Wick rotation for D-modules

Pierre Schapira

February 2, 2017

Abstract

We extend the classical Wick rotation to D-modules and higher codimensional submanifolds. ${ }^{12}$

1 Introduction

Let M be a real analytic manifold of the type $N \times \mathbb{R}$ and let $X=Y \times \mathbb{C}$ be a complexification of M. Consider a differential operator P on X such that P is hyperbolic on M with respect to the direction $N \times\{0\}$, a typical example being the wave operator on a spacetime. Denote by L the real manifold $N \times \sqrt{-1} \mathbb{R}$. It may happen, and it happens for the wave operator, that P is elliptic on L. Passing from M to L is called the Wick rotation by physicists who deduce interesting properties of P on M from the study of P on L.

In the situation above, we had $\operatorname{codim}_{M} N=\operatorname{codim}_{L} N=1$. In this paper, we treat the general case of two real analytic manifolds M and L in X, X being a complexification of both M and L, such that the intersection $N:=M \cap L$ is clean, and we consider a coherent $\mathscr{D}_{X^{-}}$ module \mathscr{M} which is hyperbolic with respect to M on N and elliptic on L. The main result is Theorem 3.10 which describes an isomorphism between the complex of hyperfunction solutions of \mathscr{M} on L defined in a given cone $\gamma \subset T_{N} L$ and the complex of hyperfunction solutions of \mathscr{M} on M (in a neighborhood of N), with wave front set in a cone $\lambda \subset T_{M}^{*} X$ associated with γ. It is also proved that this isomorphism is compatible to the boundary values morphism from M to N and from L to N.
Aknowledgements This paper was initiated by a series of discussions with Christian Gérard who kindly explained us some problems associated with the classical Wick rotation. We sincerely thank him for his patience and his explanations.

2 Sheaves, D-modules and wave front sets

2.1 Sheaves

We shall use the microlocal theory of sheaves of [KS90] and mainly follow its terminology. For the reader's convenience, we recall a few notations and results.

[^0]
Geometry

Let X be a real manifold of class C^{∞}. For a subset $A \subset X$, we denote by \bar{A} its closure and by $\operatorname{Int}(A)$ its interior. We denote by

$$
\tau_{X}: T X \rightarrow X, \quad \pi_{X}: T^{*} X \rightarrow X
$$

the tangent bundle and the cotangent bundle to X. For a closed submanifold M of X, we denote by $\tau_{M}: T_{M} X \rightarrow M$ and $\pi_{M}: T_{M}^{*} X \rightarrow M$ the normal bundle and the conormal bundle to M in X. In particular, $T_{X}^{*} X$ is the zero-section of $T^{*} X$, that we identify with X.

For a vector bundle $\pi: E \rightarrow X$, we identify X with the zero-section, we denote by E_{x} the fiber of E at $x \in X$, we set $\dot{E}=E \backslash X$ and we denote by $\dot{\pi}: \dot{E} \rightarrow X$ the projection. For a cone γ in a vector bundle $E \rightarrow X$, we set $\gamma_{x}=\gamma \cap E_{x}$, we denote by $\gamma^{a}=-\gamma$ the opposite cone and by γ° the polar cone in the dual vector bundle E^{*},

$$
\gamma^{\circ}=\left\{(x ; \xi) \in E^{*} ;\langle\xi, v\rangle \geq 0 \text { for all } x \in M, v \in \gamma_{x}\right\}
$$

For $A \subset X$, the Whitney normal cone of A along $M, C_{M}(A) \subset T_{M} X$, is defined in $[\mathrm{KS} 90$, Def. 4.1.1].

To a morphism of manifolds $f: Y \rightarrow X$, one associates the maps:

where f_{d} is the transpose of the tangent map to $T f: T Y \rightarrow Y \times_{X} T X$.
Definition 2.1. Let Λ be a closed conic subset of $T^{*} X$. One says that f is non characteristic for Λ if the map f_{d} is proper on $f_{\pi}^{-1}(\Lambda)$.

Sheaves

Let \mathbf{k} be a field. One denotes by $\mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right)$ the bounded derived category of sheaves of $\mathbf{k}-$ modules on X. We simply call an object of this category "a sheaf". For a closed subset A of a manifold we denote by \mathbf{k}_{A} the constant sheaf on A with stalk \mathbf{k} extended by 0 outside of A. More generally, we shall identify a sheaf on A and its extension by 0 outside of A. If A is locally closed, we keep the notation \mathbf{k}_{A} as far as there is no risk of confusion. We denote by ω_{X} the dualizing complex on X. Recall that $\omega_{X} \simeq \operatorname{or}_{X}[\operatorname{dim} X]$ where or ${ }_{X}$ is the orientation sheaf and $\operatorname{dim} X$ is the dimension of X. More generally, we consider the relative dualizing complex associated with a morphism $f: Y \rightarrow X, \omega_{Y / X}=\omega_{Y} \otimes f^{-1}\left(\omega_{X}^{\otimes-1}\right)$ and its inverse, $\omega_{X / Y}=\omega_{Y / X}^{\otimes-1}$. We denote by $\mathrm{D}_{X}^{\prime}(\bullet)=\mathrm{R} \mathscr{H} \operatorname{om}\left(\bullet, \mathbf{k}_{X}\right)$ the duality functor on X.

We shall use freely the six Grothendieck operations on sheaves.

Microlocalization

For a closed submanifold M of X, we have the functors

$$
\begin{aligned}
& \nu_{M}: \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right) \rightarrow \mathrm{D}_{\mathbb{R}^{+}}^{\mathrm{b}}\left(\mathbf{k}_{T_{M} X}\right) \text { specialization along } M, \\
& \mu_{M}: \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right) \rightarrow \mathrm{D}_{\mathbb{R}^{+}}^{\mathrm{b}}\left(\mathbf{k}_{T_{M}^{*} X}^{*}\right) \text { microlocalization along } M, \\
& \mu h o m: \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right) \times \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right)^{\mathrm{op}} \rightarrow \mathrm{D}_{\mathbb{R}^{+}}^{\mathrm{b}}\left(\mathbf{k}_{T^{*} X}\right) .
\end{aligned}
$$

Here, for a vector bundle $E \rightarrow M$ or $E \rightarrow X, \mathrm{D}_{\mathbb{R}^{+}}^{\mathrm{b}}\left(\mathbf{k}_{E}\right)$ is the full subcategory of $\mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{E}\right)$ consisting of conic sheaves, that is, sheaves locally constant under the \mathbb{R}^{+}-action.

The functor μ_{M}, called Sato's microlocalization functor, is the Fourier-Sato transform of the specialization functor ν_{M}. The bifunctor $\mu h o m$ of [KS90] is a slight generalization of μ_{M}. Recall that $\mu_{M}(\bullet)=\mu h o m\left(\mathbf{k}_{M}, \bullet\right)$.

Let λ be a closed convex proper cone of $T_{M}^{*} X$ containing the zero-section M. For $F \in$ $\mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right)$, we have an isomorphism (see [KS90, Th. 4.3.2]):

$$
\begin{equation*}
\mathrm{R} \pi_{M *} \mathrm{R} \Gamma_{\lambda}\left(\mu_{M}(F)\right) \otimes \omega_{X / M} \simeq \mathrm{R} \tau_{M *} \mathrm{R} \Gamma_{\operatorname{Int}\left(\lambda^{\circ a}\right)}\left(\nu_{M}(F)\right) \tag{2.2}
\end{equation*}
$$

Microsupport

To a sheaf F is associated (see $[\mathrm{KS} 90]$) its microsupport $\mu \operatorname{supp}(F)^{3}$, a closed \mathbb{R}^{+}-conic coisotropic subset of $T^{*} X$.

Let us recall some results that we shall use.
Theorem 2.2. Let $f: Y \rightarrow X$ be a morphism of real manifolds and let $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right)$. Assume that f is non characteristic for F, that is, for $\mu \operatorname{supp}(F)$. Then the morphism $f^{-1} F \otimes \omega_{Y / X} \rightarrow$ $f^{!} F$ is an isomorphim.

As a particular case of this result, we get a kind of Petrowski theorem for sheaves (see Theorem 2.11 below):

Corollary 2.3. Let M be a closed submanifold of X and let $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right)$. Assume that $T_{M}^{*} X \cap \mu \operatorname{supp}(F) \subset T_{X}^{*} X$. Then $F \otimes \mathbf{k}_{M} \simeq \mathrm{R}_{M} F \otimes \operatorname{or}_{M / X}\left[\operatorname{codim}_{X} M\right]$.

Let M be a closed submanifold of X. If $\Lambda \subset T^{*} X$ is a closed conic subset, its Whitney normal cone along $T_{M}^{*} X$ is a closed biconic subset of $T_{T_{M}^{*} X} T^{*} X \simeq T^{*} T_{M}^{*} X$. Moreover, there exists a natural embedding

$$
\begin{equation*}
T^{*} M \hookrightarrow T^{*} T_{M}^{*} X \simeq T_{T_{M}^{*} X} T^{*} X \tag{2.3}
\end{equation*}
$$

Now we consider a morphism of manifolds $g: Z \rightarrow X$ and let $M \subset X$ and $N \subset Z$ be two closed submanifolds with $g(N) \subset M$. One gets the maps

The next result is a particular case of [KS90, Th. 6.7.1] in which we choose $V=T_{N}^{*} Z$ and write $g: Z \rightarrow X$ instead of $f: Y \rightarrow X$. (The reason of this change of notations is that we need to consider the complexification of the embedding $N \hookrightarrow M$ that we shall denote by $f: Y \hookrightarrow X$.)
Theorem 2.4. Let $F \in \mathrm{D}^{\mathrm{b}}\left(\mathbf{k}_{X}\right)$ and assume
(a) g is non characteristic for $\mu \operatorname{supp}(F)$,
(b) the map $N \times_{M} T_{M}^{*} X \rightarrow T_{M}^{*} X$ is non characteristic for $C_{T_{M}^{*} X}(\mu \operatorname{supp}(F))$,

[^1](c) $g_{d}^{-1} T_{N}^{*} Z \cap g_{\pi}^{-1} \mu \operatorname{supp}(F) \subset N \times_{M} T_{M}^{*} X$.

Then one has the commutative diagram of natural isomorphisms on $T_{Z}^{*} X$:

Notation 2.5. As usual, we have simply writen ω_{M} instead of $\pi^{-1} \omega_{M}$ and similarly with other locally constant sheaves.

Consider the projections

One has the isomorphisms

$$
\begin{align*}
\mathrm{R} \pi_{N *} \mathrm{R} g_{N d_{*}}\left(g_{N \pi}^{!} \mu_{M}(F)\right) & \simeq \mathrm{R} \pi_{*}\left(g_{N \pi}^{!} \mu_{M}(F)\right) \\
& \simeq g^{!} \mathrm{R} \pi_{M *} \mu_{M}(F) \simeq \mathrm{R} \Gamma_{N} F, \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{R} \pi_{N *} \mu_{N}\left(g^{\prime} F\right) \simeq \mathrm{R} \Gamma_{N} g^{!} F \simeq \mathrm{R} \Gamma_{N} F . \tag{2.8}
\end{equation*}
$$

Moreover, one easily proves:
Lemma 2.6. The isomorphisms (2.7) and (2.8) are compatible with the morphisms obtained by applying $\mathrm{R} \pi_{Z *}$ to (2.5).

Lemma 2.7. In the situation of Theorem 2.4 assume moreover that $g: Z \rightarrow X$ is a closed embedding, $N=Z \cap M$ and the intersection is clean (that is, $T N=N \times_{M} T M \cap N \times{ }_{Z} T Z$). Then condition (c) follows from (b).

Proof. Let us choose a local coordinate system ($x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}$) on X such that $M=\left\{y^{\prime}=y^{\prime \prime}=\right.$ $0)\}$ and $Z=\left\{x^{\prime \prime}=y^{\prime \prime}=0\right\}$. Denote by ($\left.x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime} ; \xi^{\prime}, \xi^{\prime \prime}, \eta^{\prime}, \eta^{\prime \prime}\right)$ the coordinates on $T^{*} X$ and by ($x^{\prime}, x^{\prime \prime} ; \xi^{\prime}, \xi^{\prime \prime}$) the coordinates on $T^{*} M$. Then

$$
\begin{array}{ll}
\left.M=\left\{y^{\prime}=y^{\prime \prime}=0\right)\right\}, & T_{M}^{*} X=\left\{y^{\prime}=y^{\prime \prime}=\xi^{\prime}=\xi^{\prime \prime}=0\right\}, \\
Z=\left\{x^{\prime \prime}=y^{\prime \prime}=0\right\}, & T_{Z}^{*} X=\left\{x^{\prime \prime}=y^{\prime \prime}=\xi^{\prime}=\eta^{\prime}=0\right\}, \\
\left.N=\left\{x^{\prime \prime}=y^{\prime}=y^{\prime \prime}=0\right)\right\}, & T_{N}^{*} X=\left\{x^{\prime \prime}=y^{\prime}=y^{\prime \prime}=\xi^{\prime}=0\right\}, \\
g_{d}:\left(x^{\prime}, y^{\prime} ; \xi^{\prime}, \xi^{\prime \prime}, \eta^{\prime}, \eta^{\prime \prime}\right) \mapsto\left(x^{\prime}, y^{\prime} ; \xi^{\prime}, \eta^{\prime}\right), &
\end{array}
$$

Therefore $g_{d}^{-1} T_{N}^{*} Z=\left\{\left(x^{\prime}, y^{\prime} ; \xi^{\prime}, \xi^{\prime \prime}, \eta^{\prime}, \eta^{\prime \prime}\right) \in Z \times_{X} T^{*} X ; y^{\prime}=\xi^{\prime}=0\right\}=T_{N}^{*} X$. Let $\theta \in$ $T_{T_{M}^{*} X} T^{*} X$ with $\theta \notin C_{T_{M}^{*} X} \mu \operatorname{supp}(F)$. Then $\left(x^{\prime}, x^{\prime \prime} ; \eta^{\prime}, \eta^{\prime \prime}\right)+\theta \notin \mu \operatorname{supp}(F)$. Choosing $\theta \in$ $T_{N}^{*} M, \theta \neq 0$, we get that $\left(x^{\prime}, 0 ; 0, \xi^{\prime \prime}, \eta^{\prime}, \eta^{\prime \prime}\right) \in \mu \operatorname{supp}(F)$ implies $\xi^{\prime \prime}=0$.
Q.E.D.

2.2 Analytic wave front set

From now on and until the end of this paper, unless otherwise specified, all manifolds are (real or complex) analytic and the base field \mathbf{k} is \mathbb{C}.

Let M be a real manifold of dimension n and let X be a complexification of M. One denotes by \mathscr{A}_{M} the sheaf of complex valued real analytic functions on M, that is, $\mathscr{A}_{M}=\left.\mathscr{O}_{X}\right|_{M}$.

One denotes by \mathscr{B}_{M} and \mathscr{C}_{M} the sheaves on M and $T_{M}^{*} X$ of Sato's hyperfunctions and microfunctions, respectively. Recall that these sheaves are defined by

$$
\mathscr{A}_{M}:=\mathscr{O}_{X} \otimes \mathbb{C}_{M}, \quad \mathscr{B}_{M}:=\mathrm{R} \mathscr{H} o m\left(\mathrm{D}_{X}^{\prime} \mathbb{C}_{M}, \mathscr{O}_{X}\right), \quad \mathscr{C}_{M}:=\mu \operatorname{hom}\left(\mathrm{D}_{X}^{\prime} \mathbb{C}_{M}, \mathscr{O}_{X}\right)
$$

In particular, $\mathrm{R} \mathscr{H} o m\left(\mathrm{D}_{X}^{\prime} \mathbb{C}_{M}, \mathscr{O}_{X}\right)$ and $\mu h o m\left(\mathrm{D}_{X}^{\prime} \mathbb{C}_{M}, \mathscr{O}_{X}\right)$ are concentrated in degree 0. Since $\mathrm{D}_{X}^{\prime} \mathbb{C}_{M} \simeq$ or ${ }_{M}[-n] \simeq \omega_{M / X} \simeq \omega_{M}^{\otimes-1}$, we get that

$$
\begin{aligned}
& \mathscr{B}_{M} \simeq \mathrm{R} \Gamma_{M}\left(\mathscr{O}_{X}\right) \otimes \omega_{M} \simeq H_{M}^{n}\left(\mathscr{O}_{X}\right) \otimes \mathrm{or}_{M}, \\
& \mathscr{C}_{M} \simeq \mu_{M}\left(\mathscr{O}_{X}\right) \otimes \omega_{M} \simeq H^{n}\left(\mu_{M}\left(\mathscr{O}_{X}\right)\right) \otimes \mathrm{or}_{M} .
\end{aligned}
$$

The sheaf \mathscr{B}_{M} is flabby and the sheaf \mathscr{C}_{M} is conically flabby.
Moreover, since $\mathrm{R} \pi_{*} \circ \mu h o m \simeq \mathrm{R} \mathscr{H}$ om, we have the isomorphism $\mathscr{B}_{M} \xrightarrow{\sim} \pi_{*} \mathscr{C}_{M}$. One deduces the isomorphism:

$$
\text { spec: } \Gamma\left(\mathrm{M} ; \mathscr{B}_{\mathrm{M}}\right) \xrightarrow{\sim} \Gamma\left(\mathrm{T}_{\mathrm{M}}^{*} \mathrm{X} ; \mathscr{C}_{\mathrm{M}}\right)
$$

Definition 2.8 ([Sat70]). The analytic wave front set of a hyperfunction $u \in \Gamma\left(M ; \mathscr{B}_{M}\right)$, denoted $\mathrm{WF}(\mathrm{u})$, is the support of $\operatorname{spec}(\mathrm{u})$, a closed conic subset of $T_{M}^{*} X$.

The next result is well-known to the specialists. Let M be a real analytic manifold, X a complexification of M and let λ be a closed convex proper cone in $T_{M}^{*} X$.

Theorem 2.9. Let $u \in \Gamma\left(M ; \mathscr{B}_{M}\right)$ with $\mathrm{WF}(\mathrm{u}) \subset \lambda$. Assume that M is connected and that $u \equiv 0$ on an open subset $U \subset M, U \neq \varnothing$. Then $u \equiv 0$ on M.

Proof. Let $S=\operatorname{supp}(u)$ and let $x \in \partial S$. Choosing a local chart in a neighborhood of x, we may assume from the beginning that M is open in \mathbb{R}^{n} and that $\lambda \subset M \times \sqrt{-1} \gamma^{\circ}$ where γ is a non empty open convex cone of \mathbb{R}^{n}. Then there exists a holomorphic function $f \in \Gamma\left((M \times \sqrt{-1} \gamma) \cap W ; \mathscr{O}_{X}\right)$, where W is a connected open neighborhood of M in X, such that $u=b(f)$, that is, u is the boundary value of f. If $b(f)$ is analytic on U, then f extends holomorphically in a neighborhood of U in X. If moreover $f=0$ on U, then $f \equiv 0$ on $M \times \sqrt{-1} \gamma) \cap W$ and thus $u \equiv 0$.
Q.E.D.

2.3 D-modules

Let $\left(X, \mathscr{O}_{X}\right)$ be a complex manifold. One denotes by \mathscr{D}_{X} the sheaf of rings of finite order holomorphic differential operators on X. In the sequel, a \mathscr{D}_{X}-module means a left \mathscr{D}_{X}-module. Let \mathscr{M} be a coherent \mathscr{D}_{X}-module. Locally on X, \mathscr{M} may be represented as the cokernel of a matrix $\cdot P_{0}$ of differential operators acting on the right:

$$
\mathscr{M} \simeq \mathscr{D}_{X}^{N_{0}} / \mathscr{D}_{X}^{N_{1}} \cdot P_{0}
$$

and one shows that \mathscr{M} is locally isomorphic to the cohomology of a bounded complex

$$
\begin{equation*}
\mathscr{M}^{\bullet}:=0 \rightarrow \mathscr{D}_{X}^{N_{r}} \rightarrow \cdots \rightarrow \mathscr{D}_{X}^{N_{1}} \xrightarrow{P_{0}} \mathscr{D}_{X}^{N_{0}} \rightarrow 0 . \tag{2.9}
\end{equation*}
$$

Clearly, \mathscr{O}_{X} is a left \mathscr{D}_{X}-module. It is indeed coherent since $\mathscr{O}_{X} \simeq \mathscr{D}_{X} / \mathscr{I}$ where \mathscr{I} is the left ideal generated by the vector fields. For a coherent \mathscr{D}_{X}-module \mathscr{M}, one sets for short

$$
\mathscr{S} o l(\mathscr{M}):=\operatorname{R}_{\mathscr{H} o m_{\mathscr{D}_{X}}}\left(\mathscr{M}, \mathscr{O}_{X}\right)
$$

Representing (locally) \mathscr{M} by a bounded complex \mathscr{M}^{\bullet} as above, we get

$$
\begin{equation*}
\mathscr{S} O l(\mathscr{M}) \simeq 0 \rightarrow \mathscr{O}_{X}^{N_{0}} \xrightarrow{P_{0}} \mathscr{O}_{X}^{N_{1}} \rightarrow \cdots \mathscr{O}_{X}^{N_{r}} \rightarrow 0 \tag{2.10}
\end{equation*}
$$

where now P_{0}. operates on the left.
Hence a coherent \mathscr{D}_{X}-module is nothing but a system of linear partial differential equations.

To a coherent \mathscr{D}_{X}-module \mathscr{M} is associated its characteristic variety, a closed analytic \mathbb{C}^{\times}-conic co-isotropic subset of $T^{*} X$.

Theorem 2.10 (see [KS90, Th. 11.3.3]). Let \mathscr{M} be a coherent \mathscr{D}_{X}-module. Then $\mu \operatorname{supp}(\mathscr{S}$ ol $(\mathscr{M}))=$ $\operatorname{char}(\mathscr{M})$.

Let $f: Y \rightarrow X$ be a morphism of complex manifolds. One can define the inverse image $f^{D} \mathscr{M}$, an object of $\mathrm{D}^{\mathrm{b}}\left(\mathscr{D}_{Y}\right)$. The Cauchy-Kowalevska theorem has been extended to Dmodules in Kashiwara's thesis of 1970.

Theorem 2.11 (see [Kas95, Kas03]). Let \mathscr{M} be a coherent \mathscr{D}_{X}-module and assume that f is non characteristic for \mathscr{M}, that is, for $\operatorname{char}(\mathscr{M})$. Then
(i) $f^{D}(\mathscr{M})$ is concentrated in degree 0 and is a coherent \mathscr{D}_{Y}-module,
(ii) $\operatorname{char}\left(f^{D}(\mathscr{M})\right)=f_{d} f_{\pi}^{-1} \operatorname{char}(\mathscr{M})$,
(iii) one has a natural isomorphism $f^{-1} \operatorname{R} \mathscr{H}_{o_{0}}^{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{O}_{X}\right) \sim \operatorname{R} \mathscr{H}^{\sim} m_{\mathscr{D}_{Y}}\left(f^{D} \mathscr{M}, \mathscr{O}_{Y}\right)$.

Example 2.12. Assume $\mathscr{M}=\mathscr{D}_{X} / \mathscr{D}_{X} \cdot P$ for a differential operator P of order m and Y is a hypersurface, non characteristic for P. Let $s=0$ be a reduced equation of Y. Then, $f^{D}(\mathscr{M}) \simeq \mathscr{D}_{Y} /\left(s \cdot \mathscr{D}_{Y}+\mathscr{D}_{X} \cdot P\right)$ and it follows from the Weierstrass division theorem that, locally, $f^{D} \mathscr{M} \simeq \mathscr{D}_{Y}^{m}$. In this case, isomorphism (iii) in the above theorem is nothing but the Cauchy-Kowalevska theorem.

Definition 2.13. Let \mathscr{M} be a coherent \mathscr{D}_{X}-module and let $L \subset X$ be a real submanifold. One says that the pair (L, \mathscr{M}) is elliptic if $\operatorname{char}(\mathscr{M}) \cap T_{L}^{*} X \subset T_{X}^{*} X$.

If X is a complexification of a real manifold M, the pair (M, \mathscr{M}) is elliptic if and only if \mathscr{M} is elliptic in the usual sense and Corollary 2.3 gives the isomorphism

$$
\begin{equation*}
\operatorname{R} \mathscr{H}_{\operatorname{Hom}_{\mathscr{D}_{X}}}\left(\mathscr{M}, \mathscr{A}_{M}\right) \xrightarrow{\sim} \operatorname{R} \mathscr{H}_{o m_{D_{X}}}\left(\mathscr{M}, \mathscr{B}_{M}\right) \tag{2.11}
\end{equation*}
$$

In particular, the hyperfunction solutions of the system \mathscr{M} are real analytic. More generally, we have

Theorem $2.14([\operatorname{Sat} 70])$. Let \mathscr{M} be a coherent \mathscr{D}_{X}-module and let $u \in \Gamma\left(M ; \mathscr{H}_{\operatorname{Hom}_{\mathscr{D}_{X}}}\left(\mathscr{M}, \mathscr{B}_{M}\right)\right)$. Then $\mathrm{WF}(\mathrm{u}) \subset \mathrm{T}_{\mathrm{M}}^{*} \mathrm{X} \cap \operatorname{char}(\mathscr{M})$.

When $L=Y$ is a complex submanifold of complex codimension $d,(Y, \mathscr{M})$ is elliptic if and only if the embedding $Y \hookrightarrow X$ is non-characteristic for \mathscr{M}. In this case, Corollary 2.3 gives the isomorphism

3 Wick rotation for D-modules

3.1 Hyperbolic D-modules

Let M be a real manifold and let X be a complexification of M. Recall the embedding $T^{*} M \hookrightarrow T^{*} T_{M}^{*} X$ of (2.3) and recall that for $S \subset T^{*} X$, the Whitney cone $C_{T_{M}^{*} X}(S)$ is contained in $T_{T_{M}^{*} X} T^{*} X \simeq T^{*} T_{M}^{*} X$. The next definition is extracted form [KS90]. See [Sch13] for details.

Definition 3.1. Let \mathscr{M} be a coherent left \mathscr{D}_{X}-module.
(a) We set

$$
\begin{equation*}
\operatorname{hypchar}_{M}(\mathscr{M})=T^{*} M \cap C_{T_{M}^{*} X}(\operatorname{char}(\mathscr{M})) \tag{3.1}
\end{equation*}
$$

and call $\operatorname{hypchar}_{M}(\mathscr{M})$ the hyperbolic characteristic variety of \mathscr{M} along M.
(b) A vector $\theta \in T^{*} M$ such that $\theta \notin \operatorname{hypchar}_{M}(\mathscr{M})$ is called hyperbolic with respect to \mathscr{M}.
(c) A submanifold N of M is called hyperbolic for \mathscr{M} if

$$
\begin{equation*}
T_{N}^{*} M \cap \operatorname{hypchar}_{M}(\mathscr{M}) \subset T_{M}^{*} M, \tag{3.2}
\end{equation*}
$$

that is, any nonzero vector of $T_{N}^{*} M$ is hyperbolic for \mathscr{M}.
(d) For a differential operator P, we set hypchar $(P)=\operatorname{hypchar}_{M}\left(\mathscr{D}_{X} / \mathscr{D}_{X} \cdot P\right)$.

Example 3.2. Assume we have a local coordinate system $(x+\sqrt{-1} y)$ on X with $M=\{y=0\}$ and let $(x+\sqrt{-1} y ; \xi+\sqrt{-1} \eta)$ be the coordinates on $T^{*} X$ so that $T_{M}^{*} X=\{y=\xi=0\}$. Let $\left(x_{0} ; \theta_{0}\right) \in T^{*} M$ with $\theta_{0} \neq 0$. Let P be a differential operator with principal symbol $\sigma(P)$. Then ($x_{0} ; \theta_{0}$) is hyperbolic for P if and only if

$$
\left\{\begin{array}{l}
\text { there exist an open neighborhood } U \text { of } x_{0} \text { in } M \text { and an open conic } \tag{3.3}\\
\text { neighborhood } \gamma \text { of } \theta_{0} \in \mathbb{R}^{n} \text { such that } \sigma(P)(x ; \theta+\sqrt{-1} \eta) \neq 0 \text { for } \\
\text { all } \eta \in \mathbb{R}^{n}, x \in U \text { and } \theta \in \gamma .
\end{array}\right.
$$

As noticed by M. Kashiwara, it follows from the local Bochner's tube theorem that Condition (3.3) can be simplified: $\left(x_{0} ; \theta_{0}\right)$ is hyperbolic for P if and only if

$$
\left\{\begin{array}{l}
\text { there exists an open neighborhood } U \text { of } x_{0} \text { in } M \text { such that } \tag{3.4}\\
\sigma(P)\left(x ; \theta_{0}+\sqrt{-1} \eta\right) \neq 0 \text { for all } \eta \in \mathbb{R}^{n}, \text { and } x \in U .
\end{array}\right.
$$

Hence, one recovers the classical notion of a (weakly) hyperbolic operator.
Notation 3.3. As usual, we shall write $\mathrm{R} \mathscr{H}_{o_{\mathscr{D}_{X}}}\left(\mathscr{M}, \mathscr{C}_{M}\right)$ instead of $\mathrm{R} \mathscr{H} o m_{\pi^{-1} \mathscr{D}_{X}}\left(\pi^{-1} \mathscr{M}^{\prime}, \mathscr{C}_{M}\right)$ and similarly with other sheaves on cotangent bundles.

3.2 Main tool

Consider as above a real manifold M and a complexification X of M, a closed submanifold N of M, and Y a complexification of N in X. Denote as above by $f: Y \hookrightarrow X$ the embedding. Consider also another closed real submanifold $L \subset X$ such that $L \cap M=N$ and the intersection is clean. Denote by $g: L \hookrightarrow X$ the embedding and consider the Diagram 2.4 with $Z=L$.
(We prefer to use the notation L better than L since now it is a real manifold, playing a role similar to that of M.)

Let \mathscr{M} be a coherent \mathscr{D}_{X}-module and consider the hypotheses:

$$
\begin{align*}
& \text { the pair }(L, \mathscr{M}) \text { is elliptic, } \tag{3.5}\\
& \text { the submanifold } N \text { is hyperbolic for } \mathscr{M} \text { on } M, \tag{3.6}\\
& Y \text { is non characteristic for } \mathscr{M} \tag{3.7}
\end{align*}
$$

Set $F=\mathrm{R} \mathscr{H}_{\text {om }}^{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{O}_{X}\right)$. Then hypothesis (a) of Theorem 2.4 is translated as hypothesis (3.5) and hypothesis (b) is translated as hypothesis (3.6).

We shall constantly use the next result.
Lemma 3.4 (see [JS16, Lem. 3.5]). Hypothesis (3.6) implies hypothesis (3.7).
Theorem 3.5. Let \mathscr{M} be a coherent left \mathscr{D}_{X}-module. Assume (3.5) and (3.6). Then one has the natural isomorphism

$$
\mathrm{R} g_{N d!} g_{N \pi}^{-1} \mathrm{R} \mathscr{H} o m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{C}_{M}\right) \xrightarrow{\sim} \mu_{N}\left(\omega_{L / N} \otimes g^{-1} \mathrm{R} \mathscr{H}_{0} m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{O}_{X}\right)\right) .
$$

Proof. Apply Theorem 2.4 together with Lemma 2.7 to the sheaf $F=\mathrm{R} \mathscr{H} \boldsymbol{m}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{O}_{X}\right)$. We get:

$$
\operatorname{R} g_{N d!}\left(\omega_{N / M} \otimes g_{N \pi}^{-1} \mathrm{R} \mathscr{H} \operatorname{Hom}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mu_{M}\left(\mathscr{O}_{X}\right)\right)\right) \simeq \mu_{N}\left(\omega_{L / X} \otimes g^{-1} \mathrm{R} \mathscr{H}^{\left(m_{\mathscr{D}_{X}}\right.}\left(\mathscr{M}, \mathscr{O}_{X}\right)\right) .
$$

Equivalently, we have

$$
\mathrm{R} g_{N d!} g_{N \pi}^{-1}\left(\omega_{X / M} \otimes \mathrm{R} \mathscr{H} \operatorname{om}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mu_{M}\left(\mathscr{O}_{X}\right)\right)\right) \simeq \mu_{N}\left(\omega_{L / N} \otimes g^{-1} \mathrm{R} \mathscr{H o m}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{O}_{X}\right)\right)
$$

Finally $\omega_{X / M} \otimes \mu_{M}\left(\mathscr{O}_{X}\right) \simeq \mathscr{C}_{M}$. Q.E.D.

Example 1: Cauchy problem for microfunctions

Let M, X, L, N and f be as above and assume that $L=Y$, hence $f=g$.
Corollary 3.6. Let \mathscr{M} be a coherent left \mathscr{D}_{X}-module. Assume (3.6). Then one has the natural isomorphism

$$
f_{N d!} f_{N \pi}^{-1} \mathrm{R} \mathscr{H} o m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{C}_{M}\right) \simeq \mathrm{R} \mathscr{H} o m_{\mathscr{V}_{Y}}\left(f^{D} \mathscr{M}, \mathscr{C}_{N}\right) .
$$

Proof. Applying Theorem 2.11, we get $f^{-1} \mathrm{R} \mathscr{H}_{\operatorname{om}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{O}_{X}\right) \simeq \mathrm{R} \mathscr{H}^{\prime} m_{\mathscr{D}_{Y}}\left(f^{D} \mathscr{M}^{\prime}, \mathscr{O}_{Y}\right) \text {. (Re- }}$ call that (3.6) implies (3.7).) Moreover, $\omega_{Y / N} \otimes \mu_{N}\left(\mathscr{O}_{Y}\right) \simeq \mathscr{C}_{N}$. Finally, since $f_{N d}$ is finite on $\operatorname{char}(\mathscr{M})$, we may replace $\mathrm{R} f_{N d!}$ with $f_{N d!}$.
Q.E.D.

3.3 Boundary values

Let M be a real n-dimensional manifold, N a closed submanifod of codimesnion d, X a complexification of M and Y a complexification of N in X. We denote by $f: Y \hookrightarrow X$ the embedding.

Notation 3.7. We set

$$
\widetilde{\mathscr{B}}_{N}=\mathrm{R}_{N}\left(\mathscr{O}_{X}\right) \otimes \operatorname{or}_{N}[n] \simeq H_{N}^{n}\left(\mathscr{O}_{X}\right) \otimes \operatorname{or}_{N}
$$

We shall not confuse the sheaf $\widetilde{\mathscr{B}}_{N}$ with the sheaf \mathscr{B}_{N} of hyperfunctions on N. We have an isomorphism

$$
\widetilde{\mathscr{B}}_{N} \simeq \Gamma_{N} \mathscr{B}_{M} \otimes \text { or }_{N / M} .
$$

Let \mathscr{M} be a coherent \mathscr{D}_{X}-module. Applying the functor $\mathrm{R}_{N}(\cdot) \otimes \operatorname{or}_{N}[n-d]$ to the isomorphism (iii) in Theorem 2.11 together with isomorphism (2.12) one recovers a well known result:

Lemma 3.8. Assume (3.7). One has a natural isomorphism

$$
\operatorname{R} \mathscr{H} o m_{\mathscr{D}_{X}}\left(\mathscr{M}, \widetilde{\mathscr{B}}_{N}\right)[d] \simeq \operatorname{R} \mathscr{H} o m_{\mathscr{D}_{Y}}\left(f^{D} \mathscr{M}, \mathscr{B}_{N}\right)
$$

Appying the functor D_{X}^{\prime} to the morphism $\mathbb{C}_{M} \rightarrow \mathbb{C}_{N}$, we get the morphism $\mathrm{D}_{X}^{\prime}\left(\mathbb{C}_{N}\right) \rightarrow$ $\mathrm{D}_{X}^{\prime}\left(\mathbb{C}_{M}\right)$, that is, the morphism or ${ }_{N}[d+n] \rightarrow$ or $_{M}[n]$. Applying the functor $\mathrm{R} \mathscr{H}$ om $\left(\cdot, \mathscr{O}_{X}\right)$ we get the "restriction" morphism

$$
\begin{equation*}
\rho_{M N}: \mathscr{B}_{M} \rightarrow \widetilde{\mathscr{B}}_{N}[d] \simeq \Gamma_{N} \mathscr{B}_{M} \otimes \omega_{M / N} . \tag{3.8}
\end{equation*}
$$

For a closed cone $\lambda \subset T_{M}^{*} X$, we set for short

$$
\begin{equation*}
\mathscr{B}_{M, \lambda}:=\pi_{M *} \Gamma_{\lambda} \mathscr{C}_{M} \tag{3.9}
\end{equation*}
$$

For an open cone $\gamma \subset T_{N} M$, we set for short :

$$
\begin{equation*}
\Gamma_{\gamma} \mathscr{B}_{N M}:=\tau_{N *} \Gamma_{\gamma}\left(\nu_{N}\left(\mathscr{B}_{M}\right)\right) . \tag{3.10}
\end{equation*}
$$

(In the sequel, we shall use this notation for another real manifold Z instead of M.)
Hence, for a closed convex proper cone λ with $\lambda \supset N$, setting $\gamma=\operatorname{Int}\left(\lambda^{\circ a}\right)$, we have by (2.2):

$$
\begin{equation*}
\pi_{N *} \Gamma_{\lambda}\left(\mu_{N} \mathscr{B}_{M}\right) \otimes \omega_{M / N} \simeq \Gamma_{\gamma} \mathscr{B}_{M} \tag{3.11}
\end{equation*}
$$

One can use (3.11) and the morphism $\pi_{N *} \Gamma_{\lambda}\left(\mu_{N} \mathscr{B}_{M}\right) \rightarrow \pi_{N *} \mu_{N} \mathscr{B}_{M} \simeq \Gamma_{N} \mathscr{B}_{M}$ to obtain the morphism

$$
\begin{equation*}
b_{\gamma, N}: \Gamma_{\gamma} \mathscr{B}_{M} \rightarrow \Gamma_{N} \mathscr{B}_{M} \otimes \omega_{M / N} . \tag{3.12}
\end{equation*}
$$

One can also construct (3.12) directly as follows. Let U be an open subset of M such that $\bar{U} \supset N, U$ is locally cohomologically trivial (see [KS90, Exe. III.4]). Then the morphism $\mathbb{C}_{\bar{U}} \rightarrow \mathbb{C}_{N}$ gives by duality the morphism or ${ }_{N}[d+n] \rightarrow$ or $_{U}[n]$ and one gets the morphism $\Gamma_{U} \mathscr{B}_{M} \rightarrow \Gamma_{N} \mathscr{B}_{M} \otimes \omega_{M / N}$ by applying $\mathrm{R} \mathscr{H} \operatorname{om}\left(\bullet, \mathscr{O}_{X}\right)$ similarly as for $\rho_{M N}$. Taking the inductive limit with respect to the family of open sets U such that $C_{M}(X \backslash U) \cap \gamma=\varnothing$ (see [KS90, Th. 4.2.3]), we recover the morphism (3.12).

In particular, for a coherent \mathscr{D}_{X}-module \mathscr{M} we get the morphisms

$$
\begin{aligned}
\gamma_{M N} & : \quad \mathrm{R} \mathscr{H} \operatorname{om}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{B}_{M, \lambda}\right) \rightarrow \mathrm{R} \mathscr{H} \operatorname{om}_{\mathscr{D}_{X}}\left(\mathscr{M}, \widetilde{\mathscr{B}}_{N}\right)[d], \\
b_{\gamma, N} & : \quad \mathrm{R} \mathscr{H} m_{\mathscr{D}_{X}}\left(\mathscr{M}, \Gamma_{\gamma} \mathscr{B}_{N M}\right) \rightarrow \mathrm{R} \mathscr{H} m_{\mathscr{D}_{X}}\left(\mathscr{M}, \widetilde{\mathscr{B}}_{N}\right)[d] .
\end{aligned}
$$

3.4 Wick rotation

Let M, X, Y, N, L, f and g be as above. Now, we also assume that L is a real manifold of the same dimension than M and X is a complexification of L. We still consider diagram (2.4).

Consider the hypothesis

$$
\left\{\begin{array}{l}
\text { in a neighborhood of } N, \operatorname{char}(\mathscr{M}) \cap T_{M}^{*} X \text { is contained in the union of } \tag{3.13}\\
\text { two closed cones } \lambda^{+} \text {and } \lambda^{-} \text {such that } \lambda^{+} \cap \lambda^{-} \subset T_{X}^{*} X \text { and } \lambda^{ \pm} \supset T_{M}^{*} X .
\end{array}\right.
$$

Lemma 3.9. Assume (3.13). Then we have the natural isomorphism

$$
\begin{equation*}
g_{N \pi}^{-1} \mathrm{R} \Gamma_{\lambda}+\operatorname{RHom}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{C}_{M}\right) \xrightarrow{\sim} \mathrm{R} \Gamma_{g_{N \pi}^{-1}\left(\lambda^{+}\right)} g_{N \pi}^{-1} \mathrm{R} \mathscr{H o m}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{C}_{M}\right) . \tag{3.14}
\end{equation*}
$$

Proof. (i) Set for short $F=\mathrm{R} \mathscr{H}_{\boldsymbol{o}}^{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{C}_{M}\right), j=g_{N \pi}, A=\lambda^{+}, B=j^{-1} A$. With these new notations, we have to prove the morphism

$$
\begin{equation*}
j^{-1} \mathrm{R} \Gamma_{A} F \xrightarrow{\sim} \mathrm{R} \Gamma_{B} j^{-1} F \tag{3.15}
\end{equation*}
$$

is an isomorphism.
(ii) The morphism (3.15) is an isomorphism outside of the zero-section of $T_{M}^{*} X$ since $\operatorname{supp}(F)=$ $A \sqcup C$ with A and C closed and $A \cap C=\varnothing$.
(iii) Consider the diagram in which s_{N} and s_{M} denote the embeddings of the zero-sections:

Since $\mathrm{R} \pi_{N *} \simeq s_{N}^{-1}$, when applied to conic sheaves, it remains to show that (3.15) is an isomorphism after applying the functor $\mathrm{R} \pi_{N *}$.
(iv) Consider the morphism of Sato's distinguished triangles:

It follows from (i) that the vertical arrow w on the right is an isomorphism. We are thus reduced to prove the isomorphism

$$
\begin{equation*}
\mathrm{R} \pi_{N!} j^{-1} \mathrm{R} \Gamma_{A} F \xrightarrow{\sim} \mathrm{R} \pi_{N!} \mathrm{R} \Gamma_{B} j^{-1} F . \tag{3.17}
\end{equation*}
$$

(v) Using the fact that $A \supset M$ and $B \supset N$ and that Diagram (3.16) (with the arrows going down) is Cartesian, we get

$$
\begin{aligned}
\mathrm{R} \pi_{N!} j^{-1} \mathrm{R} \Gamma_{A} F & \simeq j^{-1} \mathrm{R} \pi_{M!} \mathrm{R} \Gamma_{A} F \simeq j^{-1} s_{M}^{!} \mathrm{R} \Gamma_{A} F \\
& \simeq j^{-1} s_{M}^{\prime} F \simeq j^{-1} \mathrm{R} \pi_{M!} F \simeq \mathrm{R} \pi_{N!} j^{-1} F \\
& \simeq s_{N}^{\prime} j^{-1} F \simeq s_{M}^{\prime} \mathrm{R} \Gamma_{B} j^{-1} F \\
& \simeq \mathrm{R} \pi_{N!} \mathrm{R} \Gamma_{B} j^{-1} F .
\end{aligned}
$$

Q.E.D.

Consider

$\gamma \subset T_{N} L$ an open convex cone such that $\bar{\gamma}$ contains the zero-section N
and recall notations (3.9) and (3.10).
Theorem 3.10 (Wick isomorphism Theorem). Let \mathscr{M} be a coherent left \mathscr{D}_{X}-module and let γ be as in (3.18). Assume (3.5), (3.6), (3.13) and also

$$
\begin{equation*}
g_{N \pi}^{-1}\left(\lambda^{+}\right)=g_{N d}^{-1}\left(\gamma^{\circ a}\right) . \tag{3.19}
\end{equation*}
$$

Then one has the commutative diagram in which the horizontal arrow is an isomorphism:

Proof. (i) As a particular case of Theorem 3.5 and using the fact that $g^{-1} \mathrm{R} \mathscr{H}_{\mathrm{Om}_{\mathscr{D}_{X}}}\left(\mathscr{M}, \mathscr{O}_{X}\right) \simeq$ $\mathrm{R} \mathscr{H} \mathrm{om}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{B}_{L}\right)$, we get the isomorphism

$$
\mathrm{R} g_{N d!} g_{N \pi}^{-1} \mathrm{R} \mathscr{H} o m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{C}_{M}\right) \simeq \mathrm{R} \mathscr{H} m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mu_{N} \mathscr{B}_{L}\right) \otimes \omega_{L / N} .
$$

(ii) Set for short $F=\mathrm{R} \mathscr{H}$ om $\mathscr{D}_{X}\left(\mathscr{M}, \mathscr{C}_{M}\right)$. Using Lemma 3.9 and the fact that $g_{N d}$ is proper on $\operatorname{supp} F$, we have the isomorphism

$$
\begin{aligned}
\mathrm{R} g_{N d!} g_{N \pi}^{-1} \mathrm{R} \Gamma_{\lambda+} F & \simeq \mathrm{R} g_{N d!} \mathrm{R} \Gamma_{g_{N \pi}^{-1}\left(\lambda^{+}\right)} g_{N \pi}^{-1} F \\
& \simeq \mathrm{R} \Gamma_{\gamma^{\circ a}} \mathrm{R} g_{N d!} g_{N \pi}^{-1} F .
\end{aligned}
$$

Therefore, we have proved the isomorphism

$$
\begin{equation*}
\mathrm{R} g_{N d!} g_{N \pi}^{-1} \mathrm{R}{\mathscr{H} o m_{\mathscr{D}_{X}}}\left(\mathscr{M}, \Gamma_{\lambda+} \mathscr{C}_{M}\right) \simeq \operatorname{RH}_{\mathscr{H}_{\mathscr{D}_{X}}}\left(\mathscr{M}, \Gamma_{\gamma^{\circ a}} \mu_{N} \mathscr{B}_{L}\right) \otimes \omega_{L / N} . \tag{3.21}
\end{equation*}
$$

(iii) Let us apply the functor $\mathrm{R} \pi_{N *}$ to (3.21). Since $g_{N d}$ is proper on $\operatorname{supp} F$, setting $G=$ R \mathscr{H} om $_{\mathscr{D}_{X}}\left(\mathscr{M}, \Gamma_{\lambda+} \mathscr{C}_{M}\right)$, we have (see Diagram 2.6)

$$
\begin{aligned}
\mathrm{R} \pi_{N *} \mathrm{R} g_{N d!} g_{N \pi}^{-1} G & \simeq \mathrm{R} \pi_{*} g_{N \pi}^{-1} G \\
& \left.\simeq\left(\mathrm{R} \pi_{M *} G\right)\right|_{N} .
\end{aligned}
$$

Hence, we have proved the isomorphism

$$
\left.\operatorname{R} \mathscr{H o m}_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{B}_{M, \lambda^{+}}\right)\right|_{N} \simeq \operatorname{R} \mathscr{H} o m_{\mathscr{D}_{X}}\left(\mathscr{M}, \pi_{N *} \Gamma_{\gamma^{\circ} a \mu_{N}} \mathscr{B}_{L}\right) \otimes \omega_{L / N}
$$

and the result follows from (3.11).
Q.E.D.

3.5 The classical Wick rotation

Let us treat the classical Wick rotation. Hence, we assume that $M=N \times \mathbb{R}$ and $L=$ $N \times \sqrt{-1} \mathbb{R}$. As usual, Y is a complexification of N and $X=Y \times \mathbb{C}$. We denote by $t+i s$ the holomorphic coordinate on \mathbb{C}, by $(t+i s ; \tau+i \sigma)$ the symplectic coordinates on $T^{*} \mathbb{C}$ and by $(x ; i \eta)$ a point of $T_{N}^{*} Y$. We identify N and $N \times\{0\} \subset X$.

Let P is a differential operator of order m, elliptic on L and (weakly) hyperbolic on M in the $\pm d t$ codirections. A typical example is the wave operator on a globally hyperbolic spacetime $N \times \mathbb{R}_{t}$. Set

$$
L^{+}=N \times\{t+i s ; t=0, s>0\}, \quad \lambda^{+}=T_{N}^{*} Y \times\{(t+i s ; \tau+i \sigma) ; s=0, \tau=0, \sigma \leq 0\} .
$$

The map $g_{N d}: N \times_{M} T_{M}^{*} X \rightarrow T_{N}^{*} L$ is given by

$$
(x, 0 ; i \eta, i \sigma) \mapsto(x ; \sigma)
$$

We shall apply the preceding result with $\gamma=L^{+}$. In that case, $\gamma^{\circ a}=\lambda^{+}$and (3.19) is satisfied.

Let $\mathscr{M}=\mathscr{D}_{X} / \mathscr{D}_{X} \cdot P$. In the sequel we write for short \mathscr{B}_{M}^{P} instead of $\mathscr{H}^{\prime} m_{\mathscr{D}_{X}}\left(\mathscr{M}, \mathscr{B}_{M}\right)$ and similarly with other sheaves. Note that $\mathscr{E} x t_{\mathscr{D}_{X}}^{1}\left(\mathscr{M}, \widetilde{\mathscr{B}}_{N}\right) \simeq \widetilde{\mathscr{B}}_{N} / P \cdot \widetilde{\mathscr{B}}_{N}$.

As a particular case of Theorem 3.10, we get:
Corollary 3.11. We have a commutative diagram in which the horizontal arrow is an isomorphism:

References

[JS16] Benoît Jubin and Pierre Schapira, Sheaves and D-modules on causal manifolds, Letters in Mathematical Physics 16 (2016), 607-648.
[Kas95] Masaki Kashiwara, Algebraic study of systems of partial differential equations, Mémoires SMF, vol. 63, Soc. Math. France, 1995 (Japanese). Translated from author's thesis, Tokyo 1970.
[Kas03] \qquad , D-modules and microlocal calculus, 2003.
[KS90] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1990.
[Sat59] Mikio Sato, Theory of hyperfunctions, I \& II, Journ. Fac. Sci. Univ. Tokyo 8 (1959, 1960), 139-193, 487-436.
[Sat70] \qquad , Regularity of hyperfunctions solutions of partial differential equations, Vol. 2, Actes du Congrs International des Mathmaticiens, Gauthier-Villars, Paris, 1970.
[SKK73] Mikio Sato, Takahiro Kawai, and Masaki Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Springer, Berlin, 1973, pp. 265-529. Lecture Notes in Math., Vol. 287.
[Sch13] Pierre Schapira, Hyperbolic systems and propagation on causal manifolds, Lett. Math. Phys. 103 (2013), no. 10, 1149-1164, available at arXiv:1305.3535.

Pierre Schapira
Sorbonne Universités, UPMC Univ Paris 6 Institut de Mathématiques de Jussieu
e-mail: pierre.schapira@imj-prg.fr
http://www.math.jussieu.fr/~schapira/

[^0]: ${ }^{1}$ Key words: Lorentzian manifolds, microlocal sheaf theory, hyperbolic \mathscr{D}-modules
 ${ }^{2}$ MSC: 35A27, 58J15, 58J45, 81T20

[^1]: ${ }^{3} \mu \operatorname{supp}(F)$ was denoted $\mathrm{SS}(F)$ in loc. cit., a shortcut for "singular support".

