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Microfunctions at the Boundary and
Mild Microfunctions

By

Pierre SCHAPIRA* and Giuseppe ZAMPIERI**

Abstract

Let X be a real manifold, & an object of Db(X}, the derived category of the category
of bounded complexes of sheaves of abelian groups on X. The functor //hom( • , • ),
denned in [3], appears to be a useful tool especially in the theory of boundary value
problems for partial differential equations. The aim of the present paper is to calculate
the stalk of Rrzfj.hom(Ns, IF), when Q is a convex (up to diffeomorphism) and open
subset of a closed submanifold M of X, and Z is a closed convex proper cone of T*X.
As an application we show how to recover in a short and functorial way, the theory of
mild microfunctions by Kataoka [5].

§ 1. Let X be a real manifold of class C°°, T*X the cotangent
bundle to X, K : T*X-*X the projection, orx the orientation sheaf on
X. If M is a closed submanifold of X one denotes by T^X the
conormal bundle to M in X and by orM/x the relative orientation
sheaf. In particular one denotes by TXX the zero section of T*X.
One sets f*X=T*X\T%X,n = n ^x. For two subsets S and V of X,
one denotes by C(S, V) the normal cone of S along V (cf. [2], [3]).

Let D(X) denote the derived category of the category of com-
plexes of sheaves of abelian groups on X, and let Db(X) be the full
subcategory consisting of complexes with bounded cohomology. To
^^Ob(Db(X)) and AdX locally closed, one associates the microlo-
calization of ^ along A:

( l .D ^(^)=jMhom(ZA,JO

where ZA is the sheaf which is zero in X\A and the constant sheaf
with stalk Z on A, and where /jhom( • , • ) is the bifunctor defined

Communicated by M. Kashiwara, July 27, 1987.
* Universite Paris-Nord, 93430 Villetaneuse, France.

** Dip. Mat., Universita, Via Belzoni, 7, 35131 Padova, Italy.



496 PIERRE SCHAPIRA AND GIUSEPPE ZAMPIERI

in [3], This is an object of Db
co,ic(T*X), the full subcategory of

Db(X) consisting of complexes whose cohomology objects are constant

on the orbits of R+ in T*X. Moreover :

d.2)

(1.3)

(1.4)

(where SS(Jr) is the microsupport of & as defined in [3]). Let M
be a real submanifold of X with codimension n and let Q be an
open C°°-convex subset of M(i.e. : at any x&X there is a local chart
in which Q is convex). We first note that ZQ is cohomologically
constructive (cf. [3]) and that:

(1.5) R^n(ZQ,Z^=RrQ(Zx)^Z-Q®orM/x{_-n-\.

Thus applying Proposition 5. 6. 3 of [3] we obtain :

(1.6) RrT^x(/2Q(^))=^®orM/xl-nJ( =
X

which gives a distinguished triangle in D*(X):

(1. 7) &z®orM/x\_-n-\ - »RrQ(&} - *R

Recall that a conic subset of a vector bundle E is called proper if
it contains no line. If Z is such a set we denote by Z° the polar
(closed) cone in the dual vector bundle and we set Zoa=~Z°.

Theorem 1.1. Let Z be a closed convex proper cone of T* X containing

Q X TX X and let x^X, Then for a suitable open neighborhood X' of x
x

in X, we have :

(1.8) H'z(T*X':fi0(&
r')®orM/x)=lun H'-*(U;&)

u >

where U ranges through the family of open subsets of X' such that

zoa=&.

Proof, We assume from the beginning that X is a vector space,
M a vector subspace of X, Q a convex subset of M ; set l = dimX.
We recall that /^(<F) = p.A(R&^(q2lZQ, g{^))3 where A is the diag-
onal of XxX, qii XxX-^X, (i = l ,2 ) , is the ith projection, and where
X is identified to A and T*X to T^(XxX) by the first projection on
T*XXT*X.
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Using [3] Proposition 2. 3. 2, we have :

(1.9)

= lim Hi

W>

for W open subset of X X X with :

(1.10) C*(XxX\W)n IntZoa=0.

We also have :

We claim that we can choose a fundamental system for the family

of W in (1. 10) such that:

(1. 11) q?(x) 0 ((XxO) fW) is convex for all x^X.

In fact for a vector space £", and a linear subspace MdE, let us

take an open cone ?dTME with convex fibers, and choose a linear

projection q:E-*M. Then according to [1] Lemma 1, we can find

a fundamental system of open sets WdE, with CM(E\W) 0^= 0 ,

such that q\w has convex fibers. We apply the above remark with

E = XXX, M = 4 f = Int Zoa, q = ql9 and then get (1.11).

Now note that :

(1. 12) (RquZwmx^x = Rrc(qrlW H (WH (XxQ»;ZXxX\^lw), x^X.

If xGq^Wft (XxQ)), we find 0 in (1. 12). Otherwise gf1 W n (WH

(XxQ}} =Wn ({x} X/3) is a non-empty open subset of M. If we

assume in addition that this is convex then the term in the right

side of (1. 12) is isomorphic to:

RFC (M; ZM) =Z\_ - dim M~\

(for a choice of an orientation on Af, i.e. an isomorphism orM=ZM~).

We have therefore proved that if (1. 11) is fulfilled, then:

(1. 13) Rqii(Zwn(x*sn) =Zql(wn(xxQ»®orM\_ — l + n'].

We summarize up the results established until now by :

(1-14)

Ifor W satisfying (1.10) and (1.11).
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We need now two lemmas.

Lemma 1.2. For any subsets AdXxX and BdX, we have:

(under the identification T*X=T%(XxX) by the first projection defined
on T*XxT*X).

Proof. Let 0^C(X\q1((XxB) fU),S). There exist sequences {(*„,
, and [cn}ndR+ such that:

We choose a sequence zn - »x, zn^B such that:

Cn(Zn-yn}—^§.

It then follows :

^n((^^n)-U,^n))-^(^0).

Hence 6^CA(XxX\A). D

Lemma 1.3. For any open set UdX and any set BaX, there exists
an open set WdXxX such that:

(1.16) qi((XxB)nW)dU.

(1. 17) CA(XxX\W)c:C(X\U9B).

Proof. Let us set :

W = ( U X X ) ( J ( X X ( X \ B ) ) .

Then (1. 16) is clear.
On the other hand let us be given three sequences :

such that :

It follows that:
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with jn^B and #B$C7 due to (xn , yn) $ W.
It follows :

which concludes the proof of (1. 17). D

End of proof of Theorem 1.1. Let:

<% = {Uc:X;U is open and C(X\U9Q) f } l n t Zoa = fr,

and :

<»'= {t/^CWn C*X0)); WdXxX is open and Cj(-Yx JT\MO n
Int Zoa=0}.

Choose A = W, B = Q, in Lemmas 1.2 and 1.3. Then by the first
lemma we have ^'c^ and by the second we obtain that for any

there exists [/'e#' such that U'dU. The proof is complete.

§2. Let M be a real analytic manifold of dimension n, X a.
complexification of M, Qc.M an open subset with analytic boundary
N—dQ (Q on one side of AT), Fa complexification of JV in X. For
any locally closed set AdX, (in particular for A = Q) , we set :

(2. 1) VA\x = t*A(0x)®orM/x[n]9

Ox being the sheaf of holomorphic function on X.

Proposition 2.1. The complex (^Q\X)-*V is concentrated in degree 0
TMX

and when identifying it to its 0-th cohomology object, it is a conically

flabby sheaf (i.e. its image in T^X/R^ is a flabby sheaf).

Proof. The first part of the statement follows from [8. II] Proposi-
tion 3. 1. As for the second one, consider the distinguished triangle:

_ (^ _ <^> "*" i
M\Q\X > » MIX >» Q\X

On account of the well known flabbiness of & M\X* it is enough to
prove that :
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'//'(£/; # M\oiJcL '*J =0, for any i>l and for any conic open set
M

M

On the other hand using the exact sequence :

0 *Vn
*M M M

it is enough to prove that :

(2, 2) H*(U; V N I X ) = 0 for any i>l, and for any open cone UdT^X.

We also note that since flabbiness is a local property, then it is
enough to prove that for any x^N, (2.2) is fulfilled with C/C
x~l(B), for a suitable neighborhood B of x. We then write in local
coordinates in B :

M=RxN, X=CxY, M=CRxN, X=CxCxY,

where CR is the real underlying manifold to C9 and CxC its com-

plexification by the diagonal embedding C< - >CxCa

We may also identify T*NX and T^Xn ((Cx {0} X Y) XT*!), and
x

we have an exact sequence on T^X (cf. [2] Theorem 6. 1.2):

(2.3) 0 - *Vmx - »»5,jr-^»<f5i* - >0,

where ^ is a holomorphic coordinate on C.
Since ^: F(C7; <^?Mi^)-^/^(t/; ^MU?) is surjective for any open conic

set UdT^X, we then get (2.2) (with [/cr^CB)) which completes

the proof. G

(For vanishing theorems as (2.2), we also refer to [6])a

Recall that one has an isomorphism :

(2.4) r0(0M)-^-+*t(V0iX) *
a TMX

&M being the sheaf of Sato's hyperfunctions.
Following [8] we then define the microsupport at the boundary

SSfl by :

(2. 5) SSfl(/) =supp (*

On account of Proposition 20 15 we immediately obtain :
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Corollary 2.2. Let Z = SSfl(/) and let Z^T^X, j=l, . . . , N, be
dosed cones with \jZj = Z. TTz^Jz ze>£ can decompose :

j

/=Z/,, withf, in r(Q;BM) and SS0(/,) cZ, U (MX 71*).
J J?

Let us denote by :

(2.6) r*y« — Fxr*z — >T*X.
P 5

the canonical maps associated to Y< - >X.

Definition 2.3. We set:

Q\N r*

/^. XX

We shall see that & Q\N (resp. & Q\N} is concentrated in degree zero
and coincides with the sheaf of Kataoka's mild microfunctions (resp.
hyperfunctions), defined in [5]. That is why we have used the
same notations as Kataoka's.

In the sequel, we shall identify an object IF of Db(X) concentrated
in degree zero and the sheaf

Proposition 2.4. (x) The complex ^ Q]N is concentrated in degree

Zero.

(ii) The sheaf (*& QIN) .* is conically soft.
N

(Hi) There is a natural exact sequence of sheaves on N:

(2. 7) 0 - >^M \N - *£0}N - >i, £ a]N - >0.

Proof. Set L = SS(ZQ) \TJfX. Then (V Q]X) L is isomorphic to
(% N\X) L[\\. Consider the distinguished triangle:

and apply the functor Rp@~l to it.

Set & = Rp&-\(Vmx)L\y\) and 9 =Rpfl>
By Proposition 2. 1, the complex & ̂ *Y is concentrated in degree

zero and is conically soft. On the other hand, the sheaf & N\x satisfies
the principle of analytic continuation along the leaves of YxT*X.

x
This implies p&~l(£ N\x = ® and the complex ^ is concentrated in
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degree >0. Consider the distinguished triangle deduced from (2.3):

Rp&~lVu\x-^» Rp&-1(£M\X - >^— r*.zi +L

The sheaf V &\x being conically flabby on T&X, we get that & is

concentrated in degree zero and is conically soft on T^Y. Now

consider the distinguished triangle :

RxYiRpiar1* 0\x - '(RpflriVoix) |r?r - >Rn*Rp&-lV Q]x-~^» .

By (1.7) the first term is nothing but ^M\N> Moreover & Q\X\$*Y
XS ^ XX •"

being conically soft, Rit*^ Q\X = ^^ ' o\x* This completes the proof.

D

/^
The main property of the sheaf & Q\N is that there exists a

boundary value morphism in *& N\Y. In fact recall ([8]) that the
morphism ZQ->ZN defines the morphism ZN-*ZQ®orNjM\_—\~\ thus the

morphism :

(2. 8) VQIX

By Proposition 2. 3. 5 of [3] we also have a morphism :

(2. 9) Rp&-lV N\X\\\ - ^NIY®OTN/M.

Combining (2. 8) and (2. 9) we get :

Proposition 2. 5. There exists a natural "boundary value'9 morphism :

L . &? _ ^&?
0- » Q\N * » 2 V | r

which induces a morphism'.

Remark that the natural morphism RpiGTl& M\x~:>{& N\Y (cf. [7])
s^

factorizes through the morphism # ' Q\N~^^ 'N\Y, via the natural mor-

phisrn ^ M^^ Q\X, induced by Z0-^ZM. Similarly, the restriction
XN

morphism ^M\N~^^N is induced by &Q\N~*&N.

As an application of Theorem 1.1, we get:

Proposition 2.6. Let ZdT^Y be a closed convex proper cone con-

taining the zero-section NxT*Y. Let x^N. Then for any j
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(2. 10) //'(flrz«-fllw),=lim H'(U; G x)
U*

where U ranges through the family of open subsets of X which satisfy the
following property'.

there exists a closed convex proper cone ZdT* X such that Z contains
the zero-section MxTxX, p is proper on ®~l(Z)^ p®~1(Z)=Z, and

there exists an open neighborhood X' of x in X with:

( (2.11) C(jr\[/,£)nlnt Zoa=0.

____ XX

Remark 2. 7. The sheaf & Q]N coincides with the sheaf of Kataoka's
mild microfunctions [5]. To check it, it is enough to restrict ourselves

to TjvY, in view of the exact sequence (2.7). Then both sheaves
are conically soft, and it is enough to verify that they have same
sections supported by closed convex proper cones, but this follows
from Proposition 2. 6.
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