MICROLOCAL EULER CLASSES AND HOCHSCHILD HOMOLOGY

MASAKI KASHIWARA^{1,2} AND PIERRE SCHAPIRA^{3,4} ¹Research Institute for Mathematical Sciences, Kyoto University, Japan ²Department of Mathematical Sciences, Seoul National University, Republic of Korea (masaki@kurims.kyoto-u.ac.jp) ³Institut de Mathématiques, Université Pierre et Marie Curie, France ⁴Mathematics Research Unit, University of Luxemburg, Luxemburg (schapira@math.jussieu.fr)

(Received 4 December 2012; revised 22 May 2013; accepted 22 May 2013)

Abstract We define the notion of a trace kernel on a manifold M. Roughly speaking, it is a sheaf on $M \times M$ for which the formalism of Hochschild homology applies. We associate a microlocal Euler class with such a kernel, a cohomology class with values in the relative dualizing complex of the cotangent bundle T^*M over M, and we prove that this class is functorial with respect to the composition of kernels.

This generalizes, unifies and simplifies various results from (relative) index theorems for constructible sheaves, \mathscr{D} -modules and elliptic pairs.

Keywords: sheaves; D-modules; microlocal sheaf theory; Euler classes

2010 Mathematics subject classification: Primary 14F05; 35A27

1. Introduction

Our constructions mainly concern real manifolds, but in order to introduce the subject we first consider a complex manifold (X, \mathcal{O}_X) . Denote by ω_X^{hol} the dualizing complex in the category of \mathcal{O}_X -modules, that is, $\omega_X^{\text{hol}} = \Omega_X[d_X]$, where d_X is the complex dimension of X and Ω_X is the sheaf of holomorphic forms of degree d_X . Denote by \mathcal{O}_{Δ_X} and $\omega_{\Delta_X}^{\text{hol}}$ the direct images of \mathcal{O}_X and ω_X^{hol} respectively under the diagonal embedding $\delta \colon X \hookrightarrow X \times X$. It is well-known (see in particular [3, 4]) that the Hochschild homology of \mathcal{O}_X may be defined by using the isomorphism

$$\delta_* \mathscr{H} \mathscr{H} (\mathscr{O}_X) \simeq \mathcal{R} \mathscr{H} om_{\mathscr{O}_{X \times X}} (\mathscr{O}_{\Delta_X}, \omega_{\Delta_X}^{\text{hol}}).$$

$$(1.1) \qquad (1.1) \qquad (1.1$$

Moreover, if \mathscr{F} is a coherent \mathscr{O}_X -module and $D_{\mathscr{O}}\mathscr{F} := \mathbb{R}\mathscr{H}om_{\mathscr{O}_X}(\mathscr{F}, \omega_X^{\text{hol}})$ denotes its 22 dual, there are natural morphisms 23

$$\mathscr{O}_{\Delta_X} \to \mathscr{F} \boxtimes \mathcal{D}_{\mathscr{O}} \mathscr{F} \to \omega^{\mathrm{hol}}_{\Delta_X} \tag{1.2}$$

This work was partially supported by Grant-in-Aid for Scientific Research (B) 22340005, from the Japan Society for the Promotion of Science.

1

1

2

3

4

5

6

7

8

9

10

11

12

whose composition defines the Hochschild class of \mathscr{F} :

$$\mathrm{hh}_{\mathscr{O}}(\mathscr{F}) \in H^0_{\mathrm{Supp}(\mathscr{F})}(X; \mathscr{HH}(\mathscr{O}_X)).$$

²⁷ These constructions have been extended when replacing \mathcal{O}_X with a so-called ²⁸ DQ-algebroid stack \mathscr{A}_X in [15] (DQ stands for "deformation quantization"). One of ²⁹ the main results of this reference is that Hochschild classes are functorial with respect to ³⁰ the composition of kernels, a kind of (relative) index theorem for coherent DQ-modules.

On the other hand, the notion of Lagrangian cycles of constructible sheaves on real analytic manifolds has been introduced by the first-named author (see [9]) in order to prove an index theorem for such sheaves, after they first appeared in the complex case (see [8, 19]). We refer the reader to [13, Chapter 9] for a systematic study of Lagrangian cycles and for historical comments. Let us briefly recall the construction.

Consider a real analytic manifold M and let **k** be a unital commutative ring with 36 finite global dimension. Denote by ω_M the (topological) dualizing complex of M, that is, 37 $\omega_M = \operatorname{or}_M[\dim M]$ where or_M is the orientation sheaf of M and $\dim M$ is the dimension. 38 Finally, denote by $\pi_M: T^*M \to M$ the cotangent bundle of M. Let A be a conic 39 subanalytic Lagrangian subset of T^*M . The group of Lagrangian cycles supported by 40 Λ is given by $H^0_{\Lambda}(T^*M; \pi_M^{-1}\omega_M)$. Denote by $\mathsf{D}^{\mathsf{b}}_{\mathbb{R}-\mathsf{c}}(\mathbf{k}_M)$ the bounded derived category 41 of \mathbb{R} -constructible sheaves on M. With an object F of this category, one associates a 42 Lagrangian cycle supported by SS(F), the microsupport of F. This cycle is called the 43 characteristic cycle, or the Lagrangian cycle or else the *microlocal Euler class* of F and is 44 denoted here by $\mu eu_M(F)$. 45

In fact, it is possible to treat the microlocal Euler classes of \mathbb{R} -constructible sheaves on real manifolds like Hochschild classes of coherent sheaves on complex manifolds. Denote as above by \mathbf{k}_{Δ_M} and ω_{Δ_M} the direct image of \mathbf{k}_M and ω_M under the diagonal embedding $\delta_M : M \hookrightarrow M \times M$. Then we have an isomorphism

$$H^0_{\Lambda}(T^*M; \pi_M^{-1}\omega_M) \simeq H^0_{\Lambda}(T^*M; \mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M})), \qquad (1.3)$$

⁵¹ where μhom is the microlocalization of the functor $\mathbb{R}\mathscr{H}om$. Then $\mu eu_M(F)$ is obtained as ⁵² follows. Denote by $\mathbb{D}_M F := \mathbb{R}\mathscr{H}om(F, \omega_M)$ the dual of F. There are natural morphisms

62

$$\mathbf{k}_{\Delta_M} \to F \boxtimes \mathbf{D}_M F \to \omega_{\Delta_M},\tag{1.4}$$

⁵⁴ whose composition gives the microlocal Euler class of F.

In this paper, we construct the microlocal Euler class for a wide class of sheaves, including of course the constructible sheaves but also the sheaves of holomorphic solutions of coherent D-modules and, more generally, of elliptic pairs in the sense of [23]. To treat such situations, we are led to introduce the notion of a trace kernel.

⁵⁹ On a real manifold M (say of class C^{∞}), a *trace kernel* is the data of a triplet ⁶⁰ (K, u, v) where K is an object of the derived category of sheaves $D^{b}(\mathbf{k}_{M \times M})$ and u, v are ⁶¹ morphisms

$$u: \mathbf{k}_{\Delta_M} \to K, \quad v: K \to \omega_{\Delta_M}.$$
 (1.5)

One then naturally defines the microlocal Euler class $\mu eu_M(K, u, v)$ of such a kernel, an element of $H^0_{\Lambda}(T^*M; \mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M}))$ where $\Lambda = SS(K) \cap T^*_{\Delta_M}(M \times M)$. By (1.4), a constructible sheaf gives rise to a trace kernel.

If X is a complex manifold and \mathscr{M} is a coherent \mathscr{D}_X -module, we construct natural morphisms (over the base ring $\mathbf{k} = \mathbb{C}$) 67

$$\mathbb{C}_{\Delta_X} \to \Omega_{X \times X} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{X \times X}} (\mathscr{M} \boxtimes \mathrm{D}_D \mathscr{M}) \to \omega_{\Delta_X}, \tag{1.6}$$

where $D_D \mathscr{M}$ denotes the dual of \mathscr{M} as a \mathscr{D} -module. In other words, one naturally associates a trace kernel on X with a coherent \mathscr{D}_X -module. Moreover, we prove that under suitable microlocal conditions, the tensor product of two trace kernels is again a trace kernel, and it follows that one can associate a trace kernel with an elliptic pair. 72

We study trace kernels and their microlocal Euler classes, showing that some proofs of [15] can be easily adapted to this situation. One of our main results is the functoriality of the microlocal Euler classes: the microlocal Euler class of the composition $K_1 \circ K_2$ of two trace kernels is the composition of the microlocal Euler classes of K_1 and K_2 (see Theorem 6.3 for a precise statement). Another essential result is that the composition of classes coincides with the composition for $\pi_M^{-1}\omega_M$ constructed in [13] via the isomorphism between $\mu hom(\mathbf{k}_{\Delta M}, \omega_{\Delta M})$ and $\pi_M^{-1}\omega_M$.

As an application, we recover in a single proof the classical results on the index theorem for constructible sheaves (see [13, §9.5]) as well as the index theorem for elliptic pairs of [23], that is, sheaves of generalized holomorphic solutions of coherent \mathscr{D} -modules. We also briefly explain how to adapt trace kernels to the formalism of the Lefschetz trace formula.

We call here $\mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M})$ the *microlocal homology of* M, and this paper shows that, in some sense, the microlocal homology of real manifolds plays the same role as the Hochschild homology of complex manifolds.

To conclude this introduction, let us make a general remark. The category $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbf{k}_M)$ 88 of constructible sheaves on a compact real analytic manifold M is "proper" in the sense 89 of Kontsevich (that is, Ext finite) but it does not admit a Serre functor (in the sense 90 of Bondal and Kapranov) and it is not clear whether it is smooth (again in the sense 91 of Kontsevich). However this category naturally appears in mirror symmetry (see [5]) 92 and it would be a natural aim to try to understand its Hochschild homology in the 93 sense of [17, 16]. We do not know how to compute it, but the above construction, 94 with the use of $\mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M})$, provides an alternative approach to the Hochschild 95 homology of this category. This result is not totally surprising if one recalls the formula 96 (see [13, Proposition 8.4.14]) 97

$$D_{T^*M}(\mu hom(F,G)) \simeq \mu hom(G,F) \otimes \pi_M^{-1} \omega_M.$$
⁹⁸

Hence, in some sense, $\pi_M^{-1}\omega_M$ plays the role of a microlocal Serre functor. Note that thanks to Nadler and Zaslow [18], we have that the category $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}^{-\mathrm{c}}}(\mathbf{k}_M)$ is equivalent to the Fukaya category of the symplectic manifold T^*M , and this is another argument for treating sheaves from a microlocal point of view.

3

73

74

75

76

77

78

79

80

81

82

83

84

85

86

103 2. A short review on sheaves

Throughout this paper, a manifold means a real manifold of class C^{∞} . We shall mainly follow the notation of [13] and use some of the main notions introduced there, in particular that of microsupport and the functor μhom .

Let M be a manifold. We denote by $\pi_M: T^*M \to M$ its cotangent bundle. For a submanifold N of M, we denote by $T^*_N M$ the conormal bundle to N. In particular, $T^*_M M$ denotes the zero-section. We set $\dot{T}^*M := T^*M \setminus T^*_M M$ and we denote by $\dot{\pi}_M$ the restriction of π_M to \dot{T}^*M . If there is no risk of confusion, we write simply π and $\dot{\pi}$ instead of π_M and $\dot{\pi}_M$. One denotes by $a: T^*M \to T^*M$ the antipodal map, $(x; \xi) \mapsto (x; -\xi)$, and for a subset S of T^*M , one denotes by S^a its image under this map. A set $A \subset T^*M$ is conic if it is invariant under the action of \mathbb{R}^+ on T^*M .

Let $f: M \to N$ be a morphism of manifolds. With f one associates as usual the maps

$$T^*M \xleftarrow{f_d} M \times_N T^*N \xrightarrow{f_\pi} T^*N$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi} \qquad \qquad \downarrow^{\pi_N} \qquad (2.1)$$

$$M \xrightarrow{f} N.$$

115

(Note that in the above citation the map f_d is denoted by tf'^{-1} .)

Let Λ be a closed conic subset of T^*N . One says that f is non-characteristic for Λ if the map f_d is proper on $f_{\pi}^{-1}\Lambda$ or, equivalently, $f_{\pi}^{-1}\Lambda \cap f_d^{-1}(T^*_M M) \subset M \times_N T^*_N N$.

Let **k** be a commutative unital ring with finite global homological dimension. One denotes by \mathbf{k}_M the constant sheaf on M with stalk **k** and by $\mathsf{D}^{\mathsf{b}}(\mathbf{k}_M)$ the bounded derived category of sheaves of **k**-modules on M. When M is a real analytic manifold, one denotes by $\mathsf{D}^{\mathsf{b}}_{\mathbb{R}-\mathsf{c}}(\mathbf{k}_M)$ the full triangulated subcategory of $\mathsf{D}^{\mathsf{b}}(\mathbf{k}_M)$ consisting of \mathbb{R} -constructible objects.

One denotes by ω_M the dualizing complex on M and by $\omega_M^{\otimes -1}$ its dual, that is, $\omega_M^{\otimes -1} = \mathbb{R}\mathscr{H}om(\omega_M, \mathbf{k}_M)$. More generally, for a morphism $f: M \to N$, one denotes by $\omega_{M/N} := f \, {}^!\mathbf{k}_N \simeq \omega_M \otimes f^{-1}(\omega_N^{\otimes -1})$ the relative dualizing complex. Recall that $\omega_M \simeq$ or_M [dim M] where or_M is the orientation sheaf and dim M is the dimension of M. Also recall the natural morphism of functors

$$\omega_{M/N} \otimes f^{-1} \to f^{!}. \tag{2.2}$$

¹³⁰ We have the duality functors

131

129

$$D'_M F = R\mathscr{H}om(F, \mathbf{k}_M), \quad D_M F = R\mathscr{H}om(F, \omega_M).$$

For $F \in D^{b}(\mathbf{k}_{M})$, one denotes by $\operatorname{Supp}(F)$ the support of F and by $\operatorname{SS}(F)$ its microsupport, a closed \mathbb{R}^{+} -conic co-isotropic subset of $T^{*}M$. For a morphism $f: M \to N$ and $G \in D^{b}(\mathbf{k}_{N})$, one says that f is non-characteristic for G if f is non-characteristic for SS(G).

We shall use systematically the functor μhom , a variant of Sato's microlocalization functor. Recall that for a closed submanifold N of M, there is a functor $\mu_N : \mathsf{D}^{\mathrm{b}}(\mathbf{k}_M) \rightarrow \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{T_N^*M})$ constructed by Sato (see [22]) and for $F_1, F_2 \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}_M)$, one defines in [13] the functor

$$\mu hom: \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M})^{\mathrm{op}} \times \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M}) \to \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{T^{*}M}),$$
¹⁴⁰

$$\mu hom(F_1, F_2) := \mu_\Delta \mathcal{RH}om(q_2^{-1}F_1, q_1^{!}F_2)$$
¹⁴¹

where q_1 and q_2 are the first and second projections defined on $M \times M$ and Δ is the 142 diagonal. This sheaf is supported by $T^*_{\Delta}(M \times M)$ that we identify with T^*M via the first 143 projection $T^*(M \times M) \simeq T^*M \times T^*M \to T^*M$. Note that 144

$$\operatorname{Supp}(\mu hom(F_1, F_2)) \subset \operatorname{SS}(F_1) \cap \operatorname{SS}(F_2) \tag{2.3}$$

and we have Sato's distinguished triangle, functorial in F_1 and F_2 :

$$R\pi_{!}\mu hom(F_{1},F_{2}) \to R\pi_{*}\mu hom(F_{1},F_{2}) \to R\dot{\pi}_{*}\left(\mu hom(F_{1},F_{2})|_{\dot{T}^{*}M}\right) \xrightarrow{+1} .$$
(2.4)

Moreover, we have the isomorphism

$$R\pi_*\mu hom(F_1, F_2) \simeq R\mathscr{H}om(F_1, F_2), \qquad (2.5)$$

and, assuming that M is real analytic and F_1 is \mathbb{R} -constructible, the isomorphism

$$\mathbf{R}\pi_{!}\mu hom(F_{1},F_{2}) \simeq \mathbf{D}'_{M}F_{1} \overset{\mathrm{L}}{\otimes} F_{2}. \tag{2.6}$$

In particular, assuming that F_1 is \mathbb{R} -constructible and $SS(F_1) \cap SS(F_2) \subset T_M^*M$, we have 152 the natural isomorphism (see [13, Corollary 6.4.3]) 153

$$D'_{M}F_{1} \overset{L}{\otimes} F_{2} \xrightarrow{\sim} \mathcal{R}\mathscr{H}om(F_{1}, F_{2}).$$

$$(2.7) \qquad (2.7) \qquad (2.7)$$

As recalled in the Introduction, assuming that M is real analytic and the sheaves are 155 constructible, we have the formula (see [13, Proposition 8.4.14]) 156

$$D_{T^*M}(\mu hom(F_1, F_2)) \simeq \mu hom(F_2, F_1) \otimes \pi_M^{-1} \omega_M \quad \text{for } F_1, F_2 \in \mathsf{D}^{\mathsf{b}}_{\mathbb{R}-\mathsf{c}}(\mathbf{k}_M).$$
(2.8) ¹⁵⁷

3. Compositions of kernels

- Notation 3.1. (i) For a manifold M, let $\delta_M \colon M \to M \times M$ denote the diagonal 159 embedding, and Δ_M the diagonal set of $M \times M$. 160
- (ii) Let M_i (i = 1, 2, 3) be manifolds. For short, we write $M_{ii} := M_i \times M_i$ $(1 \le i, j \le 3)$, 161 $M_{123} = M_1 \times M_2 \times M_3, M_{1223} = M_1 \times M_2 \times M_2 \times M_3$, etc. 162
- (iii) We will often write for short \mathbf{k}_i instead of \mathbf{k}_{M_i} and \mathbf{k}_{Δ_i} instead of $\mathbf{k}_{\Delta_{M_i}}$, and similarly 163 with ω_{M_i} , etc., and with the index *i* replaced with several indices *ij*, etc. 164
- (iv) We denote by π_i, π_{ij} , etc. the projection $T^*M_i \to M_i, T^*M_{ij} \to M_{ij}$, etc.
- (v) We denote by q_i the projection $M_{ij} \to M_i$ or the projection $M_{123} \to M_i$ and by q_{ij} the 166 projection $M_{123} \rightarrow M_{ij}$. Similarly, we denote by p_i the projection $T^*M_{ij} \rightarrow T^*M_i$ or 167 the projection $T^*M_{123} \to T^*M_i$ and by p_{ij} the projection $T^*M_{123} \to T^*M_{ij}$. 168

5

139

146

148

150

158

 $(K_1, K_2) \mapsto K_1 \underset{2}{\circ} K_2 := \operatorname{R} q_{13!}(q_{12}^{-1} K_1 \overset{\mathrm{L}}{\otimes} q_{23}^{-1} K_2)$

(vi) We also need to introduce the maps p_{j^a} or p_{ij^a} , the composition of p_j or p_{ij} and the antipodal map on T^*M_j . For example,

171
$$p_{12^a}((x_1, x_2, x_3; \xi_1, \xi_2, \xi_3)) = (x_1, x_2; \xi_1, -\xi_2).$$

 $\circ: \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{12}}) \times \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{23}}) \rightarrow \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{13}})$

(vii) We let $\delta_2: M_{123} \to M_{1223}$ be the natural diagonal embedding.

¹⁷³ We consider the operation of composition of kernels:

176

180

184

¹⁷⁵ We will use a variant of o:

$${}^{*}_{2}: \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{M_{12}}) \times \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{M_{23}}) \to \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{M_{13}})$$

$$(K_{1}, K_{2}) \mapsto K_{1} {}^{*}_{2}K_{2} \coloneqq \mathrm{R}q_{13*}(q_{2}^{-1}\omega_{2} \otimes \delta_{2}^{!}(K_{1} \boxtimes K_{2})).$$

$$(3.2)$$

 $\simeq \operatorname{R} q_{13!} \delta_2^{-1} (K_1 \stackrel{\mathrm{L}}{\boxtimes} K_2).$

We also have $\omega_{M_{123}/M_{1223}} \simeq q_2^{-1} \omega_{M_2}^{\otimes -1}$ and we deduce from (2.2) a morphism $\delta_2^{-1} \rightarrow q_2^{-1} \omega_{M_2} \otimes \delta_2^!$. Using the morphism $\mathbf{R} p_{13!} \rightarrow \mathbf{R} p_{13*}$ we obtain a natural morphism for $K_1 \in \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{M_{12}})$ and $K_2 \in \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{M_{23}})$:

$$K_1 \circ K_2 \to K_1 * K_2. \tag{3.3}$$

(3.1)

It is an isomorphism if $p_{12^a}^{-1}SS(K_1) \cap p_{23^a}^{-1}SS(K_2) \to T^*M_{13}$ is proper.

We define the composition of kernels on cotangent bundles (see [13, Proposition 4.4.11]):

$$\stackrel{a}{\overset{o}{_{2}}}: \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{T^{*}M_{12}}) \times \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{T^{*}M_{23}}) \to \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{T^{*}M_{13}})$$

$$(K_{1}, K_{2}) \mapsto K_{1} \stackrel{a}{\overset{o}{_{2}}} K_{2} \coloneqq \mathrm{R}p_{13!}(p_{12^{a}}^{-1}K_{1} \stackrel{\mathrm{L}}{\otimes} p_{23}^{-1}K_{2})$$

$$\simeq \mathrm{R}p_{13^{a}!}(p_{12^{a}}^{-1}K_{1} \stackrel{\mathrm{L}}{\otimes} p_{23^{a}}^{-1}K_{2}).$$

$$(3.4)$$

We also define the corresponding operations for subsets of cotangent bundles. Let $A \subset T^*M_{12}$ and $B \subset T^*M_{23}$. We set

$$A \overset{a}{\underset{2}{\times}} B = p_{12^{a}}^{-1}(A) \cap p_{23}^{-1}(B),$$

$$A \overset{a}{\underset{2}{\times}} B = p_{13}(A \overset{a}{\underset{2}{\times}} B)$$

$$= \begin{cases} (x_{1}, x_{3}; \xi_{1}, \xi_{3}) \in T^{*}M_{13}; \text{ there exists } (x_{2}; \xi_{2}) \in T^{*}M_{2} \\ \text{ such that } (x_{1}, x_{2}; \xi_{1}, -\xi_{2}) \in A, (x_{2}, x_{3}; \xi_{2}, \xi_{3}) \in B \end{cases}$$

$$(3.5)$$

187

We have the following result which slightly strengthens Proposition 4.4.11 of [13] in which the composition * is not used. **Proposition 3.2.** For $G_1, F_1 \in \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{M_{12}})$ and $G_2, F_2 \in \mathsf{D}^{\mathsf{b}}(\mathbf{k}_{M_{23}})$ there exists a canonical nonphism (whose construction is similar to that of [13, Proposition 4.4.11]):

$$\mu hom(G_1, F_1) \stackrel{a}{\stackrel{o}{_{2}}} \mu hom(G_2, F_2) \to \mu hom(G_1 \underset{2}{_{2}} G_2, F_1 \underset{2}{_{0}} F_2).$$

Proof. In Proposition 4.4.8(i) of the earlier citation, one may replace $F_2 \stackrel{\text{L}}{\boxtimes} G_2$ with $j!(F_2 \stackrel{\text{L}}{\boxtimes} G_2) \otimes \omega_{X \times SY/X \times Y}^{\otimes -1}$. Then the proof goes exactly like that of Proposition 4.4.11 in the earlier citation.

Let $A_{ij} \subset T^*M_{ij}$ (i = 1, 2, j = i + 1) be closed conic subsets and consider the condition

the projection
$$p_{13}: \Lambda_{12} \overset{a}{\underset{2}{\times}} \Lambda_{23} \longrightarrow T^* M_{13}$$
 is proper. (3.6) ¹⁹⁷

We set

$$\Lambda_{13} = \Lambda_{12} \stackrel{a}{\underset{2}{\circ}} \Lambda_{23}. \tag{3.7}$$

Corollary 3.3. Assume that Λ_{ij} (i = 1, 2, j = i + 1) satisfy (3.6). We have a composition ²⁰⁰ morphism ²⁰¹

$$\mathbf{R}\Gamma_{\Lambda_{12}}\mu hom(G_1,F_1) \stackrel{a}{{}_{2}^{a}} \mathbf{R}\Gamma_{\Lambda_{23}}\mu hom(G_2,F_2) \to \mathbf{R}\Gamma_{\Lambda_{13}}\mu hom(G_1 \underset{2}{*} G_2,F_1 \underset{2}{{}_{2}} F_2).$$

Convention 3.4. In (3.1), we have introduced the composition \circ_2 of kernels $K_1 \in \mathbb{C}^{203}$ $\mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{12}})$ and $K_2 \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{23}})$. However we shall also use the notation $M_{22} = M_2 \times M_2$ and consider for example kernels $L_1 \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{122}})$ and $L_2 \in \mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{223}})$. Then when writing $L_1 \circ L_2$ we mean that the composition is taken with respect to the last variable of M_{22} for L_1 and the first variable for L_2 . In other words, set $M_4 = M_2$ and consider L_1 and L_2 as 207 $D^{\mathrm{b}}(\mathbf{k}_{M_{142}})$ and $\mathsf{D}^{\mathrm{b}}(\mathbf{k}_{M_{243}})$ respectively, in which case the composition $L_1 \circ L_2$ is 208 unambiguously defined. 209

4. Microlocal homology

Let M be a real manifold. Recall that $\delta_M : M \hookrightarrow M \times M$ denotes the diagonal embedding. ²¹¹ We shall identify M with the diagonal Δ_M of $M \times M$ and we sometimes write Δ instead of ²¹² Δ_M if there is no risk of confusion. We shall identify T^*M with $T^*_{\Delta}(M \times M)$ via the map ²¹³

$$\delta^a_{T^*M} \colon T^*M \hookrightarrow T^*(M \times M), \quad (x;\xi) \mapsto (x,x;\xi,-\xi).$$
²¹⁴

We denote by \mathbf{k}_{Δ_M} , ω_{Δ_M} and $\omega_{\Delta_M}^{\otimes -1}$ the direct image under δ_M of \mathbf{k}_M , ω_M and $\omega_M^{\otimes -1} := \mathbb{R}\mathscr{H}om(\omega_M, \mathbf{k}_M)$, respectively. 216

The next definition is inspired by that of Hochschild homology on complex manifolds (see the Introduction). 218

7

210

M. Kashiwara and P. Schapira

 $\mathcal{MH}_{A}(\mathbf{k}_{M}) := \mathbf{B} \Gamma_{A}(\delta^{a}_{T^{*}M})^{-1} \mu hom(\mathbf{k}_{A}, \omega_{A})$

- ²¹⁹ **Definition 4.1.** Let Λ be a closed conic subset of T^*M . We set
- 220

$$\mathbb{MH}_{A}(\mathbf{k}_{M}) := \mathrm{R}\Gamma(T^{*}M; \mathscr{MH}_{A}(\mathbf{k}_{M})), \qquad (4.1)$$
$$\mathbb{MH}_{A}^{k}(\mathbf{k}_{M}) := H^{k}(\mathbb{MH}_{A}(\mathbf{k}_{M})) = H^{k}(T^{*}M; \mathscr{MH}_{A}(\mathbf{k}_{M})).$$

²²¹ We call $\mathscr{MH}_{\Lambda}(\mathbf{k}_M)$ the *microlocal homology* of M with support in Λ .

²²² We also write $\mathscr{MH}(\mathbf{k}_M)$ instead of $\mathscr{MH}_{T^*M}(\mathbf{k}_M)$.

Remark 4.2. (i) We have $\mu hom(\mathbf{k}_{\Delta M}, \omega_{\Delta M}) \simeq (\delta^a_{T^*M})_* \pi_M^{-1} \omega_M$. In particular, we have $\mathbb{MH}_{\Lambda}(\mathbf{k}_M) \simeq \mathbb{R}\Gamma_{\Lambda}(T^*M; \pi_M^{-1}\omega_M)$ and $\mathbb{MH}(\mathbf{k}_M) \simeq \mathbb{R}\Gamma(M; \omega_M)$. Assuming that M is real analytic and Λ is a closed conic subanalytic Lagrangian subset of T^*M , we recover the space of Lagrangian cycles with support in Λ as defined in [13, § 9.3].

²²⁷ (ii) The support of $\mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M})$ is $T^*_{\Delta_M}(M \times M)$. Hence, we have ²²⁸ $\mathrm{R}\Gamma_{\delta^a_{T^*M}\Lambda} \mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M}) \simeq (\delta^a_{T^*M})_* \mathscr{M} \mathscr{H}_{\Lambda}(\mathbf{k}_M).$

(iii) If M is real analytic and Λ is a Lagrangian subanalytic closed conic subset, then we have $H^k(\mathscr{MH}_{\Lambda}(\mathbf{k}_M)) = 0$ for k < 0 (see [13, Proposition 9.2.2]).

In the sequel, we denote by Δ_i (resp. Δ_{ij}) the diagonal subset $\Delta_{M_i} \subset M_{ii}$ (resp. $\Delta_{32} = \Delta_{M_{ij}} \subset M_{iijj}$).

²³³ Lemma 4.3. We have natural morphisms:

²³⁴ (i)
$$\omega_{\Delta_{12}} \circ_{22}^{\circ} (\mathbf{k}_{\Delta_2} \boxtimes \omega_{\Delta_3}) \to \omega_{\Delta_{13}},$$

- ²³⁵ (ii) $\mathbf{k}_{\Delta_{13}} \to \mathbf{k}_{\Delta_{12}} \mathop{*}_{22} (\omega_{\Delta_2}^{\otimes -1} \boxtimes \mathbf{k}_{\Delta_3}).$
- ²³⁶ **Proof.** Denote by δ_{22} the diagonal embedding $M_{112233} \hookrightarrow M_{11222233}$.
- 237 (i) We have the morphisms

$$\omega_{\Delta_{12}} \circ (\mathbf{k}_{\Delta_{2}} \boxtimes \omega_{\Delta_{3}}) = \mathrm{R}q_{1133!} \delta_{22}^{-1} (\omega_{\Delta_{12}} \boxtimes \mathbf{k}_{\Delta_{2}} \boxtimes \omega_{\Delta_{3}})$$

$$\simeq \mathrm{R}q_{1133!} \omega_{\Delta_{123}}$$

$$\to \omega_{\Delta_{13}}.$$

- ²⁴¹ (ii) The isomorphism
- 242

 $\delta_{22}^{\,!}(\mathbf{k}_{\varDelta_2}\boxtimes\omega_{\varDelta_2})\simeq\mathbf{k}_{\varDelta_2}$

243 gives rise to the isomorphisms

$$\mathbf{k}_{\Delta_{12}} * (\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}) = \mathrm{R}q_{1133*} (q_{1133}^{-1} \omega_{22} \otimes \delta_{22}^{!} (\mathbf{k}_{\Delta_{12}} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}))$$

$$\simeq \mathrm{R}q_{1133*} \delta_{22}^{!} (\mathbf{k}_{\Delta_1} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_{23}})$$

246
$$\simeq \mathrm{R}q_{1133*}\mathbf{k}_{\varDelta_{123}}$$

and the result follows by adjunction from the morphism

$$q_{1133}^{-1}\mathbf{k}_{\Delta_{13}} \simeq \mathbf{k}_{\Delta_1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{22} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3} \to \mathbf{k}_{\Delta_1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3} = \mathbf{k}_{\Delta_{123}}. \qquad \Box \qquad {}_{^{248}}$$

Proposition 4.4. Let M_i (i = 1, 2, 3) be manifolds. We have a natural composition 249 morphism (whose construction will be given in the course of the proof): 250

$$\mu hom(\mathbf{k}_{\Delta_{12}}, \omega_{\Delta_{12}}) \stackrel{a}{\underset{22}{\circ}} \mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}}) \to \mu hom(\mathbf{k}_{\Delta_{13}}, \omega_{\Delta_{13}}).$$
(4.2)

In particular, let Λ_{ij} be a closed conic subset of T^*M_{ij} (ij = 12, 13, 23). If $\Lambda_{12} \stackrel{a}{\stackrel{o}{_{2}}} \Lambda_{23} \subset \Lambda_{13}$, then we have a morphism 253

$$\mathscr{MH}_{\Lambda_{12}}(\mathbf{k}_{12}) \stackrel{a}{\overset{o}{_{2}}} \mathscr{MH}_{\Lambda_{23}}(\mathbf{k}_{23}) \to \mathscr{MH}_{\Lambda_{13}}(\mathbf{k}_{13}).$$

$$(4.3)$$

Proof. Consider the morphism (see Proposition 3.2 and Convention 3.4)

$$\mu hom(\omega_{\Delta_2}^{\otimes -1}, \omega_{\Delta_2}^{\otimes -1}) \stackrel{a}{{}_{2}^{\circ}} \mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}}) \to \mu hom(\omega_{\Delta_2}^{\otimes -1} * \mathbf{k}_{\Delta_{23}}, \omega_{\Delta_2}^{\otimes -1} \stackrel{\circ}{{}_{2}^{\circ}} \omega_{\Delta_{23}})$$

$$\overset{256}{\text{L}}$$

$$\simeq \mu hom(\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}, \mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3}).$$
²⁵⁷

It induces an isomorphism

$$\mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}}) \simeq \mu hom(\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}, \mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3}). \tag{4.4}$$

Note that this isomorphism is also obtained from

$$\mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}}) \simeq \mu hom\left((\omega_2^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{233}) \stackrel{\mathrm{L}}{\otimes} \mathbf{k}_{\Delta_{23}}, (\omega_2^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{233}) \stackrel{\mathrm{L}}{\otimes} \omega_{\Delta_{23}}\right)$$

$$(1)$$

$$\simeq \mu hom(\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}, \mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3}).$$
²⁶²

Applying Proposition 3.2, we get a morphism:

$$\mu hom(\mathbf{k}_{\Delta_{12}}, \omega_{\Delta_{12}}) \stackrel{a}{\underset{22}{\circ}} \mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}})$$
²⁶⁴

$$\rightarrow \mu hom(\mathbf{k}_{\Delta_{12}} \underset{22}{*} (\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}), \omega_{\Delta_{12}} \underset{22}{\circ} (\mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3})).$$
(4.5)

It remains to apply Lemma 4.3.

Corollary 4.5. Let Λ_{ij} (i = 1, 2, j = i + 1) satisfying (3.6) and let $\Lambda_{13} = \Lambda_{12} \stackrel{a}{\stackrel{o}{_2}} \Lambda_{23}$. The composition of kernels in (4.3) induces a morphism 268

$$\stackrel{a}{_{2}}: \mathbb{MH}_{\Lambda_{12}}(\mathbf{k}_{12}) \stackrel{\mathrm{L}}{\otimes} \mathbb{MH}_{\Lambda_{23}}(\mathbf{k}_{23}) \to \mathbb{MH}_{\Lambda_{13}}(\mathbf{k}_{13}).$$

$$(4.6) \qquad (4.6)$$

In particular, each $\lambda \in \mathbb{MH}^{0}_{\Lambda_{12}}(\mathbf{k}_{12})$ defines a morphism

$$\lambda_{2}^{a}: \mathbb{MH}_{\Lambda_{23}}(\mathbf{k}_{23}) \to \mathbb{MH}_{\Lambda_{13}}(\mathbf{k}_{13}).$$

$$(4.7) \qquad (4.7) \qquad$$

Proof. These morphisms follow from (4.3). The second assertion follows from the isomorphism $H^0(X) \simeq \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}(\mathbf{k})}(\mathbf{k}, X)$ in the category $\mathsf{D}^{\mathrm{b}}(\mathbf{k})$.

9

247

255

258

260

263

270

²⁷⁴ Theorem 4.6. (i) We have the isomorphisms

$$\mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M}) \simeq (\delta^a_{T^*M})_* \pi_M^{-1} \mathbb{R} \mathscr{H}om(\mathbf{k}_M, \omega_M)$$

$$\simeq (\delta^a_{T^*M})_* \pi_M^{-1} \omega_M.$$

277 (ii) We have a commutative diagram

Here the top horizontal arrow of (4.8) is given in Proposition 4.4, and the bottom horizontal arrow is induced by

$$p_{12^{a}}^{-1}\pi_{M_{12}}^{-1}\omega_{M_{12}} \overset{\mathrm{L}}{\otimes} p_{23}^{-1}\pi_{M_{23^{a}}}^{-1}\omega_{M_{23}} \simeq \pi_{M_{1}}^{-1}\omega_{M_{1}} \overset{\mathrm{L}}{\boxtimes} \pi_{M_{2}}^{-1}(\omega_{M_{2}} \overset{\mathrm{L}}{\otimes} \omega_{M_{2}}) \overset{\mathrm{L}}{\boxtimes} \pi_{M_{3}}^{-1}\omega_{M_{3}},$$

$$\pi_{M_2}^{-1}(\omega_{M_2} \overset{\mathrm{L}}{\otimes} \omega_{M_2}) \simeq \omega_{T^*M_2},$$

Rp_{13!}
$$(\pi_{M_1}^{-1}\omega_{M_1} \stackrel{\mathrm{L}}{\boxtimes} \omega_{T^*M_2} \stackrel{\mathrm{L}}{\boxtimes} \pi_{M_3}^{-1}\omega_{M_3}) \longrightarrow \pi_{M_1}^{-1}\omega_{M_1} \stackrel{\mathrm{L}}{\boxtimes} \pi_{M_3}^{-1}\omega_{M_3}.$$

²⁸⁴ **Proof.** (i) is obvious.

²⁸⁵ (ii)-(a) By [13, Proposition 4.4.8], we have natural morphisms for (i, j) = (1, 2) or ²⁸⁶ (i, j) = (2, 3):

$$\mu hom(\mathbf{k}_{\Delta_i}, \omega_{\Delta_i}) \stackrel{\mathrm{L}}{\boxtimes} \mu hom(\mathbf{k}_{\Delta_j}, \omega_{\Delta_j}) \to \mu hom(\mathbf{k}_{\Delta_{ij}}, \omega_{\Delta_{ij}})$$

and it follows from (i) that these morphisms are isomorphisms. These isomorphisms give
 rise to the isomorphism

$$\mu hom(\mathbf{k}_{\Delta_{12}}, \omega_{\Delta_{12}}) \stackrel{a}{\underset{22}{\circ}} \mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}})$$

$$\simeq \mu hom(\mathbf{k}_{\Delta_1}, \omega_{\Delta_1}) \stackrel{\mathrm{L}}{\boxtimes} \left(\mu hom(\mathbf{k}_{\Delta_2}, \omega_{\Delta_2}) \stackrel{a}{\underset{22}{\circ}} \mu hom(\mathbf{k}_{\Delta_2}, \omega_{\Delta_2}) \right) \stackrel{\mathrm{L}}{\boxtimes} \mu hom(\mathbf{k}_{\Delta_3}, \omega_{\Delta_3})$$

²⁹² Similarly, we have an isomorphism

$$\pi_{M_{12}}^{-1}\omega_{M_{12}} \overset{a}{\underset{2}{\circ}} \pi_{M_{23}}^{-1}\omega_{M_{23}} \simeq \pi_{M_{1}}^{-1}\omega_{M_{1}} \boxtimes \left(\pi_{M_{2}}^{-1}\omega_{M_{2}} \overset{a}{\underset{2}{\circ}} \pi_{M_{2}}^{-1}\omega_{M_{2}}\right) \boxtimes \pi_{M_{3}}^{-1}\omega_{M_{3}}.$$

Hence, we are reduced to the case where $M_1 = M_3 = pt$, which we shall assume now.

10

(ii)-(b) We change our notation and set

 $M := M_2, \quad Y := M \times M,$

 $\delta_M \colon M \hookrightarrow Y$ the diagonal embedding, $\Delta_M = \delta_M(M)$, 297

$$j: Y \hookrightarrow Y \times Y \text{ the diagonal embedding, } \Delta_Y = j(Y),$$

$$\sum_{i=1}^{n} (Y_i, Y_i) = \sum_{i=1}^{n} ($$

$$\delta^{d}_{T^*M} \colon T^*M \hookrightarrow T^*Y, (x;\xi) \mapsto (x, x;\xi, -\xi),$$
²⁹⁹

$$\delta^a_{T^*Y} \colon T^*Y \hookrightarrow T^*Y \times T^*Y, \tag{300}$$

$$p: T^*Y \to \text{pt the projection},$$
 301

$$a_Y \colon Y \to \text{pt the projection.}$$
 302

With this new notation, the composition $\overset{a}{\underset{22}{\circ}}$ will be denoted by $\overset{a}{\underset{T^*Y}{\circ}}$. Consider the diagram (4.9) similar to Diagram (4.4.15) of [13]:

$$T^{*}M \times T^{*}M \xrightarrow{i} T^{*}Y \times T^{*}Y \xrightarrow{\delta_{T^{*}Y}^{a}} T^{*}Y$$

$$\uparrow_{j_{\pi}} \qquad \frown \uparrow_{p_{1}}^{i}$$

$$T^{*}Y \times_{Y} T^{*}Y \xrightarrow{\tilde{s}} T^{*}_{\Delta_{Y}}(Y \times Y) \qquad p \qquad (4.9) \quad {}_{305}$$

$$\downarrow_{j_{d}} \qquad \Box \qquad \downarrow_{\pi_{Y}} \qquad \downarrow_{T^{*}Y} \xleftarrow{s} \qquad Y \xrightarrow{a_{Y}} \text{pt.}$$

Here, *i* is the canonical embedding induced by $\delta^a_{T^*M}$, p_1 is induced by the first projection $T^*Y \times T^*Y \to T^*Y$, $s: Y \hookrightarrow T^*Y$ is the zero-section embedding and \tilde{s} is the natural method ing. Note that the square labeled by \Box is Cartesian. We have 308

$$Rp_! \circ (\delta^a_{T^*Y})^{-1} \simeq Ra_{Y!} \circ R\pi_{Y!} \circ p_1^{-1} \circ (\delta^a_{T^*Y})^{-1}$$
³⁰⁹

$$\simeq \operatorname{Ra}_{Y!} \circ \operatorname{R}\pi_{Y!} \circ \widetilde{s}^{-1} \circ j_{\pi}^{-1}$$
³¹⁰

$$\simeq \operatorname{Ra}_{Y!} \circ s^{-1} \circ \operatorname{Rj}_{d!} \circ j_{\pi}^{-1}.$$

Therefore,

$$\mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M}) \overset{a}{\underset{T^*Y}{\longrightarrow}} \mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M})$$
³¹³

$$\simeq \operatorname{R} p_{!}(\delta_{T^{*}Y}^{a})^{-1} \left(\mu hom(\mathbf{k}_{\Delta_{M}}, \omega_{\Delta_{M}}) \boxtimes_{I} \mu hom(\mathbf{k}_{\Delta_{M}}, \omega_{\Delta_{M}}) \right)$$
³¹⁴

$$\simeq \operatorname{Ra}_{Y!} s^{-1} \operatorname{Rj}_{d!} j_{\pi}^{-1} \mu \operatorname{hom}(\mathbf{k}_{\Delta_M} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_M}, \omega_{\Delta_M} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_M}).$$

Hence, by adjunction, giving a morphism

$$\mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M}) \stackrel{a}{\underset{T^*Y}{\circ}} \mu hom(\mathbf{k}_{\Delta_M}, \omega_{\Delta_M}) \to \mathbf{k}$$
³¹⁷

is equivalent to giving a morphism in $\mathsf{D}^{\mathrm{b}}(\mathbf{k}_Y)$

$$s^{-1} \mathrm{R} j_{d!} j_{\pi}^{-1} \mu hom(\mathbf{k}_{\Delta_M} \overset{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_M}, \omega_{\Delta_M} \overset{\mathrm{L}}{\boxtimes} \omega_{\Delta_M}) \to a_Y^! \mathbf{k}_{\mathrm{pt}}.$$
(4.10) ³¹⁹

11

295

303

304

316

318

Note that the left hand side of (4.10) is supported on Δ_M . Hence in order to give a morphism (4.10), it is necessary and sufficient to give a morphism in $D^{\rm b}(\mathbf{k}_M)$

$$\delta_M^{-1} s^{-1} \mathrm{R} j_d j_\pi^{-1} \mu \hom(\mathbf{k}_{\Delta_M} \overset{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_M}, \omega_{\Delta_M} \overset{\mathrm{L}}{\boxtimes} \omega_{\Delta_M}) \to \delta_M^! a_Y^! \mathbf{k}_{\mathrm{pt}}.$$
(4.11)

Hence, it is enough to check the commutativity of the upper square in the following diagram in $D^{\rm b}(\mathbf{k}_M)$:

The top horizontal arrow is constructed from a chain of morphisms (see $[13, \S 4.4]$):

³²⁷
$$\operatorname{Rj}_{d} j_{\pi}^{-1} \mu hom(\mathbf{k}_{\Delta_M} \stackrel{L}{\boxtimes} \mathbf{k}_{\Delta_M}, \omega_{\Delta_M} \stackrel{L}{\boxtimes} \omega_{\Delta_M})$$

$$\rightarrow \mu hom(j^{!}(\mathbf{k}_{\Delta_{M}} \overset{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_{M}}) \overset{\mathrm{L}}{\otimes} \omega_{Y}, j^{-1}(\omega_{\Delta_{M}} \overset{\mathrm{L}}{\boxtimes} \omega_{\Delta_{M}}))$$

$$\simeq \mu hom(\omega_{\Delta_M}, \omega_{\Delta_M} \otimes \omega_{\Delta_M}) \simeq (\delta^a_{T^*M})_* \pi_M^{-1} \omega_M$$

330 and

$$\delta_{M}^{-1} s^{-1} \mathrm{R} j_{d!} j_{\pi}^{-1} \mu hom(\mathbf{k}_{\Delta_{M}} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_{M}}, \omega_{\Delta_{M}} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_{M}}) \to \delta_{M}^{-1} s^{-1} (\delta_{T^{*}M}^{a})_{*} \pi_{M}^{-1} \omega_{M} \simeq \omega_{M}.$$
(4.13)

Hence, the commutativity of the diagram (4.12) is reduced to the commutativity of the diagram below:

334

335

336

337

338

where the morphism λ is given by the morphisms in (4.13). All terms of (4.14) are concentrated at the degree $-\dim M$. Hence the commutativity of (4.14) is a local problem in M and we can assume that M is a Euclidean space. We can check directly in this case.

Remark 4.7. Theorem 4.6 may be applied as follows. Let Λ_{ij} be a closed conic subset of T^*M_{ij} (i = 1.2, j = i + 1). Assume (3.6), that is, the projection $p_{13}: \Lambda_{12} \stackrel{a}{\underset{2}{\times}} \Lambda_{23} \longrightarrow T^*M_{13}$

322

is proper, and set $\Lambda_{13} = \Lambda_{12} \stackrel{a}{\stackrel{\circ}{_{2}}} \Lambda_{23}$. Let $\lambda_{ij} \in \mathbb{MH}^{0}_{\Lambda_{ij}}(\mathbf{k}_{M_{ij}}) \simeq H^{0}_{\Lambda_{ij}}(T^{*}M_{ij}; \pi^{-1}\omega_{ij})$. Then ³⁴¹

$$\lambda_{12} \stackrel{a}{_{2}} \lambda_{23} = \int_{T^*M_2} \lambda_{12} \cup \lambda_{23} \tag{4.15}$$

where the right hand side is obtained as follows. Set $\Lambda := \Lambda_{12} \overset{a}{\underset{2}{\times}} \Lambda_{23}$ and consider the morphisms ³⁴³

$$H^{0}_{\Lambda_{12}}(T^{*}M_{12};\pi^{-1}\omega_{12}) \times H^{0}_{\Lambda_{23}}(T^{*}M_{23};\pi^{-1}\omega_{23})$$
³⁴⁵

$$\to H^0_{\Lambda_{13}}(T^*M_{13};\pi^{-1}\omega_{13}).$$

The first morphism is the cup product and the second one is the integration morphism $_{348}$ with respect to T^*M_2 . $_{349}$

5. Microlocal Euler classes of trace kernels

In this section, we often write Δ instead of Δ_M .

Definition 5.1. A trace kernel (K, u, v) on M is the data of $K \in D^{b}(\mathbf{k}_{M \times M})$ together with morphisms

$$\mathbf{k}_{\Delta} \xrightarrow{u} K$$
 and $K \xrightarrow{v} \omega_{\Delta}$. (5.1) ₃₅₄

In the sequel, as long as there is no risk of confusion, we simply write K instead of $_{355}$ (K, u, v).

For a trace kernel K as above, we set

$$SS_{\Delta}(K) := SS(K) \cap T^*_{\Delta}(M \times M) = (\delta^a_{T^*M})^{-1}SS(K).$$
(5.2) 358

(Recall that one often identifies T^*M and $T^*_{\Lambda}(M \times M)$ through $\delta^a_{T^*M}: T^*M \hookrightarrow T^*M \times T^*M$.) 359

Definition 5.2. Let (K, u, v) be a trace kernel.

- (a) The morphism u defines an element \tilde{u} in $H^0_{\mathrm{SS}_{\Delta}(K)}(T^*M; \mu hom(\mathbf{k}_{\Delta}, K))$ and the microlocal Euler class $\mu \mathrm{eu}_M(K)$ of K is the image of \tilde{u} under the morphism $\mu hom(\mathbf{k}_{\Delta}, K) \to \mu hom(\mathbf{k}_{\Delta}, \omega_{\Delta})$ associated with the morphism v.
- (b) Let Λ be a closed conic subset of T^*M containing $SS_{\Delta}(K)$. One denotes by $\mu eu_{\Lambda}(K)$ the image of \tilde{u} in $H^0_{\Lambda}(T^*M; \mu hom(\mathbf{k}_{\Delta}, \omega_{\Delta}))$.

Hence,

$$\mu \mathrm{eu}_{\Lambda}(K) \in \mathbb{MH}^{0}_{\Lambda}(\mathbf{k}_{M}) \simeq H^{0}_{\Lambda}(T^{*}M; \pi^{-1}\omega_{M}).$$
(5.3) ₃₆₇

Let \tilde{v} be the element of $H^0_{\mathrm{SS}_{\Delta}(K)}(T^*M; \mu hom(K, \omega_{\Delta}))$ induced by v. Then the microlocal Euler class $\mu \mathrm{eu}_M(K)$ of K coincides with the image of \tilde{v} under the morphism $\mu hom(K, \omega_{\Delta_M}) \to \mu hom(\mathbf{k}_{\Delta}, \omega_{\Delta})$ associated with the morphism u, which can be easily

360

366

357

350

351

. .

seen from the following commutative diagram: 370

371

One denotes by eu(K) the restriction of $\mu eu(K)$ to the zero-section M of T^*M and calls it 372 the Euler class of K. Hence 373

374

$$\operatorname{eu}_{M}(K) \in H^{0}_{\operatorname{Supp}(K) \cap \varDelta}(M; \omega_{M}).$$
 (5.4)

- It is nothing but the class induced by the composition $\mathbf{k}_{\Delta_M} \to K \to \omega_{\Delta_M}$. 375
- We say that $L \in D^{\mathbf{b}}(\mathbf{k}_M)$ is *invertible* if L is locally isomorphic to $\mathbf{k}_M[d]$ for some $d \in \mathbb{Z}$. 376

Then, $L^{\otimes -1} := \mathbb{R}\mathscr{H}om(L, \mathbf{k}_M)$ is also invertible and $L \overset{\mathrm{L}}{\otimes} L^{\otimes -1} \simeq \mathbf{k}_M$. 377

Proposition 5.3. Let L be an invertible object in $D^{b}(\mathbf{k}_{M})$ and K a trace kernel. Then 378 $K \overset{\mathrm{L}}{\otimes} (L \overset{\mathrm{L}}{\boxtimes} L^{\otimes -1}) \text{ is a trace kernel and } \mu \mathrm{eu}(K \overset{\mathrm{L}}{\otimes} (L \overset{\mathrm{L}}{\boxtimes} L^{\otimes -1})) = \mu \mathrm{eu}(K).$ 379

Proof. $L \boxtimes^{L} L^{\otimes -1}$ is canonically isomorphic to $\mathbf{k}_{M \times M}$ on a neighborhood of the diagonal 380 set Δ_M of $M \times M$. 381

Remark 5.4. Of course, we could also have defined a trace kernel as a sequence of 382 morphisms 383

384

$$\omega_{\Delta_M}^{\otimes -1} \to \widetilde{K} \to \mathbf{k}_{\Delta_M}.$$
 (5.5)

When treating sheaves, the two definitions would give the same microlocal Euler 385 class on taking $K = \widetilde{K} \otimes (\mathbf{k}_M \stackrel{\mathrm{L}}{\boxtimes} \omega_M)$. However, when working with \mathcal{O} -modules or with 386 DQ-modules as in [15], the two constructions give different classes. Note that we have 387 chosen an analogue of (5.5) in [15]. 388

Trace kernels for constructible sheaves 389

- Let us denote by $\mathsf{D}^{\mathrm{b}}_{\mathrm{cc}}(k_{M})$ the full triangulated subcategory of $\mathsf{D}^{\mathrm{b}}(k_{M})$ consisting of 390 cohomologically constructible sheaves (see $[13, \S 3.4]$). 391
- **Lemma 5.5.** Let $F \in \mathsf{D}^{\mathrm{b}}_{cc}(\mathbf{k}_M)$. There are natural morphisms in $\mathsf{D}^{\mathrm{b}}_{cc}(\mathbf{k}_{M \times M})$: 392

$$\mathbf{k}_{\Delta_M} \to F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_M F, \tag{5.6}$$
$$F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_M F \to \omega_{\Delta_M}. \tag{5.7}$$

(5.7)

394

397

393

In other words, an object $F \in \mathsf{D}^{\mathrm{b}}_{\mathrm{cc}}(\mathbf{k}_M)$ defines naturally a trace kernel on M. 395

Proof. (i) We have 396

$$\mathbf{k}_M \to \mathrm{R}\mathscr{H}om(F,F) \simeq \delta^{!}(F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_M F)$$

Hence, the result follows by adjunction. 398

(ii) The morphism (5.7) may be deduced from (5.6) by duality, or by adjunction from 399 the morphism 400

$$\delta^{-1}(F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_M F) \to \omega_M. \qquad \qquad \Box \quad {}_{401}$$

Notation 5.6. We shall denote by $\operatorname{TK}(F)$ the trace kernel associated with $F \in \mathsf{D}^{\mathrm{b}}_{\mathrm{cc}}(\mathbf{k}_M)$, 402 that is the data of $F \boxtimes^{\mathsf{L}} \mathcal{D}_M F$ and the morphisms (5.6), (5.7). Note that we always 403 have $SS_A(TK(F)) \subset SS(F)$ and the equality holds if M is real analytic and F is 404 \mathbb{R} -constructible. 405

We have the chain of morphisms

$$\mu hom(F,F) \simeq (\delta^{a}_{T^{*}M})^{-1} \mu hom(\mathbf{k}_{\Delta}, F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}F)$$
⁴⁰⁷

$$\to (\delta^a_{T^*M})^{-1} \mu hom(\mathbf{k}_{\Delta}, \omega_{\Delta}).$$
⁴⁰⁸

We deduce the map

$$H^0_{\mathrm{SS}(F)}(T^*M;\mu hom(F,F)) \to \mathbb{MH}^0_{\mathrm{SS}(F)}(\mathbf{k}_M).$$
(5.8) 410

Definition 5.7. Let $F \in \mathsf{D}^{\mathsf{b}}_{\mathsf{cc}}(\mathbf{k}_M)$. The image of id_F under the map (5.8) is called the 411 microlocal Euler class of F and is denoted by $\mu eu_M(F)$. 412

Clearly, one has

$$\mu \mathrm{eu}_{\mathcal{M}}(F) = \mu \mathrm{eu}_{\mathcal{M}}(\mathrm{TK}(F)). \tag{5.9}$$

Assume that M is real analytic and denote by $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbf{k}_M)$ the full triangulated subcategory 415 of $\mathsf{D}^{\mathsf{b}}(\mathbf{k}_M)$ consisting of \mathbb{R} -constructible complexes. Of course, \mathbb{R} -constructible complexes 416 are cohomologically constructible. In $[13,\, \S\, 9.4]$ the microlocal Euler class of an object 417 $F \in \mathsf{D}^{\mathsf{b}}_{\mathbb{R}-\mathsf{c}}(\mathbf{k}_M)$ is constructed as above and this class is also called the characteristic cycle, 418 or else, the Lagrangian cycle, of F. 419

Remark 5.8. Let (K, u, v) be a trace kernel on M. Let $\delta: M \to M \times M$ be the diagonal 420 embedding. Then u and v decompose as 421

$$\mathbf{k}_{\Delta_M} \to \delta_* \delta^! K \to K \to \delta_* \delta^{-1} K \to \omega_{\Delta_M}.$$

Hence $\delta_* \delta^! K$ and $\delta_* \delta^{-1} K$ are also trace kernels. We have evidently

$$\mu \operatorname{eu}_{M}\left(\delta_{*}\delta^{!}K\right) = \mu \operatorname{eu}_{M}\left(\delta_{*}\delta^{-1}K\right) = \mu \operatorname{eu}_{M}(K) \quad \text{as elements in } \mathbb{MH}^{0}_{T^{*}M}(\mathbf{k}_{M}).$$

Trace kernels over one point

Let us consider the particular case where M is a single point, M = pt, and let us identify 426 a sheaf over pt with a k-module. In this situation, a trace kernel (K, u, v) is the data of 427 $K \in \mathsf{D}^{\mathrm{b}}(\mathbf{k})$ together with linear maps 428

$$\mathbf{k} \stackrel{u}{\to} K \stackrel{v}{\to} \mathbf{k}.$$

The (microlocal) Euler class $eu_{pt}(K)$ of this kernel is the image of $1 \in \mathbf{k}$ under $v \circ u$.

15

413

406

409

425

430

Assume now that **k** is a field and denote by $D_f^{\rm b}(\mathbf{k})$ the full triangulated subcategory of $D^{\rm b}(\mathbf{k})$ consisting of objects with finite-dimensional cohomologies. Let $V \in D_f^{\rm b}(\mathbf{k})$ and set $V^* = \operatorname{RHom}(V, \mathbf{k})$. Let $K = \operatorname{TK}(V) = V \otimes V^*$, and let v be the trace morphism and u its dual. Then

 $\operatorname{eu}_{\operatorname{pt}}(V \otimes V^*) = \chi(V)$, the Euler–Poincaré index of V.

436 Trace kernels for *D*-modules

⁴³⁷ In this subsection, we denote by X a complex manifold of complex dimension d_X and the ⁴³⁸ base ring **k** is the field \mathbb{C} . We denote by \mathscr{O}_X the structure sheaf and by Ω_X the sheaf of ⁴³⁹ holomorphic forms of maximal degree. We still denote by ω_X the topological dualizing ⁴⁴⁰ complex and recall the isomorphism $\omega_X \simeq \mathbb{C}_X [2d_X]$.

One denotes by \mathscr{D}_X the sheaf of \mathbb{C}_X -algebras of (finite-order) holomorphic differential operators on X and we refer the reader to [11] for a detailed exposition of the theory of \mathscr{D} -modules. We denote by $\operatorname{Mod}(\mathscr{D}_X)$ the category of left \mathscr{D}_X -modules and by $\mathsf{D}^{\mathsf{b}}(\mathscr{D}_X)$ its bounded derived category. We also denote by $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X)$ the abelian category of coherent \mathscr{D}_X -modules and by $\mathsf{D}^{\mathsf{b}}_{\operatorname{coh}}(\mathscr{D}_X)$ the full triangulated subcategory of $\mathsf{D}^{\mathsf{b}}(\mathscr{D}_X)$ consisting of objects with coherent cohomologies.

447 We denote by $D_{\mathscr{D}} \colon \mathsf{D}^{\mathrm{b}}(\mathscr{D}_X)^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}(\mathscr{D}_X)$ the duality functor for left \mathscr{D} -modules:

 $D_{\mathscr{D}}\mathscr{M} := \mathcal{R}\mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M}, \mathscr{D}_{X}) \otimes_{\mathscr{O}_{X}} \Omega_{X}^{\otimes -1}[d_{X}].$

449 We denote by $\cdot \boxtimes \cdot$ the external product for \mathscr{D} -modules:

450

455

457

459

461

$$\mathscr{M} \boxtimes \mathscr{N} := \mathscr{D}_{X \times X} \otimes_{\mathscr{D}_X \boxtimes \mathscr{D}_X} (\mathscr{M} \boxtimes^{\square} \mathscr{N}).$$

Let Δ be the diagonal of $X \times X$. The left $\mathscr{D}_{X \times X}$ -module $H^{d_X}_{[\Delta]}(\mathscr{O}_{X \times X})$ (the algebraic cohomology with support in Δ) is denoted as usual by \mathscr{B}_{Δ} . Note that

453 $D_{\mathscr{D}}\mathscr{B}_{\Delta}\simeq\mathscr{B}_{\Delta}.$

454 One should be aware that here, the dual is taken over $X \times X$. We also introduce

$$\mathscr{B}_{\Delta}^{\vee} \coloneqq \mathscr{B}_{\Delta} [2d_X].$$

456 For $\mathcal{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathcal{D}_X)$, we have the isomorphism

$$\mathcal{RHom}_{\mathscr{D}_{X}}(\mathscr{M},\mathscr{M})\simeq\mathcal{RHom}_{\mathscr{D}_{X\times X}}(\mathscr{B}_{\Delta},\mathscr{M}\boxtimes \mathcal{D}_{\mathscr{D}}\mathscr{M})[d_{X}].$$

458 We deduce the morphism in $D^{b}(\mathscr{D}_{X \times X})$

$$\mathscr{B}_{\Delta} \to \mathscr{M} \boxtimes \mathcal{D}_{\mathscr{D}} \mathscr{M} [d_X]$$
 (5.11)

and by duality, the morphism in $\mathsf{D}^{\mathrm{b}}(\mathscr{D}_{X \times X})$

$$\mathscr{M} \boxtimes \mathcal{D}_{\mathscr{D}} \mathscr{M} [d_X] \to \mathscr{B}_{\Delta}^{\vee}.$$
(5.12)

Denote by \mathscr{E}_X the sheaf on T^*X of microdifferential operators of [22]. For a coherent 462 \mathscr{D}_X -module \mathscr{M} set 463

$$\mathscr{M}^E := \mathscr{E}_X \otimes_{\pi^{-1}\mathscr{D}_X} \pi^{-1} \mathscr{M}$$

and recall that, denoting by char(\mathcal{M}) the characteristic variety of \mathcal{M} , we have the char(\mathcal{M}) = Supp(\mathcal{M}^E). One also sets the set of the characteristic variety of \mathcal{M} , we have the set of the characteristic variety of \mathcal{M} and \mathcal{M} are characteristic variety of \mathcal{M} and \mathcal{M} and \mathcal{M} and \mathcal{M} and \mathcal{M} are characteristic variety of \mathcal{M} and \mathcal{M} and \mathcal{M} are characteristic variety of \mathcal{M} are characteristic variety of \mathcal{M} are characteristic variety of \mathcal{M} and \mathcal{M} are characteristic variety of \mathcal{M} are c

$$\mathscr{C}_{\Delta} := \mathscr{B}_{\Delta}^{E}, \quad \mathscr{C}_{\Delta}^{\vee} := \left(\mathscr{B}_{\Delta}^{\vee}\right)^{E}.$$

$$467$$

We denote by $D_{\mathscr{E}} : \mathsf{D}^{\mathrm{b}}(\mathscr{E}_X)^{\mathrm{op}} \to \mathsf{D}^{\mathrm{b}}(\mathscr{E}_X)$ the duality functor for left \mathscr{E} -modules:

$$\mathcal{D}_{\mathscr{E}}\mathscr{M} := \mathcal{R}\mathscr{H}om_{\mathscr{E}_{X}}(\mathscr{M}, \mathscr{E}_{X}) \otimes_{\pi^{-1}\mathscr{O}_{X}} \pi^{-1} \mathscr{Q}_{X}^{\otimes -1} [d_{X}]$$
⁴⁶⁹

and we denote by $\boldsymbol{\cdot} \boxtimes \boldsymbol{\cdot}$ the external product for $\mathscr E\text{-modules:}$

$$\mathscr{M} \underline{\boxtimes} \mathscr{N} := \mathscr{E}_{X \times X} \otimes_{\mathscr{E}_X \boxtimes \mathscr{E}_X} (\mathscr{M} \stackrel{\mathrm{L}}{\boxtimes} \mathscr{N}).$$
⁴⁷¹

The morphisms (5.11) and (5.12) give rise to the morphisms

$$\mathscr{C}_{\Delta} \to \mathscr{M}^{E} \boxtimes \mathcal{D}_{\mathscr{E}} \mathscr{M}^{E} [d_{X}] \to \mathscr{C}_{\Delta}^{\vee}.$$
(5.13) 473

Let Λ be a closed conic subset of T^*X . One sets

$$\mathscr{H}\mathscr{H}(\mathscr{E}_{X}) = (\delta^{a}_{T^{*}X})^{-1} \mathcal{R}\mathscr{H}om_{\mathscr{E}_{X\times X}}(\mathscr{C}_{\Delta}, \mathscr{C}_{\Delta}^{\vee}),$$
⁴⁷⁵

$$\mathbb{HH}_{\Lambda}(\mathscr{E}_X) = \mathrm{R}\Gamma_{\Lambda}(T^*X; \mathscr{HH}(\mathscr{E}_X)),$$
⁴⁷⁶

$$\mathbb{HH}^{k}_{\Lambda}(\mathscr{E}_{X}) = H^{k}(\mathbb{HH}_{\Lambda}(\mathscr{E}_{X})) = H^{k}_{\Lambda}(T^{*}X; \mathscr{HH}(\mathscr{E}_{X})).$$
⁴⁷

We call $\mathbb{HH}_{\Lambda}(\mathscr{E}_X)$, the Hochschild homology of \mathscr{E}_X with support in Λ .

The morphisms in (5.13) define a class

$$\mathrm{hh}_{\mathscr{E}}(\mathscr{M}) \in \mathbb{HH}^{0}_{\mathrm{char}(\mathscr{M})}(\mathscr{E}_{X}) \tag{5.14}$$

that we call the Hochschild class of \mathcal{M} .

Let S be a closed subset of X. By restricting the above construction to the zero-section $_{482}$ X of T^*X , we obtain the Hochschild homology of \mathscr{D}_X : $_{483}$

$$\mathscr{H}\mathscr{H}(\mathscr{D}_X) = (\delta_X)^{-1} \mathcal{R}\mathscr{H}om_{\mathscr{D}_{X \times X}}(\mathscr{B}_\Delta, \mathscr{B}_\Delta^{\vee}) \simeq \mathscr{H}\mathscr{H}(\mathscr{E}_X)|_X,$$
⁴⁸⁴

$$\mathbb{HH}_{S}(\mathscr{D}_{X}) = \mathrm{R}\Gamma_{S}(X; \mathscr{H}\mathscr{H}(\mathscr{D}_{X})),$$
⁴⁸⁵

$$\mathbb{HH}_{S}^{k}(\mathscr{D}_{X}) = H^{k}(\mathbb{HH}_{S}(\mathscr{D}_{X})) = H_{S}^{k}(X; \mathscr{HH}(\mathscr{D}_{X})).$$
486

Then, for $\mathcal{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathcal{D}_X)$ one obtains

$$\mathrm{hh}_{\mathscr{D}}(\mathscr{M}) := \mathrm{hh}_{\mathscr{E}}(\mathscr{M})|_{X} \in \mathbb{HH}^{0}_{\mathrm{Supp}(\mathscr{M})}(\mathscr{D}_{X}).$$

We shall make a link between the Hochschild class of \mathscr{M} and the microlocal Euler class of a trace kernel attached to the sheaves of holomorphic solutions of \mathscr{M} . We need a lemma.

Lemma 5.9. For \mathscr{N}_1 and \mathscr{N}_2 in $\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$, there exists a natural morphism

$$\mathcal{R}\mathscr{H}\!\mathit{om}_{\mathscr{C}}(\mathscr{N}_{1}^{E},\mathscr{N}_{2}^{E}) \to \mu \mathit{hom}(\Omega_{X} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{X}} \mathscr{N}_{1}, \Omega_{X} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{X}} \mathscr{N}_{2}). \tag{5.15}$$

488

492

487

468

470

472

474

478

479

M. Kashiwara and P. Schapira

⁴⁹⁴ Moreover, this morphism is compatible with the composition

⁴⁹⁵ $\mathbb{R}\mathscr{H}om_{\mathscr{E}}(\mathscr{N}_{1}^{E}, \mathscr{N}_{2}^{E}) \otimes \mathbb{R}\mathscr{H}om_{\mathscr{E}}(\mathscr{N}_{2}^{E}, \mathscr{N}_{3}^{E}) \to \mathbb{R}\mathscr{H}om_{\mathscr{E}}(\mathscr{N}_{1}^{E}, \mathscr{N}_{3}^{E}),$ ⁴⁹⁶ $\mu hom(F_{1}, F_{2}) \otimes \mu hom(F_{2}, F_{3}) \to \mu hom(F_{1}, F_{3}).$

⁴⁹⁷ **Proof.** We have the natural morphism in $\mathsf{D}^{\mathrm{b}}(\pi^{-1}\mathscr{D}_X \otimes \pi^{-1}\mathscr{D}_X^{\mathrm{op}})$ (see [12, Proposition ⁴⁹⁸ 10.6.2])

$$\mathscr{E}_X \to \mu hom(\Omega_X, \Omega_X).$$

500 This gives rise to the morphisms

501
R
$$\mathscr{H}om_{\pi^{-1}\mathscr{D}_{X}}(\pi^{-1}\mathscr{N}_{1},\mathscr{E}_{X}\otimes_{\pi^{-1}\mathscr{D}_{X}}\pi^{-1}\mathscr{N}_{2})$$

502
 $\rightarrow R\mathscr{H}om_{\pi^{-1}\mathscr{D}_{X}}(\pi^{-1}\mathscr{N}_{1},\mu hom(\Omega_{X},\Omega_{X}))\otimes_{\pi^{-1}\mathscr{D}_{X}}\pi^{-1}\mathscr{N}_{2}$
503
 $\simeq \mu hom(\Omega_{X} \overset{L}{\otimes}_{\mathscr{D}_{X}}\mathscr{N}_{1},\Omega_{X} \overset{L}{\otimes}_{\mathscr{D}_{X}}\mathscr{N}_{2}).$

504 We have

505
506

$$\Omega_{X \times X} [-d_X] \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{X \times X}} \mathscr{B}_{\Delta} \simeq \mathbb{C}_{\Delta},$$
506

$$\Omega_{X \times X} [-d_X] \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{X \times X}} \mathscr{B}_{\Delta}^{\vee} \simeq \omega_{\Delta}.$$

⁵⁰⁷ Applying Lemma 5.9, one deduces the morphisms

$$R\mathscr{H}om_{\mathscr{E}_{X\times X}}(\mathscr{C}_{\Delta}, \mathscr{C}_{\Delta}^{\vee}) \to \mu hom(\Omega_{X\times X} \overset{L}{\otimes}_{\mathscr{D}_{X\times X}} \mathscr{B}_{\Delta}, \Omega_{X\times X} \overset{L}{\otimes}_{\mathscr{D}_{X\times X}} \mathscr{B}_{\Delta}^{\vee})$$

$$\simeq \mu hom(\mathbb{C}_{\Delta}, \omega_{\Delta}).$$

An easy calculation shows that the first arrow is also an isomorphism. Therefore, we get the isomorphism

512

5

$$\mathscr{H}\mathscr{H}(\mathscr{E}_X) \xrightarrow{\sim} \mathscr{M}\mathscr{H}(\mathbb{C}_X).$$
 (5.16)

Recall that the Hochschild homology of \mathscr{E}_X has already been calculated in [2].

⁵¹⁴ Applying the functor $\Omega_{X \times X} [-d_X] \overset{L}{\otimes}_{\mathscr{D}_{X \times X}} \cdot \text{to (5.11) and (5.12) we get the morphisms}$

$$\mathbb{C}_{\Delta} \to \Omega_{X \times X} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{X \times X}} (\mathscr{M} \boxtimes \mathrm{D}_{\mathscr{D}} \mathscr{M}) \to \omega_{\Delta}.$$
(5.17)

Notation 5.10. For $\mathcal{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$, we denote by $\mathrm{TK}(\mathcal{M})$ the trace kernel given ⁵¹⁷ by (5.17).

Since $\operatorname{char}(\mathcal{M}) = \operatorname{SS}(\operatorname{R}\mathscr{H}om_{\mathscr{D}_X}(\mathcal{M}, \mathcal{O}_X))$ by [13, Theorem 11.3.3], we get that $\mu \operatorname{eu}_{\mathcal{M}}(\operatorname{TK}(\mathcal{M}))$ is supported by $\operatorname{char}(\mathcal{M})$, the characteristic variety of \mathscr{M} .

Proposition 5.11. After identifying $\mathscr{H}\mathscr{H}(\mathscr{E}_X)$ and $\mathscr{M}\mathscr{H}(\mathbb{C}_X)$ through the isomorphism (5.16), we have $hh_{\mathscr{E}}(\mathscr{M}) = \mu eu_X(\mathrm{TK}(\mathscr{M}))$ in $\mathbb{HH}^0_{\mathrm{char}(\mathscr{M})}(\mathbb{C}_X)$.

⁵²² **Proof.** This follows from Lemma 5.9 applied to (5.13).

Note that the class $\mu eu_X(TK(\mathcal{M}))$ coincides with the microlocal Euler class of \mathcal{M} already introduced by Schapira and Schneiders in [23].

6. Operations on microlocal Euler classes I

In this section, we shall adapt to trace kernels the constructions of [15, Chapter 4 § 3] and we shall show that under natural microlocal conditions of properness, the microlocal section of the classes. 527

We use Notation 3.1 and we consider a trace kernel (K, u, v) on M_{12} .

Lemma 6.1. Let K be a trace kernel on M_{12} . There are natural morphisms in $D^{b}(\mathbf{k}_{M_{11}})$: 530

$$\mathbf{k}_{\Delta_{13}} \to K \underset{22}{*} (\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}), \tag{6.1}$$

$$K_{22}^{\circ}(\mathbf{k}_{\Delta_2} \boxtimes^{\mathrm{L}} \omega_{\Delta_3}) \to \omega_{\Delta_{13}}. \tag{6.2}$$

Proof. (i) By Lemma 4.3(ii) we have a morphism $\mathbf{k}_{\Delta_{13}} \to \mathbf{k}_{\Delta_{12}} \underset{22}{*} (\omega_{\Delta_2}^{\otimes -1} \boxtimes \mathbf{k}_{\Delta_3})$. By composing this morphism with $\mathbf{k}_{\Delta_{12}} \to K$, we get (6.1).

(ii) By Lemma 4.3(i) we have a morphism $\omega_{\Delta_{12}} \circ (\mathbf{k}_{\Delta_2} \boxtimes^{\mathbf{L}} \omega_{\Delta_3}) \to \omega_{\Delta_{13}}$. By composing 535 this morphism with $K \to \omega_{\Delta_{12}}$ we get (6.2).

Let K be a trace kernel on M_{12} with microsupport SS(K) contained in a closed conic subset Λ_{1122} of T^*M_{1122} and let Λ_{23} a closed conic subset of T^*M_{23} . We assume

$$\Lambda_{1122} \underset{22}{\overset{a}{\times}} \delta^{a}_{T^*M_{23}} \Lambda_{23} \text{ is proper over } T^*M_{1133}.$$
(6.3) 539

We set

$$\begin{cases} \Lambda_{12} \coloneqq \Lambda_{1122} \cap T^*_{\Delta_{12}} M_{1122}, \\ \Lambda_{1133} \coloneqq \Lambda_{1122} \stackrel{a}{\underset{22}{\circ}} \delta^a_{T^*M_{23}} \Lambda_{23}, \\ \Lambda_{13} \coloneqq \Lambda_{1133} \cap T^*_{\Delta_{13}} M_{1133} = \Lambda_{12} \stackrel{a}{\underset{2}{\circ}} \Lambda_{23}. \end{cases}$$

$$(6.4) \qquad {}^{541}$$

We define a map

$$\Phi_K \colon \mathbb{MH}_{\Lambda_{23}}(\mathbf{k}_{23}) \longrightarrow \mathbb{MH}_{\Lambda_{13}}(\mathbf{k}_{13}) \tag{6.5}$$

by the sequence of morphisms

$$\mathbb{MH}_{\Lambda_{23}}(\mathbf{k}_{23}) \simeq \mathrm{R}\Gamma_{\delta^a_{T^*M_{23}}\Lambda_{23}}(T^*M_{2233}; \mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}}))$$

$$\simeq \mathrm{R}\Gamma_{\delta^{a}_{T^{*}M_{23}}\Lambda_{23}}\left(T^{*}M_{2233}; \mu hom(\omega_{\Delta_{2}}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_{3}}, \mathbf{k}_{\Delta_{2}} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_{3}})\right)$$

$$\to \mathrm{R}\Gamma_{\Lambda_{1133}}\left(T^*M_{1133}; \mu hom(K, K) \stackrel{a}{\underset{22}{\circ}} \mu hom(\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}, \mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3})\right)$$

$$\rightarrow \mathrm{R}\Gamma_{A_{1133}}\left(T^*M_{1133}; \mu hom(K_{22}^*(\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}), K_{22}^{\circ}(\mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3}))\right)$$
⁵⁴⁸

$$\to \Gamma\left(T^*M_{1133}; \mu hom(\mathbf{k}_{\Delta_{13}}, \omega_{\Delta_{13}})\right) \simeq \mathbb{MH}_{\Lambda_{13}}(\mathbf{k}_{13}).$$

Here the first arrow is given by id_K , the second is given by Proposition 3.2, and the last arrow is induced by the morphisms in Lemma 6.1. ⁵⁵⁰

19

525

529

542

544

The next result is similar to [15, Theorem 4.3.5].

Proposition 6.2. Let $\Lambda_{1122} \subset T^*M_{1122}$ and $\Lambda_{23} \subset T^*M_{23}$ be closed conic subsets satisfying (6.3) and recall the notation (6.4). Let K be a trace kernel on M_{12} with microsupport contained in Λ_{1122} . Then the map Φ_K in (6.5) is the map $\mu_{M_{12}}(K) \stackrel{a}{\underset{12}{\circ}}$ given by Corollary 4.5.

⁵⁵⁷ **Proof.** By using the morphism $\mathbf{k}_{\Delta_{12}} \to K$, we find the commutative diagram below:

⁵⁵⁹ By using the morphism $K \to \omega_{\Delta_{12}}$, we get the commutative diagram

$$R\Gamma_{A_{23}}(T^*M_{2233}; \mu hom(\mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{23}})) \longrightarrow R\Gamma_{A_{13}}(T^*M_{1133}; \mu hom(\mathbf{k}_{\Delta_{12}} \underset{22}{*} \mathbf{k}_{\Delta_{23}}, \omega_{\Delta_{12}} \underset{22}{\circ} \omega_{\Delta_{23}})).$$

$$R\Gamma_{A_{1133}}(T^*M_{1133}; \mu hom(K \underset{22}{*} \mathbf{k}_{\Delta_{23}}, K \underset{22}{\circ} \omega_{\Delta_{23}}))$$

$$(6.6)$$

⁵⁶¹ Recall the morphisms in Lemma 4.3:

$$\omega_{\Delta_{12}} \underset{22}{\circ} (\mathbf{k}_{\Delta_2} \overset{\mathrm{L}}{\boxtimes} \omega_{\Delta_3}) \to \omega_{\Delta_{13}}, \quad \mathbf{k}_{\Delta_{13}} \to \mathbf{k}_{\Delta_{12}} \underset{22}{*} (\omega_{\Delta_2}^{\otimes -1} \overset{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}). \tag{6.7}$$

563 We get the morphisms

⁵⁶⁷ By its construction, the morphism $\mu \text{eu}_{M_{12}}(K) \circ$ is obtained as the composition with the ⁵⁶⁸ map w of the top row of the diagram (6.6). Since the composition with w of the two ⁵⁶⁹ other arrows is the morphism Φ_K , the proof is complete.

The next result is similar to [15, Theorem 4.3.6].

Let i = 1, 2, j = i + 1 and let Λ_{iijj} be a closed conic subset of T^*M_{iijj} . Assume that

$$\Lambda_{1122} \underset{22}{\overset{u}{\times}} \Lambda_{2233} \text{ is proper over } T^* M_{1133}.$$
(6.8)

Set $\Lambda_{1133} = \Lambda_{1122} \stackrel{a}{\underset{22}{\circ}} \Lambda_{2233}$ and $\Lambda_{ij} = \Lambda_{iijj} \cap T^*_{\Delta_{ij}} M_{iijj}$.

Theorem 6.3. Let K_{ij} be a trace kernel on M_{ij} with $SS(K_{ij}) \subset \Lambda_{iijj}$. Assume (6.8), set $\widetilde{K}_{23} = \omega_{\Delta_2}^{\otimes -1} \mathop{\circ}_{2}^{\circ} K_{23} \simeq (\omega_2^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{233}) \stackrel{\mathrm{L}}{\otimes} K$ and set $K_{13} = K_{12} \mathop{\circ}_{22}^{\circ} \widetilde{K}_{23}$. Then

558

560

562

(a) K_{13} is a trace kernel on M_{13} ,

(b)
$$\mu eu_{M_{13}}(K_{13}) = \mu eu_{M_{12}}(K_{12}) \frac{a}{2} \mu eu_{M_{23}}(K_{23})$$
 as elements of $\mathbb{MH}^0_{\Lambda_{13}}(\mathbf{k}_{13})$.

(c) In particular, we have
$$\Phi_{K_{12}} \circ \Phi_{K_{23}} \simeq \Phi_{K_{13}}$$
.

Proof. (a) The trace kernel K_{23} defines morphisms

$$\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3} \to \widetilde{K}_{23} \to \mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3}.$$

Assuming (6.8) and using (6.1) and (6.2), we get that $K_{13} = K_{12} \circ \widetilde{K}_{23}$ is a trace kernel on M_{13} .

(b) We get a commutative diagram in which we set $\lambda_{23} = \mu eu_{M_{23}}(K_{23}) \in \mathbb{MH}^0(\mathbf{k}_{23}) \simeq$ Hom $(\omega_{\Delta_2}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{\Delta_3}, \mathbf{k}_{\Delta_2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Delta_3})$: 584

The composition of the arrows at the bottom is $\mu eu_{M_{13}}(K_{13})$ and the composition of the arrows at the top is $\Phi_{K_{12}}(\mu eu_{M_{23}}(K_{23}))$. Hence, the assertion follows from the commutativity of the diagram by Proposition 6.2.

7. Operations on microlocal Euler classes II

We shall combine Theorems 4.6 and 6.3 and make more explicit the operations on microlocal Euler classes for direct or inverse images. In particular, applying our results to the case of constructible sheaves, we shall recover the results of [13, Chapter IX § 5].

Let M be a manifold and let $\iota: N \hookrightarrow M$ be a closed embedding of a smooth submanifold N. If there is no risk of confusion, we shall still denote by \mathbf{k}_N and ω_N the sheaves $\iota_* \mathbf{k}_N$ and $\iota_* \omega_N$ on M. Then \mathbf{k}_N is cohomologically constructible and moreover

$$D_M \mathbf{k}_N = \mathbb{R} \mathscr{H}om(\mathbf{k}_N, \omega_M) \simeq \omega_N.$$
 597

Hence, $\operatorname{TK}(\mathbf{k}_N) = \mathbf{k}_N \stackrel{\mathrm{L}}{\boxtimes} \omega_N$ is a trace kernel on M.

Let M_i be a manifold (i = 1, 2), let K_i be a trace kernel on M_i and let Λ_{ii} be a closed conic subset of T^*M_{ii} with $SS(K_i) \subset \Lambda_{ii}$. We set

$$\Lambda_i = \Lambda_{ii} \cap T^*_{\Delta_i} M_{ii}.$$

21

576

579

590

M. Kashiwara and P. Schapira

For a morphism of manifolds $f: M_1 \to M_2$, we denote by Γ_f its graph, a smooth closed submanifold of M_{12} , and we set for short

$$\Lambda_f := T^*_{\Gamma_f}(M_{12}), \quad \widetilde{f} = (f, f) \colon M_{11} \to M_{22}.$$

605 Recall the diagram (2.1)

606

6

604

607 Note that

$$\Lambda_{11} \overset{a}{\underset{11}{\circ}} \Lambda_{\widetilde{f}} = \widetilde{f}_{\pi} \widetilde{f}_{d}^{-1} \Lambda_{11}, \quad \Lambda_{\widetilde{f}} \overset{a}{\underset{22}{\circ}} \Lambda_{22} = \widetilde{f}_{d} \widetilde{f}_{\pi}^{-1} \Lambda_{22}.$$

⁶⁰⁹ In the sequel, we shall identify M_{1212} with M_{1122} . We take as kernel the sheaf TK(\mathbf{k}_{Γ_f}). ⁶¹⁰ Then

⁶¹¹
$$\operatorname{TK}(\mathbf{k}_{\Gamma_{f}}) = \mathbf{k}_{\Gamma_{f}} \stackrel{\mathrm{L}}{\boxtimes} \omega_{\Gamma_{f}} \simeq \mathbf{k}_{\Gamma_{\tilde{f}}} \otimes (\mathbf{k}_{1} \stackrel{\mathrm{L}}{\boxtimes} \omega_{1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{22})$$
⁶¹²
$$\simeq \omega_{\Delta_{1}} \stackrel{\circ}{_{11}} \left((\omega_{1}^{\otimes -1} \stackrel{\mathrm{L}}{\boxtimes} \omega_{1} \stackrel{\mathrm{L}}{\boxtimes} \mathbf{k}_{22}) \stackrel{\mathrm{L}}{\otimes} \mathbf{k}_{\Gamma_{\tilde{f}}} \right).$$
(7.1)

 $_{613}$ Moreover, we have (see (5.9))

$$\mu \mathrm{eu}_{M_{12}}(\mathrm{TK}(\mathbf{k}_{\Gamma_f})) = \mu \mathrm{eu}_{M_{12}}(\mathbf{k}_{\Gamma_f}).$$

615 Also note that

$$\mathrm{R}\widetilde{f_{1}}K_{1}\simeq K_{1}\underset{11}{\circ}\mathbf{k}_{\Gamma_{\widetilde{f}}},\quad \widetilde{f}^{-1}K_{2}\simeq \mathbf{k}_{\Gamma_{\widetilde{f}}}\underset{22}{\circ}K_{2}.$$

616 617

614

618 External product

⁶¹⁹ Applying Theorem 4.6 with $M_2 = \text{pt}$ and M_3 being here M_2 , we get the commutative ⁶²⁰ diagram

621

623

and taking the global sections and the zeroth cohomology,

Applying Theorem 6.3, we obtain

Proposition 7.1. The object
$$K_1 \boxtimes K_2$$
 is a trace kernel on M_{12} and G_{25}

$$\mu \mathrm{eu}_{M_{12}}(K_1 \stackrel{\mathrm{L}}{\boxtimes} K_2) = \mu \mathrm{eu}_{M_1}(K_1) \stackrel{\mathrm{L}}{\boxtimes} \mu \mathrm{eu}_{M_2}(K_2).$$

Direct image

Let $f: M_1 \to M_2$ and Γ_f be as above. Applying Theorem 4.6 with $M_1 = \text{pt}$ and M_2, M_3 being the current M_1, M_2 , we get the commutative diagram

Now we assume

f is proper on $\Lambda_1 \cap T^*_{M_1}M_1$, or, equivalently, f_{π} is proper on $f_d^{-1}\Lambda_1$. (7.2) 632

We set

$$f_{\mu}(\Lambda_1) = \Lambda_1 \circ \Lambda_f = f_{\pi}(f_d^{-1}(\Lambda_1)).$$
⁶³⁴

Taking the global sections and the zeroth cohomology of the diagram above, we obtain the commutative diagram⁶³⁶

We have the natural morphism and isomorphisms, already constructed in [13]:

$$f_{\pi !} f_d^{-1} \pi_{M_1}^{-1} \omega_{M_1} \simeq f_{\pi !} \pi^{-1} \omega_{M_1} \simeq \pi_{M_2}^{-1} f_! \omega_{M_1}$$

$$\to \pi_{M_2}^{-1}\omega_{M_2}.$$

These induce a morphism:

$$f_{\mu} \colon \mathrm{R}\Gamma_{\Lambda_1}(\pi_{M_1}^{-1}\omega_{M_1}) \to \mathrm{R}\Gamma_{f_{\mu}\Lambda_1}(\pi_{M_2}^{-1}\omega_{M_2}).$$
⁶⁴²

Lemma 7.2. Let $\lambda \in H^0_{\Lambda_1}(T^*M_1; \pi_{M_1}^{-1}\omega_{M_1})$. Then $\lambda \circ \mu eu_{M_{12}}(\mathbf{k}_{\Gamma_f}) = f_{\mu}(\lambda)$.

Proposition 7.3. Assume that \tilde{f} is proper on $\Lambda_{11} \cap T^*_{M_{11}}M_{11}$. Then the object $R\tilde{f}K_1$ is a trace kernel on M_2 and ⁶⁴⁴

$$\mu \operatorname{eu}_{M_2}(\operatorname{R}\widetilde{f_1}K_1) = \mu \operatorname{eu}_{M_1}(K_1) \operatorname{a}_1^o \mu \operatorname{eu}_{M_{12}}(\mathbf{k}_{\Gamma_f})$$
⁶⁴⁶

$$= f_{\mu}(\mu eu_{M_1}(K_1)).$$
 647

624

627

23

631

633

638

648 **Proof.**

⁶⁴⁹ Note that
$$\mu eu_{M_{12}}(\mathbf{k}_{\Gamma_f}) = \mu eu_{M_{12}}((\omega_1^{\otimes -1} \stackrel{L}{\boxtimes} \omega_1 \stackrel{L}{\boxtimes} \mathbf{k}_{22}) \stackrel{L}{\otimes} \mathrm{TK}(\mathbf{k}_{\Gamma_f}))$$
 by Proposition 5.3.
⁶⁵⁰ We have $\mathrm{R}\widetilde{f_!}K_1 \simeq K_1 \stackrel{\circ}{\underset{11}{\circ}} \left(\omega_{\Delta_1}^{\otimes -1} \stackrel{c}{\underset{1}{\circ}} \left((\omega_1^{\otimes -1} \stackrel{L}{\boxtimes} \omega_1 \stackrel{L}{\boxtimes} \mathbf{k}_{22}) \stackrel{L}{\otimes} \mathrm{TK}(\mathbf{k}_{\Gamma_f}) \right) \right)$. It remains to apply
⁶⁵¹ Theorem 6.3 in which one replaces M_1, M_2, M_3 with pt, M_1, M_2 , respectively.

652 Inverse image

Let $f: M_1 \to M_2$ and Γ_f be as above. Applying Theorem 4.6 with $M_3 = pt$, we get the commutative diagram

655

656 Now we assume

⁶⁵⁷ f is non-characteristic for Λ_2 , or, equivalently, f_d is proper on $f_{\pi}^{-1}\Lambda_2$. (7.3)

658 We set

$$f^{\mu}(\Lambda_2) = \Lambda_f \circ \Lambda_1 = f_d(f_{\pi}^{-1}(\Lambda_2)).$$

Taking the global sections and the zeroth cohomology of the diagram above, we obtain the commutative diagram

662

659

$$\begin{split} \mathbb{M}\mathbb{H}^{0}_{\Lambda_{2}}(\mathbf{k}_{M_{2}}) & \xrightarrow{\mu \mathrm{eu}(\mathbf{k}_{\Gamma_{f}}) \circ} \mathbb{M}\mathbb{H}^{0}_{f^{\mu}\Lambda_{2}}(\mathbf{k}_{M_{1}}) \\ & \downarrow \sim & \downarrow \sim \\ H^{0}_{\Lambda_{2}}(T^{*}M_{2}; \pi_{M_{2}}^{-1}\omega_{M_{2}}) & \xrightarrow{\mu \mathrm{eu}(\mathbf{k}_{\Gamma_{f}}) \circ} H^{0}_{f^{\mu}\Lambda_{2}}(T^{*}M_{1}; \pi_{M_{1}}^{-1}\omega_{M_{1}}). \end{split}$$

⁶⁶³ We have a natural morphism constructed in the proof of [13, Proposition 9.3.2]:

$$f^{\mu}: f_{d!}f_{\pi}^{-1}\pi_{M_2}^{-1}\omega_{M_2} \to \pi_{M_1}^{-1}\omega_{M_1}.$$

⁶⁶⁵ Hence, we get a map:

664

$$f^{\mu} \colon \mathbf{R} \Gamma_{\Lambda_2}(\pi_{M_2}^{-1}\omega_{M_2}) \to \mathbf{R} \Gamma_{f^{\mu}\Lambda_2}(\pi_{M_1}^{-1}\omega_{M_1}).$$

667 **Lemma 7.4.** Let $\lambda \in H^0_{\Lambda_1}(T^*M_2; \pi_{M_2}^{-1}\omega_{M_2})$. Then $\mu eu_{M_{12}}(\mathbf{k}_{\Gamma_f}) \circ \lambda = f^{\mu}(\lambda)$.

Proposition 7.5. Assume that \tilde{f} is non-characteristic with respect to Λ_{22} . Then the object $(\mathbf{k}_1 \stackrel{\mathrm{L}}{\boxtimes} \omega_{M_1/M_2}) \stackrel{\mathrm{L}}{\otimes} \tilde{f}^{-1}K_2$ is a trace kernel on M_1 and

$$\mu \operatorname{eu}_{M_1}\left(\omega_{\Delta_1} \circ \widetilde{f}^{-1}(\omega_{\Delta_2}^{\otimes -1} \circ K_2)\right) = \mu \operatorname{eu}_{M_{12}}(\mathbf{k}_{\Gamma_f}) \circ \mu \operatorname{eu}_{M_2}(K_2)$$

$$= f^{\mu}(\mu \operatorname{eu}_{M_2}(K_2)).$$

Proof. Applying Theorem 6.3 with $M_3 = pt$, we get that

$$(\mathbf{k}_{1} \stackrel{\mathrm{L}}{\boxtimes} \omega_{M_{1}/M_{2}}) \stackrel{\mathrm{L}}{\otimes} \widetilde{f}^{-1}K_{2} \simeq \mathrm{TK}(\mathbf{k}_{f}) \underset{22}{\circ} (\omega_{\Delta_{2}}^{\otimes -1} \underset{2}{\circ} (\omega_{2} \stackrel{\mathrm{L}}{\boxtimes} \omega_{2}^{\otimes -1}) \stackrel{\mathrm{L}}{\otimes} K_{2})$$

is a trace kernel. Since $\mu \operatorname{eu}_{M_2}\left((\omega_2 \overset{\mathrm{L}}{\boxtimes} \omega_2^{\otimes -1}) \overset{\mathrm{L}}{\otimes} K_2)\right) = \mu \operatorname{eu}_{M_2}(K_2)$ by Proposition 5.3, we obtain the result.

Tensor product

Consider now the case where $M_1 = M_2 = M$ and the Λ_{ii} satisfy the transversality condition 677

$$\Lambda_{11} \cap \Lambda_{22}^a \subset T^*_{M \times M}(M \times M). \tag{7.4}$$

Then by composing the external product with the restriction to the diagonal, we get a convolution map 680

$$\star: \mathbb{MH}_{\Lambda_1}(\mathbf{k}_M) \times \mathbb{MH}_{\Lambda_2}(\mathbf{k}_M) \to \mathbb{MH}_{\Lambda_1 + \Lambda_2}(\mathbf{k}_M).$$
(7.5) 682

Applying Propositions 7.1 and 7.5, we get

Proposition 7.6. Assume (7.4). Then the object $K_1 \overset{L}{\otimes} (\mathbf{k}_M \overset{L}{\boxtimes} \omega_M^{\otimes -1}) \overset{L}{\otimes} K_2$ is a trace kernel on M and 685

$$\mu \mathrm{eu}_{M}(K_{1} \overset{\mathrm{L}}{\otimes} (\mathbf{k}_{M} \overset{\mathrm{L}}{\boxtimes} \omega_{M}^{\otimes -1}) \overset{\mathrm{L}}{\otimes} K_{2}) = \mu \mathrm{eu}_{M}(K_{1}) \star \mu \mathrm{eu}_{M}(K_{2}).$$
⁶⁸⁶

Following [23, II, Corollary 5.6], we shall recall the link between the product \star and the ⁶⁸⁷ cup product. ⁶⁸⁸

Proposition 7.7. Let $\lambda_i \in H^0_{\Lambda_i}(T^*M_i; \pi_M^{-1}\omega_M)$ (i = 1, 2), and assume that $\Lambda_1 \cap \Lambda_2^a \subset I^*_MM$. Then

$$(\lambda_1 \star \lambda_2)|_M = \int_{\pi_M} (\lambda_1 \cup \lambda_2) \tag{7.6}$$

as elements of $H^0_{\pi(\Lambda_1 \cap \Lambda_2)}(M; \omega_M)$.

Proof. Denote by $\delta: \Delta \hookrightarrow M_{12} = M \times M$ the diagonal embedding and let us identify M ⁶⁹³ with Δ . Consider the diagram ⁶⁹⁴

where π is the projection, δ_d is the map associated with δ , s is the zero-section embedding and f is the restriction to $\Delta \times_M T^* M_{12}$ of the embedding $T^*_{\Delta} M_{12} \hookrightarrow T^* M_{12}$. Since this diagram is Cartesian, we have

$$s^{-1}\delta_{d!} \simeq \pi_! f^{-1}.$$
 699

692

672

676

683

Now let $\lambda_1 \times \lambda_2 \in H^0_{\Lambda_1 \times \Lambda_2}(T^*M_{12}; \pi^{-1}\omega_{M_{12}})$ and denote by $\lambda_1 \times_M \lambda_2$ its image under the 700 map 701

$$H^{0}_{\Lambda_{1}\times\Lambda_{2}}(T^{*}M_{12};\pi^{-1}\omega_{M_{12}})\to H^{0}_{\Lambda_{1}\times_{M}\Lambda_{2}}(\Delta\times_{M_{12}}T^{*}M_{12};\pi^{-1}\omega_{M_{12}}).$$

ſ

(Here, on the right hand side, we still denote by π the restriction of the projection $\pi_{M_{12}}$ 703 to $\Delta \times_{M_{12}} T^* M_{12}$.) Then 704

702

$$\int_{\pi} (\lambda_1 \cup \lambda_2) = \pi_! f^{-1} (\lambda_1 \times_M \lambda_2),$$

$$(\lambda_1 \star \lambda_2)|_M = s^{-1} \delta_{d!} (\lambda_1 \times_M \lambda_2).$$

706

Corollary 7.8. Let K_1 and K_2 be two trace kernels on M with $SS(K_i) \subset \Lambda_{ii}$. 707 Assume (7.4) and assume moreover that $\text{Supp}(K_1) \cap \text{Supp}(K_2)$ is compact. Then the 708 object $\mathrm{R}\Gamma\left(M \times M; K_1 \stackrel{\mathrm{L}}{\otimes} (\mathbf{k}_M \stackrel{\mathrm{L}}{\boxtimes} \omega_M^{\otimes -1}) \stackrel{\mathrm{L}}{\otimes} K_2\right)$ is a trace kernel on pt and 709

⁷¹⁰
$$\operatorname{eu}_{\mathrm{pt}}\left(\mathrm{R}\Gamma(M;K_1\overset{\mathrm{L}}{\otimes}(\mathbf{k}_M\overset{\mathrm{L}}{\boxtimes}\omega_M^{\otimes -1})\overset{\mathrm{L}}{\otimes}K_2)\right) = \int_{T^*M} \mu \mathrm{eu}(K_1) \cup \mu \mathrm{eu}(K_2).$$

Remark 7.9. Let *M* be a real analytic manifold and let $F \in D^{b}_{\mathbb{R},c}(\mathbf{k}_{M})$. Recall that 711 one associates with F the trace kernel $\operatorname{TK}(F) = F \boxtimes^{L} D_{M}F$ and that $\mu \operatorname{eu}_{M}(F) =$ 712 $\mu eu_M(\mathrm{TK}(F))$. Assume now that $f: M_1 \to M_2$ is a morphism of real analytic manifolds. 713

Let $F_1 \in \mathsf{D}^{\mathsf{b}}_{\mathbb{R}-\mathsf{c}}(\mathbf{k}_{M_1})$ and assume that f is proper on $\operatorname{Supp}(F_1)$. Applying 714 Proposition 7.3 and noticing that 715

$$Rf_!TK(F_1) \simeq TK(Rf_!F_1), \tag{7.8}$$

we find that $\mu eu(Rf_!F_1) = f_{\mu}(\mu eu(F_1))$. This is nothing but [13, Proposition 9.4.2]. 717

Let $F_2 \in \mathsf{D}^{\mathsf{b}}_{\mathbb{R}^{-c}}(\mathbf{k}_{M_2})$ and assume that f is non-characteristic with respect to F_2 . 718 Applying Proposition 7.5 and noticing that 719

716

$$\mathrm{TK}(f^{-1}F_2) \simeq (\mathbf{k}_1 \stackrel{\mathrm{L}}{\boxtimes} \omega_{M_1/M_2}) \stackrel{\mathrm{L}}{\otimes} \widetilde{f}^{-1}\mathrm{TK}(F_2),$$

we find that $\mu eu(f^{-1}F_2) = f^{\mu}(\mu eu(F_2))$. Hence, we recover [13, Proposition 9.4.3]. 721

8. Applications: \mathcal{D} -modules and elliptic pairs 722

We shall, as an application of Theorem 6.3, recover the theorem of [23] on the index of 723 elliptic pairs. In this section, X is a complex manifold, $\mathbf{k} = \mathbb{C}$, \mathscr{M} is an object of $\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$ 724 and F is an object of $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}-c}(\mathbb{C}_X)$. 725

Recall that we have denoted by TK(F) and $TK(\mathcal{M})$ (see Notation 5.10) the trace 726 kernels associated with F and with \mathcal{M} , respectively: 727

⁷²⁸
$$\operatorname{TK}(F) := F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_{X}F,$$
⁷²⁹
$$\operatorname{TK}(\mathscr{M}) := \Omega_{X \times X} \stackrel{\mathrm{L}}{\otimes}_{\mathscr{D}_{X \times X}} (\mathscr{M} \boxtimes \mathrm{D}_{\mathscr{D}} \mathscr{M}).$$

The pair (\mathcal{M}, F) is called an *elliptic pair* in the earlier citation if $\operatorname{char}(\mathcal{M}) \cap \operatorname{SS}(F) \subset T_X^*X$. 730

From now on, we assume that (\mathcal{M}, F) is an elliptic pair. 731

It follows from Proposition 7.6 that the tensor product of TK(F) and $\text{TK}(\mathcal{M})$ shifted by $-2d_X$ is again a trace kernel. We denote it by $\text{TK}(\mathcal{M}, F)$. Hence 733

$$\mathrm{TK}(\mathscr{M},F) \simeq \Omega_{X \times X} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{X \times X}} (\mathscr{M} \boxtimes \mathrm{D}_{\mathscr{D}} \mathscr{M}) \otimes (F \overset{\mathrm{L}}{\boxtimes} \mathrm{D}'_{X} F).$$

$$(8.1) \qquad (8.1)$$

Moreover the same statement gives

$$\mu \mathrm{eu}_X(\mathrm{TK}(\mathscr{M}, F)) = \mu \mathrm{eu}_X(\mathscr{M}) \star \mu \mathrm{eu}_X(F).$$
(8.2) 736

We set

$$\operatorname{Sol}(\mathscr{M}, F) := \operatorname{RHom}_{\mathscr{D}_{X}}(\mathscr{M} \otimes F, \mathscr{O}_{X}), \tag{8.3}$$

$$\mathrm{DR}(\mathscr{M}, F) := \mathrm{R}\Gamma(X; \, \mathcal{Q}_X \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{M} \otimes F) \, [d_X]. \tag{8.4}$$

As explained in [23], [13, Theorem 11.3.3] and isomorphism (2.7) provide a 740 generalization of the classical Petrovsky regularity theorem, namely, the natural 741 isomorphisms 742

т

$$\mathcal{RHom}_{\mathscr{D}_{X}}(\mathscr{M}, \mathcal{D}'_{X}F \otimes \mathscr{O}_{X}) \xrightarrow{\sim} \mathcal{RHom}_{\mathscr{D}_{X}}(\mathscr{M} \otimes F, \mathscr{O}_{X}).$$

$$(8.5) \qquad (8.5)$$

Now assume that $\text{Supp}(\mathcal{M}) \cap \text{Supp}(F)$ is compact and let us take the global sections of the isomorphism (8.5). We find the isomorphism 745

$$\operatorname{RHom}_{\mathscr{D}_{X}}(\mathscr{M}, \operatorname{D}'_{X}F \otimes \mathscr{O}_{X}) \xrightarrow{\sim} \operatorname{RHom}_{\mathscr{D}_{X}}(\mathscr{M} \otimes F, \mathscr{O}_{X}).$$

$$(8.6) \quad {}^{746}$$

It is proved in [23] (assuming \mathscr{M} has a good filtration) that one can represent the left hand side of (8.6) by a complex of topological vector spaces of type DFN and the right hand side of (8.6) by a complex of topological vector spaces of type FN. It follows that the complexes Sol(\mathscr{M}, F) and DR(\mathscr{M}, F) have finite-dimensional cohomology and are dual to each other. More precisely, denoting by (\cdot)* the duality functor in D^F_f(\mathbb{C}), we have 751

$$(\operatorname{Sol}(\mathcal{M}, F))^* \simeq \operatorname{DR}(\mathcal{M}, F).$$
 752

It follows from the finiteness of the cohomology of the complexes $Sol(\mathcal{M}, F)$ and $_{753}$ DR(\mathcal{M}, F) that $_{754}$

$$\mathrm{R}\Gamma(X \times X; \mathrm{TK}(\mathcal{M}, F)) \simeq \mathrm{Sol}(\mathcal{M}, F) \otimes \mathrm{DR}(\mathcal{M}, F).$$
 755

One checks that this isomorphism commutes with the composition of the morphisms 756 $\mathbb{C} \to \mathrm{R}\Gamma(X \times X; \mathrm{TK}(\mathcal{M}, F)) \to \mathbb{C}$ and $\mathbb{C} \to \mathrm{Sol}(\mathcal{M}, F) \otimes \mathrm{DR}(\mathcal{M}, F) \to \mathbb{C}$, which implies 757

$$\operatorname{eu}_{\operatorname{pt}}\left(\operatorname{R}\Gamma(X\times X;\operatorname{TK}(\mathscr{M},F))\right) = \chi\left(\operatorname{Sol}(\mathscr{M},F)\right). \tag{8.7}$$

Therefore, one recovers the index formula of the earlier citation:

$$\chi \left(\operatorname{RHom}_{\mathscr{D}_{X}}(\mathscr{M} \otimes F, \mathscr{O}_{X}) \right) = \int_{X} (\mu \operatorname{eu}_{X}(\mathscr{M}) \star \mu \operatorname{eu}_{X}(F))|_{X}$$

$$= \int_{T^{*}X} \mu \operatorname{eu}_{X}(\mathscr{M}) \cup \mu \operatorname{eu}_{X}(F).$$

(8.8) 760
(8.8)

Remark 8.1. In general the direct image of an elliptic pair is no longer an elliptic pair. ⁷⁶¹ However, it remains a trace kernel. ⁷⁶²

737

759

Remark 8.2. As already mentioned in [23], formula (8.8) has many applications, as long as one is able to calculate $\mu eu_X(\mathcal{M})$ (see the final remarks below). For example, if M is a compact real analytic manifold and X is a complexification of M, one recovers the Atiyah–Singer theorem by choosing $F = D'\mathbb{C}_M$. If X is a complex compact manifold, one recovers the Riemann–Roch theorem: one takes $F = \mathbb{C}_X$ and if \mathscr{F} is a coherent \mathscr{O}_X -module, one sets $\mathscr{M} = \mathscr{D}_X \otimes_{\mathscr{O}_X} \mathscr{F}$.

⁷⁶⁹ 9. The Lefschetz fixed point formula

⁷⁷⁰ In this section, we shall briefly show how to adapt the formalism of trace kernels to the ⁷⁷¹ Lefschetz trace formula as treated in [13, § 9.6]. Here we assume that \mathbf{k} is a field.

Assume that we are given two maps $f, g: N \to M$ of real analytic manifolds, an object $F \in D^{b}_{\mathbb{R}-c}(\mathbf{k}_{M})$ and a morphism

$$\varphi: f^{-1}F \to g^! F. \tag{9.1}$$

775 Set

774

 $\begin{array}{ll} & h = (g, f) \colon N \times N \to M \times M, \\ & & f = \operatorname{Supp}(F), \quad L = h^{-1}(\Delta_M) = \{(x, y) \in N \times N; \, g(x) = f(y)\}, \\ & & i \colon L \hookrightarrow N \times N, \\ & & T = f^{-1}(S) \cap g^{-1}(S). \end{array}$

780 One makes the following assumption:

The set
$$T$$
 is compact. (9.2)

782 Then we have the maps

785

793

781

 $\mathrm{R}\Gamma(M;F) \to \mathrm{R}\Gamma_{f^{-1}S}(N;f^{-1}F) \xrightarrow{\varphi} \mathrm{R}\Gamma_T(N;g^{!}F) \to \mathrm{R}\Gamma(M;F).$

784 The composition gives a map

$$\int \varphi \colon \mathrm{R}\Gamma(M;F) \to \mathrm{R}\Gamma(M;F), \tag{9.3}$$

and this map factorizes through $R\Gamma_T(N; g^!F)$ which has finite-dimensional cohomologies. Hence, we can define the trace $tr(\int \varphi)$.

788 We have the chain of morphisms

$$\mathbf{k}_N \to \mathrm{R}\mathscr{H}om(g^!F, g^!F)$$

$$\stackrel{\Psi}{\to} \mathcal{R}\mathscr{H}om(f^{-1}F, g^{!}F) \simeq \delta_{N}^{!}(g^{!}F \boxtimes \mathcal{D}_{N}f^{-1}F)$$

$$\simeq \delta_N^! (g^! F \boxtimes^{\mathrm{L}} f^! \mathrm{D}_M F) \simeq \delta_N^! h^! (F \boxtimes^{\mathrm{L}} \mathrm{D}_M F).$$

⁷⁹² We have thus constructed the morphism

$$\mathbf{k}_{\Delta_N} \to h^{\,!}(F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_M F)$$

By using the morphism $F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_M F \to \omega_{\Delta_M}$ and the isomorphism $h^! \omega_{\Delta_M} \simeq i_* \omega_L$, we get the morphisms

$$\mathbf{k}_{\Delta_N} \to h^{\,!}(F \stackrel{\mathrm{L}}{\boxtimes} \mathrm{D}_M F) \to i_* \omega_L \tag{9.4}$$

in $\mathsf{D}^{\mathsf{b}}(\mathbf{k}_{N\times N})$. The support of the composition is contained in $\delta_N(T) \cap L$.

Theorem 9.1 ([13, Proposition 9.6.2]). The trace $tr(\int \varphi)$ coincides with the image of ⁷⁹⁸ $1 \in \mathbf{k}$ under the composition of the morphisms ⁷⁹⁹

$$\mathbf{k} \to \mathrm{R}\Gamma(N, \mathbf{k}_N) \to \mathrm{R}\Gamma_c(L, \omega_L) \to \mathbf{k}.$$

Here the middle arrow is derived from (9.4).

Although (9.4) is not a trace kernel in the sense of Definition 5.1, it should be possible to adapt the previous constructions to the case of \mathscr{D} -modules and to elliptic pairs, and then to recover a theorem of [7], but we do not develop this point here (see [21] for related results).

Final remarks

The microlocal Euler class of constructible sheaves is easy to compute since it is enough to calculate some multiplicities at generic points. We refer the reader to [13] for examples.

On the other hand, there is no direct method for calculating the microlocal Euler class of a coherent \mathscr{D} -module \mathscr{M} (except in the holonomic case). In [23], the authors made a precise conjecture relying on $\mu eu_X(\mathscr{M})$ and the Chern character of the associated graded module (an \mathscr{O}_{T^*X} -module), and this conjecture has been proved by Bressler, Nest and Tsygan [1].

Similarly, the Hochschild class of coherent \mathcal{O}_X -modules is usually calculated through the so-called Hochschild–Kostant–Rosenberg isomorphism, but this isomorphism does not commute with proper direct images, and a precise conjecture (involving the Todd class) has been made by Kashiwara in [10] and this conjecture has recently been proved in the algebraic case by Ramadoss [20] and in the general case by Grivaux [6].

Acknowledgements. The second-named author warmly thanks Stéphane Guillermou for helpful discussions.

References

- 1. P. BRESSLER, R. NEST AND B. TSYGAN, Riemann-Roch theorems via deformation quantization. I, II, Adv. Math. 167 (2002), 1–25, 26–73.
- 2. J.-L. BRYLINSKI AND E. GETZLER, The homology of algebras of pseudodifferential symbols and the noncommutative residue, *K-Theory* **1** (1987), 385–403.
- 3. A. CALDARARU, The Mukai pairing II: the Hochschild–Kostant–Rosenberg isomorphism, Adv. Math. **194** (2005), 34–66.
- A. CALDARARU AND S. WILLERTON, The Mukai pairing I: a categorical approach, New York J. Math. 16 (2010), arXiv:0707.2052.

29

797

801

806

- 5. B. FANG, M. LIU, D. TREUMANN AND E. ZASLOW, The coherent-constructible correspondence and Fourier-Mukai transforms, *Acta Math. Sin. (Engl. Ser.)* **27**(2) (2011), 275–308, arXiv:1009.3506.
- 6. J. GRIVAUX, On a conjecture of Kashiwara relating Chern and Euler classes of *O*-modules, J. Differential Geom. (2012), arXiv:0910.5384.
- ⁸³⁶ 7. S. GUILLERMOU, Lefschetz class of elliptic pairs, *Duke Math. J.* **85**(2) (1996), 273–314.
- 8. M. KASHIWARA, Index theorem for maximally overdetermined systems of linear partial differential equation I, *Proc. Japan Acad.* **49** (1973), 803–804.
- 9. M. KASHIWARA, Index theorem for constructible sheaves, in Systèmes différentiels et singularités, Astérisque, Volume 130, pp. 196–209 (Soc. Math. France, 1985).
- 10. M. KASHIWARA, Letter to P. Schapira, unpublished, 18/11/1991.
- M. KASHIWARA, *D-modules and microlocal calculus*, Translations of Mathematical Monographs, Volume 217 (American Math. Soc., 2003).
- M. KASHIWARA AND P. SCHAPIRA, *Microlocal study of sheaves*, Astérisque, Volume 128
 (Soc. Math. France, 1985).
- M. KASHIWARA AND P. SCHAPIRA, *Sheaves on manifolds*, Grundlehren der Math. Wiss.,
 Volume 292 (Springer-Verlag, 1990).
- M. KASHIWARA AND P. SCHAPIRA, Moderate and formal cohomology associated with
 constructible sheaves, *Mem. Soc. Math. Fr. (N.S.)* 64 (1996).
- M. KASHIWARA AND P. SCHAPIRA, Deformation quantization modules, Astérisque,
 Volume 345 (Soc. Math. France, 2012), arXiv:math.arXiv:1003.3304.
- B. KELLER, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), 1–56.
- R. MCCARTHY, The cyclic homology of an exact category, J. Pure Appl. Algebra 93 (1994), 251–296.
- B. D. NADLER AND E. ZASLOW, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009), 233–286.
- R. MCPHERSON, Chern classes for singular varieties, Ann. of Math. (2) 100 (1974),
 423–432.
- A. C. RAMADOSS, The relative Riemann-Roch theorem from Hochschild homology, New
 York J. Math. 14 (2008), 643-717, arXiv:math/0603127.
- A. C. RAMADOSS, X. TANG AND H.-H. TSENG, Hochschild Lefschetz class for
 D-modules, arXiv:math/1203.6885.
- 22. M. SATO, T. KAWAI AND M. KASHIWARA, Microfunctions and pseudo-differential equations, in *Hyperfunctions and pseudo-differential equations*, *Proceedings Katata 1971* (ed. Komatsu). Lecture Notes in Math., Volume 287, pp. 265–529 (Springer-Verlag, 1973).
- P. SCHAPIRA AND J-P. SCHNEIDERS, *Index theorem for elliptic pairs*, Astérisque,
 Volume 224 (Soc. Math. France, 1994).