
Wick rotation for D-modules

Pierre Schapira

February 2, 2017

Abstract

We extend the classical Wick rotation to D-modules and higher codimensional sub-
manifolds. 1 2

1 Introduction

Let M be a real analytic manifold of the type N ×R and let X = Y ×C be a complexification
of M . Consider a differential operator P on X such that P is hyperbolic on M with respect
to the direction N × {0}, a typical example being the wave operator on a spacetime. Denote
by L the real manifold N ×

√
−1R. It may happen, and it happens for the wave operator,

that P is elliptic on L. Passing from M to L is called the Wick rotation by physicists who
deduce interesting properties of P on M from the study of P on L.

In the situation above, we had codimMN = codimLN = 1. In this paper, we treat the
general case of two real analytic manifolds M and L in X, X being a complexification of both
M and L, such that the intersection N := M ∩ L is clean, and we consider a coherent DX -
module M which is hyperbolic with respect to M on N and elliptic on L. The main result is
Theorem 3.10 which describes an isomorphism between the complex of hyperfunction solutions
of M on L defined in a given cone γ ⊂ TNL and the complex of hyperfunction solutions of
M on M (in a neighborhood of N), with wave front set in a cone λ ⊂ T ∗MX associated with
γ. It is also proved that this isomorphism is compatible to the boundary values morphism
from M to N and from L to N .

Aknowledgements This paper was initiated by a series of discussions with Christian Gérard
who kindly explained us some problems associated with the classical Wick rotation. We
sincerely thank him for his patience and his explanations.

2 Sheaves, D-modules and wave front sets

2.1 Sheaves

We shall use the microlocal theory of sheaves of [KS90] and mainly follow its terminology.
For the reader’s convenience, we recall a few notations and results.

1Key words: Lorentzian manifolds, microlocal sheaf theory, hyperbolic D-modules
2MSC: 35A27, 58J15, 58J45, 81T20
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Geometry

Let X be a real manifold of class C∞. For a subset A ⊂ X, we denote by A its closure and
by Int(A) its interior. We denote by

τX : TX −→ X, πX : T ∗X −→ X

the tangent bundle and the cotangent bundle to X. For a closed submanifold M of X, we
denote by τM : TMX −→M and πM : T ∗MX −→M the normal bundle and the conormal bundle
to M in X. In particular, T ∗XX is the zero-section of T ∗X, that we identify with X.

For a vector bundle π : E −→ X, we identify X with the zero-section, we denote by Ex the
fiber of E at x ∈ X, we set Ė = E \X and we denote by π̇ : Ė −→ X the projection. For a
cone γ in a vector bundle E −→ X, we set γx = γ ∩ Ex, we denote by γa = −γ the opposite
cone and by γ◦ the polar cone in the dual vector bundle E∗,

γ◦ = {(x; ξ) ∈ E∗; 〈ξ, v〉 ≥ 0 for all x ∈M,v ∈ γx}.

For A ⊂ X, the Whitney normal cone of A along M , CM (A) ⊂ TMX, is defined in [KS90,
Def. 4.1.1].

To a morphism of manifolds f : Y −→ X, one associates the maps:

T ∗Y

πY
&&

Y ×X T ∗X
fdoo fπ //

π
��

T ∗X

πX

��
Y

f // X

(2.1)

where fd is the transpose of the tangent map to Tf : TY −→ Y ×X TX.

Definition 2.1. Let Λ be a closed conic subset of T ∗X. One says that f is non characteristic
for Λ if the map fd is proper on f−1

π (Λ).

Sheaves

Let k be a field. One denotes by Db(kX) the bounded derived category of sheaves of k-
modules on X. We simply call an object of this category “a sheaf”. For a closed subset A of
a manifold we denote by kA the constant sheaf on A with stalk k extended by 0 outside of
A. More generally, we shall identify a sheaf on A and its extension by 0 outside of A. If A is
locally closed, we keep the notation kA as far as there is no risk of confusion. We denote by
ωX the dualizing complex on X. Recall that ωX ' orX [dimX] where orX is the orientation
sheaf and dimX is the dimension of X. More generally, we consider the relative dualizing
complex associated with a morphism f : Y −→ X, ωY/X = ωY ⊗ f−1(ω⊗−1

X ) and its inverse,

ωX/Y = ω⊗−1
Y/X . We denote by D′X( • ) = RHom ( • ,kX) the duality functor on X.

We shall use freely the six Grothendieck operations on sheaves.

Microlocalization

For a closed submanifold M of X, we have the functors

νM : Db(kX) −→ Db
R+(kTMX) specialization along M,

µM : Db(kX) −→ Db
R+(kT ∗

MX
) microlocalization along M,

µhom : Db(kX)×Db(kX)op −→ Db
R+(kT ∗X).
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Here, for a vector bundle E −→ M or E −→ X, Db
R+(kE) is the full subcategory of Db(kE)

consisting of conic sheaves, that is, sheaves locally constant under the R+-action.
The functor µM , called Sato’s microlocalization functor, is the Fourier–Sato transform of

the specialization functor νM . The bifunctor µhom of [KS90] is a slight generalization of µM .
Recall that µM ( • ) = µhom(kM , • ).

Let λ be a closed convex proper cone of T ∗MX containing the zero-section M . For F ∈
Db(kX), we have an isomorphism (see [KS90, Th. 4.3.2]):

RπM ∗RΓλ(µM (F ))⊗ωX/M ' RτM ∗RΓInt(λ◦a)(νM (F )).(2.2)

Microsupport

To a sheaf F is associated (see [KS90]) its microsupport µsupp(F )3, a closed R+-conic co-
isotropic subset of T ∗X.

Let us recall some results that we shall use.

Theorem 2.2. Let f : Y −→ X be a morphism of real manifolds and let F ∈ Db(kX). Assume
that f is non characteristic for F , that is, for µsupp(F ). Then the morphism f−1F⊗ ωY/X −→
f !F is an isomorphim.

As a particular case of this result, we get a kind of Petrowski theorem for sheaves (see
Theorem 2.11 below):

Corollary 2.3. Let M be a closed submanifold of X and let F ∈ Db(kX). Assume that
T ∗MX ∩ µsupp(F ) ⊂ T ∗XX. Then F ⊗kM ' RΓMF ⊗ orM/X [codimXM ].

Let M be a closed submanifold of X. If Λ ⊂ T ∗X is a closed conic subset, its Whitney
normal cone along T ∗MX is a closed biconic subset of TT ∗

MX
T ∗X ' T ∗T ∗MX. Moreover, there

exists a natural embedding

T ∗M ↪→ T ∗T ∗MX ' TT ∗
MX

T ∗X.(2.3)

Now we consider a morphism of manifolds g : Z −→ X and let M ⊂ X and N ⊂ Z be two
closed submanifolds with g(N) ⊂M . One gets the maps

T ∗Z Z ×X T ∗X
gdoo gπ // T ∗X

T ∗NZ
?�

OO

N ×M T ∗MX
gNdoo gNπ //

?�

OO

T ∗MX.
?�

OO(2.4)

The next result is a particular case of [KS90, Th. 6.7.1] in which we choose V = T ∗NZ and
write g : Z −→ X instead of f : Y −→ X. (The reason of this change of notations is that we
need to consider the complexification of the embedding N ↪→ M that we shall denote by
f : Y ↪→ X.)

Theorem 2.4. Let F ∈ Db(kX) and assume

(a) g is non characteristic for µsupp(F ),

(b) the map N ×M T ∗MX −→ T ∗MX is non characteristic for CT ∗
MX

(µsupp(F )),

3µsupp(F ) was denoted SS(F ) in loc. cit., a shortcut for “singular support”.

3



(c) g−1
d T ∗NZ ∩ g−1

π µsupp(F ) ⊂ N ×M T ∗MX.

Then one has the commutative diagram of natural isomorphisms on T ∗ZX:

RgNd!(ωN/M ⊗ g−1
NπµM (F ))

∼ //

∼
��

µN (ωZ/X ⊗ g−1F )

∼
��

RgNd∗(g
!
NπµM (F )) µN (g!F ).∼

oo

(2.5)

Notation 2.5. As usual, we have simply writen ωM instead of π−1ωM and similarly with
other locally constant sheaves.

Consider the projections

T ∗NZ

πN
&&

N ×M T ∗MX
gNdoo gNπ //

π
��

T ∗MX

πM
��

N
g //M

(2.6)

One has the isomorphisms

RπN ∗RgNd∗(g
!
NπµM (F )) ' Rπ∗(g

!
NπµM (F ))

' g!RπM ∗µM (F ) ' RΓNF,(2.7)

and

RπN ∗µN (g!F ) ' RΓNg
!F ' RΓNF.(2.8)

Moreover, one easily proves:

Lemma 2.6. The isomorphisms (2.7) and (2.8) are compatible with the morphisms obtained
by applying RπZ∗ to (2.5).

Lemma 2.7. In the situation of Theorem 2.4 assume moreover that g : Z −→ X is a closed
embedding, N = Z ∩M and the intersection is clean (that is, TN = N ×M TM ∩N ×Z TZ).
Then condition (c) follows from (b).

Proof. Let us choose a local coordinate system (x′, x′′, y′, y′′) on X such that M = {y′ = y′′ =
0)} and Z = {x′′ = y′′ = 0}. Denote by (x′, x′′, y′, y′′; ξ′, ξ′′, η′, η′′) the coordinates on T ∗X
and by (x′, x′′; ξ′, ξ′′) the coordinates on T ∗M . Then

M = {y′ = y′′ = 0)}, T ∗MX = {y′ = y′′ = ξ′ = ξ′′ = 0},
Z = {x′′ = y′′ = 0}, T ∗ZX = {x′′ = y′′ = ξ′ = η′ = 0},
N = {x′′ = y′ = y′′ = 0)}, T ∗NX = {x′′ = y′ = y′′ = ξ′ = 0},
gd : (x′, y′; ξ′, ξ′′, η′, η′′) 7→ (x′, y′; ξ′, η′), .

Therefore g−1
d T ∗NZ = {(x′, y′; ξ′, ξ′′, η′, η′′) ∈ Z ×X T ∗X; y′ = ξ′ = 0} = T ∗NX. Let θ ∈

TT ∗
MX

T ∗X with θ /∈ CT ∗
MX

µsupp(F ). Then (x′, x′′; η′, η′′) + θ /∈ µsupp(F ). Choosing θ ∈
T ∗NM , θ 6= 0, we get that (x′, 0; 0, ξ′′, η′, η′′) ∈ µsupp(F ) implies ξ′′ = 0. Q.E.D.
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2.2 Analytic wave front set

From now on and until the end of this paper, unless otherwise specified, all manifolds are
(real or complex) analytic and the base field k is C.

LetM be a real manifold of dimension n and letX be a complexification ofM . One denotes
by AM the sheaf of complex valued real analytic functions on M , that is, AM = OX |M .

One denotes by BM and CM the sheaves on M and T ∗MX of Sato’s hyperfunctions and
microfunctions, respectively. Recall that these sheaves are defined by

AM := OX ⊗CM , BM := RHom (D′XCM ,OX), CM := µhom(D′XCM ,OX).

In particular, RHom (D′XCM ,OX) and µhom(D′XCM ,OX) are concentrated in degree 0.
Since D′XCM ' orM [−n] ' ωM/X ' ω⊗−1

M , we get that

BM ' RΓM (OX)⊗ωM ' Hn
M (OX)⊗ orM ,

CM ' µM (OX)⊗ωM ' Hn(µM (OX))⊗ orM .

The sheaf BM is flabby and the sheaf CM is conically flabby.
Moreover, since Rπ∗ ◦ µhom ' RHom , we have the isomorphism BM

∼−→ π∗CM . One
deduces the isomorphism:

spec : Γ(M; BM) ∼−→ Γ(T∗MX; CM).

Definition 2.8 ([Sat70]). The analytic wave front set of a hyperfunction u ∈ Γ(M ; BM ),
denoted WF(u), is the support of spec(u), a closed conic subset of T ∗MX.

The next result is well-known to the specialists. Let M be a real analytic manifold, X a
complexification of M and let λ be a closed convex proper cone in T ∗MX.

Theorem 2.9. Let u ∈ Γ(M ; BM ) with WF(u) ⊂ λ. Assume that M is connected and that
u ≡ 0 on an open subset U ⊂M , U 6= ∅. Then u ≡ 0 on M .

Proof. Let S = supp(u) and let x ∈ ∂S. Choosing a local chart in a neighborhood of
x, we may assume from the beginning that M is open in Rn and that λ ⊂ M ×

√
−1γ◦

where γ is a non empty open convex cone of Rn. Then there exists a holomorphic function
f ∈ Γ((M ×

√
−1γ) ∩W ; OX), where W is a connected open neighborhood of M in X, such

that u = b(f), that is, u is the boundary value of f . If b(f) is analytic on U , then f extends
holomorphically in a neighborhood of U in X. If moreover f = 0 on U , then f ≡ 0 on
M ×

√
−1γ) ∩W and thus u ≡ 0. Q.E.D.

2.3 D-modules

Let (X,OX) be a complex manifold. One denotes by DX the sheaf of rings of finite order
holomorphic differential operators on X. In the sequel, a DX -module means a left DX -module.
Let M be a coherent DX -module. Locally on X, M may be represented as the cokernel of a
matrix ·P0 of differential operators acting on the right:

M ' DN0
X /DN1

X · P0

and one shows that M is locally isomorphic to the cohomology of a bounded complex

M • := 0 −→ DNr
X −→ · · · −→ DN1

X
·P0−−→ DN0

X −→ 0.(2.9)
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Clearly, OX is a left DX -module. It is indeed coherent since OX ' DX/I where I is the left
ideal generated by the vector fields. For a coherent DX -module M , one sets for short

Sol(M ) := RHomDX
(M ,OX).

Representing (locally) M by a bounded complex M • as above, we get

Sol(M ) ' 0 −→ ON0
X

P0·−−→ ON1
X −→ · · ·ONr

X −→ 0,(2.10)

where now P0· operates on the left.
Hence a coherent DX -module is nothing but a system of linear partial differential equa-

tions.
To a coherent DX -module M is associated its characteristic variety, a closed analytic

C×-conic co-isotropic subset of T ∗X.

Theorem 2.10 (see [KS90, Th. 11.3.3]). Let M be a coherent DX-module. Then µsupp(Sol(M )) =
char(M ).

Let f : Y −→ X be a morphism of complex manifolds. One can define the inverse image
fDM , an object of Db(DY ). The Cauchy-Kowalevska theorem has been extended to D-
modules in Kashiwara’s thesis of 1970.

Theorem 2.11 (see [Kas95,Kas03]). Let M be a coherent DX-module and assume that f is
non characteristic for M , that is, for char(M ). Then

(i) fD(M ) is concentrated in degree 0 and is a coherent DY -module,

(ii) char(fD(M )) = fdf
−1
π char(M ),

(iii) one has a natural isomorphism f−1RHomDX
(M ,OX) ∼−→ RHomDY

(fDM ,OY ).

Example 2.12. Assume M = DX/DX · P for a differential operator P of order m and Y
is a hypersurface, non characteristic for P . Let s = 0 be a reduced equation of Y . Then,
fD(M ) ' DY /(s · DY + DX · P ) and it follows from the Weierstrass division theorem that,
locally, fDM ' Dm

Y . In this case, isomorphism (iii) in the above theorem is nothing but the
Cauchy-Kowalevska theorem.

Definition 2.13. Let M be a coherent DX -module and let L ⊂ X be a real submanifold.
One says that the pair (L,M ) is elliptic if char(M ) ∩ T ∗LX ⊂ T ∗XX.

If X is a complexification of a real manifold M , the pair (M,M ) is elliptic if and only if
M is elliptic in the usual sense and Corollary 2.3 gives the isomorphism

RHomDX
(M ,AM ) ∼−→ RHomDX

(M ,BM ).(2.11)

In particular, the hyperfunction solutions of the system M are real analytic. More generally,
we have

Theorem 2.14 ([Sat70]). Let M be a coherent DX-module and let u ∈ Γ(M ; HomDX
(M ,BM )).

Then WF(u) ⊂ T∗MX ∩ char(M ).

When L = Y is a complex submanifold of complex codimension d, (Y,M ) is elliptic if and
only if the embedding Y ↪→ X is non-characteristic for M . In this case, Corollary 2.3 gives
the isomorphism

f−1RHomDX
(M ,OX) ∼−→ RHomDX

(M ,RΓY OX) [2d].(2.12)
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3 Wick rotation for D-modules

3.1 Hyperbolic D-modules

Let M be a real manifold and let X be a complexification of M . Recall the embedding
T ∗M ↪→ T ∗T ∗MX of (2.3) and recall that for S ⊂ T ∗X, the Whitney cone CT ∗

MX
(S) is

contained in TT ∗
MX

T ∗X ' T ∗T ∗MX. The next definition is extracted form [KS90]. See [Sch13]
for details.

Definition 3.1. Let M be a coherent left DX -module.

(a) We set

hypcharM (M ) = T ∗M ∩ CT ∗
MX

(char(M ))(3.1)

and call hypcharM (M ) the hyperbolic characteristic variety of M along M .

(b) A vector θ ∈ T ∗M such that θ /∈ hypcharM (M ) is called hyperbolic with respect to M .

(c) A submanifold N of M is called hyperbolic for M if

T ∗NM ∩ hypcharM (M ) ⊂ T ∗MM,(3.2)

that is, any nonzero vector of T ∗NM is hyperbolic for M .

(d) For a differential operator P , we set hypchar(P ) = hypcharM (DX/DX · P ).

Example 3.2. Assume we have a local coordinate system (x+
√
−1y) on X with M = {y = 0}

and let (x+
√
−1y; ξ +

√
−1η) be the coordinates on T ∗X so that T ∗MX = {y = ξ = 0}. Let

(x0; θ0) ∈ T ∗M with θ0 6= 0. Let P be a differential operator with principal symbol σ(P ).
Then (x0; θ0) is hyperbolic for P if and only if

there exist an open neighborhood U of x0 in M and an open conic
neighborhood γ of θ0 ∈ Rn such that σ(P )(x; θ+

√
−1η) 6= 0 for

all η ∈ Rn, x ∈ U and θ ∈ γ.
(3.3)

As noticed by M. Kashiwara, it follows from the local Bochner’s tube theorem that Condi-
tion (3.3) can be simplified: (x0; θ0) is hyperbolic for P if and only if{

there exists an open neighborhood U of x0 in M such that
σ(P )(x; θ0 +

√
−1η) 6= 0 for all η ∈ Rn, and x ∈ U .

(3.4)

Hence, one recovers the classical notion of a (weakly) hyperbolic operator.

Notation 3.3. As usual, we shall write RHomDX
(M ,CM ) instead of RHomπ−1DX

(π−1M ,CM )
and similarly with other sheaves on cotangent bundles.

3.2 Main tool

Consider as above a real manifold M and a complexification X of M , a closed submanifold N
of M , and Y a complexification of N in X. Denote as above by f : Y ↪→ X the embedding.
Consider also another closed real submanifold L ⊂ X such that L∩M = N and the intersection
is clean. Denote by g : L ↪→ X the embedding and consider the Diagram 2.4 with Z = L.
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(We prefer to use the notation L better than L since now it is a real manifold, playing a role
similar to that of M .)

Let M be a coherent DX -module and consider the hypotheses:

the pair (L,M ) is elliptic,(3.5)

the submanifold N is hyperbolic for M on M ,(3.6)

Y is non characteristic for M .(3.7)

Set F = RHomDX
(M ,OX). Then hypothesis (a) of Theorem 2.4 is translated as hypothe-

sis (3.5) and hypothesis (b) is translated as hypothesis (3.6).
We shall constantly use the next result.

Lemma 3.4 (see [JS16, Lem. 3.5]). Hypothesis (3.6) implies hypothesis (3.7).

Theorem 3.5. Let M be a coherent left DX-module. Assume (3.5) and (3.6). Then one has
the natural isomorphism

RgNd!g
−1
NπRHomDX

(M ,CM )
∼ // µN (ωL/N ⊗ g−1RHomDX

(M ,OX)).

Proof. Apply Theorem 2.4 together with Lemma 2.7 to the sheaf F = RHomDX
(M ,OX).

We get:

RgNd!(ωN/M ⊗ g−1
NπRHomDX

(M , µM (OX))) ' µN (ωL/X ⊗ g−1RHomDX
(M ,OX)).

Equivalently, we have

RgNd!g
−1
Nπ(ωX/M ⊗RHomDX

(M , µM (OX))) ' µN (ωL/N ⊗ g−1RHomDX
(M ,OX)).

Finally ωX/M ⊗µM (OX) ' CM . Q.E.D.

Example 1: Cauchy problem for microfunctions

Let M , X, L, N and f be as above and assume that L = Y , hence f = g.

Corollary 3.6. Let M be a coherent left DX-module. Assume (3.6). Then one has the
natural isomorphism

fNd!f
−1
NπRHomDX

(M ,CM ) ' RHomDY
(fDM ,CN ).

Proof. Applying Theorem 2.11, we get f−1RHomDX
(M ,OX) ' RHomDY

(fDM ,OY ). (Re-
call that (3.6) implies (3.7).) Moreover, ωY/N ⊗µN (OY ) ' CN . Finally, since fNd is finite on
char(M ), we may replace RfNd! with fNd!. Q.E.D.

3.3 Boundary values

Let M be a real n-dimensional manifold, N a closed submanifod of codimesnion d, X a
complexification of M and Y a complexification of N in X. We denote by f : Y ↪→ X the
embedding.

Notation 3.7. We set

B̃N = RΓN (OX)⊗ orN [n] ' Hn
N (OX)⊗ orN .
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We shall not confuse the sheaf B̃N with the sheaf BN of hyperfunctions on N . We have
an isomorphism

B̃N ' ΓNBM ⊗ orN/M .

Let M be a coherent DX -module. Applying the functor RΓN ( • ) ⊗ orN [n − d] to the iso-
morphism (iii) in Theorem 2.11 together with isomorphism (2.12) one recovers a well known
result:

Lemma 3.8. Assume (3.7). One has a natural isomorphism

RHomDX
(M , B̃N ) [d] ' RHomDY

(fDM ,BN ).

Appying the functor D′X to the morphism CM −→ CN , we get the morphism D′X(CN ) −→
D′X(CM ), that is, the morphism orN [d+ n] −→ orM [n]. Applying the functor RHom ( • ,OX)
we get the “restriction” morphism

ρMN : BM −→ B̃N [d] ' ΓNBM ⊗ωM/N .(3.8)

For a closed cone λ ⊂ T ∗MX, we set for short

BM,λ := πM ∗ΓλCM .(3.9)

For an open cone γ ⊂ TNM , we set for short :

ΓγBNM := τN ∗Γγ(νN (BM )).(3.10)

(In the sequel, we shall use this notation for another real manifold Z instead of M .)
Hence, for a closed convex proper cone λ with λ ⊃ N , setting γ = Int(λ◦a), we have

by (2.2):

πN ∗Γλ(µNBM )⊗ωM/N ' ΓγBM .(3.11)

One can use (3.11) and the morphism πN ∗Γλ(µNBM ) −→ πN ∗µNBM ' ΓNBM to obtain the
morphism

bγ,N : ΓγBM −→ ΓNBM ⊗ωM/N .(3.12)

One can also construct (3.12) directly as follows. Let U be an open subset of M such that
U ⊃ N , U is locally cohomologically trivial (see [KS90, Exe. III.4]). Then the morphism
CU −→ CN gives by duality the morphism orN [d + n] −→ orU [n] and one gets the morphism
ΓUBM −→ ΓNBM ⊗ ωM/N by applying RHom ( • ,OX) similarly as for ρMN . Taking the
inductive limit with respect to the family of open sets U such that CM (X \ U) ∩ γ = ∅
(see [KS90, Th. 4.2.3]), we recover the morphism (3.12).

In particular, for a coherent DX -module M we get the morphisms

γMN : RHomDX
(M ,BM,λ) −→ RHomDX

(M , B̃N ) [d],

bγ,N : RHomDX
(M ,ΓγBNM ) −→ RHomDX

(M , B̃N ) [d].
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3.4 Wick rotation

Let M , X, Y , N , L, f and g be as above. Now, we also assume that L is a real manifold of
the same dimension than M and X is a complexification of L. We still consider diagram (2.4).

Consider the hypothesis{
in a neighborhood of N , char(M )∩T ∗MX is contained in the union of
two closed cones λ+ and λ− such that λ+∩λ− ⊂ T ∗XX and λ± ⊃ T ∗MX.

(3.13)

Lemma 3.9. Assume (3.13).Then we have the natural isomorphism

g−1
NπRΓλ+RHomDX

(M ,CM ) ∼−→ RΓg−1
Nπ(λ+)g

−1
NπRHomDX

(M ,CM ).(3.14)

Proof. (i) Set for short F = RHomDX
(M ,CM ), j = gNπ , A = λ+, B = j−1A. With these

new notations, we have to prove the morphism

j−1RΓAF ∼−→ RΓBj
−1F(3.15)

is an isomorphism.

(ii) The morphism (3.15) is an isomorphism outside of the zero-section of T ∗MX since supp(F ) =
A t C with A and C closed and A ∩ C = ∅.

(iii) Consider the diagram in which sN and sM denote the embeddings of the zero-sections:

N ×M T ∗MX

πN
��

j // T ∗MX

πM
��

N
j //

sN

OO

M.

sM

OO
(3.16)

Since RπN ∗ ' s−1
N , when applied to conic sheaves, it remains to show that (3.15) is an

isomorphism after applying the functor RπN ∗.

(iv) Consider the morphism of Sato’s distinguished triangles:

RπN !j
−1RΓAF //

u

��

RπN ∗j
−1RΓAF //

v

��

π̇N∗j
−1RΓAF

+1 //

w

��
RπN !RΓBj

−1F // RπN ∗RΓBj
−1F // π̇N∗RΓBj

−1F
+1 //

It follows from (i) that the vertical arrow w on the right is an isomorphism. We are thus
reduced to prove the isomorphism

RπN !j
−1RΓAF ∼−→ RπN !RΓBj

−1F.(3.17)

(v) Using the fact that A ⊃ M and B ⊃ N and that Diagram (3.16) (with the arrows going
down) is Cartesian, we get

RπN !j
−1RΓAF ' j−1RπM !RΓAF ' j−1s!

MRΓAF

' j−1s!
MF ' j−1RπM !F ' RπN !j

−1F

' s!
Nj
−1F ' s!

MRΓBj
−1F

' RπN !RΓBj
−1F.

Q.E.D.
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Consider

γ ⊂ TNL an open convex cone such that γ contains the zero-section N(3.18)

and recall notations (3.9) and (3.10).

Theorem 3.10 (Wick isomorphism Theorem). Let M be a coherent left DX-module and let
γ be as in (3.18). Assume (3.5), (3.6), (3.13) and also

g−1
Nπ(λ+) = g−1

Nd(γ
◦a).(3.19)

Then one has the commutative diagram in which the horizontal arrow is an isomorphism:

RHomDX
(M ,BM,λ+)|N ∼ //

ρMN ++

RHomDX
(M ,ΓγBNL)

bγ,Nss

RHomDX
(M , B̃N ) [d]

(3.20)

Proof. (i) As a particular case of Theorem 3.5 and using the fact that g−1RHomDX
(M ,OX) '

RHomDX
(M ,BL), we get the isomorphism

RgNd!g
−1
NπRHomDX

(M ,CM ) ' RHomDX
(M , µNBL)⊗ωL/N .

(ii) Set for short F = RHomDX
(M ,CM ). Using Lemma 3.9 and the fact that gNd is proper

on suppF , we have the isomorphism

RgNd!g
−1
NπRΓλ+F ' RgNd!RΓg−1

Nπ(λ+)g
−1
NπF

' RΓγ◦aRgNd!g
−1
NπF.

Therefore, we have proved the isomorphism

RgNd!g
−1
NπRHomDX

(M ,Γλ+CM ) ' RHomDX
(M ,Γγ◦aµNBL)⊗ωL/N .(3.21)

(iii) Let us apply the functor RπN ∗ to (3.21). Since gNd is proper on suppF , setting G =
RHomDX

(M ,Γλ+CM ), we have (see Diagram 2.6)

RπN ∗RgNd!g
−1
NπG ' Rπ∗g

−1
NπG

' (RπM ∗G)|N .

Hence, we have proved the isomorphism

RHomDX
(M ,BM,λ+)|N ' RHomDX

(M , πN ∗Γγ◦aµNBL)⊗ωL/N

and the result follows from (3.11). Q.E.D.

3.5 The classical Wick rotation

Let us treat the classical Wick rotation. Hence, we assume that M = N × R and L =
N ×

√
−1R. As usual, Y is a complexification of N and X = Y ×C. We denote by t+ is the

holomorphic coordinate on C, by (t + is; τ + iσ) the symplectic coordinates on T ∗C and by
(x; iη) a point of T ∗NY . We identify N and N × {0} ⊂ X.
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Let P is a differential operator of order m, elliptic on L and (weakly) hyperbolic on M
in the ±dt codirections. A typical example is the wave operator on a globally hyperbolic
spacetime N × Rt. Set

L+ = N × {t+ is; t = 0, s > 0}, λ+ = T ∗NY × {(t+ is; τ + iσ); s = 0, τ = 0, σ ≤ 0}.

The map gNd : N ×M T ∗MX −→ T ∗NL is given by

(x, 0; iη, iσ) 7→ (x;σ).

We shall apply the preceding result with γ = L+. In that case, γ◦a = λ+ and (3.19) is
satisfied.

Let M = DX/DX · P . In the sequel we write for short BP
M instead of HomDX

(M ,BM )

and similarly with other sheaves. Note that Ext1
DX

(M , B̃N ) ' B̃N/P · B̃N .
As a particular case of Theorem 3.10, we get:

Corollary 3.11. We have a commutative diagram in which the horizontal arrow is an iso-
morphism:

BP
M,λ+ |N

ρ ''

∼ // BP
L+ |N

bxx

B̃N/P · B̃N ∼
// Bm

N .
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