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Abstract We define the notion of a trace kernel on a manifold M. Roughly speaking, it is a sheaf on 5

M × M for which the formalism of Hochschild homology applies. We associate a microlocal Euler class 6

with such a kernel, a cohomology class with values in the relative dualizing complex of the cotangent 7

bundle T∗M over M, and we prove that this class is functorial with respect to the composition of kernels. 8

This generalizes, unifies and simplifies various results from (relative) index theorems for constructible 9

sheaves, D-modules and elliptic pairs. 10
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1. Introduction 13

Our constructions mainly concern real manifolds, but in order to introduce the subject 14

we first consider a complex manifold (X,OX). Denote by ωhol
X the dualizing complex in 15

the category of OX-modules, that is, ωhol
X =ΩX [dX], where dX is the complex dimension 16

of X and ΩX is the sheaf of holomorphic forms of degree dX . Denote by O∆X and ωhol
∆X

the 17

direct images of OX and ωhol
X respectively under the diagonal embedding δ : X ↪→ X × X. 18

It is well-known (see in particular [3, 4]) that the Hochschild homology of OX may be 19

defined by using the isomorphism 20

δ∗H H (OX)' RHomOX×X

(
O∆X , ω

hol
∆X

)
. (1.1) 21

Moreover, if F is a coherent OX-module and DOF := RHomOX (F , ωhol
X ) denotes its 22

dual, there are natural morphisms 23

O∆X −→F �DOF −→ ωhol
∆X

(1.2) 24
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whose composition defines the Hochschild class of F :25

hhO (F ) ∈ H0
Supp(F )(X;H H (OX)).26

These constructions have been extended when replacing OX with a so-called27

DQ-algebroid stack AX in [15] (DQ stands for “deformation quantization”). One of28

the main results of this reference is that Hochschild classes are functorial with respect to29

the composition of kernels, a kind of (relative) index theorem for coherent DQ-modules.30

On the other hand, the notion of Lagrangian cycles of constructible sheaves on real31

analytic manifolds has been introduced by the first-named author (see [9]) in order to32

prove an index theorem for such sheaves, after they first appeared in the complex case33

(see [8, 19]). We refer the reader to [13, Chapter 9] for a systematic study of Lagrangian34

cycles and for historical comments. Let us briefly recall the construction.35

Consider a real analytic manifold M and let k be a unital commutative ring with36

finite global dimension. Denote by ωM the (topological) dualizing complex of M, that is,37

ωM = orM [dim M] where orM is the orientation sheaf of M and dim M is the dimension.38

Finally, denote by πM : T∗M −→ M the cotangent bundle of M. Let Λ be a conic39

subanalytic Lagrangian subset of T∗M. The group of Lagrangian cycles supported by40

Λ is given by H0
Λ(T
∗M;π−1

M ωM). Denote by Db
R-c(kM) the bounded derived category41

of R-constructible sheaves on M. With an object F of this category, one associates a42

Lagrangian cycle supported by SS(F), the microsupport of F. This cycle is called the43

characteristic cycle, or the Lagrangian cycle or else the microlocal Euler class of F and is44

denoted here by µeuM(F).45

In fact, it is possible to treat the microlocal Euler classes of R-constructible sheaves on46

real manifolds like Hochschild classes of coherent sheaves on complex manifolds. Denote47

as above by k∆M and ω∆M the direct image of kM and ωM under the diagonal embedding48

δM : M ↪→M ×M. Then we have an isomorphism49

H0
Λ(T
∗M;π−1

M ωM)' H0
Λ

(
T∗M;µhom(k∆M , ω∆M )

)
, (1.3)50

where µhom is the microlocalization of the functor RHom. Then µeuM(F) is obtained as51

follows. Denote by DMF := RHom(F, ωM) the dual of F. There are natural morphisms52

k∆M −→ F �DMF −→ ω∆M , (1.4)53

whose composition gives the microlocal Euler class of F.54

In this paper, we construct the microlocal Euler class for a wide class of sheaves,55

including of course the constructible sheaves but also the sheaves of holomorphic56

solutions of coherent D-modules and, more generally, of elliptic pairs in the sense of [23].57

To treat such situations, we are led to introduce the notion of a trace kernel.58

On a real manifold M (say of class C∞), a trace kernel is the data of a triplet59

(K, u, v) where K is an object of the derived category of sheaves Db(kM×M) and u, v are60

morphisms61

u : k∆M −→ K, v : K −→ ω∆M . (1.5)62
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One then naturally defines the microlocal Euler class µeuM(K, u, v) of such a kernel, 63

an element of H0
Λ(T
∗M;µhom(k∆M , ω∆M )) where Λ = SS(K) ∩ T∗∆M

(M × M). By (1.4), a 64

constructible sheaf gives rise to a trace kernel. 65

If X is a complex manifold and M is a coherent DX-module, we construct natural 66

morphisms (over the base ring k= C) 67

C∆X −→ΩX×X
L
⊗ DX×X (M �DDM )−→ ω∆X , (1.6) 68

where DDM denotes the dual of M as a D-module. In other words, one naturally 69

associates a trace kernel on X with a coherent DX-module. Moreover, we prove that 70

under suitable microlocal conditions, the tensor product of two trace kernels is again a 71

trace kernel, and it follows that one can associate a trace kernel with an elliptic pair. 72

We study trace kernels and their microlocal Euler classes, showing that some proofs 73

of [15] can be easily adapted to this situation. One of our main results is the functoriality 74

of the microlocal Euler classes: the microlocal Euler class of the composition K1 ◦ K2 75

of two trace kernels is the composition of the microlocal Euler classes of K1 and 76

K2 (see Theorem 6.3 for a precise statement). Another essential result is that the 77

composition of classes coincides with the composition for π−1
M ωM constructed in [13] via 78

the isomorphism between µhom(k∆M , ω∆M ) and π−1
M ωM. 79

As an application, we recover in a single proof the classical results on the index 80

theorem for constructible sheaves (see [13, ğ 9.5]) as well as the index theorem for 81

elliptic pairs of [23], that is, sheaves of generalized holomorphic solutions of coherent 82

D-modules. We also briefly explain how to adapt trace kernels to the formalism of the 83

Lefschetz trace formula. 84

We call here µhom(k∆M , ω∆M ) the microlocal homology of M, and this paper shows 85

that, in some sense, the microlocal homology of real manifolds plays the same role as the 86

Hochschild homology of complex manifolds. 87

To conclude this introduction, let us make a general remark. The category Db
R-c(kM) 88

of constructible sheaves on a compact real analytic manifold M is “proper” in the sense 89

of Kontsevich (that is, Ext finite) but it does not admit a Serre functor (in the sense 90

of Bondal and Kapranov) and it is not clear whether it is smooth (again in the sense 91

of Kontsevich). However this category naturally appears in mirror symmetry (see [5]) 92

and it would be a natural aim to try to understand its Hochschild homology in the 93

sense of [17, 16]. We do not know how to compute it, but the above construction, 94

with the use of µhom(k∆M , ω∆M ), provides an alternative approach to the Hochschild 95

homology of this category. This result is not totally surprising if one recalls the formula 96

(see [13, Proposition 8.4.14]) 97

DT∗M(µhom(F,G))' µhom(G,F)⊗ π−1
M ωM. 98

Hence, in some sense, π−1
M ωM plays the role of a microlocal Serre functor. Note that 99

thanks to Nadler and Zaslow [18], we have that the category Db
R-c(kM) is equivalent to 100

the Fukaya category of the symplectic manifold T∗M, and this is another argument for 101

treating sheaves from a microlocal point of view. 102
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2. A short review on sheaves103

Throughout this paper, a manifold means a real manifold of class C∞. We shall mainly104

follow the notation of [13] and use some of the main notions introduced there, in105

particular that of microsupport and the functor µhom.106

Let M be a manifold. We denote by πM : T∗M −→ M its cotangent bundle. For a107

submanifold N of M, we denote by T∗NM the conormal bundle to N. In particular, T∗MM108

denotes the zero-section. We set Ṫ∗M := T∗M \ T∗MM and we denote by π̇M the restriction109

of πM to Ṫ∗M. If there is no risk of confusion, we write simply π and π̇ instead of πM110

and π̇M. One denotes by a : T∗M −→ T∗M the antipodal map, (x; ξ) 7→ (x;−ξ), and for a111

subset S of T∗M, one denotes by Sa its image under this map. A set A⊂ T∗M is conic if it112

is invariant under the action of R+ on T∗M.113

Let f : M −→ N be a morphism of manifolds. With f one associates as usual the maps114

T∗M

πM
((PPPPPPPPPPPPPP M ×N T∗N

π

��

fdoo fπ // T∗N

πN

��
M

f // N.

(2.1)115

(Note that in the above citation the map fd is denoted by tf ′−1.)116

Let Λ be a closed conic subset of T∗N. One says that f is non-characteristic for Λ if117

the map fd is proper on f−1
π Λ or, equivalently, f−1

π Λ ∩ f−1
d (T∗MM)⊂M×NT∗NN.118

Let k be a commutative unital ring with finite global homological dimension. One119

denotes by kM the constant sheaf on M with stalk k and by Db(kM) the bounded derived120

category of sheaves of k-modules on M. When M is a real analytic manifold, one denotes121

by Db
R-c(kM) the full triangulated subcategory of Db(kM) consisting of R-constructible122

objects.123

One denotes by ωM the dualizing complex on M and by ω⊗−1
M its dual, that124

is, ω⊗−1
M = RHom(ωM, kM). More generally, for a morphism f : M −→ N, one denotes125

by ωM/N := f !kN ' ωM ⊗ f−1(ω⊗−1
N ) the relative dualizing complex. Recall that ωM '126

orM [dim M] where orM is the orientation sheaf and dim M is the dimension of M. Also127

recall the natural morphism of functors128

ωM/N ⊗ f−1
−→ f !. (2.2)129

We have the duality functors130

D′MF = RHom(F, kM), DMF = RHom(F, ωM).131

For F ∈ Db(kM), one denotes by Supp(F) the support of F and by SS(F) its132

microsupport, a closed R+-conic co-isotropic subset of T∗M. For a morphism f : M −→ N133

and G ∈ Db(kN), one says that f is non-characteristic for G if f is non-characteristic for134

SS(G).135

We shall use systematically the functor µhom, a variant of Sato’s microlocalization136

functor. Recall that for a closed submanifold N of M, there is a functor µN : Db(kM) −→137

Db(kT∗N M) constructed by Sato (see [22]) and for F1,F2 ∈ Db(kM), one defines in [13] the138
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functor 139

µhom : Db(kM)
op
× Db(kM)−→ Db(kT∗M), 140

µhom(F1,F2) := µ∆RHom(q−1
2 F1, q !1F2) 141

where q1 and q2 are the first and second projections defined on M × M and ∆ is the 142

diagonal. This sheaf is supported by T∗∆(M ×M) that we identify with T∗M via the first 143

projection T∗(M ×M)' T∗M × T∗M −→ T∗M. Note that 144

Supp(µhom(F1,F2))⊂ SS(F1) ∩ SS(F2) (2.3) 145

and we have Sato’s distinguished triangle, functorial in F1 and F2: 146

Rπ!µhom(F1,F2)−→ Rπ∗µhom(F1,F2)−→ Rπ̇∗
(
µhom(F1,F2)|Ṫ∗M

) +1
−→ . (2.4) 147

Moreover, we have the isomorphism 148

Rπ∗µhom(F1,F2)' RHom(F1,F2), (2.5) 149

and, assuming that M is real analytic and F1 is R-constructible, the isomorphism 150

Rπ!µhom(F1,F2)'D′MF1
L
⊗ F2. (2.6) 151

In particular, assuming that F1 is R-constructible and SS(F1) ∩ SS(F2) ⊂ T∗MM, we have 152

the natural isomorphism (see [13, Corollary 6.4.3]) 153

D′MF1
L
⊗ F2

∼−→ RHom(F1,F2). (2.7) 154

As recalled in the Introduction, assuming that M is real analytic and the sheaves are 155

constructible, we have the formula (see [13, Proposition 8.4.14]) 156

DT∗M(µhom(F1,F2))' µhom(F2,F1)⊗ π
−1
M ωM for F1,F2 ∈ Db

R-c(kM). (2.8) 157

3. Compositions of kernels 158

Notation 3.1. (i) For a manifold M, let δM : M −→ M × M denote the diagonal 159

embedding, and ∆M the diagonal set of M ×M. 160

(ii) Let Mi (i = 1, 2, 3) be manifolds. For short, we write Mij := Mi × Mj (1 6 i, j 6 3), 161

M123 =M1 ×M2 ×M3, M1223 =M1 ×M2 ×M2 ×M3, etc. 162

(iii) We will often write for short ki instead of kMi and k∆i instead of k∆Mi
, and similarly 163

with ωMi , etc., and with the index i replaced with several indices ij, etc. 164

(iv) We denote by πi, πij, etc. the projection T∗Mi −→Mi, T∗Mij −→Mij, etc. 165

(v) We denote by qi the projection Mij −→Mi or the projection M123 −→Mi and by qij the 166

projection M123 −→ Mij. Similarly, we denote by pi the projection T∗Mij −→ T∗Mi or 167

the projection T∗M123 −→ T∗Mi and by pij the projection T∗M123 −→ T∗Mij. 168
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(vi) We also need to introduce the maps pja or pija , the composition of pj or pij and the169

antipodal map on T∗Mj. For example,170

p12a((x1, x2, x3; ξ1, ξ2, ξ3))= (x1, x2; ξ1,−ξ2).171

(vii) We let δ2 : M123 −→M1223 be the natural diagonal embedding.172

We consider the operation of composition of kernels:173

◦
2
: Db(kM12)× Db(kM23)−→ Db(kM13)

(K1,K2) 7→ K1 ◦
2

K2 := Rq13!(q
−1
12 K1

L
⊗ q−1

23 K2)

' Rq13!δ
−1
2 (K1

L
� K2).

(3.1)174

We will use a variant of ◦:175

∗
2
: Db(kM12)× Db(kM23)−→ Db(kM13)

(K1,K2) 7→ K1 ∗
2

K2 := Rq13∗

(
q−1

2 ω2⊗ δ
!
2(K1

L
� K2)

)
.

(3.2)176

We also have ωM123/M1223 ' q−1
2 ω⊗−1

M2
and we deduce from (2.2) a morphism δ−1

2 −→177

q−1
2 ωM2 ⊗ δ

!
2. Using the morphism R p13! −→ R p13∗ we obtain a natural morphism for178

K1 ∈ Db(kM12) and K2 ∈ Db(kM23):179

K1 ◦K2 −→ K1 ∗K2. (3.3)180

It is an isomorphism if p−1
12aSS(K1) ∩ p−1

23aSS(K2)−→ T∗M13 is proper.181

We define the composition of kernels on cotangent bundles (see [13, Proposition182

4.4.11]):183

a
◦
2
: Db(kT∗M12)× Db(kT∗M23) −→ Db(kT∗M13)

(K1,K2) 7→ K1
a
◦
2

K2 := Rp13!(p
−1
12aK1

L
⊗ p−1

23 K2)

' Rp13a
!(p
−1
12aK1

L
⊗ p−1

23aK2).

(3.4)184

We also define the corresponding operations for subsets of cotangent bundles. Let185

A⊂ T∗M12 and B⊂ T∗M23. We set186

A
a
×
2

B = p−1
12a(A) ∩ p−1

23 (B),

A
a
◦
2

B = p13(A
a
×
2

B)

=

{
(x1, x3; ξ1, ξ3) ∈ T∗M13; there exists (x2; ξ2) ∈ T∗M2

such that (x1, x2; ξ1,−ξ2) ∈ A, (x2, x3; ξ2, ξ3) ∈ B

}
.

(3.5)187

We have the following result which slightly strengthens Proposition 4.4.11 of [13] in188

which the composition ∗ is not used.189
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Proposition 3.2. For G1,F1 ∈ Db(kM12) and G2,F2 ∈ Db(kM23) there exists a canonical 190

morphism (whose construction is similar to that of [13, Proposition 4.4.11 ]): 191

µhom(G1,F1)
a
◦
2
µhom(G2,F2)−→ µhom(G1 ∗

2
G2,F1 ◦

2
F2). 192

Proof. In Proposition 4.4.8(i) of the earlier citation, one may replace F2

L
�S G2 with 193

j !(F2

L
� G2)⊗ ω

⊗−1
X×SY/X×Y . Then the proof goes exactly like that of Proposition 4.4.11 in 194

the earlier citation. � 195

Let Λij ⊂ T∗Mij (i= 1, 2, j= i+ 1) be closed conic subsets and consider the condition 196

the projection p13 : Λ12
a
×
2
Λ23 −→ T∗M13 is proper. (3.6) 197

We set 198

Λ13 =Λ12
a
◦
2
Λ23. (3.7) 199

Corollary 3.3. Assume that Λij (i= 1, 2, j= i+ 1) satisfy (3.6). We have a composition 200

morphism 201

RΓΛ12µhom(G1,F1)
a
◦
2

RΓΛ23µhom(G2,F2)−→ RΓΛ13µhom(G1 ∗
2

G2,F1 ◦
2

F2). 202

Convention 3.4. In (3.1), we have introduced the composition ◦
2

of kernels K1 ∈ 203

Db(kM12) and K2 ∈ Db(kM23). However we shall also use the notation M22 = M2 × M2 204

and consider for example kernels L1 ∈ Db(kM122) and L2 ∈ Db(kM223). Then when writing 205

L1 ◦
2

L2 we mean that the composition is taken with respect to the last variable of M22 for 206

L1 and the first variable for L2. In other words, set M4 =M2 and consider L1 and L2 as 207

objects of Db(kM142) and Db(kM243) respectively, in which case the composition L1 ◦
2

L2 is 208

unambiguously defined. 209

4. Microlocal homology 210

Let M be a real manifold. Recall that δM : M ↪→M ×M denotes the diagonal embedding. 211

We shall identify M with the diagonal ∆M of M×M and we sometimes write ∆ instead of 212

∆M if there is no risk of confusion. We shall identify T∗M with T∗∆(M ×M) via the map 213

δa
T∗M : T∗M ↪→ T∗(M ×M), (x; ξ) 7→ (x, x; ξ,−ξ). 214

We denote by k∆M , ω∆M and ω⊗−1
∆M

the direct image under δM of kM, ωM and 215

ω⊗−1
M := RHom(ωM, kM), respectively. 216

The next definition is inspired by that of Hochschild homology on complex manifolds 217

(see the Introduction). 218
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Definition 4.1. Let Λ be a closed conic subset of T∗M. We set219

MHΛ(kM) := RΓΛ(δa
T∗M)

−1µhom(k∆M , ω∆M ),

MHΛ(kM) := RΓ (T∗M;MHΛ(kM)),

MHk
Λ(kM) := Hk(MHΛ(kM))= Hk(T∗M;MHΛ(kM)).

(4.1)220

We call MHΛ(kM) the microlocal homology of M with support in Λ.221

We also write MH(kM) instead of MHT∗M(kM).222

Remark 4.2. (i) We have µhom(k∆M , ω∆M ) ' (δ
a
T∗M)∗π

−1
M ωM. In particular, we have223

MHΛ(kM) ' RΓΛ(T∗M;π−1
M ωM) and MH(kM) ' RΓ (M;ωM). Assuming that M is224

real analytic and Λ is a closed conic subanalytic Lagrangian subset of T∗M, we225

recover the space of Lagrangian cycles with support in Λ as defined in [13, § 9.3].226

(ii) The support of µhom(k∆M , ω∆M ) is T∗∆M
(M × M). Hence, we have227

RΓδa
T∗MΛ

µhom(k∆M , ω∆M )' (δ
a
T∗M)∗MHΛ(kM).228

(iii) If M is real analytic and Λ is a Lagrangian subanalytic closed conic subset, then we229

have Hk(MHΛ(kM))= 0 for k < 0 (see [13, Proposition 9.2.2]).230

In the sequel, we denote by ∆i (resp. ∆ij) the diagonal subset ∆Mi ⊂ Mii (resp.231

∆Mij ⊂Miijj).232

Lemma 4.3. We have natural morphisms:233

(i) ω∆12 ◦
22
(k∆2

L
� ω∆3)−→ ω∆13 ,234

(ii) k∆13 −→ k∆12 ∗
22
(ω⊗−1
∆2

L
� k∆3).235

Proof. Denote by δ22 the diagonal embedding M112233 ↪→M11222233.236

(i) We have the morphisms237

ω∆12 ◦
22
(k∆2

L
� ω∆3) = Rq1133!δ

−1
22 (ω∆12

L
� k∆2

L
� ω∆3)238

' Rq1133!ω∆123239

−→ ω∆13 .240

(ii) The isomorphism241

δ !22(k∆2 � ω∆2)' k∆2242

gives rise to the isomorphisms243

k∆12 ∗
22
(ω⊗−1
∆2

L
� k∆3) = Rq1133∗

(
q−1

1133ω22⊗ δ
!
22(k∆12

L
� ω⊗−1

∆2

L
� k∆3)

)
244

' Rq1133∗δ
!
22(k∆1

L
� ω∆2

L
� k∆23)245

' Rq1133∗k∆123246
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and the result follows by adjunction from the morphism 247

q−1
1133k∆13 ' k∆1

L
� k22

L
� k∆3 −→ k∆1

L
� k∆2

L
� k∆3 = k∆123 . � 248

Proposition 4.4. Let Mi (i = 1, 2, 3) be manifolds. We have a natural composition 249

morphism (whose construction will be given in the course of the proof): 250

µhom(k∆12 , ω∆12)
a
◦
22
µhom(k∆23 , ω∆23)−→ µhom(k∆13 , ω∆13). (4.2) 251

In particular, let Λij be a closed conic subset of T∗Mij (ij = 12, 13, 23). If Λ12
a
◦
2
Λ23 ⊂ 252

Λ13, then we have a morphism 253

MHΛ12(k12)
a
◦
2
MHΛ23(k23)−→MHΛ13(k13). (4.3) 254

Proof. Consider the morphism (see Proposition 3.2 and Convention 3.4) 255

µhom(ω⊗−1
∆2

, ω⊗−1
∆2

)
a
◦
2
µhom(k∆23 , ω∆23) −→ µhom(ω⊗−1

∆2
∗
2
k∆23 , ω

⊗−1
∆2
◦
2
ω∆23) 256

' µhom(ω⊗−1
∆2

L
� k∆3 , k∆2

L
� ω∆3). 257

It induces an isomorphism 258

µhom(k∆23 , ω∆23)' µhom(ω⊗−1
∆2

L
� k∆3 , k∆2

L
� ω∆3). (4.4) 259

Note that this isomorphism is also obtained from 260

µhom(k∆23 , ω∆23) ' µhom
(
(ω⊗−1

2

L
� k233)

L
⊗ k∆23 , (ω

⊗−1
2

L
� k233)

L
⊗ ω∆23

)
261

' µhom(ω⊗−1
∆2

L
� k∆3 , k∆2

L
� ω∆3). 262

Applying Proposition 3.2, we get a morphism: 263

µhom(k∆12 , ω∆12)
a
◦
22
µhom(k∆23 , ω∆23) 264

−→ µhom(k∆12 ∗
22
(ω⊗−1
∆2

L
� k∆3), ω∆12 ◦

22
(k∆2

L
� ω∆3)). (4.5) 265

It remains to apply Lemma 4.3. � 266

Corollary 4.5. Let Λij (i= 1, 2, j= i + 1) satisfying (3.6) and let Λ13 =Λ12
a
◦
2
Λ23. The 267

composition of kernels in (4.3) induces a morphism 268

a
◦
2
:MHΛ12(k12)

L
⊗ MHΛ23(k23)−→MHΛ13(k13). (4.6) 269

In particular, each λ ∈MH0
Λ12

(k12) defines a morphism 270

λ
a
◦
2
: MHΛ23(k23)−→MHΛ13(k13). (4.7) 271

Proof. These morphisms follow from (4.3). The second assertion follows from the 272

isomorphism H0(X)'HomDb(k)(k,X) in the category Db(k). � 273
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Theorem 4.6. (i) We have the isomorphisms274

µhom(k∆M , ω∆M ) ' (δ
a
T∗M)∗π

−1
M RHom(kM, ωM)275

' (δa
T∗M)∗π

−1
M ωM.276

(ii) We have a commutative diagram277

µhom(k∆12 , ω∆12)
a
◦
22
µhom(k∆23 , ω∆23) //

o
��

µhom(k∆13 , ω∆13)

o

��
(δa

T∗M13
)∗
(
π−1

M12
ωM12

a
◦
2
π−1

M23
ωM23

)
// (δa

T∗M13
)∗π
−1
M13

ωM13 .

(4.8)278

Here the top horizontal arrow of (4.8) is given in Proposition 4.4, and the bottom279

horizontal arrow is induced by280

p−1
12aπ

−1
M12

ωM12

L
⊗ p−1

23 π
−1
M23aωM23 ' π

−1
M1
ωM1

L
� π−1

M2
(ωM2

L
⊗ ωM2)

L
� π−1

M3
ωM3 ,281

π−1
M2
(ωM2

L
⊗ ωM2)' ωT∗M2 ,282

Rp13!

(
π−1

M1
ωM1

L
� ωT∗M2

L
� π−1

M3
ωM3

)
−→ π−1

M1
ωM1

L
� π−1

M3
ωM3 .283

Proof. (i) is obvious.284

(ii)-(a) By [13, Proposition 4.4.8], we have natural morphisms for (i, j) = (1, 2) or285

(i, j)= (2, 3):286

µhom(k∆i , ω∆i)
L
� µhom(k∆j , ω∆j)−→ µhom(k∆ij , ω∆ij)287

and it follows from (i) that these morphisms are isomorphisms. These isomorphisms give288

rise to the isomorphism289

µhom(k∆12 , ω∆12)
a
◦
22
µhom(k∆23 , ω∆23)290

' µhom(k∆1 , ω∆1)
L
�
(
µhom(k∆2 , ω∆2)

a
◦
22
µhom(k∆2 , ω∆2)

) L
� µhom(k∆3 , ω∆3).291

Similarly, we have an isomorphism292

π−1
M12

ωM12

a
◦
2
π−1

M23
ωM23 ' π

−1
M1
ωM1 �

(
π−1

M2
ωM2

a
◦
2
π−1

M2
ωM2

)
� π−1

M3
ωM3 .293

Hence, we are reduced to the case where M1 =M3 = pt, which we shall assume now.294
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(ii)-(b) We change our notation and set 295

M :=M2, Y :=M ×M, 296

δM : M ↪→ Y the diagonal embedding,∆M = δM(M), 297

j : Y ↪→ Y × Y the diagonal embedding, ∆Y = j(Y), 298

δa
T∗M : T∗M ↪→ T∗Y, (x; ξ) 7→ (x, x; ξ,−ξ), 299

δa
T∗Y : T∗Y ↪→ T∗Y × T∗Y, 300

p : T∗Y −→ pt the projection, 301

aY : Y −→ pt the projection. 302

With this new notation, the composition
a
◦
22

will be denoted by
a
◦

T∗Y
. 303

Consider the diagram (4.9) similar to Diagram (4.4.15) of [13]: 304

T∗M × T∗M
� � i // T∗Y × T∗Y T∗Y? _δa

T∗Yo

p

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C

T∗Y ×Y T∗Y

jπ

OO

jd
��

T∗∆Y
(Y × Y)? _s̃o

πY

��

p1∼

OO

T∗Y

�

Y
soo

aY
// pt.

(4.9) 305

Here, i is the canonical embedding induced by δa
T∗M, p1 is induced by the first projection 306

T∗Y × T∗Y −→ T∗Y, s : Y ↪→ T∗Y is the zero-section embedding and s̃ is the natural 307

embedding. Note that the square labeled by � is Cartesian. We have 308

Rp! ◦ (δ
a
T∗Y)

−1
' RaY ! ◦ RπY ! ◦ p−1

1 ◦ (δ
a
T∗Y)

−1
309

' RaY ! ◦ RπY ! ◦ s̃−1
◦ j−1
π 310

' RaY ! ◦ s−1
◦ Rjd ! ◦ j−1

π . 311

Therefore, 312

µhom(k∆M , ω∆M )
a
◦

T∗Y
µhom(k∆M , ω∆M ) 313

' Rp!(δ
a
T∗Y)

−1(µhom(k∆M , ω∆M )
L
� µhom(k∆M , ω∆M )

)
314

' RaY !s
−1Rjd !j

−1
π µhom(k∆M

L
� k∆M , ω∆M

L
� ω∆M ). 315

Hence, by adjunction, giving a morphism 316

µhom(k∆M , ω∆M )
a
◦

T∗Y
µhom(k∆M , ω∆M )−→ k 317

is equivalent to giving a morphism in Db(kY) 318

s−1Rjd !j
−1
π µhom(k∆M

L
� k∆M , ω∆M

L
� ω∆M )−→ a !Ykpt. (4.10) 319
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Note that the left hand side of (4.10) is supported on ∆M. Hence in order to give a320

morphism (4.10), it is necessary and sufficient to give a morphism in Db(kM)321

δ−1
M s−1Rjd !j

−1
π µhom(k∆M

L
� k∆M , ω∆M

L
� ω∆M )−→ δ !Ma !Ykpt. (4.11)322

Hence, it is enough to check the commutativity of the upper square in the following323

diagram in Db(kM):324

δ−1
M s−1Rjd ! j

−1
π µhom(k∆M

L
� k∆M , ω∆M

L
� ω∆M )

//

∼

��

δ !Ma !Ykpt

id

��

δ−1
M s−1Rjd ! j

−1
π i∗

(
π−1

M ωM
L
� π−1

M ωM
) //

∼

��

δ !Ma !Ykpt

∼

��
ωM

id // ωM.

(4.12)325

The top horizontal arrow is constructed from a chain of morphisms (see [13, § 4.4]):326

Rjd !j
−1
π µhom(k∆M

L
� k∆M , ω∆M

L
� ω∆M )327

−→ µhom(j !(k∆M

L
� k∆M )

L
⊗ ωY , j−1(ω∆M

L
� ω∆M ))328

' µhom(ω∆M , ω∆M ⊗ ω∆M )' (δ
a
T∗M)∗π

−1
M ωM329

and330

δ−1
M s−1Rjd ! j

−1
π µhom(k∆M

L
� k∆M , ω∆M

L
� ω∆M )−→ δ−1

M s−1(δa
T∗M)∗π

−1
M ωM ' ωM. (4.13)331

Hence, the commutativity of the diagram (4.12) is reduced to the commutativity of the332

diagram below:333

δ−1
M s−1Rjd ! j

−1
π µhom(k∆M

L
� k∆M , ω∆M

L
� ω∆M )

��
λ

**VVVVVVVVVVVVVVVVVVVVVVVVV

δ−1
M s−1Rjd ! j

−1
π i∗

(
π−1

M ωM
L
� π−1

M ωM
) ∼ // ωM

(4.14)334

where the morphism λ is given by the morphisms in (4.13). All terms of (4.14) are335

concentrated at the degree −dim M. Hence the commutativity of (4.14) is a local336

problem in M and we can assume that M is a Euclidean space. We can check directly in337

this case. �338

Remark 4.7. Theorem 4.6 may be applied as follows. Let Λij be a closed conic subset of339

T∗Mij (i= 1.2, j= i+ 1). Assume (3.6), that is, the projection p13 : Λ12
a
×
2
Λ23 −→ T∗M13340
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is proper, and set Λ13 =Λ12
a
◦
2
Λ23. Let λij ∈MH0

Λij
(kMij)' H0

Λij
(T∗Mij;π

−1ωij). Then 341

λ12
a
◦
2
λ23 =

∫
T∗M2

λ12 ∪ λ23 (4.15) 342

where the right hand side is obtained as follows. Set Λ := Λ12
a
×
2
Λ23 and consider the 343

morphisms 344

H0
Λ12

(T∗M12;π
−1ω12)× H0

Λ23
(T∗M23;π

−1ω23) 345

−→ H0
Λ(T
∗M123;π

−1ω1

L
� ωT∗M2

L
� π−1ω3) 346

−→ H0
Λ13

(T∗M13;π
−1ω13). 347

The first morphism is the cup product and the second one is the integration morphism 348

with respect to T∗M2. 349

5. Microlocal Euler classes of trace kernels 350

In this section, we often write ∆ instead of ∆M. 351

Definition 5.1. A trace kernel (K, u, v) on M is the data of K ∈ Db(kM×M) together with 352

morphisms 353

k∆
u
−→ K and K

v
−→ ω∆ . (5.1) 354

In the sequel, as long as there is no risk of confusion, we simply write K instead of 355

(K, u, v). 356

For a trace kernel K as above, we set 357

SS∆(K) := SS(K) ∩ T∗∆(M ×M)= (δa
T∗M)

−1SS(K). (5.2) 358

(Recall that one often identifies T∗M and T∗∆(M×M) through δa
T∗M : T∗M ↪→ T∗M×T∗M.) 359

Definition 5.2. Let (K, u, v) be a trace kernel. 360

(a) The morphism u defines an element ũ in H0
SS∆(K)

(T∗M;µhom(k∆ ,K)) and the 361

microlocal Euler class µeuM(K) of K is the image of ũ under the morphism 362

µhom(k∆ ,K)−→ µhom(k∆ , ω∆) associated with the morphism v. 363

(b) Let Λ be a closed conic subset of T∗M containing SS∆(K). One denotes by µeuΛ(K) 364

the image of ũ in H0
Λ

(
T∗M;µhom(k∆ , ω∆)

)
. 365

Hence, 366

µeuΛ(K) ∈MH0
Λ(kM)' H0

Λ(T
∗M;π−1ωM). (5.3) 367

Let ṽ be the element of H0
SS∆(K)

(T∗M;µhom(K, ω∆)) induced by v. Then the 368

microlocal Euler class µeuM(K) of K coincides with the image of ṽ under the morphism 369

µhom(K, ω∆M ) −→ µhom(k∆ , ω∆) associated with the morphism u, which can be easily
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seen from the following commutative diagram:370

(δa
T∗M)

−1µhom(K,K)
v //

u
��

(δa
T∗M)

−1µhom(K, ω∆)

u
��

(δa
T∗M)

−1µhom(k∆ ,K)
v // (δa

T∗M)
−1µhom(k∆ , ω∆).

371

One denotes by eu(K) the restriction of µeu(K) to the zero-section M of T∗M and calls it372

the Euler class of K. Hence373

euM(K) ∈ H0
Supp(K)∩∆(M;ωM). (5.4)374

It is nothing but the class induced by the composition k∆M −→ K −→ ω∆M .375

We say that L ∈ Db(kM) is invertible if L is locally isomorphic to kM[d] for some d ∈ Z.376

Then, L⊗−1
:= RHom(L, kM) is also invertible and L

L
⊗ L⊗−1

' kM.377

Proposition 5.3. Let L be an invertible object in Db(kM) and K a trace kernel. Then378

K
L
⊗ (L

L
� L⊗−1) is a trace kernel and µeu

(
K

L
⊗ (L

L
� L⊗−1)

)
= µeu(K).379

Proof. L
L
� L⊗−1 is canonically isomorphic to kM×M on a neighborhood of the diagonal380

set ∆M of M ×M. �381

Remark 5.4. Of course, we could also have defined a trace kernel as a sequence of382

morphisms383

ω⊗−1
∆M
−→ K̃ −→ k∆M . (5.5)384

When treating sheaves, the two definitions would give the same microlocal Euler385

class on taking K = K̃⊗ (kM
L
� ωM). However, when working with O-modules or with386

DQ-modules as in [15], the two constructions give different classes. Note that we have387

chosen an analogue of (5.5) in [15].388

Trace kernels for constructible sheaves389

Let us denote by Db
cc(kM) the full triangulated subcategory of Db(kM) consisting of390

cohomologically constructible sheaves (see [13, ğ 3.4]).391

Lemma 5.5. Let F ∈ Db
cc(kM). There are natural morphisms in Db

cc(kM×M):392

k∆M −→ F
L
� DMF, (5.6)393

F
L
� DMF −→ ω∆M . (5.7)394

In other words, an object F ∈ Db
cc(kM) defines naturally a trace kernel on M.395

Proof. (i) We have396

kM −→ RHom(F,F)' δ !(F
L
� DMF).397

Hence, the result follows by adjunction.398
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(ii) The morphism (5.7) may be deduced from (5.6) by duality, or by adjunction from 399

the morphism 400

δ−1(F
L
� DMF)−→ ωM. � 401

Notation 5.6. We shall denote by TK(F) the trace kernel associated with F ∈ Db
cc(kM), 402

that is the data of F
L
� DMF and the morphisms (5.6), (5.7). Note that we always 403

have SS∆(TK(F)) ⊂ SS(F) and the equality holds if M is real analytic and F is 404

R-constructible. 405

We have the chain of morphisms 406

µhom(F,F) ' (δa
T∗M)

−1µhom(k∆,F
L
� DF) 407

−→ (δa
T∗M)

−1µhom(k∆, ω∆). 408

We deduce the map 409

H0
SS(F)(T

∗M;µhom(F,F))−→MH0
SS(F)(kM). (5.8) 410

Definition 5.7. Let F ∈ Db
cc(kM). The image of idF under the map (5.8) is called the 411

microlocal Euler class of F and is denoted by µeuM(F). 412

Clearly, one has 413

µeuM(F)= µeuM(TK(F)). (5.9) 414

Assume that M is real analytic and denote by Db
R-c(kM) the full triangulated subcategory 415

of Db(kM) consisting of R-constructible complexes. Of course, R-constructible complexes 416

are cohomologically constructible. In [13, ğ 9.4] the microlocal Euler class of an object 417

F ∈ Db
R-c(kM) is constructed as above and this class is also called the characteristic cycle, 418

or else, the Lagrangian cycle, of F. 419

Remark 5.8. Let (K, u, v) be a trace kernel on M. Let δ : M −→M × M be the diagonal 420

embedding. Then u and v decompose as 421

k∆M −→ δ∗δ
!K −→ K −→ δ∗δ

−1K −→ ω∆M . 422

Hence δ∗δ !K and δ∗δ−1K are also trace kernels. We have evidently 423

µeuM
(
δ∗δ
!K
)
= µeuM

(
δ∗δ
−1K

)
= µeuM(K) as elements in MH0

T∗M(kM). 424

Trace kernels over one point 425

Let us consider the particular case where M is a single point, M = pt, and let us identify 426

a sheaf over pt with a k-module. In this situation, a trace kernel (K, u, v) is the data of 427

K ∈ Db(k) together with linear maps 428

k
u
−→ K

v
−→ k. 429

The (microlocal) Euler class eupt(K) of this kernel is the image of 1 ∈ k under v ◦ u. 430



16 M. Kashiwara and P. Schapira

Assume now that k is a field and denote by Db
f (k) the full triangulated subcategory of431

Db(k) consisting of objects with finite-dimensional cohomologies. Let V ∈ Db
f (k) and set432

V∗ = RHom(V, k). Let K = TK(V) = V ⊗ V∗, and let v be the trace morphism and u its433

dual. Then434

(a) eupt(V ⊗ V∗)= tr(idV), the trace of the identity of V.
(b) If k has characteristic 0, then

eupt(V ⊗ V∗)= χ(V), the Euler–Poincaré index of V.

(5.10)435

Trace kernels for D-modules436

In this subsection, we denote by X a complex manifold of complex dimension dX and the437

base ring k is the field C. We denote by OX the structure sheaf and by ΩX the sheaf of438

holomorphic forms of maximal degree. We still denote by ωX the topological dualizing439

complex and recall the isomorphism ωX ' CX [2dX].440

One denotes by DX the sheaf of CX-algebras of (finite-order) holomorphic differential441

operators on X and we refer the reader to [11] for a detailed exposition of the theory442

of D-modules. We denote by Mod(DX) the category of left DX-modules and by Db(DX)443

its bounded derived category. We also denote by Modcoh(DX) the abelian category444

of coherent DX-modules and by Db
coh(DX) the full triangulated subcategory of Db(DX)445

consisting of objects with coherent cohomologies.446

We denote by DD : Db(DX)
op
−→ Db(DX) the duality functor for left D-modules:447

DDM := RHomDX (M ,DX)⊗OX Ω
⊗ −1

X [dX].448

We denote by ·� · the external product for D-modules:449

M �N :=DX×X ⊗DX�DX (M
L
� N ).450

Let ∆ be the diagonal of X × X. The left DX×X-module HdX
[∆](OX×X)(the algebraic451

cohomology with support in ∆) is denoted as usual by B∆. Note that452

DDB∆ 'B∆.453

One should be aware that here, the dual is taken over X × X. We also introduce454

B∨∆ :=B∆ [2dX].455

For M ∈ Db
coh(DX), we have the isomorphism456

RHomDX (M ,M )' RHomDX×X (B∆,M �DDM ) [dX].457

We deduce the morphism in Db(DX×X)458

B∆ −→M �DDM [dX] (5.11)459

and by duality, the morphism in Db(DX×X)460

M �DDM [dX] −→B∨∆. (5.12)461
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Denote by EX the sheaf on T∗X of microdifferential operators of [22]. For a coherent 462

DX-module M set 463

M E
:= EX ⊗π−1DX

π−1M 464

and recall that, denoting by char(M ) the characteristic variety of M , we have 465

char(M )= Supp(M E). One also sets 466

C∆ :=BE
∆, C ∨∆ :=

(
B∨∆
)E
. 467

We denote by DE : Db(EX)
op
−→ Db(EX) the duality functor for left E -modules: 468

DE M := RHomEX (M ,EX)⊗π−1OX
π−1Ω

⊗ −1
X [dX] 469

and we denote by ·� · the external product for E -modules: 470

M �N := EX×X ⊗EX�EX (M
L
� N ). 471

The morphisms (5.11) and (5.12) give rise to the morphisms 472

C∆ −→M E �DE M E
[dX] −→ C ∨∆ . (5.13) 473

Let Λ be a closed conic subset of T∗X. One sets 474

H H(EX) = (δ
a
T∗X)

−1RHomEX×X (C∆,C
∨
∆ ), 475

HHΛ(EX) = RΓΛ(T∗X;H H(EX)), 476

HHk
Λ(EX) = Hk(HHΛ(EX))= Hk

Λ(T
∗X;H H(EX)). 477

We call HHΛ(EX), the Hochschild homology of EX with support in Λ. 478

The morphisms in (5.13) define a class 479

hhE (M ) ∈HH0
char(M )(EX) (5.14) 480

that we call the Hochschild class of M . 481

Let S be a closed subset of X. By restricting the above construction to the zero-section 482

X of T∗X, we obtain the Hochschild homology of DX : 483

H H(DX) = (δX)
−1RHomDX×X (B∆,B

∨
∆)'H H(EX)|X, 484

HHS(DX) = RΓS(X;H H(DX)), 485

HHk
S(DX) = Hk(HHS(DX))= Hk

S(X;H H(DX)). 486

Then, for M ∈ Db
coh(DX) one obtains 487

hhD (M ) := hhE (M )|X ∈HH0
Supp(M )(DX). 488

We shall make a link between the Hochschild class of M and the microlocal Euler 489

class of a trace kernel attached to the sheaves of holomorphic solutions of M . We need a 490

lemma. 491

Lemma 5.9. For N1 and N2 in Db
coh(DX), there exists a natural morphism 492

RHomE (N
E

1 ,N
E

2 )−→ µhom(ΩX
L
⊗ DX N1,ΩX

L
⊗ DX N2). (5.15) 493
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Moreover, this morphism is compatible with the composition494

RHomE (N
E

1 ,N
E
2)⊗RHomE (N

E
2 ,N

E
3 )−→ RHomE (N

E
1 ,N

E
3 ),495

µhom(F1,F2)⊗ µhom(F2,F3)−→ µhom(F1,F3).496

Proof. We have the natural morphism in Db(π−1DX ⊗ π
−1D

op
X ) (see [12, Proposition497

10.6.2])498

EX −→ µhom(ΩX,ΩX).499

This gives rise to the morphisms500

RHomπ−1DX
(π−1N1,EX ⊗π−1DX

π−1N2)501

−→ RHomπ−1DX
(π−1N1, µhom(ΩX,ΩX))⊗π−1DX

π−1N2502

' µhom(ΩX
L
⊗ DX N1,ΩX

L
⊗ DX N2). �503

We have504

ΩX×X [−dX]
L
⊗ DX×X B∆ ' C∆,505

ΩX×X [−dX]
L
⊗ DX×X B∨∆ ' ω∆ .506

Applying Lemma 5.9, one deduces the morphisms507

RHomEX×X (C∆,C
∨
∆ ) −→ µhom(ΩX×X

L
⊗ DX×X B∆,ΩX×X

L
⊗ DX×X B∨∆)508

' µhom(C∆, ω∆).509

An easy calculation shows that the first arrow is also an isomorphism. Therefore, we get510

the isomorphism511

HH(EX)
∼−→MH(CX). (5.16)512

Recall that the Hochschild homology of EX has already been calculated in [2].513

Applying the functor ΩX×X [−dX]
L
⊗ DX×X · to (5.11) and (5.12) we get the morphisms514

C∆ −→ΩX×X
L
⊗ DX×X (M �DDM )−→ ω∆ . (5.17)515

Notation 5.10. For M ∈ Db
coh(DX), we denote by TK(M ) the trace kernel given516

by (5.17).517

Since char(M ) = SS(RHomDX (M ,OX)) by [13, Theorem 11.3.3], we get that518

µeuM(TK(M )) is supported by char(M ), the characteristic variety of M .519

Proposition 5.11. After identifying H H(EX) and MH(CX) through the isomorphism520

(5.16), we have hhE (M )= µeuX(TK(M )) in HH0
char(M )

(CX).521

Proof. This follows from Lemma 5.9 applied to (5.13). �522

Note that the class µeuX(TK(M )) coincides with the microlocal Euler class of M523

already introduced by Schapira and Schneiders in [23].524
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6. Operations on microlocal Euler classes I 525

In this section, we shall adapt to trace kernels the constructions of [15, Chapter 4 ğ 3] 526

and we shall show that under natural microlocal conditions of properness, the microlocal 527

Euler class of the composition of two kernels is the composition of the classes. 528

We use Notation 3.1 and we consider a trace kernel (K, u, v) on M12. 529

Lemma 6.1. Let K be a trace kernel on M12. There are natural morphisms in Db(kM11): 530

k∆13 −→ K ∗
22
(ω⊗−1
∆2

L
� k∆3), (6.1) 531

K ◦
22
(k∆2

L
� ω∆3)−→ ω∆13 . (6.2) 532

Proof. (i) By Lemma 4.3(ii) we have a morphism k∆13 −→ k∆12 ∗
22
(ω⊗−1
∆2

L
� k∆3). By 533

composing this morphism with k∆12 −→ K, we get (6.1). 534

(ii) By Lemma 4.3(i) we have a morphism ω∆12 ◦
22
(k∆2

L
� ω∆3) −→ ω∆13 . By composing 535

this morphism with K −→ ω∆12 we get (6.2). � 536

Let K be a trace kernel on M12 with microsupport SS(K) contained in a closed conic 537

subset Λ1122 of T∗M1122 and let Λ23 a closed conic subset of T∗M23. We assume 538

Λ1122
a
×
22
δa

T∗M23
Λ23 is proper over T∗M1133. (6.3) 539

We set 540
Λ12 :=Λ1122 ∩ T∗∆12

M1122,

Λ1133 :=Λ1122
a
◦
22
δa

T∗M23
Λ23,

Λ13 :=Λ1133 ∩ T∗∆13
M1133 =Λ12

a
◦
2
Λ23.

(6.4) 541

We define a map 542

ΦK : MHΛ23(k23)−→MHΛ13(k13) (6.5) 543

by the sequence of morphisms 544

MHΛ23(k23) ' RΓδa
T∗M23

Λ23(T
∗M2233;µhom(k∆23 , ω∆23)) 545

' RΓδa
T∗M23

Λ23

(
T∗M2233;µhom(ω⊗−1

∆2

L
� k∆3 , k∆2

L
� ω∆3)

)
546

−→ RΓΛ1133

(
T∗M1133;µhom(K,K)

a
◦
22
µhom(ω⊗−1

∆2

L
� k∆3 , k∆2

L
� ω∆3)

)
547

−→ RΓΛ1133

(
T∗M1133;µhom(K ∗

22
(ω⊗−1
∆2

L
� k∆3),K ◦

22
(k∆2

L
� ω∆3))

)
548

−→ Γ
(
T∗M1133;µhom(k∆13 , ω∆13)

)
'MHΛ13(k13). 549

Here the first arrow is given by idK , the second is given by Proposition 3.2, and the last 550

arrow is induced by the morphisms in Lemma 6.1. 551
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The next result is similar to [15, Theorem 4.3.5].552

Proposition 6.2. Let Λ1122 ⊂ T∗M1122 and Λ23 ⊂ T∗M23 be closed conic subsets553

satisfying (6.3) and recall the notation (6.4). Let K be a trace kernel on M12 with554

microsupport contained in Λ1122. Then the map ΦK in (6.5) is the map µeuM12
(K)

a
◦
12

555

given by Corollary 4.5.556

Proof. By using the morphism k∆12 −→ K, we find the commutative diagram below:557

RΓΛ23

(
T∗M2233;µhom(k∆23 , ω∆23)

)
//

��

RΓΛ13

(
T∗M1133;µhom(k∆12 ∗

22
k∆23 , k∆12 ◦

22
ω∆23)

)
��

RΓΛ1133

(
T∗M1133;µhom(K ∗

22
k∆23 ,K ◦

22
ω∆23)

)
// RΓΛ13

(
T∗M1133;µhom(k∆12 ∗

22
k∆23 ,K ◦

22
ω∆23)

)
.

558

By using the morphism K −→ ω∆12 , we get the commutative diagram559

RΓΛ23

(
T∗M2233;µhom(k∆23 , ω∆23)

)
//

((QQQQQQQQQQQQ
RΓΛ13

(
T∗M1133;µhom(k∆12 ∗

22
k∆23 , ω∆12 ◦

22
ω∆23)

)
.

RΓΛ1133

(
T∗M1133;µhom(K ∗

22
k∆23 ,K ◦

22
ω∆23)

)
44iiiiiiiiiiiiiii

(6.6)560

Recall the morphisms in Lemma 4.3:561

ω∆12 ◦
22
(k∆2

L
� ω∆3)−→ ω∆13 , k∆13 −→ k∆12 ∗

22
(ω⊗−1
∆2

L
� k∆3). (6.7)562

We get the morphisms563

w : RΓδa
T∗M13

Λ13

(
T∗M1133;µhom(k∆12 ∗

22
k∆23 , ω∆12 ◦

22
ω∆23)564

' RΓδa
T∗M13

Λ13

(
T∗M1133;µhom(k∆12 ∗

22
(ω⊗−1
∆2

L
� k∆3), ω∆12 ◦

22
(k∆2

L
� ω∆3))

)
565

−→ RΓδa
T∗M13

Λ13

(
T∗M1133;µhom(k∆13 , ω∆13)

)
.566

By its construction, the morphism µeuM12
(K) ◦ is obtained as the composition with the567

map w of the top row of the diagram (6.6). Since the composition with w of the two568

other arrows is the morphism ΦK , the proof is complete. �569

The next result is similar to [15, Theorem 4.3.6].570

Let i= 1, 2, j= i+ 1 and let Λiijj be a closed conic subset of T∗Miijj. Assume that571

Λ1122
a
×
22
Λ2233 is proper over T∗M1133. (6.8)572

Set Λ1133 =Λ1122
a
◦
22
Λ2233 and Λij =Λiijj ∩ T∗∆ij

Miijj.573

Theorem 6.3. Let Kij be a trace kernel on Mij with SS(Kij) ⊂ Λiijj. Assume (6.8), set574

K̃23 = ω
⊗−1
∆2
◦
2

K23 ' (ω
⊗−1
2

L
� k233)

L
⊗ K and set K13 = K12 ◦

22
K̃23. Then575
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(a) K13 is a trace kernel on M13, 576

(b) µeuM13
(K13)= µeuM12

(K12)
a
◦
2
µeuM23

(K23) as elements of MH0
Λ13

(k13). 577

(c) In particular, we have ΦK12 ◦ΦK23 'ΦK13 . 578

Proof. (a) The trace kernel K23 defines morphisms 579

ω⊗−1
∆2

L
� k∆3 −→ K̃23 −→ k∆2

L
� ω∆3 . 580

Assuming (6.8) and using (6.1) and (6.2), we get that K13 = K12 ◦
22

K̃23 is a trace kernel 581

on M13. 582

(b) We get a commutative diagram in which we set λ23 = µeuM23
(K23) ∈MH0(k23) ' 583

Hom(ω⊗−1
∆2

L
� k∆3 , k∆2

L
� ω∆3): 584

k∆13
//

@A
//

K12 ∗
22
(ω⊗−1
∆2

L
� k∆3)

λ23 //

��

K12 ◦
22
(k∆2

L
� ω∆3)

// ω∆13

K12 ∗
22

K̃23

K12 ◦
22

K̃23

<<yyyyyyyyyyyyyyyyyyyyyyy BC

OO

o

OO

585

The composition of the arrows at the bottom is µeuM13
(K13) and the composition 586

of the arrows at the top is ΦK12(µeuM23
(K23)). Hence, the assertion follows from the 587

commutativity of the diagram by Proposition 6.2. 588

(c) follows from (b) and Proposition 6.2. � 589

7. Operations on microlocal Euler classes II 590

We shall combine Theorems 4.6 and 6.3 and make more explicit the operations on 591

microlocal Euler classes for direct or inverse images. In particular, applying our results 592

to the case of constructible sheaves, we shall recover the results of [13, Chapter IX ğ 5]. 593

Let M be a manifold and let ι : N ↪→ M be a closed embedding of a smooth 594

submanifold N. If there is no risk of confusion, we shall still denote by kN and ωN 595

the sheaves ι∗kN and ι∗ωN on M. Then kN is cohomologically constructible and moreover 596

DMkN = RHom(kN, ωM)' ωN . 597

Hence, TK(kN)= kN
L
� ωN is a trace kernel on M. 598

Let Mi be a manifold (i = 1, 2), let Ki be a trace kernel on Mi and let Λii be a closed 599

conic subset of T∗Mii with SS(Ki)⊂Λii. We set 600

Λi =Λii ∩ T∗∆i
Mii. 601
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For a morphism of manifolds f : M1 −→M2, we denote by Γf its graph, a smooth closed602

submanifold of M12, and we set for short603

Λf := T∗Γf
(M12), f̃ = (f , f ) : M11 −→M22.604

Recall the diagram (2.1)605

T∗M1

πM1 ((QQQQQQQQQQQQQQQ M1 ×M2 T∗M2

π

��

fdoo fπ // T∗M2

πM2

��
M1

f // M2.

606

Note that607

Λ11
a
◦
11
Λf̃ = f̃π f̃−1

d Λ11, Λf̃
a
◦
22
Λ22 = f̃d f̃−1

π Λ22.608

In the sequel, we shall identify M1212 with M1122. We take as kernel the sheaf TK(kΓf ).609

Then610

TK(kΓf ) = kΓf

L
� ωΓf ' kΓf̃

⊗ (k1

L
� ω1

L
� k22)611

' ω∆1 ◦
11

(
(ω⊗−1

1

L
� ω1

L
� k22)

L
⊗ kΓf̃

)
. (7.1)612

Moreover, we have (see (5.9))613

µeuM12
(TK(kΓf ))= µeuM12

(kΓf ).614

Also note that615

Rf̃!K1 ' K1 ◦
11

kΓf̃
, f̃−1K2 ' kΓf̃

◦
22

K2.616

617

External product618

Applying Theorem 4.6 with M2 = pt and M3 being here M2, we get the commutative619

diagram620

MHΛ1(kM1)
L
� MHΛ2(kM2)

◦

//

∼

��

MHΛ1×Λ2(kM12)

∼

��

RΓΛ1(π
−1
M1
ωM1)

L
� RΓΛ2(π

−1
M2
ωM2)

L
� // RΓΛ1×Λ2(π

−1
M12

ωM12)

621

and taking the global sections and the zeroth cohomology,622

MH0
Λ1
(kM1)⊗MH0

Λ2
(kM2)

◦

//

∼

��

MH0
Λ1×Λ2

(kM12)

∼

��
H0
Λ1
(T∗M1;π

−1
M1
ωM1)⊗ H0

Λ2
(T∗M2;π

−1
M2
ωM2)

L
� // H0

Λ1×Λ2
(T∗M12;π

−1
M12

ωM12).

623
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Applying Theorem 6.3, we obtain 624

Proposition 7.1. The object K1

L
� K2 is a trace kernel on M12 and 625

µeuM12
(K1

L
� K2)= µeuM1

(K1)
L
� µeuM2

(K2). 626

Direct image 627

Let f : M1 −→M2 and Γf be as above. Applying Theorem 4.6 with M1 = pt and M2, M3 628

being the current M1, M2, we get the commutative diagram 629

MH(kM1)
a
◦
1
MH(kM12) //

∼

��

MH(kM2)

∼

��
π−1

M1
ωM1

a
◦
1
π−1

M12
ωM12

// π−1
M2
ωM2 .

630

Now we assume 631

f is proper on Λ1 ∩ T∗M1
M1, or, equivalently, fπ is proper on f−1

d Λ1. (7.2) 632

We set 633

fµ(Λ1)=Λ1 ◦Λf = fπ (f
−1
d (Λ1)). 634

Taking the global sections and the zeroth cohomology of the diagram above, we obtain 635

the commutative diagram 636

MH0
Λ1
(kM1)

◦µeu(kΓf ) //

∼

��

MH0
fµΛ1

(kM2)

∼

��
H0
Λ1
(T∗M1;π

−1
M1
ωM1)

◦µeu(kΓf ) // H0
fµΛ1

(T∗M2;π
−1
M2
ωM2).

637

We have the natural morphism and isomorphisms, already constructed in [13]: 638

fπ ! f
−1
d π−1

M1
ωM1 ' fπ !π

−1ωM1 ' π
−1
M2

f!ωM1 639

−→ π−1
M2
ωM2 . 640

These induce a morphism: 641

fµ : RΓΛ1(π
−1
M1
ωM1)−→ RΓfµΛ1(π

−1
M2
ωM2). 642

Lemma 7.2. Let λ ∈ H0
Λ1
(T∗M1;π

−1
M1
ωM1). Then λ ◦ µeuM12

(kΓf )= fµ(λ). 643

Proposition 7.3. Assume that f̃ is proper on Λ11 ∩ T∗M11
M11. Then the object Rf̃!K1 is a 644

trace kernel on M2 and 645

µeuM2
(Rf̃!K1) = µeuM1

(K1)
a
◦
1
µeuM12

(kΓf ) 646

= fµ(µeuM1
(K1)). 647
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Proof.648

Note that µeuM12
(kΓf ) = µeuM12

(
(ω⊗−1

1

L
� ω1

L
� k22)

L
⊗ TK(kΓf )

)
by Proposition 5.3.649

We have Rf̃!K1 ' K1 ◦
11

(
ω⊗−1
∆1
◦
1

(
(ω⊗−1

1

L
� ω1

L
� k22)

L
⊗ TK(kΓf )

))
. It remains to apply650

Theorem 6.3 in which one replaces M1,M2,M3 with pt,M1,M2, respectively. �651

Inverse image652

Let f : M1 −→ M2 and Γf be as above. Applying Theorem 4.6 with M3 = pt, we get the653

commutative diagram654

MH(kM12)
a
◦
2
MH(kM2) //

∼

��

MH(kM1)

∼

��
π−1

M12
ωM12

a
◦
2
π−1

M2
ωM2

// π−1
M1
ωM1 .

655

Now we assume656

f is non-characteristic for Λ2, or, equivalently, fd is proper on f−1
π Λ2. (7.3)657

We set658

fµ(Λ2)=Λf ◦Λ1 = fd(f
−1
π (Λ2)).659

Taking the global sections and the zeroth cohomology of the diagram above, we obtain660

the commutative diagram661

MH0
Λ2
(kM2)

µeu(kΓf )◦ //

∼

��

MH0
fµΛ2

(kM1)

∼

��
H0
Λ2
(T∗M2;π

−1
M2
ωM2)

µeu(kΓf )◦ // H0
fµΛ2

(T∗M1;π
−1
M1
ωM1).

662

We have a natural morphism constructed in the proof of [13, Proposition 9.3.2]:663

fµ : fd ! f
−1
π π−1

M2
ωM2 −→ π−1

M1
ωM1 .664

Hence, we get a map:665

fµ : RΓΛ2(π
−1
M2
ωM2)−→ RΓfµΛ2(π

−1
M1
ωM1).666

Lemma 7.4. Let λ ∈ H0
Λ1
(T∗M2;π

−1
M2
ωM2). Then µeuM12

(kΓf ) ◦ λ= fµ(λ).667

Proposition 7.5. Assume that f̃ is non-characteristic with respect to Λ22. Then the668

object (k1

L
� ωM1/M2)

L
⊗ f̃−1K2 is a trace kernel on M1 and669

µeuM1

(
ω∆1 ◦

1
f̃−1(ω⊗−1

∆2
◦
2

K2)
)
= µeuM12

(kΓf )
a
◦
2
µeuM2

(K2)670

= fµ(µeuM2
(K2)).671
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Proof. Applying Theorem 6.3 with M3 = pt, we get that 672

(k1

L
� ωM1/M2)

L
⊗ f̃−1K2 ' TK(kf ) ◦

22
(ω⊗−1
∆2
◦
2
(ω2

L
� ω⊗−1

2 )
L
⊗ K2) 673

is a trace kernel. Since µeuM2

(
(ω2

L
� ω⊗−1

2 )
L
⊗ K2)

)
= µeuM2

(K2) by Proposition 5.3, we 674

obtain the result. � 675

Tensor product 676

Consider now the case where M1 = M2 = M and the Λii satisfy the transversality 677

condition 678

Λ11 ∩Λ
a
22 ⊂ T∗M×M(M ×M). (7.4) 679

Then by composing the external product with the restriction to the diagonal, we get a 680

convolution map 681

? : MHΛ1(kM)×MHΛ2(kM)−→MHΛ1+Λ2(kM). (7.5) 682

Applying Propositions 7.1 and 7.5, we get 683

Proposition 7.6. Assume (7.4). Then the object K1
L
⊗ (kM

L
� ω⊗−1

M )
L
⊗ K2 is a trace 684

kernel on M and 685

µeuM(K1
L
⊗ (kM

L
� ω⊗−1

M )
L
⊗ K2)= µeuM(K1) ? µeuM(K2). 686

Following [23, II, Corollary 5.6], we shall recall the link between the product ? and the 687

cup product. 688

Proposition 7.7. Let λi ∈ H0
Λi
(T∗Mi;π

−1
M ωM) (i = 1, 2), and assume that Λ1 ∩ Λ

a
2 ⊂ 689

T∗MM. Then 690

(λ1 ? λ2)|M =

∫
πM

(λ1 ∪ λ2) (7.6) 691

as elements of H0
π(Λ1∩Λ2)

(M;ωM). 692

Proof. Denote by δ : ∆ ↪→M12 =M ×M the diagonal embedding and let us identify M 693

with ∆. Consider the diagram 694

T∗∆M12

π

��

f
// ∆×M12 T∗M12

δd

��
∆ s

// T∗∆

(7.7) 695

where π is the projection, δd is the map associated with δ, s is the zero-section 696

embedding and f is the restriction to ∆×MT∗M12 of the embedding T∗∆M12 ↪→ T∗M12. 697

Since this diagram is Cartesian, we have 698

s−1δd ! ' π! f
−1. 699
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Now let λ1 × λ2 ∈ H0
Λ1×Λ2

(T∗M12;π
−1ωM12) and denote by λ1×Mλ2 its image under the700

map701

H0
Λ1×Λ2

(T∗M12;π
−1ωM12)−→ H0

Λ1×MΛ2
(∆×M12T∗M12;π

−1ωM12).702

(Here, on the right hand side, we still denote by π the restriction of the projection πM12703

to ∆×M12T∗M12.) Then704 ∫
π

(λ1 ∪ λ2)= π! f
−1(λ1×Mλ2),705

(λ1 ? λ2)|M = s−1δd !(λ1×Mλ2). �706

Corollary 7.8. Let K1 and K2 be two trace kernels on M with SS(Ki) ⊂ Λii.707

Assume (7.4) and assume moreover that Supp(K1) ∩ Supp(K2) is compact. Then the708

object RΓ
(
M ×M;K1

L
⊗ (kM

L
� ω⊗−1

M )
L
⊗ K2

)
is a trace kernel on pt and709

eupt
(
RΓ (M;K1

L
⊗ (kM

L
� ω⊗−1

M )
L
⊗ K2)

)
=

∫
T∗M

µeu(K1) ∪ µeu(K2).710

Remark 7.9. Let M be a real analytic manifold and let F ∈ Db
R-c(kM). Recall that711

one associates with F the trace kernel TK(F) = F
L
� DMF and that µeuM(F) =712

µeuM(TK(F)). Assume now that f : M1 −→M2 is a morphism of real analytic manifolds.713

Let F1 ∈ Db
R-c(kM1) and assume that f is proper on Supp(F1). Applying714

Proposition 7.3 and noticing that715

Rf̃!TK(F1)' TK(Rf!F1), (7.8)716

we find that µeu(Rf!F1)= fµ(µeu(F1)). This is nothing but [13, Proposition 9.4.2].717

Let F2 ∈ Db
R-c(kM2) and assume that f is non-characteristic with respect to F2.718

Applying Proposition 7.5 and noticing that719

TK(f−1F2)' (k1

L
� ωM1/M2)

L
⊗ f̃−1TK(F2),720

we find that µeu(f−1F2)= fµ(µeu(F2)). Hence, we recover [13, Proposition 9.4.3].721

8. Applications: D-modules and elliptic pairs722

We shall, as an application of Theorem 6.3, recover the theorem of [23] on the index of723

elliptic pairs. In this section, X is a complex manifold, k= C, M is an object of Db
coh(DX)724

and F is an object of Db
R-c(CX).725

Recall that we have denoted by TK(F) and TK(M ) (see Notation 5.10) the trace726

kernels associated with F and with M , respectively:727

TK(F) := F
L
� DXF,728

TK(M ) := ΩX×X
L
⊗ DX×X (M �DDM ).729

The pair (M ,F) is called an elliptic pair in the earlier citation if char(M )∩SS(F)⊂ T∗XX.730

From now on, we assume that (M ,F) is an elliptic pair.731
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It follows from Proposition 7.6 that the tensor product of TK(F) and TK(M ) shifted 732

by −2dX is again a trace kernel. We denote it by TK(M ,F). Hence 733

TK(M ,F)'ΩX×X
L
⊗ DX×X (M �DDM )⊗ (F

L
� D′XF). (8.1) 734

Moreover the same statement gives 735

µeuX
(
TK(M ,F)

)
= µeuX(M ) ? µeuX(F). (8.2) 736

We set 737

Sol(M ,F) := RHomDX (M ⊗ F,OX), (8.3) 738

DR(M ,F) := RΓ (X;ΩX
L
⊗ DX M ⊗ F) [dX]. (8.4) 739

As explained in [23], [13, Theorem 11.3.3] and isomorphism (2.7) provide a 740

generalization of the classical Petrovsky regularity theorem, namely, the natural 741

isomorphisms 742

RHomDX (M ,D′XF⊗OX)
∼−→ RHomDX (M ⊗ F,OX). (8.5) 743

Now assume that Supp(M ) ∩ Supp(F) is compact and let us take the global sections of 744

the isomorphism (8.5). We find the isomorphism 745

RHomDX (M ,D′XF⊗OX)
∼−→ RHomDX (M ⊗ F,OX). (8.6) 746

It is proved in [23] (assuming M has a good filtration) that one can represent the left 747

hand side of (8.6) by a complex of topological vector spaces of type DFN and the right 748

hand side of (8.6) by a complex of topological vector spaces of type FN. It follows that 749

the complexes Sol(M ,F) and DR(M ,F) have finite-dimensional cohomology and are 750

dual to each other. More precisely, denoting by (·)∗ the duality functor in Db
f (C), we have 751(

Sol(M ,F)
)∗
'DR(M ,F). 752

It follows from the finiteness of the cohomology of the complexes Sol(M ,F) and 753

DR(M ,F) that 754

RΓ (X × X;TK(M ,F))' Sol(M ,F)⊗DR(M ,F). 755

One checks that this isomorphism commutes with the composition of the morphisms 756

C−→ RΓ (X × X;TK(M ,F))−→ C and C−→ Sol(M ,F)⊗DR(M ,F)−→ C, which implies 757

eupt
(
RΓ (X × X;TK(M ,F))

)
= χ

(
Sol(M ,F)

)
. (8.7) 758

Therefore, one recovers the index formula of the earlier citation: 759

χ
(
RHomDX (M ⊗ F,OX)

)
=

∫
X
(µeuX(M ) ? µeuX(F))|X

=

∫
T∗X

µeuX(M ) ∪ µeuX(F).
(8.8) 760

Remark 8.1. In general the direct image of an elliptic pair is no longer an elliptic pair. 761

However, it remains a trace kernel. 762
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Remark 8.2. As already mentioned in [23], formula (8.8) has many applications, as763

long as one is able to calculate µeuX(M ) (see the final remarks below). For example,764

if M is a compact real analytic manifold and X is a complexification of M, one recovers765

the Atiyah–Singer theorem by choosing F = D′CM. If X is a complex compact manifold,766

one recovers the Riemann–Roch theorem: one takes F = CX and if F is a coherent767

OX-module, one sets M =DX ⊗OX F .768

9. The Lefschetz fixed point formula769

In this section, we shall briefly show how to adapt the formalism of trace kernels to the770

Lefschetz trace formula as treated in [13, ğ 9.6]. Here we assume that k is a field.771

Assume that we are given two maps f , g : N −→M of real analytic manifolds, an object772

F ∈ Db
R-c(kM) and a morphism773

ϕ : f−1F −→ g !F. (9.1)774

Set775

h= (g, f ) : N × N −→M ×M,776

S= Supp(F), L= h−1(∆M)= {(x, y) ∈ N × N; g(x)= f (y)} ,777

i : L ↪→ N × N,778

T = f−1(S) ∩ g−1(S).779

One makes the following assumption:780

The set T is compact. (9.2)781

Then we have the maps782

RΓ (M;F)−→ RΓf−1S(N; f
−1F)

ϕ
−→ RΓT(N; g

!F)−→ RΓ (M;F).783

The composition gives a map784 ∫
ϕ : RΓ (M;F)−→ RΓ (M;F), (9.3)785

and this map factorizes through RΓT(N; g !F) which has finite-dimensional cohomologies.786

Hence, we can define the trace tr(
∫
ϕ).787

We have the chain of morphisms788

kN −→ RHom(g !F, g !F)789

ϕ
−→ RHom(f−1F, g !F)' δ !N(g

!F
L
� DN f−1F)790

' δ !N(g
!F

L
� f !DMF)' δ !Nh !(F

L
� DMF).791

We have thus constructed the morphism792

k∆N −→ h !(F
L
� DMF).793
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By using the morphism F
L
� DMF −→ ω∆M and the isomorphism h !ω∆M ' i∗ωL, we get 794

the morphisms 795

k∆N −→ h !(F
L
� DMF)−→ i∗ωL (9.4) 796

in Db(kN×N). The support of the composition is contained in δN(T) ∩ L. 797

Theorem 9.1 ([13, Proposition 9.6.2]). The trace tr(
∫
ϕ) coincides with the image of 798

1 ∈ k under the composition of the morphisms 799

k−→ RΓ (N, kN)−→ RΓc(L, ωL)−→ k. 800

Here the middle arrow is derived from (9.4). 801

Although (9.4) is not a trace kernel in the sense of Definition 5.1, it should be possible 802

to adapt the previous constructions to the case of D-modules and to elliptic pairs, and 803

then to recover a theorem of [7], but we do not develop this point here (see [21] for 804

related results). 805

Final remarks 806

The microlocal Euler class of constructible sheaves is easy to compute since it is 807

enough to calculate some multiplicities at generic points. We refer the reader to [13] 808

for examples. 809

On the other hand, there is no direct method for calculating the microlocal Euler class 810

of a coherent D-module M (except in the holonomic case). In [23], the authors made a 811

precise conjecture relying on µeuX(M ) and the Chern character of the associated graded 812

module (an OT∗X-module), and this conjecture has been proved by Bressler, Nest and 813

Tsygan [1]. 814

Similarly, the Hochschild class of coherent OX-modules is usually calculated through 815

the so-called Hochschild–Kostant–Rosenberg isomorphism, but this isomorphism does 816

not commute with proper direct images, and a precise conjecture (involving the Todd 817

class) has been made by Kashiwara in [10] and this conjecture has recently been proved 818

in the algebraic case by Ramadoss [20] and in the general case by Grivaux [6]. 819

Acknowledgements. The second-named author warmly thanks Stéphane Guillermou 820

for helpful discussions. 821
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Volume 345 (Soc. Math. France, 2012), arXiv:math.arXiv:1003.3304.851

16. B. Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136852

(1999), 1–56.853

17. R. McCarthy, The cyclic homology of an exact category, J. Pure Appl. Algebra 93854

(1994), 251–296.855

18. D. Nadler and E. Zaslow, Constructible sheaves and the Fukaya category, J. Amer.856

Math. Soc. 22 (2009), 233–286.857

19. R. McPherson, Chern classes for singular varieties, Ann. of Math. (2) 100 (1974),858

423–432.859

20. A. C. Ramadoss, The relative Riemann–Roch theorem from Hochschild homology, New860

York J. Math. 14 (2008), 643–717, arXiv:math/0603127.861

21. A. C. Ramadoss, X. Tang and H.-H. Tseng, Hochschild Lefschetz class for862

D-modules, arXiv:math/1203.6885.863

22. M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential864

equations, in Hyperfunctions and pseudo-differential equations, Proceedings Katata 1971865

(ed. Komatsu). Lecture Notes in Math., Volume 287, pp. 265–529 (Springer-Verlag,866

1973).867

23. P. Schapira and J-P. Schneiders, Index theorem for elliptic pairs, Astérisque,868
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