Algebraic structures on modules of diagrams

by P. Vogel ${ }^{1}$

Abstract

. There exists a graded algebra Λ acting in a natural way on many modules of 3valent diagrams. Every simple Lie superalgebra with a nonsingular invariant bilinear form induces a character on Λ. The classical and exceptional Lie algebras and the Lie superalgebra $\mathrm{D}(2,1, \alpha)$ produce eight distinct characters on Λ and eight distinct families of weight functions on chord diagrams. As a consequence we prove that weight functions coming from semisimple Lie superalgebras do not detect every element in the module \mathcal{A} of chord diagrams. A precise description of Λ is conjectured.

Introduction.

V. Vassiliev [Va] has recently defined a new family of knot invariants. Actually every knot invariant with values in an abelian group may be seen as a linear map from the free \mathbf{Z}-module $\mathbf{Z}[\mathcal{K}]$ generated by isomorphism classes of knots. This module is a Hopf algebra and has a natural filtration $\mathbf{Z}[\mathcal{K}]=I_{0} \supset I_{1} \supset \ldots$ defined in terms of singular knots, and a Vassiliev invariant of order n is an invariant which is trivial on I_{n+1}. The coefficients of Jones [J], HOMFLY [H], Kauffman [Ka] polynomials are Vassiliev invariants.

The associated graded Hopf algebra $\operatorname{GrZ}[\mathcal{K}]=\underset{n}{\oplus} I_{n} / I_{n+1}$ is finitely generated over \mathbf{Z} in each degree but its rank is completely unknown. Actually $\operatorname{GrZ}[\mathcal{K}]$ is a certain quotient of the graded Hopf algebra \mathcal{A} of chord diagrams [BN]. Every Vassiliev invariants of order n induces a weight function of degree n, (i.e. a linear form of degree n on $\mathcal{A})$. Conversely every weight function can be integrated (via the Kontsevich integral) to a knot invariant. Very few things are known about the algebra \mathcal{A}. Rationally, \mathcal{A} is the symmetric algebra on a graded module \mathcal{P}, and the so-called Adams operations split \mathcal{A} and \mathcal{P} in a direct sum of modules defined in terms of unitrivalent diagrams. The rank of \mathcal{P} is known in degree <10.

Every Lie algebra equipped with a nonsingular invariant bilinear form and a finite dimensional representation induces a weight function on \mathcal{A}. It was conjectured in $[\mathrm{BN}]$

[^0]that the weight functions corresponding to the classical simple Lie algebras detect every nontrivial element in \mathcal{A}.

In this paper ${ }^{2}$, we define a graded algebra Λ acting on many modules of diagrams like \mathcal{P} and every Lie algebra equipped with a nonsingular invariant bilinear form induces a character on Λ. With this procedure, we construct eight characters from Λ to a polynomial algebra of two variables for three of them, and to $\mathbf{Q}[t]$ for the others. These eight characters are algebraically independent. As a consequence, we construct a primitive element in \mathcal{A} which is rationally nontrivial and killed by every semisimple Lie algebra and Lie superalgebra equipped with a nonsingular invariant bilinear form and a finite-dimensional representation.

In the first section many modules of diagrams are defined.
In Section 2, we construct a transformation t of degree 1 acting on some of these modules.

In Section 3, we construct the algebra Λ. This algebra contains the element t.
In Section 4, some modules of diagrams are completely described in term of Λ.
In Section 5, we define many elements in Λ and construct a graded algebra homomorphism from R_{0} to Λ, where R_{0} is a subalgebra of a polynomial algebra R with three variables of degree 1,2 and 3 .

In Section 6, we construct many weight functions and show that every simple quadratic Lie superalgebra induces a well-defined character on Λ

In Section 7, we construct the eight characters.
Using these characters, many results on Λ are proven in the last section. In particular the morphism $R_{0} \longrightarrow \Lambda$ factors through a quotient R_{0} / I where I is an ideal in R generated by a polynomial $P \in R_{0}$ of degree 16 and the induced morphism $R_{0} / I \longrightarrow \Lambda$ is conjectured to be an isomorphism.

1. Modules of diagrams.

Denote by 3 -valent graph a graph where every vertex is 1 -valent or 3 -valent. A 3 -valent graph is defined by local conditions. So in such a graph an edge may be a loop and two distinct egdes may have common boundary points. The set of 1 -valent vertices of a 3 -valent graph K will be called its boundary and denoted by ∂K.

Let Γ be a curve, i.e. a compact 1-dimensional manifold and X be a finite set. A (Γ, X)-diagram is a finite 3 -valent graph D equipped with the following data:

- an isomorphism from the disjoint union of Γ and X to a subgraph of D sending $\partial \Gamma \cup X$ bijectively to ∂D
- for every 3 -valent vertex x of D, a cyclic ordering of the set of oriented edges ending at x.

The class of (Γ, X)-diagrams will be denoted by $\mathcal{D}(\Gamma, X)$.
Usually, a (Γ, X)-diagram will be represented by a 3 -valent graph immersed in the plane in such a way that, at every 3 -valent vertex, the cyclic ordering is given by the orientation of the plane.

[^1]Example of a (Γ, X)-diagram where Γ has two closed components and X has two elements:

Let \mathcal{C} be a subclass of $\mathcal{D}(\Gamma, X)$ which is closed under changing cyclic ordering. Let k be a commutative ring. Denote by $\mathcal{A}_{k}(\mathcal{C})$ the quotient of the free k-module generated by the isomorphism classes of (Γ, X)-diagrams in \mathcal{C} by the following relations:

- if D is a (Γ, X)-diagram in \mathcal{C}, and D^{\prime} is obtained from K by changing the cyclic ordering at one vertex, we have:

$$
\begin{equation*}
D^{\prime} \equiv-D \tag{AS}
\end{equation*}
$$

— if $D, D^{\prime}, D^{\prime \prime}$ are three (Γ, X)-diagrams in \mathcal{C} which differ only near an edge a in the following way:

 $D^{\prime \prime}$:

we have:
$D \equiv D^{\prime}-D^{\prime \prime}$.

Remark: If the edge meets the curve Γ the relation (IHX) is called (STU) in [BN]:

The module $\mathcal{A}_{k}(\mathcal{C})$ is a graded k-module. The degree $\partial^{\circ} D$ of a (Γ, X)-diagram D is $-\chi(D)$ where χ is the Euler characteristic.

By considering different classes of diagrams, we get the following examples of graded modules:

- the module $\mathcal{A}_{k}(\Gamma, X)$, if \mathcal{C} is the class $\mathcal{D}^{\prime}(\Gamma, X)$ of (Γ, X)-diagrams D such that every connected component of D meets Γ or X
- the module $\mathcal{A}_{k}^{c}(\Gamma, X)$, if \mathcal{C} is the class $\mathcal{D}^{c}(\Gamma, X)$ of (Γ, X)-diagrams D such that $D \backslash \Gamma$ is connected and nonempty (connected case)
- the module $\mathcal{A}_{k}^{s}(\Gamma, X)$, if \mathcal{C} is the class $\mathcal{D}^{s}(\Gamma, X)$ of (Γ, X)-diagrams D such that $D \backslash \Gamma$ is connected and has at least one 3 -valent vertex (special case)
- the module $\mathcal{A}_{k}(\Gamma)=\mathcal{A}_{k}(\Gamma, \emptyset)$
- the module $\mathcal{A}_{k}^{c}(\Gamma)=\mathcal{A}_{k}^{c}(\Gamma, \emptyset)$
- the module $F_{k}(X)=\mathcal{A}_{k}^{c}(\emptyset, X)$. If X is the set $[n]=\{1, \ldots, n\}$, the module $F_{k}(X)$ will be denoted by $F_{k}(n)$
- the module ${ }_{X} \Delta_{k Y}$, where X and Y are finite sets and \mathcal{C} is the class of all ($\emptyset, X \amalg Y$)-diagrams.

The most interesting case is $k=\mathbf{Q}$. So the modules $\mathcal{A}_{\mathbf{Q}}(\mathcal{C}), \mathcal{A}_{\mathbf{Q}}(\Gamma, X), \mathcal{A}_{\mathbf{Q}}^{c}(\Gamma, X)$, $\mathcal{A}_{\mathbf{Q}}^{s}(\Gamma, X) \ldots$ will be simply denoted by $\mathcal{A}(\mathcal{C}), \mathcal{A}(\Gamma, X), \mathcal{A}^{c}(\Gamma, X), \mathcal{A}^{s}(\Gamma, X) \ldots$

The module $\mathcal{A}_{k}(\Gamma)$ is strongly related to the theory of links. In the case of knots, the Kontsevich integral provides a universal Vassiliev invariant with values in a completion of the quotient of the module $\mathcal{A}=\mathcal{A}_{\mathbf{Q}}\left(S^{1}\right)=\mathcal{A}\left(S^{1}\right)$ by some submodule I [BN]. The module \mathcal{A} is actually a commutative and cocommutative Hopf algebra (the product corresponds to the connected sum of knots) and I is the ideal generated by the following diagram of degree 1 :

Remark: The definition of the module $\mathcal{A}_{k}(\Gamma)$ is slightly different from the classical one. The classical definition needs an orientation of Γ, but cyclic orderings near vertices in Γ are not part of the data. The relationship between these two definitions come from the fact that, if Γ is oriented, there is a canonical choice for the cyclic ordering of edges ending at each vertex in Γ.

Let $\mathcal{P}_{k}=\mathcal{A}_{k}^{c}\left(S^{1}\right)$ and $\mathcal{A}_{k}=\mathcal{A}_{k}\left(S^{1}\right)$. The inclusion $\mathcal{D}^{c}\left(S^{1}, \emptyset\right) \subset \mathcal{D}\left(S^{1}, \emptyset\right)$ induces a linear map from \mathcal{P}_{k} to \mathcal{A}_{k} and a morphism of Hopf algebras from $S\left(\mathcal{P}_{k}\right)$ to \mathcal{A}_{k}.
1.1 Proposition: The morphism $S\left(\mathcal{P}_{\mathbf{Z}}\right) \rightarrow \mathcal{A}_{\mathbf{Z}}$ is surjective with finite kernel in each degree.

Proof: For $n>0$, denote by \mathcal{E}_{n} the submodule of $\mathcal{A}_{\mathbf{Z}}$ generated by the diagrams D such that $D \backslash S^{1}$ has at most n components. Because of relation STU, it is easy to see that, $\bmod \mathcal{E}_{n}, \mathcal{E}_{n+1}$ is generated by connected sums $K_{1} \sharp K_{2} \ldots \sharp K_{n+1}$ where $K_{i} \backslash S^{1}$ are connected. That proves, by induction, that the canonical map from $S\left(\mathcal{P}_{\mathbf{z}}\right)$ to $\mathcal{A}_{\mathbf{z}}$ is surjective. Because $S\left(\mathcal{P}_{\mathbf{Z}}\right)$ and $\mathcal{A}_{\mathbf{Z}}$ are finitely generated over \mathbf{Z} in each degree, it's enough to prove that the map from $S\left(\mathcal{P}_{\mathbf{Z}}\right)$ to $\mathcal{A}_{\mathbf{Z}}$ is a rational isomorphism, and because $S\left(\mathcal{P}_{\mathbf{Z}}\right)$ and $\mathcal{A}_{\mathbf{Z}}$ are commutative and cocommutative Hopf algebras, it is enough to prove that the map from $\mathcal{P}=\mathcal{P}_{\mathrm{Q}}$ to $\mathcal{A}=\mathcal{A}_{\mathrm{Q}}$ is an isomorphism from \mathcal{P} to the module of primitives of \mathcal{A}.

Consider the module \mathcal{C}_{p} of 3 -valent diagrams with p univalent vertices and the module \mathcal{C}_{p}^{c} of connected 3 -valent diagrams with p univalent vertices. In [BN] Bar Natan constructs a rational isomorphism from \mathcal{A} to the direct sum $\underset{p>0}{\oplus} \mathcal{C}_{p}$ which respects the comultiplication. In the same way we have a rational isomorphism from \mathcal{P} to $\underset{p>0}{\oplus} \mathcal{C}_{p}^{c}$.

Therefore \mathcal{P} is isomorphic to the module of primitives of \mathcal{A}.

Very few things are known about \mathcal{A} and \mathcal{P}. They are finitely generated modules in each degree. The rank is known in degree ≤ 9. For \mathcal{P}, this rank is: $1,1,1,2,3$, $5,8,12,18[\mathrm{BN}]$. Some linear forms (called weight functions) on \mathcal{A} (coming from Lie algebras) are known. Rationally the module \mathcal{P} splits in a direct sum of modules of connected 3 -valent diagrams $\mathcal{C}_{n}^{c}[\mathrm{BN}]$. Actually the module \mathcal{C}_{n}^{c} is defined in the same way as $F(n)=F_{\mathbf{Q}}(n)$ except that the bijection from $[n]$ to the set of 1 -valent vertices is forgotten. Hence this splitting may be written in the following manner:
1.2 Proposition: There is an isomorphism:

$$
\underset{n>0}{\oplus} \mathrm{H}_{0}\left(\mathfrak{S}_{n}, F(n)\right) \xrightarrow{\sim} \mathcal{P} .
$$

The last module ${ }_{X} \Delta_{k Y}$ defined above will be used later. Actually these modules define a k-linear monoidal category Δ_{k}. The objects of Δ_{k} are finite sets, and the set of morphisms $\operatorname{Hom}(X, Y)$ is the module ${ }_{Y} \Delta_{k X}$. The composition from ${ }_{X} \Delta_{k Y} \otimes_{Y} \Delta_{k Z}$ to $X_{X} \Delta_{k Z}$ is obtained by gluing. In particular, for every finite set $X,{ }_{X} \Delta_{k X}$ is a k-algebra.

The monoidal structure is the disjoint union of finite sets or diagrams.
For technical reasons we'll use a modified degree for modules $F_{k}(X)$ and ${ }_{X} \Delta_{k Y}$:

- the degree of an element $u \in F_{k}(X)$ represented by a diagram D is $1-\chi(D)$. So the degree of a tree is zero.
- the degree of an element $u \in_{Y} \Delta_{k X}$ represented by a diagram D is $-\chi(D, X)$. This degree is compatible with the structure of k-linear monoidal category.

2. The transformation t.

Let Γ be a curve and X be a finite set. We have three graded modules $\mathcal{A}_{k}(\Gamma, X)$, $\mathcal{A}_{k}^{c}(\Gamma, X)$ and $\mathcal{A}_{k}^{s}(\Gamma, X)$, and $\mathcal{A}_{k}^{c}(\Gamma, X)$ is isomorphic to $\mathcal{A}_{k}^{s}(\Gamma, X)$ except maybe in small degrees.

Let D be a (Γ, X)-diagram in the class $\mathcal{D}_{k}^{s}(\Gamma, X)$. Take a 3 -valent vertex outside of Γ. Then it is possible to modify D near this vertex in the following way:

2.1 Theorem: This transformation induces a well-defined endomorphism t of the module $\mathcal{A}_{k}^{s}(\Gamma, X)$.

Proof: Let D be a diagram in the class $\mathcal{D}_{k}^{s}(\Gamma, X)$. Let a be an edge of D disjoint from the curve Γ. Denote vertices of a by x and y. Relations IHX imply the following:

Then transformations of D at x and y produce the same element in the module $\mathcal{A}_{k}^{s}(\Gamma, X)$. Since the complement of Γ in a diagram in $\mathcal{D}_{s}(\Gamma, X)$ is connected, the transformation t is well defined from the class $\mathcal{D}_{k}^{s}(\Gamma, X)$ to $\mathcal{A}_{k}^{s}(\Gamma, X)$.

It is easy to see that t is compatible with the AS relation. Consider an IHX relation:

$$
D \equiv D^{\prime}-D^{\prime \prime}
$$

where D, D^{\prime} and $D^{\prime \prime}$ differ only near an edge a. If there is a 3 -valent vertex in D which is not in a and not in the curve Γ, it is possible to define $t D, t D^{\prime}$ and $t D^{\prime \prime}$ by using this vertex, and the relation

$$
t D \equiv t D^{\prime}-t D^{\prime \prime}
$$

becomes obvious.
Suppose now $\Gamma \cup X \cup a$ contains every vertex in D. Then the edge a is not contained in Γ, and that is true also for D^{\prime} and $D^{\prime \prime}$. Therefore a doesn't meet Γ, and we have:

2.2 Proposition: If Γ is nonempty the transformation t extends in a natural way to the module $\mathcal{A}_{k}^{c}(\Gamma, X)$.

Proof: Let D be a diagram in the class $\mathcal{D}_{k}^{c}(\Gamma, X)$. Let x be a 3 -valent vertex of D contained in Γ. This vertex in contained in an edge a in $D \backslash \Gamma$. If the diagram D lies in the class $\mathcal{D}_{k}^{s}(\Gamma, X), D$ has a vertex which is not in Γ. Therefore a has a vertex outside of Γ and we have:

Hence t extends to the module $\mathcal{A}_{k}^{c}(\Gamma, X)$ by setting:

Example: The module $\mathcal{P}_{k}=\mathcal{A}_{k}^{c}\left(S^{1}\right)=\mathcal{A}_{k}^{c}\left(S^{1}, \emptyset\right)$ which is the module of primitives of the algebra of diagrams \mathcal{A}_{k} has, in degree ≤ 4 the following basis:

Corollary: Let D be a planar $\left(S^{1}, \emptyset\right)$-diagram of degree n such that the complement of S^{1} in D is a tree. Then the class of D in the module $\mathcal{A}_{k}^{c}\left(S^{1}\right)$ is exactly $t^{n-1} \alpha$.

Proof: The conditions satisfied by D imply that D contains a triangle $x y z$ with an edge $x y$ in the circle. By taking off the edge $x z$ we get a new diagram D^{\prime} such that the complement of the circle in D^{\prime} is still a planar tree. By induction, the class of D^{\prime} in $\mathcal{A}_{k}^{c}\left(S^{1}\right)$ is $t^{n-2} \alpha$ and the result follows.

3. The algebra Λ.

In this section we construct an algebra of diagrams acting on many modules of diagrams. In particular this algebra acts in a natural way on the modules $\mathcal{A}_{k}^{s}(\Gamma, X)$. Actually the element t is a particular element of Λ of degree 1 .

The module $F_{k}(X)$ is equipped with an action of the symmetric group $\mathfrak{S}(X)$. But we can also define natural maps from $F_{k}(X)$ to $F_{k}(Y)$ in the following way:

Let D be a $(\emptyset, X \amalg Y$)-diagram such that every connected component of D meets X and Y. Then the gluing map along X induces a graded linear map φ_{D} from $F_{k}(X)$ to $F_{k}(Y)$. Actually the class \mathcal{C} of $(\emptyset, X \amalg Y)$-diagrams satisfying this property induces a graded module ${ }_{X} \Delta_{k Y}^{c}=\mathcal{A}_{k}(\mathcal{C})$ and these modules give rise to a monoidal subcategory Δ_{k}^{c} of the category Δ_{k}. For every finite set X and Y the gluing map is a map from $F_{k}(X) \otimes{ }_{X} \Delta_{k Y}^{c}$ to $F_{k}(Y)$.

In particular we have two maps φ and φ^{\prime} from $F_{k}(3)$ to $F_{k}(4)$ induced by the following diagrams:

3.1 Definition: Λ_{k} is the set of elements $u \in F_{k}(3)$ satisfying the following conditions:

$$
\begin{gathered}
\varphi(u)=\varphi^{\prime}(u) \\
\forall \sigma \in \mathfrak{S}_{3}, \quad \sigma(u)=\varepsilon(\sigma) u
\end{gathered}
$$

where ε is the signature homomorphism.
The module $\Lambda_{\mathbf{Q}}$ will be denoted by Λ.
3.2 Proposition: The module Λ_{k} is a graded k-algebra acting on each module $\mathcal{A}_{k}^{s}(\Gamma, X)$.

Proof: Let Γ be a curve and X be a finite set. Let D be a (Γ, X)-diagram such that $D \backslash \Gamma$ is connected and has some 3 -valent vertex x. If u is an element of Λ_{k}, we can insert u in D near x and we get a linear combination of diagrams and therefore an element $u D$ in $\mathcal{A}_{k}^{s}(\Gamma, X)$.

Since u is completely antisymmetric with respect to the \mathfrak{S}_{3}-action, $u D$ doesn't depend on the given bijection from $[3]=\{1,2,3\}$ to the set of edges ending at x, but only on the cyclic ordering. Moreover, if this cyclic ordering is changed, $u K$ is multiplied by -1 . The first condition satisfied by u implies that the elements $u K$ constructed by two consecutive vertices are the same. Since the complement of Γ in D is connected, $u D$ doesn't depend on the choice of the vertex x, and $u D$ is well defined.

By construction, the rule $u \mapsto u D$ is a linear map from Λ_{k} to $\mathcal{A}_{k}^{s}(\Gamma, X)$ of degree $\partial^{\circ} D$. Since the transformation $D \mapsto u D$ is compatible with the AS relations, the only thing to check is to prove that this transformation is compatible with the IHX relations.

Consider an IHX relation: $D \equiv D^{\prime}-D^{\prime \prime}$ corresponding to an edge a in D. If D has a 3 -valent vertex outside of a and Γ, it is possible to make the transformation ? $\mapsto u$? by using a vertex which is not in a, and we get the equality: $u D=u D^{\prime}-u D^{\prime \prime}$. Otherwise a is outside of Γ and we have:

This last expression is trivial, because of Lemma 3.3 and the formula $u D=$ $u D^{\prime}-u D^{\prime \prime}$ is always true.

Therefore the transformation ? $\mapsto u$? is compatible with the IHX relation and induces a well-defined transformation from $\mathcal{A}_{k}^{s}(\Gamma, X)$ to itself. In particular, Λ_{k} acts on itself. Therefore this module is a k-algebra and $\mathcal{A}_{k}^{s}(\Gamma, X)$ is a Λ_{k}-module.
3.3 Lemma: Let X be a finite set and Y be the set X with one extra point y_{0} added. Let D be a connected (\emptyset, X)-diagram. For every $x \in X$ denote by D_{x} the (\emptyset, Y)-diagram obtained by adding to D an extra edge from y_{0} to a point in D near x, the cyclic ordering near the new vertex being given by taking the edge ending at y_{0} first, the edge ending at x after and the last edge at the end.

Then the element $\sum_{x} D_{x}$ is trivial in the module $F(Y)$.

Proof: For every oriented edge a in D from a vertex u to a vertex v, we can connect y_{0} to K by adding an extra edge from y_{0} to a new vertex x_{0} in a and we get a (\emptyset, Y) diagram D_{a} where the cyclic ordering between edges ending at x_{0} is $\left(x_{0} u, x_{0} y_{0}, x_{0} v\right)$.

It is clear that the expression $D_{a}+D_{b}$ is trivial if b is the edge a with the opposite orientation. Moreover if a, b and c are the three edges starting from a 3 -valent vertex of K, the sum $D_{a}+D_{b}+D_{c}$ is also trivial. Therefore the sum ΣD_{a} for all oriented edge a in D is trivial and is equal to the sum ΣD_{a} for all oriented edge a starting from a vertex in X. That proves the lemma.

In degree less to 4 , the module Λ_{k} is freely generated by the following diagrams:

4. Structure of modules $F(n)$ for small values of n.

The module $F_{k}(n)$ is a Λ_{k}-module except for $n=0,2$. But the submodule $F_{k}^{\prime}(n)=$ $\mathcal{A}_{k}^{s}(\emptyset,[n])$ of $F_{k}(n)$ generated by diagrams having at least one 3 -valent vertex is a $\Lambda_{k^{-}}$
module. For $n \neq 0,2, F_{k}^{\prime}(n)$ is equal to $F_{k}(n)$ and for $n=0,2, F_{k}(n)$ is isomorphic to $k \oplus F_{k}^{\prime}(n)$.
4.1 Proposition: Connecting the elements of [2] by an edge induces an isomorphism from $F_{k}(2)$ to $F_{k}(0)$.

Proof: This map is clearly surjective.
Let D be a connected $(\emptyset,[0])$-diagram. Let a be an oriented edge of D. We can cut off a part of a and we get a $(\emptyset,[2])$-diagram $\varphi(D, a)$.

Let a and b be consecutive edges in D. Because of Lemma 3.3, we have:

Therefore $\varphi(K, a)$ is independent of the choice of a and induces a well-defined map from $F_{k}(0)$ to $F_{k}(2)$ which is obviously the inverse of the map above.
4.2 Corollary: The action of the symmetric group \mathfrak{S}_{2} on $F_{k}(2)$ is trivial.
4.3 Proposition: The module $F_{k}(1)$ is isomorphic to $k / 2$ and generated by the following diagram:

Proof: The diagram above is clearly a generator of $F_{k}(1)$ in degree 1, and the antisymmetric relation implies that this element is of order 2 . Let D be a ($\emptyset,[1])$ diagram of degree >1. We have:

$$
D=?=?
$$

and this last diagram contains the following diagram:

4.4 Proposition: The quotient map from [3] to a point induces a surjective map from $F_{k}(3) \underset{\mathfrak{S}_{3}}{\otimes} k^{-}$to $\mathrm{F}^{\prime}(0)$ and its kernel is a $k / 2$-module.

Proof: Here the group \mathfrak{S}_{3} acts on $k=k^{-}$via the signature. Actually, the module $F_{k}(3) \underset{\mathfrak{S}_{3}}{\otimes} k^{-}$is isomorphic to the module \mathcal{M} generated by connected 3 -valent diagrams without univalent vertex, pointed by a vertex and equipped with a cyclic ordering near every vertex and where the relations are the AS relation everywhere and the IHS relation outside of the special vertex.

Because of Lemma 3.3, we have in \mathcal{M} :

Actually we have for every $n \geq 0$ a module $\widetilde{\mathrm{F}}(n)$ generated by connected diagrams K with $\partial K=[n]$ and pointed by a 3 -valent vertex. The relations are the antisymmetric relation AS everywhere and the relation IHX outside of the special vertex and the relation above.

If $\{a, b, c, d\}=[4]$, we can set:

This diagram belongs to $\widetilde{\mathrm{F}}(4)$ and is antisymmetric with respect to the transpositions $a \leftrightarrow b$ and $c \leftrightarrow d$. Let k^{-}be the maximal exterior power of the module generated by the elements of [4]. Define the element $\psi(a, b, c, d)$ in $k^{-} \otimes \widetilde{\mathrm{F}}(4)$ by: $\psi(a, b, c, d)=$ $a \wedge b \wedge c \wedge d \otimes \varphi(a, b, c, d)$. By construction $\psi(a, b, c, d)$ depends only on the subset $\{c, d\}$ of [4]. So we set: $\psi(a, b, c, d)=f(c, d)$.

The relation obtained by Lemma 3.3 is:

$$
\sum_{x \neq a} f(a, x)=0
$$

for every a in [4].
For $\{a, b, c, d\}=[4]$, set: $g(a, b)=f(a, b)-f(c, d)$. We have:

$$
\begin{aligned}
f(a, b)+f(a, c)+ & f(a, d)=0
\end{aligned}=f(b, a)+f(b, c)+f(b, d), ~(a, c)=g(b, c)
$$

Then $u=g(a, b)$ doesn't depend on $\{a, b\}$ and we have:

$$
u=g(a, b)=f(a, b)-f(c, d)=-g(c, d)=-u .
$$

Therefore the diagram

is killed by 2 and invariant under the action of \mathfrak{S}_{4}.
Let α be an element in $F_{k}^{\prime}(0)$ represented by a 3 -valent diagram D. Take a vertex x_{0} in D. The pair $\left(K, x_{0}\right)$ represents a well-defined element β in the module $\mathcal{M} \simeq F_{k}(3) \underset{\mathfrak{S}_{3}}{\otimes} k^{-}$and 2β doesn't depend on the choice of the vertex x_{0}. Hence the rule $\alpha \mapsto 2 \beta$ is a well-defined map λ from $F_{k}^{\prime}(0)$ to $F_{k}(3) \underset{\mathfrak{S}_{3}}{\otimes} k^{-}$. Denote by μ the canonical map from $F_{k}(3) \underset{\mathfrak{E}_{3}}{\otimes} k^{-}$to $F^{\prime}(0)$. We have:

$$
\mu \lambda=2 \quad \text { and } \quad \lambda \mu=2
$$

and Proposition 4.4 follows.
4.5 Proposition: Let $F_{k}(3)^{-}$be the submodule of $F_{k}(3)$ defined by:

$$
\forall u \in F_{k}(3), \quad u \in F_{k}(3)^{-} \Leftrightarrow\left(\forall \sigma \in \mathfrak{S}_{3}, \quad \sigma(u)=\varepsilon(\sigma) u\right)
$$

where ε is the signature homomorphism. Then Λ_{k} is a submodule of $F(3)_{k}^{-}$and the quotient $F(3)_{k}^{-} / \Lambda_{k}$ is a $k / 2$-module.

Proof: Let u be an element of $F(3)_{k}^{-}$. If v is an element of $\widetilde{F}_{k}(4)$ represented by a diagram D equipped with a special vertex x_{0}, we can insert u in K near x_{0} and we get a well-defined element $f(v)$ in the module $F_{k}(4)$.

But we have in $\widetilde{F}_{k}(4)$:

and that implies in $F_{k}(4)$:

Therefore $2 u$ lies in Λ_{k}.
4.6 Corollary: Suppose 6 in invertible in k. Then the modules $F_{k}^{\prime}(0)$ and $F_{k}^{\prime}(2)$ are free Λ_{k}-modules of rank one generated by:

respectively.
Proof: Since \mathfrak{S}_{3} is a group of order 6 , the identity induces an isomorphism from $F_{k}(3)^{-}$to $F_{k}(3) \underset{\mathfrak{S}_{3}}{\otimes} k^{-}$and the corollary follows easily.
4.7 Corollary: Let u be the primitive element of $\mathcal{A}=\mathcal{A}\left(S^{1}, \emptyset\right)$ represented by the diagram:

Then the map $\lambda \mapsto \lambda u$ from Λ to the module \mathcal{P} of primitives of \mathcal{A} is injective.
Proof: That's a consequence of the fact that $\mathcal{P}=\mathcal{P}_{\mathbf{Q}}$ contains the module $F^{\prime}(2) \otimes$ $\mathbf{Q}=F^{\prime}(2)$.

It is not clear that Λ_{k} is commutative, but it's almost the case. If α and β are elements in Λ_{k}, and u an element of a module $\mathcal{A}_{k}^{s}(\Gamma, X)$ represented by a diagram with at least two 3 -valent vertices outside of Γ, we may construct $\alpha \beta u$ by using α and β modifications near two different vertices. Therefore: $\alpha \beta u=\beta \alpha u$.
4.8 Proposition: The algebra Λ_{k} has the following properties:

$$
\begin{gathered}
\forall \alpha, \beta, \gamma \in \Lambda_{k}, \quad \partial^{\circ} \gamma>0 \Rightarrow \alpha \beta \gamma=\beta \alpha \gamma, \\
\forall \alpha, \beta \in \Lambda_{k}, \quad 12 \alpha \beta=12 \beta \alpha .
\end{gathered}
$$

Proof: The first formula is a special case of the property explained above. For the second one, just use that property where u is represented by the diagram

$$
\Theta=
$$

in $F_{k}^{\prime}(0)$ and remark that the composite: $\Lambda_{k} \rightarrow F_{k}(3) \underset{\mathfrak{S}_{3}}{\otimes} k^{-} \rightarrow F_{k}^{\prime}(0)$ has a kernel annihilated by $6 \times 2=12$.
4.9 Corollary: The algebra Λ is commutative.
4.10 Proposition: Let $\widehat{\Lambda}$ be the algebra Λ completed by the degree (i.e. $\widehat{\Lambda}=\prod_{i} \Lambda_{i}$). Let M be a 3-dimensional homology sphere. Then there is a unique element $\theta(M)$ in $\widehat{\Lambda}$ such that the LMO invariant of M is the exponential of the element $\theta(M) \Theta$.

Proof: Let u be the LMO-invariant of M constructed by Le-Murakami-Ohtsuki [LMO]. Then u is a group-like element in the completion of the module generated by 3 -valent diagrams. Therefore its logarithm is primitive and lies in the completion of the module $F^{\prime}(0)$. Since this module is a free $\widehat{\Lambda}$-module generated by Θ the result follows.

5. Constructing elements in Λ.

Let Γ be a curve and Z be a finite set. Let D be a (Γ, Z)-diagram. Let X be a finite set in D outside the set of vertices of D. Suppose that D is oriented near X. For each $x \neq y$ in X we have a diagram $D_{x y}$ obtained from D by adding an edge u joining x and y in D. Cyclic orderings near x and y are chosen by an immersion from $D_{x y}$ to the plane which is injective on a neighborhood of u and sends neighborhoods of x and y in K to horizontal lines with the same orientation and u to a vertical segment. This diagram $D_{x y}$ depends only on the subset $\{x, y\}$ in X.

The sum of the diagrams $D_{x y}$ for all subsets $\{x, y\} \subset X$ will be denoted by D_{X}.
5.1 Lemma: Let Γ and Γ^{\prime} be closed curves. Let X, Y and Z be finite disjoint sets. Let D be a $(\Gamma, X \cup Y)$-diagram and D^{\prime} be a $\left(\Gamma^{\prime}, X \cup Y \cup Z\right)$ diagram. Suppose that the union H of D and D^{\prime} over $X \cup Y$ lies in $\mathcal{D}^{s}\left(\Gamma \cup \Gamma^{\prime}, Z\right)$. The diagram H is oriented near X and Y by going from D^{\prime} to D near X and from D to D^{\prime} near Y. Then we have the following formula in $\mathcal{A}_{k}^{s}\left(\Gamma \cup \Gamma^{\prime}, Z\right)$:

$$
H_{X}-p t H=H_{Y}-q t H
$$

where $p=\# X, q=\# Y$.
Proof: Set $\Gamma_{1}=\Gamma \cup \Gamma^{\prime}$. Let u be a point in H which is not a vertex. By adding one edge to H near u we get a new diagram H_{u} :

The class $\left[H_{u}\right]$ of H_{u} in $\mathcal{A}_{k}^{s}\left(\Gamma_{1}, Z\right)$ will be denoted by $\varphi(u)$. If u is not in $\Gamma_{1}, \varphi(u)$ is equal to $2 t[H]$. Otherwise $\varphi(u)$ depends only on the component of Γ_{1} which contains
u :

Consider a map f from H to the circle $S^{1}=\mathbf{R} \cup\{\infty\}$ satisfying the following:

- f is smooth and generic on Γ_{1} and on each edge of K
- every singular value of f is the image of a unique critical point in an open edge of $H \backslash \Gamma_{1}$ or a unique vertex of H
- a vertex in H is never a local extremum of f
- each critical point of $f \mid \Gamma_{1}$ is not a vertex of H
$-f^{-1}(0)=X, \quad f^{-1}(1)=Y, \quad f^{-1}([0,1])=D$.
Let v be a regular value of f and V be the set $f^{-1}(v)$. The map f induces an orientation of H near each point of V. So $[H]_{V}$ is well defined in $\mathcal{A}_{k}^{s}\left(\Gamma_{1}, Z\right)$ and we can set:

$$
g(v)=\left[H_{V}\right]-1 / 2 \sum_{u \in V} \varphi(u) .
$$

This expression is well defined because V meets every component of Γ_{1} in a even number of points.

By construction we have: $g(v)=\left[H_{X}\right]-p t[H]$ if v is near 0 and $g(v)=\left[H_{Y}\right]-q t[H]$ if v is near 1 . Then the last thing to do is to prove that g has no jump on the critical values of f.

If v is the image of a critical point in an open edge in H, the jump of f in v is 0 because of the AS relations. If v is the image of a vertex in H, the jump is also 0 because of the IHX relations. Therefore the map g is constant and the lemma is proven.

A special case of this lemma is the following equality:

$$
D_{\square}^{\prime} D \square D^{\prime}=D^{\prime} \square D \square D^{\prime} \quad \text { in } \mathcal{A}_{k}^{s}(\Gamma, Z) .
$$

5.2 Corollary: The element t is central in Λ_{k}.

Proof: For every $u \in \Lambda_{k}$, we have:

$$
u t=\Varangle u-=t u
$$

Let Γ_{4} be the normal subgroup of order 4 of \mathfrak{S}_{4}. Consider the element $\delta \in{ }_{3} \Delta_{k 4}$ represented by the following diagram:

By gluing from the left or the right, we get a map $u \mapsto u \delta$ from $F_{k}(3)$ to $F_{k}(4)$ or a map $u \mapsto \delta u$ from $F_{k}(4)$ to $F_{k}(3)$. Denote by E the submodule of $F_{k}(4)$ of all elements $u \in F_{k}(4)$ satisfying the following conditions:

$$
\forall \sigma \in \mathfrak{S}_{4}, \quad \delta \sigma u \in \Lambda_{k} \quad \text { and } \quad \forall \sigma \in \Gamma_{4}, \quad \sigma u=u
$$

For every $u \in F_{k}(4)$, define elements $x u, y u, z u$ by:
5.3 Proposition: The module E is a graded $\Lambda_{k}\left[\mathfrak{S}_{4}\right]$-submodule of $F_{k}(4)$ and for every $u \in E$ we have:

$$
x u, y u, z u \in E, \quad x u+y u+z u=2 t u .
$$

Proof: The fact that E is a graded $\Lambda_{k}\left[\mathfrak{S}_{4}\right]$-submodule of $F_{k}(4)$ is obvious. Let u be an element of $F_{k}(4)$. Because of Lemma 5.1, we have:

$$
\begin{aligned}
& x u=\bar{\square}_{\square}^{\square} u=\bar{\square}_{\square}
\end{aligned}
$$

Hence, if σ is a permutation in \mathfrak{S}_{4}, there exists an element $\theta \in\{x, y, z\}$ such that $\sigma x u=\theta \sigma u$. More precisely \mathfrak{S}_{4} acts on the set $\{x, y, z\}$ via an epimorphism $\sigma \mapsto \widehat{\sigma}$ from \mathfrak{S}_{4} to \mathfrak{S}_{3}, and we have:

$$
\sigma x u=\widehat{\sigma}(x) \sigma u, \quad \sigma y u=\widehat{\sigma}(y) \sigma u, \quad \sigma z u=\widehat{\sigma}(z) \sigma u .
$$

The kernel of this epimorphism is Γ_{4}.
We have:

Because of Lemma 3.3, we have:

$$
x u+y u+z u=\bar{\square} u=2 t u .
$$

Moreover, if $u \in F_{k}(4)$ is Γ_{4}-invariant, $x u, y u, z u$ are Γ_{4}-invariant too, and the last thing to do is to prove that $\delta x \sigma u, \delta y \sigma u, \delta z \sigma u$ are in Λ_{k} for every $u \in E$.

We have:

$$
\begin{aligned}
\delta x \sigma u & =\square \\
\square & \square=t \delta \sigma u \in \Lambda_{k} \\
\delta y \sigma u & =2 t \delta \sigma u-\delta x \sigma u-\delta z \sigma u
\end{aligned}
$$

and it is enough to prove that $\delta z \sigma u$ belongs to Λ_{k}. Because of Lemma 5.1 we have:

Let $s, \tau, \tau^{\prime}, \theta$ be the permutations in \mathfrak{S}_{4} or \mathfrak{S}_{3} represented by the following diagrams:

We have:

$$
\tau \delta z \sigma u=\tau \overline{\bar{\Xi}^{\square}} \sigma u=\overline{\bar{\Xi}^{\prime}} \tau^{\prime} \sigma u=\overline{\bar{\Xi}^{\prime}} \tau^{\prime} \sigma u
$$

and then:

$$
\tau \delta z \sigma u=\delta z \tau^{\prime} \sigma u \quad \Rightarrow \quad \tau^{2} \delta z \sigma u=\delta z \tau^{\prime 2} \sigma u
$$

But $\tau^{\prime 2}$ lies in Γ_{4} and $\tau^{2} \delta z \sigma u=\delta z \sigma u$. Therefore $\delta z \sigma u$ is invariant under cyclic permutations. We have also:

$$
s \delta z \sigma u=s \bar{\square} \sigma u=-\bar{\square} \theta \sigma u=-\bar{\square} \theta \sigma u .
$$

Since θ lies in Γ_{4} also, $s \delta z \sigma u=-\delta z \sigma u$ and $\delta z \sigma u$ belongs to the submodule $F_{k}(3)^{-}$ of $F_{k}(3)$. Consider the following diagrams:

$$
\delta^{\prime}=\overline{\bar{\square}} \quad \delta^{\prime \prime}=\overline{\bar{\square}}
$$

We have to prove the last equality: $\delta^{\prime} \delta z \sigma u=\delta^{\prime \prime} \delta z \sigma u$. Denote by $\sigma_{i j}$ the transposition $i \leftrightarrow j$. We have:

$$
\delta^{\prime} \delta z \sigma u=\frac{\text { 上 }}{\underline{\text { 上 }}} \sigma u=\frac{\text { - }}{\underline{=}} z \sigma u=\left(1-\sigma_{12}\right) x z \sigma u
$$

and similarly:

$$
\delta^{\prime \prime} \delta z \sigma u=\overline{\overline{\text { 上 }}} \sigma u=\left(1-\sigma_{34}\right) x z \sigma u \text {. }
$$

But σ_{12} and σ_{34} are the same modulo Γ_{4} and induce the transposition $y \leftrightarrow z$. Then we have:

$$
\delta^{\prime \prime} \delta z \sigma u=x z \sigma u-x y \sigma_{34} \sigma u=x z \sigma u-x y \sigma_{12} \sigma u=\delta^{\prime} \delta z \sigma u
$$

and that finishes the proof.
Consider the following element of $F_{k}(4)$:

$$
a=\square
$$

For every $p>0$ set: $x_{p}=\delta z^{p-1} a$. Because of the last result, x_{p} is an element of degree p in Λ_{k}. It is not difficult to check the following:

$$
x_{1}=2 t \quad x_{2}=t^{2} \quad 3 x_{4}=4 t x_{3}+t^{4}
$$

and Λ_{k} is freely generated in degree <6 by:

$$
1, t, t^{2}, t^{3}, t^{4}, t^{5}, x_{3}, \frac{t x_{3}-t^{4}}{3}, \frac{t^{2} x_{3}-t^{5}}{3}, \frac{x_{5}+t^{2} x_{3}}{2}
$$

Let τ be a permutation in \mathfrak{S}_{4} inducing the cyclic permutation $x \mapsto y \mapsto z \mapsto x$. Set: $z_{1}=x, z_{2}=y, z_{3}=z, \alpha_{1}=a, \alpha_{2}=\tau a, \alpha_{3}=\tau^{2} a$. The group \mathfrak{S}_{3} acts on E and for every $\sigma \in \mathfrak{S}_{3}$, every $i \in\{1,2,3\}$ and every $u \in E$ we have:

$$
\begin{aligned}
\sigma\left(z_{i} u\right) & =z_{\sigma(i)} \sigma(u) \\
\sigma\left(\alpha_{i}\right) & =\varepsilon(\sigma) \alpha_{\sigma(i)}
\end{aligned}
$$

where $\varepsilon(\sigma)$ is the signature of σ. Denote also by f_{1} the morphism $u \mapsto \delta u$ from E to Λ_{k}. If σ is the transposition keeping 1 fixed, on has for every $u \in E$:

$$
f_{1}(\sigma(u))=-f_{1}(u)
$$

Therefore there are unique morphisms f_{2} and f_{3} from E to Λ_{k} such that:

$$
f_{\sigma(i)}(\sigma(u))=\varepsilon(\sigma) f_{i}(u)
$$

for every $u \in E, \sigma \in \mathfrak{S}_{3}$ and $i \in\{1,2,3\}$. Moreover, if σ is the transposition keeping i fixed we have:

$$
z_{i}(u-\sigma(u))=f_{i}(u) \alpha_{i}
$$

for every $u \in E$.
The set $\{1,2,3\}$ in canonically oriented and for every i, j and k distinct in $\{1,2,3\}$, there is a sign $i_{\wedge} j \wedge k$ in $\{ \pm 1\}$: the signature of the permutation $1 \mapsto i, 2 \mapsto j, 3 \mapsto k$.
5.4 Proposition: Suppose 6 is invertible in k. Then there exist unique elements e, ε_{p} and $\beta_{i, p}$ in E, for $i \in\{1,2,3\}$ and $p \geq 0$ and unique elements $\omega_{p}(p \geq 0)$ in Λ_{k} such that the following holds for every $\sigma \in \mathfrak{S}_{3}$, every i, j, k distinct in $\{1,2,3\}$ and every $p \geq 0$:

$$
\begin{gathered}
\beta_{1, p}+\beta_{2, p}+\beta_{3, p}=0 \\
\sigma(e)=e, \quad \sigma\left(\varepsilon_{p}\right)=\varepsilon_{p}, \quad \sigma\left(\beta_{i, p}\right)=\varepsilon(\sigma) \beta_{\sigma(i), p} \\
f_{i}\left(\alpha_{i}\right)=2 t, \quad f_{i}\left(\beta_{i, p}\right)=2 \omega_{p} \\
f_{i}\left(\alpha_{j}\right)=-t, \quad f_{i}\left(\beta_{j, p}\right)=-\omega_{p} \\
f_{i}(e)=f_{i}\left(\varepsilon_{p}\right)=0 \\
z_{i} \alpha_{i}=t \alpha_{i}, \quad z_{i} \beta_{i, p}=\omega_{p} \alpha_{i} \\
z_{i} \alpha_{j}=i \wedge j \wedge k e+\frac{t}{3}\left(\alpha_{j}-\alpha_{i}\right) \\
z_{i} e=\frac{2 t}{3} e+i_{\wedge j} j \wedge\left(\frac{10 t^{2}}{9}\left(\alpha_{j}-\alpha_{k}\right)-\frac{1}{2}\left(\beta_{j, 0}-\beta_{k, 0}\right)\right) \\
z_{i} \beta_{j, p}=i_{\wedge} j \wedge k \varepsilon_{p}+\frac{2 t}{3}\left(\beta_{j, p}-\beta_{k, p}\right)+\omega_{p} \alpha_{k} \\
z_{i} \varepsilon_{p}=\frac{2 t}{3} \varepsilon_{p}+i_{\wedge j \wedge k}\left(\frac{4 t^{2}}{9}\left(\beta_{j, p}-\beta_{k, p}\right)-\frac{1}{2}\left(\beta_{j, p+1}-\beta_{k, p+1}\right)+\frac{2 t \omega_{p}}{3}\left(\alpha_{j}-\alpha_{k}\right)\right) .
\end{gathered}
$$

Proof: Consider formal elements ω_{p}^{\prime}, for $p \geq 0$ of degree $3+2 p$. Then $R=$ $k\left[t, \omega_{0}^{\prime}, \omega_{1}^{\prime}, \ldots\right]$ is a graded algebra. Let E^{\prime} be the R-module generated by elements $\alpha_{i}^{\prime}, \beta_{i, p}^{\prime}, e^{\prime}$ and ε_{p}^{\prime} (for $p \geq 0$ and $i \in\{1,2,3\}$) with the following relations:

$$
\sum_{i} \alpha_{i}^{\prime}=0, \quad \forall p \geq 0, \sum_{i} \beta_{i, p}^{\prime}=0 .
$$

This module is graded by:

$$
\partial^{\circ} \alpha_{i}^{\prime}=0, \quad \partial^{\circ} \beta_{i, p}^{\prime}=2+2 p, \quad \partial^{\circ} e^{\prime}=1, \quad \partial^{\circ} \varepsilon_{p}^{\prime}=3+2 p
$$

The symmetric group \mathfrak{S}_{3} acts on E^{\prime} by:

$$
\sigma\left(\alpha_{i}^{\prime}\right)=\varepsilon(\sigma) \alpha_{\sigma(i)}^{\prime}, \quad \sigma\left(\beta_{i, p}^{\prime}\right)=\varepsilon(\sigma) \beta_{\sigma(i), p}^{\prime}, \quad \sigma\left(e^{\prime}\right)=e^{\prime}, \quad \sigma\left(\varepsilon_{p}^{\prime}\right)=\varepsilon_{p}^{\prime}
$$

and E^{\prime} is a graded $R\left[\mathfrak{S}_{3}\right]$-module.
Using relations above we have well-defined maps $u \mapsto z_{i} u$ from E^{\prime} to E^{\prime} and the sum of these maps is $2 t$. We have also linear maps f_{i} from E^{\prime} to R sending e^{\prime} and ε_{p}^{\prime} to 0 and defined on the other generators by:

$$
\begin{array}{cc}
f_{i}\left(\alpha_{i}^{\prime}\right)=2 t & f_{i}\left(\beta_{i, p}^{\prime}\right)=2 \omega_{p}^{\prime} \\
f_{i}\left(\alpha_{j}^{\prime}\right)=-t & f_{i}\left(\beta_{j, p}^{\prime}\right)=-\omega_{p}^{\prime}
\end{array}
$$

It is not difficult to check the formula:

$$
\forall u \in E^{\prime}, \quad z_{i}(u-\sigma(u))=f_{i}(u) \alpha_{i}^{\prime}
$$

where σ is the transposition keeping i fixed. The last thing to do is to construct an algebra homomorphism ψ from R to Λ_{k} and a morphism φ from E^{\prime} to E which is linear over ψ sending α_{i}^{\prime} to α_{i} and z_{i} to z_{i}.

Consider the elements $u(i, j, k)=z_{i} \alpha_{j}-t / 3 \alpha_{j}+t / 3 \alpha_{i}$ in E (for i, j, k distinct). One has:

$$
\begin{gathered}
u(i, j, k)-u(j, k, i)=z_{i} \alpha_{j}-z_{j} \alpha_{k}-t / 3\left(\alpha_{j}-\alpha_{i}-\alpha_{k}+\alpha_{j}\right)=z_{i} \alpha_{j}-z_{j} \alpha_{k}-t \alpha_{j} \\
=z_{i} \alpha_{j}+\left(z_{i}+z_{k}-2 t\right) \alpha_{k}-t \alpha_{j}=z_{i}\left(\alpha_{j}+\alpha_{k}\right)+z_{k} \alpha_{k}-2 t \alpha_{k}-t \alpha_{j} \\
=-z_{i} \alpha_{i}+z_{k} \alpha_{k}+t \alpha_{i}-t \alpha_{k}=0 .
\end{gathered}
$$

Then $u(i, j, k)$ is invariant under cyclic permutations. One has also:

$$
u(i, j, k)+u(k, j, i)=\left(z_{i}+z_{k}\right) \alpha_{j}-2 t / 3 \alpha_{j}+t / 3\left(\alpha_{i}+\alpha_{k}\right)=\left(2 t-z_{j}\right) \alpha_{j}-t \alpha_{j}=0
$$

Therefore $u(i, j, k)$ is totally antisymmetric in i, j, k and $i \wedge j \wedge k u(i, j, k)$ is invariant under the action of \mathfrak{S}_{3}. So one can set:

$$
e=\varphi\left(e^{\prime}\right)=i_{\wedge j} j_{\wedge} k u(i, j, k)
$$

The element $v(i, j, k)=i \wedge j \wedge k\left(z_{j} e-z_{k} e\right)$ is clearly symmetric under the transposition $j \leftrightarrow k$. So it depends only on i and we can set:

$$
\beta_{i, 0}=\frac{20 t^{2}}{9} \alpha_{i}+\frac{2}{3} v(i, j, k) .
$$

Hence we have:

$$
\begin{gathered}
z_{i} e=\frac{1}{3}\left(2 z_{i}-z_{j}-z_{k}+2 t\right) e=\frac{2 t}{3} e+\frac{i \wedge j \wedge k}{3}(v(k, i, j)-v(j, k, i)) \\
=\frac{2 t}{3} e+i \wedge j \wedge k\left(\frac{10 t^{2}}{9}\left(\alpha_{j}-\alpha_{k}\right)-\frac{1}{2}\left(\beta_{j, 0}-\beta_{k, 0}\right)\right)
\end{gathered}
$$

It is easy to see that the sum of the $\beta_{i, 0}$ vanishes and we can set: $\varphi\left(\beta_{i, 0}^{\prime}\right)=\beta_{i, 0}$. On the other hand we have:

$$
f_{i}\left(-\beta_{k, 0}\right)=-f_{i}\left(\beta_{j, 0}\right)
$$

and $f_{i}\left(\beta_{j, 0}\right)$ depends only on i. But we have: $f_{i}\left(\beta_{j, 0}\right)=f_{j}\left(\beta_{k, 0}\right)$ and $f_{i}\left(\beta_{j, 0}\right)$ doesn't depend on i. So we can set: $\omega_{0}=-f_{i}\left(\beta_{j, 0}\right)$. Since $\beta_{i, 0}+\beta_{j, 0}+\beta_{k, 0}$ is trivial, we have also: $f_{i}\left(\beta_{i, 0}\right)=2 \omega_{0}$ and we can set: $\psi\left(\omega_{0}^{\prime}\right)=\omega_{0}$.

Set: $w(i, j, k)=z_{i} \beta_{j, 0}-\frac{2 t}{3}\left(\beta_{j, 0}-\beta_{k, 0}\right)-\omega_{0} \alpha_{k}$. One has:

$$
w(i, j, k)-w(j, k, i)=z_{i} \beta_{j, 0}-z_{j} \beta_{k, 0}-\frac{2 t}{3}\left(-3 \beta_{k, 0}\right)-\omega_{0}\left(\alpha_{k}-\alpha_{i}\right)
$$

$$
\begin{gathered}
=z_{i} \beta_{j, 0}-\left(2 t-z_{i}-z_{k}\right) \beta_{k, 0}+2 t \beta_{k, 0}-\omega_{0}\left(\alpha_{k}-\alpha_{i}\right) \\
=z_{i}\left(\beta_{j, 0}+\beta_{k, 0}\right)+z_{k} \beta_{k, 0}-\omega_{0}\left(\alpha_{k}-\alpha_{i}\right) \\
=f_{i}\left(\beta_{j, 0}\right) \alpha_{i}+1 / 2 f_{k}\left(\beta_{k, 0}\right) \alpha_{k}-\omega_{0}\left(\alpha_{k}-\alpha_{i}\right)=0
\end{gathered}
$$

Then $w(i, j, k)$ is invariant under cyclic permutations. One has also:

$$
\begin{gathered}
w(i, j, k)+w(k, j, i)=z_{i} \beta_{j, 0}+z_{k} \beta_{j, 0}-\frac{2 t}{3}\left(3 \beta_{j, 0}\right)-\omega_{0}\left(\alpha_{k}+\alpha_{i}\right) \\
=\left(2 t-z_{j}\right) \beta_{j, 0}-2 t \beta_{j, 0}+\omega_{0} \alpha_{j}=-z_{j} \beta_{j, 0}+\omega_{0} \alpha_{j}=0
\end{gathered}
$$

Therefore $w(i, j, k)$ is totally antisymmetric in i, j, k and $i \wedge j \wedge k w(i, j, k)$ is invariant under the action of \mathfrak{S}_{3}. So one can set:

$$
\varepsilon_{0}=\varphi\left(\varepsilon_{0}^{\prime}\right)=i \wedge j \wedge k w(i, j, k)
$$

Let $p \geq 0$ be en integer. Suppose that $\beta_{i, q}$ and ε_{q} are constructed for $q \leq p$ and φ and ψ are constructed in degree $\leq 3+2 p$. Consider the element $u(i, j, k)=$ $i \wedge j \wedge k\left(z_{j}-z_{k}\right) \varepsilon_{p}+\frac{4 t^{2}}{3} \beta_{i, p}+2 t \omega_{p} \alpha_{i}$. This element is invariant under the transposition $j \leftrightarrow k$ and depends only on i. So we can set:

$$
\beta_{i, p+1}=\frac{2}{3} u(i, j, k) .
$$

It is easy to check the following:

$$
\begin{gathered}
\beta_{1, p+1}+\beta_{2, p+1}+\beta_{3, p+1}=0 \\
z_{i} \varepsilon_{p}=\frac{2 t}{3} \varepsilon_{p}+i \wedge j \wedge k\left(\frac{4 t^{2}}{9}\left(\beta_{j, p}-\beta_{k, p}\right)-\frac{1}{2}\left(\beta_{j, p+1}-\beta_{k, p+1}\right)+\frac{2 t \omega_{p}}{3}\left(\alpha_{j}-\alpha_{k}\right)\right)
\end{gathered}
$$

and we can set: $\varphi\left(\beta_{i, p+1}^{\prime}\right)=\beta_{i, p+1}$. On the other hand we have:

$$
f_{i}\left(-\beta_{k, p+1}\right)=-f_{i}\left(\beta_{j, p+1}\right)
$$

and $f_{i}\left(\beta_{j, p+1}\right)$ depends only on i. But we have: $f_{i}\left(\beta_{j, p+1}\right)=f_{j}\left(\beta_{k, p+1}\right)$ and $f_{i}\left(\beta_{j, p+1}\right)$ doesn't depend on i. So we can set: $\omega_{p+1}=-f_{i}\left(\beta_{j, p+1}\right)$. Since $\beta_{i, p+1}+\beta_{j, p+1}+\beta_{k, p+1}$ is trivial, we have also: $f_{i}\left(\beta_{i, p+1}\right)=2 \omega_{p+1}$ and we can set: $\psi\left(\omega_{p+1}^{\prime}\right)=\omega_{p+1}$.

Set: $w(i, j, k)=z_{i} \beta_{j, p+1}-\frac{2 t}{3}\left(\beta_{j, p+1}-\beta_{k, p+1}\right)-\omega_{p+1} \alpha_{k}$. One has:

$$
\begin{gathered}
w(i, j, k)-w(j, k, i)=z_{i} \beta_{j, p+1}-z_{j} \beta_{k, p+1}-\frac{2 t}{3}\left(-3 \beta_{k, p+1}\right)-\omega_{p+1}\left(\alpha_{k}-\alpha_{i}\right) \\
=z_{i} \beta_{j, p+1}-\left(2 t-z_{i}-z_{k}\right) \beta_{k, p+1}+2 t \beta_{k, p+1}-\omega_{p+1}\left(\alpha_{k}-\alpha_{i}\right) \\
=z_{i}\left(\beta_{j, p+1}+\beta_{k, p+1}\right)+z_{k} \beta_{k, p+1}-\omega_{p+1}\left(\alpha_{k}-\alpha_{i}\right) \\
=f_{i}\left(\beta_{j, p+1}\right) \alpha_{i}+1 / 2 f_{k}\left(\beta_{k, p+1}\right) \alpha_{k}-\omega_{p+1}\left(\alpha_{k}-\alpha_{i}\right)=0 .
\end{gathered}
$$

Then $w(i, j, k)$ is invariant under cyclic permutations. One has also:

$$
w(i, j, k)+w(k, j, i)=z_{i} \beta_{j, p+1}+z_{k} \beta_{j, p+1}-\frac{2 t}{3}\left(3 \beta_{j, p+1}\right)-\omega_{p+1}\left(\alpha_{k}+\alpha_{i}\right)
$$

$$
=\left(2 t-z_{j}\right) \beta_{j, p+1}-2 t \beta_{j, p+1}+\omega_{p+1} \alpha_{j}=-z_{j} \beta_{j, p+1}+\omega_{p+1} \alpha_{j}=0
$$

Therefore $w(i, j, k)$ is totally antisymmetric in i, j, k and $i \wedge j \wedge k w(i, j, k)$ is invariant under the action of \mathfrak{S}_{3}. So one can set:

$$
\varepsilon_{p+1}=\varphi\left(\varepsilon_{p+1}^{\prime}\right)=i \wedge j \wedge k w(i, j, k)
$$

So φ and ψ are defined by induction and the result follows.

Remark: The subalgebra Λ^{\prime} of Λ_{k} generated by the x_{i} 's is generated by $x_{1}, x_{3}, x_{5}, \ldots$ and also by $t, \omega_{0}, \omega_{1}, \ldots$ Then every x_{i} can be expressed in term of t and the ω_{j} 's. In low degree we get:

$$
\begin{gathered}
x_{1}=2 t, \quad x_{2}=t^{2}, \quad x_{3}=4 t^{3}-\frac{3}{2} \omega_{0}, \quad x_{4}=5 t^{4}-2 t \omega_{0} \\
x_{5}=12 t^{5}-\frac{17}{2} t^{2} \omega_{0}+\frac{3}{2} \omega_{1}, \quad x_{6}=21 t^{6}-17 t^{3} \omega_{0}+5 t \omega_{1}-\frac{3}{2} \omega_{0}^{2} \\
x_{7}=44 t^{7}-\frac{91}{2} t^{4} \omega_{0}-\frac{7}{2} t \omega_{0}^{2}+\frac{37}{2} t^{2} \omega_{1}-\frac{3}{2} \omega_{2}
\end{gathered}
$$

Suppose that $\alpha_{i} \in E$ is represented by:

Then we set:

These diagrams are well defined in $F_{k}(4)$ if 6 is invertible in k. By gluing we are able to define new (Γ, X)-diagrams represented by a graph D containing Γ such that:

- the set ∂D of 1 -valent vertices of D is the disjoint union of $\partial \Gamma$ and X
- each vertex of D in $\Gamma \backslash \partial \Gamma$ is 3 -valent
- each vertex of D is 1 -valent, 3 -valent, or 4 -valent
- each 3 -valent vertex of K is oriented (by a cyclic ordering)
- some 4-valent vertex is marked by a bullet and labeled by a nonnegative integer
- some edge is marked by a bullet and labeled by a nonnegative integer
- each marked edge is outside of Γ and its boundary has two 3 -valent vertices
- the marked edges are pairwise disjoint.

Such a diagram will be called an extended (Γ, X)-diagram. Each extended (Γ, X)diagram is a linear combination of usual (Γ, X)-diagrams. A marked diagram D is an extended diagram with at least one marqued vertex. The sum of the markings is called the total marking of D.
5.5 Proposition: Suppose 6 is invertible in k. Then we have the following formulas:

$$
\longrightarrow p=\omega_{p} \longrightarrow
$$

for every $p \geq 0$.
Proof: This is essentially a graphical version of Proposition 5.4.
There are many relations in the algebra Λ. Kneissler [Kn] founded relations in term if the x_{i} 's. In term of the ω_{i} 's Kneissler's result becomes the following:
5.6 Theorem: The following relations hold in Λ :

$$
\forall p, q \geq 0, \quad \omega_{p} \omega_{q}=\omega_{0} \omega_{p+q} .
$$

5.7 Theorem: Let Γ be a closed curve and X be a finite set. Let u be an element of $\mathcal{A}^{s}(\Gamma, X)$ represented by a marked diagram D with total marking p. Let D_{0} be the diagram D where each marking is replaced by 0 . Then u depends only on p and D_{0}. Moreover $\omega_{q} u$ depends only on $p+q$ and D_{0}.

Proof: Here we are working over the rationals $(k=\mathbf{Q})$.
5.7.1 Lemma: The following relation holds in $F(6)$:

Proof: Let E_{n} be the component of $F(6)$ of degree n. These modules can be determined by computer for $n \leq 6$. In this range the dimensions are:

$$
\begin{array}{lllllll}
24 & 60 & 120 & 199 & 309 & 439 & 594
\end{array}
$$

The desired relation lies in the module E_{6} and can be checked directly. More precisely, E_{n} has a decomposition in a direct sum of pieces corresponding to the Young diagrams of size 6. Using this decomposition and formulas in Proposition 5.5 we get:

$$
\xrightarrow{\perp}+\quad=A_{0}(4,2)+A_{0}(2,2,2)+A_{0}(3,1,1,1)
$$

$$
\downarrow+\perp=A_{1}(4,2)+A_{1}(3,2,1)
$$

$$
\xrightarrow[0]{__{0} \downarrow \perp}=A_{2}(4,2)+A_{2}(2,2,2)+A_{2}(3,1,1,1)+A_{2}(3,2,1)
$$

$$
\xrightarrow[0]{\perp_{0} \downarrow V}=A_{3}(4,2)+A_{3}(3,2,1)+A_{3}(5,1)
$$

$$
\xrightarrow[0]{\perp_{0} \perp_{0} \downarrow}=A_{4}(4,2)+A_{4}(2,2,2)+A_{4}(3,1,1,1)+A_{4}(3,2,1)
$$

$$
\xrightarrow[0]{1 . \mathrm{V}}=A_{5}(4,2)+A_{5}(5,1)+A_{5}(3,2,1)
$$

It is not difficult to see that the symmetry σ along a vertical axis acts trivially on $A_{6}(4,2), A_{6}(2,2,2), A_{6}(3,1,1,1), A_{6}(3,2,1)$ and then on the last diagram. So we have:

and that proves the lemma.
5.7.2 Lemma: For every p and q we have the following relations in $F(6)$:

with $p^{\prime}=p+1$ and $q^{\prime}=q+1$.

Proof: Consider the following diagrams:

These diagrams are morphisms in the category Δ.
Consider the following morphisms in this category:

$$
\begin{aligned}
& \tau=\frac{\searrow /}{l} \quad \theta=\frac{\square}{\square}
\end{aligned} \quad \alpha=\begin{aligned}
& \square \\
& \beta=\frac{\square}{\square}
\end{aligned} \quad u=\square=\square
$$

Then we set:

$$
\begin{gathered}
f=\left(\frac{1}{2} \alpha-\frac{1}{6} \theta\right) \circ(1+\tau) \\
g=(1+\tau) \circ\left(\frac{1}{2} \alpha-\frac{1}{6} \theta\right) \\
\varphi=\frac{2}{3} f \circ(\beta-\alpha)+\frac{2}{9} \theta^{2}+\frac{2}{3} u \\
\psi=\frac{2}{3}(\beta-\alpha) \circ g+\frac{2}{9} \theta^{2}+\frac{2}{3} v
\end{gathered}
$$

Because of Proposition 5.5 we can check the following:

$$
\begin{array}{ll}
A(p, q) \circ f=B(p, q) & A(p, q) \circ \varphi=A(p, q+1) \\
g \circ B(p, q)=C(p, q) & \psi \circ A(p, q)=A(p+1, q)
\end{array}
$$

Because of Lemma 5.7.1 we have: $A(0,1)=A(1,0)$. Therefore we get:

$$
\begin{aligned}
A(p, q+1) & =\psi^{p} \circ A(0,1) \circ \varphi^{q}
\end{aligned}=\psi^{p} \circ A(1,0) \circ \varphi^{q}=A(p+1, q), ~ \begin{array}{cl}
B(p, q+1) & =A(p, q+1) \circ f=A(p+1, q) \circ f=B(p+1, q) \\
C(p, q+1) & =g \circ B(p, q+1)=g \circ B(p+1, q)=C(p+1, q)
\end{array}
$$

and that proves the lemma.

Then diagrams $A(p, q), B(p, q), C(p, q)$ depend only on $p+q$ and we can set:

$$
A(p, q)=A(p+q), \quad B(p, q)=B(p+q), \quad C(p, q)=C(p+q) .
$$

Let u_{0} be the diagram represented in $F(3)$ by $1 \in \Lambda \subset F(3)$. By gluing u_{0} on the diagram $A(p, q)$ we get the following diagram v in $F(3)$:

depending only on $p+q$. Because of Proposition 5.5, we get:

Therefore $\omega_{p} \omega_{q}$ depend only on $p+q$ and Theorem 5.6 follows.
Let D be a marked diagram representing an element U in $\mathcal{A}^{s}(\Gamma, X)$. Then $D \backslash \Gamma$ is connected. Let Z be the set of all marked vertices or edges of D. We'll said that two elements u and v in Z are related if there is a path γ in D connecting u and v such that γ doesn't meet Γ and meets Z only in u and v. This relation generates an equivalence relation \equiv. Since $D \backslash \Gamma$ is connected, Z has only one equivalence class modulo \equiv. Therefore in order to prove the first part of Theorem 5.7 it is enough to prove the following: if u and v in Z are related the class of D in $\mathcal{A}^{s}(\Gamma, X)$ depends only on the sum of the marking of u and v.

Consider the following diagrams in $F(6+n)$, for some integers p, q, n :

If u and v in Z are related D contains a subdiagram isomorphic to $A_{n}(p, q)$, $B_{n}(p, q)$ or $C_{n}(p, q)$. Then it is enough to prove that $A_{n}(p, q), B_{n}(p, q)$ and $C_{n}(p, q)$ depend only on n and $p+q$. Let X be one of the symbol A, B, C. Because of Lemma 3.3, we can push away all strands in the middle of $X_{n}(p, q)$ through the marked edge (or the marked vertex) in the right part of the diagram and $X_{n}(p, q)$ is equivalent in $F(6+n)$ to a linear combination of diagrams containing $X(p, q)$. Then, because of Lemma 5.7.2, $X_{n}(p, q)$ depends only on n and $p+q$ and the first part of Theorem 5.6 is proven.

The element $\omega_{q} U$ is represented by a diagram D^{\prime} obtained from D by adding a new marked edge with marking q. Therefore $\omega_{q} U$ depends only on D_{0} and the sum of q and the total marking of D.

Remark: Consider the commutative Q -algebra R^{\prime} defined by the following presentation:

- generators: $t, \omega_{0}, \omega_{1}, \ldots$
- relations: $\omega_{p} \omega_{q}=\omega_{0} \omega_{p+q}$, for every p, q.

We have a canonical morphism from R^{\prime} to Λ. On the other hand there is a morphism $f: R^{\prime} \longrightarrow \mathbf{Q}[t, \sigma, \omega]$ sending t to t and each ω_{p} to $\omega \sigma^{p}$. Is is easy to see that this morphism is injective with image $R_{0}=\mathbf{Q}[t] \oplus \omega \mathbf{Q}[t, \sigma, \omega]$. Then the morphism $R^{\prime} \longrightarrow \Lambda_{k}$ induces a morphism from R_{0} to Λ :
5.8 Proposition: Let R be the polynomial algebra $\mathbf{Q}[t, \sigma, \omega]$ where t, σ and ω are formal variables of degree 1, 2 and 3 respectively and R_{0} be the subalgebra $\mathbf{Q}[t] \oplus \omega \mathbf{Q}[t, \sigma, \omega]$ of R. Then there is a unique graded algebra homomorphism φ from R_{0} to Λ sending t to t and each $\omega \sigma^{p}$ to ω_{p}.

6. Detecting elements in Λ.

In this section we'll construct weight functions on modules of diagrams and characters on Λ using Lie superalgebras.

Let L be a finite dimensional Lie superalgebra over a field K equipped with a nonsingular supersymmetric bilinear form $<,>$ invariant under the adjoint representation. Such a data will be called a quadratic Lie superalgebra and the bilinear form is called the inner form. Take a homogeneous basis $\left(e_{j}\right)$ of L and its dual basis $\left(e_{j}^{\prime}\right)$. The Casimir element $\Omega=\sum_{j} e_{j} \otimes e_{j}^{\prime} \in L \otimes L$ is independent of the choice of the basis and its degree is zero.

Let Γ be an closed oriented curve and $X=[n]$ be a finite set. Suppose that a L representation E_{i} is chosen for each component Γ_{i} of Γ. We will say that Γ is colored by L-representations. Then it is possible to construct a linear map from $\mathcal{A}(\Gamma, X)$ to $L^{\otimes n}$ in the following way:

Let D be a (Γ, X)-diagram. Up to some changes of cyclic ordering we may as well suppose that, at each vertex x in Γ the cyclic ordering is given by (α, β, γ) where α is the edge which is not contained in Γ and β is the edge in Γ ending at x (with the orientation of Γ).

For each component Γ_{i} we can take a basis $\left(e_{i j}\right)$ of E_{i} and its dual basis ($e_{i j}^{\prime}$) of the dual E_{i}^{\prime} of E_{i} and we get a Casimir element $\omega_{i}=\Sigma_{j} e_{i j} \otimes e_{i j}^{\prime} \in E_{i} \otimes E_{i}^{\prime}$. This element is of degree zero and is independent of the choice of the basis.

For each oriented edge α in D denote by $V(\alpha)$ the module L if α is not contained in Γ and $E_{i}\left(\right.$ resp. $\left.E_{i}^{\prime}\right)$ if α is contained in the component Γ_{i} of Γ with a compatible (resp. not compatible) orientation. If α is an oriented edge in D denote by $W(\alpha)$ the module $V(\alpha) \otimes V(-\alpha)$ where $-\alpha$ is the edge α equipped with the opposite orientation.

Let a be an edge in D. Take an orientation of a compatible with the orientation of Γ if a is contained in Γ. Denote also by $\omega(a)$ the Casimir element ω if a is not
contained in Γ and the element ω_{i} if a is contained in Γ_{i}. This element belongs to the module $W(a)$ and is independent on the orientation of a. If a numbering of the set of edges is chosen the tensor product $W=\underset{a}{\otimes} W(a)$ is well defined and the element $\Omega=\otimes \omega(a)$ is a well-defined element in W.

Let x be a 3 -valent vertex in D. There are three oriented edges α, β and γ ending at x (the ordering (α, β, γ) is chosen to be compatible with the cyclic ordering given at x and, if x is in Γ, α is supposed to be outside of Γ).

Then we get a module $H(x)=V(\alpha) \otimes V(\beta) \otimes V(\gamma)$. If a numbering of the set of 3 -valent vertices of D is chosen, the module $\otimes H(x)$ is well defined. We can permute (in the super sense) the big tensor product $\stackrel{x}{W}$ and we get an isomorphism φ from W to the module:

$$
H=L^{\otimes n} \otimes \underset{x}{\otimes} H(x)
$$

and $\varphi(\Omega)$ is an element of H.
Suppose that x is not contained in Γ. Then the rule $u \otimes v \otimes w \mapsto<[u, v], w>$ induces a map f_{x} from $H(x)$ to K. If x is in Γ the rule $u \otimes e \otimes f \mapsto(-1)^{\partial^{\circ} f \partial^{\circ}(u \otimes e)} f(u e)$ is a map f_{x} from $H(x)$ to K. Hence the image of $\varphi(\Omega)$ under the tensor product of all f_{x} is an element $\Phi_{L}(D) \in L^{\otimes n}$. Since elements w and w_{i} and maps f_{x} are of degree zero, this element doesn't depend on these numberings.

Since the map $u \otimes v \otimes w \mapsto<[u, v], w>$ from $L \otimes L \otimes L$ to K is totally antisymmetric (in the super sense), $\Phi_{L}(D)$ is multiplied by -1 if one cyclic ordering is changed in D. Moreover, the Jacobi identity and the property of the L-action on modules E_{i} imply that the correspondence $D \mapsto \Phi_{L}(D)$ is compatible with the IHX relation. Therefore this correspondence induces a well-defined linear map Φ_{L} from $\mathcal{A}(\Gamma, X)$ to $L^{\otimes n}$.

Definition: A Lie superalgebra L over a field K will be called quasisimple if it satisfies the two conditions:

- L is not abelian
- every endomorphism of L of degree 0 is the multiplication by a scalar.

Remark: Every simple Lie superalgebra is quasisimple but the converse is not true.
Lemma: A quasisimple quadratic Lie superalgebra has a trivial center and a surjective Lie bracket.

Proof: Let L be a quasisimple quadratic Lie superalgebra over a field K. Let f be a morphism from L to K. By duality we get a morphism g from K to L. The composite $g \circ f$ is an endomorphism of L and there is a scalar $\lambda \in K$ such that: $g \circ f=\lambda \mathrm{Id}$.

Suppose $f \neq 0$. Then f is surjective, g is injective, $g \circ f$ is not trivial and $\lambda \neq 0$. Therefore $g \circ f$ is bijective and f is bijective also. But that's impossible because L is not abelian.

Then every morphism from L to K is zero and (by duality) every morphism from K to L is zero too. The result follows.
6.1 Theorem: Let K be a field and a k-algebra and L be a quasisimple quadratic Lie superalgebra over K. Then there is a well-defined character $\chi_{L}: \Lambda_{k} \longrightarrow K$ such that:
for every closed oriented curve Γ colored by L-representations and every finite set X, the map Φ_{L} satisfies the following property:

$$
\forall \alpha \in \Lambda_{k}, \quad \forall u \in \mathcal{A}^{s}(\Gamma, X), \quad \Phi_{L}(\alpha u)=\chi_{L}(\alpha) \Phi_{L}(u)
$$

Let A be a k-subalgebra of K. Suppose K is the fraction field of A and A is a unique factorization domain. Suppose also that L contains a finitely generated A-submodule L_{A} such that the Lie bracket and its dual are defined on L_{A}. Then χ_{L} takes values in A.

Proof: First of all, it is possible to extend the map Φ_{L} to a functor between two categories $\operatorname{Diag}(L)$ and $\mathcal{C}(L)$. The objects of these categories are the sets $[p], p \geq 0$. For $p, q \geq 0$ the set of morphisms in $\mathcal{C}(L)$ from $[p]$ to $[q]$ is the set of L-linear homomorphisms from $L^{\otimes p}$ to $L^{\otimes q}$, and the set of morphisms in $\operatorname{Diag}(L)$ from $[p]$ to $[q]$ is the k-module generated by the isomorphism classes of $(\Gamma,[p] \cup[q])$-diagrams where Γ is any L-colored oriented curve and where the relations are the AS and IHX relations.

These two categories are monoidal and $\operatorname{Diag}(L)$ contains Δ_{k} as a subcategory. Moreover $\operatorname{Diag}(L)$ is generated (as a monoidal category) by the following morphisms:

$$
(\ggg>
$$

The last morphism is a morphism in $\operatorname{Diag}(L)$ from $[p]$ to [0] depending on an integer $p \geq 0$ and a L-representation E.

The map Φ_{L} associates to each L-colored $(\Gamma,[p] \cup[q])$-diagram D an element $\Phi_{L}(K)$ in $L^{\otimes p} \otimes L^{\otimes q}$. But $L^{\otimes p}$ is isomorphic to its dual and $\Phi_{L}(K)$ may be seen as a linear map from $L^{\otimes p}$ to $L^{\otimes q}$.

It is not difficult to see that the image under Φ_{L} of the generators above are:

- the inner form from $L^{\otimes 2}$ to $L^{\otimes 0}=K$,
- the Casimir element consider as a morphism from $K=L^{\otimes 0}$ to $L^{\otimes 2}$,
- the Lie bracket from $L^{\otimes 2}$ to L,
- the dual of the Lie bracket (the Lie cobracket) from L to $L^{\otimes 2}$,
— the map $x \otimes y \mapsto(-1)^{\partial^{\circ} x \partial^{\circ} y} y \otimes x$ from $L^{\otimes 2}$ to itself,
- the map $x_{1} \otimes \ldots \otimes x_{p} \mapsto \tau_{E}\left(x_{1} \ldots x_{p}\right)$ from $L^{\otimes p}$ to $L^{\otimes 0}=K$, where $\tau_{E}\left(x_{1} \ldots x_{p}\right)$ is the supertrace of the endomorphism $x_{1} \ldots x_{p}$ of E.

All these maps are L-linear. Therefore Φ_{L} induces a functor still denoted by Φ_{L} from $\operatorname{Diag}(L)$ to the category $\mathcal{C}(L)$.

Let Γ be a L-colored oriented curve and $X=[n]$ be a finite set. Consider an element $\alpha \in \Lambda_{k}$ and an element $u \in \mathcal{A}^{s}(\Gamma, X)$ represented by a (Γ, X)-diagram D. Take a 3 -valent vertex x in D and a bijection from [3] to the set of edges ending at x. By taking off a neighborhood of x in D, we get a diagram H inducing a morphism v in $\operatorname{Diag}(L)$ from [3] to [n].

On the other hand, α induces a morphism β in $\operatorname{Diag}(L)$ from [0] to [3], and $1 \in \Lambda$ induces an element β_{0} from [0] to [3]. Let \widetilde{u} and $\widetilde{\alpha u}$ be the morphisms from [0] to [n] induced by u and αu. We have:

$$
\widetilde{u}=v \circ \beta_{0}, \quad \widetilde{\alpha u}=v \circ \beta .
$$

Hence:

$$
\Phi_{L}(\widetilde{u})=\Phi_{L}(v) \circ \Phi_{L}\left(\beta_{0}\right), \quad \Phi_{L}(\widetilde{\alpha u})=\Phi_{L}(v) \circ \Phi_{L}(\beta)
$$

The elements $\alpha \in \Lambda_{k}$ and $1 \in \Lambda_{k}$ also induce morphisms γ and γ_{0} from [2] to [1]. Denote by φ and φ_{0} the morphisms $\Phi_{L}(\gamma)$ and $\Phi_{L}\left(\gamma_{0}\right)$. The morphism φ_{0} is the Lie bracket and φ is L-linear and antisymmetric. Since α belongs to Λ_{k}, we have the following:

and, for every x, y, z in L, we have: $[\varphi(x \otimes y), z]=\varphi([x, y] \otimes z)$.
Denote by $u \mapsto[u]$ the Lie bracket from $L^{\otimes 2}$ to L. For every $u \in L^{\otimes 2}$ and every $z \in L$ we have: $[\varphi(u), z]=\varphi([u] \otimes z)$.

Suppose $[u]=0$ then $[\varphi(u), z]$ vanishes for every $z \in L$ and $\varphi(u)$ lies in the center of L. Since this center is trivial, $\varphi(u)$ is trivial too. Therefore $\varphi(u)$ depends only on the image [u] of u. Since the Lie bracket is surjective, there is a unique morphism ψ from L to L such that:

$$
\forall u \in L^{\otimes 2}, \quad \varphi(u)=\psi([u])
$$

and there is a unique $\lambda \in K$ such that:

$$
\forall u \in L^{\otimes 2}, \quad \varphi(u)=\lambda[u]
$$

and we have:

$$
\Phi_{L}(\beta)=\lambda \Phi_{L}\left(\beta_{0}\right), \quad \Phi_{L}(\widetilde{\alpha u})=\lambda \Phi_{L}(\widetilde{u}), \quad \Phi_{L}(\alpha u)=\lambda \Phi_{L}(u)
$$

Now it is easy to see that $\alpha \mapsto \lambda$ is a character depending only on L and the Casimir element Ω.

Suppose now that L contains a finitely generated A-submodule L_{A} such that the Lie bracket and the Lie cobracket (the dual of the Lie bracket) are defined on L_{A}. Let α be an element in Λ_{k} represented by a ($\emptyset,[3]$)-diagram D and $u \in K$ be its image under χ_{L}. Because this diagram is connected there exists a continuous map f from D to $[0,1]$ such that:

$$
-f(1)=f(2)=0 \quad f(3)=1
$$

- f is affine and injective on each edge of D
- f is injective on the set of 3 -valent vertices of D
- f has no local extremum.

Such a map can be constructed by induction on the number of edges of D. Using this map, the map from [2] to [1] represented by D can be described by composition, tensor product, Lie bracket and Lie cobracket and we have:

$$
\forall x, y \in L_{A}, \quad u[x, y] \in L_{A} .
$$

Let w be a nonzero element in the image of the Lie bracket $L_{A} \otimes L_{A} \longrightarrow L_{A}$. By applying the formula above for each power of α, we get:

$$
\forall p \geq 0, \quad u^{p} w \in L_{A} .
$$

Since L_{A} is finitely generated the A-submodule of K generated by the powers of u is also finitely generated. Then u lies in the integral closure of A in K. Since A is a unique factorization domain, A is integrally closed and u belongs to A. Therefore $\chi_{L}(\alpha)$ lies in A for every $\alpha \in \Lambda_{k}$.

Remark: If every endomorphism of L is the multiplication by a scalar, every invariant bilinear form of L is a multiple of the given inner form. If we divide the inner form par some $c \in K$, we multiply the Casimir element Ω by c and for every $\alpha \in \Lambda_{k}$ of degree $n, \chi_{L}(\alpha)$ is multiplied by c^{n}.
6.2 Proposition: Let L be the Lie algebra s_{2} (defined over K). Then the functor Φ_{L} satisfies the following properties:

Moreover there is a unique graded algebra homomorphism $\chi_{s l 2}$ from Λ_{k} to $k[t]$ sending t to t and each ω_{n} to 0 such that the character χ_{L} is the composite:

$$
\Lambda_{k} \xrightarrow{\chi_{s l 2}} k[t] \xrightarrow{\gamma} K
$$

where γ is a k-algebra homomorphism. If the inner form on L send $\alpha \otimes \beta$ to the trace of $\alpha \beta, \gamma$ sends t to 2 .

Proof: Since L is defined over \mathbf{Q} it is enough to consider the case $k=K=\mathbf{Q}$. Set:

The element $\Phi_{L}(U)$ is a map from $L^{\otimes 2}=\Lambda^{2}(L) \oplus S^{2}(L)$ to itself. Since U is antisymmetric on the source and the target, $\Phi_{L}(U)$ is trivial on $S^{2}(L)$ and its image is contained in $\Lambda^{2}(L)$. Since L is 3 -dimensional, the Lie bracket $\Lambda^{2}(L) \longrightarrow L$ is bijective. But U composed with this bracket is zero. Therefore U is killed by Φ_{L}.

The fact that Φ_{L} sends the circle to 3 come from the fact that L is 3 -dimensional.

Denote by \equiv the following relation:

$$
a \equiv b \Longleftrightarrow \Phi_{L}(a)=\Phi_{L}(b)
$$

So we have:

and it is easy to see by induction that every element α in Λ_{k} is equivalent to some polynomial $P(t) \in k[t]$. Let c be the scalar $\chi_{L}(t)$. Then we have: $\Phi_{L}(\alpha)=P(c)$. If α is homogeneous of degree n, we have: $P(t)=a t^{n}$ and: $\Phi_{L}(\alpha)=a c^{n}$. Then $P(t)$ is completely determined by $\Phi_{L}(\alpha)$. Therefore $\alpha \mapsto P(t)$ is a well-defined algebra homomorhism $\chi_{s l 2}$ from Λ_{k} to $k[t]$ such that χ_{L} is the composite $\gamma \circ \chi_{s l 2}$ where γ sends t to c. If the inner form is $\alpha \otimes \beta \mapsto \tau(\alpha \beta)$, we have $c=2$ and γ sends t to 2.

A direct computation gives the following:

Then by induction we get the following for every $p \geq 0$:

$$
\omega_{p} \equiv 0
$$

Therefore each ω_{p} is killed by $\chi_{s l 2}$ and that finishes the proof.
Let L be a quasisimple quadratic Lie superalgebra over a field K. Let X be the kernel of the Lie bracket: $\Lambda^{2}(L) \longrightarrow L$ and Y be the quotient of $S^{2}(L)$ by the Casimir element Ω of L. So we have exact sequences of L-modules:

$$
\begin{gathered}
0 \longrightarrow X \longrightarrow \Lambda^{2}(L) \longrightarrow L \longrightarrow 0 \\
0 \longrightarrow K \Omega \longrightarrow S^{2}(L) \longrightarrow Y \longrightarrow 0
\end{gathered}
$$

Let Ψ_{L} be the endomorphism of $L^{\otimes 2}$ represented by the diagram:

Since this diagram is symmetric, Ψ_{L} respects the decomposition: $L^{\otimes 2}=S^{2}(L) \oplus$ $\Lambda^{2}(L)$. But Ψ_{L} respects the exact sequences also and Ψ_{L} acts on X and Y. If α is a eigenvalue of Ψ_{L} acting on Y, the corresponding eigenspace will be denoted by Y_{α}.
6.3 Theorem: Let L be a quasisimple quadratic Lie superalgebra over a field K which is not $s l_{2}$. Let Ω, X, Y and Ψ_{L} defined as above. Let P be the minimal polynomial of Ψ_{L} acting on Y.

Suppose the following conditions hold:

- 6 is invertible in K,
- Ψ_{L} acts bijectively on Y,
- χ_{L} is nontrivial on some ω_{p} or $\partial^{\circ} P \leq 3$.

Then the degree of P is 2 or 3 and there exist three elements t, σ, ω in K such that:
$-\quad \chi_{L}(t)=t, \quad \forall p \geq 0, \chi_{L}\left(\omega_{p}\right)=\omega \sigma^{p}$,

- Ψ_{L} is the multiplication by $0, t$ and $2 t$ on $X, \Lambda^{2}(L) / X \simeq L$ and $K \Omega$,
- for every $p \geq 0$ we have the following:
(1)

(2)

$$
\begin{equation*}
\Phi_{L} \gg=\sigma \Phi_{L}>+(\omega-t \sigma) \frac{2 t}{3} \Phi_{L}()(+\cdots+>) \tag{3}
\end{equation*}
$$

If P is of degree 2 (exceptional case), P has 2 nonzero roots α and β in some algebraic extension of K and we have:

$$
\begin{gathered}
t=3(\alpha+\beta), \quad \sigma=(4 \alpha+5 \beta)(4 \beta+5 \alpha), \quad \omega=5(\alpha+\beta)(3 \alpha+4 \beta)(3 \beta+4 \alpha) \\
\operatorname{sdim}(L)=-2 \frac{(5 \alpha+6 \beta)(5 \beta+6 \alpha)}{\alpha \beta} \\
\operatorname{sdim}(X)=5 \frac{(4 \alpha+\beta)(4 \beta+\alpha)(5 \alpha+6 \beta)(5 \beta+6 \alpha)}{\alpha^{2} \beta^{2}} \\
\alpha \neq \beta \Longrightarrow \operatorname{sdim}\left(Y_{\alpha}\right)=-90 \frac{(\alpha+\beta)^{2}(6 \alpha+5 \beta)(3 \alpha+4 \beta)}{\alpha^{2} \beta(\alpha-\beta)} .
\end{gathered}
$$

If P is of degree 3 (regular case), P has 3 nonzero roots α, β, γ in some algebraic extension of K and we have:

$$
\begin{aligned}
& t=\alpha+\beta+\gamma, \quad \sigma=\alpha \beta+\beta \gamma+\gamma \alpha+2 t^{2}, \quad \omega=(t+\alpha)(t+\beta)(t+\gamma) \\
& \operatorname{sdim}(L)=-\frac{(2 t-\alpha)(2 t-\beta)(2 t-\gamma)}{\alpha \beta \gamma} \\
& \operatorname{sdim}(X)=\frac{\omega(2 t-\alpha)(2 t-\beta)(2 t-\gamma)}{\alpha^{2} \beta^{2} \gamma^{2}} \\
& \alpha \neq \beta, \gamma \Longrightarrow \operatorname{sdim}\left(Y_{\alpha}\right)=\frac{t(2 t-\beta)(2 t-\gamma)(t+\beta)(t+\gamma)(2 t-3 \alpha)}{\alpha^{2} \beta \gamma(\alpha-\beta)(\alpha-\gamma)}
\end{aligned}
$$

Remark: In the exceptional case, we may add formally a new root $\gamma=2 t / 3$ and a trivial corresponding eigenspace Y_{γ}. Then the formulas of the superdimensions are exactly the same in the exceptional case or the regular case except that γ is possibly equal to 0 .

Proof: Set: $\omega=\chi_{L}\left(\omega_{0}\right)$ and consider the following endomorphisms in $L^{\otimes 2}$:

$$
\left.\varepsilon=\Phi_{L}\right)\left(e=\Phi_{L}\right.
$$

These endomorphisms act on $S^{2}(L)$ and act trivially on $\Lambda^{2}(L)$.

The degree of P :

Suppose $\chi_{L}\left(\omega_{p}\right) \neq 0$. We have:

$$
\chi_{L}\left(\omega_{p}^{2}\right)=\chi_{L}\left(\omega_{0} \omega_{2 p}\right)=\omega \chi_{L}\left(\omega_{2 p}\right) \neq 0 \Longrightarrow \omega \neq 0 .
$$

So we can set:

$$
\sigma=\frac{\chi_{L}\left(\omega_{1}\right)}{\omega}
$$

and we have for every $p>0$:

$$
\omega^{p-1} \chi_{L}\left(\omega_{p}\right)=\chi_{L}\left(\omega_{0}^{p-1} \omega_{p}\right)=\chi_{L}\left(\omega_{1}^{p}\right)=\omega^{p} \sigma^{p} \quad \Longrightarrow \quad \chi_{L}\left(\omega_{p}\right)=\sigma^{p} \omega .
$$

Because of theorem 5.7, we have also:

and this implies:

Similarly we get for every $p \geq 0$:

and formulas (1) are proven in this case.
Let E be the vector space formally generated by e, ε, u, v, f and g. Because of Proposition 5.5 the operator Ψ_{L} induces an action ψ on E defined by:

$$
\psi(\varepsilon)=2 t \varepsilon
$$

$$
\begin{gathered}
\psi(e)=u \\
\psi(u)=\frac{t}{3} u+2 f \\
\psi(v)=-\omega u+\frac{4 t}{3} v+2 g \\
\psi(f)=\frac{10 t^{2}}{9} u-\frac{1}{2} v+\frac{2 t}{3} f \\
\psi(g)=\frac{2 t \omega}{3} u+\left(\frac{4 t^{2}}{9}-\frac{\sigma}{2}\right) v+\frac{2 t}{3} g .
\end{gathered}
$$

It is easy to see that ψ vanishes on the following element in E :

$$
U=g-\sigma f-\frac{t}{3}(v-\sigma u)-t(\omega-t \sigma) e .
$$

Since Ψ_{L} acts bijectively on $S^{2}(L) / K \Omega, U$ induces the trivial endomorphism of $S^{2}(L) / K \Omega$ and there exists an element $\lambda \in K$ such that the following holds in $\operatorname{End}\left(L^{\otimes 2}\right)\left(\right.$ or in $\left.\operatorname{Hom}\left(L^{\otimes 4}, K\right)\right)$:

$$
g-\sigma f-\frac{t}{3}(v-\sigma u)-t(\omega-t \sigma) e=\lambda \varepsilon .
$$

The group \mathfrak{S}_{4} acts on this equality and the invariant part of it is:

$$
g=\sigma f+\left(\frac{2 t}{3}(\omega-t \sigma)+\frac{\lambda}{3}\right)(e+\varepsilon) .
$$

Hence we have also:

$$
t(v-\sigma u)=(t(\omega-t \sigma)-\lambda)(2 \varepsilon-e)
$$

By making a quarter of a turn and composing with the Lie bracket, we get:

$$
t(3 \omega-3 t \sigma)=3(t(\omega-t \sigma)-\lambda)
$$

which implies: $\lambda=0$ and we get Formula (3):

$$
g=\sigma f+\frac{2 t}{3}(\omega-t \sigma)(e+\varepsilon)
$$

and also the following:

$$
t(v-\sigma u)=t(\omega-t \sigma)(2 \varepsilon-e)
$$

Let E^{\prime} be the quotient of E by these two relations. It is easy to see that ψ vanishes on $v-\sigma u-(\omega-t \sigma)(2 \varepsilon-e) \in E^{\prime}$.

For the same reason as above, there is an element $\mu \in K$ such that:

$$
v-\sigma u-(\omega-t \sigma)(2 \varepsilon-e)=\mu \varepsilon
$$

By making a quarter of a turn and composing with the Lie bracket, we get:

$$
3 \omega-3 t \sigma-(\omega-t \sigma) 3=\mu
$$

Hence μ is zero and we get the formula (2).
Denote by φ the endomorphism of Y induced by Ψ_{L}. In this endomorphism algebra we have:

$$
\begin{gathered}
\varepsilon=0 \quad e=2 \\
u=2 \varphi \quad f=\varphi^{2}-\frac{t}{3} \varphi \\
v=2\left(\frac{20 t^{2}}{9} \varphi-\varphi \circ f+\frac{2 t}{3} f\right)=2\left(-\varphi^{3}+t \varphi^{2}+2 t^{2} \varphi\right)
\end{gathered}
$$

The relation $v=\sigma u+(\omega-t \sigma)(2 \varepsilon-e)$ implies:

$$
2\left(-\varphi^{3}+t \varphi^{2}+2 t^{2} \varphi\right)=2 \sigma \varphi-2(\omega-t \sigma)
$$

and then:

$$
\varphi^{3}-t \varphi^{2}+\left(\sigma-2 t^{2}\right) \varphi-(\omega-t \sigma)=0
$$

The minimal polynomial P of φ is then a divisor of the polynomial $Q(X)=X^{3}-$ $t X^{2}+\left(\sigma-2 t^{2}\right) X-(\omega-t \sigma)$. Since L is quasisimple Y is nonzero and the degree of P is 1,2 or 3 .

Therefore in any case the degree of P is 1,2 or 3 .
Suppose $\partial^{\circ} P=1$. Let α be the root of P. Then the endomorphism $v-\alpha e$ of $L^{\otimes 2}$ has its image contained in $K \Omega$ and there is some $\lambda \in K$ such that the following holds in $\operatorname{End}\left(L^{\otimes 2}\right)$ (or in $\operatorname{Hom}\left(L^{\otimes 4}, K\right)$):

$$
v=\alpha e+\lambda \varepsilon
$$

The group \mathfrak{S}_{4} acts on this equality and the invariant part of this equality is:

$$
0=\left(\frac{2 \alpha}{3}+\frac{\lambda}{3}\right)(e+\varepsilon)
$$

Then we get: $\lambda=-2 \alpha$.
By making a quarter of a turn and composing with the projection: $L^{\otimes 2} \longrightarrow$ $\Lambda^{2}(L) \subset L^{\otimes 2}$ we get the equality:

$$
\left.\frac{3}{2} \Phi_{L}\right\rangle \ll=-\frac{3 \alpha}{2} \Phi_{L}(\longleftarrow->)
$$

Since Ψ_{L} acts bijectively on Y, α is not zero and $\Lambda^{2}(L)$ is contained in the image of the cobracket. Therefore the Lie bracket is bijective from $\Lambda^{2}(L)$ to L. But that's impossible because L is not isomorphic to $s l_{2}$. Therefore the degree of P is 2 or 3 .

The exceptional case:

Suppose: $\partial^{\circ} P=2$ and denote by α and β the roots of P. Since Ψ_{L} acts bijectively on Y, α and β are not zero. The endomorphism $(v-\alpha e)(v-\beta e)$ is trivial on Y and $\Lambda^{2}(L)$. Then its image is contained in $K \Omega$ and there exists $\mu \in K$ such that:

$$
(v-\alpha e)(v-\beta e)=\mu \varepsilon
$$

So we get:

$$
4 f+2\left(\frac{t}{3}-\alpha-\beta\right) v+2 \alpha \beta e=\mu \varepsilon
$$

By taking the invariant part of this equation (under \mathfrak{S}_{4}) we get:

$$
4 f+\frac{4 \alpha \beta}{3}(e+\varepsilon)=\frac{h}{3}(e+\varepsilon)
$$

and then:

$$
2\left(\frac{t}{3}-\alpha-\beta\right) v=\frac{2 \alpha \beta+\mu}{3}(2 \varepsilon-e) .
$$

Since L is not $s l_{2}, v$ and $2 \varepsilon-e$ are linearly independent and we get:

$$
\begin{gathered}
t=3(\alpha+\beta) \quad \mu=-2 \alpha \beta \\
f=-\frac{\alpha \beta}{2}(e+\varepsilon) .
\end{gathered}
$$

By applying Ψ_{L} to this equality we get:

$$
\begin{aligned}
& -\frac{\alpha \beta}{2}(u+2 t \varepsilon)=-\frac{\alpha \beta t}{3}(e+\varepsilon)+\frac{10 t^{2}}{9} u-\frac{v}{2} \\
\Longrightarrow & v=(4 \alpha+5 \beta)(4 \beta+5 \alpha) u+2 \alpha \beta(\alpha+\beta)(2 \varepsilon-e)
\end{aligned}
$$

and that implies in any case the formula (2) with: $\sigma=(4 \alpha+5 \beta)(4 \beta+5 \alpha)$ and $\omega=5(\alpha+\beta)(3 \alpha+4 \beta)(3 \beta+4 \alpha)$. If $\omega=0$ we still have: $\chi_{L}\left(\omega_{p}\right)=\omega \sigma^{p}$ and formulas (1) and (3) are consequences of (2).

Let d be the superdimension of L and τ be the supertrace operator. Since Ψ_{L} acts by multiplication by $0, t$ and $2 t$ on X, L and $K \Omega$, we have:

$$
\begin{gathered}
\tau\left(\varphi^{0}\right)=\frac{d(d+1)}{2}-1=\frac{(d-1)(d+2)}{2} \\
\tau\left(\Psi_{L}\right)=t d+2 t+\tau(\varphi) \\
\tau\left(\Psi_{L}^{2}\right)=t^{2} d+4 t^{2}+\tau\left(\varphi^{2}\right) \\
\tau\left(\Psi_{L}^{3}\right)=t^{3} d+8 t^{3}+\tau\left(\varphi^{3}\right)
\end{gathered}
$$

Using a simple graphical calculus, we get:

$$
\begin{aligned}
& \tau\left(\Psi_{L}\right)=\Phi_{L} \leftrightarrows=0 \\
& \tau\left(\Psi_{L}^{2}\right)=\Phi_{L} \leftrightarrows=4 t^{2} d
\end{aligned}
$$

$$
\tau\left(\Psi_{L}^{3}\right)=\Phi_{L} \leftrightarrows=2 t^{3} d .
$$

Hence we have:

$$
\begin{gathered}
\tau\left(\varphi^{0}\right)=\frac{(d-1)(d+2)}{2} \\
\tau(\varphi)=-t(d+2) \\
\tau\left(\varphi^{2}\right)=t^{2}(3 d-4) \\
\tau\left(\varphi^{3}\right)=t^{3}(d-8) .
\end{gathered}
$$

Since φ has α and β as eigenvalues, we get:

$$
\begin{gathered}
t^{2}(3 d-4)+t(\alpha+\beta)(d+2)+\frac{(d-1)(d+2)}{2} \alpha \beta=0 \\
t^{3}(d-8)-(\alpha+\beta) t^{2}(3 d-4)-t(d+2) \alpha \beta=0
\end{gathered}
$$

and that implies the following:

$$
\begin{aligned}
& (\alpha+\beta)\left(60(\alpha+\beta)^{2}+(d+2) \alpha \beta\right)=0 \\
& (d-1)\left(60(\alpha+\beta)^{2}+(d+2) \alpha \beta\right)=0 .
\end{aligned}
$$

Suppose $t=0$. Since $\left(\Psi_{L}-\alpha\right)\left(\Psi_{L}-\beta\right)$ vanishes on Y, there exists $\mu \in K$ such that:

$$
\begin{aligned}
\left(\Psi_{L}-\alpha\right)(u-\beta e) & =2 \mu \varepsilon \\
\Longrightarrow \quad\left(\frac{t}{3}-\alpha-\beta\right) u+2 f & =\alpha \beta e+2 \mu \varepsilon .
\end{aligned}
$$

Since the left hand side of this equation is invariant under \mathfrak{S}_{4}, it is the same for the other side and we get:

$$
2 f=\alpha \beta(e+\varepsilon) .
$$

By composing with the inner product, we get: $d+2=0$. Therefore $d-1$ is non zero and we have in any case:

$$
60(\alpha+\beta)^{2}+(d+2) \alpha \beta=0 .
$$

Then it is not difficult to compute the superdimensions of L and X and we get the desired formula.

Suppose $\alpha \neq \beta$. Denote by d_{α} and d_{β} the superdimensions of eigenspaces Y_{α} and Y_{β}. We have:

$$
\begin{gathered}
d_{\alpha}+d_{\beta}=\frac{(d-1)(d+2)}{2} \\
\alpha d_{\alpha}+\beta d_{\beta}=-t(d+2)
\end{gathered}
$$

and d_{α} and d_{β} are easy to compute.

The regular case:

Consider now the regular case: P is of degree 3 and has 3 nonzero roots α, β, γ. Since $\left(\Psi_{L}-\alpha\right)\left(\Psi_{L}-\beta\right)\left(\Psi_{L}-\gamma\right)$ acts trivially on Y, there exists $\mu \in K$ such that:

$$
\left(\Psi_{L}-\alpha\right)\left(\Psi_{L}-\beta\right)(u-\gamma e)=2 \mu \varepsilon .
$$

After reduction we get:

$$
\left(\frac{7 t^{2}}{3}-\frac{t}{3}(\alpha+\beta+\gamma)+\alpha \beta+\beta \gamma+\gamma \alpha\right) u+2(t-\alpha-\beta-\gamma) f-v=\alpha \beta \gamma e+2 \mu \varepsilon
$$

The invariant part of this formula is:

$$
2(t-\alpha-\beta-\gamma) f=\frac{2}{3}(\alpha \beta \gamma+\mu)(e+\varepsilon)
$$

Since the minimal polynomial of φ has degree $3, f$ is not a multiple of $e+\varepsilon$. Hence we get:

$$
\alpha+\beta+\gamma=t \quad \mu=-\alpha \beta \gamma
$$

and also:

$$
\left(2 t^{2}+\alpha \beta+\beta \gamma+\gamma \alpha\right) u-v=\alpha \beta \gamma(e-2 \varepsilon) .
$$

If ω is nonzero, P is equal to Q and we have:

$$
\alpha \beta+\beta \gamma+\gamma \alpha=\sigma-2 t^{2} \quad \alpha \beta \gamma=\omega-t \sigma .
$$

Otherwise we can set: $\sigma=\alpha \beta+\beta \gamma+\gamma \alpha+2 t^{2}$ and we have:

$$
v=\sigma u+\alpha \beta \gamma(2 \varepsilon-e)
$$

and then:

$$
\rangle^{0}\langle\equiv \sigma\rangle\langle+\alpha \beta \gamma(\underset{ }{\sim}-\rangle)
$$

By applying the Lie bracket, we get: $0=2 \omega=2 t \sigma+2 \alpha \beta \gamma$. In this case we have: $\alpha \beta \gamma=\omega-t \sigma$ and the formula (2) follows. As above formulas (1) and (3) are easy to check.

In any case t, σ, ω can be expressed in term of α, β, γ. As above we get the following:

$$
\begin{gathered}
\tau\left(\varphi^{0}\right)=\frac{(d-1)(d+2)}{2} \\
\tau(\varphi)=-t(d+2) \\
\tau\left(\varphi^{2}\right)=t^{2}(3 d-4) \\
\tau\left(\varphi^{3}\right)=t^{3}(d-8) .
\end{gathered}
$$

Since φ has α, β, γ as eigenvalues, we get:

$$
t^{3}(d-8)-t^{3}(3 d-4)-t\left(\sigma-2 t^{2}\right)(d+2)-\frac{(d-1)(d+2)}{2} \alpha \beta \gamma=0
$$

$$
\Longrightarrow \quad(d+2)(\alpha \beta \gamma d+(2 t-\alpha)(2 t-\beta)(2 t-\gamma))=0 .
$$

Let F be the endomorphism of $L^{\otimes 2}$ represented by the diagram:

Because of the formula (2), F acts by 2ω on L and by $2(\omega-t \sigma)$ on X. It is trivial on $S^{2}(L)$. Therefore we get:

$$
0=\tau(F)=2 \omega d+2(\omega-t \sigma) \frac{d(d-3)}{2} \quad \Longrightarrow \quad \omega d(d-1)=t \sigma d(d-3)
$$

Suppose $d=-2$. Then we have:

$$
3 \omega=5 t \sigma
$$

and this implies:

$$
\begin{gathered}
-\frac{(2 t-\alpha)(2 t-\beta)(2 t-\gamma)}{\alpha \beta \gamma}=-\frac{4 t^{3}+2 t(\alpha \beta+\beta \gamma+\gamma \alpha)-\alpha \beta \gamma}{\alpha \beta \gamma} \\
=-2+\frac{3 \alpha \beta \gamma-2 t \sigma}{\alpha \beta \gamma}=-2+\frac{3 \omega-5 t \sigma}{\alpha \beta \gamma}=-2 .
\end{gathered}
$$

Therefore in any case we have:

$$
\alpha \beta \gamma d+(2 t-\alpha)(2 t-\beta)(2 t-\gamma)=0
$$

and d and the superdimension of X are easy to compute.
If α is different from β and γ, we have the following (with $d_{\alpha}=\operatorname{sdim} Y_{\alpha}$):

$$
\begin{aligned}
& (\alpha-\beta)(\alpha-\gamma) d_{\alpha}=\tau\left(\varphi^{2}-(\beta+\gamma) \varphi+\beta \gamma \varphi^{0}\right) \\
= & t^{2}(3 d-4)+t(d+2)(\beta+\gamma)+\frac{(d-1)(d+2)}{2} \beta \gamma
\end{aligned}
$$

and that gives the value of d_{α}.

7. The eight characters.

7.1 The $g l$ case. Let E be a supermodule of superdimension m. Take a homogeneous basis $\left\{e_{i}\right\}$ of E and denote by $\left\{e_{i j}\right\}$ the corresponding basis of $g l(E)$. Let $s l(E) \subset$ $g l(E)$ be the Lie superalgebra of endomorphisms of E with zero supertrace. The map sending $\alpha \otimes \beta \in g l(E) \otimes g l(E)$ to the supertrace of $\alpha \circ \beta$ is an nonsingular invariant bilinear form on $g l(E)$ and $g l(E)$ is a quadratic Lie superalgebra. If m is invertible, $s l(E)$ is also a quadratic Lie superalgebra. If $m=0$, the inner form is singular on $s l(E)$, but the quotient of $s l(E)$ by its center is a quadratic Lie superalgebra $p s l(E)$.
7.2 Theorem: Let $[t, u]$ be the polynomial algebra generated by variables t and u of degree 1 and 2 respectively. For each $m \in \mathbf{Z}$, denote by γ_{m} the ring homomorphism
sending t to m and u to 1 . Then there exists a unique graded algebra homomorphism $\chi_{g l}$ from Λ_{k} to $k[t, u]$ such that the following holds for every supermodule E of superdimension m :

- for every closed oriented curve Γ colored by $g l(E)$-representations, and every finite set X, we have:

$$
\forall \alpha \in \Lambda_{k}, \forall u \in \mathcal{A}_{k}(\Gamma, X), \quad \Phi_{g l(E)}(\alpha u)=\gamma_{m} \circ \chi_{g l}(\alpha) \Phi_{g l(E)}(u)
$$

- if m is invertible in k and $s l(E)$ is quasisimple, $\chi_{s l(E)}$ is the composite $\gamma_{m} \circ \chi_{g l}$
- if $m=0$ and $p s l(E)$ is quasisimple, $\chi_{p s l(E)}$ is the composite $\gamma_{0} \circ \chi_{g l}$.

Moreover $\chi_{g l}$ satisfies the following:

$$
\chi_{g l}(t)=t \quad \text { and } \quad \forall p \geq 0, \quad \chi_{g l}\left(\omega_{p}\right)=\omega \sigma^{p}
$$

with: $\omega=2 t\left(t^{2}-4 u\right)$ and $\sigma=2\left(t^{2}-2 u\right)$.
Proof: Let E be a finite dimensional free k-supermodule of superdimension m. Let $\left\{e_{i}\right\}$ be a homogeneous basis of E and $\left\{e_{i j}\right\}$ be the corresponding basis of $L=g l(E)$. Then the Casimir element is

$$
\Omega=\sum_{i j}(-1)^{\partial^{\circ} e_{j}} e_{i j} \otimes e_{j i} .
$$

Since the inner product of x and y in L is $\langle x, y\rangle=\tau_{E}(x y)$ we have the following:

$$
\Phi_{L}(\varpi)^{E}=\Phi_{L}(\square)
$$

Moreover, it is not difficult to show the following:

Whence:

and we get:

Therefore, to compute the image by Φ_{L} of a $(\emptyset,[n])$-diagram K, we may proceed as follows:

Let $S(K)$ be the set of functions α from the set of 3 -valent vertices of K to ± 1. For every $\alpha \in S(K)$ denote by $\varepsilon(\alpha)$ the product of all $\alpha(x)$. If $\alpha \in S(K)$ is given we may construct a thickening of K by using the given cyclic ordering of edges ending at a 3 -valent vertex x if $\alpha(x)=1$ and the other one if not, and we get an oriented surface $\Sigma_{\alpha}(K)$ equipped with n numbered points in its boundary.

Denote by S_{n} the set of isomorphism classes of oriented connected surfaces equipped with n numbered points in its boundary. Under the connected sum, $S=S_{0}$ is a monoid and acts on S_{n}. This monoid is a graded commutative monoid freely generated by the disk D of degree 1 and the torus T of degree 2 . The set S_{n} is a graded S-set with dim H_{1} as degree. Let $k\left[S_{n}\right]$ and $k[S]$ be the free modules generated by S_{n} and S. They are graded modules, and $k[S]$ is a polynomial algebra acting on $k\left[S_{n}\right]$.

If K is connected, the sum

$$
s(K)=\sum_{\alpha} \varepsilon(\alpha) \Sigma_{\alpha}(K)
$$

lies in $k\left[S_{n}\right]$. It is easy to check that s is compatible with AS and IHX relations and induces a well-defined graded homomorphism from $F_{k}(n)$ to $k\left[S_{n}\right]$. Moreover, this homomorphism is $\Lambda_{k}[S]$-linear with respect to a character χ from Λ_{k} to $k[S]=$ $k[D, T]$.

On the other hand, for each $\Sigma \in S_{n}$ we have a diagram $\partial(\Sigma)$ in $\mathcal{D}(\Gamma,[n])$ where Γ is colored by $E: \partial(\Sigma)$ is the boundary of Σ colored by E with intervals added near each marked point:

We can extend ∂ linearly and for every $\Sigma \in k\left[S_{n}\right], \Phi_{L}(\partial(\Sigma))$ is well defined in $L^{\otimes n}$. Moreover we have:

$$
\Phi_{L}(K) \sum_{\alpha} \varepsilon(\alpha) \Phi_{L}\left(\partial \Sigma_{\alpha}(K)\right)=\Phi_{L}(\partial s(K)) .
$$

Therefore if a is an element of Λ_{k}, we have:

$$
\begin{aligned}
\Phi_{L}(a K) & =\Phi_{L}(\partial s(a K))=\Phi_{L}(\partial \chi(a) s(K))=\Phi_{L}(\chi(a) \partial s(K)) \\
& =\gamma_{m}(\chi(a)) \Phi_{L}(\partial s(K))=\gamma_{m}(\chi(a)) \Phi_{L}(K)
\end{aligned}
$$

and the first part of the theorem is proven in the case $\Gamma=\emptyset$ (with $\chi_{g l}=\chi$). The general case follows.

If m is invertible in k and $s l(E)$ is quasisimple, $s l(E)$ is actually simple and $g l(E)$ is semisimple: $g l(E)=s l(E) \oplus k$. Since Φ_{k} is trivial, we have:

$$
\begin{aligned}
\Phi_{s l(E)}(a K)=\Phi_{g l(E)}(a K) & =\gamma_{m}\left(\chi_{g l}(a)\right) \Phi_{g l(E)}(K)=\gamma_{m}\left(\chi_{g l}(a)\right) \Phi_{s l(E)}(K) \\
& \Longrightarrow \chi_{s l(E)}=\gamma_{m} \circ \chi_{g l} .
\end{aligned}
$$

Suppose now: $m=0$ and $\operatorname{psl}(E)$ is quasisimple. Since the Lie bracket on $g l(E)$ takes values in $s l(E), \Phi_{g l(E)}(K)$ lies in $s l(E)^{\otimes n}$ and for every $a \in \Lambda_{k}$ the equality

$$
\Phi_{g l(E)}(a K)=\gamma_{m}\left(\chi_{g l}(a)\right) \Phi_{g l(E)}(K)
$$

holds in $\operatorname{sl}(E)^{\otimes n}$. Hence in the quotient $\operatorname{psl}(E)$ we have:

$$
\Phi_{p s l(E)}(a K)=\gamma_{m}\left(\chi_{g l}(a)\right) \Phi_{p s l(E)}(K)
$$

and we get:

$$
\left.\chi_{p s l(E)}\right)=\gamma_{0} \circ \chi_{g l} .
$$

In order to prove the last part of the theorem, it is enough to determine $\chi_{s l(E)}\left(\omega_{p}\right)$ for $k=\mathbf{Q}$ and for infinitely many values of m. Suppose now $m>2$ and E has no odd part. Then $L=s l(E)$ is the classical Lie algebra $s l_{m}$. The morphism $\Psi=\Psi_{L}$ from $L^{\otimes 2}$ to itself is the morphism:

$$
x \otimes y \mapsto \sum_{i j}\left[x, e_{i j}\right] \otimes\left[e_{j i}, y\right]
$$

and because of Proposition 6.3 we have to determine eigenvalues of Ψ acting on $Y=S^{2}(L) / \Omega$.

Denote by τ the trace operator. Let $f: L^{\otimes 2} \longrightarrow L$ be the following morphism:

$$
f: x \otimes y \mapsto x y+y x-\frac{2}{m} \tau(x y) \text { Id. }
$$

Since $m>2, f$ is surjective and L-linear. We have:

$$
\begin{gathered}
f \Psi(x \otimes y)=\sum_{i j}\left(\left(x e_{i j}-e_{i j} x\right)\left(e_{j i} y-y e_{j i}\right)+\left(e_{j i} y-y e_{j i}\right)\left(x e_{i j}-e_{i j} x\right)\right) \\
-\sum_{i j} \frac{2}{m} \tau\left(\left(x e_{i j}-e_{i j} x\right)\left(e_{j i} y-y e_{j i}\right)\right)
\end{gathered}
$$

$=m x y+\tau(x y)+m y x+\tau(y x)-\frac{2}{m} \tau(m x y+\tau(x y))=m x y+m y x-2 \tau(x y)=m f(x \otimes y)$.
The map f factorizes through Y and there is an exact sequence:

$$
0 \longrightarrow Z \longrightarrow Y \longrightarrow L \longrightarrow 0
$$

compatible with the action of Ψ and Ψ induces the multiplication by m on L.
The module Z can be seen as a submodule of $L^{\otimes 2}$ and the morphisms sending $x \otimes y$ to $x y, y x, x \otimes y-y \otimes x$ are trivial on Z. If z lies in L, denote by $z_{i j}$ the entries of z. We have:

$$
\begin{gathered}
\Psi(x \otimes y)=\sum\left(x_{k i} e_{k j}-x_{j k} e_{i k}\right) \otimes\left(y_{i l} e_{j l}-y_{l j} e_{l i}\right) \\
=\sum(x y)_{k l} e_{k j} \otimes e_{j l}+(y x)_{l k} e_{i k} \otimes e_{l i}-x_{k i} e_{k j} \otimes y_{l j} e_{l i}-y_{i l} e_{i k} \otimes x_{j k} e_{j l}
\end{gathered}
$$

Therefore the morphism Ψ is equal on Z to the morphism Ψ^{\prime} defined by:

$$
\Psi^{\prime}(x \otimes y)=-2 \sum x e_{i j} \otimes y e_{j i}
$$

and we have:

$$
\Psi^{\prime 2}(x \otimes y)=4 \sum x e_{i j} e_{k l} \otimes y e_{j i} e_{l k}=4 x \otimes y
$$

Therefore the minimal polynomial of Ψ acting on Y is of degree three with roots m, $2,-2$.

Hence Theorem 6.3 applies and we get:

$$
\chi_{L}(t)=m \quad \forall p \geq 0, \quad \chi_{L}\left(\omega_{p}\right)=2 m(m+2)(m-2)\left(2 m^{2}-4\right)^{p}
$$

and that finishes the proof.
7.3 The osp case. Let E be a supermodule of superdimension m equipped with a supersymmetric nonsingular bilinear form $<,>$. We'll say that E is a quadratic supermodule. For every endomorphism α of E, we have a endomorphism α^{*} defined by:

$$
\forall x, y \in E \quad<\alpha^{*}(x), y>=(-1)^{p q}<x, \alpha(y)>
$$

where p is the degree of x and q is the degree of α. An endomorphism α is antisymmetric if $\alpha^{*}=-\alpha$. Let $L=\operatorname{osp}(E)$ be the Lie superalgebra of antisymmetric endomorphisms of E. The superdimension of L is $d=m(m-1) / 2$. With the same notation as before, a Casimir element of L is:

$$
\Omega=\frac{1}{2} \sum_{i, j}(-1)^{\partial^{\circ} e_{j}}\left(e_{i j}-e_{i j}^{*}\right) \otimes\left(e_{j i}-e_{j i}^{*}\right)
$$

and with this Casimir element, $t=m-2$. The bilinear form corresponding to Ω is half the supertrace of the product.
7.4 Theorem: Let $k[t, v]$ be the polynomial algebra generated by variables t and v of degree 1. Then there exists a unique graded algebra homomorphism $\chi_{\text {osp }}$ from Λ_{k} to $k[t, v]$ such that:

- for every quadratic supermodule E, if $\operatorname{osp}(E)$ is quasisimple, then $\chi_{o s p(E)}$ is the composite $\gamma \circ \chi_{\text {osp }}$, where γ is the ring homomorphism sending t to $\operatorname{sdim}(E)-2$ and v to 1 .

Moreover $\chi_{\text {osp }}$ satisfies the following:

$$
\chi_{o s p}(t)=t \quad \text { and } \quad \forall p \geq 0, \quad \chi_{\text {osp }}\left(\omega_{p}\right)=\omega \sigma^{p}
$$

with: $\omega=2(t-v)(t-2 v)(t+4 v)$ and $\sigma=2(t-2 v)(t+3 v)$.
Proof: Let E be a quadratic supermodule and L be the Lie superalgebra $\operatorname{osp}(E)$. Let K be a L-colored diagram. If we change the orientation of a component colored by $E, \Phi_{L}(K)$ is unchanged. Therefore we may consider in K unoriented components colored by E. On the other hand it is easy to see the following:

Therefore, to compute the image by Φ_{L} of a $(\emptyset,[n])$-diagram K, we may proceed as follows:

Let $S(K)$ be the set of functions from the set of edges of K joining two 3 -valent vertices of K to ± 1. For every $\alpha \in S(K)$ denote by $\varepsilon(\alpha)$ the product of all $\alpha(a)$. If $\alpha \in S(K)$ is given we may construct a thickening of K by using the given cyclic ordering of edges ending at each 3 -valent vertex and making a half-twist near every edge a with negative $\alpha(a)$. So we get an unoriented surface $\Sigma_{\alpha}(K)$ equipped with n numbered points in its boundary and a local orientation of $\partial \Sigma_{\alpha}(K)$ near each of these points.

Denote by $U S_{n}$ the set of isomorphism classes of connected surfaces Σ equipped with n numbered points in its boundary and an orientation of $\partial \Sigma$ near each of these points. Under the connected sum, $U S=U S_{0}$ is a monoid and acts on $U S_{n}$. This monoid is a graded commutative monoid generated by the disk D, the projective plane P and the torus T and the only relation is: $P T=P^{3}$.

Let $k\left(U S_{n}\right)$ be the k-module generated by the elements of $U S_{n}$ with the following relations:

If Σ^{\prime} is obtained from Σ by changing the local orientation near one point, $\Sigma+\Sigma^{\prime}$ is trivial in $k\left(U S_{n}\right)$.

Then $k[U S]$ is a commutative algebra and $k\left(U S_{n}\right)$ is a graded $k[U S]$-module.
If K is connected, the sum $s(K)=\sum_{\alpha} \varepsilon(\alpha) \Sigma_{\alpha}(K)$ lies in $k\left[U S_{n}\right]$. It is easy to check that s is compatible with AS and IHX relations and induces a well-defined graded homomorphism from $F_{k}(n)$ to $k\left[U S_{n}\right]$. Moreover this homomorphism is $\Lambda_{k}[U S]$-linear with respect to a character χ from Λ_{k} to $k[U S]=k[D, P, T] /\left(P T-P^{3}\right)$.

On the other hand, we have a map ∂ from $U S_{n}$ and $k\left(U S_{n}\right)$ to $F_{k}(n)$ by sending each surface Σ with numbered points in $\partial \Sigma$ to the boundary $\partial \Sigma$ colored by E with intervals added near each marked point. If K is a diagram, $\Phi_{L}(K)$ is equal to the $\operatorname{sum} \sum_{\alpha} \varepsilon(\alpha) \Phi_{L}\left(\partial \Sigma_{\alpha}(K)\right)=\Phi_{L}(\partial s(K))$. Therefore if u is an element of Λ, we have $\chi_{L}(u)=\chi_{L}(\partial \chi(u))$. Since $\chi_{L} \circ \partial$ is a ring homomorphism sending D to $m=\operatorname{sdim} E$ and P and T to 1, the character χ_{L} factorizes through $k[D, P]=k[U S] /\left(T-P^{2}\right)$ and the first part of the theorem is proven (with $t=D-2 P, v=P$).

To prove the last part of the theorem, it is enough to consider the case where E is a classical module over $k=\mathbf{Q}$ of large dimension m. Then the second symmetric power $S^{2}(L)$ decomposes into four simple L-modules $E_{0}, E_{1}, E_{2}, E_{3}$ of dimensions $1,(m-1)(m+2) / 2, m(m-1)(m-2)(m-3) / 4!, m(m+1)(m+2)(m-3) / 12$. Therefore we have the decomposition: $Y=E_{1} \oplus E_{2} \oplus E_{3}$. Moreover the Casimir homomorphism acts on E_{1}, E_{2}, E_{3} by multiplication by $2 m, 4 m-16,4 m-4$. On the other hand, this homomorphism is equal to $4 t-2 \Psi_{L}$. Therefore Ψ_{L} acts on E_{1}, E_{2}, E_{3} by multiplication by $m-4,4,-2$.

The rest of the proof is an straightforward consequence of Theorem 6.3.
Remark: The use of surfaces in the gl- and osp-cases was introduced in a slightly different way by Bar-Natan to produce weight functions [BN].
7.5 The exceptional case. Consider a quasisimple quadratic Lie superalgebra L over a field K of characteristic 0 . This Lie superalgebra L is said to be exceptional if it satisfies the following condition:

- the square of the Casimir generates in degree 4 the center of the enveloping algebra \mathcal{U} of L.

Exceptional Lie algebras $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}, \mathrm{G}_{2}$ satisfy this property. But it is also the case for $s l_{2}, \operatorname{sl}_{3}, \operatorname{osp}(E)$ with $\operatorname{sdim}(E)=2$ or $8, \operatorname{psl}(E)$ with $\operatorname{sdim}(E)=0$ and the exceptional Lie superalgebras $G(3)$ and $F(4)$.

Consider the following elements in $F_{K}(4)$:

$$
u=\Phi_{L}>\quad v=\Phi_{L}()(+\infty)
$$

These elements are invariants elements in $S^{4}(L)$. But the condition satisfied by L implies that the invariant part of $S^{4}(L)$ is generated by v. Therefore u is a multiple of v and the homomorphism Ψ_{L} has only two eigenvalues on $S^{2}(L) / \Omega$. Hence we may apply Theorem 6.3 in the exceptional case and we get:
7.6 Theorem: Let L be an exceptional quasisimple quadratic Lie superalgebra over a field K of characteristic zero. Then there exist σ and ω in K and two elements α and β in some extension of K such that:

$$
t=3(\alpha+\beta) \quad \begin{gathered}
\sigma=(4 \alpha+5 \beta)(5 \alpha+4 \beta) \quad \omega=5(\alpha+\beta)(3 \alpha+4 \beta)(4 \alpha+3 \beta) \\
\chi_{L}(t)=t \quad \forall p \geq 0, \chi_{L}\left(\omega_{p}\right)=\omega \sigma^{p} \\
\operatorname{sdim}(L)=-2 \frac{(5 \alpha+6 \beta)(6 \alpha+5 \beta)}{\alpha \beta} \\
\Phi_{L}>=-\frac{\alpha \beta}{2} \Phi_{L}() \\
\left.\Phi_{L}>^{0}=(3 \alpha+4 \beta)(4 \alpha+3 \beta) \Phi_{L}\right\rangle
\end{gathered}
$$

Remark: In this theorem, we may consider the Casimir Ω, and then α and β up to a scalar. So α and β may be consider as degree 1 variables related by some linear relation.

Case by case we get the following:

L	$\operatorname{sdim}(L)$	α / β	σ	ω		
E_{6}	78	-3	$\frac{77}{36} t^{2}$	$\frac{25}{12} t^{3}$		
E_{7}	133	-4	$\frac{176}{81} t^{2}$	$\frac{520}{243} t^{3}$		
E_{8}	248	-6	$\frac{494}{225} t^{2}$	$\frac{98}{45} t^{3}$		
F_{4}	52	$-5 / 2$	$\frac{170}{81} t^{2}$	$\frac{480}{243} t^{3}$		
G_{2}	14	$-5 / 3$	$\frac{65}{36} t^{2}$	$\frac{55}{36} t^{3}$		
$s l_{2}, G(3)$	3	$-4 / 3$	$\frac{8}{9} t^{2}$	0		
$s l_{3}, F(4)$	8	$-3 / 2$	$\frac{14}{9} t^{2}$	$\frac{10}{9} t^{3}$		
osp(8)	28	-2	$2 t^{2}$	$\frac{50}{27} t^{3}$		
osp (2)	1	$-5 / 4$	0	$-\frac{40}{27} t^{3}$		
$p s l(E)$	-2	-1				0

In this table, $\operatorname{osp}(n)$ means any simple Lie superalgebra $\operatorname{osp}(E)$ where E is a supermodule with $\operatorname{sdim}(E)=n$.

In the case $s l_{2}$ or $G(3)$ or $p s l(E)$ (with $\operatorname{sdim}(E)=0$), the induced character kills every ω_{p} and the value of σ is useless. In the case $p \operatorname{sl}(E)$, the character is determined by any nonabelian $g l(F)$. Then $\chi_{p s l(E)}$ is determined by $g l(1 \mid 1)$. But in this Lie superalgebra every double bracket $[[x, y], z]$ vanishes. Therefore $\Phi_{g l(1 \mid 1)}$ is trivial on Λ in positive degree and the character $\chi_{p s l(E)}$ is the trivial character.

Remark: The characters $\chi_{G(3)}$ and $\chi_{F(4)}$ are equal to $\chi_{s l 2}$ and $\chi_{s l 3}$ on the algebra generated by t and the ω_{p} 's. These characters are actually equal to $\chi_{s l 2}$ and $\chi_{s l 3}$ on Λ. This result was proven by Patureau-Mirand [Pa].

Conjecture: Let R be the subalgebra $\mathbf{Q}[\alpha+\beta, \alpha \beta]$ of $\mathbf{Q}[\alpha, \beta]$ where α and β are two formal parameters of degree 1. Then there exists a unique graded algebra homomorphism $\chi_{\text {exc }}$ from Λ to R such that:

$$
\begin{gathered}
\chi_{e x c}(t)=3(\alpha+\beta) \\
\forall p \geq 0, \quad \chi_{e x c}\left(\omega_{p}\right)=5(\alpha+\beta)(3 \alpha+4 \beta)(4 \alpha+3 \beta)(4 \alpha+5 \beta)^{p}(5 \alpha+4 \beta)^{p} .
\end{gathered}
$$

Remark: This conjecture is actually equivalent to a conjecture of Deligne [D]. If Deligne's conjecture is true, there exist a monoidal category \mathcal{C} which is linear over an algebra $\mathbf{Q}(\lambda)$ and looks like the category of representations of some virtual exceptional Lie algebra. It is not difficult to construct a functor from the category Δ to \mathcal{C} and we get an algebra homomorphism from Λ to the coefficient algebra $\mathbf{Q}(\lambda)$. But this morphism is equivalent to a graded homomorphism χ from Λ to R and the desired properties of χ are easy to check.

Conversely if such a morphism χ exists, we get an algebra homomorphism χ^{\prime} from $\Lambda[d]$ to the localized algebra $R^{\prime}=R\left[\frac{1}{\alpha \beta}\right]$ by:

$$
\chi^{\prime}(d)=-2 \frac{(5 \alpha+6 \beta)(6 \alpha+5 \beta)}{\alpha \beta} .
$$

Then we may force $\Lambda[d]$ to act on morphisms in the category Δ (and not only on special diagrams). So we get a new category Δ_{1} which is linear over $\Lambda[d]$, where d represents the circle. By tensoring Δ_{1} over $\Lambda[d]$ by R^{\prime}, we get a category Δ_{2} which is linear over R^{\prime}. If we kill every morphism $f: X \longrightarrow Y$ in Δ_{2} such that the trace of $f \circ g$ vanishes for every $g: Y \longrightarrow X$, we get a category Δ_{3} which satisfies all Deligne properties. Hence we have a positive answer to Deligne's conjecture.

Remark: Suppose the conjecture is true. Let λ be any element in $\Lambda_{\mathbf{Z}}$ and $P=$ $P(\alpha, \beta)$ be its image under $\chi_{\text {exc }}$. The expression $P(\alpha, \beta)$ is known if α / β lies in the set $E=\{-3,-4,-6,-5 / 2,-5 / 3,-4 / 3,-3 / 2,-2,-5 / 4,-1\}$. Therefore P is well defined modulo the following polynomial Π :

$$
\begin{gathered}
\Pi=(\alpha+2 \beta)(\beta+2 \alpha)(\alpha+3 \beta)(\beta+3 \alpha)(\alpha+4 \beta)(\beta+4 \alpha)(\alpha+6 \beta)(\beta+6 \alpha) \times \\
(2 \alpha+5 \beta)(2 \beta+5 \alpha)(3 \alpha+5 \beta)(3 \beta+5 \alpha)(3 \alpha+4 \beta)(3 \beta+4 \alpha) \times
\end{gathered}
$$

$$
(2 \alpha+3 \beta)(2 \beta+3 \alpha)(2 \alpha+\beta)(2 \beta+\alpha)(4 \alpha+5 \beta)(4 \beta+5 \alpha)(\alpha+\beta)
$$

By looking carefully at each character corresponding to the exceptional Lie algebras we can check that $P(\alpha, \beta)$ is an integer if α / β or β / α lies in E and $\alpha+\beta$ and $\alpha \beta / 2$ are integers. So we may ask the following:

Question: Suppose the character $\chi_{\text {exc }}$ exists. Is $\chi_{\text {exc }}\left(\Lambda_{\mathbf{Z}}\right)$ contained in the subalgebra $\mathbf{Z}[\alpha+\beta, \alpha \beta / 2]$?
7.7 The super case. There exists an interesting Lie superalgebra depending on a parameter α called $\mathrm{D}(2,1, \alpha)$. This algebra is simple and has a nonsingular bilinear supersymmetric invariant form and a Casimir element. Therefore it produces a character on Λ depending on the parameter α. Actually this algebra produces a graded character from $\Lambda_{\mathbf{Z}}$ to a polynomial algebra $\mathbf{Z}\left[\sigma_{2}, \sigma_{3}\right]$.

Consider 2-dimensional free oriented \mathbf{Z}-modules E_{1}, E_{2}, E_{3} and denote by X the module $E_{1} \otimes E_{2} \otimes E_{3}$. This module X is a module over the Lie algebra $L^{\prime}=$ $s l\left(E_{1}\right) \oplus \operatorname{sl}\left(E_{2}\right) \oplus \operatorname{sl}\left(E_{3}\right)$.

Since E_{i} is oriented, there is a canonical isomorphism $x \otimes y \mapsto x \wedge y$ from $\Lambda^{2}\left(E_{i}\right)$ to \mathbf{Z}. On the other hand, we have a map from $S^{2}\left(E_{i}\right)$ to $s l\left(E_{i}\right)$ sending $x \otimes y$ to the endomorphism $x . y: z \mapsto x y \wedge z+y x \wedge z$.

For each $i \in\{1,2,3\}$ take an element $f_{i} \in \operatorname{sl}\left(E_{i}\right)$ which is congruent to the identity $\bmod 2$. Let A be the polynomial algebra $\mathbf{Z}[a, b, c]$ divided by the only relation $a+b+c=0$. Then we can define a Lie superalgebra L over A by the following:

- the even part L_{0} of L is the A-submodule of $A[1 / 2] \otimes\left(\oplus_{i} s l\left(E_{i}\right)\right)$ generated by $\operatorname{sl}\left(E_{1}\right), \operatorname{sl}\left(E_{2}\right), s l\left(E_{3}\right)$ and $\left(a f_{1}+b f_{2}+c f_{3}\right) / 2$
- the odd part L_{1} of L is the A-module $A \otimes X$
- the Lie bracket on $L_{0} \otimes L_{0}$ is the standard Lie bracket on $\operatorname{sl}\left(E_{i}\right) \otimes \operatorname{sl}\left(E_{i}\right)$ and vanishes on $s l\left(E_{i}\right) \otimes s l\left(E_{j}\right)$ for $i \neq j$
- the Lie bracket on $L_{0} \otimes L_{1}$ is the standard action of $\oplus_{i} s l\left(E_{i}\right)$ on X
- the Lie bracket on $L_{1} \otimes L_{0}$ is the opposite of the standard action of $\oplus_{i} s l\left(E_{i}\right)$ on X
- the Lie bracket on $X \otimes X$ is defined by:

$$
\left[x \otimes y \otimes z, x^{\prime} \otimes y^{\prime} \otimes z^{\prime}\right]=\frac{1}{2}\left(a x . x^{\prime} y \wedge y^{\prime} z \wedge z^{\prime}+b x \wedge x^{\prime} y . y^{\prime} z \wedge z^{\prime}+c x \wedge x^{\prime} y \wedge y^{\prime} z . z^{\prime}\right)
$$

It is not difficult to see that L is a Lie superalgebra over A with superdimension $9-8=1$. The Jacobi relation holds because $a+b+c=0$. If we take a character from A to \mathbf{C}, we get a complex Lie superalgebra. Up to isomorphism, this algebra depends only on one parameter α and is called $\mathrm{D}(2,1, \alpha)$. Here this algebra L will be denoted by $\widetilde{\mathrm{D}}(2,1)$.

In order to define a Casimir element in $\widetilde{\mathrm{D}}(2,1)$, we need some notations. Consider for each $i=1,2,3$ a direct basis $\left\{\varepsilon_{i j}\right\}$ of E_{i} and the dual basis $\left\{\varepsilon_{i j}^{\prime}\right\}$ with respect to the form \wedge :

$$
\forall x \in E_{i} \quad \sum_{j} \varepsilon_{i j}\left(\varepsilon_{i j}^{\prime} \wedge x\right)=\sum_{j}\left(x \wedge \varepsilon_{i j}\right) \varepsilon_{i j}^{\prime}=x .
$$

For each i, the trace of the product is an invariant form on $\operatorname{sl}\left(E_{i}\right)$, and, corresponding to this form, we have a Casimir type element $\Omega_{i}=\sum_{j} e_{i j} \otimes e_{i j}^{\prime}$. This element belongs to $L \otimes L \otimes \mathbf{Z}[1 / 2]$, but $2 \omega_{i}$ lies in $L \otimes L$. We have also a Casimir element $\pi \in X \otimes X$ defined by:

$$
\pi=\sum_{i j k}\left(\varepsilon_{1 i} \otimes \varepsilon_{2 j} \otimes \varepsilon_{3 k}\right) \otimes\left(\varepsilon_{1 i}^{\prime} \otimes \varepsilon_{2 j}^{\prime} \otimes \varepsilon_{3 k}^{\prime}\right) .
$$

7.7.1 Lemma: For each $i \in\{1,2,3\}$ and $x \in E_{i}$, we have the following:

$$
\begin{aligned}
\sum_{j} \varepsilon_{i j} \otimes x \cdot \varepsilon_{i j}^{\prime} & =2 \sum_{j} e_{i j}(x) \otimes e_{i j}^{\prime} \\
\sum_{j} x \cdot \varepsilon_{i j} \otimes \varepsilon_{i j}^{\prime} & =-2 \sum_{j} e_{i j} \otimes e_{i j}^{\prime}(x)
\end{aligned}
$$

Proof: Denote by τ the trace map. For every $\alpha \in \operatorname{End}\left(E_{i}\right)$ we have:

$$
\begin{aligned}
& \sum_{j} \varepsilon_{i j} \tau\left(\left(x . \varepsilon_{i j}^{\prime}\right) \alpha\right)=\sum_{j} \varepsilon_{i j}\left(\varepsilon_{i j}^{\prime} \wedge \alpha(x)\right)+\sum_{j} \varepsilon_{i j}\left(x \wedge \alpha\left(\varepsilon_{i j}^{\prime}\right)\right) \\
& =\alpha(x)-\sum_{j} \varepsilon_{i j}\left(\alpha(x) \wedge \varepsilon_{i j}^{\prime}\right)=2 \alpha(x)=2 \sum_{j} e_{i j}(x) \tau\left(e_{i j}^{\prime} \alpha\right)
\end{aligned}
$$

and that gives the first formula. The second one is obtained in the same way.
7.7.2 Lemma: Let K be the fraction field of A. Then $\widetilde{\mathrm{D}}(2,1) \otimes K$ has an invariant bilinear form and the corresponding Casimir element is:

$$
\Omega=-a \Omega_{1}-b \Omega_{2}-c \Omega_{3}+\pi
$$

Moreover the cobracket induced by Ω is a morphism from $\widetilde{D}(2,1)$ to $\widetilde{\mathrm{D}}(2,1) \otimes \widetilde{\mathrm{D}}(2,1)$.
Proof: Let $x \otimes y \otimes z$ be an element of X. We have:

$$
\begin{gathered}
x \otimes y \otimes z(\pi)=\sum_{i j k}\left[x \otimes y \otimes z, \varepsilon_{1 i} \otimes \varepsilon_{2 j} \otimes \varepsilon_{3 k}\right] \otimes\left(\varepsilon_{1 i}^{\prime} \otimes \varepsilon_{2 j}^{\prime} \otimes \varepsilon_{3 k}^{\prime}\right) \\
-\sum_{i j k}\left(\varepsilon_{1 i} \otimes \varepsilon_{2 j} \otimes \varepsilon_{3 k}\right) \otimes\left[x \otimes y \otimes z, \varepsilon_{1 i}^{\prime} \otimes \varepsilon_{2 j}^{\prime} \otimes \varepsilon_{3 k}^{\prime}\right] \\
=\frac{1}{2}\left(a Z_{1}+b Z_{2}+c Z_{3}\right)
\end{gathered}
$$

with:

$$
\begin{aligned}
& Z_{1}=\sum_{i j k} x \cdot \varepsilon_{1 i} y \wedge \varepsilon_{2 j} z \wedge \varepsilon_{3 k} \otimes\left(\varepsilon_{1 i}^{\prime} \otimes \varepsilon_{2 j}^{\prime} \otimes \varepsilon_{3 k}^{\prime}\right)-\sum_{i j k}\left(\varepsilon_{1 i} \otimes \varepsilon_{2 j} \otimes \varepsilon_{3 k}\right) \otimes x \cdot \varepsilon_{1 i}^{\prime} y \wedge \varepsilon_{2 j}^{\prime} z \wedge \varepsilon_{3 k}^{\prime} \\
& Z_{2}=\sum_{i j k} x \wedge \varepsilon_{1 i} y \cdot \varepsilon_{2 j} z \wedge \varepsilon_{3 k} \otimes\left(\varepsilon_{1 i}^{\prime} \otimes \varepsilon_{2 j}^{\prime} \otimes \varepsilon_{3 k}^{\prime}\right)-\sum_{i j k}\left(\varepsilon_{1 i} \otimes \varepsilon_{2 j} \otimes \varepsilon_{3 k}\right) \otimes x \wedge \varepsilon_{1 i}^{\prime} y \cdot \varepsilon_{2 j}^{\prime} z \wedge \varepsilon_{3 k}^{\prime}
\end{aligned}
$$

$Z_{3}=\sum_{i j k} x \wedge \varepsilon_{1 i} y \wedge \varepsilon_{2 j} z . \varepsilon_{3 k} \otimes\left(\varepsilon_{1 i}^{\prime} \otimes \varepsilon_{2 j}^{\prime} \otimes \varepsilon_{3 k}^{\prime}\right)-\sum_{i j k}\left(\varepsilon_{1 i} \otimes \varepsilon_{2 j} \otimes \varepsilon_{3 k}\right) \otimes x \wedge \varepsilon_{1 i}^{\prime} y \wedge \varepsilon_{2 j}^{\prime} z . \varepsilon_{3 k}^{\prime}$.
Using Lemma 7.7.1, Z_{1} is easy to compute:

$$
\begin{gathered}
Z_{1}=\sum_{i j k} x \cdot \varepsilon_{1 i} \otimes\left(\varepsilon_{1 i}^{\prime} \otimes y \otimes z\right)-\sum_{i j k}\left(\varepsilon_{1 i} \otimes y \otimes z\right) \otimes x . \varepsilon_{1 i}^{\prime} \\
=-2 \sum_{i j k} e_{1 i} \otimes\left(e_{1 i}^{\prime}(x) \otimes y \otimes z\right)-2 \sum_{i j k}\left(e_{1 i}(x) \otimes y \otimes z\right) \otimes e_{1 i}^{\prime}=2 x \otimes y \otimes z\left(\Omega_{1}\right)
\end{gathered}
$$

and similarly we get: $Z_{2}=2 x \otimes y \otimes z\left(\Omega_{2}\right), Z_{3}=2 x \otimes y \otimes z\left(\Omega_{3}\right)$. Therefore we have:

$$
x \otimes y \otimes z(\Omega)=x \otimes y \otimes z\left(-a \Omega_{1}-b \Omega_{2}-c \Omega_{3}\right)+\frac{1}{2}\left(a Z_{1}+b Z_{2}+c Z_{3}\right)=0
$$

and Ω, which is clearly invariant under the even part of $\widetilde{D}(2,1)$, is $\widetilde{D}(2,1)$-invariant.
Since Ω is symmetric and invariant, it corresponds to an invariant symmetric bilinear form on $\widetilde{\mathrm{D}}(2,1) \otimes K$ which is clearly non singular.

It is easy to see the following congruence modulo $\widetilde{D}(2,1) \otimes \widetilde{D}(2,1)$:

$$
\Omega \equiv \frac{1}{2}\left(a f_{1} \otimes f_{1}+b f_{2} \otimes f_{2}+c f_{3} \otimes f_{3}\right)
$$

and the cobracket takes values in $\widetilde{D}(2,1) \otimes \widetilde{D}(2,1)$.
7.8 Theorem: Let $\mathbf{Z}\left[\sigma_{2}, \sigma_{3}\right]$ be the graded subalgebra of $A=\mathbf{Z}[a, b, c] /(a+b+c)$ generated by $\sigma_{2}=a b+b c+c a$ of degree 2 and $\sigma_{3}=a b c$ of degree 3 . Then the character $\chi_{\text {sup }}$ induced by $\widetilde{\mathrm{D}}(2,1)$ equipped with the Casimir Ω is a graded algebra homomorphism from $\Lambda_{\mathbf{Z}}$ to $\mathbf{Z}\left[\sigma_{2}, \sigma_{3}\right]$.

Moreover $\chi_{\text {sup }}$ satisfies the following:

$$
\chi_{\text {sup }}(t)=0 \quad \text { and } \quad \forall p \geq 0, \quad \chi_{\text {sup }}\left(\omega_{p}\right)=\omega \sigma^{p}
$$

with: $\sigma=4 \sigma_{2}, \omega=8 \sigma_{3}$.
Proof: Since A is a unique factorization domain, we can apply Theorem 6.1 and the character induces by $\widetilde{\mathrm{D}}(2,1)$ is an algebra homomorphism $\chi_{\text {sup }}$ from $\Lambda_{\mathbf{Z}}$ to $A=$ $\mathbf{Z}[a, b, c] /(a+b+c)$. There is an action of \mathfrak{S}_{3} on $\widetilde{D}(2,1)$. This action permutes the modules E_{i} and the coefficients a, b, c. Therefore $\chi_{\text {sup }}$ takes values in the fixed part of A under the action of \mathfrak{S}_{3} and $\chi_{\text {sup }}$ is an algebra homomorphism from $\Lambda_{\mathbf{Z}}$ to $\mathbf{Z}\left[\sigma_{2}, \sigma_{3}\right]$.

On the other hand, $\widetilde{\mathrm{D}}(2,1)$ is a graded algebra: elements in $\operatorname{sl}\left(E_{i}\right)$ are of degree 0 , elements in X are of degree 1 and a, b, c are of degree 2 . With this degree the degree of the Lie bracket is 0 and the degree of the cobracket is 2. Hence it is easy to see that each element $u \in \Lambda_{\mathbf{Z}}$ of degree p is sent by $\chi_{\text {sup }}$ to an element of degree $2 p$. Thus, after dividing degrees in A by $2, \chi_{\text {sup }}$ becomes a graded character. In particular $\chi_{D}(t)$ is trivial because $\mathbf{Z}\left[\sigma_{2}, \sigma_{3}\right]$ has no degree 1 element.

As above denote by Ψ the morphism defined by the diagram

7.8.1 Lemma: The endomorphism Ψ satisfies the following:

$$
\begin{gathered}
\Psi\left(\Omega_{1}\right)=-4 a \Omega_{1}+\frac{3}{2} \pi, \quad \Psi\left(\Omega_{2}\right)=-4 b \Omega_{2}+\frac{3}{2} \pi, \quad \Psi\left(\Omega_{3}\right)=-4 c \Omega_{3}+\frac{3}{2} \pi \\
\Psi(\pi)=-4\left(a^{2} \Omega_{1}+b^{2} \Omega_{2}+c^{2} \Omega_{3}\right)
\end{gathered}
$$

Proof: We have:

$$
\Psi\left(\Omega_{1}\right)=-a \sum_{i j}\left[e_{1 i}, e_{1 j}\right] \otimes\left[e_{1 j}, e_{1 i}\right]+\sum_{i j l k}\left[e_{1 i}, \varepsilon_{1 j} \otimes \varepsilon_{2 k} \otimes \varepsilon_{3 l}\right] \otimes\left[\varepsilon_{1 j}^{\prime} \otimes \varepsilon_{2 k}^{\prime} \otimes \varepsilon_{3 l}^{\prime}, e_{1 i}^{\prime}\right]
$$

The coefficient of $-a$ in this formula is the image of the Casimir of $s l_{2}$ under the corresponding homomorphism $\Psi_{s l 2}$. Then it is equal to $2 \chi_{s l 2}(t) \Omega_{1}=4 \Omega_{1}$, and:

$$
\Psi\left(\Omega_{1}\right)=-4 a \Omega_{1}-\sum_{i j k l}\left(e_{1 i}\left(\varepsilon_{1 j}\right) \otimes \varepsilon_{2 k} \otimes \varepsilon_{3 l}\right) \otimes\left(e_{1 i}^{\prime}\left(\varepsilon_{1 j}^{\prime}\right) \otimes \varepsilon_{2 k}^{\prime} \otimes \varepsilon_{3 l}^{\prime}\right)
$$

Because of Lemma 7.7.1, we have:

$$
\begin{gathered}
\sum_{i j} e_{1 i}\left(\varepsilon_{1 j}\right) \otimes e_{1 i}^{\prime}\left(\varepsilon_{1 j}^{\prime}\right)=\frac{1}{2} \sum_{i j} \varepsilon_{1 i} \otimes \varepsilon_{1 j} \cdot \varepsilon_{1 i}^{\prime}\left(\varepsilon_{1 j}^{\prime}\right) \\
=\frac{1}{2} \sum_{i j} \varepsilon_{1 i} \otimes\left(\varepsilon_{1 j} \varepsilon_{1 i}^{\prime} \wedge \varepsilon_{1 j}^{\prime}+\varepsilon_{1 i}^{\prime} \varepsilon_{1 j} \wedge \varepsilon_{1 j}^{\prime}\right) \\
=\frac{1}{2} \sum_{j} \varepsilon_{1 j}^{\prime} \otimes \varepsilon_{1 j}+\frac{1}{2} \sum_{i} \varepsilon_{1 i} \otimes \varepsilon_{1 i}^{\prime} \sum_{j} \varepsilon_{1 j} \wedge \varepsilon_{1 j}^{\prime} \\
=-\frac{1}{2} \sum_{j} \varepsilon_{1 j} \otimes \varepsilon_{1 j}^{\prime}-\sum_{i} \varepsilon_{1 i} \otimes \varepsilon_{1 i}^{\prime}=-\frac{3}{2} \sum_{j} \varepsilon_{1 j} \otimes \varepsilon_{1 j}^{\prime}
\end{gathered}
$$

and that implies the first formula. For computing $\Psi\left(\Omega_{2}\right)$ and $\Psi\left(\Omega_{3}\right)$, just apply a cyclic permutation.

Since Ω is the Casimir and t is zero in this case, we have:

$$
0=\Psi(\Omega)=4 a^{2} \Omega_{1}+4 b^{2} \Omega_{2}+4 c^{2} \Omega_{3}+\Psi(\pi)
$$

and that proves the lemma.
7.8.2 Lemma: The module $S^{2} \widetilde{\mathrm{D}}(2,1) \otimes K$ decomposes into a direct sum $U_{0} \oplus$ $U_{1} \oplus U_{2} \oplus U_{3}$. The module U_{0} is isomorphic to K and generated by the Casimir. The homomorphism Ψ respects this decomposition. It acts on $U_{0}, U_{1}, U_{2}, U_{3}$ by multiplication by $0,2 a, 2 b, 2 c$ respectively.
Proof: Set: $L=\widetilde{\mathrm{D}}(2,1) \otimes K$. Let V_{0} be the K-submodule of $S^{2} L$ generated by Ω_{1}, $\Omega_{2}, \Omega_{3}, \pi$. The morphism Ψ induces an endomorphism of V_{0}. The matrix of this endomorphism in the basis ($2 \Omega_{1}, 2 \Omega_{2}, 2 \Omega_{3}, \pi$) is:

$$
\left(\begin{array}{cccc}
-4 a & 0 & 0 & -2 a^{2} \\
0 & -4 b & 0 & -2 b^{2} \\
0 & 0 & -4 c & -2 c^{2} \\
3 & 3 & 3 & 0
\end{array}\right)
$$

The eigenvalues of this matrix are $0,2 a, 2 b, 2 c$ and corresponding eigenvectors are:

$$
\begin{gathered}
\Omega=-a \Omega_{1}-b \Omega_{2}-c \Omega_{3}+\pi \\
2 a(b-c) \Omega_{1}+6 b^{2} \Omega_{2}-6 c^{2} \Omega_{3}-3(b-c) \pi \\
2 b(c-a) \Omega_{2}+6 c^{2} \Omega_{3}-6 a^{2} \Omega_{1}-3(c-a) \pi \\
2 c(a-b) \Omega_{3}+6 a^{2} \Omega_{1}-6 b^{2} \Omega_{2}-3(a-b) \pi
\end{gathered}
$$

Let L_{0} be the even part of L. Let F_{p} be the simple $s l_{2}$-module of dimension $p+1$. This module is the symmetric power $S^{p} F_{1}$ and $F_{2}=s l_{2}$. Denote by $[p, q, r]$ the isomorphism class of the L_{0}-module $F_{p} \otimes F_{q} \otimes F_{r}$. These elements form a basis of the Grothendieck algebra $\operatorname{Rep}\left(L_{0}\right)$ of representations of L_{0}. In this algebra we have:

$$
\begin{gathered}
{\left[L_{0}\right]=[2,0,0]+[0,2,0]+[0,0,2] \quad[X]=[1,1,1]} \\
{\left[S^{2} L_{0}\right]=3[0,0,0]+[4,0,0]+[0,4,0]+[0,0,4]+[2,2,0]+[2,0,2]+[0,2,2]} \\
{\left[\Lambda^{2} X\right]=[0,0,0]+[2,2,0]+[2,0,2]+[0,2,2]} \\
{\left[L_{0} \otimes X\right]=3[1,1,1]+[3,1,1]+[1,3,1]+[1,1,3]}
\end{gathered}
$$

The module V_{0} is the submodule $3[0,0,0]+[0,0,0]$ of $S^{2} L$. Set $V_{0}^{\prime}=V_{0}$ and define by induction submodules V_{p}^{\prime} to be the image of $X \otimes V_{p-1}^{\prime}$ under the action map. Then set: $V_{p}=V_{0}^{\prime}+\ldots+V_{p}^{\prime}$. For every $p \geq 0, V_{p}$ is a L_{0}-module. It is not difficult to prove the following:

$$
\begin{gathered}
{\left[V_{0}\right]=4[0,0,0] \quad\left[V_{1}\right]=4[0,0,0]+3[1,1,1]} \\
{\left[V_{2}\right]=4[0,0,0]+3[1,1,1]+[2,2,0]+[2,0,2]+[0,2,2] \Longrightarrow \Lambda^{2} X \subset V_{2}} \\
{\left[V_{3}\right]=4[0,0,0]+3[1,1,1]+[2,2,0]+[2,0,2]+[0,2,2]+[3,1,1]+[1,3,1]+[1,1,3]} \\
\Longrightarrow \Lambda^{2} X \oplus L_{0} \otimes X \subset V_{3} .
\end{gathered}
$$

Then there is a unique L_{0}-submodule W of $S^{2} L_{0} \subset S^{2} L$ such that $V_{3} \oplus W=S^{2} L$. If V is the L-submodule of $S^{2} L$ generated by V_{0}, the module $S^{2} L / V$ is a quotient of W and then has no odd degree component. Therefore this module is trivial and $S^{2} L$ is generated by V_{0} as a L-module, and that implies that $S^{2} L$ is the direct sum of L-modules generated by the eigenvectors above and the lemma is proven.

Now we are able to apply Theorem 6.3 and we get the desired result.
Remark: There exist an extra Lie superalgebra equipped with a Casimir element: the Hamiltinian algebra $H(n)$ for $n>4$ and n even and that's a complete list of simple quadratic Lie superalgebras $[\mathrm{Kc}]$. For $n>4$ the Hamiltonian algebra $L=H(n)$ has the following property: it has a Z-graduation compatible with the Lie bracket, and the Casimir has a nonzero degree. Therefore for any element $u \in \Lambda$ of positive degree, the induced element $\chi_{L}(u)$ has a nonzero degree. But it is an element of the coefficient field. Hence the character χ_{L} is the augmentation character.

8. Properties of the characters.

In the last section, we constructed eight characters $\chi_{i}, i=1 \ldots 8$ corresponding to families $g l$, osp, $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}, \mathrm{G}_{2}$ and $\widetilde{\mathrm{D}}(2,1)$. These characters are graded algebra homomorphisms from Λ to A_{i}, where $A_{1}=\mathbf{Q}[t, u], A_{2}=\mathbf{Q}[t, v], A_{3}=A_{4}=A_{5}=$ $A_{6}=A_{7}=\mathbf{Q}[t], A_{8}=\mathbf{Q}\left[\sigma_{2}, \sigma_{3}\right]$.

Consider the subalgebra $R_{0}=\mathbf{Q}[t] \oplus \omega \mathbf{Q}[t, \sigma, \omega]$ of $R=\mathbf{Q}[t, \sigma, \omega]$. This algebra is sent to Λ by a morphism φ defined by:

$$
\varphi(t)=t, \quad \forall p \geq 0, \quad \varphi\left(\sigma^{p} \omega\right)=\omega_{p}
$$

For each $i=1, \ldots, 8$ there is a unique character χ_{i}^{\prime} from R to A_{i} which restricts on R_{0} to $\chi_{i} \circ \varphi$. These morphisms are defined by:

$$
\begin{aligned}
\chi_{1}^{\prime}(t)=t & \chi_{1}^{\prime}(\sigma)=2\left(t^{2}-2 u\right) & \chi_{1}^{\prime}(\omega)=2 t\left(t^{2}-4 u\right) \\
\chi_{2}^{\prime}(t)=t & \chi_{2}^{\prime}(\sigma)=3(t-2 v)(t+3 v) & \chi_{2}^{\prime}(\omega)=2(t-v)(t-2 v)(t+4 v) \\
\chi_{3}^{\prime}(t)=t & \chi_{3}^{\prime}(\sigma)=\frac{77}{36} t^{2} & \chi_{3}^{\prime}(\omega)=\frac{25}{12} t^{3} \\
\chi_{4}^{\prime}(t)=t & \chi_{4}^{\prime}(\sigma)=\frac{176}{81} t^{2} & \chi_{4}^{\prime}(\omega)=\frac{520}{243} t^{3} \\
\chi_{5}^{\prime}(t)=t & \chi_{5}^{\prime}(\sigma)=\frac{494}{225} t^{2} & \chi_{5}^{\prime}(\omega)=\frac{98}{45} t^{3} \\
\chi_{6}^{\prime}(t)=t & \chi_{6}^{\prime}(\sigma)=\frac{170}{81} t^{2} & \chi_{6}^{\prime}(\omega)=\frac{480}{243} t^{3} \\
\chi_{7}^{\prime}(t)=t & \chi_{7}^{\prime}(\sigma)=\frac{65}{36} t^{2} & \chi_{7}^{\prime}(\omega)=\frac{55}{36} t^{3} \\
\chi_{8}^{\prime}(t)=0 & \chi_{8}^{\prime}(\sigma)=4 \sigma_{2} & \chi_{8}^{\prime}(\omega)=8 \sigma_{3} .
\end{aligned}
$$

The kernels of these characters are:

$$
\begin{gathered}
I_{1}=\operatorname{Ker} \chi_{1}^{\prime}=\left(P_{g l}\right) \\
I_{2}=\operatorname{Ker} \chi_{2}^{\prime}=\left(P_{o s p}\right) \\
I_{3}=\operatorname{Ker} \chi_{3}^{\prime}=\left(P_{e x c}, 77 t^{2}-36 \sigma\right) \\
I_{4}=\operatorname{Ker} \chi_{4}^{\prime}=\left(P_{e x c}, 176 t^{2}-81 \sigma\right) \\
I_{5}=\operatorname{Ker} \chi_{5}^{\prime}=\left(P_{e x c}, 494 t^{2}-225 \sigma\right) \\
I_{6}=\operatorname{Ker} \chi_{6}^{\prime}=\left(P_{e x c}, 170 t^{2}-81 \sigma\right) \\
I_{7}=\operatorname{Ker} \chi_{7}^{\prime}=\left(P_{e x c}, 65 t^{2}-36 \sigma\right) \\
I_{8}=\operatorname{Ker} \chi_{8}^{\prime}=(t)
\end{gathered}
$$

with:

$$
P_{g l}=\omega-2 t \sigma+2 t^{3}
$$

$$
\begin{gathered}
P_{o s p}=27 \omega^{2}-72 t \sigma \omega+40 t^{3} \omega+4 \sigma^{3}+29 t^{2} \sigma^{2}-24 t^{4} \sigma \\
P_{\text {exc }}=27 \omega-45 t \sigma+40 t^{3} .
\end{gathered}
$$

Using the inclusion $\mathbf{Q}[t, \sigma, \omega] \subset \mathbf{Q}[\alpha, \beta, \gamma]$ we check the following:

$$
\begin{gathered}
P_{g l}=(\alpha-t)(\beta-t)(\gamma-t)=-(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha) \\
P_{o s p}=(\alpha+2 \beta)(2 \alpha+\beta)(\beta+2 \gamma)(2 \beta+\gamma)(\gamma+2 \alpha)(2 \gamma+\alpha) \\
P_{\text {exc }}=(3 \alpha-2 t)(3 \beta-2 t)(3 \gamma-2 t) .
\end{gathered}
$$

Since characters χ_{i}^{\prime} are surjective each character χ_{i} may be consider as a graded algebra homomorphism from Λ to a quotient of R. These characters are related. The complete relations between them are given by the following result of PatureauMirand:
8.1 Theorem [Pa]: Let I be the following ideal in R :
$I=t \omega P_{\text {gl }} P_{\text {osp }}\left(P_{\text {exc }},\left(77 t^{2}-36 \sigma\right)\left(176 t^{2}-81 \sigma\right)\left(494 t^{2}-225 \sigma\right)\left(170 t^{2}-81 \sigma\right)\left(65 t^{2}-36 \sigma\right)\right)$
Then there is a unique graded algebra homomorphism χ from Λ to R_{0} / I such that:

$$
\begin{gathered}
\chi_{s l 2} \equiv \chi \bmod \omega R \\
\forall i=1 \ldots 8, \quad \chi_{i} \equiv \chi \bmod I_{i}
\end{gathered}
$$

Remark: It was conjectured in [BN] that every element in \mathcal{A} is detected by invariants coming from Lie algebras in series A, B, C, D. This conjecture is false. There is a weaker conjecture saying that invariants coming from simple Lie algebras detect every element in \mathcal{A}. That's also false because of the Lie superalgebra $\widetilde{\mathrm{D}}(2,1)$. Actually we have the following result:
8.2 Theorem: There exists a primitive element of degree 17 in \mathcal{A} which is rationally nontrivial and killed by every weight function obtained by a semisimple Lie (super)algebra and a finite dimensional representation.

Proof: Let u be the following primitive element of \mathcal{A} of degree 2 :

The map $\lambda \mapsto \lambda u$ is a rational injection from Λ to the module \mathcal{P} of primitives of \mathcal{A} (see Corollary 4.7). Let U be the image of $P=\omega P_{g l} P_{o s p} P_{\text {exc }}$ under the morphism $\varphi: R_{0} \longrightarrow \Lambda$. This element is detected by χ_{8} and is rationally non trivial. Then $U u$ is an element rationally non trivial in \mathcal{A} of degree 17 .

Let L be a simple Lie superalgebra equipped with a Casimir element. If L is of type $i \neq 8$ we have:

$$
\Phi_{L}(U u)=\chi_{i}^{\prime}(P) \Phi_{L}(u)=0 .
$$

If L is of type 8 (i.e. $L=\widetilde{\mathrm{D}}(2,1)$), we have:

$$
\Phi_{L}(U u)=\chi_{8}^{\prime}(P) \Phi_{L}(u)=\chi_{8}^{\prime}(P) \chi_{8}(t) \Phi_{L}(\oslash)
$$

But $\chi_{8}(t)=0$. Therefore $U u$ is killed by Φ_{L}.
If $L=\oplus L_{i}$ is semisimple, $\Phi_{L}(U u)=\sum \Phi_{L_{i}}(U u)=0$ because $U u$ is primitive.
8.3 Theorem: Let u be an element in Λ killed by all characters χ_{i}. Let L be a quadratic Lie superalgebra over a field of characteristic 0 . Then u is killed by Φ_{L}.
Proof: Let D be a connected diagram in $\mathcal{D}(\emptyset,[3])$ representing some element u^{\prime} in $F(3)$. Let D_{0} be the union of closed edges meeting ∂K and D_{1} be the complement of D_{0} in K. We'll said that D is reduced if D_{1} is connected.
8.3.1 Lemma: Every connected diagram in $\mathcal{D}(\emptyset,[3])$ of degree >2 is equivalent in $F(3)$ to a multiple of a reduced diagram.

Proof: Let d be the degree of a connected diagram D. If d is positive and D is not reduced, we have the following possibilities in $F(3)$ (up to some cyclic permutation in \mathfrak{S}_{3}):

$$
\begin{aligned}
& D=\searrow-v-=\rangle(w-=2 t\rangle w-
\end{aligned}
$$

Therefore D is equivalent in $F(3)$ to a multiple of $t^{i} D_{1}$, with $i<3$ and D_{1} reduced or $i=3$. But it is easy to see the following:

$$
t^{3} D=t^{3} \quad \succ-=\Varangle w \Lambda
$$

Since a reduced diagram multiply by t is represented by a reduced diagram, the result follows.

Since $\chi_{g l}$ detects every element in Λ in degree <6, we may suppose that u is an element in Λ of degree $d \geq 6$. Consider the category of diagrams Δ. Any element in $F(m)$ may be seen as a morphism in Δ from \emptyset to $[m]$. Let β be the bracket from [2] to [1] (β is represented by a tree). Because of the lemma, there is an element $v \in F(6)$ such that:

$$
u=\beta^{\otimes 3} \circ v
$$

Moreover the degree of v is $d-3>2$.

Consider now a quadratic Lie superalgebra L over a field in characteristic zero and a central extension E of L. Denote by K the kernel of $E \longrightarrow L$. The Lie bracket $E \otimes E \longrightarrow E$ is trivial on $K \otimes E+E \otimes K$ and induces an extended bracket $\psi: L \otimes L \longrightarrow E$. So we can set:

$$
\Phi_{E, L}(u)=\psi^{\otimes 3}\left(\Phi_{L}(v)\right) \in E^{\otimes 3} .
$$

8.3.2 Lemma: Let I be an ideal in L and I^{\perp} be its orthogonal. Let E_{1} and E_{2} be the pullback in E of I and I^{\perp}. Suppose that the inner form is nonsingular on I. Then we have:

$$
\Phi_{E, L}(u)=\Phi_{E_{1}, I}(u)+\Phi_{E_{2}, I^{\perp}}(u) .
$$

Proof: The modules I and I^{\perp} are Lie superalgebras. Since the form is nonsingular on I, L is the direct sum $I \oplus I^{\perp}$. It is easy to see that I and I^{\perp} are quadratic Lie superalgebras and $E_{1} \longrightarrow I$ and $E_{2} \longrightarrow I^{\perp}$ are central extensions. Then we have:

$$
\Phi_{E, L}(u)=\psi^{\otimes 3}\left(\Phi_{L}(v)\right)=\psi^{\otimes 3}\left(\Phi_{I}(v)+\Phi_{I^{\perp}}(v)\right)=\Phi_{E_{1}, I}(u)+\Phi_{E_{2}, I^{\perp}}(u) .
$$

8.3.3 Lemma: Let I be an isotropic ideal of L and I^{\perp} be its orthogonal. Let J be the quotient I^{\perp} / I. Suppose that the form on J induced by the inner form on L is nonsingular on the center of J. Let E_{1} be the pullback in E of the module $\left[I^{\perp}, I^{\perp}\right] \subset L$. Then E_{1} is a central extension of $J_{1}=[J, J]$ and we have:

$$
\Phi_{E, L}(u)=\Phi_{E_{1}, J_{1}}(u) .
$$

Proof: Since I is a L-module, I^{\perp} and $J=I^{\perp} / I$ are L-modules too. Moreover for any $(x, y, z) \in I \times I^{\perp} \times L$ we have:

$$
<[x, y], z>=<x,[y, z]>=0
$$

and $[x, y]$ is orthogonal to every $z \in L$. Then $[x, y]=0$ for every $x \in I$ and $y \in I^{\perp}$ and the bracket is trivial on $I \otimes I^{\perp}$. Therefore the Lie bracket and the inner form induce a quadratic Lie superalgebra structure on $J=I^{\perp} / I$.

The central extension $I^{\perp} \longrightarrow J$ is determined by a 2-cocycle $\varphi: \Lambda^{2} J \longrightarrow I$. The cohomology class of φ is determined by a morphism $\mathrm{H}_{2}(J) \longrightarrow I$ and it is possible to modify φ by a coboundary in such a way that φ and $\mathrm{H}_{2}(J) \longrightarrow I$ have the same image. Then I^{\perp} can be identify to $I \oplus J$ and the Lie bracket $[,]_{1}$ on $I \oplus J$ is given by:

$$
\forall \alpha, \beta \in I, \quad \forall x, y \in J, \quad[\alpha+x, \beta+y]_{1}=[x, y]+\varphi(x \otimes y)
$$

where φ is a cocycle satisfying: $\varphi\left(\Lambda^{2}(J)\right)=\varphi\left(\operatorname{Ker}\left(\Lambda^{2} J \rightarrow J\right)\right)$. The central extension induces an extended bracket ψ^{\prime} from $\Lambda^{2}(J)$ to I^{\perp}.

Since the form is non singular on J, it is nonsingular on its orthogonal J^{\perp}. Then there exists a module $I^{*} \subset L$ such that the form is trivial on I^{*} and J^{\perp} is the module $I \oplus I^{*}$. Therefore the Casimir element Ω decomposes in a sum: $\Omega=\Omega_{0}+\Omega_{+}+\Omega_{-}$, where Ω_{0}, Ω_{+}and Ω_{-}are in $J \otimes J, I \otimes I^{*}$ and $I^{*} \otimes I$ respectively.

Suppose $v \in F(6)$ is represented by a connected diagram D such that the edges of D meeting ∂D are disjoint. Therefore there exists a diagram D^{\prime} representing an element w in $\mathcal{A}(\emptyset,[12])$ such that:

$$
v=\beta^{\otimes 6} \circ w
$$

Actually every element in $F(6)$ of positive degree is a linear combination of such diagrams.

Set $\partial D=\left\{v_{i}\right\}, i=1 \ldots 6$ and denote by e_{i} the oriented edge in D starting from v_{i}. Let U be the set of oriented subgraphs of D and Γ be an oriented graph in U. For each oriented edge $a \in D$ define the module $V_{\Gamma}(a)$ by:

$$
V_{\Gamma}(a)=\left\{\begin{array}{lc}
I^{*} & \text { if } a \in \Gamma \\
I & \text { if }-a \in \Gamma \\
J & \text { otherwise }
\end{array}\right.
$$

Let e be an edge in D and a and $-a$ be the corresponding oriented edges. Set $\Omega_{\Gamma}(e)$ be the component of the Casimir element Ω in $V_{\Gamma}(a) \otimes V_{\Gamma}(-a)$ and denote by $\Omega(\Gamma)$ the tensor product:

$$
\Omega(\Gamma)=\underset{e}{\otimes} \Omega_{\Gamma}(e) .
$$

For each 3-valent vertex x in D the alternating form $<$, , $>$ induces a linear form on $V_{\Gamma}(a) \otimes V_{\Gamma}(b) \otimes V_{\Gamma}(c)$ where a, b, c are the three oriented edges in D starting from x. By applying all these forms to $\Omega(\Gamma)$ we get an element $\Phi(\Gamma)$ in $\otimes_{i} V_{\Gamma}\left(e_{i}\right)$. It is not difficult to see that $\Phi_{L}(v)$ is the sum of all $\Phi(\Gamma)$.

Let x be a 3 -valent vertex in D and a, b, c be the oriented edges in D ending at x. Since the alternating form $\langle x, y, z\rangle$ vanishes for $x \in I$ and $y \in I \oplus J, \Omega(\Gamma)$ is zero if a is in Γ and $-b$ (or $-c$) is not in Γ.

Denote by U_{+}the set of all Γ in U such that:
for every 3 -valent vertex v in D, if one oriented edge starting from v is in Γ the two other edges ending at v are in Γ too.

Then we have:

$$
\Phi_{L}(v)=\sum_{\Gamma \in U_{+}} \Phi(\Gamma)
$$

Let Γ be an oriented graph in U_{+}. Suppose Γ contains some oriented edge e disjoint from ∂D. Since $D \backslash\left\{e_{i}\right\}$ is a connected 3 -valent graph, there is a long oriented path $\left(f_{1}, f_{2}, \ldots, f_{p}=e\right)$ in D such that each oriented edge f_{j} is in Γ. Therefore Γ
contains an oriented cycle C. Since the degree of v is at least 2 , there exist an edge e^{\prime} outside of $\left\{e_{i}\right\}$ and meeting C in some vertex v. Then there is a long oriented path $\left(g_{1}, g_{2}, \ldots, g_{q}\right)$ such that g_{q} is the edge e^{\prime} ending at v. But this path is necessary included in D because Γ is in U_{+}and that's impossible. Hence Γ has to be included in $\left\{e_{i}\right\}$ with the right orientation.

Then we have:

$$
\Phi_{L}(v)=\psi^{\prime \otimes 6}\left(\Phi_{J}(w)\right)
$$

Let J_{2} be the center of J. Since the form is nonsingular, J is the direct sum: $J=J_{1} \oplus J_{2}$. The center of J_{1} is trivial and then: $J_{1}=\left[J_{1}, J_{1}\right]$. Since J_{2} is abelian, we have:

$$
\Phi_{L}(v)=\psi^{\prime \otimes 6}\left(\Phi_{J}(w)\right)=\psi^{\prime \otimes 6}\left(\Phi_{J_{1}}(w)+\Phi_{J_{2}}(w)\right)=\psi^{\prime \otimes 6}\left(\Phi_{J_{1}}(w)\right)
$$

Let I_{1} be the image of φ. Then the module $\left[I^{\perp}, I^{\perp}\right]$ is $[I \oplus J, I \oplus J]_{1}=I_{1} \oplus J_{1}$. Denote by φ_{1} a 2-cocycle on $\Lambda^{2} L$ which determines the extension $E \longrightarrow L$. Let $\alpha \in I_{1}$ and x and y in J. Since φ_{1} is a cocycle, we have:

$$
\begin{gathered}
\varphi_{1}\left(\alpha \otimes[x, y]_{1}\right)=-\varphi_{1}\left(x \otimes[y, \alpha]_{1}\right)-\varphi_{1}\left(y \otimes[\alpha, x]_{1}\right)=0 \\
\Longrightarrow \varphi_{1}(\alpha,[x, y]+\varphi(x \otimes y))=0 .
\end{gathered}
$$

Then if w is in $\operatorname{Ker}\left(\Lambda^{2} J \rightarrow J\right)$ we have: $\varphi_{1}(\alpha, \varphi(w))=0$ and φ_{1} is trivial on $I_{1} \otimes I_{1}$ and therefore on $I_{1} \otimes J_{1}$. Hence the cocycle on $\left[I^{\perp}, I^{\perp}\right]$ comes from a cocycle on J_{1} and the extension $E_{1} \longrightarrow J_{1}$ is central. This extension induces an extended bracket $\psi^{\prime \prime}: \Lambda^{2} J_{1} \longrightarrow E_{1}$ and we have for every $x_{1}, x_{2}, x_{3}, x_{4}$ in J_{1} :

$$
\begin{aligned}
\psi\left(\psi^{\prime \otimes 2}\left(x_{1} \otimes x_{2} \otimes x_{3} \otimes x_{4}\right)\right)= & \psi\left(\psi^{\prime}\left(x_{1} \otimes x_{2}\right) \otimes \psi^{\prime}\left(x_{3} \otimes x_{4}\right)\right)=\psi^{\prime \prime}\left(\left[x_{1}, x_{2}\right] \otimes\left[x_{3}, x_{4}\right]\right) \\
& \Longrightarrow \psi \circ \psi^{\otimes 2}=\psi^{\prime \prime} \circ \beta^{\otimes 2}
\end{aligned}
$$

where β is the Lie bracket on L_{1}. Therefore we have:

$$
\begin{gathered}
\Phi_{E, L}(u)=\psi^{\otimes 3}\left(\Phi_{L}(v)\right)=\psi^{\otimes 3}\left(\psi^{\otimes \otimes 6}\left(\Phi_{J_{1}}(w)\right)\right) \\
=\psi^{\prime \prime \otimes 3}\left(\beta^{\otimes 3}\left(\Phi_{J_{1}}(w)\right)\right)=\psi^{\prime \prime \otimes 3}\left(\Phi_{J_{1}}(v)\right)=\Phi_{E_{1}, J_{1}}(u) .
\end{gathered}
$$

Now we are able to prove that $\Phi_{E, L}(u)$ is zero by induction on $\operatorname{dim}(E)+\operatorname{dim}(L)$.
Let E be a central extension of a quadratic Lie superalgebra L. Suppose there is some nontrivial ideal in L contained in its orthogonal. Let I be such a maximal ideal. Set: $J=I^{\perp} / I$. Since I is maximal, J doesn't contain any nontrivial isotropic ideal and the inner form on J is nonsingular on the center of J. Hence $\Phi_{E, L}(u)$ is trivial by induction, because of Lemma 8.3.3.

Suppose L has some nontrivial simple submodule I. The inner form is now nonsingular on I and $\Phi_{E, L}(u)$ is trivial by induction, because of Lemma 8.3.2.

So we have to suppose that L is simple. If L is isomorphic to some $\operatorname{sl}(E), \operatorname{osp}(E)$, $E 6, E 7, E 8, F 4, G 2, G(3), F(4)$ or $D(2,1, \alpha)$, the cohomology of L is isomorphic to
the cohomology of some semisimple Lie algebra $[\mathrm{G}]$ and $\mathrm{H}^{2}(L)$ is trivial. Therefore the extension $E \longrightarrow L$ is trivial and there is a section s of it. So we have:

$$
\Phi_{E, L}(u)=\psi^{\otimes 3}\left(\Phi_{L}(v)\right)=s^{\otimes 3} \circ \beta^{\otimes 3}\left(\Phi_{L}(v)\right)=s^{\otimes 3}\left(\Phi_{L}(u)\right)
$$

and this element is trivial because u is killed by each character χ_{i}.
If L is isomorphic to some $\operatorname{psl}(E), \mathrm{H}^{2}(L)$ is a 1-dimensional module generated by the central extension $s l(E) \longrightarrow p s l(E)$. Then there is a morphism $s: s l(E) \longrightarrow$ $\operatorname{psl}(E)=L$ and then this extension factorizes through E. So we have:

$$
\Phi_{E, L}(u)=s^{\otimes 3}\left(\Phi_{s l(E), L}(u)\right)
$$

and $\Phi_{E, L}(u)$ is detected by $\Phi_{s l(E), L}(u)$ and then by $\Phi_{g l(E)}(u)$. Therefore $\Phi_{E, L}(u)$ is trivial because $\Phi_{g l(E)}(u)$ is detected by $\chi_{1}=\chi_{g l}$.

In the last possibility L is isomorphic to an Hamiltonian Lie superalgebra $H(n)$ with $n=2 p>4$. Consider the Hamiltonian Lie superalgebra $E_{0}=\widehat{H}(n)$ and its commutator $E_{1}=[\widehat{H}(n), \widehat{H}(n)]$ (see the Appendix). Since $\mathrm{H}^{2}(H(n))$ is 1-dimensional and generated by the central extension $E_{1} \longrightarrow H(n)$, there is a morphism $s: E_{1} \longrightarrow$ E and this extension factorizes through E. So we have:

$$
\Phi_{E, L}(u)=s^{\otimes 3}\left(\Phi_{E_{1}, L}(u)\right)
$$

and $\Phi_{E, L}(u)$ is detected by $\Phi_{E_{1}, L}(u)$ and then by $\Phi_{E_{0}}(u)$. But $E_{0}=\widehat{H}(n)$ is Z-graded and the degree of its cobracket is $n-4$. Then $\Phi_{E_{0}}(u)$ is an element in $\Lambda^{3} E_{0}$ of degree $d(n-4)$. On the other hand E_{0} is concentrated in degrees $-2,-1, \ldots, n-2$ and $\Lambda^{3} E_{0}$ is concentrated in degrees $-5,-4, \ldots, 3 n-7$. If $\Phi_{E_{0}}(u)$ is nonzero we have:

$$
d(n-4) \leq 3 n-7 \Longrightarrow(d-3)(n-4) \leq 5 \Longrightarrow 2(d-3) \leq 5 \Longrightarrow d \leq 5
$$

But that's not true and $\Phi_{E, L}(u)$ is trivial.
8.4 Theorem: Let J be the ideal of R generated by $t \omega P_{g l} P_{o s p} P_{\text {exc }}$. Then J is killed by the morphism $\varphi: R_{0} \longrightarrow \Lambda$.

Proof: Let Δ^{\prime} be the monoidal subcategory of Δ generated by diagrams where each component meets source and target. Let X be a finite set. If x and y are distinct points in X we may define three morphisms in the category Δ^{\prime} in the following way:

Denote by Y the complement: $Y=X \backslash\{x, y\}$. Take a point z (outside of Y) and set: $Z=Y \cup\{z\}$. So we define a morphism $\Phi_{z}^{x, y}$ from X to Z by:

$$
\Phi_{z}^{x, y}=z \longrightarrow_{x}^{y} \otimes 1_{Y}
$$

We have also a morphism $\Phi_{x, y}^{z}$ from Z to X defined by:

$$
\Phi_{x, y}^{x}=\begin{aligned}
& y \\
& x
\end{aligned}>z \otimes 1_{Y}
$$

and a morphism $\Psi_{x, y}$ from X to X defined by:

$$
\Psi_{x, y}=\begin{aligned}
& y-{ }_{x} y \\
& x-x
\end{aligned} \otimes 1_{Y}
$$

The set of all these morphisms will be denoted by \mathcal{M}.
Let f be one of these morphisms. The set $\{x, y, z\}$ in the first two cases or the set $\{x, y\}$ in the last case will be called the support of f. Using this terminology we have the following relations:
R1: if f and g are two composable morphisms in \mathcal{M} with disjoint support they commute.
$\mathrm{R} 2: \Psi_{x, y}=\Phi_{y}^{z, y} \circ \Phi_{x, z}^{x}$
R3: $\Psi_{x, y}-\Psi_{x, y} \circ \tau_{x, y}=\Phi_{x, y}^{z} \circ \Phi_{z}^{x, y}$, where $\tau_{x, y}$ is the transposition $x \leftrightarrow y$.
Let X be a finite set and x be an element in X. Denote by Y the complement $Y=X \backslash\{x\}$. We have the following morphisms:

$$
\Phi_{x}=\sum_{y \in Y} \Phi_{x, y}^{y}, \quad \Phi^{x}=\sum_{y \in Y} \Phi_{y}^{x, y}, \quad \Psi_{x}=\sum_{y \in Y} \Psi_{x, y}
$$

They are morphisms from X to Y, Y to X and X to X respectively.
The collection of modules $F^{\prime}(X)=\mathcal{A}^{s}(\emptyset, X)$ define a Δ^{\prime}-module F. Because of Lemma 3.3 it is easy to see that Φ_{x} and Φ^{x} act trivially on F and Ψ_{x} acts on F by multiplication by $2 t$. So we may define a new category $\widetilde{\Delta}$: the objects in this category are nonempty finite sets and the morphisms are $\mathbf{Q}[t]$-modules defined by generators and relations where the generators are the bijections in finite sets and the elements in \mathcal{M} and the relations are the following:

- relations R1,R2,R3
$-\Phi_{x}=0, \Phi^{x}=0$ and $\Psi_{x}=2 t$ for each point x in some finite set.
This category contains the category \mathfrak{S} of finite sets and bijections and F is a $\widetilde{\Delta}$-module.

Let $n>1$ be an integer. Denote by Δ_{n} the category of finite sets with cardinal in $\{1,2, \ldots, n\}$ and morphisms defined by generators and relations:

- generators: bijections and elements in \mathcal{M} involving only sets of cardinal $\leq n$
- relations: relations in $\widetilde{\Delta}$ involving only sets of cardinal $\leq n$.

By restriction F induces a Δ_{n}-module F_{n}. For example $F_{2}(X)$ is trivial if $\# X \neq 2$ and is the free module generated by:

otherwise.
Define the Δ_{4}-module G_{4} by:
$-G_{4}(X)=0$ if $\# X=1$

- if $\# X=2, G_{4}(X)$ is the free R_{0}-module generated by

- if $\# X=3, G_{4}(X)$ is the free R_{0}-module generated by

- if $\# X=4, G_{4}(X)$ is a direct sum $R_{0} \otimes U_{1} \oplus R \otimes U_{2} \oplus R_{0} \otimes V_{1} \oplus R \otimes V_{2}$, where V_{1} and V_{2} are 1-dimensional modules generated by the following diagrams:

and U_{1} and U_{2} are 2-dimensional simple \mathfrak{S}_{4}-modules generated by the following diagrams:

The action of the category $\widetilde{\Delta}_{4}$ on this module is defined by Proposition 5.5.
For each $n>4$ define the module G_{n} by scalar extension:

$$
G_{n}=\Delta_{n} \underset{\Delta_{n-1}}{\otimes} G_{n-1} .
$$

These modules can be determined by computer for small values of n. For every Young diagram α of size n denote by $V(\alpha)$ a \mathfrak{S}_{n}-module corresponding to α. If X is a finite set of cardinal $p, G_{n}(X)$ is a \mathfrak{S}_{p}-module and we get the following:

- if $p \leq 4, G_{4}(X) \simeq G_{5}(X) \simeq G_{6}(X)$
- if $p=5, G_{5}(X)$ and $G_{6}(X)$ are isomorphic to

$$
\left(R_{0} \oplus R \oplus R\right) \otimes V(3,1,1) \oplus R \otimes V(2,1,1,1)
$$

— if $p=6, G_{6}(X)$ is isomorphic to

$$
\begin{gathered}
\left(R_{0} \oplus R^{5}\right) \otimes(V(4,2) \oplus V(2,2,2)) \oplus\left(R_{0} \oplus R^{3}\right) \otimes V(6) \\
\oplus R^{2} \otimes(V(3,2,1) \oplus V(2,1,1,1,1)) \oplus R \otimes(V(3,1,1,1) \oplus V(5,1)) .
\end{gathered}
$$

For a complete description of $G_{6}(X)$ in the case $p=5$ we may proceed as follows:
Let $E(X)$ be the \mathbf{Q}-vector space generated by the elements of X with the single relation: $\sum_{x \in X} x=0$. Then $\Lambda^{2} E(X)$ and $\Lambda^{3} E(X)$ are simple modules corresponding to Young diagrams $(3,1,1)$ and $(2,1,1,1)$ and we can set: $V(3,1,1)=\Lambda^{2} E(X)$ and $V(2,1,1,1)=\Lambda^{3} E(X)$. So with the identification $G_{6}(X)=\left(R_{0} \oplus R \oplus R\right) \otimes V(3,1,1) \oplus$ $R \otimes V(2,1,1,1)$, we have the following:

where A generates a free R_{0}-module and B, C, D generate free R-modules.

Let X be a set of cardinal 6 . Consider the element U in $F(X)$ represented by the following diagram:

This element is not in G_{6} but it corresponds to en element U_{0} in G_{7}. With the following idempotent in $\mathbf{Q}\left[\mathfrak{S}_{X}\right]$:

$$
\pi=\frac{1}{6!} \sum_{\sigma \in \mathfrak{S}_{X}} \varepsilon(\sigma) \sigma
$$

we can set: $V=\pi U$ and $V_{0}=\pi U_{0}$.
Let x and y be two distinct elements in X. Set: $Y=X \backslash\{y\}$ and $Z=X \backslash\{x, y\}$. We have:

$$
t V_{0}=\frac{1}{2} \Psi_{x} V_{0}=\frac{1}{4} \sum_{z \neq x} \Phi_{x, z}^{x} \circ \Phi_{x}^{x, z} V_{0}=\frac{\pi}{4} \sum_{z \neq x} \Phi_{x, z}^{x} \circ \Phi_{x}^{x, z} V_{0}=\frac{5 \pi}{4} \Phi_{x, y}^{x} \circ \Phi_{x}^{x, y} V_{0}
$$

It is not difficult to see that $\Phi_{x}^{x, y} V_{0}$ is an element in $G_{6}(Y)$ completely antisymmetric in Z.

Let a, b, c, d be the elements in Z. It is easy to see that every element in $V(3,1,1)$ completely antisymmetric in a, b, c, d is trivial and any element in $V(2,1,1,1)=$ $\Lambda^{3} E(Y)$ completely antisymmetric in a, b, c, d is a multiple of $a \wedge b \wedge c-a \wedge b \wedge d+a \wedge c \wedge d-$ $b \wedge c \wedge d$. Therefore there is an element P in R such that:

But for a diagram like this:

there is a double transposition in \mathfrak{S}_{6} which acts on it by multiplication by -1 and its antisymmetrization is trivial. Therefore V_{0} and V are killed by t.

On the other hand there is a pairing on each $F^{\prime}(X)$ with values in Λ :
if u and u^{\prime} are two elements in $F^{\prime}(X)$ represented by diagrams D and D^{\prime}, we can glue D and D^{\prime} along X and we get a connected diagram D_{1}. The class of D_{1} in $F(0)$ is the multiple of the Theta diagram by some element $\lambda \in \Lambda$. So we set: $<u, u^{\prime}>=\lambda$.

Consider the element $P=<U, V>$ in Λ. This element is of degree 15 . Since V is killed by t, we have in Λ the relation: $t P=0$.

On the other hand we can check by computer that the morphism $G_{6}(X) \longrightarrow$ $G_{7}(X)$ is surjective for $\# X<6$. So P lies in a quotient of R_{0} and P can be seen as an element in R_{0}.

Since $t P=0, P$ is killed by $\chi_{s l 2}, \chi_{g l}$ and $\chi_{o s p}$. So we have:

$$
P=\omega P_{g l} P_{o s p} Q
$$

for some $Q \in R$ of degree 3 . But Q is also killed by the exceptional characters χ_{i} and Q is a multiple of $P_{e x c}$. At the end we get:

$$
P=k \omega P_{g l} P_{o s p} P_{e x c}
$$

for some rational k. A direct computation (by computer) gives the following result:

$$
P=2^{-10} \omega P_{g l} P_{o s p} P_{e x c} \Longrightarrow t \omega P_{g l} P_{o s p} P_{e x c}=0 \in \Lambda
$$

One can also determine P by using the Lie superalgebra $\widetilde{D}(2,1)$.
Consider the morphism A in Δ_{6} defined by the diagram:

The morphism $B=1 \otimes A$ may be consider as a morphism from X to a set Z of cardinal 4. Let π^{\prime} be the sum of all elements in \mathfrak{S}_{Z} divided by 4!. Since B lies in Δ_{7} the element $\pi^{\prime} \circ B \cdot V_{0}$ belongs to $\Delta_{7}(Z)$ and can be seen as an element W in $G_{6}(Z)=G_{4}(Z)$. Since \mathfrak{S}_{Z} acts trivially on W, there is two elements $Q \in R_{0}$ and $Q^{\prime} \in R$ such that $W=Q H+Q^{\prime} H^{\prime}$ with:

$$
H=X \quad H^{\prime}=
$$

Degrees of Q and Q^{\prime} are 12 and 10 respectively. Since $t V_{0}$ is trivial W is killed by t in $F(Z)$ and W is killed by $\Phi_{s l 2}, \Phi_{s l_{n}}$ and $\Phi_{o_{n}}$.

The functor $\Phi_{s l 2}$ kills H^{\prime} but not H. Then Q is killed by $\chi_{s l 2}$.
For n big enough the vectors $\Phi_{s l_{n}}(H)$ and $\Phi_{s l_{n}}\left(H^{\prime}\right)$ are linearly independant. Then Q and Q^{\prime} are killed by $\chi_{g l}$.

The same holds for $\Phi_{o_{n}}$ and Q and Q^{\prime} are killed by $\chi_{o s p}$.
Thus there exist c and c^{\prime} in \mathbf{Q} with: $Q=c \omega P_{g l} P_{o s p}$ and $Q^{\prime}=c^{\prime} t P_{g l} P_{o s p}$.
Let L be an exceptional Lie algebra. Then we have:

$$
\Phi_{L}\left(H^{\prime}\right)=\frac{3 \omega}{5 t} \Phi_{L}(H) \quad \Longrightarrow \quad \chi_{L}(5 t Q)+\chi_{L}\left(3 Q^{\prime}\right)=0 \quad \Longrightarrow \quad c^{\prime}=-5 / 3 c
$$

On the other hand we have:

$$
\begin{gathered}
P=<H, W>=c \omega P_{g l} P_{o s p}<H, H>-5 / 3 c t P_{g l} P_{o s p}<H, H^{\prime}> \\
=c P_{g l} P_{o s p}\left(\omega<H, H>-5 / 3 t<H, H^{\prime}>\right)
\end{gathered}
$$

and for every $p \geq 0$:

$$
0=<\sigma^{p} H^{\prime}, t W>=t c P_{g l} P_{o s p}\left(\omega \sigma^{p}<H^{\prime}, H>-5 / 3 t \sigma^{p}<H^{\prime}, H^{\prime}>\right)
$$

Since P is non zero c is non zero too. So we have:

$$
t \sigma^{p} P_{g l} P_{o s p}\left(\omega<H^{\prime}, H>-5 / 3 t<H^{\prime}, H^{\prime}>\right)=0 .
$$

A direct computation gives:

$$
<H^{\prime}, H>=-\frac{3}{2} \sigma \omega+\frac{10}{3} t^{2} \omega, \quad<H^{\prime}, H^{\prime}>=-\frac{3}{2} \sigma^{2} \omega+\frac{4}{3} t^{2} \sigma \omega+2 t \omega^{2}
$$

and that implies:

$$
0=t \sigma^{p} P_{g l} P_{o s p}\left(-\frac{3}{2} \sigma \omega^{2}+\frac{5}{2} t \sigma^{2} \omega-\frac{20}{9} t^{3} \sigma \omega\right)=-\frac{1}{18} t \sigma^{p+1} \omega P_{g l} P_{o s p} P_{e x c} .
$$

Therefore $t \sigma^{p} \omega P_{g l} P_{o s p} P_{\text {exc }}$ is zero in Λ for every $p \geq 0$ and that finishes the proof.
A particular consequence of this result is the fact that a cobracket morphism is not necessarily injective:
8.5 Proposition: The morphism:

from $F(2)$ to $F(3)$ is not injective.
Proof: Denote this morphism by f. Let U be the image of $\omega P_{g l} P_{o s p} P_{\text {exc }}$ under the morphism $\varphi: R_{0} \longrightarrow \Lambda$. We have: $U \neq 0$ and $t U=0$. Consider the following element in $F(2)$:

$$
u=U-\bigcirc
$$

Because of Corollary $4.6 u$ is nonzero. But its image under f is:

and the result follows.
Conjecture: Let J be the ideal of R generated by $t \omega P_{g l} P_{o s p} P_{\text {exc }}$. Then the morphism $\varphi: R_{0} \longrightarrow \Lambda$ induces an isomorphism from R_{0} / J to Λ.
9. Appendix: The Hamiltonian Lie superalgebra $\widehat{H}(n)$.

This section is devoted to the construction of the Lie superalgebra $\widehat{H}(n)$ considered in the proof of Theorem 8.3.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be formal variables (with $n>0$). Let E be the exterior algebra on these variables. This algebra is graded by considering each x_{i} as a degree 1 variable. For each i there is a derivation ∂_{i} sending x_{i} to 1 and the other variables to 0 . So we can define a bracket on E by:

$$
[u, v]=\sum_{i}(-1)^{|u|} \partial_{i}(u) \wedge \partial_{i}(v)
$$

where $|u|$ is the degree of u. Let f be the linear form on E of degree $-n$ sending $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}$ to 1 .
9.1 Proposition: Let $\widehat{H}(n)$ be the module E with the degree shifted by -2 . Then the bracket [,] induces on $\widehat{H}(n)$ a structure of Lie superalgebra. Moreover the form:

$$
u \otimes v \mapsto<u, v>=f(u \wedge v)
$$

is a nonsingular invariant supersymmetric form on $\widehat{H}(n)$ of degree $4-n$.
The center of $\widehat{H}(n)$ is generated by 1. The derived algebra $[\widehat{H}(n), \widehat{H}(n)]$ is the kernel of f. Moreover the quotient of $\widehat{H}(n)$ by its center is isomorphic to the Hamiltonian Lie superalgebra $\widetilde{H}(n)$.
Proof: See [Kc] for a description of Hamiltonian algebras $H(n)$ and $\widetilde{H}(n)$. The morphism from $\widehat{H}(n)$ to $\widetilde{H}(n)$ is given by:

$$
x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{p}} \mapsto \sum_{1 \leq k \leq p}(-1)^{k-1} \theta_{i_{1}} \theta_{i_{2}} \ldots \widehat{\theta_{i_{k}}} \ldots \theta_{i_{p}} \frac{\partial}{\partial \theta_{i_{k}}}
$$

and the proposition is easy to check.
Remark: The algebra $\widehat{H}(n)$ can be determined for small values of n. One has:

$$
\widehat{H}(1) \simeq \operatorname{osp}(1 \mid 1) \quad \widehat{H}(2) \simeq g l(1 \mid 1)) \quad \widehat{H}(3) \simeq \operatorname{osp}(2 \mid 2) \quad \widehat{H}(4) \simeq g l(2 \mid 2)
$$

9.2 Proposition: For $n=1$ or n even the module $H^{2}(\widehat{H}(n))$ is trivial and $\widehat{H}(n)$ has no central extension. If n is odd and bigger then $2, H^{2}(\widehat{H}(n))$ is 1-dimensional and generated by the cocycle $u \otimes v \mapsto f(u) f(v)$.

Proof: Let φ be a 2-cocycle. In order to determine φ we'll need some notations:

- A vector in E is called basic if it is a product of distinct x_{i} 's (up to sign).
- The degree of a basic vector u is denoted by $|u|$.
- The support of a basic vector $e= \pm x_{i_{1} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{p}}}$ is the set $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\}$.
$-\mathcal{B}$ is the set of collections of basic vectors with disjoint supports.
So we have the following:

$$
\forall(u, v, w) \in \mathcal{B}, \quad[u \wedge v, u \wedge w]=\left\{\begin{array}{cl}
(-1)^{|u|+|v|} v \wedge w & \text { if }|u|=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Since φ is a 2 -cocycle, the following condition

$$
\begin{equation*}
(-1)^{|u||w|} \varphi([u, v] \otimes w)+(-1)^{|v||u|} \varphi([v, w] \otimes u)+(-1)^{|w||v|} \varphi([w, u] \otimes v)=0 \tag{*}
\end{equation*}
$$

holds for every basic vectors u, v, w.
Consider three basic vectors u, v, w. There exist $(e, \alpha, \beta, \gamma, x, y, z)$ in \mathcal{B} such that:

$$
u=e \wedge \beta \wedge \gamma \wedge x \quad v=e \wedge \gamma \wedge \alpha \wedge y \quad w=e \wedge \alpha \wedge \beta \wedge z
$$

and the only possibilities for which $[u, v]$ or $[v, w]$ or $[w, u]$ is nonzero are the following (up to a cyclic permutation):

$$
\begin{gathered}
|e|=1, \quad|\alpha|=|\beta|=|\gamma|=0 \\
|e|=1, \quad|\alpha|=|\beta|=0, \quad|\gamma|>0 \\
|e|=1, \quad|\alpha|=0, \quad|\beta|>0, \quad|\gamma|>0 \\
|e|=0, \quad|\alpha|=1, \quad|\beta|=|\gamma|=0 \\
|e|=0, \quad|\alpha|=1, \quad|\beta|>1, \quad|\gamma|=0 \\
|e|=0, \quad|\alpha|=1, \quad|\beta|>1, \quad|\gamma|>1 \\
|e|=0, \quad|\alpha|=|\beta|=1, \quad|\gamma|=0 \\
|e|=0, \quad|\alpha|=|\beta|=1, \quad|\gamma|>1 \\
|e|=0, \quad|\alpha|=|\beta|=|\gamma|=1 .
\end{gathered}
$$

By applying the condition $(*)$ to all these cases we get the following relations:
(R1) $\quad(-1)^{|x||z|} \varphi(x \wedge y \otimes z \wedge e)+(-1)^{|y||x|} \varphi(y \wedge z \otimes x \wedge e)+(-1)^{|z \||y|} \varphi(z \wedge x \otimes y \wedge e)=0$
$(R 2) \quad \varphi(\gamma \wedge z \wedge y \otimes x \wedge e \wedge \gamma)=(-1)^{|x||y|+|\gamma|+1} \varphi(\gamma \wedge z \wedge x \otimes y \wedge e \wedge \gamma)$

$$
\begin{equation*}
\varphi(\beta \wedge \gamma \wedge y \wedge z \otimes \beta \wedge \gamma \wedge e \wedge x)=0 \tag{R3}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(y \wedge z \otimes x)=0 \tag{R4}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(\beta \wedge y \wedge z \otimes \beta \wedge x)=0 \tag{R5}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(\beta \wedge \gamma \wedge y \wedge z \otimes \beta \wedge \gamma \wedge x)=0 \tag{R6}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{|x||y|+|x|+|y|} \varphi(\beta \wedge y \wedge z \otimes \beta \wedge x)=(-1)^{|y||z|} \varphi(\alpha \wedge z \wedge x \otimes \alpha \wedge y) \tag{R7}
\end{equation*}
$$

$$
\begin{align*}
&(-1)^{|x||y|+(|\gamma|+1)(|x|+|y|)} \varphi(\beta \wedge \gamma \wedge y \wedge z \otimes \beta \wedge \gamma \wedge x) \tag{R8}\\
&=(-1)^{|y||z|+|\gamma|} \varphi(\gamma \wedge \alpha \wedge z \wedge x \otimes \gamma \wedge \alpha \wedge y) \\
&(-1)^{|x||z|} \varphi(\alpha \wedge \beta \wedge x \wedge y \otimes \alpha \wedge \beta \wedge z)+(-1)^{|y|| | x \mid} \varphi(\beta \wedge \gamma \wedge y \wedge z \otimes \beta \wedge \gamma \wedge x) \tag{R9}\\
&+(-1)^{|z||y|} \varphi(\gamma \wedge \alpha \wedge z \wedge x \otimes \gamma \wedge \alpha \wedge y)=0 .
\end{align*}
$$

Using relations (R4) and (R1) with $|x|=|y|=0$ and $|z|=n-1$ we get:

$$
\forall(u, v) \in \mathcal{B}, \quad \varphi(u \otimes v)=0 .
$$

Using relation (R5) we get:

$$
\forall(u, v, w) \in \mathcal{B}, \quad|u|>1,|u|+|v|+|w|<n \Longrightarrow \quad \varphi(u \wedge v \otimes u \wedge w)=0 .
$$

With the relation (R3) we get:

$$
\forall(u, v, w) \in \mathcal{B}, \quad 1<|u|<n,|u|+|v|+|w|=n \Longrightarrow \varphi(u \wedge v \otimes u \wedge w)=0 .
$$

The relation (R2) implies:

$$
\forall(u, v, w) \in \mathcal{B}, \quad|u|=1,|w|>0 \quad \Longrightarrow \quad \varphi(u \wedge v \otimes w \wedge u)=\varphi(u \otimes v \wedge w \wedge u)
$$

and since φ is antisymmetric:

$$
\forall(u, v, w) \in \mathcal{B}, \quad|u|=1 \quad \Longrightarrow \quad \varphi(u \wedge v \otimes w \wedge u)=\varphi(u \otimes v \wedge w \wedge u) .
$$

Finally the relation (R7) implies:

$$
\forall(u, v, w) \in \mathcal{B}, \quad|u|=|v|=1 \quad \Longrightarrow \quad \varphi(u \otimes w \wedge u)=\varphi(v \otimes w \wedge v)
$$

and $\varphi(u \otimes w \wedge u)$ depends only on $w($ if $|u|=1)$ and $\varphi(u \wedge v \otimes w \wedge u)$ depends only on $[u \wedge v, w \wedge u]$. Therefore there exist a linear morphism g and a scalar c such that:

$$
\varphi(u \otimes v)=g([u, v])+c f(u) f(v)
$$

for every u and v in $\widehat{H}(n)$.
On the other hand φ is antisymmetric and: $c\left(1+(-1)^{n}\right)=0$.
If n is even, $c=0$ and φ is a coboundary. Then $H^{2}(\widehat{H}(n))$ is trivial.
If $n=1, u \otimes v \mapsto f(u) f(v)$ is a coboundary and $H^{2}(\widehat{H}(n))$ is also trivial.
If $n>2$ is odd, $H^{2}(\widehat{H}(n))$ is 1-dimensional and generated by the cocycle $u \otimes v \mapsto$ $f(u) f(v)$.
9.3 Corollary: For $n>1, H^{2}(H(n))$ is a 1-dimensional module generated by the central extension $[\widehat{H}(n), \widehat{H}(n)] \longrightarrow H(n)$.

Proof: Let L be the algebra $[\widehat{H}(n), \widehat{H}(n)]$ and L_{0} be the quotient $\widehat{H}(n) / L$. By looking in low degree the spectral sequence of the cohomology of the extension:

$$
0 \longrightarrow L \longrightarrow \widehat{H}(n) \longrightarrow L_{0} \longrightarrow 0
$$

we get the following:

$$
\begin{aligned}
& n \text { even } \Longrightarrow H^{1}(L) \simeq H^{2}(L) \simeq 0 \\
& n=1 \Longrightarrow d_{2}: H^{1}(L) \xrightarrow{\simeq} H^{2}\left(L_{0}\right) \\
& n>2, n \text { odd } \Longrightarrow \mathrm{H}^{1}(L) \simeq 0 \text { and } d_{3}: H^{2}(L) \longrightarrow H^{3}\left(L_{0}\right) \text { is injective. }
\end{aligned}
$$

So for $n>1, H^{1}(L)$ is trivial.
Let Z be the center of L. The spectral sequence of the central extension:

$$
0 \longrightarrow Z \longrightarrow L \longrightarrow H(n) \longrightarrow 0
$$

implies that $H^{1}(H(n))$ is trivial and the morphism d_{2} is an isomorphism from $H^{1}(Z)$ to $H^{2}(H(n))$.

REFERENCES

[BL] J. S. Birman and X. S. Lin - Knots polynomials and Vassiliev's invariants, Invent. Math. 111 n ${ }^{\circ} 2$ 1993, 225-270.
[BN] D. Bar-Natan - On the Vassiliev knot invariants, Topology 34 n ${ }^{\circ} 2$ 1995, 423-472.
[Bo] N. Bourbaki - Groupes et algèbres de Lie, Chap. 4-5-6 Hermann Paris, 1968.
[CM] A. K. Cohen and R. de Man Computational evidence for Deligne's conjecture regarding exceptional Lie groups, C. R. Acad. Sci. Paris, Série I 322 (1996), 427 - 432.
[CD] S. V. Chmutov and S. V. Duzhin - An upper bound for the number of Vassiliev knots invariants, J. of Knot Theory and its Ramifications $3 n^{\circ} 2$ 1995, 141-151.
[D] P. Deligne - La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris, Série I 322 (1996), 321-326.
[DM] P. Deligne and R. de Man - La série exceptionnelle de groupes de Lie II, C. R. Acad. Sci. Paris, Série I 323 (1996), 577-582.
[F] F. Fenn - Vassiliev theory for knots, Trans. J. of Math. 18 1994, 81-101.
[G] C. Gruson - Finitude de l'homologie de certains modules de dimension finie sur une super algèbre de Lie, Annales de l'Institut Fourier, $47 n^{\circ} 2$ 1997, 531-553.
[H] P. Freyd, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu and D. Yetter - A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 1985, 239-246.
[J] V. F. R. Jones - A polynomial invariant for knots via Von Neumann algebras, Bull. Amer. Math. Soc. 12 1985, 103-111.
[Ka] L. H. Kauffman - An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 1990, 417-471.
[Kc] V. G. Kac - Lie superalgebras, Advances in Math. $26 n^{\circ} 1$ 1977, 8-96.
[Kn] J. A. Kneissler - On spaces of connected graphs II: Relations in the algebra Λ, J. of Knot Theory and its Ramifications $10 \mathrm{n}^{\circ} 5$ 2001, 667-674.
[Ko] M. Kontsevitch - Vassiliev's knots invariants, Adv. Sov. Math. 16 n ${ }^{\circ} 2$ 1993, 137-150.
[LMO] T. T. Q. Le, H. Murakami and T. Ohtsuki, On a universal perturbative invariant of 3-manifolds, Topology 37 1998, 539-574.
[L] Jens Lieberum, On Vassiliev invariants not coming from semisimple Lie algebras, J. of Knot Th. and its Ramif. 8, n5 1999, 659-666.
[Pa] B. Patureau-Mirand - Caractères sur l'algèbre de diagrammes trivalents Λ, Geometry and Topology 6 n $^{\circ} 20$ 2002, 565-607.
[Pi] S. Piunikhin - Weights of Feynman diagrams, link polynomials and Vassiliev invariants, J. of Knot Theory and its Ramifications 4 n ${ }^{\circ} 1995$ 165188.
[Sa] S. Sawin - Primitive Vassiliev invariants, MIT preprint 1993.
[St] T. Stanford - Finite type invariants of knots, links, and graphs, Topology 35 nº 1996, 1027-1050.
[Va] V. Vassiliev - Cohomology of knot spaces, Theory of singularities and its applications (V. I. Arnold, ed), Amer. Math. Soc., Providence 1990.
[Vo] P. Vogel - Invariants de Vassiliev des nœuds, Sém. Bourbaki, 1992-93, Astérisque 216 1993, 213-232.
[W] S. Willerton - Vassiliev invariants and the Hopf algebra of chord diagrams, Math. Proc. Camb. Phil. Soc. 119 1996, 55-65.

[^0]: ${ }^{1}$ Université Paris 7, Institut mathématiques de Jussieu (UMR 7586), 2 place Jussieu 75251 Paris Cedex 05 - Email: vogel@math.jussieu.fr

[^1]: ${ }^{2}$ This is an expanded and updated version of a 1995 preprint.

