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Abstract

This is an expository paper, without proofs, extracted from the
paper [GS16] with Stéphane Guillermou. We show how the use of
Grothendieck topologies on a real analytic manifold allows one to re-
cover classical spaces of analysis which are not of local nature for the
usual topology. We apply these results to endow the subanalytic sheaf
of holomorphic functions with a filtration, then to endow regular holo-
nomic D-modules with a functorial filtration (in the derived sense).

Introduction

Let M be a real analytic manifold. Denote by OpMsa
the family of rela-

tively compact subanalytic open subsets of M , ordered by inclusion. The
Grothendieck subanalytic topology on M , denoted Msa, was first introduced
in [KS01]. Its objects are those of OpMsa

and the coverings are, roughly
speaking, the finite coverings. One denotes by ρsa : M −→ Msa the natural
morphism of sites.

In [GS16], we introduce another Grothendieck topology that we call the
linear subanalytic topology on M and denote by Msal. The objects are the
same, but there are much less coverings: these are those satisfying some
linear condition given in (1.4). Hence, there is a natural morphism of sites
ρsal : Msa −→Msal.

Choose a field k and denote by D(kT ) (τ = M,Msa,Msal) the derived
category of sheaves on M,Msa,Msal. An important result of this paper is
that the direct image functor Rρsal∗ : D+(kMsa) −→ D+(kMsal

) admits a left
adjoint functor ρ!

sal and that, if U ∈ OpMsa
has Lipschitz boundary, one has

for F ∈ D+(kMsal
)

RΓ(U ; ρ!
salF ) ' RΓ(U ;F ).(0.1)
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It follows that if a presheaf F onMsa has the property that the Mayer-Vietoris
sequences

0 −→ F (U ∪ V ) −→ F (U)⊕ F (V ) −→ F (U ∩ V ) −→ 0(0.2)

are exact, as soon as {U, V } is a covering of U ∪ V for the linear subanalytic
topology, then F is a sheaf on Msal and RΓ(U ; ρ!

salF ) is concentrated in
degree 0 and is isomorphic to F (U) for any U with Lipschitz boundary. In
other words, to a presheaf on Msa satisfying a natural condition, we are able
to associate an object of the derived category of sheaves on Msa which has
the same sections as F on any Lipschitz open set. This construction is in
particular used by Gilles Lebeau [Leb16] who obtains for s ≤ 0 the “Sobolev
sheaves H s

Msa
”, objects of D+(CMsa) with the property that if U ∈ OpMsa

has a Lipschitz boundary, then RΓ(U ; H s
Msa

) is concentrated in degree 0 and
coincides with the classical Sobolev space Hs(U).

The subanalytic topology and its refinement, the linear subanalytic topol-
ogy, thus allow one to construct new sheaves which would have no meaning
on the usual topology. On Msa we shall construct the sheaf C∞,tpMsa

of C∞-

functions with temperate growth and the sheaf Dbtp
Msa

of temperate distribu-

tions (see [KS01]). On Msal we shall construct the sheaf C∞,tMsal
of functions of

temperate growth of order t ≥ 0, and the sheaves C∞,gev(s)
Msal

and C∞,gev{s}
Msal

of

functions with Gevrey growth of order s > 1. By applying the functor ρ!
sal

we obtain new sheaves (in the derived sense) on Msa.
On a complex manifold X, we can take the Dolbeault complexes with

coefficients in such sheaves and obtain their holomorphic counterparts. We
construct in particular on Xsa the sheaves (in the derived sense) Ogev(s)

Xsa
and

Ogev{s}
Xsa

of holomorphic functions of Gevrey growth of type s > 1.

By considering the family of sheaves {C∞,tMsal
}t≥0 as a filtration on a sheaf

C∞,tp stMsal
and taking their Dolbeault complexes, we can endow the sheaf Otp

Xsa

with a filtration F∞Otp
Xsa

. For that purpose, we need to study first filtered
objects in tensor categories, following [SS16]. Then the Riemann-Hilbert cor-
respondence (Kashiwara’s theorem of [Kas84]) allows us to endow functorialy
regular holonomic D-modules with filtrations (in the derived sense).

1 Subanalytic topologies

Notations and conventions

We shall mainly follow the notations of [KS90], [KS01] and [KS06].
In this paper, unless otherwise specified, a manifold means a real analytic

manifold. We shall freely use the theory of subanalytic sets, due to Gabrielov
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and Hironaka, after the pioneering work of Lojasiewicz. A short presentation
of this theory may be found in [BM88].

For a subset A in a topological space X, A denotes its closure, IntA its
interior and ∂A its boundary, ∂A = A \ IntA.

Recall that given two metric spaces (X, dX) and (Y, dY ), a function f : X −→
Y is Lipschitz if there exists a constant C ≥ 0 such that dY (f(x), f(x′)) ≤
C · dX(x, x′) for all x, x′ ∈ X.



All along this paper, if M is a real analytic manifold, we
choose a distance dM on M such that, for any x ∈ M and
any local chart (U,ϕ : U ↪→ Rn) around x, there exists a
neighborhood of x over which dM is Lipschitz equivalent to
the pull-back of the Euclidean distance by ϕ. If there is no
risk of confusion, we write d instead of dM .

(1.1)

In the following, we will adopt the convention

d(x, ∅) = DM + 1, for all x ∈M,(1.2)

where DM = sup{d(y, z); y, z ∈ M}. In this way we avoid distinguishing
the special case where M =

⋃
i∈I Ui in (1.4) below (which can happen if M

is compact).

The sites Msa and Msal

The subanalytic topology was introduced in [KS01] in the general frame-
work of ind-sheaves. A more direct and elementary treatment of subanalytic
sheaves may be found in [Pre08]. The linear subanalytic topology was intro-
duced in [GS16].

Let M be a real analytic manifold and denote by OpMsa
the category of

relatively compact subanalytic open subsets of M , the morphisms being the
inclusion morphisms.

Definition 1.1. (a) The subanalytic site Msa is the presite Msa endowed
with the Grothendieck topology for which the coverings are defined as
follows. A family {Ui}i∈I of objects of OpMsa

is a covering of U ∈ OpMsa

if Ui ⊂ U for all i ∈ I and there exists a finite subset J ⊂ I such that⋃
j∈J Uj = U .

(b) We denote by ρsa : M −→Msa the natural morphism of sites.

It follows from the theory of subanalytic sets that in this situation there
exist a constant C > 0 and a positive integer N such that

d(x,M \ U)N ≤ C · (max
j∈J

d(x,M \ Uj)).(1.3)
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Definition 1.2. Let {Uj}j∈J be a finite family in OpMsa
. We say that this

family is 1-regularly situated if one can choose N = 1 in (1.3), that is, if
there is a constant C such that for any x ∈M

d(x,M \
⋃
j∈J

Uj) ≤ C ·max
j∈J

d(x,M \ Uj).(1.4)

Of course, this definition does not depend on the choice of the distance
d.

Example 1.3. On R2 with coordinates (x1, x2) consider the open sets:

U1 = {(x1, x2); x2 > −x2
1, x1 > 0},

U2 = {(x1, x2); x2 < x2
1, x1 > 0},

U3 = {(x1, x2); x1 > −x2
2, x2 > 0}.

Then {U1, U2} is not 1-regularly situated. Indeed, set W :=U1 ∪U2 = {x1 >
0}. Then, if x = (x1, 0), x1 > 0, d(x,R2 \W ) = x1 and d(x,R2 \Ui) (i = 1, 2)
is less that x2

1.
On the other hand {U1, U3} is 1-regularly situated. Indeed,

d(x,R2 \ (U1 ∪ U3)) ≤
√

2 max(d(x,R2 \ U1), d(x,R2 \ U3)).

Definition 1.4. A linear covering of U is a small family {Ui}i∈I of objects
of OpMsa

such that Ui ⊂ U for all i ∈ I and{
there exists a finite subset J ⊂ I such that the family {Uj}j∈J
is 1-regularly situated and

⋃
j∈J Uj = U .

(1.5)

Proposition 1.5. The family of linear coverings satisfies the axioms of
Grothendieck topologies (see [KS06, § 16.1]).

Definition 1.6. (a) The linear subanalytic site Msal is the presite Msa en-
dowed with the Grothendieck topology for which the coverings are the
linear coverings given by Definition 1.4.

(b) We denote by ρsal : Msa −→ Msal and by ρsl : M −→ Msal the natural mor-
phisms of sites.

The morphisms of sites constructed above are summarized by the diagram

M
ρsa //

ρsl ""

Msa

ρsal
��

Msal.
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2 Sheaves

We shall mainly follow the notations of [KS90,KS01] and [KS06].
In this paper, we denote by k a field. Unless otherwise specified, a man-

ifold means a real analytic manifold.
If C is an additive category, we denote by C(C ) the additive category

of complexes in C . For ∗ = +,−, b we also consider the full additive sub-
category C∗(C ) of C(C ) consisting of complexes bounded from below (resp.
from above, resp. bounded) and Cub(C ) means C(C ) (“ub” stands for “un-
bounded”). If C is an abelian category, we denote by D(C ) its derived
category and similarly with D∗(C ) for ∗ = +,−, b, ub.

For a site T , we denote by PSh(kT ) and Mod(kT ) the abelian categories
of presheaves and sheaves of k-modules on T . We denote by ι : Mod(kT ) −→
PSh(kT ) the forgetful functor and by ( • )a its left adjoint, the functor which
associates a sheaf to a presheaf. Note that in practice we shall often not
write ι. Recall that Mod(kT ) is a Grothendieck category and, in par-
ticular, has enough injectives. We write D∗(kT ) instead of D∗(Mod(kT ))
(∗ = +,−, b, ub).

For an object U of T , recall that there is a sheaf naturally attached to
U (see e.g. [KS06, § 17.6]). We shall denote it here by kUT or simply kU if
there is no risk of confusion. If V −→ U is a monomorphism in T , then the
natural morphism kV −→ kU also is a monomorphism.

Sheaves on M , Msa and Msal

The direct image functors ρsa∗ and ρsal∗ are left exact and their left adjoint
functors ρ−1

sa and ρ−1
sal are exact. Hence, we have the pairs of adjoint functors

Mod(kM)
ρsa∗ //Mod(kMsa),
ρ−1
sa

oo Db(kM)
Rρsa∗// Db(kMsa).
ρ−1
sa

oo(2.1)

Mod(kMsa)
ρsal∗ //Mod(kMsal

),
ρ−1
sal

oo Db(kMsa)
Rρsal∗// Db(kMsal

).
ρ−1
sal

oo(2.2)

The functor ρsa∗ is fully faithful and ρ−1
sa ρsa∗ ' id. Moreover, ρ−1

sa Rρsa∗ ' id
and Rρsa∗ in (2.1) is fully faithful.

The same results hold with ρsal∗
The functors ρ−1

sa and ρ−1
sl also admit left adjoint functors ρsa! and ρsl!,

respectively. For F ∈ Mod(kM), ρsa!F (resp. ρsl!F ) is the sheaf on Msa resp.
Msal) associated with the presheaf U 7→ F (U). The functors ρsa! and ρsl! are
exact, fully faithful and commute with tensor products.
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One denotes by ModR-c(kM) the category of R-constructible sheaves on
M . One denotes by Db

R-c(kM) the full triangulated subcategory of Db(kM)
consisting of objects with R-constructible cohomologies.

The functor ρsa∗ is exact when restricted to the subcategory ModR-c(kM).
Hence we shall consider this last category both as a full subcategory of
Mod(kM) and a full subcategory of Mod(kMsa).

For U ∈ OpMsa
we shall simply denote by kU the sheaf kUT for T = M ,

Msa or Msal.

Proposition 2.1. Let T be either the site Msa or the site Msal. Then a
presheaf F is a sheaf if and only if it satisfies:

(i) F (∅) = 0,

(ii) for any U1, U2 ∈ OpMsa
such that {U1, U2} is a covering of U1 ∪U2, the

sequence 0 −→ F (U1 ∪ U2) −→ F (U1)⊕ F (U2) −→ F (U1 ∩ U2) is exact.

Of course, if T = Msa, {U1, U2} is always a covering of U1 ∪ U2.

Lemma 2.2. Let T be either the site Msa or the site Msal. Let U ∈ OpMsa

and let {Fi}i∈I be an inductive system in Mod(kT ) indexed by a small filtrant
category I. Then

lim−→
i

Γ(U ;Fi) ∼−→ Γ(U ; lim−→
i

Fi).(2.3)

This kind of results is well-known from the specialists (see e.g. [KS01,
EP]).

Γ-acyclic sheaves

In this subsection, T denotes either the site Msa or the site Msal. In the
literature, one often encounters sheaves which are Γ(U ; • )-acyclic for a given
U ∈ T but the next definition does not seem to be frequently used.

Definition 2.3. Let F ∈ Mod(kT ). We say that F is Γ-acyclic if we have
Hk(U ;F ) ' 0 for all k > 0 and all U ∈ T .

We shall give criteria in order that a sheaf F on the site T be Γ-acyclic.
Let U ∈ OpMsa

and let U := {Ui}i ∈ I be a finite covering of U in T (a
regular covering in case T = Msal). We denote by C

•
(U ;F ) the associated

Čech complex:

C
•
(U ;F ) := HomkMsal

(k
•
U , F ).(2.4)
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One can write more explicitly this complex as the complex:

0 −→
⊕

J⊂I,|J |=1

F (UJ)⊗ eJ
d−→ · · · d−→

⊕
J⊂I,|J |=N

F (UJ)⊗ eJ −→ 0(2.5)

where the differential d is obtained by sending F (UJ) ⊗ eJ to
⊕

i∈I F (UJ ∩
Ui)⊗ ei ∧ eJ .

Proposition 2.4. Let T be either the site Msa or the site Msal and let
F ∈ Mod(kT ). The conditions below are equivalent.

(i) For any {U1, U2} which is a covering of U1 ∪ U2, the sequence 0 −→
F (U1 ∪ U2) −→ F (U1)⊕ F (U2) −→ F (U1 ∩ U2) −→ 0 is exact.

(ii) The sheaf F is Γ-acyclic.

(iii) For any exact sequence in Mod(kT )

G
•

:= 0 −→
⊕
i0∈A0

kUi0
−→ · · · −→

⊕
iN∈AN

kUiN
−→ 0,(2.6)

in which the Uij belong to OpMsa
and the sets Aj (0 ≤ j ≤ N) are

finite, the sequence HomkT
(G

•
, F ) is exact.

(iv) For any finite covering U of U (regular covering in case T = Msal),
the morphism F (U) −→ C

•
(U ;F ) is a quasi-isomorphism.

The functor ρ!
sal

Theorem 2.5. (i) The functor Rρsal∗ : D(kMsa) −→ D(kMsal
) admits a right

adjoint ρ!
sal : D(kMsal

) −→ D(kMsa).

(ii) The functor ρ!
sal induces a functor ρ!

sal : D+(kMsal
) −→ D+(kMsa).

The proof is based on the Brown representability theorem (see for exam-
ple [KS06, Th 14.3.1]) which essentially asserts that is is enough to check
that the functor Rρsal∗ commutes with small direct sums.

Open sets with Lipschitz boundaries

Definition 2.6. We say that U ∈ OpMsa
has Lipschitz boundary or simply

that U is Lipschitz if, for any x ∈ ∂U , there exist an open neighborhood V
of x and a bi-Lipschitz subanalytic homeomorphism ψ : V ∼−→W with W an
open subset of Rn such that ψ(V ∩ U) = W ∩ {xn > 0}.
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Remark 2.7. (i) The property of being Lipschitz is local and thus the preced-
ing definition extends to subanalytic but not necessarily relatively compact
open subsets of M .

(ii) If Ui is Lipschitz in Mi (i = 1, 2) then U1 × U2 is Lipschitz in M1 ×M2.

(iii) If U is Lipschitz and x ∈ ∂U , there exist a constant C > 0 and a sequence
{yn}n∈N, yn ∈ U , such that d(yn, x) −→ 0 and d(yn, x) ≤ Cd(yn, ∂U), for all
n ∈ N (in the notations of the definition, assume ψ(x) = (x′, 0) and set
yn = ψ−1(x′, 1/n)).

Example 2.8. (i) Proposition 2.11 below will provide many examples of
Lipschitz open sets.

(ii) Let (x, y) denotes the coordinates on R2. Using (iii) of Remark 2.7 we
see that the open set U = {(x, y); 0 < y < x2} is not Lipschitz.

Lemma 2.9. Let U ∈ OpMsa
. We assume that, for any x ∈ ∂U , there exist

an open neighborhood V of x and a bi-analytic isomorphism ψ : V ∼−→ W with
W an open subset of Rn such that ψ(V ∩ U) = W ∩ {(x′, xn); xn > ϕ(x′)}
for a Lipschitz subanalytic function ϕ. Then U is Lipschitz.

We refer to [KS90, Def 4.1.1] for the definition of the normal cone C(A,B)
associated with two subsets A and B of M .

Also recall [KS90, § 5.3] that for S ⊂M , the strict normal cone Nx(S) is
given by

Nx(S) = TxM \ C(M \ S, S), an open cone in TxM.

Definition 2.10. We shall say that an open subset U of M satisfies a cone
condition if for any x ∈ ∂U , Nx(U) is non empty.

Proposition 2.11. Let U ∈ OpMsa
. If U satisfies a cone condition, then U

is Lipschitz.

A vanishing theorem

The next theorem is a key result for this paper and its proof is due to
A. Parusinski [Par16].

Theorem 2.12. (A. Parusinski) Let V ∈ OpMsa
. Then there exists a finite

covering V =
⋃
j∈J Vj with Vj ∈ OpMsa

such that the family {Vj}j∈J is a

covering of V in Msal and moreover Hk(Vj; kM) ' 0 for all k > 0 and all
j ∈ J .

We need to extend Definition 2.6.

8



Definition 2.13. We say that U ∈ OpMsa
is weakly Lipschitz if for each

x ∈ M there exist a neighborhood V ∈ OpMsa
of x, a finite set I and

Ui ∈ OpMsa
such that U ∩ V =

⋃
i Ui and{

for all ∅ 6= J ⊂ I, the set UJ =
⋂
j∈J Uj is a disjoint union of

Lipschitz open sets.
(2.7)

By its definition, the property of being weakly Lipschitz is local on M .

Proposition 2.14. Let U ∈ OpMsa
and consider a finite family of smooth

submanifolds {Zi}i∈I , closed in a neighborhood of U . Set Z =
⋃
i∈I Zi. As-

sume that

(a) U is Lipschitz,

(b) Zi ∩ Zj ∩ ∂U = ∅ for i 6= j, ∂U is smooth in a neighborhood of Z ∩ ∂U
and the intersection is transversal,

(c) in a neighborhood of each point of Z ∩ U there exist a local coordinate
system (x1, . . . , xn) and for each i ∈ I, a subset Ii of {1, . . . , n} such that
Zi =

⋂
j∈Ii{x;xj = 0}.

Then U \ Z is weakly Lipschitz.

Theorem 2.15. Let U ∈ OpMsa
and assume that U is weakly Lipschitz.

Then

(i) Rρsal∗kUMsa ' ρsal∗kUMsa ' kUMsal
is concentrated in degree zero.

(ii) For F ∈ Db(kMsal
), one has RΓ(U ; ρ!

salF ) ' RΓ(U ;F ).

(iii) Let F ∈ Mod(kMsal
) and assume that F is Γ-acyclic. Then RΓ(U ; ρ!

salF )
is concentrated in degree 0 and is isomorphic to F (U).

Note that the result in (i) is local and it is not necessary to assume here
that U is relatively compact.

3 Construction of sheaves

On the site Msa, the sheaves C∞,tpMsa
and Dbtp

Msa
below have been constructed

in [KS96,KS01]. By using the linear topology we shall construct sheaves on
Msal associated with more precise growth conditions.

We follow Convention 1.1.
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As usual, we denote by C∞M (resp. AM) the sheaf of complex valued
functions of class C∞ (resp. real analytic), by DbM (resp. BM) the sheaf of
Schwartz’s distributions (resp. Sato’s hyperfunctions) and by DM the sheaf
of finite-order differential operators with coefficients in AM . References for
the theory of D-modules is made to [Kas03].

Temperate growth on Msa

Definition 3.1. Let U ∈ OpMsa
and let f ∈ C∞M (U). One says that f has

polynomial growth at p ∈ M \ U if it satisfies the following condition. For a
local coordinate system (x1, . . . , xn) around p, there exist a sufficiently small
compact neighborhood K of p and a positive integer N such that

sup
x∈K∩U

(
d(x,K \ U)

)N |f(x)| <∞.(3.1)

We say that f is temperate at p if all its derivatives have polynomial growth
at p. We say that f is temperate if it is temperate at any point p ∈M \ U .

For U ∈ OpMsa
, we shall denote by C∞,tpM (U) the subspace of C∞M (U)

consisting of temperate functions.
For U ∈ OpMsa

, we shall denote by Dbtp
M(U) the space of temperate

distributions on U , defined by the exact sequence

0 −→ ΓM\U(M ;DbM) −→ Γ(M ;DbM) −→ Dbtp
M(U) −→ 0.

It follows from (1.3) that U 7→ C∞,tpM (U) is a sheaf and it follows from the
work of Lojasiewicz [Loj59] that U 7→ Dbtp

M(U) is also a sheaf. We denote by
C∞,tpMsa

and Dbtp
Msa

these sheaves on Msa. The first one is called the sheaf of
C∞-functions with temperate growth and the second the sheaf of temperate
distributions. Note that both sheaves are Γ-acyclic (see [KS01, Lem 7.2.4]).

We denote as usual by DM the sheaf of rings of finite order differential op-
erators on the real analytic manifold M . If ιM : M ↪→ X is a complexification
of M , then DM ' ι−1

M DX . We set, following [KS01]:

DMsa := ρsa!DM .(3.2)

The sheaves C∞,tpMsa
and Dbtp

Msa
are DMsa-modules.

Temperate growth of a given order on Msal

If a sheaf F on Msa is Γ-acyclic, then Rρsal∗F is concentrated in degree 0.
This applies in particular to the sheaves C∞,tpMsa

and Dbtp
Msa

. We set

C∞,tpMsal
:= ρsal∗C

∞,tp
Msa

, Dbtp
Msal

:= ρsal∗Db
tp
Msa

.
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Definition 3.2. Let U ∈ OpMsa
, let f ∈ C∞M (U) and let t ∈ R≥0. We say

that f has polynomial growth of order ≤ t at p ∈ M \ U if it satisfies the
following condition. For a local coordinate system (x1, . . . , xn) around p,
there exists a sufficiently small compact neighborhood K of p such that

sup
x∈K∩U

(
d(x,K \ U)

)t|f(x)| <∞.(3.3)

We say that f is temperate of order t at p if, for each m ∈ N, all its derivatives
of order ≤ m have polynomial growth of order ≤ t+m at p. We say that f
is temperate of order t if it is temperate of order t at any point p ∈M \ U .

For U ∈ OpMsa
, we denote by C∞,tM (U) the subspace of C∞M (U) consisting

of functions temperate of order t and we denote by C∞,tMsal
the presheaf on Msal

so obtained.
The next result is clear by Proposition 2.1.

Proposition 3.3. (i) The presheaves C∞,tMsal
(t ≥ 0) are sheaves on Msal,

(ii) the sheaf C∞,0Msal
is a sheaf of rings,

(iii) for t ≥ 0, C∞,tMsal
is a C∞,0Msal

-module and there are natural morphisms

C∞,tMsal
⊗C∞,0

Msal

C∞,t
′

Msal
−→ C∞,t+t

′

Msal
.

We also introduce the sheaf

C∞,tp stMsal
:= lim−→

t

C∞,tMsal
.

(Of course, the limit is taken in the category of sheaves on Msal.) Then, for
0 ≤ t ≤ t′, there are natural monomorphisms of sheaves on Msal :

C∞,0Msal
↪→ C∞,tMsal

↪→ C∞,t
′

Msal
↪→ C∞,tp stMsal

↪→ C∞,tpMsal
.(3.4)

Note that the inclusion C∞,tp stMsal
↪→ C∞,tpMsal

is strict since there exists a function
f (say on an open subset U of R) with polynomial growth of order ≤ t and
such that its derivative does not have polynomial growth of order ≤ t+ 1.

Gevrey growth on Msal

The definition below is inspired by the definition of the sheaves of C∞-
functions of Gevrey classes, but is completely different from the classical
one. Here we are interested in the growth of functions at the boundary con-
trarily to the classical setting where one is interested in the Taylor expansion
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of the function. As usual, there are two kinds of regularity which can be
interesting: regularity at the interior or at the boundary. Since we shall soon
consider the Dolbeault complexes of our new sheaves, the interior regularity
is irrelevant and we are only interested in the growth at the boundary.

We refer to [Kom73] for an exposition on classical Gevrey functions or
distributions and their link with Sato’s theory of boundary values of holo-
morphic functions. Note that there is also a recent study by [HM11] of these
sheaves using the tools of subanalytic geometry.

Definition 3.4. Let U ∈ OpMsa
, let (s, h) ∈]1,+∞[×]0,+∞[ and let f ∈

C∞M (U). We say that f has 0-Gevrey growth of type (s, h) at p ∈ M if it
satisfies the following condition. For a local coordinate system (x1, . . . , xn)
around p, there exists a sufficiently small compact neighborhood K of p such
that

sup
x∈K∩U

(
exp(−h · d(x,K \ U)1−s)

)
|f(x)| <∞ ,(3.5)

with the convention that, if K ∩U = ∅ or K ⊂ U , the left-hand side of (3.5)
is 0. It is obvious that f has 0-Gevrey growth of type (s, h) at any point of
U . We say that f has Gevrey growth of type (s, h) at p if all its derivatives
have 0-Gevrey growth of type (s, h) at p. We say that f has Gevrey growth
of type (s, h) if it has such a growth at any point.

We denote by Gs,h
M (U) the subspace of C∞M (U) consisting of functions with

Gevrey growth of type (s, h).

Definition 3.5. For U ∈ OpMsa
and s ∈]1,+∞[, we set:

G
(s)
M (U) := lim←−

h

Gs,h
M (U), G

{s}
M (U) := lim−→

h

Gs,h
M (U)

and we denote by C∞,gev(s)
Msal

and C∞,gev{s}
Msal

the presheaves on Msal so obtained.

Clearly, the presheaves C∞,gev(s)
Msal

and C∞,gev{s}
Msal

do not depend on the
choice of the distance.

Proposition 3.6. (i) The presheaves C∞,gev(s)
Msal

and C∞,gev{s}
Msal

are sheaves
on Msal,

(ii) the sheaves C∞,gev(s)
Msal

and C∞,gev{s}
Msal

are C∞,tpMsal
-modules,

(iii) the presheaves C∞,gev(s)
Msal

and C∞,gev{s}
Msal

are Γ-acyclic,
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(iv) we have natural monomorphisms of sheaves on Msal for 1 < s < s′

C∞,gev(s)
Msal

↪→ C∞,gev{s}
Msal

↪→ C∞,gev(s′)
Msal

↪→ C∞,gev{s′}
Msal

.

We set

C∞,gev st
Msal

:= lim−→
s>1

C∞,gev{s}
Msal

.

Hence, we have monomorphisms of sheaves on Msal for 0 ≤ t and 1 < s

C∞,0Msal
↪→ C∞,tMsal

↪→ C∞,tp stMsal
↪→ C∞,tpMsal

↪→ C∞,gev(s)
Msal

↪→ C∞,gev{s}
Msal

↪→ C∞,gev st
Msal

.

Definition 3.7. If FMsal
is one of the sheaves C∞,tMsal

, C∞,tp stMsal
, C∞,gev(s)

Msal
,

C∞,gev{s}
Msal

or C∞,gev st
Msal

, we set FMsa := ρ!
sal F .

Let us apply Theorem 2.15 and Corollary 3.10. We get that if U ∈ OpMsa

is weakly Lipschitz and if FMsal
denotes one of the sheaves above, then

RΓ(U ; FMsa) ' Γ(U ; FMsal
).

We call C∞,tMsa
, C∞,tp stMsa

, C∞,gev(s)
Msa

, C∞,gev{s}
Msa

and C∞,gev st
Msa

the sheaves on
Msa of C∞-functions of growth t, strictly temperate growth, Gevrey growth
of type (s) and {s} and strictly Gevrey growth, respectively. Recall that on
Msa, we also have the sheaf C∞,tpMsa

of C∞-functions of temperate growth and

the sheaf Dbtp
Msa

of temperate distributions.

A refined cutoff lemma

Lemma 3.8 below follows from Hörmander [Hör83, Cor.1.4.11]. Note that
this result was already used in [KS96, Prop. 10.2]. Hörmander’s result is
stated for M = Rn but it can be extended to an arbitrary manifold.

Lemma 3.8. Let M be a manifold. Let Z1 and Z2 be two closed subsets of
M such that M \ (Z1 ∩Z2) is relatively compact and such there exists C > 0
with

d(x, Z1 ∩ Z2) ≤ C(d(x, Z1) + d(x, Z2)) for any x ∈M.(3.6)

Then there exists ψ ∈ C∞,0M (M \(Z1∩Z2)) such that ψ = 0 on a neighborhood
of Z1 \ Z2 and ψ = 1 on a neighborhood of Z2 \ Z1.
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Corollary 3.9. Let F be a sheaf of C∞,0Msal
-modules on Msal. Then F is

Γ-acyclic.

Let FMsal
denote one of the sheaves C∞,tp stMsal

, C∞,tpMsal
, Dbtp

Msal
, C∞,tMsal

(t ∈
R≥0), C∞,gev(s)

Msal
and C∞,gev{s}

Msal
(s > 1) and C∞,gev st

Msal
and set FMsa := ρ!

salFMsal
,

an object of D+(DMsa).

Corollary 3.10. Let FMsal
and FMsa be as above.

(a) FMsal
is Γ-acyclic,

(b) if U is weakly Lipschitz, then RΓ(U ; FMsa) is concentrated in degree 0
and coincides with FMsal

(U).

4 Sheaves on complex manifolds

Let X be a complex manifold of complex dimension dX and denote by XR
the real analytic underlying manifold. Denote by X the complex manifold
conjugate to X. (The holomorphic functions on X are the anti-holomorphic
functions on X.) Then X × X is a complexification of XR and OX is a
DX×X-module which plays the role of the Dolbeault complex. In the sequel,
when there is no risk of confusion, we write for short X instead of XR.

Notation 4.1. In the sequel, we will often have to consider the composition
Rρsal∗ ◦ ρsa!. For convenience, we introduce a notation. We set

ρsl∗! := ρsal∗ ◦ ρsa!.(4.1)

By applying the Dolbeault functor RHomDXsal

(ρsl∗!OX , • ) to one of the

sheaves

C∞,tp stXsal
, C∞,tpXsal

, C∞,gev(s)
Xsal

, C∞,gev{s}
Xsal

, C∞,gev st
Xsal

we obtain respectively the sheaves

Otp st
Xsal

, Otp
Xsal

, Ogev(s)
Xsal

, Ogev{s}
Xsal

, Ogev st
Xsal

.

All these objects belong to D+(DXsal
). Then we can apply the functor ρ!

sal

and we obtain the sheaves

Otp st
Xsa

, Otp
Xsa
, Ogev(s)

Xsa
, Ogev{s}

Xsa
, Ogev st

Xsa
.

Recall the natural isomorphism [KS96, Th. 10.5]

Otp
Xsa

∼−→ RHomDXsa
(ρsa!OX ,Db

tp
Xsa

).

A similar proof also gives the natural isomorphism

Otp st
Xsal

∼−→ Otp
Xsal

.
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5 Filtrations on O tp
Xsa

Filtered objects

Let us recall some results of [SS16] generalizing previous results of [Sch99].
We consider

a Grothendieck tensor category C (with unit) in which small
inductive limits commute with ⊗,
a filtrant preordered additive monoid Λ (viewed as a tensor
category with unit).

(5.1)

Denote by Fct(Λ,C ) the abelian category of functors from Λ to C . It is
naturally endowed with a structure of a tensor category with unit by setting
for M1,M2 ∈ Fct(Λ,C ),

(M1 ⊗M2)(λ) = lim−→
λ1+λ2≤λ

M1(λ1)⊗M2(λ2).

A Λ-ring A of C is a ring with unit of the tensor category Fct(Λ,C ) and we
denote by Mod(A) the abelian category of A-modules.

We denote by FΛ C the full subcategory of Fct(Λ,C ) consisting of func-
tors M such that for each morphism λ −→ λ′ in Λ, the morphism M(λ) −→
M(λ′) is a monomorphism. This is a quasi-abelian category. Let

ι : FΛ C −→ Fct(Λ,C )

denote the inclusion functor. This functor admits a left adjoint κ and the
category FΛ C is again a tensor category by setting

M1 ⊗F M2 = κ(ι(M1)⊗ ι(M2)).

A ring object in the tensor category FΛ C will be called a Λ-filtered ring in
C and usually denoted FA. An FA-module FM is then simply a module
over FA in FΛ C and we denote by Mod(FA) the quasi-abelian category of
FA-modules.

Notation 5.1. In the sequel, for a ring object B in a tensor category, we
shall write D∗(B) instead of D∗(Mod(B)), ∗ = +,−, b, ub.

The next theorem is due to [SS16] and generalizes previous results of [Sch99].

Theorem 5.2. Let FA be a Λ-filtered ring in C . Then the category Mod(FA)
is quasi-abelian, the functor ι : Mod(FA) −→ Mod(ιFA) is strictly exact and
induces an equivalence of categories for ∗ = ub,+,−, b:

ι : D∗(FA) ∼−→ D∗(ιFA).(5.2)
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Notation 5.3. Let Λ and C be as above. The functor lim−→ : Fct(Λ,C ) −→ C
is exact. Let FA be a Λ-filtered ring in FΛC ) and set

A := lim−→
λ

A(λ).(5.3)

The functor lim−→ induces an exact functor

lim−→ : Mod(FA) −→ Mod(A),(5.4)

thus, using Theorem 5.2, for ∗ = ub,+,−, b, a functor

lim−→ : D∗(FA) −→ D∗(A).(5.5)

Since one often considers FA as a filtration on the ring A, we shall denote
by for (forgetful) the functor lim−→ :

for : D∗(FA) −→ D∗(A), for := lim−→ .(5.6)

6 Filtrations on OXsal

The filtered ring of differential operators

Definition 6.1. Let T be the site M or Msa or Msal. We define the filtered
sheaf FDT over Λ = R by setting:

FsDT = DT ([s])

where [s] is the integral part of s and DT ([s]) is the sheaf of differential
operators of order ≤ [s]. In particular, FsDT = 0 for s < 0. We denote by
Mod(FDT ) the category of filtered modules over DT .

Let MT be either M , Msa or Msal. In the sequel, we look at Mod(CMT
)

as an abelian Grothendieck tensor category with unit and at FDMT
as a

Λ-ring object in FΛC ( with Λ = R) and C = Mod(CMT
). In the sequel, if

FM is a filtered object in C over the ordered additive monoid R, we shall
write F sM instead of (FM )(s) to denote the image of the functor FM at
s ∈ R. This induces a functor D(FR C ) −→ D(C ) denoted in the same way
FM 7→ F sM .

Since ρ−1
sa (DMsa(m)) ' DM(m) and ρ−1

sal (DMsal
(m)) ' DMsa(m) get the

functors

ρ−1
sa : Mod(FDMsa) −→ Mod(FDM),

ρ−1
sal : Mod(FDMsal

) −→ Mod(FDMsa).
(6.1)

We will also use the fully faithful right adjoint of ρ−1
sal

(6.2) ρsal∗ : Mod(FDMsa) −→ Mod(FDMsal
).
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Theorem 6.2. (i) The functor ρsal∗ in (6.2) admits a right derived functor
Rρsal∗ : D∗(FDMsa) −→ D∗(FDMsal

) (∗ = ub,+) which is fully faithful
and admits a left adjoint functor ρ−1

sal : D∗(FDMsal
) −→ D∗(FDMsa) (∗ =

ub,+).

(ii) The functor Rρsal∗ (∗ = ub,+) commutes with small direct sums and
admits a right adjoint ρ!

sal : D∗(FDMsal
) −→ D∗(FDMsa) (∗ = ub,+).

(iii) The functor ρ−1
sa : D+(FDMsa) −→ D+(FDM) has a fully faithful right

adjoint Rρsa! : D+(FDM) −→ D+(FDMsa).

We define a functor

FHom : ModR-c(CM)×Mod(FDMsa) −→ Mod(FDMsa)

by setting for G ∈ ModR-c(CM) and FM ∈ Mod(FDMsa)

Hom (G,FM )(λ) = Hom (G,M (λ)).

Using Theorem 5.2, this functor admits a derived functor

FRHom : Db
R-c(CM)×D+(FDMsa) −→ D+(FDMsa).

On a complex manifold X, we endow the DX-module OX with the filtra-
tion FOX given by

FsOX =

{
0 if s < 0,

OX if s ≥ 0.
(6.3)

By applying the functors ρsa! and ρsal∗, we get the objects ρsa!OX and ρsl∗!OX

of Mod(FDXsa) and Mod(FDXsal
), respectively. One shall be aware that these

objects are in degree 0 contrarily to the sheaf OXsa (when dX > 1).

The L∞-filtration on C∞,tpMsal

Recall that on the site Msal, the sheaf C∞,tp stMsal
is endowed with a filtration,

given by the sheaves C∞,tMsal
(t ∈ R≥0). We also set C∞,tMsal

= 0 for t < 0.

Definition 6.3. (a) We denote by F∞C∞,tpMsal
the object of Mod(FDMsal

) given

by the sheaves C∞,tMsal
(t ∈ R).

(b) We set F∞C∞,tpMsa
:= ρ!

sal F∞C∞,tpMsal
, an object of D+(FDMsa).

We call these filtrations the L∞-filtration on C∞,tpMsal
and C∞,tpMsa

, respec-
tively.
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If U ∈ OpMsa
is weakly Lipschitz, we thus have for s ≥ 0:

RΓ(U ; Fs∞C∞,tpMsa
) ' C∞,sM (U).(6.4)

Remark 6.4. One could have also endowed C∞,tpMsal
with the L2-filtration

constructed similarly as the L∞-filtration, associated with the L2-norm:

||ϕ||2 = (

∫
U

|ϕ(x)|2dx)1/2, ||ϕ||s2 = ||d(x)sϕ(x)||2.(6.5)

One gets the filtered sheaves F2C
∞,tp
Msal

and F2C
∞,tp
Msa

.

The L∞-filtration on Otp
Xsal

On a complex manifold X, we set:

F∞Otp
Xsal

:= RHomFDXsal

(ρsl∗!OX ,F∞C∞,tpXsal
) ∈ D+(FDXsal

),(6.6)

F∞Otp
Xsa

:= RHomFDXsa
(ρsa!OX ,F∞C∞,tpXsa

)(6.7)

' ρ!
sal F∞Otp

Xsal
∈ D+(FDXsa).

One proves:

Proposition 6.5. Let U ⊂ X be an open relatively compact subanalytic
subset. Assume that U is weakly Lipschitz. Then the object RΓ(U ; Fs∞Otp

Xsa
)

is represented by the complex

(6.8)

0 −→ C∞,s,(0,0)
X (U)

∂−→ C∞,s+1,(0,1)
X (U) −→ · · · −→ C∞,s+dX ,(0,dX)

X (U) −→ 0.

Applying the functor ρ−1
sa , one recovers the filtration introduced in (6.3):

ρ−1
sa F∞Otp

Xsa
' FOX .(6.9)

A functorial filtration on regular holonomic modules

Good filtrations on holonomic modules already exist in the literature, in the
regular case (see [KK81,BK86]) and also in the irregular case (see [Mal96]).
But these filtrations are constructed on each holonomic module and are by
no means functorial. Here we directly construct objects of D+(FDX), the
derived category of filtered D-modules.
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Denote by Db
holreg(DX) the full triangulated subcategory of Db(DX) con-

sisting of objects with regular holonomic cohomology. To M ∈ Db
holreg(DX),

one associates

Sol(M ) := RHomD(M ,OX).

We know by [Kas75] that Sol(M ) belongs to Db
C-c(CX), that is, Sol(M ) has

C-constructible cohomology. Moreover, one can recover M from Sol(M ) by
the formula:

M ' ρ−1
sa RHom (Sol(M ),Otp

Xsa
).(6.10)

This is the Riemann-Hilbert correspondence obtained by Kashiwara in [Kas80,
Kas84].

Using the filtration F∞Otp
Xsa

on OXsa we can set:

Definition 6.6. Let M be a regular holonomic module. We define the
filtered Riemann-Hilbert functors RHF∞,sa and RHF∞ by the formulas

RHF∞,sa : D+
holreg(DX) −→ D+(FDXsa),

M 7→ FRHom (Sol(M ),F∞Otp
Xsa

),

RHF∞ = ρ−1
sa RHF∞,sa : D+

holreg(DX) −→ D+(FDX).

Note that RHF∞,sa and RHF∞ are triangulated functors.
Recall Notation 5.3 and the functor for .

Proposition 6.7. In the diagram below

Db
holreg(DX)

RHF∞−−−→ D+(FDX)
for−→ D+(DX)

the composition is isomorphic to the natural inclusion functor.

Proof. Since ρ−1
sa commutes with inductive limits, the diagram below com-

mutes:

Db
holreg(DX)

RHF∞,sa // D+(FDXsa)
for //

ρ−1
sa

��

D+(DXsa)

ρ−1
sa

��
D+(FDX)

for // D+(DX).

Now let M ∈ Db
holreg(DX) and set for short G = SolX(M ). Then

forFRHom (G,F∞Otp
Xsa

) ' RHom (G, forF∞Otp
Xsa

)

' RHom (G,Otp
Xsa

)

and we conclude with (6.10). Q.E.D.
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Example 6.8. Let D be a normal crossing divisor in X and let M be a
regular holonomic module such that Sol(M ) ' CX\D. Let W ∈ OpXsa

with
smooth boundary transversal to the strata of D so that W \ D is weakly
Lipschitz. Set U := W \ D. Then RΓ(W ; Fs∞,saM ) ' RΓ(U ; Fs∞Otp

Xsa
) and

therefore the object RΓ(W ; Fs∞M ) is represented by the complex (6.8).

Remark 6.9. By using the filtration F2 on C∞,tpXsal
(see Remark 6.4), one can

also endow Otp
Xsal

with an L2-filtration and define similarly F2O
tp
sal. Unfortu-

nately, Hörmander’s theory does not apply immediately to this situation.

Given a regular holonomic DX-module M , natural questions arise.

(i) Does there exist an integer r such that Hj(Fs∞M ) −→ Hj(Fs+r∞ M ) is
the zero morphism for s� 0 and j 6= 0.

(ii) Is the filtration H0(F∞M ) a good filtration?

(iii) Does there exist a discrete set Z ⊂ R≥0 such that the morphisms
Fs∞M −→ Ft∞M (s ≤ t) are isomorphisms for [s, t] contained in a con-
nected component of R≥0 \ Z?

Note that it may be convenient to use better the L2-filtration (see Re-
mark 6.9).

One can also ask the question of comparing these filtrations with other
filtrations already existing in the literature.
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