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Abstract.
There exists a graded algebra Λ acting in a natural way on many modules of 3-

valent diagrams. Every simple Lie superalgebra with a nonsingular invariant bilinear
form induces a character on Λ. The classical and exceptional Lie algebras and the Lie
superalgebra D(2, 1, α) produce eight distinct characters on Λ and eight distinct fam-
ilies of weight functions on chord diagrams. As a consequence we prove that weight
functions coming from semisimple Lie superalgebras do not detect every element in
the module A of chord diagrams. A precise description of Λ is conjectured.

Introduction.

V. Vassiliev [Va] has recently defined a new family of knot invariants. Actually
every knot invariant with values in an abelian group may be seen as a linear map
from the free Z-module Z[K] generated by isomorphism classes of knots. This module
is a Hopf algebra and has a natural filtration Z[K] = I0 ⊃ I1 ⊃ . . . defined in terms
of singular knots, and a Vassiliev invariant of order n is an invariant which is trivial
on In+1. The coefficients of Jones [J], HOMFLY [H], Kauffman [Ka] polynomials are
Vassiliev invariants.

The associated graded Hopf algebra GrZ[K] =⊕
n
In/In+1 is finitely generated over

Z in each degree but its rank is completely unknown. Actually GrZ[K] is a certain
quotient of the graded Hopf algebra A of chord diagrams [BN]. Every Vassiliev invari-
ants of order n induces a weight function of degree n, (i.e. a linear form of degree n on
A). Conversely every weight function can be integrated (via the Kontsevich integral)
to a knot invariant. Very few things are known about the algebra A. Rationally, A
is the symmetric algebra on a graded module P, and the so-called Adams operations
split A and P in a direct sum of modules defined in terms of unitrivalent diagrams.
The rank of P is known in degree < 10.

Every Lie algebra equipped with a nonsingular invariant bilinear form and a finite
dimensional representation induces a weight function on A. It was conjectured in [BN]
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that the weight functions corresponding to the classical simple Lie algebras detect
every nontrivial element in A.

In this paper2, we define a graded algebra Λ acting on many modules of diagrams
like P and every Lie algebra equipped with a nonsingular invariant bilinear form
induces a character on Λ. With this procedure, we construct eight characters from
Λ to a polynomial algebra of two variables for three of them, and to Q[t] for the
others. These eight characters are algebraically independent. As a consequence, we
construct a primitive element in A which is rationally nontrivial and killed by every
semisimple Lie algebra and Lie superalgebra equipped with a nonsingular invariant
bilinear form and a finite-dimensional representation.

In the first section many modules of diagrams are defined.
In Section 2, we construct a transformation t of degree 1 acting on some of these

modules.
In Section 3, we construct the algebra Λ. This algebra contains the element t.
In Section 4, some modules of diagrams are completely described in term of Λ.
In Section 5, we define many elements in Λ and construct a graded algebra ho-

momorphism from R0 to Λ, where R0 is a subalgebra of a polynomial algebra R with
three variables of degree 1, 2 and 3.

In Section 6, we construct many weight functions and show that every simple
quadratic Lie superalgebra induces a well-defined character on Λ

In Section 7, we construct the eight characters.
Using these characters, many results on Λ are proven in the last section. In

particular the morphism R0 −→ Λ factors through a quotient R0/I where I is an
ideal in R generated by a polynomial P ∈ R0 of degree 16 and the induced morphism
R0/I −→ Λ is conjectured to be an isomorphism.

1. Modules of diagrams.

Denote by 3-valent graph a graph where every vertex is 1-valent or 3-valent. A
3-valent graph is defined by local conditions. So in such a graph an edge may be a
loop and two distinct egdes may have common boundary points. The set of 1-valent
vertices of a 3-valent graph K will be called its boundary and denoted by ∂K.

Let Γ be a curve, i.e. a compact 1-dimensional manifold and X be a finite set. A
(Γ, X)-diagram is a finite 3-valent graph D equipped with the following data:

— an isomorphism from the disjoint union of Γ and X to a subgraph of D sending
∂Γ ∪X bijectively to ∂D

— for every 3-valent vertex x of D, a cyclic ordering of the set of oriented edges
ending at x.

The class of (Γ, X)-diagrams will be denoted by D(Γ, X).
Usually, a (Γ, X)-diagram will be represented by a 3-valent graph immersed in

the plane in such a way that, at every 3-valent vertex, the cyclic ordering is given by
the orientation of the plane.

2This is an expanded and updated version of a 1995 preprint.
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Example of a (Γ, X)-diagram where Γ has two closed components and X has two
elements:

@
@@

�
�aa
��
��

XX�� �	`
�̀�
��

"!
# 

Let C be a subclass of D(Γ, X) which is closed under changing cyclic ordering.
Let k be a commutative ring. Denote by Ak(C) the quotient of the free k-module
generated by the isomorphism classes of (Γ, X)-diagrams in C by the following rela-
tions:

— if D is a (Γ, X)-diagram in C, and D′ is obtained from K by changing the
cyclic ordering at one vertex, we have:

(AS) D′ ≡ −D

— if D, D′, D′′ are three (Γ, X)-diagrams in C which differ only near an edge a
in the following way:

D : a D′ :
a

D′′ :
@
@
@
@�

�

�
�

a

we have:

(IHX) D ≡ D′ −D′′.

Remark: If the edge meets the curve Γ the relation (IHX) is called (STU) in [BN]:

\\
\\

�
�
�

+ ≡

The module Ak(C) is a graded k-module. The degree ∂◦D of a (Γ, X)-diagram D
is −χ(D) where χ is the Euler characteristic.

By considering different classes of diagrams, we get the following examples of
graded modules:

— the module Ak(Γ, X), if C is the class D′(Γ, X) of (Γ, X)-diagrams D such that
every connected component of D meets Γ or X

— the module Ac
k(Γ, X), if C is the class Dc(Γ, X) of (Γ, X)-diagrams D such that

D \ Γ is connected and nonempty (connected case)
— the module As

k(Γ, X), if C is the class Ds(Γ, X) of (Γ, X)-diagrams D such
that D \ Γ is connected and has at least one 3-valent vertex (special case)

— the module Ak(Γ) = Ak(Γ, ∅)
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— the module Ac
k(Γ) = Ac

k(Γ, ∅)
— the module Fk(X) = Ac

k(∅, X). If X is the set [n] = {1, . . . , n}, the module
Fk(X) will be denoted by Fk(n)

— the module X∆kY , where X and Y are finite sets and C is the class of all
(∅, X

∐
Y )-diagrams.

The most interesting case is k = Q. So the modules AQ(C), AQ(Γ, X), Ac
Q(Γ, X),

As
Q(Γ, X) . . . will be simply denoted by A(C), A(Γ, X), Ac(Γ, X), As(Γ, X) . . . .

The module Ak(Γ) is strongly related to the theory of links. In the case of
knots, the Kontsevich integral provides a universal Vassiliev invariant with values in
a completion of the quotient of the module A = AQ(S1) = A(S1) by some submodule
I [BN]. The module A is actually a commutative and cocommutative Hopf algebra
(the product corresponds to the connected sum of knots) and I is the ideal generated
by the following diagram of degree 1:

��
��

Remark: The definition of the module Ak(Γ) is slightly different from the classical
one. The classical definition needs an orientation of Γ, but cyclic orderings near
vertices in Γ are not part of the data. The relationship between these two definitions
come from the fact that, if Γ is oriented, there is a canonical choice for the cyclic
ordering of edges ending at each vertex in Γ.

Let Pk = Ac
k(S

1) and Ak = Ak(S
1). The inclusion Dc(S1, ∅) ⊂ D(S1, ∅) induces

a linear map from Pk to Ak and a morphism of Hopf algebras from S(Pk) to Ak.

1.1 Proposition: The morphism S(PZ) → AZ is surjective with finite kernel in
each degree.

Proof: For n > 0, denote by En the submodule of AZ generated by the diagrams D
such that D\S1 has at most n components. Because of relation STU, it is easy to see
that, mod En, En+1 is generated by connected sums K1♯K2 . . . ♯Kn+1 where Ki \ S

1

are connected. That proves, by induction, that the canonical map from S(PZ) to AZ

is surjective. Because S(PZ) and AZ are finitely generated over Z in each degree,
it’s enough to prove that the map from S(PZ) to AZ is a rational isomorphism,
and because S(PZ) and AZ are commutative and cocommutative Hopf algebras, it is
enough to prove that the map from P = PQ to A = AQ is an isomorphism from P
to the module of primitives of A.

Consider the module Cp of 3-valent diagrams with p univalent vertices and the
module Cc

p of connected 3-valent diagrams with p univalent vertices. In [BN] Bar

Natan constructs a rational isomorphism from A to the direct sum ⊕
p>0

Cp which

respects the comultiplication. In the same way we have a rational isomorphism from
P to ⊕

p>0
Cc

p.

Therefore P is isomorphic to the module of primitives of A.
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Very few things are known about A and P. They are finitely generated modules
in each degree. The rank is known in degree ≤ 9. For P, this rank is: 1, 1, 1, 2, 3,
5, 8, 12, 18 [BN]. Some linear forms (called weight functions) on A (coming from Lie
algebras) are known. Rationally the module P splits in a direct sum of modules of
connected 3-valent diagrams Cc

n [BN]. Actually the module Cc
n is defined in the same

way as F (n) = FQ(n) except that the bijection from [n] to the set of 1-valent vertices
is forgotten. Hence this splitting may be written in the following manner:

1.2 Proposition: There is an isomorphism:

⊕
n>0

H0(Sn, F (n))
∼

−→ P.

The last module X∆kY defined above will be used later. Actually these modules
define a k-linear monoidal category ∆k. The objects of ∆k are finite sets, and the set
of morphisms Hom(X, Y ) is the module Y ∆kX . The composition from X∆kY ⊗ Y ∆kZ

to X∆kZ is obtained by gluing. In particular, for every finite set X, X∆kX is a
k-algebra.

The monoidal structure is the disjoint union of finite sets or diagrams.

For technical reasons we’ll use a modified degree for modules Fk(X) and X∆kY :
— the degree of an element u ∈ Fk(X) represented by a diagram D is 1 − χ(D).

So the degree of a tree is zero.
— the degree of an element u ∈ Y ∆kX represented by a diagram D is −χ(D,X).

This degree is compatible with the structure of k-linear monoidal category.

2. The transformation t.

Let Γ be a curve and X be a finite set. We have three graded modules Ak(Γ, X),
Ac

k(Γ, X) and As
k(Γ, X), and Ac

k(Γ, X) is isomorphic to As
k(Γ, X) except maybe in

small degrees.

Let D be a (Γ, X)-diagram in the class Ds
k(Γ, X). Take a 3-valent vertex outside

of Γ. Then it is possible to modify D near this vertex in the following way:

@
@

�
�

7→ �
��@@

��

2.1 Theorem: This transformation induces a well-defined endomorphism t of the
module As

k(Γ, X).
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Proof: Let D be a diagram in the class Ds
k(Γ, X). Let a be an edge of D disjoint

from the curve Γ. Denote vertices of a by x and y. Relations IHX imply the following:

PPP ���

���
PPP

����
x

a

y

=

HH ��

J
J
JJ








−

��HH
\
\
\
\
\�

�
�
�
��

=

�� HH







J

J
JJ −

HH��
�
�
�
�
�\

\
\
\
\\

=

��� PPP

PP
P

��
�

����
x

y

Then transformations of D at x and y produce the same element in the module
As

k(Γ, X). Since the complement of Γ in a diagram in Ds(Γ, X) is connected, the
transformation t is well defined from the class Ds

k(Γ, X) to As
k(Γ, X).

It is easy to see that t is compatible with the AS relation. Consider an IHX
relation:

D ≡ D′ −D′′

where D, D′ and D′′ differ only near an edge a. If there is a 3-valent vertex in D
which is not in a and not in the curve Γ, it is possible to define tD, tD′ and tD′′ by
using this vertex, and the relation

tD ≡ tD′ − tD′′

becomes obvious.
Suppose now Γ ∪ X ∪ a contains every vertex in D. Then the edge a is not

contained in Γ, and that is true also for D′ and D′′. Therefore a doesn’t meet Γ, and
we have:

tD =

PPP ���

���
PPP

����
=

HH ��

J
J
JJ








−

��HH
\
\
\
\
\�

�
�
�
��

=
A
A

�
� Q

Q
Q

�
�
�

−

�
�

A
A
c
c
c
c
c

#
#
##

##
+

�
�

A
A
c
c
c
c
c

#
#
##

##
−

��HH
\
\
\
\
\�

�
�
�
��
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=

�
��

B
BB

�
�
��

B
B
BB����

+

�
�
�
�
�
�@

@
@
@
@
@
XXXX����

−

�
�
�
�
�
�@

@
@
@
@
@

=

�
��

B
BB

�
�
��

B
B
BB����

−

@@

@
@
@@ �

�
�

�
�
�
������= tD′ − tD′′.

2.2 Proposition: If Γ is nonempty the transformation t extends in a natural way
to the module Ac

k(Γ, X).

Proof: Let D be a diagram in the class Dc
k(Γ, X). Let x be a 3-valent vertex of D

contained in Γ. This vertex in contained in an edge a in D \ Γ. If the diagram D
lies in the class Ds

k(Γ, X), D has a vertex which is not in Γ. Therefore a has a vertex
outside of Γ and we have:

tD =

���PPP ����

x

a =

��HH

−

��HH

A
A
A
A

�
�
�
�

=

��
�

PP
P

@�

Hence t extends to the module Ac
k(Γ, X) by setting:

t =

@�

Example: The module Pk = Ac
k(S

1) = Ac
k(S

1, ∅) which is the module of primitives
of the algebra of diagrams Ak has, in degree ≤ 4 the following basis:

&%
'$

= α, QQ

��&%
'$

= tα, ��
AA��

AA

&%
'$

= t2α,
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C
C

�
�&%
'$

= t3α and &%
'$m

Corollary: Let D be a planar (S1, ∅)-diagram of degree n such that the complement
of S1 in D is a tree. Then the class of D in the module Ac

k(S
1) is exactly tn−1α.

Proof: The conditions satisfied by D imply that D contains a triangle xyz with an
edge xy in the circle. By taking off the edge xz we get a new diagram D′ such that
the complement of the circle in D′ is still a planar tree. By induction, the class of D′

in Ac
k(S

1) is tn−2α and the result follows.

&%
'$

@@
D
D

A
A
!!

z y

x

3. The algebra Λ.

In this section we construct an algebra of diagrams acting on many modules of
diagrams. In particular this algebra acts in a natural way on the modules As

k(Γ, X).
Actually the element t is a particular element of Λ of degree 1.

The module Fk(X) is equipped with an action of the symmetric group S(X). But
we can also define natural maps from Fk(X) to Fk(Y ) in the following way:

Let D be a (∅, X
∐
Y )-diagram such that every connected component of D meets

X and Y . Then the gluing map along X induces a graded linear map ϕD from
Fk(X) to Fk(Y ). Actually the class C of (∅, X

∐
Y )-diagrams satisfying this property

induces a graded module X∆c
kY = Ak(C) and these modules give rise to a monoidal

subcategory ∆c
k of the category ∆k. For every finite set X and Y the gluing map is

a map from Fk(X) ⊗ X∆c
kY

to Fk(Y ).
In particular we have two maps ϕ and ϕ′ from Fk(3) to Fk(4) induced by the

following diagrams: �	
   

   
�	
``̀

``̀

3.1 Definition: Λk is the set of elements u ∈ Fk(3) satisfying the following condi-
tions:

ϕ(u) = ϕ′(u)

∀σ ∈ S3, σ(u) = ε(σ)u
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where ε is the signature homomorphism.
The module ΛQ will be denoted by Λ.

3.2 Proposition: The module Λk is a graded k-algebra acting on each module
As

k(Γ, X).

Proof: Let Γ be a curve and X be a finite set. Let D be a (Γ, X)-diagram such that
D \ Γ is connected and has some 3-valent vertex x. If u is an element of Λk, we can
insert u in D near x and we get a linear combination of diagrams and therefore an
element uD in As

k(Γ, X).






J
J





J
Jx

c
c

�
�
��

7→ u





JJ 




J
J

c
c

�
�
��

Since u is completely antisymmetric with respect to the S3-action, uD doesn’t
depend on the given bijection from [3] = {1, 2, 3} to the set of edges ending at x,
but only on the cyclic ordering. Moreover, if this cyclic ordering is changed, uK is
multiplied by −1. The first condition satisfied by u implies that the elements uK
constructed by two consecutive vertices are the same. Since the complement of Γ in
D is connected, uD doesn’t depend on the choice of the vertex x, and uD is well
defined.

By construction, the rule u 7→ uD is a linear map from Λk to As
k(Γ, X) of degree

∂◦D. Since the transformation D 7→ uD is compatible with the AS relations, the
only thing to check is to prove that this transformation is compatible with the IHX
relations.

Consider an IHX relation: D ≡ D′ −D′′ corresponding to an edge a in D. If D
has a 3-valent vertex outside of a and Γ, it is possible to make the transformation
? 7→ u? by using a vertex which is not in a, and we get the equality: uD = uD′−uD′′.
Otherwise a is outside of Γ and we have:

uD − uD′ + uD′′ =

u

aaa!!
!

!!!aaa

− u �
�
��

L
L
LL

�
��

L
LL

+

@
@
@

@
@
@

u
��

�
�
�
��

= −

u

��
�

��



�
−

u

��
�

��



�
−

u

��
�

��



�

This last expression is trivial, because of Lemma 3.3 and the formula uD =
uD′ − uD′′ is always true.

Therefore the transformation ? 7→ u? is compatible with the IHX relation and
induces a well-defined transformation from As

k(Γ, X) to itself. In particular, Λk acts
on itself. Therefore this module is a k-algebra and As

k(Γ, X) is a Λk-module.
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3.3 Lemma: Let X be a finite set and Y be the set X with one extra point y0

added. Let D be a connected (∅, X)-diagram. For every x ∈ X denote by Dx the
(∅, Y )-diagram obtained by adding to D an extra edge from y0 to a point in D near
x, the cyclic ordering near the new vertex being given by taking the edge ending at
y0 first, the edge ending at x after and the last edge at the end.

Then the element Σ
x
Dx is trivial in the module F (Y ).

y0

? +

� y0

? +

�
�

y0

? +

�
� �

y0

? = 0

Proof: For every oriented edge a in D from a vertex u to a vertex v, we can connect
y0 to K by adding an extra edge from y0 to a new vertex x0 in a and we get a (∅, Y )-
diagram Da where the cyclic ordering between edges ending at x0 is (x0u, x0y0, x0v).

�
�
�
��v

u HH
HH

x0

y0

It is clear that the expression Da + Db is trivial if b is the edge a with the opposite
orientation. Moreover if a, b and c are the three edges starting from a 3-valent vertex
of K, the sum Da +Db +Dc is also trivial. Therefore the sum ΣDa for all oriented
edge a in D is trivial and is equal to the sum ΣDa for all oriented edge a starting
from a vertex in X. That proves the lemma.

In degree less to 4, the module Λk is freely generated by the following diagrams:

1 = @
@

�
�

t = �
��@@

��
t2 = ����@@

��

t3 = ����
��

@@
PP
�� ��

��
��

@@
��
AA

4. Structure of modules F (n) for small values of n.

The module Fk(n) is a Λk-module except for n = 0, 2. But the submodule F ′
k(n) =

As
k(∅, [n]) of Fk(n) generated by diagrams having at least one 3-valent vertex is a Λk-
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module. For n 6= 0, 2, F ′
k(n) is equal to Fk(n) and for n = 0, 2, Fk(n) is isomorphic

to k ⊕ F ′
k(n).

4.1 Proposition: Connecting the elements of [2] by an edge induces an isomorphism
from Fk(2) to Fk(0).

Proof: This map is clearly surjective.
Let D be a connected (∅, [0])-diagram. Let a be an oriented edge of D. We can

cut off a part of a and we get a (∅, [2])-diagram ϕ(D, a).

�
�
�
��
a 7→

��

��

1
2

Let a and b be consecutive edges in D. Because of Lemma 3.3, we have:

ϕ(D, a) =
��

�
��
QQa

b

=
��

�
��

(((((
= ϕ(D, b)

Therefore ϕ(K, a) is independent of the choice of a and induces a well-defined map
from Fk(0) to Fk(2) which is obviously the inverse of the map above.

4.2 Corollary: The action of the symmetric group S2 on Fk(2) is trivial.

4.3 Proposition: The module Fk(1) is isomorphic to k/2 and generated by the
following diagram:

��
��

Proof: The diagram above is clearly a generator of Fk(1) in degree 1, and the
antisymmetric relation implies that this element is of order 2. Let D be a (∅, [1])-
diagram of degree > 1. We have:

D =
�	�	? = 	�	
��?

and this last diagram contains the following diagram:

k =
�	 −

�	��QQ = 0
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4.4 Proposition: The quotient map from [3] to a point induces a surjective map
from Fk(3) ⊗

S3

k− to F′(0) and its kernel is a k/2-module.

Proof: Here the group S3 acts on k = k− via the signature. Actually, the module
Fk(3) ⊗

S3

k− is isomorphic to the module M generated by connected 3-valent diagrams

without univalent vertex, pointed by a vertex and equipped with a cyclic ordering
near every vertex and where the relations are the AS relation everywhere and the
IHS relation outside of the special vertex.

Because of Lemma 3.3, we have in M:

c
�
��

C
CC

�
��

C
CC

= c
�
��

C
CC

�
��

PP
PPP

− c
�
��

C
CC

�
��

c
cc

cc

Actually we have for every n ≥ 0 a module F̃(n) generated by connected diagrams
K with ∂K = [n] and pointed by a 3-valent vertex. The relations are the antisym-
metric relation AS everywhere and the relation IHX outside of the special vertex and
the relation above.

If {a, b, c, d} = [4], we can set:

ϕ(a, b, c, d) = c
�
��

C
CC

�
��

C
CC

b c

a d

This diagram belongs to F̃(4) and is antisymmetric with respect to the transpositions
a ↔ b and c ↔ d. Let k− be the maximal exterior power of the module generated
by the elements of [4]. Define the element ψ(a, b, c, d) in k− ⊗ F̃(4) by: ψ(a, b, c, d) =
a∧b∧c∧d⊗ϕ(a, b, c, d). By construction ψ(a, b, c, d) depends only on the subset {c, d}
of [4]. So we set: ψ(a, b, c, d) = f(c, d).

The relation obtained by Lemma 3.3 is:
∑

x 6=a

f(a, x) = 0

for every a in [4].
For {a, b, c, d} = [4], set: g(a, b) = f(a, b) − f(c, d). We have:

f(a, b) + f(a, c) + f(a, d) = 0 = f(b, a) + f(b, c) + f(b, d)

=⇒ g(a, c) = g(b, c)

Then u = g(a, b) doesn’t depend on {a, b} and we have:

u = g(a, b) = f(a, b) − f(c, d) = −g(c, d) = −u.
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Therefore the diagram

c
�
��

C
CC

�
��

C
CC

− c���
C
CC

C
CC

�
��

is killed by 2 and invariant under the action of S4.
Let α be an element in F ′

k(0) represented by a 3-valent diagram D. Take a
vertex x0 in D. The pair (K, x0) represents a well-defined element β in the module
M ≃ Fk(3) ⊗

S3

k− and 2β doesn’t depend on the choice of the vertex x0. Hence the

rule α 7→ 2β is a well-defined map λ from F ′
k(0) to Fk(3) ⊗

S3

k−. Denote by µ the

canonical map from Fk(3) ⊗
S3

k− to F ′(0). We have:

µλ = 2 and λµ = 2

and Proposition 4.4 follows.

4.5 Proposition: Let Fk(3)− be the submodule of Fk(3) defined by:

∀u ∈ Fk(3), u ∈ Fk(3)− ⇔ (∀σ ∈ S3, σ(u) = ε(σ)u)

where ε is the signature homomorphism. Then Λk is a submodule of F (3)−k and the
quotient F (3)−k /Λk is a k/2-module.

Proof: Let u be an element of F (3)−k . If v is an element of F̃k(4) represented by a
diagram D equipped with a special vertex x0, we can insert u in K near x0 and we
get a well-defined element f(v) in the module Fk(4).

cJJ





7→ u
JJ





But we have in F̃k(4):

2 c
�
��

C
CC

�
��

C
CC

= 2 c���
C
CC

C
CC

�
��

and that implies in Fk(4):

2 �
��

C
CC

�
�

C
C

u = 2 C
CC

�
��

C
C

�
�

u
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Therefore 2u lies in Λk.

4.6 Corollary: Suppose 6 in invertible in k. Then the modules F ′
k(0) and F ′

k(2) are
free Λk-modules of rank one generated by:

��
��

and ����

respectively.

Proof: Since S3 is a group of order 6, the identity induces an isomorphism from
Fk(3)− to Fk(3) ⊗

S3

k− and the corollary follows easily.

4.7 Corollary: Let u be the primitive element of A = A(S1, ∅) represented by the
diagram:

QQ

��&%
'$

Then the map λ 7→ λu from Λ to the module P of primitives of A is injective.

Proof: That’s a consequence of the fact that P = PQ contains the module F ′(2) ⊗
S2

Q = F ′(2).

It is not clear that Λk is commutative, but it’s almost the case. If α and β are
elements in Λk, and u an element of a module As

k(Γ, X) represented by a diagram
with at least two 3-valent vertices outside of Γ, we may construct αβu by using α
and β modifications near two different vertices. Therefore: αβu = βαu.

4.8 Proposition: The algebra Λk has the following properties:

∀α, β, γ ∈ Λk, ∂◦γ > 0 ⇒ αβγ = βαγ,

∀α, β ∈ Λk, 12αβ = 12βα.

Proof: The first formula is a special case of the property explained above. For the
second one, just use that property where u is represented by the diagram

Θ = ��
��

in F ′
k(0) and remark that the composite: Λk → Fk(3) ⊗

S3

k− → F ′
k(0) has a kernel

annihilated by 6 × 2 = 12.

14



4.9 Corollary: The algebra Λ is commutative.

4.10 Proposition: Let Λ̂ be the algebra Λ completed by the degree (i.e. Λ̂ =
∏

i Λi).
Let M be a 3-dimensional homology sphere. Then there is a unique element θ(M) in

Λ̂ such that the LMO invariant of M is the exponential of the element θ(M)Θ.

Proof: Let u be the LMO-invariant of M constructed by Le-Murakami-Ohtsuki
[LMO]. Then u is a group-like element in the completion of the module generated by
3-valent diagrams. Therefore its logarithm is primitive and lies in the completion of
the module F ′(0). Since this module is a free Λ̂-module generated by Θ the result
follows.

5. Constructing elements in Λ.

Let Γ be a curve and Z be a finite set. Let D be a (Γ, Z)-diagram. Let X be a
finite set in D outside the set of vertices of D. Suppose that D is oriented near X.
For each x 6= y in X we have a diagram Dxy obtained from D by adding an edge u
joining x and y in D. Cyclic orderings near x and y are chosen by an immersion from
Dxy to the plane which is injective on a neighborhood of u and sends neighborhoods
of x and y in K to horizontal lines with the same orientation and u to a vertical
segment. This diagram Dxy depends only on the subset {x, y} in X.

-

-

y

x

u

The sum of the diagrams Dxy for all subsets {x, y} ⊂ X will be denoted by DX .

5.1 Lemma: Let Γ and Γ′ be closed curves. Let X, Y and Z be finite disjoint sets.
Let D be a (Γ, X ∪ Y )-diagram and D′ be a (Γ′, X ∪ Y ∪ Z) diagram. Suppose that
the union H of D and D′ over X ∪Y lies in Ds(Γ∪Γ′, Z). The diagram H is oriented
near X and Y by going from D′ to D near X and from D to D′ near Y . Then we
have the following formula in As

k(Γ ∪ Γ′, Z):

HX − ptH = HY − qtH

where p = #X, q = #Y .

Proof: Set Γ1 = Γ∪ Γ′. Let u be a point in H which is not a vertex. By adding one
edge to H near u we get a new diagram Hu:

u 7→ u

��

The class [Hu] of Hu in As
k(Γ1, Z) will be denoted by ϕ(u). If u is not in Γ1, ϕ(u) is

equal to 2t[H ]. Otherwise ϕ(u) depends only on the component of Γ1 which contains

15



u: � �
=

� �
+ � � =

� �
Consider a map f from H to the circle S1 = R ∪ {∞} satisfying the following:
— f is smooth and generic on Γ1 and on each edge of K
— every singular value of f is the image of a unique critical point in an open edge

of H \ Γ1 or a unique vertex of H
— a vertex in H is never a local extremum of f
— each critical point of f |Γ1 is not a vertex of H
— f−1(0) = X, f−1(1) = Y, f−1([0, 1]) = D.
Let v be a regular value of f and V be the set f−1(v). The map f induces an

orientation of H near each point of V . So [H ]V is well defined in As
k(Γ1, Z) and we

can set:
g(v) = [HV ] − 1/2

∑

u∈V

ϕ(u).

This expression is well defined because V meets every component of Γ1 in a even
number of points.

By construction we have: g(v) = [HX ]−pt[H ] if v is near 0 and g(v) = [HY ]−qt[H ]
if v is near 1. Then the last thing to do is to prove that g has no jump on the critical
values of f .

If v is the image of a critical point in an open edge in H , the jump of f in v is
0 because of the AS relations. If v is the image of a vertex in H , the jump is also
0 because of the IHX relations. Therefore the map g is constant and the lemma is
proven.

A special case of this lemma is the following equality:

DD′ D′= DD′ D′ in As
k(Γ, Z).

5.2 Corollary: The element t is central in Λk.

Proof: For every u ∈ Λk, we have:

ut = u
@@

��
= tu.

Let Γ4 be the normal subgroup of order 4 of S4. Consider the element δ ∈ 3∆k4

represented by the following diagram: �

16



By gluing from the left or the right, we get a map u 7→ uδ from Fk(3) to Fk(4) or
a map u 7→ δu from Fk(4) to Fk(3). Denote by E the submodule of Fk(4) of all
elements u ∈ Fk(4) satisfying the following conditions:

∀σ ∈ S4, δσu ∈ Λk and ∀σ ∈ Γ4, σu = u.

For every u ∈ Fk(4), define elements xu, yu, zu by:

xu = u yu = u zu = u

5.3 Proposition: The module E is a graded Λk[S4]-submodule of Fk(4) and for
every u ∈ E we have:

xu, yu, zu ∈ E, xu+ yu+ zu = 2tu.

Proof: The fact that E is a graded Λk[S4]-submodule of Fk(4) is obvious. Let u be
an element of Fk(4). Because of Lemma 5.1, we have:

xu = u = u

yu = u = u

zu = u = u

Hence, if σ is a permutation in S4, there exists an element θ ∈ {x, y, z} such that
σxu = θσu. More precisely S4 acts on the set {x, y, z} via an epimorphism σ 7→ σ̂
from S4 to S3, and we have:

σxu = σ̂(x)σu, σyu = σ̂(y)σu, σzu = σ̂(z)σu.

The kernel of this epimorphism is Γ4.
We have:

xu+ yu+ zu = u+ u+ u.

Because of Lemma 3.3, we have:

xu+ yu+ zu =

	

u = 2tu.

17



Moreover, if u ∈ Fk(4) is Γ4-invariant, xu, yu, zu are Γ4-invariant too, and the
last thing to do is to prove that δxσu, δyσu, δzσu are in Λk for every u ∈ E.

We have:

δxσu =

�
 σu = tδσu ∈ Λk

δyσu = 2tδσu− δxσu− δzσu

and it is enough to prove that δzσu belongs to Λk. Because of Lemma 5.1 we have:

δzσu = σu =
�� σu =

�� σu = σu.

Let s, τ , τ ′, θ be the permutations in S4 or S3 represented by the following
diagrams:

s =
QQ

QQ

��
��

τ = PP
PP
PPPP��
�
��

τ ′ =

XXXXXXXXXXXXXXX��
�
�
��

θ =
@
@
@
@�

�
�
�PP
PP��
��

We have:

τδzσu = τ σu = τ ′σu = τ ′σu

and then:
τδzσu = δzτ ′σu ⇒ τ 2δzσu = δzτ ′2σu.

But τ ′2 lies in Γ4 and τ 2δzσu = δzσu. Therefore δzσu is invariant under cyclic
permutations. We have also:

sδzσu = s σu = − θσu = − θσu.

Since θ lies in Γ4 also, sδzσu = −δzσu and δzσu belongs to the submodule Fk(3)−

of Fk(3). Consider the following diagrams:

δ′ =

�	 δ′′ = �	
We have to prove the last equality: δ′δzσu = δ′′δzσu. Denote by σij the transpo-

sition i↔ j. We have:

δ′δzσu =

�	 σu =

�	�
zσu = (1 − σ12)xzσu

18



and similarly:

δ′′δzσu = �	 σu = (1 − σ34)xzσu.

But σ12 and σ34 are the same modulo Γ4 and induce the transposition y ↔ z. Then
we have:

δ′′δzσu = xzσu − xyσ34σu = xzσu − xyσ12σu = δ′δzσu

and that finishes the proof.

Consider the following element of Fk(4):

a =

�	�	
�


For every p > 0 set: xp = δzp−1a. Because of the last result, xp is an element of
degree p in Λk. It is not difficult to check the following:

x1 = 2t x2 = t2 3x4 = 4tx3 + t4

and Λk is freely generated in degree < 6 by:

1, t, t2, t3, t4, t5, x3,
tx3 − t4

3
,
t2x3 − t5

3
,
x5 + t2x3

2
.

Let τ be a permutation in S4 inducing the cyclic permutation x 7→ y 7→ z 7→ x.
Set: z1 = x, z2 = y, z3 = z, α1 = a, α2 = τa, α3 = τ 2a. The group S3 acts on E and
for every σ ∈ S3, every i ∈ {1, 2, 3} and every u ∈ E we have:

σ(ziu) = zσ(i)σ(u)

σ(αi) = ε(σ)ασ(i)

where ε(σ) is the signature of σ. Denote also by f1 the morphism u 7→ δu from E to
Λk. If σ is the transposition keeping 1 fixed, on has for every u ∈ E:

f1(σ(u)) = −f1(u).

Therefore there are unique morphisms f2 and f3 from E to Λk such that:

fσ(i)(σ(u)) = ε(σ)fi(u)

for every u ∈ E, σ ∈ S3 and i ∈ {1, 2, 3}. Moreover, if σ is the transposition keeping
i fixed we have:

zi(u− σ(u)) = fi(u)αi

for every u ∈ E.

The set {1, 2, 3} in canonically oriented and for every i, j and k distinct in {1, 2, 3},
there is a sign i∧j∧k in {±1}: the signature of the permutation 1 7→ i, 2 7→ j, 3 7→ k.
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5.4 Proposition: Suppose 6 is invertible in k. Then there exist unique elements
e, εp and βi,p in E, for i ∈ {1, 2, 3} and p ≥ 0 and unique elements ωp (p ≥ 0) in Λk

such that the following holds for every σ ∈ S3, every i, j, k distinct in {1, 2, 3} and
every p ≥ 0:

β1,p + β2,p + β3,p = 0

σ(e) = e, σ(εp) = εp, σ(βi,p) = ε(σ)βσ(i),p

fi(αi) = 2t, fi(βi,p) = 2ωp

fi(αj) = −t, fi(βj,p) = −ωp

fi(e) = fi(εp) = 0

ziαi = tαi, ziβi,p = ωpαi

ziαj = i∧j∧k e+
t

3
(αj − αi)

zie =
2t

3
e+ i∧j∧k

(10t2

9
(αj − αk) −

1

2
(βj,0 − βk,0)

)

ziβj,p = i∧j∧k εp +
2t

3
(βj,p − βk,p) + ωpαk

ziεp =
2t

3
εp + i∧j∧k

(4t2

9
(βj,p − βk,p) −

1

2
(βj,p+1 − βk,p+1) +

2tωp

3
(αj − αk)

)
.

Proof: Consider formal elements ω′
p, for p ≥ 0 of degree 3 + 2p. Then R =

k[t, ω′
0, ω

′
1, . . .] is a graded algebra. Let E ′ be the R-module generated by elements

α′
i, β

′
i,p, e

′ and ε′p (for p ≥ 0 and i ∈ {1, 2, 3}) with the following relations:

∑

i

α′
i = 0, ∀p ≥ 0,

∑

i

β ′
i,p = 0.

This module is graded by:

∂◦α′
i = 0, ∂◦β ′

i,p = 2 + 2p, ∂◦e′ = 1, ∂◦ε′p = 3 + 2p.

The symmetric group S3 acts on E ′ by:

σ(α′
i) = ε(σ)α′

σ(i), σ(β ′
i,p) = ε(σ)β ′

σ(i),p, σ(e′) = e′, σ(ε′p) = ε′p

and E ′ is a graded R[S3]-module.
Using relations above we have well-defined maps u 7→ ziu from E ′ to E ′ and the

sum of these maps is 2t. We have also linear maps fi from E ′ to R sending e′ and ε′p
to 0 and defined on the other generators by:

fi(α
′
i) = 2t fi(β

′
i,p) = 2ω′

p

fi(α
′
j) = −t fi(β

′
j,p) = −ω′

p

20



It is not difficult to check the formula:

∀u ∈ E ′, zi(u− σ(u)) = fi(u)α
′
i

where σ is the transposition keeping i fixed. The last thing to do is to construct an
algebra homomorphism ψ from R to Λk and a morphism ϕ from E ′ to E which is
linear over ψ sending α′

i to αi and zi to zi.
Consider the elements u(i, j, k) = ziαj − t/3αj + t/3αi in E (for i, j, k distinct).

One has:

u(i, j, k) − u(j, k, i) = ziαj − zjαk − t/3(αj − αi − αk + αj) = ziαj − zjαk − tαj

= ziαj + (zi + zk − 2t)αk − tαj = zi(αj + αk) + zkαk − 2tαk − tαj

= −ziαi + zkαk + tαi − tαk = 0.

Then u(i, j, k) is invariant under cyclic permutations. One has also:

u(i, j, k) + u(k, j, i) = (zi + zk)αj − 2t/3αj + t/3(αi + αk) = (2t− zj)αj − tαj = 0.

Therefore u(i, j, k) is totally antisymmetric in i, j, k and i∧j∧k u(i, j, k) is invariant
under the action of S3. So one can set:

e = ϕ(e′) = i∧j∧k u(i, j, k).

The element v(i, j, k) = i∧j∧k(zje−zke) is clearly symmetric under the transposition
j ↔ k. So it depends only on i and we can set:

βi,0 =
20t2

9
αi +

2

3
v(i, j, k).

Hence we have:

zie =
1

3
(2zi − zj − zk + 2t)e =

2t

3
e+

i∧j∧k

3
(v(k, i, j) − v(j, k, i))

=
2t

3
e+ i∧j∧k

(10t2

9
(αj − αk) −

1

2
(βj,0 − βk,0)

)
.

It is easy to see that the sum of the βi,0 vanishes and we can set: ϕ(β ′
i,0) = βi,0.

On the other hand we have:

fi(−βk,0) = −fi(βj,0)

and fi(βj,0) depends only on i. But we have: fi(βj,0) = fj(βk,0) and fi(βj,0) doesn’t
depend on i. So we can set: ω0 = −fi(βj,0). Since βi,0 + βj,0 + βk,0 is trivial, we have
also: fi(βi,0) = 2ω0 and we can set: ψ(ω′

0) = ω0.
Set: w(i, j, k) = ziβj,0 −

2t
3
(βj,0 − βk,0) − ω0αk. One has:

w(i, j, k) − w(j, k, i) = ziβj,0 − zjβk,0 −
2t

3
(−3βk,0) − ω0(αk − αi)
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= ziβj,0 − (2t− zi − zk)βk,0 + 2tβk,0 − ω0(αk − αi)

= zi(βj,0 + βk,0) + zkβk,0 − ω0(αk − αi)

= fi(βj,0)αi + 1/2fk(βk,0)αk − ω0(αk − αi) = 0.

Then w(i, j, k) is invariant under cyclic permutations. One has also:

w(i, j, k) + w(k, j, i) = ziβj,0 + zkβj,0 −
2t

3
(3βj,0) − ω0(αk + αi)

= (2t− zj)βj,0 − 2tβj,0 + ω0αj = −zjβj,0 + ω0αj = 0.

Therefore w(i, j, k) is totally antisymmetric in i, j, k and i∧j∧k w(i, j, k) is invariant
under the action of S3. So one can set:

ε0 = ϕ(ε′0) = i∧j∧k w(i, j, k).

Let p ≥ 0 be en integer. Suppose that βi,q and εq are constructed for q ≤ p
and ϕ and ψ are constructed in degree ≤ 3 + 2p. Consider the element u(i, j, k) =
i∧j∧k(zj − zk)εp + 4t2

3
βi,p + 2tωpαi. This element is invariant under the transposition

j ↔ k and depends only on i. So we can set:

βi,p+1 =
2

3
u(i, j, k).

It is easy to check the following:

β1,p+1 + β2,p+1 + β3,p+1 = 0

ziεp =
2t

3
εp + i∧j∧k

(4t2

9
(βj,p − βk,p) −

1

2
(βj,p+1 − βk,p+1) +

2tωp

3
(αj − αk)

)

and we can set: ϕ(β ′
i,p+1) = βi,p+1. On the other hand we have:

fi(−βk,p+1) = −fi(βj,p+1)

and fi(βj,p+1) depends only on i. But we have: fi(βj,p+1) = fj(βk,p+1) and fi(βj,p+1)
doesn’t depend on i. So we can set: ωp+1 = −fi(βj,p+1). Since βi,p+1 + βj,p+1 + βk,p+1

is trivial, we have also: fi(βi,p+1) = 2ωp+1 and we can set: ψ(ω′
p+1) = ωp+1.

Set: w(i, j, k) = ziβj,p+1 −
2t
3
(βj,p+1 − βk,p+1) − ωp+1αk. One has:

w(i, j, k) − w(j, k, i) = ziβj,p+1 − zjβk,p+1 −
2t

3
(−3βk,p+1) − ωp+1(αk − αi)

= ziβj,p+1 − (2t− zi − zk)βk,p+1 + 2tβk,p+1 − ωp+1(αk − αi)

= zi(βj,p+1 + βk,p+1) + zkβk,p+1 − ωp+1(αk − αi)

= fi(βj,p+1)αi + 1/2fk(βk,p+1)αk − ωp+1(αk − αi) = 0.

Then w(i, j, k) is invariant under cyclic permutations. One has also:

w(i, j, k) + w(k, j, i) = ziβj,p+1 + zkβj,p+1 −
2t

3
(3βj,p+1) − ωp+1(αk + αi)
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= (2t− zj)βj,p+1 − 2tβj,p+1 + ωp+1αj = −zjβj,p+1 + ωp+1αj = 0.

Therefore w(i, j, k) is totally antisymmetric in i, j, k and i∧j∧k w(i, j, k) is invariant
under the action of S3. So one can set:

εp+1 = ϕ(ε′p+1) = i∧j∧k w(i, j, k).

So ϕ and ψ are defined by induction and the result follows.

Remark: The subalgebra Λ′ of Λk generated by the xi’s is generated by x1, x3, x5, . . .
and also by t, ω0, ω1, . . .. Then every xi can be expressed in term of t and the ωj’s.
In low degree we get:

x1 = 2t, x2 = t2, x3 = 4t3 −
3

2
ω0, x4 = 5t4 − 2tω0,

x5 = 12t5 −
17

2
t2ω0 +

3

2
ω1, x6 = 21t6 − 17t3ω0 + 5tω1 −

3

2
ω2

0,

x7 = 44t7 −
91

2
t4ω0 −

7

2
tω2

0 +
37

2
t2ω1 −

3

2
ω2.

Suppose that αi ∈ E is represented by:

αi =
�
@

@
�

Then we set:

�
@

@
�•

p
= βi,p, ��

��HHHH
= e,

��
��HHHH
•
p

= εp.

These diagrams are well defined in Fk(4) if 6 is invertible in k. By gluing we are
able to define new (Γ, X)-diagrams represented by a graph D containing Γ such that:

— the set ∂D of 1-valent vertices of D is the disjoint union of ∂Γ and X
— each vertex of D in Γ \ ∂Γ is 3-valent
— each vertex of D is 1-valent, 3-valent, or 4-valent
— each 3-valent vertex of K is oriented (by a cyclic ordering)
— some 4-valent vertex is marked by a bullet and labeled by a nonnegative integer
— some edge is marked by a bullet and labeled by a nonnegative integer
— each marked edge is outside of Γ and its boundary has two 3-valent vertices
— the marked edges are pairwise disjoint.
Such a diagram will be called an extended (Γ, X)-diagram. Each extended (Γ, X)-

diagram is a linear combination of usual (Γ, X)-diagrams. A marked diagram D is
an extended diagram with at least one marqued vertex. The sum of the markings is
called the total marking of D.
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5.5 Proposition: Suppose 6 is invertible in k. Then we have the following formulas:

�� QQ

QQ ��
•p =



 JJ

JJ 

•
p

−
��

��

@
@
@ •

p

��
ZZ
•p = ωp

��
ZZ�

�•p = 0
'&��=

10t2

3

'&��•p = 2tωp

�� QQ

QQ ��
=
�
�
�

@
@
@

+
t

3 �� QQ

QQ ��
+
t

3 

 JJ

JJ 



�
�
�

@
@

@
=

2t

3 �
�
�

@
@
@

+
10t2

9

(
2
�� QQ

QQ ��
−


 JJ

JJ 


)
−

1

2

(
2
�� QQ

QQ ��
•0 −



 JJ

JJ 

•
0

)



 JJ

JJ 

•
p

= ωp



 JJ

JJ 



�� QQ

QQ ��
•p =

�
�
�

@
@
@

•
p

+ωp

(



 JJ

JJ 

 −
�� QQ

QQ �� )
+

2t

3

(
2
�� QQ

QQ ��
•p −



 JJ

JJ 

•
p

)

�
�
�

@
@
@
•
p

=
2t

3 �
�
�

@
@
@
•
p

+
2tωp

3

(
2
�� QQ

QQ ��
−


 JJ

JJ 


)

+
4t2

9

(
2
�� QQ

QQ ��
•p −



 JJ

JJ 

•
p

)
−

1

2

(
2
�� QQ

QQ ��
•p+1−



 JJ

JJ 

•
p+1 )

for every p ≥ 0.

Proof: This is essentially a graphical version of Proposition 5.4.

There are many relations in the algebra Λ. Kneissler [Kn] founded relations in
term if the xi’s. In term of the ωi’s Kneissler’s result becomes the following:

5.6 Theorem: The following relations hold in Λ:

∀p, q ≥ 0, ωpωq = ω0ωp+q.

5.7 Theorem: Let Γ be a closed curve and X be a finite set. Let u be an element
of As(Γ, X) represented by a marked diagram D with total marking p. Let D0 be
the diagram D where each marking is replaced by 0. Then u depends only on p and
D0. Moreover ωqu depends only on p+ q and D0.

Proof: Here we are working over the rationals (k = Q).

5.7.1 Lemma: The following relation holds in F (6):

•
1

•
0

= •
0

•
1
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Proof: Let En be the component of F (6) of degree n. These modules can be deter-
mined by computer for n ≤ 6. In this range the dimensions are:

24 60 120 199 309 439 594

The desired relation lies in the module E6 and can be checked directly. More precisely,
En has a decomposition in a direct sum of pieces corresponding to the Young diagrams
of size 6. Using this decomposition and formulas in Proposition 5.5 we get:

= A0(4, 2) + A0(2, 2, 2) + A0(3, 1, 1, 1)

A
A
�
� = A1(4, 2) + A1(3, 2, 1)

•
0

= A2(4, 2) + A2(2, 2, 2) + A2(3, 1, 1, 1) + A2(3, 2, 1)

A
A
�
�•

0
= A3(4, 2) + A3(3, 2, 1) + A3(5, 1)

•
0

•
0

= A4(4, 2) + A4(2, 2, 2) + A4(3, 1, 1, 1) + A4(3, 2, 1)

A
A
�
�•

0
•
0

= A5(4, 2) + A5(5, 1) + A5(3, 2, 1)

•
0

•
1

= A6(4, 2) + A6(2, 2, 2) + A6(3, 1, 1, 1) + A6(3, 2, 1).

It is not difficult to see that the symmetry σ along a vertical axis acts trivially on
A6(4, 2), A6(2, 2, 2), A6(3, 1, 1, 1), A6(3, 2, 1) and then on the last diagram. So we
have:

•
0

•
1

= σ •
0

•
1

= •
1

•
0

and that proves the lemma.

5.7.2 Lemma: For every p and q we have the following relations in F (6):

• •
p q′

= • •
p′ q

•
p

•
q′

= •
p′

•
q

•
p
•

q′
= •

p′
•
q

with p′ = p+ 1 and q′ = q + 1.
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Proof: Consider the following diagrams:

A(p, q) =
@
@

@
@
@@

�
�

�
�
��• •

p q

B(p, q) =
   

   
  

@@

@
@
@•
p

•
q

C(p, q) = •
p

•
q

These diagrams are morphisms in the category ∆.
Consider the following morphisms in this category:

τ =
��

@@

@@

�� θ =

g
α =

β = u =
�
�

��
g

v =
@
@

@@
g

Then we set:

f = (
1

2
α−

1

6
θ) ◦ (1 + τ)

g = (1 + τ) ◦ (
1

2
α−

1

6
θ)

ϕ =
2

3
f ◦ (β − α) +

2

9
θ2 +

2

3
u

ψ =
2

3
(β − α) ◦ g +

2

9
θ2 +

2

3
v

Because of Proposition 5.5 we can check the following:

A(p, q) ◦ f = B(p, q) A(p, q) ◦ ϕ = A(p, q + 1)

g ◦B(p, q) = C(p, q) ψ ◦ A(p, q) = A(p+ 1, q)

Because of Lemma 5.7.1 we have: A(0, 1) = A(1, 0). Therefore we get:

A(p, q + 1) = ψp ◦ A(0, 1) ◦ ϕq = ψp ◦ A(1, 0) ◦ ϕq = A(p+ 1, q)

B(p, q + 1) = A(p, q + 1) ◦ f = A(p+ 1, q) ◦ f = B(p+ 1, q)

C(p, q + 1) = g ◦B(p, q + 1) = g ◦B(p+ 1, q) = C(p+ 1, q)

and that proves the lemma.
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Then diagrams A(p, q), B(p, q), C(p, q) depend only on p+ q and we can set:

A(p, q) = A(p+ q), B(p, q) = B(p+ q), C(p, q) = C(p+ q).

Let u0 be the diagram represented in F (3) by 1 ∈ Λ ⊂ F (3). By gluing u0 on the
diagram A(p, q) we get the following diagram v in F (3):

v = @
@

@
@
@@

�
�

�
�
��• •

p q

depending only on p+ q. Because of Proposition 5.5, we get:

v = ωp

��
�
�

•
q

= 2ωpωq �
�

Therefore ωpωq depend only on p+ q and Theorem 5.6 follows.
Let D be a marked diagram representing an element U in As(Γ, X). Then D \ Γ

is connected. Let Z be the set of all marked vertices or edges of D. We’ll said that
two elements u and v in Z are related if there is a path γ in D connecting u and v
such that γ doesn’t meet Γ and meets Z only in u and v. This relation generates an
equivalence relation ≡. Since D \ Γ is connected, Z has only one equivalence class
modulo ≡. Therefore in order to prove the first part of Theorem 5.7 it is enough to
prove the following: if u and v in Z are related the class of D in As(Γ, X) depends
only on the sum of the marking of u and v.

Consider the following diagrams in F (6 + n), for some integers p, q, n:

An(p, q) = • •
p q

···

Bn(p, q) = •
p

•
q

···

Cn(p, q) = •
p

•
q

···

If u and v in Z are related D contains a subdiagram isomorphic to An(p, q),
Bn(p, q) or Cn(p, q). Then it is enough to prove that An(p, q), Bn(p, q) and Cn(p, q)
depend only on n and p+q. Let X be one of the symbol A, B, C. Because of Lemma
3.3, we can push away all strands in the middle of Xn(p, q) through the marked edge
(or the marked vertex) in the right part of the diagram and Xn(p, q) is equivalent in
F (6 + n) to a linear combination of diagrams containing X(p, q). Then, because of
Lemma 5.7.2, Xn(p, q) depends only on n and p+ q and the first part of Theorem 5.6
is proven.

The element ωqU is represented by a diagram D′ obtained from D by adding a
new marked edge with marking q. Therefore ωqU depends only on D0 and the sum
of q and the total marking of D.

Remark: Consider the commutative Q-algebra R′ defined by the following presen-
tation:
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— generators: t, ω0, ω1,. . .
— relations: ωpωq = ω0ωp+q, for every p, q.
We have a canonical morphism from R′ to Λ. On the other hand there is a

morphism f : R′ −→ Q[t, σ, ω] sending t to t and each ωp to ωσp. Is is easy to
see that this morphism is injective with image R0 = Q[t] ⊕ ωQ[t, σ, ω]. Then the
morphism R′ −→ Λk induces a morphism from R0 to Λ:

5.8 Proposition: Let R be the polynomial algebra Q[t, σ, ω] where t, σ and ω
are formal variables of degree 1, 2 and 3 respectively and R0 be the subalgebra
Q[t]⊕ωQ[t, σ, ω] of R. Then there is a unique graded algebra homomorphism ϕ from
R0 to Λ sending t to t and each ωσp to ωp.

6. Detecting elements in Λ.

In this section we’ll construct weight functions on modules of diagrams and char-
acters on Λ using Lie superalgebras.

Let L be a finite dimensional Lie superalgebra over a field K equipped with a
nonsingular supersymmetric bilinear form < , > invariant under the adjoint repre-
sentation. Such a data will be called a quadratic Lie superalgebra and the bilinear
form is called the inner form. Take a homogeneous basis (ej) of L and its dual basis
(e′j). The Casimir element Ω =

∑
j ej ⊗ e′j ∈ L ⊗ L is independent of the choice of

the basis and its degree is zero.
Let Γ be an closed oriented curve and X = [n] be a finite set. Suppose that a L-

representation Ei is chosen for each component Γi of Γ. We will say that Γ is colored
by L-representations. Then it is possible to construct a linear map from A(Γ, X) to
L⊗n in the following way:

Let D be a (Γ, X)-diagram. Up to some changes of cyclic ordering we may as well
suppose that, at each vertex x in Γ the cyclic ordering is given by (α, β, γ) where α
is the edge which is not contained in Γ and β is the edge in Γ ending at x (with the
orientation of Γ).

α

β γ
-

For each component Γi we can take a basis (eij) of Ei and its dual basis (e′ij) of
the dual E ′

i of Ei and we get a Casimir element ωi = Σjeij ⊗ e′ij ∈ Ei ⊗ E ′
i. This

element is of degree zero and is independent of the choice of the basis.
For each oriented edge α in D denote by V (α) the module L if α is not contained

in Γ and Ei (resp. E ′
i) if α is contained in the component Γi of Γ with a compatible

(resp. not compatible) orientation. If α is an oriented edge in D denote by W (α) the
module V (α)⊗V (−α) where −α is the edge α equipped with the opposite orientation.

Let a be an edge in D. Take an orientation of a compatible with the orientation
of Γ if a is contained in Γ. Denote also by ω(a) the Casimir element ω if a is not
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contained in Γ and the element ωi if a is contained in Γi. This element belongs to the
module W (a) and is independent on the orientation of a. If a numbering of the set
of edges is chosen the tensor product W =⊗

a
W (a) is well defined and the element

Ω =⊗
a
ω(a) is a well-defined element in W .

Let x be a 3-valent vertex in D. There are three oriented edges α, β and γ ending
at x (the ordering (α, β, γ) is chosen to be compatible with the cyclic ordering given
at x and, if x is in Γ, α is supposed to be outside of Γ).

?

�
��
@
@I

α
β γ α

β γ
-

Then we get a module H(x) = V (α) ⊗ V (β) ⊗ V (γ). If a numbering of the set of
3-valent vertices of D is chosen, the module ⊗

x
H(x) is well defined. We can permute

(in the super sense) the big tensor product W and we get an isomorphism ϕ from W
to the module:

H = L⊗n⊗ ⊗
x
H(x)

and ϕ(Ω) is an element of H .
Suppose that x is not contained in Γ. Then the rule u ⊗ v ⊗ w 7→< [u, v], w >

induces a map fx from H(x) to K. If x is in Γ the rule u⊗e⊗f 7→ (−1)∂◦f∂◦(u⊗e)f(ue)
is a map fx from H(x) to K. Hence the image of ϕ(Ω) under the tensor product
of all fx is an element ΦL(D) ∈ L⊗n. Since elements w and wi and maps fx are of
degree zero, this element doesn’t depend on these numberings.

Since the map u⊗v⊗w 7→< [u, v], w > from L⊗L⊗L toK is totally antisymmetric
(in the super sense), ΦL(D) is multiplied by −1 if one cyclic ordering is changed in D.
Moreover, the Jacobi identity and the property of the L-action on modules Ei imply
that the correspondence D 7→ ΦL(D) is compatible with the IHX relation. Therefore
this correspondence induces a well-defined linear map ΦL from A(Γ, X) to L⊗n.

Definition: A Lie superalgebra L over a field K will be called quasisimple if it
satisfies the two conditions:

— L is not abelian
— every endomorphism of L of degree 0 is the multiplication by a scalar.

Remark: Every simple Lie superalgebra is quasisimple but the converse is not true.

Lemma: A quasisimple quadratic Lie superalgebra has a trivial center and a surjec-
tive Lie bracket.

Proof: Let L be a quasisimple quadratic Lie superalgebra over a field K. Let f
be a morphism from L to K. By duality we get a morphism g from K to L. The
composite g ◦ f is an endomorphism of L and there is a scalar λ ∈ K such that:
g ◦ f = λId.
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Suppose f 6= 0. Then f is surjective, g is injective, g ◦ f is not trivial and λ 6= 0.
Therefore g ◦ f is bijective and f is bijective also. But that’s impossible because L is
not abelian.

Then every morphism from L to K is zero and (by duality) every morphism from
K to L is zero too. The result follows.

6.1 Theorem: Let K be a field and a k-algebra and L be a quasisimple quadratic
Lie superalgebra over K. Then there is a well-defined character χL : Λk −→ K such
that:

for every closed oriented curve Γ colored by L-representations and every finite set
X, the map ΦL satisfies the following property:

∀α ∈ Λk, ∀u ∈ As(Γ, X), ΦL(αu) = χL(α)ΦL(u).

Let A be a k-subalgebra of K. Suppose K is the fraction field of A and A is
a unique factorization domain. Suppose also that L contains a finitely generated
A-submodule LA such that the Lie bracket and its dual are defined on LA. Then χL

takes values in A.

Proof: First of all, it is possible to extend the map ΦL to a functor between two
categories Diag(L) and C(L). The objects of these categories are the sets [p], p ≥ 0.
For p, q ≥ 0 the set of morphisms in C(L) from [p] to [q] is the set of L-linear
homomorphisms from L⊗p to L⊗q, and the set of morphisms in Diag(L) from [p] to
[q] is the k-module generated by the isomorphism classes of (Γ, [p] ∪ [q])-diagrams
where Γ is any L-colored oriented curve and where the relations are the AS and IHX
relations.

These two categories are monoidal and Diag(L) contains ∆k as a subcategory.
Moreover Diag(L) is generated (as a monoidal category) by the following morphisms:�

�
�
� ��

@@
@@
��

@
@@��
��

��

	?

The last morphism is a morphism in Diag(L) from [p] to [0] depending on an integer
p ≥ 0 and a L-representation E.

The map ΦL associates to each L-colored (Γ, [p] ∪ [q])-diagram D an element
ΦL(K) in L⊗p ⊗ L⊗q. But L⊗p is isomorphic to its dual and ΦL(K) may be seen as
a linear map from L⊗p to L⊗q.

It is not difficult to see that the image under ΦL of the generators above are:
— the inner form from L⊗2 to L⊗0 = K,
— the Casimir element consider as a morphism from K = L⊗0 to L⊗2,
— the Lie bracket from L⊗2 to L,
— the dual of the Lie bracket (the Lie cobracket) from L to L⊗2,
— the map x⊗ y 7→ (−1)∂◦x∂◦yy ⊗ x from L⊗2 to itself,
— the map x1 ⊗ . . .⊗ xp 7→ τE(x1 . . . xp) from L⊗p to L⊗0 = K,

where τE(x1 . . . xp) is the supertrace of the endomorphism x1 . . . xp of E.
All these maps are L-linear. Therefore ΦL induces a functor still denoted by ΦL

from Diag(L) to the category C(L).
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Let Γ be a L-colored oriented curve and X = [n] be a finite set. Consider an
element α ∈ Λk and an element u ∈ As(Γ, X) represented by a (Γ, X)-diagram D.
Take a 3-valent vertex x in D and a bijection from [3] to the set of edges ending at x.
By taking off a neighborhood of x in D, we get a diagram H inducing a morphism v
in Diag(L) from [3] to [n].

On the other hand, α induces a morphism β in Diag(L) from [0] to [3], and 1 ∈ Λ
induces an element β0 from [0] to [3]. Let ũ and α̃u be the morphisms from [0] to [n]
induced by u and αu. We have:

ũ = v ◦ β0, α̃u = v ◦ β.

Hence:
ΦL(ũ) = ΦL(v) ◦ ΦL(β0), ΦL(α̃u) = ΦL(v) ◦ ΦL(β).

The elements α ∈ Λk and 1 ∈ Λk also induce morphisms γ and γ0 from [2] to [1].
Denote by ϕ and ϕ0 the morphisms ΦL(γ) and ΦL(γ0). The morphism ϕ0 is the Lie
bracket and ϕ is L-linear and antisymmetric. Since α belongs to Λk, we have the
following:

��
PP

``

̀


α
=

PP
��

``̀



α

and, for every x, y, z in L, we have: [ϕ(x⊗ y), z] = ϕ([x, y] ⊗ z).
Denote by u 7→ [u] the Lie bracket from L⊗2 to L. For every u ∈ L⊗2 and every

z ∈ L we have: [ϕ(u), z] = ϕ([u] ⊗ z).
Suppose [u] = 0 then [ϕ(u), z] vanishes for every z ∈ L and ϕ(u) lies in the center

of L. Since this center is trivial, ϕ(u) is trivial too. Therefore ϕ(u) depends only on
the image [u] of u. Since the Lie bracket is surjective, there is a unique morphism ψ
from L to L such that:

∀u ∈ L⊗2, ϕ(u) = ψ([u])

and there is a unique λ ∈ K such that:

∀u ∈ L⊗2, ϕ(u) = λ[u]

and we have:

ΦL(β) = λΦL(β0), ΦL(α̃u) = λΦL(ũ), ΦL(αu) = λΦL(u).

Now it is easy to see that α 7→ λ is a character depending only on L and the
Casimir element Ω.

Suppose now that L contains a finitely generated A-submodule LA such that the
Lie bracket and the Lie cobracket (the dual of the Lie bracket) are defined on LA. Let
α be an element in Λk represented by a (∅, [3])-diagram D and u ∈ K be its image
under χL. Because this diagram is connected there exists a continuous map f from
D to [0, 1] such that:

— f(1) = f(2) = 0 f(3) = 1
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— f is affine and injective on each edge of D
— f is injective on the set of 3-valent vertices of D
— f has no local extremum.
Such a map can be constructed by induction on the number of edges of D. Using

this map, the map from [2] to [1] represented by D can be described by composition,
tensor product, Lie bracket and Lie cobracket and we have:

∀x, y ∈ LA, u[x, y] ∈ LA.

Let w be a nonzero element in the image of the Lie bracket LA ⊗ LA −→ LA. By
applying the formula above for each power of α, we get:

∀p ≥ 0, upw ∈ LA.

Since LA is finitely generated the A-submodule of K generated by the powers of u
is also finitely generated. Then u lies in the integral closure of A in K. Since A is
a unique factorization domain, A is integrally closed and u belongs to A. Therefore
χL(α) lies in A for every α ∈ Λk.

Remark: If every endomorphism of L is the multiplication by a scalar, every invari-
ant bilinear form of L is a multiple of the given inner form. If we divide the inner
form par some c ∈ K, we multiply the Casimir element Ω by c and for every α ∈ Λk

of degree n, χL(α) is multiplied by cn.

6.2 Proposition: Let L be the Lie algebra sl2 (defined over K). Then the functor
ΦL satisfies the following properties:

ΦL�
@
@
� = ΦL t

(
−
�
�
�QQ
QQ

)
ΦL �
��

= 3

Moreover there is a unique graded algebra homomorphism χsl2 from Λk to k[t] sending
t to t and each ωn to 0 such that the character χL is the composite:

Λk
χsl2−→ k[t]

γ
−→ K

where γ is a k-algebra homomorphism. If the inner form on L send α⊗β to the trace
of αβ, γ sends t to 2.

Proof: Since L is defined over Q it is enough to consider the case k = K = Q. Set:

U =
�
@
@
� − t +t

�
�
�QQ
QQ

The element ΦL(U) is a map from L⊗2 = Λ2(L) ⊕ S2(L) to itself. Since U is an-
tisymmetric on the source and the target, ΦL(U) is trivial on S2(L) and its image
is contained in Λ2(L). Since L is 3-dimensional, the Lie bracket Λ2(L) −→ L is
bijective. But U composed with this bracket is zero. Therefore U is killed by ΦL.

The fact that ΦL sends the circle to 3 come from the fact that L is 3-dimensional.
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Denote by ≡ the following relation:

a ≡ b⇐⇒ ΦL(a) = ΦL(b)

So we have:

�
@
@
� ≡ t −t

�
�
�QQ
QQ

and �
��
≡ 3

and it is easy to see by induction that every element α in Λk is equivalent to some
polynomial P (t) ∈ k[t]. Let c be the scalar χL(t). Then we have: ΦL(α) = P (c). If
α is homogeneous of degree n, we have: P (t) = atn and: ΦL(α) = acn. Then P (t)
is completely determined by ΦL(α). Therefore α 7→ P (t) is a well-defined algebra
homomorhism χsl2 from Λk to k[t] such that χL is the composite γ ◦ χsl2 where γ
sends t to c. If the inner form is α ⊗ β 7→ τ(αβ), we have c = 2 and γ sends t to
2.

A direct computation gives the following:

�
��@
@@

≡
2t2

3

(
+ +

�
��@
@

)

�� QQ

QQ ��
•0 ≡ 0 .

Then by induction we get the following for every p ≥ 0:

�� QQ

QQ ��
•p ≡ 0 ,

�
�
�

@
@
@

•
p

≡ 0 , ωp ≡ 0 .

Therefore each ωp is killed by χsl2 and that finishes the proof.

Let L be a quasisimple quadratic Lie superalgebra over a field K. Let X be the
kernel of the Lie bracket: Λ2(L) −→ L and Y be the quotient of S2(L) by the Casimir
element Ω of L. So we have exact sequences of L-modules:

0 −→ X −→ Λ2(L) −→ L −→ 0

0 −→ KΩ −→ S2(L) −→ Y −→ 0

Let ΨL be the endomorphism of L⊗2 represented by the diagram:

Since this diagram is symmetric, ΨL respects the decomposition: L⊗2 = S2(L) ⊕
Λ2(L). But ΨL respects the exact sequences also and ΨL acts on X and Y . If α is a
eigenvalue of ΨL acting on Y , the corresponding eigenspace will be denoted by Yα.

6.3 Theorem: Let L be a quasisimple quadratic Lie superalgebra over a field K
which is not sl2. Let Ω, X, Y and ΨL defined as above. Let P be the minimal
polynomial of ΨL acting on Y .
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Suppose the following conditions hold:
— 6 is invertible in K,
— ΨL acts bijectively on Y ,
— χL is nontrivial on some ωp or ∂◦P ≤ 3.
Then the degree of P is 2 or 3 and there exist three elements t, σ, ω in K such

that:
— χL(t) = t, ∀p ≥ 0, χL(ωp) = ωσp,
— ΨL is the multiplication by 0, t and 2t on X, Λ2(L)/X ≃ L and KΩ,
— for every p ≥ 0 we have the following:

(1) ΦL �
@
@
�•

p
= σpΦL �

@
@
�•

0
ΦL �

�
�Q
Q
Q

•
p

= σpΦL �
�
�Q
Q
Q

•
0

(2) ΦL �
@

@
�•

0
= σΦL �

@
@
� +(ω − tσ)ΦL

(
−
�
�
�QQ
QQ

)

(3) ΦL
�
��@
@@
•
0

= σΦL
�
��@
@@

+(ω − tσ)
2t

3
ΦL

(
+ +

�
��@
@

)

If P is of degree 2 (exceptional case), P has 2 nonzero roots α and β in some
algebraic extension of K and we have:

t = 3(α+ β), σ = (4α + 5β)(4β + 5α), ω = 5(α + β)(3α+ 4β)(3β + 4α)

sdim(L) = −2
(5α+ 6β)(5β + 6α)

αβ

sdim(X) = 5
(4α + β)(4β + α)(5α+ 6β)(5β + 6α)

α2β2

α 6= β =⇒ sdim(Yα) = −90
(α + β)2(6α+ 5β)(3α+ 4β)

α2β(α− β)
.

If P is of degree 3 (regular case), P has 3 nonzero roots α, β, γ in some algebraic
extension of K and we have:

t = α + β + γ, σ = αβ + βγ + γα + 2t2, ω = (t+ α)(t+ β)(t+ γ)

sdim(L) = −
(2t− α)(2t− β)(2t− γ)

αβγ

sdim(X) =
ω(2t− α)(2t− β)(2t− γ)

α2β2γ2

α 6= β, γ =⇒ sdim(Yα) =
t(2t− β)(2t− γ)(t+ β)(t+ γ)(2t− 3α)

α2βγ(α− β)(α− γ)
.
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Remark: In the exceptional case, we may add formally a new root γ = 2t/3 and
a trivial corresponding eigenspace Yγ . Then the formulas of the superdimensions are
exactly the same in the exceptional case or the regular case except that γ is possibly
equal to 0.

Proof: Set: ω = χL(ω0) and consider the following endomorphisms in L⊗2:

ε = ΦL e = ΦL

(
+
�
�
�QQ
QQ

)

u = ΦL

(
2
�� QQ

QQ ��
−


 JJ

JJ 


)

v = ΦL

(
2
�� QQ

QQ ��
•0 −



 JJ

JJ 

•
0

)

f = ΦL

�
�
�

@
@
@

g = ΦL

�
�
�

@
@
@

•
0

These endomorphisms act on S2(L) and act trivially on Λ2(L).

The degree of P :

Suppose χL(ωp) 6= 0. We have:

χL(ω2
p) = χL(ω0ω2p) = ωχL(ω2p) 6= 0 =⇒ ω 6= 0.

So we can set:

σ =
χL(ω1)

ω

and we have for every p > 0:

ωp−1χL(ωp) = χL(ωp−1
0 ωp) = χL(ωp

1) = ωpσp =⇒ χL(ωp) = σpω.

Because of theorem 5.7, we have also:

ωΦL

�� QQ

QQ ��
•p = ΦLω0

�� QQ

QQ ��
•p = ΦLωp

�� QQ

QQ ��
•0 = ωσpΦL

�� QQ

QQ ��
•0

and this implies:

ΦL

�� QQ

QQ ��
•p = σpΦL

�� QQ

QQ ��
•0

Similarly we get for every p ≥ 0:

ΦL



 JJ

JJ 

•
p

= σpΦL



 JJ

JJ 

•
0

ΦL

�
�
�

@
@
@
•
p

= σpΦL

�
�
�

@
@
@

•
0

and formulas (1) are proven in this case.
Let E be the vector space formally generated by e, ε, u, v, f and g. Because of

Proposition 5.5 the operator ΨL induces an action ψ on E defined by:

ψ(ε) = 2tε
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ψ(e) = u

ψ(u) =
t

3
u+ 2f

ψ(v) = −ωu+
4t

3
v + 2g

ψ(f) =
10t2

9
u−

1

2
v +

2t

3
f

ψ(g) =
2tω

3
u+

(4t2

9
−
σ

2

)
v +

2t

3
g.

It is easy to see that ψ vanishes on the following element in E:

U = g − σf −
t

3
(v − σu) − t(ω − tσ)e.

Since ΨL acts bijectively on S2(L)/KΩ, U induces the trivial endomorphism of
S2(L)/KΩ and there exists an element λ ∈ K such that the following holds in
End(L⊗2) (or in Hom(L⊗4, K)):

g − σf −
t

3
(v − σu) − t(ω − tσ)e = λε.

The group S4 acts on this equality and the invariant part of it is:

g = σf +
(2t

3
(ω − tσ) +

λ

3

)
(e+ ε).

Hence we have also:

t(v − σu) = (t(ω − tσ) − λ)(2ε− e).

By making a quarter of a turn and composing with the Lie bracket, we get:

t(3ω − 3tσ) = 3(t(ω − tσ) − λ)

which implies: λ = 0 and we get Formula (3):

g = σf +
2t

3
(ω − tσ)(e+ ε)

and also the following:

t(v − σu) = t(ω − tσ)(2ε− e).

Let E ′ be the quotient of E by these two relations. It is easy to see that ψ vanishes
on v − σu− (ω − tσ)(2ε− e) ∈ E ′.

For the same reason as above, there is an element µ ∈ K such that:

v − σu− (ω − tσ)(2ε− e) = µε.
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By making a quarter of a turn and composing with the Lie bracket, we get:

3ω − 3tσ − (ω − tσ)3 = µ.

Hence µ is zero and we get the formula (2).
Denote by ϕ the endomorphism of Y induced by ΨL. In this endomorphism

algebra we have:
ε = 0 e = 2

u = 2ϕ f = ϕ2 −
t

3
ϕ

v = 2
(20t2

9
ϕ− ϕ ◦ f +

2t

3
f
)

= 2(−ϕ3 + tϕ2 + 2t2ϕ).

The relation v = σu+ (ω − tσ)(2ε− e) implies:

2(−ϕ3 + tϕ2 + 2t2ϕ) = 2σϕ− 2(ω − tσ)

and then:
ϕ3 − tϕ2 + (σ − 2t2)ϕ− (ω − tσ) = 0.

The minimal polynomial P of ϕ is then a divisor of the polynomial Q(X) = X3 −
tX2 + (σ − 2t2)X − (ω − tσ). Since L is quasisimple Y is nonzero and the degree of
P is 1, 2 or 3.

Therefore in any case the degree of P is 1, 2 or 3.
Suppose ∂◦P = 1. Let α be the root of P . Then the endomorphism v − αe of

L⊗2 has its image contained in KΩ and there is some λ ∈ K such that the following
holds in End(L⊗2) (or in Hom(L⊗4, K)):

v = αe+ λε.

The group S4 acts on this equality and the invariant part of this equality is:

0 = (
2α

3
+
λ

3
)(e+ ε).

Then we get: λ = −2α.
By making a quarter of a turn and composing with the projection: L⊗2 −→

Λ2(L) ⊂ L⊗2 we get the equality:

3

2
ΦL �
@
@
� = −

3α

2
ΦL

(
−
�
�
�QQ
QQ

)

Since ΨL acts bijectively on Y , α is not zero and Λ2(L) is contained in the image of
the cobracket. Therefore the Lie bracket is bijective from Λ2(L) to L . But that’s
impossible because L is not isomorphic to sl2. Therefore the degree of P is 2 or 3.

The exceptional case:
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Suppose: ∂◦P = 2 and denote by α and β the roots of P . Since ΨL acts bijectively
on Y , α and β are not zero. The endomorphism (v− αe)(v− βe) is trivial on Y and
Λ2(L). Then its image is contained in KΩ and there exists µ ∈ K such that:

(v − αe)(v − βe) = µε.

So we get:

4f + 2(
t

3
− α− β)v + 2αβe = µε.

By taking the invariant part of this equation (under S4) we get:

4f +
4αβ

3
(e+ ε) =

h

3
(e+ ε)

and then:

2(
t

3
− α− β)v =

2αβ + µ

3
(2ε− e).

Since L is not sl2, v and 2ε− e are linearly independent and we get:

t = 3(α + β) µ = −2αβ

f = −
αβ

2
(e+ ε).

By applying ΨL to this equality we get:

−
αβ

2
(u+ 2tε) = −

αβt

3
(e+ ε) +

10t2

9
u−

v

2

=⇒ v = (4α + 5β)(4β + 5α)u+ 2αβ(α+ β)(2ε− e)

and that implies in any case the formula (2) with: σ = (4α + 5β)(4β + 5α) and
ω = 5(α+ β)(3α+ 4β)(3β + 4α). If ω = 0 we still have: χL(ωp) = ωσp and formulas
(1) and (3) are consequences of (2).

Let d be the superdimension of L and τ be the supertrace operator. Since ΨL

acts by multiplication by 0, t and 2t on X, L and KΩ, we have:

τ(ϕ0) =
d(d+ 1)

2
− 1 =

(d− 1)(d+ 2)

2

τ(ΨL) = td+ 2t+ τ(ϕ)

τ(Ψ2
L) = t2d+ 4t2 + τ(ϕ2)

τ(Ψ3
L) = t3d+ 8t3 + τ(ϕ3).

Using a simple graphical calculus, we get:

τ(ΨL) = ΦL �� ��
�� ��

= 0

τ(Ψ2
L) = ΦL �� ��

�� ��
= 4t2d
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τ(Ψ3
L) = ΦL �� ��

�� ��
= 2t3d.

Hence we have:

τ(ϕ0) =
(d− 1)(d+ 2)

2

τ(ϕ) = −t(d + 2)

τ(ϕ2) = t2(3d− 4)

τ(ϕ3) = t3(d− 8).

Since ϕ has α and β as eigenvalues, we get:

t2(3d− 4) + t(α + β)(d+ 2) +
(d− 1)(d+ 2)

2
αβ = 0

t3(d− 8) − (α + β)t2(3d− 4) − t(d+ 2)αβ = 0

and that implies the following:

(α + β)(60(α+ β)2 + (d+ 2)αβ) = 0

(d− 1)(60(α+ β)2 + (d+ 2)αβ) = 0.

Suppose t = 0. Since (ΨL − α)(ΨL − β) vanishes on Y , there exists µ ∈ K such
that:

(ΨL − α)(u− βe) = 2µε

=⇒ (
t

3
− α− β)u+ 2f = αβe+ 2µε.

Since the left hand side of this equation is invariant under S4, it is the same for the
other side and we get:

2f = αβ(e+ ε).

By composing with the inner product, we get: d+ 2 = 0. Therefore d− 1 is non zero
and we have in any case:

60(α+ β)2 + (d+ 2)αβ = 0.

Then it is not difficult to compute the superdimensions of L and X and we get the
desired formula.

Suppose α 6= β. Denote by dα and dβ the superdimensions of eigenspaces Yα and
Yβ. We have:

dα + dβ =
(d− 1)(d+ 2)

2

αdα + βdβ = −t(d+ 2)

and dα and dβ are easy to compute.

The regular case:
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Consider now the regular case: P is of degree 3 and has 3 nonzero roots α, β, γ.
Since (ΨL−α)(ΨL−β)(ΨL−γ) acts trivially on Y , there exists µ ∈ K such that:

(ΨL − α)(ΨL − β)(u− γe) = 2µε.

After reduction we get:

(
7t2

3
−
t

3
(α + β + γ) + αβ + βγ + γα)u+ 2(t− α− β − γ)f − v = αβγe+ 2µε.

The invariant part of this formula is:

2(t− α− β − γ)f =
2

3
(αβγ + µ)(e+ ε).

Since the minimal polynomial of ϕ has degree 3, f is not a multiple of e+ ε. Hence
we get:

α+ β + γ = t µ = −αβγ

and also:
(2t2 + αβ + βγ + γα)u− v = αβγ(e− 2ε).

If ω is nonzero, P is equal to Q and we have:

αβ + βγ + γα = σ − 2t2 αβγ = ω − tσ.

Otherwise we can set: σ = αβ + βγ + γα + 2t2 and we have:

v = σu+ αβγ(2ε− e)

and then:

�
@
@
�•

0
≡ σ

�
@
@
� +αβγ

(
−
�
�
�QQ
QQ

)

By applying the Lie bracket, we get: 0 = 2ω = 2tσ + 2αβγ. In this case we have:
αβγ = ω − tσ and the formula (2) follows. As above formulas (1) and (3) are easy
to check.

In any case t, σ, ω can be expressed in term of α, β, γ. As above we get the
following:

τ(ϕ0) =
(d− 1)(d+ 2)

2

τ(ϕ) = −t(d + 2)

τ(ϕ2) = t2(3d− 4)

τ(ϕ3) = t3(d− 8).

Since ϕ has α, β, γ as eigenvalues, we get:

t3(d− 8) − t3(3d− 4) − t(σ − 2t2)(d+ 2) −
(d− 1)(d+ 2)

2
αβγ = 0
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=⇒ (d+ 2)(αβγd+ (2t− α)(2t− β)(2t− γ)) = 0.

Let F be the endomorphism of L⊗2 represented by the diagram:



 JJ

JJ 

•
0

Because of the formula (2), F acts by 2ω on L and by 2(ω − tσ) on X. It is trivial
on S2(L). Therefore we get:

0 = τ(F ) = 2ωd+ 2(ω − tσ)
d(d− 3)

2
=⇒ ωd(d− 1) = tσd(d− 3).

Suppose d = −2. Then we have:
3ω = 5tσ

and this implies:

−
(2t− α)(2t− β)(2t− γ)

αβγ
= −

4t3 + 2t(αβ + βγ + γα) − αβγ

αβγ

= −2 +
3αβγ − 2tσ

αβγ
= −2 +

3ω − 5tσ

αβγ
= −2.

Therefore in any case we have:

αβγd+ (2t− α)(2t− β)(2t− γ) = 0

and d and the superdimension of X are easy to compute.
If α is different from β and γ, we have the following (with dα =sdimYα):

(α− β)(α− γ)dα = τ(ϕ2 − (β + γ)ϕ+ βγϕ0)

= t2(3d− 4) + t(d+ 2)(β + γ) +
(d− 1)(d+ 2)

2
βγ

and that gives the value of dα.

7. The eight characters.

7.1 The gl case. Let E be a supermodule of superdimension m. Take a homogeneous
basis {ei} of E and denote by {eij} the corresponding basis of gl(E). Let sl(E) ⊂
gl(E) be the Lie superalgebra of endomorphisms of E with zero supertrace. The map
sending α⊗ β ∈ gl(E) ⊗ gl(E) to the supertrace of α ◦ β is an nonsingular invariant
bilinear form on gl(E) and gl(E) is a quadratic Lie superalgebra. If m is invertible,
sl(E) is also a quadratic Lie superalgebra. If m = 0, the inner form is singular on
sl(E), but the quotient of sl(E) by its center is a quadratic Lie superalgebra psl(E).

7.2 Theorem: Let [t, u] be the polynomial algebra generated by variables t and u of
degree 1 and 2 respectively. For each m ∈ Z, denote by γm the ring homomorphism
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sending t to m and u to 1. Then there exists a unique graded algebra homomor-
phism χgl from Λk to k[t, u] such that the following holds for every supermodule E
of superdimension m:

— for every closed oriented curve Γ colored by gl(E)-representations, and every
finite set X, we have:

∀α ∈ Λk, ∀u ∈ Ak(Γ, X), Φgl(E)(αu) = γm ◦ χgl(α)Φgl(E)(u)

— if m is invertible in k and sl(E) is quasisimple, χsl(E) is the composite γm ◦χgl

— if m = 0 and psl(E) is quasisimple, χpsl(E) is the composite γ0 ◦ χgl.
Moreover χgl satisfies the following:

χgl(t) = t and ∀p ≥ 0, χgl(ωp) = ωσp

with: ω = 2t(t2 − 4u) and σ = 2(t2 − 2u).

Proof: Let E be a finite dimensional free k-supermodule of superdimension m. Let
{ei} be a homogeneous basis of E and {eij} be the corresponding basis of L = gl(E).
Then the Casimir element is

Ω =
∑

ij

(−1)∂◦ejeij ⊗ eji.

Since the inner product of x and y in L is < x, y >= τE(xy) we have the following:

ΦL(
E��

	6) = ΦL(

�	)

Moreover, it is not difficult to show the following:

−ΦL(

E

E

-

-
) = ΦL(

HHHHHj���
���*

)

Whence:

ΦL(

-

�
) = ΦL(

�
	

�

�

-

)

and we get:

ΦL(

E E

E

?
6

-
) = ΦL( Z

ZZ
?

6

-
) − ΦL

\
\
\

?
6

-
)
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= ΦL( Z
ZZ

?
6

-
) − ΦL(

\
\
\

?
6

-
) = ΦL( ?

6

-
) − ΦL(

����
?

6

-
)

Therefore, to compute the image by ΦL of a (∅, [n])-diagram K, we may proceed
as follows:

Let S(K) be the set of functions α from the set of 3-valent vertices of K to ±1.
For every α ∈ S(K) denote by ε(α) the product of all α(x). If α ∈ S(K) is given we
may construct a thickening of K by using the given cyclic ordering of edges ending
at a 3-valent vertex x if α(x) = 1 and the other one if not, and we get an oriented
surface Σα(K) equipped with n numbered points in its boundary.

@
@@

+ −

+

1

2

3
7→

��̀ ���� ��̀
@
@

@
@@��`

2
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Denote by Sn the set of isomorphism classes of oriented connected surfaces equip-
ped with n numbered points in its boundary. Under the connected sum, S = S0

is a monoid and acts on Sn. This monoid is a graded commutative monoid freely
generated by the disk D of degree 1 and the torus T of degree 2. The set Sn is a
graded S-set with dim H1 as degree. Let k[Sn] and k[S] be the free modules generated
by Sn and S. They are graded modules, and k[S] is a polynomial algebra acting on
k[Sn].

If K is connected, the sum

s(K) =
∑

α

ε(α)Σα(K)

lies in k[Sn]. It is easy to check that s is compatible with AS and IHX relations
and induces a well-defined graded homomorphism from Fk(n) to k[Sn]. Moreover,
this homomorphism is Λk[S]-linear with respect to a character χ from Λk to k[S] =
k[D, T ].

On the other hand, for each Σ ∈ Sn we have a diagram ∂(Σ) in D(Γ, [n]) where Γ
is colored by E: ∂(Σ) is the boundary of Σ colored by E with intervals added near
each marked point:

��
��
�
�
�
�
�
�
��

��

��
��
�
�
�
�
����
��` `1

2

7→
��
��
��
��

1

2

We can extend ∂ linearly and for every Σ ∈ k[Sn], ΦL(∂(Σ)) is well defined in L⊗n.
Moreover we have:

ΦL(K)
∑

α

ε(α)ΦL(∂Σα(K)) = ΦL(∂s(K)).
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Therefore if a is an element of Λk, we have:

ΦL(aK) = ΦL(∂s(aK)) = ΦL(∂χ(a)s(K)) = ΦL(χ(a)∂s(K))

= γm(χ(a))ΦL(∂s(K)) = γm(χ(a))ΦL(K)

and the first part of the theorem is proven in the case Γ = ∅ (with χgl = χ). The
general case follows.

If m is invertible in k and sl(E) is quasisimple, sl(E) is actually simple and gl(E)
is semisimple: gl(E) = sl(E) ⊕ k. Since Φk is trivial, we have:

Φsl(E)(aK) = Φgl(E)(aK) = γm(χgl(a))Φgl(E)(K) = γm(χgl(a))Φsl(E)(K)

=⇒ χsl(E) = γm ◦ χgl.

Suppose now: m = 0 and psl(E) is quasisimple. Since the Lie bracket on gl(E)
takes values in sl(E), Φgl(E)(K) lies in sl(E)⊗n and for every a ∈ Λk the equality

Φgl(E)(aK) = γm(χgl(a))Φgl(E)(K)

holds in sl(E)⊗n. Hence in the quotient psl(E) we have:

Φpsl(E)(aK) = γm(χgl(a))Φpsl(E)(K)

and we get:
χpsl(E)) = γ0 ◦ χgl.

In order to prove the last part of the theorem, it is enough to determine χsl(E)(ωp)
for k = Q and for infinitely many values of m. Suppose now m > 2 and E has no
odd part. Then L = sl(E) is the classical Lie algebra slm. The morphism Ψ = ΨL

from L⊗2 to itself is the morphism:

x⊗ y 7→
∑

ij

[x, eij ] ⊗ [eji, y]

and because of Proposition 6.3 we have to determine eigenvalues of Ψ acting on
Y = S2(L)/Ω.

Denote by τ the trace operator. Let f : L⊗2 −→ L be the following morphism:

f : x⊗ y 7→ xy + yx−
2

m
τ(xy)Id.

Since m > 2, f is surjective and L-linear. We have:

fΨ(x⊗ y) =
∑

ij

((xeij − eijx)(ejiy − yeji) + (ejiy − yeji)(xeij − eijx))

−
∑

ij

2

m
τ((xeij − eijx)(ejiy − yeji))
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= mxy+τ(xy)+myx+τ(yx)−
2

m
τ(mxy+τ(xy)) = mxy+myx−2τ(xy) = mf(x⊗y).

The map f factorizes through Y and there is an exact sequence:

0 −→ Z −→ Y −→ L −→ 0

compatible with the action of Ψ and Ψ induces the multiplication by m on L.
The module Z can be seen as a submodule of L⊗2 and the morphisms sending

x⊗ y to xy, yx, x⊗ y− y⊗x are trivial on Z. If z lies in L, denote by zij the entries
of z. We have:

Ψ(x⊗ y) =
∑

(xkiekj − xjkeik) ⊗ (yilejl − yljeli)

=
∑

(xy)klekj ⊗ ejl + (yx)lkeik ⊗ eli − xkiekj ⊗ yljeli − yileik ⊗ xjkejl.

Therefore the morphism Ψ is equal on Z to the morphism Ψ′ defined by:

Ψ′(x⊗ y) = −2
∑

xeij ⊗ yeji

and we have:
Ψ′2(x⊗ y) = 4

∑
xeijekl ⊗ yejielk = 4x⊗ y.

Therefore the minimal polynomial of Ψ acting on Y is of degree three with roots m,
2, −2.

Hence Theorem 6.3 applies and we get:

χL(t) = m ∀p ≥ 0, χL(ωp) = 2m(m+ 2)(m− 2)(2m2 − 4)p

and that finishes the proof.

7.3 The osp case. Let E be a supermodule of superdimension m equipped with a
supersymmetric nonsingular bilinear form < , >. We’ll say that E is a quadratic
supermodule. For every endomorphism α of E, we have a endomorphism α∗ defined
by:

∀x, y ∈ E < α∗(x), y >= (−1)pq < x, α(y) >

where p is the degree of x and q is the degree of α. An endomorphism α is anti-
symmetric if α∗ = −α. Let L = osp(E) be the Lie superalgebra of antisymmetric
endomorphisms of E. The superdimension of L is d = m(m − 1)/2. With the same
notation as before, a Casimir element of L is:

Ω =
1

2

∑

i,j

(−1)∂◦ej(eij − e∗ij) ⊗ (eji − e∗ji)

and with this Casimir element, t = m − 2. The bilinear form corresponding to Ω is
half the supertrace of the product.
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7.4 Theorem: Let k[t, v] be the polynomial algebra generated by variables t and v
of degree 1. Then there exists a unique graded algebra homomorphism χosp from Λk

to k[t, v] such that:
— for every quadratic supermodule E, if osp(E) is quasisimple, then χosp(E) is

the composite γ ◦ χosp, where γ is the ring homomorphism sending t to sdim(E) − 2
and v to 1.

Moreover χosp satisfies the following:

χosp(t) = t and ∀p ≥ 0, χosp(ωp) = ωσp

with: ω = 2(t− v)(t− 2v)(t+ 4v) and σ = 2(t− 2v)(t+ 3v).

Proof: Let E be a quadratic supermodule and L be the Lie superalgebra osp(E).
Let K be a L-colored diagram. If we change the orientation of a component colored
by E, ΦL(K) is unchanged. Therefore we may consider in K unoriented components
colored by E. On the other hand it is easy to see the following:

ΦL(
E��

	) = ΦL(

�	)

ΦL(
E E

) = ΦL( ) − ΦL( XXX� � )

Therefore, to compute the image by ΦL of a (∅, [n])-diagram K, we may proceed
as follows:

Let S(K) be the set of functions from the set of edges of K joining two 3-valent
vertices of K to ±1. For every α ∈ S(K) denote by ε(α) the product of all α(a).
If α ∈ S(K) is given we may construct a thickening of K by using the given cyclic
ordering of edges ending at each 3-valent vertex and making a half-twist near every
edge a with negative α(a). So we get an unoriented surface Σα(K) equipped with
n numbered points in its boundary and a local orientation of ∂Σα(K) near each of
these points.

@@

@@ ��

��

−

+

+ + 7→

� �
��

�� �

�

�
�	

@R
��

@I

Denote by USn the set of isomorphism classes of connected surfaces Σ equipped
with n numbered points in its boundary and an orientation of ∂Σ near each of these
points. Under the connected sum, US = US0 is a monoid and acts on USn. This
monoid is a graded commutative monoid generated by the disk D, the projective
plane P and the torus T and the only relation is: PT = P 3.

Let k(USn) be the k-module generated by the elements of USn with the following
relations:

If Σ′ is obtained from Σ by changing the local orientation near one point, Σ + Σ′

is trivial in k(USn).
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Then k[US] is a commutative algebra and k(USn) is a graded k[US]-module.
If K is connected, the sum s(K) =

∑
α ε(α)Σα(K) lies in k[USn]. It is easy to

check that s is compatible with AS and IHX relations and induces a well-defined
graded homomorphism from Fk(n) to k[USn]. Moreover this homomorphism is
Λk[US]-linear with respect to a character χ from Λk to k[US] = k[D,P, T ]/(PT−P 3).

On the other hand, we have a map ∂ from USn and k(USn) to Fk(n) by sending
each surface Σ with numbered points in ∂Σ to the boundary ∂Σ colored by E with
intervals added near each marked point. If K is a diagram, ΦL(K) is equal to the
sum

∑
α ε(α)ΦL(∂Σα(K)) = ΦL(∂s(K)). Therefore if u is an element of Λ, we have

χL(u) = χL(∂χ(u)). Since χL ◦ ∂ is a ring homomorphism sending D to m = sdimE
and P and T to 1, the character χL factorizes through k[D,P ] = k[US]/(T − P 2)
and the first part of the theorem is proven (with t = D − 2P , v = P ).

To prove the last part of the theorem, it is enough to consider the case where E
is a classical module over k = Q of large dimension m. Then the second symmetric
power S2(L) decomposes into four simple L-modules E0, E1, E2, E3 of dimensions
1, (m − 1)(m + 2)/2, m(m − 1)(m − 2)(m − 3)/4!, m(m + 1)(m + 2)(m − 3)/12.
Therefore we have the decomposition: Y = E1 ⊕ E2 ⊕ E3. Moreover the Casimir
homomorphism acts on E1, E2, E3 by multiplication by 2m, 4m − 16, 4m − 4. On
the other hand, this homomorphism is equal to 4t− 2ΨL. Therefore ΨL acts on E1,
E2, E3 by multiplication by m− 4, 4, −2.

The rest of the proof is an straightforward consequence of Theorem 6.3.

Remark: The use of surfaces in the gl- and osp-cases was introduced in a slightly
different way by Bar-Natan to produce weight functions [BN].

7.5 The exceptional case. Consider a quasisimple quadratic Lie superalgebra L
over a field K of characteristic 0. This Lie superalgebra L is said to be exceptional if
it satisfies the following condition:

— the square of the Casimir generates in degree 4 the center of the enveloping
algebra U of L.

Exceptional Lie algebras E6, E7, E8, F4, G2 satisfy this property. But it is also
the case for sl2, sl3, osp(E) with sdim(E) = 2 or 8, psl(E) with sdim(E) = 0 and
the exceptional Lie superalgebras G(3) and F (4).

Consider the following elements in FK(4):

u = ΦL �
�@
@

v = ΦL

(
+ +

�
�
�QQ
QQ

)

These elements are invariants elements in S4(L). But the condition satisfied by L
implies that the invariant part of S4(L) is generated by v. Therefore u is a multiple
of v and the homomorphism ΨL has only two eigenvalues on S2(L)/Ω. Hence we may
apply Theorem 6.3 in the exceptional case and we get:

7.6 Theorem: Let L be an exceptional quasisimple quadratic Lie superalgebra
over a field K of characteristic zero. Then there exist σ and ω in K and two elements
α and β in some extension of K such that:
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t = 3(α+ β) σ = (4α + 5β)(5α+ 4β) ω = 5(α+ β)(3α+ 4β)(4α+ 3β)

χL(t) = t ∀p ≥ 0, χL(ωp) = ωσp

sdim(L) = −2
(5α+ 6β)(6α+ 5β)

αβ

ΦL �
�@
@

= −
αβ

2
ΦL

(
+ +

�
�
�QQ
QQ

)

ΦL �
�@
@
•
0

= (3α+ 4β)(4α+ 3β)ΦL �
�@
@

Remark: In this theorem, we may consider the Casimir Ω, and then α and β up to
a scalar. So α and β may be consider as degree 1 variables related by some linear
relation.

Case by case we get the following:

L sdim(L) α/β σ ω

E6 78 −3
77

36
t2

25

12
t3

E7 133 −4
176

81
t2

520

243
t3

E8 248 −6
494

225
t2

98

45
t3

F4 52 −5/2
170

81
t2

480

243
t3

G2 14 −5/3
65

36
t2

55

36
t3

sl2, G(3) 3 −4/3
8

9
t2 0

sl3, F (4) 8 −3/2
14

9
t2

10

9
t3

osp(8) 28 −2 2t2
50

27
t3

osp(2) 1 −5/4 0 −
40

27
t3

psl(E) −2 −1 0

In this table, osp(n) means any simple Lie superalgebra osp(E) where E is a
supermodule with sdim(E) = n.
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In the case sl2 or G(3) or psl(E) (with sdim(E) = 0), the induced character kills
every ωp and the value of σ is useless. In the case psl(E), the character is determined
by any nonabelian gl(F ). Then χpsl(E) is determined by gl(1|1). But in this Lie
superalgebra every double bracket [[x, y], z] vanishes. Therefore Φgl(1|1) is trivial on
Λ in positive degree and the character χpsl(E) is the trivial character.

Remark: The characters χG(3) and χF (4) are equal to χsl2 and χsl3 on the algebra
generated by t and the ωp’s. These characters are actually equal to χsl2 and χsl3 on
Λ. This result was proven by Patureau-Mirand [Pa].

Conjecture: Let R be the subalgebra Q[α + β, αβ] of Q[α, β] where α and β
are two formal parameters of degree 1. Then there exists a unique graded algebra
homomorphism χexc from Λ to R such that:

χexc(t) = 3(α+ β)

∀p ≥ 0, χexc(ωp) = 5(α+ β)(3α+ 4β)(4α+ 3β)(4α+ 5β)p(5α+ 4β)p.

Remark: This conjecture is actually equivalent to a conjecture of Deligne [D]. If
Deligne’s conjecture is true, there exist a monoidal category C which is linear over an
algebra Q(λ) and looks like the category of representations of some virtual exceptional
Lie algebra. It is not difficult to construct a functor from the category ∆ to C and
we get an algebra homomorphism from Λ to the coefficient algebra Q(λ). But this
morphism is equivalent to a graded homomorphism χ from Λ to R and the desired
properties of χ are easy to check.

Conversely if such a morphism χ exists, we get an algebra homomorphism χ′ from

Λ[d] to the localized algebra R′ = R[
1

αβ
] by:

χ′(d) = −2
(5α + 6β)(6α+ 5β)

αβ
.

Then we may force Λ[d] to act on morphisms in the category ∆ (and not only on
special diagrams). So we get a new category ∆1 which is linear over Λ[d], where d
represents the circle. By tensoring ∆1 over Λ[d] by R′, we get a category ∆2 which
is linear over R′. If we kill every morphism f : X −→ Y in ∆2 such that the trace of
f ◦ g vanishes for every g : Y −→ X, we get a category ∆3 which satisfies all Deligne
properties. Hence we have a positive answer to Deligne’s conjecture.

Remark: Suppose the conjecture is true. Let λ be any element in ΛZ and P =
P (α, β) be its image under χexc. The expression P (α, β) is known if α/β lies in the
set E = {−3,−4,−6,−5/2,−5/3,−4/3,−3/2,−2,−5/4,−1}. Therefore P is well
defined modulo the following polynomial Π:

Π = (α + 2β)(β + 2α)(α+ 3β)(β + 3α)(α+ 4β)(β + 4α)(α + 6β)(β + 6α)×

(2α + 5β)(2β + 5α)(3α+ 5β)(3β + 5α)(3α+ 4β)(3β + 4α)×
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(2α+ 3β)(2β + 3α)(2α+ β)(2β + α)(4α+ 5β)(4β + 5α)(α+ β)

By looking carefully at each character corresponding to the exceptional Lie alge-
bras we can check that P (α, β) is an integer if α/β or β/α lies in E and α + β and
αβ/2 are integers. So we may ask the following:

Question: Suppose the character χexc exists. Is χexc(ΛZ) contained in the subalge-
bra Z[α + β, αβ/2]?

7.7 The super case. There exists an interesting Lie superalgebra depending on a
parameter α called D(2,1,α). This algebra is simple and has a nonsingular bilinear
supersymmetric invariant form and a Casimir element. Therefore it produces a char-
acter on Λ depending on the parameter α. Actually this algebra produces a graded
character from ΛZ to a polynomial algebra Z[σ2, σ3].

Consider 2-dimensional free oriented Z-modules E1, E2, E3 and denote by X
the module E1 ⊗ E2 ⊗ E3. This module X is a module over the Lie algebra L′ =
sl(E1) ⊕ sl(E2) ⊕ sl(E3).

Since Ei is oriented, there is a canonical isomorphism x ⊗ y 7→ x∧y from Λ2(Ei)
to Z. On the other hand, we have a map from S2(Ei) to sl(Ei) sending x⊗ y to the
endomorphism x.y : z 7→ x y∧z + y x∧z.

For each i ∈ {1, 2, 3} take an element fi ∈ sl(Ei) which is congruent to the
identity mod 2. Let A be the polynomial algebra Z[a, b, c] divided by the only relation
a+ b+ c = 0. Then we can define a Lie superalgebra L over A by the following:

— the even part L0 of L is the A-submodule of A[1/2]⊗ (⊕isl(Ei)) generated by
sl(E1), sl(E2), sl(E3) and (af1 + bf2 + cf3)/2

— the odd part L1 of L is the A-module A⊗X
— the Lie bracket on L0 ⊗ L0 is the standard Lie bracket on sl(Ei) ⊗ sl(Ei) and

vanishes on sl(Ei) ⊗ sl(Ej) for i 6= j
— the Lie bracket on L0 ⊗ L1 is the standard action of ⊕isl(Ei) on X
— the Lie bracket on L1 ⊗ L0 is the opposite of the standard action of ⊕isl(Ei)

on X
— the Lie bracket on X ⊗X is defined by:

[x⊗ y ⊗ z, x′ ⊗ y′ ⊗ z′] =
1

2
(a x.x′ y∧y′ z∧z′ + b x∧x′ y.y′ z∧z′ + c x∧x′ y∧y′ z.z′).

It is not difficult to see that L is a Lie superalgebra over A with superdimension
9 − 8 = 1. The Jacobi relation holds because a + b + c = 0. If we take a character
from A to C, we get a complex Lie superalgebra. Up to isomorphism, this algebra
depends only on one parameter α and is called D(2, 1, α). Here this algebra L will

be denoted by D̃(2, 1).

In order to define a Casimir element in D̃(2, 1), we need some notations. Consider
for each i = 1, 2, 3 a direct basis {εij} of Ei and the dual basis {ε′ij} with respect to
the form ∧:

∀x ∈ Ei

∑

j

εij(ε
′
ij∧x) =

∑

j

(x∧εij)ε
′
ij = x.
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For each i, the trace of the product is an invariant form on sl(Ei), and, corre-
sponding to this form, we have a Casimir type element Ωi =

∑
j eij⊗e

′
ij . This element

belongs to L ⊗ L ⊗ Z[1/2], but 2ωi lies in L ⊗ L. We have also a Casimir element
π ∈ X ⊗X defined by:

π =
∑

ijk

(ε1i ⊗ ε2j ⊗ ε3k) ⊗ (ε′1i ⊗ ε′2j ⊗ ε′3k).

7.7.1 Lemma: For each i ∈ {1, 2, 3} and x ∈ Ei, we have the following:

∑

j

εij ⊗ x.ε′ij = 2
∑

j

eij(x) ⊗ e′ij ,

∑

j

x.εij ⊗ ε′ij = −2
∑

j

eij ⊗ e′ij(x).

Proof: Denote by τ the trace map. For every α ∈End(Ei) we have:

∑

j

εijτ((x.ε
′
ij)α) =

∑

j

εij(ε
′
ij∧α(x)) +

∑

j

εij(x∧α(ε′ij))

= α(x) −
∑

j

εij(α(x)∧ε′ij) = 2α(x) = 2
∑

j

eij(x)τ(e
′
ijα)

and that gives the first formula. The second one is obtained in the same way.

7.7.2 Lemma: Let K be the fraction field of A. Then D̃(2, 1)⊗K has an invariant
bilinear form and the corresponding Casimir element is:

Ω = −aΩ1 − bΩ2 − cΩ3 + π.

Moreover the cobracket induced by Ω is a morphism from D̃(2, 1) to D̃(2, 1)⊗D̃(2, 1).

Proof: Let x⊗ y ⊗ z be an element of X. We have:

x⊗ y ⊗ z(π) =
∑

ijk

[x⊗ y ⊗ z, ε1i ⊗ ε2j ⊗ ε3k] ⊗ (ε′1i ⊗ ε′2j ⊗ ε′3k)

−
∑

ijk

(ε1i ⊗ ε2j ⊗ ε3k) ⊗ [x⊗ y ⊗ z, ε′1i ⊗ ε′2j ⊗ ε′3k]

=
1

2
(aZ1 + bZ2 + cZ3)

with:

Z1 =
∑

ijk

x.ε1i y∧ε2j z∧ε3k ⊗ (ε′1i ⊗ ε′2j ⊗ ε′3k)−
∑

ijk

(ε1i ⊗ ε2j ⊗ ε3k)⊗ x.ε′1i y∧ε
′
2j z∧ε

′
3k

Z2 =
∑

ijk

x∧ε1i y.ε2j z∧ε3k ⊗ (ε′1i ⊗ ε′2j ⊗ ε′3k)−
∑

ijk

(ε1i ⊗ ε2j ⊗ ε3k)⊗ x∧ε′1i y.ε
′
2j z∧ε

′
3k
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Z3 =
∑

ijk

x∧ε1i y∧ε2j z.ε3k ⊗ (ε′1i ⊗ ε′2j ⊗ ε′3k)−
∑

ijk

(ε1i ⊗ ε2j ⊗ ε3k)⊗ x∧ε′1i y∧ε
′
2j z.ε

′
3k.

Using Lemma 7.7.1, Z1 is easy to compute:

Z1 =
∑

ijk

x.ε1i ⊗ (ε′1i ⊗ y ⊗ z) −
∑

ijk

(ε1i ⊗ y ⊗ z) ⊗ x.ε′1i

= −2
∑

ijk

e1i ⊗ (e′1i(x) ⊗ y ⊗ z) − 2
∑

ijk

(e1i(x) ⊗ y ⊗ z) ⊗ e′1i = 2x⊗ y ⊗ z(Ω1)

and similarly we get: Z2 = 2x⊗ y ⊗ z(Ω2), Z3 = 2x⊗ y ⊗ z(Ω3). Therefore we have:

x⊗ y ⊗ z(Ω) = x⊗ y ⊗ z(−aΩ1 − bΩ2 − cΩ3) +
1

2
(aZ1 + bZ2 + cZ3) = 0

and Ω, which is clearly invariant under the even part of D̃(2, 1), is D̃(2, 1)-invariant.
Since Ω is symmetric and invariant, it corresponds to an invariant symmetric

bilinear form on D̃(2, 1) ⊗K which is clearly non singular.

It is easy to see the following congruence modulo D̃(2, 1) ⊗ D̃(2, 1):

Ω ≡
1

2
(af1 ⊗ f1 + bf2 ⊗ f2 + cf3 ⊗ f3)

and the cobracket takes values in D̃(2, 1) ⊗ D̃(2, 1).

7.8 Theorem: Let Z[σ2, σ3] be the graded subalgebra of A = Z[a, b, c]/(a + b + c)
generated by σ2 = ab + bc + ca of degree 2 and σ3 = abc of degree 3. Then the
character χsup induced by D̃(2, 1) equipped with the Casimir Ω is a graded algebra
homomorphism from ΛZ to Z[σ2, σ3].

Moreover χsup satisfies the following:

χsup(t) = 0 and ∀p ≥ 0, χsup(ωp) = ωσp

with: σ = 4σ2, ω = 8σ3.

Proof: Since A is a unique factorization domain, we can apply Theorem 6.1 and
the character induces by D̃(2, 1) is an algebra homomorphism χsup from ΛZ to A =

Z[a, b, c]/(a + b + c). There is an action of S3 on D̃(2, 1). This action permutes the
modules Ei and the coefficients a, b, c. Therefore χsup takes values in the fixed part of
A under the action of S3 and χsup is an algebra homomorphism from ΛZ to Z[σ2, σ3].

On the other hand, D̃(2, 1) is a graded algebra: elements in sl(Ei) are of degree
0, elements in X are of degree 1 and a, b, c are of degree 2. With this degree the
degree of the Lie bracket is 0 and the degree of the cobracket is 2. Hence it is easy
to see that each element u ∈ ΛZ of degree p is sent by χsup to an element of degree
2p. Thus, after dividing degrees in A by 2, χsup becomes a graded character. In
particular χD(t) is trivial because Z[σ2, σ3] has no degree 1 element.

As above denote by Ψ the morphism defined by the diagram
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7.8.1 Lemma: The endomorphism Ψ satisfies the following:

Ψ(Ω1) = −4aΩ1 +
3

2
π, Ψ(Ω2) = −4bΩ2 +

3

2
π, Ψ(Ω3) = −4cΩ3 +

3

2
π,

Ψ(π) = −4(a2Ω1 + b2Ω2 + c2Ω3).

Proof: We have:

Ψ(Ω1) = −a
∑

ij

[e1i, e1j ] ⊗ [e1j , e1i] +
∑

ijlk

[e1i, ε1j ⊗ ε2k ⊗ ε3l] ⊗ [ε′1j ⊗ ε′2k ⊗ ε′3l, e
′
1i].

The coefficient of −a in this formula is the image of the Casimir of sl2 under the
corresponding homomorphism Ψsl2. Then it is equal to 2χsl2(t)Ω1 = 4Ω1, and:

Ψ(Ω1) = −4aΩ1 −
∑

ijkl

(e1i(ε1j) ⊗ ε2k ⊗ ε3l) ⊗ (e′1i(ε
′
1j) ⊗ ε′2k ⊗ ε′3l).

Because of Lemma 7.7.1, we have:
∑

ij

e1i(ε1j) ⊗ e′1i(ε
′
1j) =

1

2

∑

ij

ε1i ⊗ ε1j.ε
′
1i(ε

′
1j)

=
1

2

∑

ij

ε1i ⊗ (ε1j ε
′
1i∧ε

′
1j + ε′1i ε1j∧ε

′
1j)

=
1

2

∑

j

ε′1j ⊗ ε1j +
1

2

∑

i

ε1i ⊗ ε′1i

∑

j

ε1j∧ε
′
1j

= −
1

2

∑

j

ε1j ⊗ ε′1j −
∑

i

ε1i ⊗ ε′1i = −
3

2

∑

j

ε1j ⊗ ε′1j

and that implies the first formula. For computing Ψ(Ω2) and Ψ(Ω3), just apply a
cyclic permutation.

Since Ω is the Casimir and t is zero in this case, we have:

0 = Ψ(Ω) = 4a2Ω1 + 4b2Ω2 + 4c2Ω3 + Ψ(π)

and that proves the lemma.

7.8.2 Lemma: The module S2D̃(2, 1) ⊗ K decomposes into a direct sum U0 ⊕
U1 ⊕ U2 ⊕ U3. The module U0 is isomorphic to K and generated by the Casimir.
The homomorphism Ψ respects this decomposition. It acts on U0, U1, U2, U3 by
multiplication by 0, 2a, 2b, 2c respectively.

Proof: Set: L = D̃(2, 1) ⊗K. Let V0 be the K-submodule of S2L generated by Ω1,
Ω2, Ω3, π. The morphism Ψ induces an endomorphism of V0. The matrix of this
endomorphism in the basis (2Ω1, 2Ω2, 2Ω3, π) is:




−4a 0 0 −2a2

0 −4b 0 −2b2

0 0 −4c −2c2

3 3 3 0



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The eigenvalues of this matrix are 0, 2a, 2b, 2c and corresponding eigenvectors are:

Ω = −aΩ1 − bΩ2 − cΩ3 + π

2a(b− c)Ω1 + 6b2Ω2 − 6c2Ω3 − 3(b− c)π

2b(c− a)Ω2 + 6c2Ω3 − 6a2Ω1 − 3(c− a)π

2c(a− b)Ω3 + 6a2Ω1 − 6b2Ω2 − 3(a− b)π.

Let L0 be the even part of L. Let Fp be the simple sl2-module of dimension
p + 1. This module is the symmetric power SpF1 and F2 = sl2. Denote by [p, q, r]
the isomorphism class of the L0-module Fp ⊗Fq ⊗Fr. These elements form a basis of
the Grothendieck algebra Rep(L0) of representations of L0. In this algebra we have:

[L0] = [2, 0, 0] + [0, 2, 0] + [0, 0, 2] [X] = [1, 1, 1]

[S2L0] = 3[0, 0, 0] + [4, 0, 0] + [0, 4, 0] + [0, 0, 4] + [2, 2, 0] + [2, 0, 2] + [0, 2, 2]

[Λ2X] = [0, 0, 0] + [2, 2, 0] + [2, 0, 2] + [0, 2, 2]

[L0 ⊗X] = 3[1, 1, 1] + [3, 1, 1] + [1, 3, 1] + [1, 1, 3].

The module V0 is the submodule 3[0, 0, 0]+[0, 0, 0] of S2L. Set V ′
0 = V0 and define

by induction submodules V ′
p to be the image of X⊗V ′

p−1 under the action map. Then
set: Vp = V ′

0 + . . . + V ′
p . For every p ≥ 0, Vp is a L0-module. It is not difficult to

prove the following:

[V0] = 4[0, 0, 0] [V1] = 4[0, 0, 0] + 3[1, 1, 1]

[V2] = 4[0, 0, 0] + 3[1, 1, 1] + [2, 2, 0] + [2, 0, 2] + [0, 2, 2] =⇒ Λ2X ⊂ V2

[V3] = 4[0, 0, 0] + 3[1, 1, 1] + [2, 2, 0] + [2, 0, 2] + [0, 2, 2] + [3, 1, 1] + [1, 3, 1] + [1, 1, 3]

=⇒ Λ2X ⊕ L0 ⊗X ⊂ V3.

Then there is a unique L0-submodule W of S2L0 ⊂ S2L such that V3 ⊕W = S2L.
If V is the L-submodule of S2L generated by V0, the module S2L/V is a quotient
of W and then has no odd degree component. Therefore this module is trivial and
S2L is generated by V0 as a L-module, and that implies that S2L is the direct sum
of L-modules generated by the eigenvectors above and the lemma is proven.

Now we are able to apply Theorem 6.3 and we get the desired result.

Remark: There exist an extra Lie superalgebra equipped with a Casimir element:
the Hamiltinian algebraH(n) for n > 4 and n even and that’s a complete list of simple
quadratic Lie superalgebras [Kc]. For n > 4 the Hamiltonian algebra L = H(n) has
the following property: it has a Z-graduation compatible with the Lie bracket, and
the Casimir has a nonzero degree. Therefore for any element u ∈ Λ of positive degree,
the induced element χL(u) has a nonzero degree. But it is an element of the coefficient
field. Hence the character χL is the augmentation character.
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8. Properties of the characters.

In the last section, we constructed eight characters χi, i = 1 . . . 8 corresponding to
families gl, osp, E6, E7, E8, F4, G2 and D̃(2,1). These characters are graded algebra
homomorphisms from Λ to Ai, where A1 = Q[t, u], A2 = Q[t, v], A3 = A4 = A5 =
A6 = A7 = Q[t], A8 = Q[σ2, σ3].

Consider the subalgebra R0 = Q[t] ⊕ ωQ[t, σ, ω] of R = Q[t, σ, ω]. This algebra
is sent to Λ by a morphism ϕ defined by:

ϕ(t) = t, ∀p ≥ 0, ϕ(σpω) = ωp

For each i = 1, . . . , 8 there is a unique character χ′
i from R to Ai which restricts

on R0 to χi ◦ ϕ. These morphisms are defined by:

χ′
1(t) = t χ′

1(σ) = 2(t2 − 2u) χ′
1(ω) = 2t(t2 − 4u)

χ′
2(t) = t χ′

2(σ) = 3(t− 2v)(t+ 3v) χ′
2(ω) = 2(t− v)(t− 2v)(t+ 4v)

χ′
3(t) = t χ′

3(σ) =
77

36
t2 χ′

3(ω) =
25

12
t3

χ′
4(t) = t χ′

4(σ) =
176

81
t2 χ′

4(ω) =
520

243
t3

χ′
5(t) = t χ′

5(σ) =
494

225
t2 χ′

5(ω) =
98

45
t3

χ′
6(t) = t χ′

6(σ) =
170

81
t2 χ′

6(ω) =
480

243
t3

χ′
7(t) = t χ′

7(σ) =
65

36
t2 χ′

7(ω) =
55

36
t3

χ′
8(t) = 0 χ′

8(σ) = 4σ2 χ′
8(ω) = 8σ3.

The kernels of these characters are:

I1 = Kerχ′
1 = (Pgl)

I2 = Kerχ′
2 = (Posp)

I3 = Kerχ′
3 = (Pexc, 77t2 − 36σ)

I4 = Kerχ′
4 = (Pexc, 176t2 − 81σ)

I5 = Kerχ′
5 = (Pexc, 494t2 − 225σ)

I6 = Kerχ′
6 = (Pexc, 170t2 − 81σ)

I7 = Kerχ′
7 = (Pexc, 65t2 − 36σ)

I8 = Kerχ′
8 = (t)

with:
Pgl = ω − 2tσ + 2t3
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Posp = 27ω2 − 72tσω + 40t3ω + 4σ3 + 29t2σ2 − 24t4σ

Pexc = 27ω − 45tσ + 40t3.

Using the inclusion Q[t, σ, ω] ⊂ Q[α, β, γ] we check the following:

Pgl = (α− t)(β − t)(γ − t) = −(α + β)(β + γ)(γ + α)

Posp = (α+ 2β)(2α+ β)(β + 2γ)(2β + γ)(γ + 2α)(2γ + α)

Pexc = (3α− 2t)(3β − 2t)(3γ − 2t).

Since characters χ′
i are surjective each character χi may be consider as a graded

algebra homomorphism from Λ to a quotient of R. These characters are related.
The complete relations between them are given by the following result of Patureau-
Mirand:

8.1 Theorem [Pa]: Let I be the following ideal in R:

I = tωPglPosp(Pexc, (77t2−36σ)(176t2−81σ)(494t2−225σ)(170t2−81σ)(65t2−36σ))

Then there is a unique graded algebra homomorphism χ from Λ to R0/I such that:

χsl2 ≡ χ mod ωR

∀i = 1 . . . 8, χi ≡ χ mod Ii

Remark: It was conjectured in [BN] that every element in A is detected by invariants
coming from Lie algebras in series A, B, C, D. This conjecture is false. There is a
weaker conjecture saying that invariants coming from simple Lie algebras detect every
element in A. That’s also false because of the Lie superalgebra D̃(2,1). Actually we
have the following result:

8.2 Theorem: There exists a primitive element of degree 17 in A which is ratio-
nally nontrivial and killed by every weight function obtained by a semisimple Lie
(super)algebra and a finite dimensional representation.

Proof: Let u be the following primitive element of A of degree 2:

QQ

��&%
'$

The map λ 7→ λu is a rational injection from Λ to the module P of primitives of A
(see Corollary 4.7). Let U be the image of P = ωPglPospPexc under the morphism
ϕ : R0 −→ Λ. This element is detected by χ8 and is rationally non trivial. Then Uu
is an element rationally non trivial in A of degree 17.
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Let L be a simple Lie superalgebra equipped with a Casimir element. If L is of
type i 6= 8 we have:

ΦL(Uu) = χ′
i(P )ΦL(u) = 0.

If L is of type 8 (i.e. L = D̃(2,1)), we have:

ΦL(Uu) = χ′
8(P )ΦL(u) = χ′

8(P )χ8(t)ΦL(����).
But χ8(t) = 0. Therefore Uu is killed by ΦL.

If L = ⊕Li is semisimple, ΦL(Uu) =
∑

ΦLi
(Uu) = 0 because Uu is primitive.

8.3 Theorem: Let u be an element in Λ killed by all characters χi. Let L be a
quadratic Lie superalgebra over a field of characteristic 0. Then u is killed by ΦL.

Proof: Let D be a connected diagram in D(∅, [3]) representing some element u′ in
F (3). Let D0 be the union of closed edges meeting ∂K and D1 be the complement
of D0 in K. We’ll said that D is reduced if D1 is connected.

8.3.1 Lemma: Every connected diagram in D(∅, [3]) of degree > 2 is equivalent in
F (3) to a multiple of a reduced diagram.

Proof: Let d be the degree of a connected diagram D. If d is positive and D is not
reduced, we have the following possibilities in F (3) (up to some cyclic permutation
in S3):

D =
��

@@ v =
��

@@ ��w = 2t
�

@
w

D =

��

@@
v w =

��

@@
w v = t

�

@
w v

Therefore D is equivalent in F (3) to a multiple of tiD1, with i < 3 and D1 reduced
or i = 3. But it is easy to see the following:

t3D = t3

�

@
w =

��

@@
w
BB

Since a reduced diagram multiply by t is represented by a reduced diagram, the result
follows.

Since χgl detects every element in Λ in degree < 6, we may suppose that u is an
element in Λ of degree d ≥ 6. Consider the category of diagrams ∆. Any element
in F (m) may be seen as a morphism in ∆ from ∅ to [m]. Let β be the bracket from
[2] to [1] (β is represented by a tree). Because of the lemma, there is an element
v ∈ F (6) such that:

u = β⊗3 ◦ v.

Moreover the degree of v is d− 3 > 2.
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Consider now a quadratic Lie superalgebra L over a field in characteristic zero
and a central extension E of L. Denote by K the kernel of E −→ L. The Lie
bracket E ⊗E −→ E is trivial on K ⊗E +E ⊗K and induces an extended bracket
ψ : L⊗ L −→ E. So we can set:

ΦE,L(u) = ψ⊗3(ΦL(v)) ∈ E⊗3.

8.3.2 Lemma: Let I be an ideal in L and I⊥ be its orthogonal. Let E1 and E2

be the pullback in E of I and I⊥. Suppose that the inner form is nonsingular on I.
Then we have:

ΦE,L(u) = ΦE1,I(u) + ΦE2,I⊥(u).

Proof: The modules I and I⊥ are Lie superalgebras. Since the form is nonsingular
on I, L is the direct sum I ⊕ I⊥. It is easy to see that I and I⊥ are quadratic Lie
superalgebras and E1 −→ I and E2 −→ I⊥ are central extensions. Then we have:

ΦE,L(u) = ψ⊗3(ΦL(v)) = ψ⊗3(ΦI(v) + ΦI⊥(v)) = ΦE1,I(u) + ΦE2,I⊥(u).

8.3.3 Lemma: Let I be an isotropic ideal of L and I⊥ be its orthogonal. Let J
be the quotient I⊥/I. Suppose that the form on J induced by the inner form on
L is nonsingular on the center of J . Let E1 be the pullback in E of the module
[I⊥, I⊥] ⊂ L. Then E1 is a central extension of J1 = [J, J ] and we have:

ΦE,L(u) = ΦE1,J1
(u).

Proof: Since I is a L-module, I⊥ and J = I⊥/I are L-modules too. Moreover for
any (x, y, z) ∈ I × I⊥ × L we have:

< [x, y], z >=< x, [y, z] >= 0

and [x, y] is orthogonal to every z ∈ L. Then [x, y] = 0 for every x ∈ I and y ∈ I⊥

and the bracket is trivial on I ⊗ I⊥. Therefore the Lie bracket and the inner form
induce a quadratic Lie superalgebra structure on J = I⊥/I.

The central extension I⊥ −→ J is determined by a 2-cocycle ϕ : Λ2J −→ I. The
cohomology class of ϕ is determined by a morphism H2(J) −→ I and it is possible
to modify ϕ by a coboundary in such a way that ϕ and H2(J) −→ I have the same
image. Then I⊥ can be identify to I ⊕ J and the Lie bracket [ , ]1 on I ⊕ J is given
by:

∀α, β ∈ I, ∀x, y ∈ J, [α + x, β + y]1 = [x, y] + ϕ(x⊗ y)

where ϕ is a cocycle satisfying: ϕ(Λ2(J)) = ϕ(Ker(Λ2J → J)). The central extension
induces an extended bracket ψ′ from Λ2(J) to I⊥.
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Since the form is non singular on J , it is nonsingular on its orthogonal J⊥. Then
there exists a module I∗ ⊂ L such that the form is trivial on I∗ and J⊥ is the module
I ⊕ I∗. Therefore the Casimir element Ω decomposes in a sum: Ω = Ω0 + Ω+ + Ω−,
where Ω0, Ω+ and Ω− are in J ⊗ J , I ⊗ I∗ and I∗ ⊗ I respectively.

Suppose v ∈ F (6) is represented by a connected diagram D such that the edges
of D meeting ∂D are disjoint. Therefore there exists a diagram D′ representing an
element w in A(∅, [12]) such that:

v = β⊗6 ◦ w.

Actually every element in F (6) of positive degree is a linear combination of such
diagrams.

Set ∂D = {vi}, i = 1 . . . 6 and denote by ei the oriented edge in D starting from
vi. Let U be the set of oriented subgraphs of D and Γ be an oriented graph in U .
For each oriented edge a ∈ D define the module VΓ(a) by:

VΓ(a) =




I∗ if a ∈ Γ
I if − a ∈ Γ
J otherwise

Let e be an edge in D and a and −a be the corresponding oriented edges. Set ΩΓ(e)
be the component of the Casimir element Ω in VΓ(a) ⊗ VΓ(−a) and denote by Ω(Γ)
the tensor product:

Ω(Γ) =⊗
e

ΩΓ(e).

For each 3-valent vertex x in D the alternating form < , , > induces a linear form
on VΓ(a)⊗VΓ(b)⊗VΓ(c) where a, b, c are the three oriented edges in D starting from
x. By applying all these forms to Ω(Γ) we get an element Φ(Γ) in ⊗iVΓ(ei). It is not
difficult to see that ΦL(v) is the sum of all Φ(Γ).

Let x be a 3-valent vertex in D and a, b, c be the oriented edges in D ending at
x. Since the alternating form < x, y, z > vanishes for x ∈ I and y ∈ I ⊕ J , Ω(Γ) is
zero if a is in Γ and −b (or −c) is not in Γ.

Denote by U+ the set of all Γ in U such that:
for every 3-valent vertex v in D, if one oriented edge starting from v is in Γ the

two other edges ending at v are in Γ too.

�
��

@
@R -

Then we have:
ΦL(v) =

∑

Γ∈U+

Φ(Γ).

Let Γ be an oriented graph in U+. Suppose Γ contains some oriented edge e
disjoint from ∂D. Since D\{ei} is a connected 3-valent graph, there is a long oriented
path (f1, f2, . . . , fp = e) in D such that each oriented edge fj is in Γ. Therefore Γ
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contains an oriented cycle C. Since the degree of v is at least 2, there exist an edge
e′ outside of {ei} and meeting C in some vertex v. Then there is a long oriented
path (g1, g2, . . . , gq) such that gq is the edge e′ ending at v. But this path is necessary
included in D because Γ is in U+ and that’s impossible. Hence Γ has to be included
in {ei} with the right orientation.

Then we have:
ΦL(v) = ψ′⊗6(ΦJ (w)).

Let J2 be the center of J . Since the form is nonsingular, J is the direct sum:
J = J1 ⊕ J2. The center of J1 is trivial and then: J1 = [J1, J1]. Since J2 is abelian,
we have:

ΦL(v) = ψ′⊗6(ΦJ(w)) = ψ′⊗6(ΦJ1
(w) + ΦJ2

(w)) = ψ′⊗6(ΦJ1
(w)).

Let I1 be the image of ϕ. Then the module [I⊥, I⊥] is [I⊕J, I⊕J ]1 = I1⊕J1. Denote
by ϕ1 a 2-cocycle on Λ2L which determines the extension E −→ L. Let α ∈ I1 and
x and y in J . Since ϕ1 is a cocycle, we have:

ϕ1(α⊗ [x, y]1) = −ϕ1(x⊗ [y, α]1) − ϕ1(y ⊗ [α, x]1) = 0

=⇒ ϕ1(α, [x, y] + ϕ(x⊗ y)) = 0.

Then if w is in Ker(Λ2J → J) we have: ϕ1(α, ϕ(w)) = 0 and ϕ1 is trivial on I1 ⊗ I1
and therefore on I1 ⊗ J1. Hence the cocycle on [I⊥, I⊥] comes from a cocycle on J1

and the extension E1 −→ J1 is central. This extension induces an extended bracket
ψ′′ : Λ2J1 −→ E1 and we have for every x1, x2, x3, x4 in J1:

ψ(ψ′⊗2(x1 ⊗ x2 ⊗ x3 ⊗ x4)) = ψ(ψ′(x1 ⊗ x2) ⊗ ψ′(x3 ⊗ x4)) = ψ′′([x1, x2] ⊗ [x3, x4])

=⇒ ψ ◦ ψ′⊗2 = ψ′′ ◦ β⊗2

where β is the Lie bracket on L1. Therefore we have:

ΦE,L(u) = ψ⊗3(ΦL(v)) = ψ⊗3(ψ′⊗6(ΦJ1
(w)))

= ψ′′⊗3(β⊗3(ΦJ1
(w))) = ψ′′⊗3(ΦJ1

(v)) = ΦE1,J1
(u).

Now we are able to prove that ΦE,L(u) is zero by induction on dim(E)+dim(L).
Let E be a central extension of a quadratic Lie superalgebra L. Suppose there

is some nontrivial ideal in L contained in its orthogonal. Let I be such a maximal
ideal. Set: J = I⊥/I. Since I is maximal, J doesn’t contain any nontrivial isotropic
ideal and the inner form on J is nonsingular on the center of J . Hence ΦE,L(u) is
trivial by induction, because of Lemma 8.3.3.

Suppose L has some nontrivial simple submodule I. The inner form is now non-
singular on I and ΦE,L(u) is trivial by induction, because of Lemma 8.3.2.

So we have to suppose that L is simple. If L is isomorphic to some sl(E), osp(E),
E6, E7, E8, F4, G2, G(3), F (4) or D(2, 1, α), the cohomology of L is isomorphic to
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the cohomology of some semisimple Lie algebra [G] and H2(L) is trivial. Therefore
the extension E −→ L is trivial and there is a section s of it. So we have:

ΦE,L(u) = ψ⊗3(ΦL(v)) = s⊗3 ◦ β⊗3(ΦL(v)) = s⊗3(ΦL(u))

and this element is trivial because u is killed by each character χi.
If L is isomorphic to some psl(E), H2(L) is a 1-dimensional module generated

by the central extension sl(E) −→ psl(E). Then there is a morphism s : sl(E) −→
psl(E) = L and then this extension factorizes through E. So we have:

ΦE,L(u) = s⊗3(Φsl(E),L(u))

and ΦE,L(u) is detected by Φsl(E),L(u) and then by Φgl(E)(u). Therefore ΦE,L(u) is
trivial because Φgl(E)(u) is detected by χ1 = χgl.

In the last possibility L is isomorphic to an Hamiltonian Lie superalgebra H(n)

with n = 2p > 4. Consider the Hamiltonian Lie superalgebra E0 = Ĥ(n) and its

commutator E1 = [Ĥ(n), Ĥ(n)] (see the Appendix). Since H2(H(n)) is 1-dimensional
and generated by the central extension E1 −→ H(n), there is a morphism s : E1 −→
E and this extension factorizes through E. So we have:

ΦE,L(u) = s⊗3(ΦE1,L(u))

and ΦE,L(u) is detected by ΦE1,L(u) and then by ΦE0
(u). But E0 = Ĥ(n) is Z-graded

and the degree of its cobracket is n−4. Then ΦE0
(u) is an element in Λ3E0 of degree

d(n − 4). On the other hand E0 is concentrated in degrees −2,−1, . . . , n − 2 and
Λ3E0 is concentrated in degrees −5,−4, . . . , 3n− 7. If ΦE0

(u) is nonzero we have:

d(n− 4) ≤ 3n− 7 =⇒ (d− 3)(n− 4) ≤ 5 =⇒ 2(d− 3) ≤ 5 =⇒ d ≤ 5.

But that’s not true and ΦE,L(u) is trivial.

8.4 Theorem: Let J be the ideal of R generated by tωPglPospPexc. Then J is killed
by the morphism ϕ : R0 −→ Λ.

Proof: Let ∆′ be the monoidal subcategory of ∆ generated by diagrams where each
component meets source and target. Let X be a finite set. If x and y are distinct
points in X we may define three morphisms in the category ∆′ in the following way:

Denote by Y the complement: Y = X \ {x, y}. Take a point z (outside of Y ) and
set: Z = Y ∪ {z}. So we define a morphism Φx,y

z from X to Z by:

Φx,y
z =

QQ
��
x

y
z ⊗1Y

We have also a morphism Φz
x,y from Z to X defined by:

Φx
x,y =

��
QQ

x

y
z ⊗1Y

and a morphism Ψx,y from X to X defined by:

Ψx,y =
x

y

x

y
⊗1Y
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The set of all these morphisms will be denoted by M.
Let f be one of these morphisms. The set {x, y, z} in the first two cases or the

set {x, y} in the last case will be called the support of f . Using this terminology we
have the following relations:
R1: if f and g are two composable morphisms in M with disjoint support they
commute.
R2: Ψx,y = Φz,y

y ◦ Φx
x,z

R3: Ψx,y − Ψx,y ◦ τx,y = Φz
x,y ◦ Φx,y

z , where τx,y is the transposition x↔ y.
Let X be a finite set and x be an element in X. Denote by Y the complement

Y = X \ {x}. We have the following morphisms:

Φx =
∑

y∈Y

Φy
x,y, Φx =

∑

y∈Y

Φx,y
y , Ψx =

∑

y∈Y

Ψx,y.

They are morphisms from X to Y , Y to X and X to X respectively.
The collection of modules F ′(X) = As(∅, X) define a ∆′-module F . Because of

Lemma 3.3 it is easy to see that Φx and Φx act trivially on F and Ψx acts on F by
multiplication by 2t. So we may define a new category ∆̃: the objects in this category
are nonempty finite sets and the morphisms are Q[t]-modules defined by generators
and relations where the generators are the bijections in finite sets and the elements
in M and the relations are the following:

— relations R1,R2,R3
— Φx = 0, Φx = 0 and Ψx = 2t for each point x in some finite set.
This category contains the category S of finite sets and bijections and F is a

∆̃-module.
Let n > 1 be an integer. Denote by ∆n the category of finite sets with cardinal

in {1, 2, . . . , n} and morphisms defined by generators and relations:
— generators: bijections and elements in M involving only sets of cardinal ≤ n
— relations: relations in ∆̃ involving only sets of cardinal ≤ n.
By restriction F induces a ∆n-module Fn. For example F2(X) is trivial if #X 6= 2

and is the free module generated by:

�
��
otherwise.

Define the ∆4-module G4 by:
— G4(X) = 0 if #X = 1

— if #X = 2, G4(X) is the free R0-module generated by �
��
— if #X = 3, G4(X) is the free R0-module generated by

��
QQ

— if #X = 4, G4(X) is a direct sum R0 ⊗U1 ⊕R⊗U2 ⊕R0 ⊗V1 ⊕R⊗V2, where
V1 and V2 are 1-dimensional modules generated by the following diagrams:

�
�
�

@
@
@

�
�
�

@
@
@

•
0
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and U1 and U2 are 2-dimensional simple S4-modules generated by the following dia-
grams:



 JJ

JJ 





 JJ

JJ 

•
0

The action of the category ∆̃4 on this module is defined by Proposition 5.5.
For each n > 4 define the module Gn by scalar extension:

Gn = ∆n ⊗
∆n−1

Gn−1.

These modules can be determined by computer for small values of n. For every Young
diagram α of size n denote by V (α) a Sn-module corresponding to α. If X is a finite
set of cardinal p, Gn(X) is a Sp-module and we get the following:

— if p ≤ 4, G4(X) ≃ G5(X) ≃ G6(X)
— if p = 5, G5(X) and G6(X) are isomorphic to

(R0 ⊕R ⊕R) ⊗ V (3, 1, 1)⊕ R⊗ V (2, 1, 1, 1)

— if p = 6, G6(X) is isomorphic to

(R0 ⊕ R5) ⊗ (V (4, 2) ⊕ V (2, 2, 2)) ⊕ (R0 ⊕ R3) ⊗ V (6)

⊕R2 ⊗ (V (3, 2, 1) ⊕ V (2, 1, 1, 1, 1))⊕ R⊗ (V (3, 1, 1, 1)⊕ V (5, 1)).

For a complete description of G6(X) in the case p = 5 we may proceed as follows:
Let E(X) be the Q-vector space generated by the elements of X with the single

relation:
∑

x∈X x = 0. Then Λ2E(X) and Λ3E(X) are simple modules corresponding
to Young diagrams (3, 1, 1) and (2, 1, 1, 1) and we can set: V (3, 1, 1) = Λ2E(X) and
V (2, 1, 1, 1) = Λ3E(X). So with the identification G6(X) = (R0⊕R⊕R)⊗V (3, 1, 1)⊕
R⊗ V (2, 1, 1, 1), we have the following:

�
@ �

@
b

a

c

de

= A⊗ (a− b)∧(d− c),

�
@ �

@
b

a

c

de

•
0

= C ⊗ (a− b)∧(d− c) +D ⊗ (a− b)∧d∧c,

���
@

b

a

c

e

d = (10
3
tA+B) ⊗ a∧b,

���
@

b

a

c

e
d•

0
= (10

3
tC + σB) ⊗ a∧b,

where A generates a free R0-module and B, C, D generate free R-modules.
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Let X be a set of cardinal 6. Consider the element U in F (X) represented by the
following diagram:

��
��
�
�
�

T
T
T

TT

��

This element is not in G6 but it corresponds to en element U0 in G7. With the
following idempotent in Q[SX ]:

π =
1

6!

∑

σ∈SX

ε(σ)σ

we can set: V = πU and V0 = πU0.
Let x and y be two distinct elements in X. Set: Y = X \ {y} and Z = X \ {x, y}.

We have:

tV0 =
1

2
ΨxV0 =

1

4

∑

z 6=x

Φx
x,z ◦ Φx,z

x V0 =
π

4

∑

z 6=x

Φx
x,z ◦ Φx,z

x V0 =
5π

4
Φx

x,y ◦ Φx,y
x V0.

It is not difficult to see that Φx,y
x V0 is an element in G6(Y ) completely antisymmetric

in Z.
Let a, b, c, d be the elements in Z. It is easy to see that every element in V (3, 1, 1)

completely antisymmetric in a, b, c, d is trivial and any element in V (2, 1, 1, 1) =
Λ3E(Y ) completely antisymmetric in a, b, c, d is a multiple of a∧b∧c−a∧b∧d+a∧c∧d−
b∧c∧d. Therefore there is an element P in R such that:

Φx,y
x V0 = P

(
�
@ �

@
b

a

c

dx

•
0

−
�
@ �

@
b

a

c

dx

•
0

)
.

But for a diagram like this:

�
@ �

@

�@
•
0

there is a double transposition in S6 which acts on it by multiplication by −1 and
its antisymmetrization is trivial. Therefore V0 and V are killed by t.

On the other hand there is a pairing on each F ′(X) with values in Λ:
if u and u′ are two elements in F ′(X) represented by diagrams D and D′, we

can glue D and D′ along X and we get a connected diagram D1. The class of D1

in F (0) is the multiple of the Theta diagram by some element λ ∈ Λ. So we set:
< u, u′ >= λ.

Consider the element P =< U, V > in Λ. This element is of degree 15. Since V
is killed by t, we have in Λ the relation: tP = 0.

On the other hand we can check by computer that the morphism G6(X) −→
G7(X) is surjective for #X < 6. So P lies in a quotient of R0 and P can be seen as
an element in R0.
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Since tP = 0, P is killed by χsl2, χgl and χosp. So we have:

P = ωPglPospQ

for some Q ∈ R of degree 3. But Q is also killed by the exceptional characters χi and
Q is a multiple of Pexc. At the end we get:

P = k ωPglPospPexc

for some rational k. A direct computation (by computer) gives the following result:

P = 2−10ωPglPospPexc =⇒ tωPglPospPexc = 0 ∈ Λ

One can also determine P by using the Lie superalgebra D̃(2, 1).
Consider the morphism A in ∆6 defined by the diagram:

��
The morphism B = 1 ⊗ A may be consider as a morphism from X to a set Z of
cardinal 4. Let π′ be the sum of all elements in SZ divided by 4!. Since B lies in
∆7 the element π′ ◦ B.V0 belongs to ∆7(Z) and can be seen as an element W in
G6(Z) = G4(Z). Since SZ acts trivially on W , there is two elements Q ∈ R0 and
Q′ ∈ R such that W = QH +Q′H ′ with:

H =
�
��@
@@

H ′ =
�
��@
@@
•
0

Degrees of Q and Q′ are 12 and 10 respectively. Since tV0 is trivial W is killed by t
in F (Z) and W is killed by Φsl2, Φsln and Φon

.
The functor Φsl2 kills H ′ but not H . Then Q is killed by χsl2.
For n big enough the vectors Φsln(H) and Φsln(H ′) are linearly independant. Then

Q and Q′ are killed by χgl.
The same holds for Φon

and Q and Q′ are killed by χosp.
Thus there exist c and c′ in Q with: Q = cωPglPosp and Q′ = c′tPglPosp.
Let L be an exceptional Lie algebra. Then we have:

ΦL(H ′) =
3ω

5t
ΦL(H) =⇒ χL(5tQ) + χL(3Q′) = 0 =⇒ c′ = −5/3c.

On the other hand we have:

P =< H,W >= cωPglPosp < H,H > −5/3ctPglPosp < H,H ′ >

= cPglPosp(ω < H,H > −5/3t < H,H ′ >)

and for every p ≥ 0:

0 =< σpH ′, tW >= tcPglPosp(ωσ
p < H ′, H > −5/3tσp < H ′, H ′ >).
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Since P is non zero c is non zero too. So we have:

tσpPglPosp(ω < H ′, H > −5/3t < H ′, H ′ >) = 0.

A direct computation gives:

< H ′, H >= −
3

2
σω +

10

3
t2ω, < H ′, H ′ >= −

3

2
σ2ω +

4

3
t2σω + 2tω2

and that implies:

0 = tσpPglPosp(−
3

2
σω2 +

5

2
tσ2ω −

20

9
t3σω) = −

1

18
tσp+1ωPglPospPexc.

Therefore tσpωPglPospPexc is zero in Λ for every p ≥ 0 and that finishes the proof.

A particular consequence of this result is the fact that a cobracket morphism is
not necessarily injective:

8.5 Proposition: The morphism:

u 7→
��

@@ u

from F (2) to F (3) is not injective.

Proof: Denote this morphism by f . Let U be the image of ωPglPospPexc under the
morphism ϕ : R0 −→ Λ. We have: U 6= 0 and tU = 0. Consider the following
element in F (2):

u = U �
��
Because of Corollary 4.6 u is nonzero. But its image under f is:

2tU
��
QQ = 0

and the result follows.

Conjecture: Let J be the ideal of R generated by tωPglPospPexc. Then the mor-
phism ϕ : R0 −→ Λ induces an isomorphism from R0/J to Λ.

9. Appendix: The Hamiltonian Lie superalgebra Ĥ(n).

This section is devoted to the construction of the Lie superalgebra Ĥ(n) considered
in the proof of Theorem 8.3.

Let x1, x2, . . . , xn be formal variables (with n > 0). Let E be the exterior
algebra on these variables. This algebra is graded by considering each xi as a degree
1 variable. For each i there is a derivation ∂i sending xi to 1 and the other variables
to 0. So we can define a bracket on E by:

[u, v] =
∑

i

(−1)|u|∂i(u)∧∂i(v)
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where |u| is the degree of u. Let f be the linear form on E of degree −n sending
x1∧x2∧ . . . ∧xn to 1.

9.1 Proposition: Let Ĥ(n) be the module E with the degree shifted by −2. Then

the bracket [ , ] induces on Ĥ(n) a structure of Lie superalgebra. Moreover the form:

u⊗ v 7→< u, v >= f(u∧v)

is a nonsingular invariant supersymmetric form on Ĥ(n) of degree 4 − n.

The center of Ĥ(n) is generated by 1. The derived algebra [Ĥ(n), Ĥ(n)] is the ker-

nel of f . Moreover the quotient of Ĥ(n) by its center is isomorphic to the Hamiltonian

Lie superalgebra H̃(n).

Proof: See [Kc] for a description of Hamiltonian algebras H(n) and H̃(n). The

morphism from Ĥ(n) to H̃(n) is given by:

xi1∧xi2∧ . . . ∧xip 7→
∑

1≤k≤p

(−1)k−1θi1θi2 . . . θ̂ik . . . θip

∂

∂θik

and the proposition is easy to check.

Remark: The algebra Ĥ(n) can be determined for small values of n. One has:

Ĥ(1) ≃ osp(1|1) Ĥ(2) ≃ gl(1|1)) Ĥ(3) ≃ osp(2|2) Ĥ(4) ≃ gl(2|2)

9.2 Proposition: For n = 1 or n even the module H2(Ĥ(n)) is trivial and Ĥ(n)

has no central extension. If n is odd and bigger then 2, H2(Ĥ(n)) is 1-dimensional
and generated by the cocycle u⊗ v 7→ f(u)f(v).

Proof: Let ϕ be a 2-cocycle. In order to determine ϕ we’ll need some notations:
— A vector in E is called basic if it is a product of distinct xi’s (up to sign).
— The degree of a basic vector u is denoted by |u|.
— The support of a basic vector e = ±xi1∧xi2∧ . . . ∧xip is the set {xi1 , . . . , xip}.
— B is the set of collections of basic vectors with disjoint supports.
So we have the following:

∀(u, v, w) ∈ B, [u∧v, u∧w] =

{
(−1)|u|+|v|v∧w if |u| = 1

0 otherwise

Since ϕ is a 2-cocycle, the following condition

(∗) (−1)|u||w|ϕ([u, v] ⊗ w) + (−1)|v||u|ϕ([v, w] ⊗ u) + (−1)|w||v|ϕ([w, u] ⊗ v) = 0

holds for every basic vectors u, v, w.
Consider three basic vectors u, v, w. There exist (e, α, β, γ, x, y, z) in B such that:

u = e∧β∧γ∧x v = e∧γ∧α∧y w = e∧α∧β∧z
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and the only possibilities for which [u, v] or [v, w] or [w, u] is nonzero are the following
(up to a cyclic permutation):

|e| = 1, |α| = |β| = |γ| = 0

|e| = 1, |α| = |β| = 0, |γ| > 0

|e| = 1, |α| = 0, |β| > 0, |γ| > 0

|e| = 0, |α| = 1, |β| = |γ| = 0

|e| = 0, |α| = 1, |β| > 1, |γ| = 0

|e| = 0, |α| = 1, |β| > 1, |γ| > 1

|e| = 0, |α| = |β| = 1, |γ| = 0

|e| = 0, |α| = |β| = 1, |γ| > 1

|e| = 0, |α| = |β| = |γ| = 1.

By applying the condition (∗) to all these cases we get the following relations:

(R1) (−1)|x||z|ϕ(x∧y ⊗ z∧e) + (−1)|y||x|ϕ(y∧z ⊗ x∧e) + (−1)|z||y|ϕ(z∧x⊗ y∧e) = 0

(R2) ϕ(γ∧z∧y ⊗ x∧e∧γ) = (−1)|x||y|+|γ|+1ϕ(γ∧z∧x⊗ y∧e∧γ)

(R3) ϕ(β∧γ∧y∧z ⊗ β∧γ∧e∧x) = 0

(R4) ϕ(y∧z ⊗ x) = 0

(R5) ϕ(β∧y∧z ⊗ β∧x) = 0

(R6) ϕ(β∧γ∧y∧z ⊗ β∧γ∧x) = 0

(R7) (−1)|x||y|+|x|+|y|ϕ(β∧y∧z ⊗ β∧x) = (−1)|y||z|ϕ(α∧z∧x⊗ α∧y)

(R8) (−1)|x||y|+(|γ|+1)(|x|+|y|)ϕ(β∧γ∧y∧z ⊗ β∧γ∧x)
= (−1)|y||z|+|γ|ϕ(γ∧α∧z∧x⊗ γ∧α∧y)

(R9) (−1)|x||z|ϕ(α∧β∧x∧y ⊗ α∧β∧z) + (−1)|y||x|ϕ(β∧γ∧y∧z ⊗ β∧γ∧x)
+(−1)|z||y|ϕ(γ∧α∧z∧x⊗ γ∧α∧y) = 0.

Using relations (R4) and (R1) with |x| = |y| = 0 and |z| = n− 1 we get:

∀(u, v) ∈ B, ϕ(u⊗ v) = 0.

Using relation (R5) we get:

∀(u, v, w) ∈ B, |u| > 1, |u|+ |v| + |w| < n =⇒ ϕ(u∧v ⊗ u∧w) = 0.

With the relation (R3) we get:

∀(u, v, w) ∈ B, 1 < |u| < n, |u| + |v| + |w| = n =⇒ ϕ(u∧v ⊗ u∧w) = 0.
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The relation (R2) implies:

∀(u, v, w) ∈ B, |u| = 1, |w| > 0 =⇒ ϕ(u∧v ⊗ w∧u) = ϕ(u⊗ v∧w∧u)

and since ϕ is antisymmetric:

∀(u, v, w) ∈ B, |u| = 1 =⇒ ϕ(u∧v ⊗ w∧u) = ϕ(u⊗ v∧w∧u).

Finally the relation (R7) implies:

∀(u, v, w) ∈ B, |u| = |v| = 1 =⇒ ϕ(u⊗ w∧u) = ϕ(v ⊗ w∧v)

and ϕ(u ⊗ w∧u) depends only on w (if |u| = 1) and ϕ(u∧v ⊗ w∧u) depends only on
[u∧v, w∧u]. Therefore there exist a linear morphism g and a scalar c such that:

ϕ(u⊗ v) = g([u, v]) + cf(u)f(v)

for every u and v in Ĥ(n).
On the other hand ϕ is antisymmetric and: c(1 + (−1)n) = 0.

If n is even, c = 0 and ϕ is a coboundary. Then H2(Ĥ(n)) is trivial.

If n = 1, u⊗ v 7→ f(u)f(v) is a coboundary and H2(Ĥ(n)) is also trivial.

If n > 2 is odd, H2(Ĥ(n)) is 1-dimensional and generated by the cocycle u⊗ v 7→
f(u)f(v).

9.3 Corollary: For n > 1, H2(H(n)) is a 1-dimensional module generated by the

central extension [Ĥ(n), Ĥ(n)] −→ H(n).

Proof: Let L be the algebra [Ĥ(n), Ĥ(n)] and L0 be the quotient Ĥ(n)/L. By
looking in low degree the spectral sequence of the cohomology of the extension:

0 −→ L −→ Ĥ(n) −→ L0 −→ 0

we get the following:

n even =⇒ H1(L) ≃ H2(L) ≃ 0

n = 1 =⇒ d2 : H1(L)
≃

−→ H2(L0)

n > 2, n odd =⇒ H1(L) ≃ 0 and d3 : H2(L) −→ H3(L0) is injective.

So for n > 1, H1(L) is trivial.
Let Z be the center of L. The spectral sequence of the central extension:

0 −→ Z −→ L −→ H(n) −→ 0

implies that H1(H(n)) is trivial and the morphism d2 is an isomorphism from H1(Z)
to H2(H(n)).
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[Bo] N. Bourbaki – Groupes et algèbres de Lie, Chap. 4–5–6 Hermann Paris,
1968.

[CM] A. K. Cohen and R. de Man Computational evidence for Deligne’s conjec-
ture regarding exceptional Lie groups, C. R. Acad. Sci. Paris, Série I 322
(1996), 427 – 432.

[CD] S. V. Chmutov and S. V. Duzhin – An upper bound for the number of
Vassiliev knots invariants, J. of Knot Theory and its Ramifications 3 n◦2
1995, 141-151.
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