Abstract

On a finite-dimensional real vector space, we give a microlocal characterization of (derived) piecewise linear sheaves (PL sheaves) and prove that the category of such sheaves is generated by sheaves associated with convex polytopes. We then give a similar theorem for PL γ-sheaves, that is PL sheaves associated with the γ-topology, for a closed convex polyhedral proper cone γ. Recall that convex polytopes may be considered as building blocks for higher dimensional barcodes.

Contents

1 PL geometry 2
 1.1 PL sets and PL stratifications 2
 1.2 PL Lagrangian subvarieties 4

2 PL sheaves 4
 2.1 Review on sheaves 4
 2.2 Microlocal characterization of PL sheaves 6
 2.3 Generators for PL sheaves 7

3 PL γ-sheaves 8
 3.1 Review on γ-sheaves 8
 3.2 Review on PL γ-sheaves 9
 3.3 Generators for PL γ-sheaves 11

Key words: microlocal sheaf theory, piecewise linear
MSC: 55N99, 18A99, 35A27
The research of M.K was supported by Grant-in-Aid for Scientific Research (B) 15H03608, Japan Society for the Promotion of Science.
The research of P.S was supported by the ANR-15-CE40-0007 “MICROLOCAL”.
Introduction

In a previous paper [KS18] we have interpreted persistent homology in higher dimension in the language of (derived) γ-sheaves, where γ is a closed convex proper cone in a finite-dimensional real vector space \mathbb{V}. We have also proved that such γ-sheaves may be approximated (for a kind of derived bottleneck distance) by PL γ-sheaves (PL for piecewise linear).

Here, we start with a systematic study of PL-sheaves. We show in particular that a sheaf is PL if and only if its microsupport is a PL Lagrangian variety or, equivalently, is contained in such a Lagrangian variety. We also show that the triangulated category of PL-sheaves is generated by the family of constant sheaves on locally closed polytopes.

Then, after recalling the main results of [KS18], we prove that the triangulated category of PL-γ-sheaves is generated by the family of constant sheaves on γ-locally closed polytopes. Recall that convex polytopes may be considered as building blocks for higher dimensional barcodes [KS18].

1 PL geometry

1.1 PL sets and PL stratifications

Let \mathbb{V} be a real finite-dimensional vector space.

Definition 1.1. (a) A convex polytope P in \mathbb{V} is the intersection of a finite family of open or closed affine half-spaces.

(b) A PL set is a finite\(^3\) union of convex polytopes.

Note that a PL set is subanalytic.

The next result is obvious.

Lemma 1.2. (a) The family of PL-sets in \mathbb{V} is stable by finite unions and finite intersections.

(b) If Z is PL, then its closure \overline{Z}, its interior $\text{Int}(Z)$ and its complementary set $\mathbb{V} \setminus Z$ are PL.

(c) Let $u: \mathbb{V} \rightarrow \mathbb{W}$ be a linear map.

(i) If $S \subset \mathbb{V}$ is PL, then $u(S) \subset \mathbb{W}$ is PL.

(ii) If $Z \subset \mathbb{W}$ is PL, then $u^{-1}(Z) \subset \mathbb{V}$ is PL.

For a locally closed submanifold $Z \subset \mathbb{V}$, one sets for short

$$T^*_Z \mathbb{V} := T^*_Z U$$ where U is an open subset of \mathbb{V} containing Z as a closed subset.

\(^3\)In all this paper, we consider finite union of polytopes, contrarily to [KS18] in which we consider locally finite union. The same remark applies in particular to Definitions 1.3, 2.3 and 3.7.
Definition 1.3. A PL-stratification of a set S of V is a finite family $Z = \{Z_a\}_{a \in A}$ of non-empty convex polytopes such that

(i) each Z_a is a locally closed submanifold,

(ii) $Z_a \cap Z_b = \emptyset$ for $a \neq b$,

(iii) $Z_a \cap Z_b \neq \emptyset$ implies $Z_a \subset Z_b$.

Recall the operation $\hat{\oplus}$ and the notion of a μ-stratification of [KS90, Def. 6.2.4, 8.3.19].

Proposition 1.4. Let $Z = \{Z_a\}_{a \in A}$ be a PL stratification. Then

(i) $\{Z_a\}_{a \in A}$ is a μ-stratification, that is, $Z_a \subset Z_b$ implies $(T_{Z_a}^* V \hat{\oplus} T_{Z_b}^* V) \cap \pi^{-1}(Z_a) \subset T_{Z_a}^* V$.

(ii) Set $\Lambda = \bigsqcup_{a \in A} T_{Z_a}^* V$. Then $\Lambda \hat{\oplus} \Lambda = \Lambda$.

Proof. We shall prove both statements together.

Assume that $P_a \subset P_b \cap P_c$. We may assume (in a neighborhood of a point of P_a) that $V = W \oplus W'$ for two linear spaces W and W' and $P_a = W$. Then $P_b = W \times S$ and $P_c = W \times Z$ where S is open in some linear subspace W'' of W' and similarly for P_c.

Then one immediately checks that $(T_{P_b}^* V \hat{\oplus} T_{P_c}^* V) \cap \pi^{-1}(P_a) \subset T_{P_a}^* V$. \hfill \Box

Proposition 1.5. Consider a finite family $\{P_b\}_{b \in B}$ of convex polytopes. Then there exists a PL-stratification $V = \bigsqcup_{a \in A} Z_a$ such that for any $b \in B$, P_b is a union of strata.

In the sequel, an interval of \mathbb{R} means a convex subset of \mathbb{R}.

Proof. There exists a finite family $\{f_1, \ldots, f_l\}$ of linear forms and a finite family $\{I_c\}_{c \in C}$ such that each I_c is either an open interval or a point and that $\mathbb{R} = \bigcup_{c \in C} I_c$ and for all $b \in B$,

$$P_b = \bigcap_{1 \leq j \leq l} f_j^{-1}(J_j),$$

where J_j is a union of some I_c, $c \in C$.

For any family $d = \{c_1, \ldots, c_l\} \in C^l$, set

$$Z_d = \bigcap_{j=1}^l f_j^{-1}(I_{c_j}).$$

Then the family $\{Z_d\}_{d \in C^l}$ is a PL-stratification of V finer that the family $\{P_b\}_{b \in B}$. \hfill \Box
1.2 PL Lagrangian subvarieties

Recall that the notions of co-isotropic, isotropic and Lagrangian subanalytic subvarieties are given in [KS90, Def. 6.5.1, 8.3.9].

Proposition 1.6. Let Λ be a locally closed conic PL isotropic subset of T^*V. Then for any $p \in \Lambda_{\text{reg}}$ there exists a linear affine subspace $L \subset V$ with $\Lambda \subset T^*_LV$ in a neighborhood of p.

Proof. If λ is a linear affine isotropic subspace of T^*V, then there exists a linear affine subspace L of V such that $\lambda \subset T^*_LV$. \qed

Lemma 1.7. Let $\{L_a\}_{a \in A}$ be a finite family of affine linear subspaces of V. Set $X = \bigcup_{a \in A} L_a$ and let $S \subset X$. Assume that X is a closed subset of V, $S \cap X_{\text{reg}}$ is open in X_{reg} and S is the closure of $S \cap X_{\text{reg}}$. Then S is PL.

Proof. Indeed $S \cap \Lambda_{\text{reg}}$ is a union of connected components of Λ_{reg}. \qed

Theorem 1.8. (a) Let Λ be a locally closed conic PL isotropic subset of T^*V. Then there exists a PL stratification $\{P_a\}_{a \in A}$ of V such that $\Lambda \subset \bigsqcup_{a \in A} T^*P_aV$.

(b) Let Λ be a locally closed conic subanalytic Lagrangian subset of T^*V and assume that Λ is contained in a closed conic PL isotropic subset. Then Λ is PL.

Proof. (a) Let $\{\Omega_i\}_{i \in I}$ be the family of connected components of Λ_{reg}. Note that the Ω_i’s are PL. Then there exists an affine linear subspace L_i such that $\Omega_i = \subset T^*_L\mathbb{V}$ by Proposition 1.6. Set $\omega_i = \pi(\Omega_i)$ and choose a PL stratification $\{P_a\}_{a \in A}$ finer than the family $\{\omega_i\}_{i \in I}$. Then $\Lambda_{\text{reg}} \subset \bigsqcup P_aV$ and Proposition 1.4 (a) implies that this last set is closed, hence contains Λ.

(b) follows from Lemma 1.7. \qed

2 PL sheaves

2.1 Review on sheaves

Let us recall some definitions extracted from [KS90] and a few notations.

- Throughout this paper, k denotes a field. We denote by $\text{Mod}(k)$ the abelian category of k-vector spaces.

- For an abelian category \mathcal{C}, we denote by $\text{D}^b(\mathcal{C})$ its bounded derived category. However, we write $\text{D}^b(k)$ instead of $\text{D}^b(\text{Mod}(k))$.

- If $\pi: E \to M$ is a vector bundle over M, we identify M with the zero-section of E and we set $\hat{E} := E \setminus M$. We denote by $\hat{\pi}: \hat{E} \to M$ the restriction of π to \hat{E}.
For a vector bundle $E \rightarrow M$, we denote by $a: E \rightarrow E$ the antipodal map, $a(x, y) = (x, -y)$. For a subset $Z \subset E$, we simply denote by Z^a its image by the antipodal map. In particular, for a cone γ in E, we denote by $\gamma^a = -\gamma$ the opposite cone. For such a cone, we denote by γ^o the polar cone (or dual cone) in the dual vector bundle E^*:

$$\gamma^o = \{(x; \xi) \in E^*; \langle \xi, v \rangle \geq 0 \text{ for all } v \in \gamma_x\}. \quad (2.1)$$

Let M be a real manifold of dimension $\dim M$. We shall use freely the classical notions of microlocal sheaf theory, referring to [KS90]. We denote by $\text{Mod}(k_M)$ the abelian category of sheaves of k-modules on M and by $D^b(k_M)$ its bounded derived category. For short, an object of $D^b(k_M)$ is called a “sheaf” on M.

For a locally closed subset $Z \subset M$, one denotes by k_Z the constant sheaf with stalk k on Z extended by 0 on $M \setminus Z$. One defines similarly the sheaf L_Z for $L \in D^b(k)$.

We denote by or_M the orientation sheaf on M and by ω_M the dualizing complex on M. Recall that $\omega_M \cong or_M [\dim M]$. One shall use the duality functors

$$D'_M(\bullet) = R\mathcal{H}om(\bullet, k_M), \quad D_M(\bullet) = R\mathcal{H}om(\bullet, \omega_M). \quad (2.2)$$

For $F \in D^b(k_M)$ we denote by $\mu_{\text{supp}}(F)^4$ its microsupport, a closed conic co-isotropic subset of T^*M.

Constructible sheaves
We refer the reader to [KS90] for terminologies not explained here.

Definition 2.1. Let M be a real analytic manifold and let $F \in \text{Mod}(k_M)$. One says that F is weakly \mathbb{R}-constructible if there exists a subanalytic stratification $M = \bigsqcup_{a \in A} M_a$ such that for each stratum M_a, the restriction $F|_{M_a}$ is locally constant. If moreover, the stalk F_x is of finite rank for all $x \in M$, then one says that F is \mathbb{R}-constructible.

Notation 2.2.
(i) One denotes by $\text{Mod}_{\mathbb{R}c}(k_M)$ the abelian category of \mathbb{R}-constructible sheaves, a thick abelian subcategory of $\text{Mod}(k_M)$.

(ii) One denotes by $D^b_{\mathbb{R}c}(k_M)$ the full triangulated subcategory of $D^b(k_M)$ consisting of sheaves with \mathbb{R}-constructible cohomology and by $D^b_{\mathbb{R}c,c}(k_M)$ the full triangulated subcategory of $D^b_{\mathbb{R}c}(k_M)$ consisting of sheaves with compact support.

Recall that the natural functor $D^b(\text{Mod}_{\mathbb{R}c}(k_M)) \rightarrow D^b_{\mathbb{R}c,c}(k_M)$ is an equivalence of categories.

$^4 \mu_{\text{supp}}(F)$ was denoted by $\text{SS}(F)$ in [KS90].
2.2 Microlocal characterization of PL sheaves

Definition 2.3. One says that \(F \in \text{D}^b(k_V) \) is PL if there exists a finite family \(\{ P_a \}_{a \in A} \) of convex polytopes such that \(V = \bigcup_{a \in A} P_a \) and \(F|_{P_a} \) is constant of finite rank for any \(a \in A \).

By this definition

\(F \) is PL if and only if \(H^j(F) \) is PL for all \(j \in \mathbb{Z} \).

One sets

\[
\begin{align*}
\text{D}^b_{\text{PL}}(k_V) &:= \{ F \in \text{D}^b(k_V); \; F \text{ is PL} \}, \\
\text{Mod}_{\text{PL}}(k_V) &:= \text{Mod}(k_V) \cap \text{D}^b_{\text{PL}}(k_V).
\end{align*}
\]

Of course, \(\text{D}^b_{\text{PL}}(k_V) \) is a subcategory of \(\text{D}^b_{\text{Rc}}(k_V) \) and \(\text{Mod}_{\text{PL}}(k_V) \) is a subcategory of \(\text{Mod}_{\text{Rc}}(k_V) \).

Proposition 2.4. The natural functor \(\text{D}^b(\text{Mod}_{\text{PL}}(k_V)) \to \text{D}^b_{\text{PL}}(k_V) \) is an equivalence.

Proof. There exists a triangulation \(S = (S, \Delta) \) and a homeomorphism \(f: |S| \to V \) such that its restriction to \(|\sigma| \) is linear for any \(\sigma \in \Delta \). Then the result follow from [KS90, Th. 8.1.10]. \(\square \)

Theorem 2.5. Let \(F \in \text{D}^b_{\text{Rc}}(k_V) \). Then the conditions below are equivalent.

(a) \(F \in \text{D}^b_{\text{PL}}(k_V) \),

(b) \(\mu\text{supp}(F) \) is a closed conic PL Lagrangian subset of \(T^*V \),

(c) \(\mu\text{supp}(F) \) is contained in a closed conic PL Lagrangian subset of \(T^*V \).

Proof. (a)\(\Rightarrow \)(c). Consider a covering \(\{ P_b \}_{b \in B} \) by convex polytopes such that \(F|_{P_b} \) is constant and choose a finer PL stratification \(V = \bigcup_{a \in A} Z_a \). This is a \(\mu \)-stratification and this implies \(\mu\text{supp}(F) \subset \bigcup_{a \in A} T_{Z_a}^*V \) by [KS90, Prop. 8.4.1].

(b)\(\Rightarrow \)(a) By Theorem 1.8 (a), there exists a PL stratification \(V = \bigcup_{a \in A} Z_a \) such that \(\mu\text{supp}(F) \subset \bigcup_{a \in A} T_{Z_a}^*V \). Then \(F|_{Z_a} \) is locally constant for each \(a \in A \) by [KS90, Prop. 8.4.1].

(b)\(\Leftrightarrow \)(c) in view of Theorem 1.8 (b). \(\square \)

The next result immediately follows from Definition 2.3. It can also easily be deduced from [KS90], Theorem 1.8 and Theorem 2.5.

Corollary 2.6. (i) The category \(\text{D}^b_{\text{PL}}(k_V) \) is a full triangulated subcategory of the category \(\text{D}^b(k_V) \) and the category \(\text{Mod}_{\text{PL}}(k_V) \) is a full thick abelian subcategory of the category \(\text{Mod}(k_V) \).

(ii) If \(F_1 \) and \(F_2 \) are PL, then so are \(F_1 \otimes F_2 \) and \(\text{RHom}(F_1, F_2) \).

(iii) Let \(f: V \to W \) be a linear map.
(a) If G is a PL sheaf on \mathcal{W}, then $f^{-1}G$ is a PL sheaf on V.
(b) If F is a PL sheaf on V then $Rf_\ast F$ is a PL sheaf on \mathcal{W}.

Proposition 2.7. Let Z be a locally closed subset of V. Then Z is PL if and only if $\text{supp}(k_Z)$ is PL.

Proof. (i) Assume that Z is PL. Then the sheaf k_Z is PL and its microsupport is PL by Theorem 2.5.
(ii) Conversely, assume that $\text{supp}(k_Z)$ is PL. Set $\partial Z = \overline{Z} \setminus Z$. Since Z is locally closed, ∂Z is closed.
(ii)-(a) First, notice that $\overline{Z} = \pi(\text{supp}(k_Z))$ is PL.
(ii)-(b) Now consider the exact sequence of sheaves $0 \to k_Z \to k_{\overline{Z}} \to k_{\partial Z} \to 0$. Since k_Z and $k_{\overline{Z}}$ are PL sheaves, the sheaf $k_{\partial Z}$ is PL. Therefore, ∂Z is PL and it follows that Z is PL.

2.3 Generators for PL sheaves

Consider a triangulated category \mathcal{D} and a family of objects \mathcal{G}. Consider the full subcategory \mathcal{T} of \mathcal{D} defined as follows. An object $F \in \mathcal{D}$ belongs to \mathcal{T} if there exists a finite sequence F_0, \ldots, F_N in \mathcal{D} with $F_0 = 0$, $F_N = F$ and distinguished triangles $F_k \to F_{k+1} \to G_k \xrightarrow{+1} 0$, $0 \leq k < N$ with $G_k \in \mathcal{G}$. Clearly, \mathcal{T} is a triangulated subcategory of \mathcal{D}. In this paper, we shall say that \mathcal{G} generates \mathcal{D} if $\mathcal{D} = \mathcal{T}$.

Theorem 2.8. The triangulated category $\text{D}_{\text{PL}}^b(k_V)$ is generated by the family $\{k_P\}$ where P ranges over the family of locally closed convex polytopes.

Proof. (i) We denote by \mathcal{G} the family of sheaves isomorphic to some k_P, P a locally closed convex polytope, and denote by \mathcal{T} the triangulated subcategory of $\text{D}_{\text{PL}}^b(k_V)$ generated by \mathcal{G}, that is, the smallest triangulated subcategory of $\text{D}_{\text{PL}}^b(k_V)$ which contains \mathcal{G}.
(ii) We argue by induction on $\dim V$. The case where $\dim V$ is 0 or 1 is clear.
(iii) Let $F \in \text{D}_{\text{PL}}^b(k_V)$. By truncation, we may reduce to the case where F is concentrated in degree 0.
(iv) There exists a finite family $\{H_a\}_{a \in A}$ such that, setting $U = V \setminus \bigcup_a H_a$, the restriction of F to U is locally constant. Let $U = \bigcup_i U_i$ be the decomposition of U into connected component. Each U_i is an open convex polytope. Set $Z = \bigcup_a H_a$ and consider the exact sequence $0 \to F_U \to F \to F_Z \to 0$. The sheaf F_U is finite direct sum of sheaves of the type k_{U_i}. Hence $F_U \in \mathcal{T}$ and it remains to show that F_Z belongs to \mathcal{T}.
(v) We argue by induction on $\# A$. If $\# A = 1$, then the result follows from the induction hypothesis on the dimension of V since we may identify F_{H_a} with a sheaf on the affine space H_a. Let $a \in A$ and define G by the exact sequence $0 \to G \to F_Z \to F_{H_a} \to 0$. By the induction hypothesis G and F_{H_a} belong to \mathcal{T} and the result follows. \qed
3 PL γ-sheaves

3.1 Review on γ-sheaves

In this subsection we shall review some definitions and results extracted from [KS90, KS18]. The so-called γ-topology has been studied with some details in [KS90, §3.4].

Let V be a finite-dimensional real vector space. We denote by $a: V \to V$ the antipodal map $x \mapsto -x$.

Hence, for two subsets A, B of V, one has $A + B = s(A \times B)$. A subset A of V is called a cone if $0 \in A$ and $\mathbb{R}_{>0}A \subseteq A$. A convex cone A is proper if $A \cap A^a = \{0\}$.

Throughout the paper, we consider a cone $\gamma \subset V$ and we assume:

(3.1) γ is closed proper convex with non-empty interior.

In §3.2 we shall make the extra assumption that γ is polyhedral, meaning that it is a finite intersection of closed half-spaces.

We say that a subset A of V is γ-invariant if $A + \gamma = A$. Note that a subset A is γ-invariant if and only if $V \setminus A$ is γ^a-invariant.

The family of γ-invariant open subsets of V defines a topology, which is called the γ-topology on V. One denotes by V_γ the space V endowed with the γ-topology and one denotes by

$$\varphi_\gamma: V \to V_\gamma$$

the continuous map associated with the identity. Note that the closed sets for this topology are the γ^a-invariant closed subsets of V.

Definition 3.1. Let A be a subset of V.

(a) One says that A is γ-open (resp. γ-closed) if A is open (resp. closed) for the γ-topology.

(b) One says that A is γ-locally closed if A is the intersection of a γ-open subset and a γ-closed subset.

(c) One says that A is γ-flat if $A = (A + \gamma) \cap (A + \gamma^a)$.

(d) One says that a closed set A is γ-proper if the map s is proper on $A \times \gamma^a$.

Remark that a closed subset A is γ-proper if and only if $A \cap (x + \gamma)$ is compact for any $x \in V$.

Proposition 3.2 ([KS18, Prop. 3.4]). The set of γ-flat open subsets Ω of V and the set of γ-locally closed subsets Z of V are isomorphic by the correspondence

$$\begin{align*}
\Omega &\longrightarrow (\Omega + \gamma) \cap \Omega + \gamma^a \\
\text{Int}(Z) &\longleftarrow Z.
\end{align*}$$

In particular, γ-locally closed subsets are γ-flat.
We shall use the notations:

\[
\begin{align*}
D^b_{\gamma^a}(k_V) := \{ F \in D^b(k_V); \mu \text{supp}(F) \subset V \times \gamma^a \}, \\
D^b_{\text{Re},\gamma^a}(k_V) := D^b_{\text{Re}}(k_V) \cap D^b_{\gamma^a}(k_V), \\
\text{Mod}^a_{\gamma^a}(k_V) := \text{Mod}(k_V) \cap D^b_{\gamma^a}(k_V), \\
\text{Mod}^\text{Re,}\gamma^a_{\gamma^a}(k_V) := \text{Mod}^\text{Re}(k_V) \cap \text{Mod}^a_{\gamma^a}(k_V).
\end{align*}
\]

(3.3)

We call an object of $D^b_{\gamma^a}(k_V)$ a γ-sheaf.

It follows from [KS90, Prop. 5.4.14] that for $F, G \in D^b_{\gamma^a}(k_V)$ and $H \in D^b_{\gamma^a}(k_V)$, the sheaves $F \otimes G$ and $R\text{Hom}(H, F)$ belong to $D^b_{\gamma^a}(k_V)$.

The next result is implicitly proved in [KS90] and explicitly in [KS18]. (In this statement, the hypothesis that $\text{Int}(\gamma)$ is non empty is not necessary.)

Theorem 3.3. Let γ be a closed convex proper cone in V. The functor $R\varphi_{\gamma^a}: D^b_{\gamma^a}(k_V) \to D^b(k_{V,\gamma})$ is an equivalence of triangulated categories with quasi-inverse φ_{γ}^{-1}. Moreover, this equivalence preserves the natural t-structures of both categories. In particular, for $F \in D^b(k_V)$, the condition $F \in D^b_{\gamma^a}(k_V)$ is equivalent to the condition: $\mu \text{supp}(H^j(F)) \subset V \times \gamma^a$ for any $j \in \mathbb{Z}$.

Thanks to this theorem, the reader may ignore microlocal sheaf theory, at least in a first reading.

Corollary 3.4 ([KS18, Cor. 1.8]). Let A be a γ-locally closed subset of V. Then $\mu \text{supp}(k_A) \subset V \times \gamma^a$.

Proposition 3.5. Assume (3.1). Let $U = U + \gamma$ be a γ-open set and let $x_0 \in \partial U$. Then there exist a linear coordinate system (x_1, \ldots, x_n) on U, an open neighborhood V of x_0, an open subset W of V and a bi-Lipschitz isomorphism $\varphi: V \cong W$ such that $\varphi(V \cap U) = W \cap \{ x \in V; x_n > 0 \}$.

Proof. The proofs of [GS16, Lem. 2.36, 2.37] (which was formulated for subanalytic open subsets) extend immediately to our situation. \qed

Corollary 3.6. Let Z be a γ-locally closed subset of V. Then, $D^b_M(k_Z)$ is concentrated in degree 0. Moreover, $D^b_M(k_Z) \simeq k_S$ with $\Omega = \text{Int}(Z)$ and $S = \Omega + \gamma \cap (\Omega + \gamma^a)$.

Proof. It follows from Proposition 3.5 that $D^b_M(k_{\Omega + \gamma}) \simeq k_{\Omega + \gamma^a}$ and $D^b_M(k_{\Omega + \gamma^a}) \simeq k_{\Omega + \gamma^a}$.

Set $A = \Omega + \gamma$ and $B = \Omega + \gamma^a$. Then k_A and k_B are cohomologically constructible. By Corollary 3.4, $\mu \text{supp}(k_A) \cap \mu \text{supp}(k_B) \subset T^*_\gamma V$. Then $D^b_M(k_A \otimes k_B) \simeq D^b_M(k_A) \otimes D^b_M(k_B)$ by [KS90, Cor. 6.4.3]. \qed

3.2 Review on PL γ-sheaves

From now on, we shall assume that the cone γ satisfies:

(3.4) γ is a closed proper convex polyhedral cone with non-empty interior.

Definition 3.7. Assume (3.4).
(a) A γ-barcode (A, Z) in V is the data of a finite set of indices A and a family $Z = \{Z_a\}_{a \in A}$ of non-empty, γ-locally closed, convex polytopes of V.

(b) A γ-partition (A, Z) is a γ-barcode (A, Z) such that $Z_a \cap Z_b = \emptyset$ for $a \neq b$.

(c) The support of a γ-barcode or a γ-partition (A, Z), denoted by $\text{supp}(A, Z)$, is the set $\bigcup_{a \in A} Z_a$.

Remark 3.8. In [KS18], we defined a PL γ-stratification of a closed set S as a barcode (A, Z) such that $\text{supp}(A, Z) = S$ and $Z_a \cap Z_b = \emptyset$ for $a \neq b$. However, since a PL γ-stratification is not a PL stratification (see Definition 1.3), we prefer here to avoid this terminology and use the notion of a γ-partition.

We shall use the notations:

\[
\begin{aligned}
D_{PL, \gamma a}(k_V) &:= D_{PL}(k_V) \cap D_{\gamma a}(k_V), \\
\text{Mod}_{PL, \gamma a}(k_V) &:= \text{Mod}(k_V) \cap D_{PL, \gamma a}(k_V).
\end{aligned}
\]

Note that, in view of (2.3) and Theorem 3.3:

\[
F \in D_{PL, \gamma a}(k_V) \iff H^j(F) \in \text{Mod}_{PL, \gamma a}(k_V) \text{ for all } j \in \mathbb{Z}.
\]

Lemma 3.9. Assume (3.4). If $F \in D_{PL, \gamma a}(k_V)$ then $\varphi_1^{-1} R \varphi_{\gamma a} F \in D_{PL, \gamma a}(k_V)$.

Proof. By Theorem 3.3, it remains to prove that $\varphi_1^{-1} R \varphi_{\gamma a} F$ is PL. Denote by $Z(\gamma)$ the set $\{(x, y) \in V \times V; y - x \in \gamma\}$ and denote by q_1 and q_2 the first and second projections defined on $V \times V$. Then (see [KS90, Prop. 3.5.4]):

\[
\varphi_1^{-1} R \varphi_{\gamma a} F \simeq R q_1, (k_{Z(\gamma)}) \otimes q_2^{-1} F.
\]

Then the result follows from Corollary 2.6.

Theorem 3.10 ([KS18, Th. 3.10]). Assume (3.4) and let $F \in D_{PL, \gamma a}(k_V)$. Then for each $x \in V$, there exists an open neighborhood U of x such that $F|_{(x + \gamma a) \cap U}$ is constant.

Theorem 3.11 ([KS18, Th. 3.14]). Assume (3.4) and let $F \in D_{PL, \gamma a}(k_V)$. Let Ω be a γ-flat open set and let $Z = (\Omega + \gamma) \cap \Omega + \gamma a$, a γ-locally closed subset. Assume that $F|_{\Omega}$ is locally constant. Then $F|_{Z}$ is locally constant.

Theorem 3.12 ([KS18, Lem. 3.16, Th. 3.17]). Assume (3.4) and let $F \in D_{PL, \gamma a}(k_V)$. Then there exists a γ-partition (A, Z) with $\text{supp}(A, Z) = \text{supp}(F)$ and such that $F|_{Z_a}$ is constant for each $a \in A$. Moreover, $F|_{Z} \simeq 0$ for $x \notin \bigcup_{a \in A} Z_a$.

3.3 Generators for PL γ-sheaves

In [KS18] we have constructed a category Bar_γ whose objects are the γ-barcodes and a fully faithful functor

\[
\Psi : \text{Bar}_\gamma \to \text{Mod}_{PL, \gamma a}(k_V), \quad Z = \{Z_a\}_{a \in A} \mapsto \bigoplus_{a \in A} k_{Z_a}.
\]

However, as shown in [KS18, Ex. 2.14, 2.15], the functor Ψ is not essentially surjective as soon as $\dim V > 1$.

10
Definition 3.13. An object of \(\text{Mod}_{PL, \gamma \circ a}(k_V) \) is a barcode \(\gamma \)-sheaf if it is in the essential image of \(\Psi \).

In [KS18] we made the following conjecture.

Conjecture 3.14. Let \(F \in D^b_{PL, \gamma \circ a}(k_V) \) and assume that \(F \) has compact support. Then there exists a bounded complex \(F^* \in C^b(\text{Mod}_{PL, \gamma \circ a}(k_V)) \) whose image in \(D^b_{PL, \gamma \circ a}(k_V) \) is isomorphic to \(F \) and such that each component \(F^j \) of \(F^* \) is a barcode \(\gamma \)-sheaf with compact support.

As usual, for an additive category \(\mathcal{C} \), \(C^b(\mathcal{C}) \) denotes the category of bounded complexes of objects of \(\mathcal{C} \).

In this subsection, we shall prove a weaker form of this conjecture, namely:

Theorem 3.15. The triangulated category \(D^b_{PL, \gamma \circ a}(k_V) \) is generated by the family \(\{k_P\}_P \) where \(P \) ranges over the family of \(\gamma \)-locally closed convex polytopes.

In particular, the category \(D^b_{PL, \gamma \circ a}(k_V) \) is generated by the barcodes \(\gamma \)-sheaves.

Proof. Let \(F \in \text{Mod}_{PL, \gamma \circ a}(k_V) \). There exists \(\{\xi_k\}_{1 \leq k \leq l} \in \gamma^{0,a} \) and \(\{c_j\}_{0 \leq j \leq N} \in \mathbb{R} \) with \(-\infty = c_0 < c_1 < \cdots < c_{N-1} < c_N = +\infty \) such that, setting

\[
H_{k,j} = \{x \in V; \langle x, \xi_k \rangle = c_j\}, \quad U := V \setminus \bigcup_{k,j} H_{k,j},
\]

the sheaf \(F|_U \) is locally constant.

Let \(n = (n_1, \ldots, n_l) \) with \(0 \leq n_k < N \) and define

\[
Z_n = \bigcap_{k=1}^l \{x; c_{n_k} \leq \langle x, \xi_k \rangle < c_{n_k+1}\}, \quad \Omega_n = \bigcap_{k=1}^l \{x; c_{n_k} < \langle x, \xi_k \rangle < c_{n_k+1}\}.
\]

Then \(Z_n = \Omega_n + \gamma^{0,a} \cap (\Omega_n + \gamma) \) and \(Z_n \) is \(\gamma \)-locally closed.

Since \(F|_{\Omega_n} \) is constant, \(F|_{Z_n} \) is constant by Theorem 3.11.

Now we have \(V = \bigcup_{n \in [0,N-1]} Z_n \). Let \(W \) be a \(\gamma \)-closed subset of \(V \) which is a union of \(Z_n \)'s.

Lemma 3.16. There exists an \(n \) such that \(Z_n \) is open in \(W \).

Proof of the lemma. We order the set of \(n \)'s by \(n \leq n' \) if \(n_j \leq n'_j \) for all \(j \in [1, \ldots, l] \). Let \(n \) be minimal among the \(n \)'s such that \(Z_n \subset W \). Then \(Z_n \) is open in \(W \). Indeed,

\[
W \cap Z_n = W \cap \bigcap_k \{x; c_{n_k} \leq \langle x, \xi_k \rangle < c_{n_k+1}\}
= W \cap \bigcap_k \{x; \langle x, \xi_k \rangle < c_{n_k+1}\}.
\]

Indeed, the second equality is true, otherwise there exists \(y \in W \) with \(\langle y, \xi_k \rangle < c_{n_k} \) and \(n \) would not be minimal. \(\square \)
Now we can complete the proof of Theorem 3.15. Let $Z_n \subset W$ open in W and assume that $\text{supp} \, F \subset W$. We have an exact sequence

$$0 \to k_{Z_n} \otimes F(Z_n) \to F \to F'' \to 0$$

and $\text{supp} \, F'' \subset W \setminus Z_n$.

Then the proof goes by induction on $\# \{n; Z_n \subset W\}$. \qed

References

