

X × Y

p1

p2

X × Z

q1 q2

Y × Z

p
�
1

p
�
2

X Y Z

(3.3.1)

(One shall take care that the notations are not the same as in §§3.1–3.2.)
Let ϕ1 (resp. ϕ2) be a meromorphic function on X×Y (resp. Y ×Z ) with poles

in S1 (resp. S2) and define the meromorphic function ϕ0 on X × Y × Z as:

ϕ0(x, y, z) = ϕ1(x, y) + ϕ2(y, z).
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Then S0 := r
−1
1 (S1) ∪ r−1

2 (S2) contains its poles. We also consider the sets:

A1 = {(x, y) ∈ X × Y \ S1 ; Reϕ1 ≥ 0},
A2 = {(y, z) ∈ Y × Z \ S2 ; Reϕ2 ≥ 0},
A0 = {(x, y, z) ∈ X × Y × Z \ S0 ; Reϕ0 ≥ 0},
A3 = r

−1
1 A1 ∩ r−1

2 A2 ⊂ A0,

and the D-modules:

L1 = DX×Y e
ϕ1(∗S1),

L2 = DY×Ze
ϕ2(∗S2),

L0 = DX×Y×Ze
ϕ0(∗S0)

� r
−1
1 L1 ⊗O r

−1
2 L2,

L�0 = DX×Y×Ze
−ϕ0(∗S0).

We define:

L1 ◦ L2 = r3∗(r
−1
1 L1 ⊗O r

−1
2 L2) � r3∗L0 ∈ Db(DX×Z),(3.3.2)

CA1 ◦ CA2 = r3∗(r
−1
1 CA1 ⊗ r

−1
2 CA2) � r3∗CA3 ∈ Db

R−c(CX×Z).(3.3.3)

Let N ∈ Db
q-good(DZ). One has:

L1 ◦ (L2 ◦ N ) = p
1∗

(L1 ⊗O p
−1
2
p
�

1∗
(L2 ⊗O p

�−1
2

N ))

� p
1∗

(L1 ⊗O r1∗r
−1
2 (L2 ⊗O p

�

2
−1N ))

� p
1∗
r1∗((r

−1
1 L1 ⊗O r

−1
2 L2)⊗O r

−1
2 p

�−1
2

N )

� q
1∗
r3∗((r

−1
1 L1 ⊗O r

−1
2 L2)⊗O r

−1
3 q

−1
2
N )

� (L1 ◦ L2) ◦ N
� L0 ◦ N .

Here, we have used the isomorphisms:

p
−1
2
◦ p�

1∗
� r1∗ ◦ r−1

2 ,(3.3.4)

L1 ⊗O (r1∗M1) � r1∗(r
−1
1 L1 ⊗O M1),(3.3.5)

r
−1
2 (L2 ⊗O M2) � r

−1
2 L2 ⊗O r

−1
2 M2.(3.3.6)

Similarly, for F ∈ Db
R−c(DX), one has:

(F ◦CA1) ◦ CA2 = p
�

2!(p
�−1
1 p2!(p

−1
1 F ⊗ CA1)⊗ CA2)

� p
�

2!(r2!r
−1
1 (p−1

1 F ⊗ CA1)⊗ CA2)

� p
�

2!r2!(r
−1
1 p

−1
1 F ⊗ C

r
−1
1 A1

⊗ C
r
−1
2 A2

)

� q2!r3!(r
−1
3 q

−1
1 F ⊗ CA3)

� F ◦ (CA1 ◦ CA2)

� F ◦ CA3 .
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Lemma 3.3.1. The diagram below commutes:

HomD(L1 ◦ L2 ◦ N , F
w

⊗OX)
∼→ HomD(L0 ◦ N , F

w

⊗OX)
↓

HomD(L2 ◦ N , (F ◦ CA1)
w

⊗OY )[dY ]
↓

1�
�

HomD(N,(F ◦CA1◦CA2)
w

⊗OZ)[dY +dZ ] ← HomD(N,(F ◦CA0)
w

⊗OZ)[dY +dZ] .

Here the horizontal arrow in the bottom row is defined by CA0 → CA3 .

Proof. It follows easily from Lemma 3.1.3.

Now assume a regular holonomic DX×Z -module K is given, together with a
morphism:

r
−1
3 K[−dY ] → L0.(3.3.7)

Let K = Sol (K). By applying the functor Sol to (3.3.7), we get a morphism:

CX×Y×Z\S0
→ r

−1
3 K[dY ].

We shall assume that there are morphisms α : CA0 → r
−1
3 K[dY ] and β : r−1

3 K[dY ]
→ CA3 such that the following diagram commutes:

CX×Y×Z\S0 r
−1
3 K[dY ]

β

CA0

α

CA3 .

(3.3.8)

Using the morphism r3!r
!
3K → K, we get the commutative diagram:

K[−dY ]

r3!CA0 r3!CA3

(3.3.9)

Finally, we shall assume:

r
−1
3 K ⊗O L�0 is regular holonomic.(3.3.10)

Then Proposition 3.2.1 gives a commutative diagram:

HomD(L0 ◦ N , F
w

⊗OX) → HomD(r−1
3 K[−dY ] ◦ N , F

w

⊗OX)�
�

HomD(N , (F ◦ CA0)
w

⊗OZ)[dY + dZ ] → HomD(N , (F ◦ r−1
3 K)

w

⊗OZ)[2dY + dZ ] .

Using the natural morphisms

K → r3∗r
−1
3 K[−dY ],

r3!r
−1
3 K[2dY ] � r3!r

!
3K → K,

and noticing that

r
−1
3 K ◦N � r3∗r

−1
3 K ◦ N

and

F ◦ r−1
3 K � F ◦ (r3!r

−1
3 K),
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we get the commutative diagram

HomD(L0 ◦ N , F
w

⊗OX) → HomD(K ◦ N , F
w

⊗OX)� 2�
�

HomD(N , (F ◦ CA0)
w

⊗OZ)[dY + dZ ] → HomD(N , (F ◦K)
w

⊗OZ)[dZ ].

Moreover, (3.3.9) induces the commutative diagram:

HomD(N , (F ◦ CA0)
w

⊗OZ)[dY + dZ ] → HomD(N , (F ◦K)
w

⊗OZ)[dZ ]� 3� �

HomD(N , (F ◦ CA1 ◦ CA2)
w

⊗OZ)[dY + dZ ] .

By putting together the diagrams 1�– 3�, we obtain:

Theorem 3.3.2. Let X, Y and Z be compact complex manifolds, F ∈ Db
R−c(CX),

and N ∈ Db
q-good(DZ). Assume a morphism (3.3.7) is given with K regular holo-

nomic satisfying (3.3.8) and (3.3.10). Then the diagram below commutes:

Γ X;HomD(L1 ◦ L2 ◦ N , F
w
⊗OX) −→ Γ X;HomD(K ◦ N , F

w
⊗OX)

Lϕ1

Γ Y ;HomD(L2 ◦ N , (F ◦ CA1 )
w
⊗OY ) [dY ]

Lϕ2

Γ Z;HomD(N , (F ◦ CA1 ◦ CA2 )
w
⊗OZ) [dY + dZ ] ←− Γ Z;HomD(N , (F ◦K)

w
⊗OZ ) [dZ ].

Using the same hypotheses, one similarly obtains a commutative diagram:

Γ(X; Thom(F,ΩX)⊗D (L1 ◦ L2 ◦ N ))[dX ] ←− Γ(X; Thom(F,ΩX)⊗D (K ◦N ))[dX ]
tLϕ1

Γ(Y ; Thom(F ◦ CA1 ,ΩY )⊗D (L2 ◦ N ))
tLϕ2

Γ(Z; Thom(F ◦ CA1 ◦ CA2 ,ΩZ)⊗D N )[−dY ] −→ Γ(Z; Thom(F ◦K,ΩZ)⊗D N ).

Corollary 3.3.3. Assume X = Z, F ◦CA2 ◦CA1 � F , L1◦L2◦N � N , F ◦K � F

and K ◦ N � N . Then Lϕ2 ◦ Lϕ1 = id.

If the same result holds with ϕ1 and ϕ2 interchanged, we get that Lϕ1 and Lϕ2

are inverse to each other. That is the reason why we may consider Theorem 3.3.2
as an “inversion formula”.

4. Algebraic setting

In this section, if there is no risk of confusion, we shall not write the symbols R
and L of right and left derived functors, for short.

4.1. Definitions. In the sequel, we work on complex algebraic varieties (i.e. sepa-
rated schemes of finite type over C). For a complex algebraic variety X , we denote
by OX the structural sheaf, and by DX the sheaf of differential operators. We say
that a DX -module is quasi-good, if it is quasi-coherent as an OX -module and locally
generated by countably many sections. We denote by Db

q-good(DX) the full subcat-

egory of Db(DX) consisting of objects whose cohomology groups are quasi-good.
Then · ⊗OX · gives a functor

· ⊗O · : Db
q-good(DX)×Db

q-good(DX) → Db
q-good(DX).(4.1.1)
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For a morphism f : X → Y of smooth algebraic varieties, we denote by f
∗

and f−1

the direct image and inverse image functors, respectively. Then they give

f
∗

: Db
q-good(DX) → Db

q-good(DY ),(4.1.2)

f
−1 : Db

q-good(DY ) → Db
q-good(DX).(4.1.3)

LetXan denote the complex analytic variety associated withX . There is a canonical
morphism Xan → X of C-ringed spaces. This defines a canonical functor ( · )an :
Db

q-good(DX) → Db
q-good(DXan). For a morphism f : X → Y of complex algebraic

varieties we denote by fan : Xan → Yan the corresponding morphism of complex
analytic varieties.

Let us take an embedding j : X → X
� from X into a proper smooth algebraic

variety. We call a DX -module M regular holonomic if j
∗
M is a regular holo-

nomic DX�-module. We call a sheaf F of C-vector spaces on Xan a completely
R-constructible sheaf if (jan)!F is an R-constructible sheaf on X

�
an. Those defini-

tions do not depend on the embedding j. Let R-cons(CX) be the abelian category of
completely R-constructible sheaves. We denote by Db

R−c(CX) the full subcategory

of Db(CXan) consisting of objects with completely R-constructible cohomologies.
Then Db

R−c(CX) is equivalent to Db(R-cons(CX)).

We define for F ∈ Db
R−c(CX)

W Γc(X ;F
w

⊗OX) = Γ(X �

an; (jan)!F
w

⊗OX�
an

),(4.1.4)

T Γ(X ; Thom(F,OX)) = Γ(X �

an; Thom((jan)!F,OX�
an

)).(4.1.5)

More generally for M ∈ Db
q-good(DX) we set

W Γc(X ;HomD(M, F
w

⊗OX))(4.1.6)

= Γ
�
X
�

an;HomDX�
an

((j
∗
M)an, (jan)!F

w

⊗OX�
an

)
�
,

T Γ(X ; Thom(F,ΩX)⊗D M)(4.1.7)

= Γ
�
X
�

an; Thom((jan)!F,ΩX�
an

)⊗DX�
an

(j
∗
M)an

�
.

These definitions again do not depend on the choice of a compactification j.

4.2. Adjunction formulas. The adjunction formulas (3.1.9) and (3.1.10), as well
as Theorem 3.3.2, hold with (not necessarily proper) smooth algebraic varieties X ,
Y , Z .

Consider a correspondence of smooth algebraic varieties:

Z

p1 p2

X Y

(4.2.1)

Let F ∈ Db
R−c(CX), N ∈ Db

q-good(DY ), K be a regular holonomic DZ -module, and

K = Sol (Kan). Then K is an object of Db
R−c(CZ). We set

F ◦K = (p2an)!
�
(p1an)−1

F ⊗K

�
,

K ◦ N = p
1∗

(K ⊗O p
−1
2
N ).
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Proposition 4.2.1. We have

W Γc(X ;HomD(K ◦ N , F
w

⊗OX))[dX ](4.2.2)

� W Γc(Y ;HomD(N , (F ◦K)
w

⊗OY ))[dZ ],

T Γ(Y ; Thom(F ◦K,ΩY )⊗D N )[dY ](4.2.3)

� T Γ(X ; Thom(F,ΩX)⊗D (K ⊗O N ))[dZ ].

Proof. We embed the correspondence (4.2.1) in another correspondence of proper
algebraic varieties:

Z
p1 p2

X Y

�→
j

Z
�

p
�
1 p

�
2

X
�

Y
�
.

(4.2.4)

Then we have

(jan !F ) ◦ (jan !K) � jan !(F ◦K),(4.2.5)

(j
!
K) ◦ (j

!
N ) � j

!
(K ◦ N ).(4.2.6)

Hence we may assume from the beginning that X , Y and Z are proper. In such a
case we can reduce the assertion to the corresponding one in the analytic setting,
which is proved in [K-S2].

The same statement as in Theorem 3.3.2 holds for (not necessarily proper)
smooth algebraic varieties X , Y , Z in the algebraic setting, by replacing Γ with
W Γc or T Γ.

5. The Laplace transform

In this section, if there is no risk of confusion, we shall not write the symbols R
and L of right and left derived functors, for short.

5.1. Fourier transform. We shall apply the results of §3 and §4 to the study of
the Laplace transform. Let V be an n-dimensional complex vector space and V

∗

its dual. We regard them as complex algebraic varieties. Since a conic subanalytic
set is subanalytic in a compactification of V , a conic R-constructible sheaf on Van is
completely R-constructible. Hence we write Db

R+,R−c(CV ) instead of Db
R+,R−c(CVan)

for short. Note that Db
R+,R−c(CV ) is a full subcategory of Db

R−c(CV ).
When there is no risk of confusion, we write V instead of Van.
We denote by ϕ the function: ϕ(z, w) = −�z, w� on V ×V ∗. We set, as in §3:

A = {(z, w) ∈ V × V
∗; Reϕ(z, w) ≥ 0},

A
� = {(z, w) ∈ V × V

∗; Reϕ(z, w) ≤ 0}.

Consider the diagram:

V × V
∗

p1 p2

V V
∗
.

(5.1.1)
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Let F ∈ Db
R+,R−c(CV ). Its Fourier-Sato transform and inverse Fourier-Sato trans-

form are defined by:

F
∧ = p2!(p

−1
1 F )A = F ◦ CA,

F
∨ = p2!(p

!
1F )A� = F ◦ CA� [2n].

Hence F∨ � F
∧a[2n], where “a” is the antipodal map on V

∗ and F
∧a = a∗F

∧
.

If G∈Db
R+,R−c(CV ∗), we keep the same notations. For example G∧=p1!(p

−1
2 G)A.

One of the main results of the theory of the Fourier-Sato transform is that the two
functors:

Db
R+,R−c(CV )

∧−→←−
∨

Db
R+,R−c(CV ∗)

are equivalences of categories inverse to each other. In particular

F � F
∧∧a[2n].

Let j : V �→ P denote the projective compactification of V . For F ∈ Db
R−c(CV ),

we set

F
W

⊗OV = W Γc(V ;F
w

⊗OV ) = Γ(Pan; (jan)!(F )
w

⊗OPan ),(5.1.2)

THom(F,OV ) = T Γ(V ; Thom(F,OV )) = Γ(Pan; Thom((jan)!(F ),OPan)).(5.1.3)

Let D(V ) denote the Weyl algebra on V , that is, D(V ) = Γ(V ;DV ). The functors
of formal and moderate cohomology are defined with values in Db(D(V )):

·
W

⊗OV : Db
R−c(CV ) → Db(D(V )),(5.1.4)

THom( · ,OV ) : Db
R−c(CV )opp → Db(D(V )).(5.1.5)

We say that a D(V )-module is quasi-good if it is generated by countably many
elements. We denote by Db

q-good(D(V )) the full subcategory of Db(D(V )) consisting
of objects with quasi-good cohomology groups.

Proposition 5.1.1. The two functors

Db
q-good(D(V ))

λ−→←−
γ

Db
q-good(DV ),

λ(M) = DV

L
⊗D(V )M,

γ(M) = R Γ(V ;M),

are well-defined and inverse to each other.

Proof. Since V is affine, the category of quasi-good D(V )-modules is equivalent
to that of quasi-good DV -modules. Moreover Db

q-good(D(V )) and Db
q-good(DV ) are

their derived categories.

We denote by ∧ the Fourier isomorphism:

∧ : D(V )
∼→ D(V ∗).

If (z1, . . . , zn) is a system of linear coordinates on V and (w1, . . . , wn) the dual
coordinate system on V

∗
, then ∧ is given by:

(zj)
∧ = − ∂

∂wj
,

�
∂

∂zj

�∧
= wj .
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Let ∨ : D(V ∗) → D(V ) be the inverse of ∧. For a D(V ∗)-module N , the ring
isomorphism ∧ : D(V )

∼→ D(V ∗) makesN aD(V )-module, which we denote byN∧.
Thus it gives an equivalence of categories ∧ : Db

q-good(D(V ∗)) → Db
q-good(D(V )),

and similarly ∨ : Db
q-good(D(V )) → Db

q-good(D(V ∗)).
Let us come back to the function ϕ(z, w) = −�z, w� on V ×V

∗
, and set as in §3:

L = DV×V ∗e
ϕ
,(5.1.6)

L� = DV×V ∗e
−ϕ
.(5.1.7)

We have the following result due to Katz-Laumon [K-L] (see also [M]).

Proposition 5.1.2. There are isomorphisms functorial in M ∈ Db
q-good(D(V ))

and N ∈ Db
q-good(D(V ∗)) :

λ(M) ◦ L� � λ(M∨),

L ◦ λ(N) � λ(N∧).

5.2. The Laplace transform. We are now ready to apply the results of §§3–4.
Let F ∈ Db

R+,R−c(CV ) and let N ∈ Db
q-good(D(V ∗)). We shall use the kernels L

and L� defined in (5.1.6) and (5.1.7).
By Propositions 5.1.1 and 5.1.2, λ(N) ∈ Db

q-good(DV ∗) and L ◦ λ(N) � λ(N∧).
Hence (3.1.11) defines the morphism:

HomD(V )(N
∧
, F

W

⊗OV )−→
L

HomD(V ∗)(N,F
∧[n]

W

⊗OV ∗).(5.2.1)

Similarly, (3.1.12) defines:

THom(F∧[n],ΩV ∗)⊗D(V ∗) N −→
tL

THom(F,ΩV )⊗D(V ) N
∧
.(5.2.2)

We call L and t
L the Laplace morphisms.

Using L�, one constructs similarly forG ∈ Db
R+,R−c(CV ∗) andM ∈ Db

q-good(D(V ))
the morphisms

HomD(V ∗)(M
∨
, G

W

⊗OV ∗) −→
L�

HomD(V )(M,G
∧a[n]

W

⊗OV ),(5.2.3)

THom(G∧a[n],ΩV )⊗D(V ) M −→
tL�

THom(G,ΩV ∗)⊗D(V ∗) M
∨
.(5.2.4)

We call L� and t
L
� the inverse Laplace morphisms.

By combining the above morphisms, we obtain

HomD(V )(M
∨∧

, F
W

⊗OV ) −→
L

HomD(V ∗)(M
∨
, F

∧[n]
W

⊗OV ∗)(5.2.5)

−→
L�

HomD(V )(M,F
∧∧a[2n]

W

⊗OV ) ,

THom(F∧∧a[n],ΩV )⊗D(V ) M −→
tL�

THom(F∧[n],ΩV ∗)⊗D(V ∗) M
∨(5.2.6)

−→
tL

THom(F,ΩV )⊗D(V ) M
∨∧

.

Theorem 5.2.1. Let us identify F∧∧a[2n] with F and M with M∨∧. Then L and
L
�
, as well as t

L and t
L
�
, are inverse to each other, i.e.

L
� ◦ L = id, t

L ◦ tL� = id,

L ◦ L� = id, t
L
� ◦ tL = id .
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Proof. We shall apply Theorem 3.3.2 in its algebraic setting.
With the notations of this theorem, we have

X = V, Y = V
∗
, Z = V,

S1 = S2 = S3 = ∅,
ϕ1(z, w) = −�z, w�, ϕ2(w, z

�) = �z�, w�, ϕ0(z, w, z
�) = �−z + z

�
, w�,

A1 = A, A2 = A
�
, A0 = {(z, w, z�) ∈ V × V

∗ × V ; Re�z − z
�
, w� ≤ 0},

A3 = {(z, w, z�) ∈ V × V
∗ × V ; Re�z, w� ≤ 0, Re�z�, w� ≥ 0},

L1 = L, L2 = L�, L0 = DV×V ∗×V e
ϕ0 , L�0 = DV×V ∗×V e

−ϕ0.

We denote by r1, r2, r3 the projections from V ×V ∗×V to V ×V ∗, V ∗×V, V ×V
as in the diagram (3.3.1).

Let ∆V denote the diagonal of V ×V , and let K be the DV×V ∗ -module B∆V |V×V
.

We have

K = Sol(Kan) � C∆V [−n].

We denote by k the embedding r−1
3 ∆V �→ V × V

∗ × V . We have:

k
−1L0 � O

r
−1
3 ∆V

,(5.2.7)

k∗Or
−1
3 ∆V

� r
−1
3 K.(5.2.8)

Hence the natural morphism

k∗k
−1L0[−n] → L0

defines:

r
−1
3 K[−n] → L0.(5.2.9)

On the other hand, we have:

r
−1
3 K ⊗O L�0 � (k∗Or

−1
3 ∆V

)⊗O L�0
� k∗(Or

−1
3 ∆V

⊗O k
−1L�0)

� k∗Or
−1
3 ∆V

.

Hence, the hypothesis (3.3.10) of Theorem 3.3.2 is satisfied. For z, z� ∈ V , r−1
3 (z, z�)

∩A0 is a closed half-space if z �= z
�, and is isomorphic to R2n if z = z

�. We get

r3!CA0 � C∆V [−2n] � K[−n],(5.2.10)

and the morphism CA0 → CA3 induces

K[−n] → r3!CA3 .(5.2.11)

Hence all the hypotheses of Theorem 3.3.2 are satisfied.
To conclude, we remark that:

• if N ∈ Db
q-good(DV ), then K ◦ N � N .

• for F ∈ Db
R+,R−c(CV ), the morphism F � F ◦ K[n] � F ◦ r3!CA0 [2n] →

F ◦r3!CA3 [2n] � F ◦CA1◦CA2 [2n] � F
∧∧a[2n] coincides with the isomorphism

F
∼→ F

∧∧a[2n] constructed in [K-S1, Ch. III].

This completes the proof.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



958 MASAKI KASHIWARA AND PIERRE SCHAPIRA

Remark 5.2.2. The Laplace transform commutes with duality. Denote by D the
duality functor of topological vector spaces of type FN and DFN :

Db(FN)opp
D−→←−
D

Db(DFN).

Then the functor D sends

HomD(V )(N
∧
, F

W

⊗OV )
∼→
L

HomD(V ∗)(N,F
∧[n]

W

⊗OV ∗)

to
THom(F,ΩV [n])⊗D(V ) N

∧ ∼←
tL

THom(F∧[n],ΩV ∗ [n])⊗D(V ∗) N .

The proof follows easily from the constructions.

We shall compare our construction with the classical Fourier transform. Let VR
be a real vector space and set V = C⊗R VR. If we take CVR [−n] as F in (5.2.2), we
have F∧[n] � C√

−1V ∗
R
[−n] and we obtain the isomorphism

t
L : THom(C√−1V ∗

R
[−n],OV ∗)

∼−→ THom(CVR [−n],OV )

� �
S �(
√
−1V ∗R ) S�(VR) .

Proposition 5.2.3. The above isomorphism coincides with the classical Fourier
transform of Schwartz’s tempered distributions

u(w) �→ û(z) =

�

√
−1V ∗

R

u(w)e�z,w�dw ∈ S�(VR).

The proof will be given in the appendix.

5.3. Generalization to vector bundles. The Laplace transform on a vector
space constructed above can be generalized to vector bundles.

Let X be a complex analytic variety. Let τ : V → X be a vector bundle with
fiber dimension n, and π : V ∗ → X its dual vector bundle. Let us denote by DV

the sheaf of rings on X of differential operators on V with polynomial coefficients
on the fibers.

In order to describe the Fourier transform of DV -modules, we consider the line
bundle on X :

det(V ) =
n�
OX(V ),(5.3.1)

where OX(V ) denotes the sheaf on X of sections of V .
We have:

ΩV ∗/X � π
∗ det(V ).(5.3.2)

Let (x, z) denote a local coordinate system on V, linear in the fibers, and let
(x,w) denote the dual coordinates on V

∗. The kernel:

K(x, x�, z, w) = exp(−�z, w�)δ(x − x
�)dx�

is a section of the sheaf HdX

[V ×
X
V ∗](OV×V ∗) ⊗

p
−1
2 OX

p
−1
2 ΩX , where p2 is the second

projection V ×V ∗ → X. This kernel does not depend on the local coordinate system
and is globally defined on V ×

X

V
∗
.

The correspondence P �→ Q given by the relation

P (x, z, ∂x, ∂z)K = Q(x,w, ∂x, ∂w)K
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defines a homomorphism

ΩX ⊗O τ∗DV ⊗O Ω⊗−1
X

→ π∗(ΩV ∗ ⊗O DV ∗ ⊗O Ω⊗−1
V ∗ )opp

→ π∗(ΩV ∗/X ⊗O DV ∗ ⊗O Ω⊗−1
V ∗/X).

This induces an isomorphism:

DV � det(V )⊗O DV ∗ ⊗O det(V )⊗−1
.(5.3.3)

If N is a left DV ∗ -module, det(V )⊗ON becomes a left DV -module by (5.3.3). We
denote it by N∧:

N∧ = det(V )⊗O N as a DV -module.(5.3.4)

In order to state the Laplace inversion formula on vector bundles, we introduce some
notations. Let τ̄ : P → X and π̄ : P ∗ → X denote the projective compactifications
of V and V

∗, respectively. Let F ∈ Db
R+,R−c(CV ). We set:

F
W

⊗OV = τ̄∗(j!F
w

⊗OP ),(5.3.5)

THom(F,OV ) = τ̄∗(Thom(j!F,OP )),(5.3.6)

where j : V �→ P is the embedding. These definitions are a generalization of (5.1.2)
and (5.1.3) to the vector bundle case.

We define the Laplace transforms L and t
L by formulas (3.1.11) and (3.1.12)

with ϕ = exp(−�z, w�), and similarly for L� and t
L
�, associated with −ϕ.

Theorem 5.3.1. Let N ∈ Db
q-good(DV ∗) and let F ∈ Db

R+,R−c(CV ). Then the

Laplace transforms induce isomorphisms in Db(CX):

HomDV (N∧
, F

W

⊗OV )
∼→
L

HomDV ∗ (N , F
∧[n]

W

⊗OV ∗),

THom(F,ΩV )⊗DV N∧ ∼←
tL

THom(F∧[n],ΩV ∗)⊗DV ∗ N .

Moreover L� (resp. t
L
�) is the inverse to L (resp. t

L).

6. Applications

As above we denote by V an n-dimensional complex vector space, by V ∗ its dual
and by j : V �→ P its projective compactification.

If Z is a locally closed subset of V subanalytic in P , we set:

R Γ[Z](V ;OV ) = THom(CZ ,OV ) = R Γ(P ; Thom(j!CZ ,OP )),

H
p

[Z](V ;OV ) = H
p(R Γ[Z](V ;OV )).

Hence H
p

[Z](V ;OV ) denotes the “moderate cohomology” of O supported by Z.

In particular, if U is an open subanalytic subset, H0
[U ](V ;OV ) is the subspace of

Γ(U ;OV ) of holomorphic functions with tempered growth at the boundary of U
including infinity.
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6.1. Convex cones. Let γ be a convex cone in V . We set:

γ
◦ = {w ∈ V ∗; Re�z, w� ≥ 0 for all z ∈ γ},

γ
a = −γ,

Int γ = the interior of γ.

We keep the same notations on V
∗. If γ is an open convex cone, one has:

(Cγ)
∧ = Cγ◦a [−2n].(6.1.1)

If γ is closed and proper (i.e. γ contains no line), then:

(Cγ)
∧ � CInt γ◦ .(6.1.2)

Let U be a convex open subanalytic cone in V , and Z = U
◦a. Applying Theorem

5.2.1, we find the Laplace isomorphism:

R Γ[U ](V ;OV )
∼→
L

R Γ[Z](V
∗;OV ∗)[n].(6.1.3)

Proposition 6.1.1. For U and Z as above, we have

H
j

[U ](V ;OV ) = 0 for j �= 0,

H
j

[Z](V
∗;OV ∗) = 0 for j �= n,

and

H
0
[U ](V ;OV )

∼→
L

H
n

[Z](V
∗;OV ∗).(6.1.4)

Proof. The left hand side of (6.1.3) is concentrated in degree ≥ 0 and the right
hand side in degree ≤ 0. Hence both sides are concentrated in degree 0.

Similarly, one gets:

CU

W

⊗OV [n]
∼→
L

CZ

W

⊗OV ∗(6.1.5)

and both sides are concentrated in degree 0.
Now let V = C⊗R VR be the complexification of a real vector space VR. We have

(see [K-S2, Th. 5.10])

THom(CVR [−n],OV ) � S�(VR),

the space of tempered distributions on VR, and

CVR
W

⊗OV � S(VR),

the space of rapidly decreasing C∞-functions on VR.
Let γ (resp. λ) be a closed (resp. open) subanalytic convex cone contained in

VR. We set

Γγ(S�(VR)) = THom(Cγ [−n],OV ),

S �(λ) = THom(Cλ[−n],OV ),

S(γ) = Cγ

W

⊗OV ,

ΓλS(VR) = Cλ

W

⊗OV .

Hence Γγ(S�(VR)) is the space of tempered distributions supported by γ, S�(λ) is
the space of tempered distributions on λ, S(γ) is the space of Whitney functions on
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γ vanishing up to infinite order at infinity, and ΓλS(VR) is the subspace of S(VR)
of functions vanishing up to infinite order on VR \ λ.

The Laplace transform induces the isomorphisms:

ΓγS�(VR) � H
0
[Int γ◦](V

∗;OV ∗),

S �(λ) � H
n

[λ◦ a](V
∗;OV ∗),

S(γ) � CInt γ◦ [n]
W

⊗OV ∗ ,

ΓλS(VR) � Cλ◦ a
W

⊗OV ∗ .

Among those isomorphisms, it is a well-known result that the Laplace transform
interchanges tempered distributions supported by γ and tempered holomorphic
functions in the dual tube.

Remark 6.1.2. Let F ∈ R-cons(CVR), and denote by i the embedding VR �→ V .
Since THom(i!F [−n],OV ) is concentrated in degree 0 (see Example 2.2.1), we get

THom(p−1
F
∧
,OV ∗) is concentrated in degree 0,

where p : V ∗ → V
∗

R is the transpose of i, and F
∧ is the Fourier-Sato transform on

VR. Using the fact that F �→ THom(i!F [−n],OV ) is exact, one may deduce various
results, such as the well-known “Edge of the wedge theorem” of Martineau [Mr] in
the tempered setting. Details are left to the reader.

6.2. Quadratic cones. Let VR be an n-dimensional real vector space, V its com-
plexification, z = (z1, . . . , zn) a system of linear coordinates on V , with z =
x+

√
−1y, and w = (w1, . . . , wn) the dual coordinates on V

∗ with w = u+
√
−1v.

Let p, q be integers with p, q ≥ 1 and p+ q = n. We write z = (z�, z��) where

z
� = (z1, . . . , zp), z

�� = (zp+1, . . . , zn).

We use similar notations such as x = (x�, x��), w = (w�, w��), etc. We consider the
solid quadratic cones:

γ = {z ∈ V ; y = 0, x�2 − x
��2 ≥ 0},

λ = {w ∈ V
∗;u�2 − u

��2 ≤ 0}.

Lemma 6.2.1. We have:

C∧
γ
� Cλ [−p].

Before proving this lemma, let us discuss its applications. Applying Theorem
5.2.1, we find the following result.

Proposition 6.2.2. The Laplace transform induces an isomorphism

Γγ(S�(VR))
∼→
L

H
p

[λ](V
∗;OV ∗)(6.2.1)

and H
j

[λ](V
∗;OV ∗) = 0 for j �= p.

Remark 6.2.3. The Laplace transform of tempered distributions supported by the
solid quadratic cone γ has already been considered by Faraut-Gindikin [F-G] and
the formula (6.2.1) should be considered due to them, although their formulation
and proof are quite different from ours.
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Proof of Lemma 6.2.1. For u ∈ V ∗R , set:

γu = {x ∈ γ; �x, u� ≤ 0}.
Then (C∧

γ
)w � R Γc(VR; Cγu) with u = Rew. We have (see [K-S1, Ex III 5]):

R Γc(VR; Cγ) � C[−p].
Hence, it is enough to check the following statements:
(i) if u /∈ λ, R Γc(VR; Cγu) = 0,
(ii) if u ∈ λ \ {0}, the morphism

R Γc(VR; Cγ) −→ R Γc(VR; Cγu)

is an isomorphism.
Let us prove (i). Let u = (u�, u��). We may assume u�� = 0. Let f be the projection
Rp × Rq → Rp, (x�, x��) �→ x

�, and set γ̃u = f(γu). The fibers of f above γ̃u are
closed balls and γ̃u is a closed half plane. Hence R Γc(γ̃u; Cγ̃u) = 0, and (i) follows.
Let us prove (ii). We may assume u = (0, . . . , 0, 1). Let f be the projection
Rn → Rn−1, x �→ (x1, . . . , xn−1). Set γ̃

−
u

= f(γ \ γu). Then the fibers of f
above γ̃

−
u

are intervals (0, a] for some a ∈ R. Hence R f!Cγ\γu
= 0, and we obtain

R Γc(M ; Cγ\γu
) = 0, which implies (ii).

6.3. The sheaf Ot

V
. Let V be an n-dimensional complex vector space. For two

open cones U1 and U2, we write for short

U1 � U2

if U1 ⊂ U2∪{0}. We shall construct conic sheaves associated with conic presheaves.
Let T be a family of open cones satisfying:

�
for each z ∈ V , and each open conic neighborhood U of z,
there exists U � ∈ T with z ∈ U

� ⊂ U .
(6.3.1)

Let G be a presheaf of C-vector spaces on T . The classical construction of a
sheaf associated to a presheaf gives a conic sheaf G̃ and a morphism of presheaves
θ : G → G̃ such that any morphism G → F with a conic sheaf F factorizes through
θ.

Let j : V �→ P denote, as above, the projective compactification of V . For
F ∈ Db

R+,R−c(CV ), we set for short:

THom(F,DbV ) = R Γ(P ; Thom(j!F,DbP )).(6.3.2)

Definition 6.3.1. We denote by Dbt
V

the conic sheaf associated to the presheaf:

U �→ THom(CU ,DbV )

for a subanalytic open cone U in V .

The following properties are easily checked.
(i) The conic sheaf Dbt

V
is conically soft and in particular

H
j(U ;Dbt

V
) = 0 for any j �= 0 and any open cone U .

(ii) Dbt
V

is a D(V × V̄ )-module, where V̄ is the complex conjugate of V .
(iii) R Γ(V ;Dbt

V
) � THom(CV ,DbV ).

(iv) R Γ{0}(V ;Dbt
V

) � THom(C{0},DbV ).
(v) For any open cone U , we have in the category of vector spaces

Γ(U ;Dbt
V

) = lim
←−

THom(CU � ,DbV )
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where the projective limit is taken over the subanalytic open cones U � � U .

Definition 6.3.2. We set:

Ot

V
= RHom

D(V̄ )(O(V̄ ),Dbt
V

).

Proposition 6.3.3. (i) The conic sheaf Ot

V
is concentrated in degree 0.

(ii) The sheaf Ot

V
is the conic sheaf associated to the presheaf

U �→ THom(CU ,OV )

for a subanalytic convex open cone U in V .
(iii) We have

R Γ(V ;Ot

V
) � THom(CV ,OV ) � C[V ],

R Γ{0}(V ;Ot

V
) � THom(C{0},OV ) � C[V ∗]⊗ detV [−n].

Here C[V ] denotes the ring of polynomials on V .
(iv) Let U �1 � U1 � U

�
2 � U2 be open cones with U

�
1 and U

�
2 subanalytic. Then

there is a canonical commutative diagram:

R Γ(U2;Ot

V
) → THom(CU

�
2
,OV )

↓ � ↓
R Γ(U1;Ot

V
) → THom(CU

�
1
,OV ).

Proof. (iii) follows from the corresponding property for Dbt
V

.
(i) By (iii), it is enough to prove this assertion at each point of V \ {0}. Since

THom(CU ,OV ) is concentrated in degree 0 for U convex, this will follow from (iv).
(ii) follows again from (iv).
(iv) Since Dbt

V
is conically soft, this follows from the commutative diagram:

Γ(U2;DbtV ) → THom(CU �
2
,DbV )

↓ � ↓
Γ(U1;DbtV ) → THom(CU �

1
,DbV ).

Corollary 6.3.4. Let Z2 ⊂ Z
�
2 ⊂ Z1 ⊂ Z

�
1 be closed cones in V with Z

�
1 and Z

�
2

subanalytic and V \Z �1 � V \ Z1 � V \ Z �2 � V \ Z2. Then there is a canonical
commutative diagram:

R ΓZ2(V ;Ot

V
) → THom(CZ

�
2
,OV )

↓ � ↓
R ΓZ1(V ;Ot

V
) → THom(CZ

�
1
,OV ).

Proof. The proof is similar.

Let V ∗ denote the dual vector space. We shall show that the Laplace transform
allows us to “quantize” the Fourier-Sato transform. More precisely:

Theorem 6.3.5. (i) The Fourier-Sato transform (Ot

V
)∧[n] is concentrated in de-

gree 0.
(ii) The Laplace transform induces an isomorphism (Ot

V
)∧[n] � Ot

V ∗ .
(iii) This isomorphism is D(V ∗)-linear (via the Fourier isomorphism D(V ) �

D(V ∗)).
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Proof. (i) Let U be a convex open cone in V
∗, and Z = U

◦ ⊂ V the closed polar
cone. By the theory of the Fourier-Sato transform, one knows that:

R Γ(U ; (Ot

V
)∧[n]) � R ΓZ(V ;Ot

V
)[n].

Choose open convex cones U1 � U2 � U3 with U2 subanalytic. By Proposition
6.3.4 and Theorem 5.2.1, we have a commutative diagram, where Z2 = U

◦
2 :

R Γ(U3; (Ot

V
)∧[n]) −→ R Γ(U1; (Ot

V
)∧[n])� �

THom(CZ2 [−n],Ot

V
)���

THom(CU2 ,Ot

V ∗).

(6.3.3)

This shows that (Ot

V
)∧[n] is concentrated in degree 0 on V \ {0}. Moreover, since

R Γ(V ; (Ot

V
)∧[n]) � R Γ{0}(Ot

V
)[n] � THom(C{0}[−n],Ot

V
), we see that (Ot

V
)∧[n]

is concentrated in degree 0, and is isomorphic to the conic sheaf associated with
the presheaf U �→ THom(CU ,OV ∗) for an open subanalytic convex cone U .

As an application of Theorem 6.3.5, one recovers a result of Brylinski-Malgrange-
Verdier [B-M-V] and Hotta-Kashiwara [H-K]. Let M be a finitely generated D(V )-
module, and denote by θ the Euler vector field on V , θ =

�
j
zj∂zj . Recall that

one says that M is monodromic if dimC C[θ]u <∞ for any u ∈M .

Corollary 6.3.6 ([B-M-V], [H-K], [M]). Let M be a monodromic D(V )-module.
Then:

(i) M
∨ is monodromic.

(ii) RHomD(V )(M,Ot

V
)
∼→ RHomD(V )(M,OV ).

(iii) RHomD(V )(M,OV ) is a conic sheaf (i.e. belongs to Db
R+(CV )).

(iv) The Laplace morphism induces an isomorphism:

RHomD(V )(M,OV )∧[n] � RHomD(V ∗)(M
∨
,OV ∗).

Proof. (i) is obvious
(ii) By standard arguments, one reduces the proof to the case where M has one

generator u with the relation (θ − α)u = 0. Then the result is clear.
(iii) follows from (ii).
(iv) follows from (ii) and Theorem 6.3.5.

Remark 6.3.7. Corollary 6.3.6 has been recently generalized to non-monodromic
D(V )-modules regular at infinity by Daia [D].

For the definition of the functor µhom below, we refer to [K-S1].

Corollary 6.3.8. Let M be a monodromic D(V )-module, and let F ∈Db
R+,R−c(CV ).

Then the Laplace morphism induces an isomorphism of biconic sheaves on V ×V ∗:
RHomD(V )(M,µhom(F,OV )) � RHomD(V ∗)(M

∨
, µhom(F∧[n],OV ∗)).

Proof. Apply Corollary 6.3.6 together with [K-S1, Ex. VII 2].

Remark 6.3.9. Let M : V → X be a complex vector bundle with fiber dimension n.
Then all definitions and results, in particular Definition 6.3.2 and Theorem 6.3.5,
extend with suitable modifications in this situation. The only “difficulty” is that we
need a basis of open cones U such that THom(CU ,OV ) is concentrated in degree 0.
We may assume that X is open in Cp, and V = X ×Cn. Then we choose a convex
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U in X × Cn. The fact that THom(CU ,OV ) is concentrated in degree 0 in such a
case is a well-known result, whose proof may be found, for example, in [D’A-S2].

Remark 6.3.10. See [M] for the construction of various conic sheaves associated to
O and well suited with Laplace transform.

Remark 6.3.11. One could develop a theory analogous to that of [S-K-K] with O
replaced by the conic sheaf Ot

V
. In particular, one could construct the biconic

sheaf of rings Et
V

of tempered microdifferential operators on V × V
∗. This sheaf

is invariant by the Fourier transform. Taking its global section, one recovers the
Weyl algebra D(V ).

6.4. Positive definite matrices. In this section we work in the algebraic setting,
following the notations in §4.

Let W denote the n(n + 1)/2-dimensional C-vector space of n × n symmetric
matrices with entries in C. We shall often write an element ofW as a = (aij)1≤i,j≤n.
One may identify W

∗ with W by the pairing:

�a, b� = tr(a b)

where tr( · ) is the trace. Let V = Cn, endowed with coordinates z = (z1, . . . , zn),
and consider the morphism:

f : V →W,

(z1, . . . , zn) �→ (zizj)1≤i,j≤n.

Notice that this map is finite. If b ∈ W
∗, we have:

�z, bz� = �b, f(z)�.(6.4.1)

We are interested with the correspondence formally defined by:

û(b) =

�

V

u(z)e�z,bz�dz =

�

W

�

V

u(z)e�a,b�δ(a− f(z))dzda.(6.4.2)

By (6.4.1) this is the composition of the direct image by f and the Laplace transform
on W :

W ×W
∗

� �
V −→

f

W W
∗
.

First, let us calculate f
∗
DV . Since f is finite, this module is concentrated in degree

0. After identifying ΩV and ΩW with OV and OW respectively, we have

f
∗
DV � DW ⊗OW (f∗OV ).

Lemma 6.4.1. (i) f∗OV � L0⊕L1 where L0 = OWu0, with the defining relations:
����
aik ail

ajk ajl

���� u0 = 0 ∀i, j, k, l,

and L1 =
�

n

i=1OWu
i

1, with the defining relations:

ajku
i

1 − aiku
j

1 = 0 ∀i, j, k.

(ii) RHomOW (f∗OV ,OW ) � f∗OV [−n(n− 1)/2].
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Proof. (i) We leave the tedious calculation to the reader.
(ii) On a complex manifold X , denote by DO the duality functor DO(F) =

RHomO(F ,ΩX)[dX ]. Then f∗ commutes to DO, and we get:

f∗OV [n] � f∗DO(OV )

� DOf∗OV

� RHomOW (f∗OV ,OW ) [n(n+ 1)/2].

Let a = (aij)1≤i,j≤n be a symmetric real matrix. Recall that one says that a is
positive semi-definite (resp. positive definite), and one writes a ≥ 0 (resp. a > 0)
if for all λ = (λ1, . . . , λn) ∈ Rn we have

�
i,j
aijλiλj ≥ 0 (resp. > 0, assuming

λ �= 0). We introduce the sets:

Z = {a ∈ W ; Ima = 0, Re a ≥ 0},
Ω = {b ∈W ∗;−Re b > 0}.

Lemma 6.4.2. One has:
f
−1CZ = CRn .

Proof. This follows from f
−1(Z) = Rn.

Lemma 6.4.3. The Fourier-Sato transform induces an isomorphism:

CΩ
∧ � CZ [−n(n+ 1)].

Proof. The set Ω is open and convex in W
∗. The assertion then follows from the

well-known fact:

Z = {a ∈ W ; tr(ab) ≤ 0 for any b ∈ Ω}.

Let us denote by N the D(W ∗)-module obtained as the Fourier transform of the
D(W )-module Γ(W ; f

∗
DV ). By Lemma 6.4.1, we have:

N = N0 ⊕N1,

N0 = DW∗u0

with relations

����
∂ik ∂il

∂jk ∂jl

����u0 = 0, ∀i, j, k, l,

N1 =
n�

i=1

DW∗u
i

1

with relations ∂jku
i

1 − ∂iku
j

1 = 0 ∀i, j, k.
Here, ∂ij is the restriction to W

∗ of the vector field ∂bij + ∂bji , as usual.
By Lemma 6.4.1, we have

RHomD(W∗)(N,D(W ∗)) � N [−n(n− 1)/2].(6.4.3)

Theorem 6.4.4. The correspondence (6.4.2) induces an isomorphism:

S �(Rn) � HomD(W∗)(N,H
0
[Ω](W

∗;OW∗)).

In other words, the correspondence (6.4.2) interchanges the space of tempered dis-
tributions on Rn and the space of tempered holomorphic functions on Ω satisfying
the system of differential equations N .
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Proof. We have:

S�(Rn) � THom(CRn [−n],OV )

� THom(f−1CZ [−n],ΩV )⊗D DV .

Applying Proposition 4.2.1, we obtain:

S�(Rn) � THom(CZ [−n],ΩW )⊗D f
∗
DV .

Applying the Laplace isomorphism, we get:

S �(Rn) � THom(CΩ,ΩW∗)⊗D(W∗) (f
∗
DV )∧[−n(n− 1)/2]

� HomD(W∗)(N,THom(CΩ,OW∗)).

Here the last isomorphism follows from (6.4.3).

Remark 6.4.5. By the isomorphism in Theorem 6.4.4,

HomD(W∗)(N0, H
0
[Ω](W

∗;OW∗))

(resp. HomD(W∗)(N1, H
0
[Ω](W

∗;OW∗))) corresponds to the space of even (resp.

odd) tempered distributions on Rn.

Appendix A. Comparison with the classical Laplace transform

In this appendix, we write ⊗ instead of ⊗O for short.
In order to compare our construction with the classical one, we restrict our study

to the case of convex cones.
Let γ be a closed convex proper subanalytic cone in V

∗. As in §6.1, we set:

U = Int γ◦ a

= {z ∈ V ; Re�z, w� < 0 for all w ∈ γ}.
Then we have

(CU )∧[n] � Cγ [−n].

We embed V
∗ into the projective space P ∗, and then embed the diagram (5.1.1):

V × V
∗

p1 p2

V V
∗

�→
j

V × P
∗

p̄1 p̄2

V P
∗
.

We set
L̄ = j

∗
L and L̄� = j

∗
L�.

We set Z = V × P
∗ and H = V × (P ∗ \ V ∗). The partial de Rham complex

0 → DZ ⊗
n�
V → · · · → DZ ⊗ V → DZ → p̄

−1
2
DP∗ → 0

gives a resolution of p̄−1
2
DP∗ , and we obtain a morphism

p̄
−1
2
DP∗ → DZ ⊗

n�
V [n] � DZ ⊗ Ω⊗−1

V
[n].(A.1)

We shall construct a similar resolution for L̄⊗ p̄−1
2
DP∗ . Let β : OZ ⊗V → j

∗
DZ\H

be the morphism V � v �→ ∂v + v. Here ∂v is the vector field on V associated
with v ∈ V , regarded as a section of DZ . We also regard v ∈ V as a meromorphic
function on Z with pole in H . We set h = Imβ ∩ DZ . Then h is a locally free
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OZ-module of rank n, and it is a commuting family of differential operators on Z.
Then the associated Koszul complex gives a sequence:

0 → DZ ⊗OZ(H)⊗
n�

h → · · · → DZ ⊗OZ(H)⊗ h → DZ ⊗OZ(H)(A.2)

→ L̄ ⊗ p̄
−1
2
DP∗ → 0.

Here the last morphism is given by the OZ -linear homomorphisms OZ(H) → L̄
and OZ → p̄

−1
2
DP∗ .

Lemma A.1. (A.2) is an exact sequence.

Proof. It is an exact sequence on V × V
∗. Let us take the coordinates (z1, . . . , zn)

of V and the dual coordinates (w1, . . . , wn). We shall consider the problem on the
open set of P ∗ where (w−1

1 , w2/w1, . . . , wn/w1) is a local coordinate system. Then
h has a base w−1

1 ∂z1 +1, ∂zj −w−1
1 wj∂z1 (2 ≤ j ≤ n). Since their principal symbols

form a regular sequence, 0 → DZ ⊗ OZ(H) ⊗
�
n h → · · · → DZ ⊗ OZ(H) ⊗ h →

DZ ⊗ OZ(H) is an exact sequence. The remaining exactitude is reduced to the
statement that

DC2/DC2(x1∂x2 − 1) → (DC2 exp(x2/x1))[1/x1]⊗ (DC2/DC2∂x2)(A.3)

is an isomorphism. Here x1 = w
−1
1 , x2 = −w−1

1 ϕ(z, w) and the element 1 ∈
DC2/DC2(x1∂x2 − 1) is sent to x−1

1 exp(x2/x1)[1/x1]⊗ 1. Now, (A.3) is an isomor-
phism outside x1 �= 0 and both sides of (A.3) are invariant by OC2 [1/x1]⊗ ·. Hence
(A.3) is an isomorphism.

Since det h = OZ(−H)⊗ detV , (A.2) gives a morphism in Db(DZ):

L̄ ⊗ p̄
−1
2
DP∗ → DZ ⊗OZ(H)⊗ det h[n](A.4)

∼→ DZ ⊗ detV [n] � DZ ⊗ Ω⊗−1
V

[n]

→ p̄
−1
1

(DV ⊗ Ω⊗−1
V

)[n].

On the other hand, Proposition 5.1.2 implies that D(V ) (in fact, more correctly,
Γ(V ;DV ⊗ Ω⊗−1

V
)) is isomorphic to the module of global sections of the sheaves

p
1∗

(L ⊗ p
−1
2
DV ∗) � p̄

1∗
(L̄ ⊗ p̄

−1
2
DP∗). This isomorphism gives by adjunction

L̄ ⊗ p̄
−1
2
DP∗ → p̄

−1
1

(DV ⊗ Ω⊗−1
V

)[n].(A.5)

Lemma A.2. The two morphisms (A.4) and (A.5) are equal (up to a constant
multiple).

Proof. In order to prove the lemma it is enough to show that the morphism
p̄
1∗

(L ⊗ p̄
−1
2
DP∗) → DV ⊗ Ω⊗−1

V
given in Proposition 5.1.2 coincides with the

following morphism coming from (A.4) (up to a constant multiple):

p̄
1∗

(L ⊗ p̄
−1
2
DP∗) → p̄

1∗
(DZ ⊗ Ω⊗−1

V
)[n](A.6)

→ p̄
1∗
p̄
−1
1

(DV ⊗ Ω⊗−1
V

)[n] → DV ⊗ Ω⊗−1
V

.

Since p̄
1∗

(L̄ ⊗ p̄
−1
1
DP∗) � DV ⊗ Ω⊗−1

V
and there is only one automorphism of

DV ⊗ Ω⊗−1
V

up to a constant multiple, it is enough to show that the morphism
(A.6) is an isomorphism.
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We have exact sequences

0 → OZ ⊗ V
∗ → h∗ → OH → 0,(A.7)

0 → OH(−H) → OH ⊗ V
∗ → E → 0.(A.8)

Here E = (OH ⊗ V
∗)/(h∗(−H)) and it is a locally free OH -module of rank n− 1.

Then (A.8) gives an exact sequence

0 → OH(−H)⊗
k−1�

E → OH ⊗
k�
V
∗ →

k�
E → 0.

Recall the well-known vanishing theorem

p̄1∗(OH(−νH)) = 0 for 0 < ν ≤ n.

By induction on k, we obtain

p̄1∗(OH(−νH)⊗
k�
E) = 0 for 0 < ν, k + ν ≤ n.(A.9)

The exact sequence (A.7) gives an exact sequence

0 → OZ ⊗
k�
V
∗ →

k�
h∗ →

k−1�
E → 0 ,

and we have by (A.9):

p̄1∗(OZ(−H)⊗
k�

h∗) = 0 for 0 ≤ k < n.

The remaining case k = n can be calculated as:

� p̄1∗(OZ ⊗ ΩV ) � ΩV .

On the other hand, we have for any coherent OZ-module F

p̄
1 ∗

(DZ ⊗F) � p̄
1 ∗

(DV←Z ⊗F)

� p̄1 ∗(DV ⊗ ΩZ/V ⊗F)

� DV ⊗ p̄1 ∗Hom(F ,ΩZ/V )

� DV ⊗Hom(p̄1 ∗F∗,OV )[−n],

where F∗ = HomOZ (F ,OZ). Hence we have

p̄
1 ∗

(L ⊗ p̄
−1
2
DP∗) � p̄

1 ∗
(DZ ⊗OZ(H)⊗ det h)[n]

� DV ⊗HomDV (p̄1∗(OZ(−H)⊗ det h∗),OV )

� DV ⊗ Ω⊗−1
V

.

The morphisms (A.1) and (A.4) are related by the commutative diagram:

p̄
−1
2
DP∗ −−−→ DZ ⊗ Ω⊗−1

V
[n]

↓ ↓
L̄� ⊗ L̄ ⊗ p̄

−1
2
DP∗ → L̄� ⊗DZ ⊗ Ω⊗−1

V
[n]

∼→ L̄� ⊗ L̄ ⊗ DZ ⊗ Ω⊗−1
V

[n].

(A.10)
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Here the right arrow in the bottom row is given by the morphism DZ⊗Ω⊗−1
V

→ L̄⊗
DZ⊗Ω⊗−1

V
induced by the canonical section of L. We thus obtain the commutative

diagram:

THom(Cγ [−n],ΩV ∗)
�

THom(Cγ [−n],ΩP∗) −−→ THom(CV×γ [−n],Ω(0,n)
Z

)�
�

THom(CU×γ [n],ΩZ)⊗D p̄
−1
2
DP∗ [n] −→ THom(CU×γ ,ΩZ)⊗D DZ ⊗ Ω⊗−1

V
[n]� a�

�
THom(CU×γ ,ΩZ)

⊗DL̄� ⊗ L̄ ⊗ p̄
−1
2
DP∗

−→ THom(CU×γ ,ΩZ)
⊗DL̄� ⊗DZ ⊗ Ω⊗−1

V
[n]� exp(�z, w�)

� exp(�z, w�)

THom(CU×γ ,ΩZ)⊗D L̄ ⊗ p̄
−1
2
DP∗ −→ THom(CU×γ ,ΩZ)⊗D DZ ⊗ Ω⊗−1

V
[n]

� b�
�

THom(CU×γ ,ΩZ)
⊗Dp̄

−1
1

(DV ⊗ Ω⊗−1
V

)[n]�
THom(CU ,ΩV )⊗D DV ⊗ Ω⊗−1

V

�
THom(CU ,OV ) .

Here γ̄ is the closure of γ in P
∗. The commutativity of a� follows from (A.10) and

b� from Lemma A.2.
The arrows on the left hand side describe the Laplace morphism constructed in

§5.2. The arrows on the right hand side define the chain of morphisms:

THom(Cγ [−n],ΩV ∗) −→ THom(CU×γ [−n],Ω(0,n)
V×P∗)

−→
exp�z,w�

THom(CU×γ [−n],Ω(0,n)
V×P∗)

−→
P∗

THom(CU ,OV ).

Hence, the Laplace transform in this paper coincides with the classical Laplace
transform

u(w) �→ û(z) =

�
u(w)e�z,w�dw.

In particular, if VR is a real vector space such that V = C ⊗R VR, and if γ is
contained in V

∗

R , then THom(Cγ [−n],OV ) � Γγ(S�(V ∗R )) is the space of tempered
distributions on VR with support in γ, and THom(CU ,OV ) is the space of tempered
holomorphic functions on the convex tube domain U ⊂ V , and we recover the
classical Fourier-Laplace transform.
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Proof of Proposition 5.2.3. Decomposing
√
−1V ∗R into proper convex cones γ, we

can reduce the result to the commutative diagram:

THom(Cγ [−n],OV ∗) −→
tL

THom(CInt γ◦a ,OV )
� β

�
THom(C√

−1V ∗
R
[−n],OV ∗) −→

tL

THom(CVR [−n],OV )

Here β is the boundary value morphism.
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Abstract. Let X ←−
f

Z −→
g

Y be a correspondence of complex manifolds.

We study integral transforms associated to kernels exp(ϕ), with ϕ meromor-
phic on Z, acting on formal or moderate cohomologies. Our main application
is the Laplace transform. In this case, X is the projective compactification of
the vector space V � Cn, Y is its dual space, Z = X×Y and ϕ(z, w) = �z,w�.
We obtain the isomorphisms:

F
W
⊗ OV � F∧[n]

W
⊗ OV ∗ , THom(F,OV ) � THom(F∧[n],OV ∗ )
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where F is a conic and R-constructible sheaf on V and F∧ is its Fourier-Sato
transform. Some applications are discussed.
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