WHAT IS A SIX FUNCTOR FORMALISM? (PART II)

REIN JANSSEN GROESBEEK

Abstract

We explain §III of [Sch22] on the definition of a 6 functor formalism. This is the third talk in the 6 functor formalism seminar at Jussieu.

Contents

1. A three functor formalism 1
2. Commutative monoids 2
2.1. Morphisms of monoids 4
3. Monoidal structure on $\operatorname{Corr}(C, E)$ 5
4. Three examples 6
References 6

Welcome back to the third talk of the seminar. Last time, Qixiang Wang introduced the ideas behind the 6 functor formalism and gave an introduction on ∞-categories.
Today we build on this work and give more details on the definition of the 6 functor formalism in the sense of [Sch22] and explain how the ∞-categorical tools introduced by Lurie are used in the definition. In particular, we recall the notion of commutative monoids in $\operatorname{Cat}_{(1,1)}$ and see how it extends to $\mathrm{Cat}_{(\infty, 1)}$.

1. A THREE FUNCTOR FORMALISM

A six functor formalism is a special type of a three functor formalism.
Definition 1 (Three functor formalism). A three functor formalism is a lax symmetric monoidal functor

$$
D: \operatorname{Corr}(C, E)^{\otimes} \rightarrow \operatorname{Cat}_{(\infty, 1)}
$$

Remark 1. Here as was explained by Qixiang last time, $\operatorname{Corr}(C, E)$ encodes the cartesian squares that can be formed by $f^{*}, f_{!}$and \otimes, while the morphism $D: \operatorname{Corr}(C, E)^{\otimes} \rightarrow \operatorname{Cat}_{(\infty, 1)}$ encodes the commutativity relations and higher coherences that all the diagrams involving f^{*}, f ! and \otimes have to satisfy.

Definition 2 (Six functor formalism, [Man22, p. 306 Def A.5.7]). A six functor formalism is a three functor formalism such that for a morphism $f: X \rightarrow Y$ the morphism

$$
f^{*}:=D(Y \stackrel{f}{\leftarrow} X \xrightarrow{\text { id }} X)
$$

[^0]has a right adjoint f_{*} and the morphism
$$
f_{!}:=D(X \stackrel{\text { id }}{\leftarrow} X \xrightarrow{f} Y)
$$
has a right adjoint $f^{!}$. Moreover the tensor product
$$
-\otimes-:=\Delta^{*} \circ D(-\times-): D(X) \times D(X) \xrightarrow{D(-\times-)} D(X \times X) \xrightarrow{\Delta^{*}} D(X)
$$
has a right adjoint Mor. In other words, $D(X)$ is a closed symmetric monoidal ∞-category.
We will define the category of diagrams $\operatorname{Corr}(C, E)$ in two steps:
(1) first in Definition 4 as a simplicial set, which encodes f^{*} and $f_{!}$,
(2) then in section 3 as a commutative monoid, which encodes $\boxtimes:=D(-\times-)$.

Definition $3\left(\left(\Delta^{\bullet}\right)_{+}^{2}\right)$. We define the cosimplicial category $C\left(\Delta^{n}\right):=\left(\Delta^{\bullet}\right)_{+}^{2}$ as the full subcategory of $\left(\Delta^{\bullet}\right)^{\mathrm{op}} \times \Delta^{\bullet}$, by defining as the objects

$$
\operatorname{Obj}\left(\left(\Delta^{n}\right)_{+}^{2}\right):=\left\{(i, j) \in \operatorname{Obj}\left(\left(\Delta^{n}\right)^{\mathrm{op}} \times \Delta^{n}\right)=\{0,1, \ldots, n\}^{2} \mid i \geq j\right\}
$$

Remark 2. These objects can be visualised as correspondence diagrams or "roofs":
$(1,0)$

$(0,0)$

$(1,1)$
$(2,1)$

$(2,2)$

Definition 4 (Two functor formalism). As a simplicial set, $\operatorname{Corr}(C, E)$ is defined as the cartesian diagrams where the vertical arrows are in E, or more precisely as follows:

$$
\operatorname{Corr}(C, E)_{n}:=\left\{\begin{array}{lll}
& f(i, j) \\
f \in \operatorname{Mor}_{\text {Cat }_{(1,1)}}\left(\left(\Delta^{n}\right)_{+}^{2}, C\right) \mid & \downarrow \\
& f(i, j+1) & \\
& f(i, j) \longleftarrow E, \\
& \downarrow & \downarrow(i+1, j) \\
& & \downarrow(i, j+1) \longleftarrow \\
& & \downarrow(i+1, j+1)
\end{array}\right\}
$$

Proposition 1 ([LZ17, p. 83 Lem 6.1.2]). The simplicial set $\operatorname{Corr}(C, E)$ is in $\operatorname{Cat}_{(\infty, 1)}$, i.e. all inner horns can be filled.

2. Commutative monoids

The simplicial set structure on $\operatorname{Corr}(C, E)$ encodes the cartesian squares involving f^{*} and $f_{!}$, hence the name "two functor formalism". To also encode diagrams involving \otimes, which is a functor of a different arity, we instead put a commutative monoid structure on $\operatorname{Corr}(C, E)$.
Recall: In the case of $C \in \operatorname{Cat}_{(1,1)}$ we define

Definition 5 ([nLa23]). A commutative monoid in C is a unit object $1_{C} \in C$ and a morphism

$$
-\otimes-: C \times C \rightarrow C
$$

such that we have:
(1) A unitality constraint $u_{X}: 1_{C} \otimes X \xrightarrow{\sim} X$ functorially in X
(2) A commutativity constaint $c_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ functorially in X, Y
(3) An associativity constraint $a_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z)$ functorially in X, Y, Z.
(4) For all W, X, Y, Z the pentagon diagram commutes

$$
\begin{gathered}
W \otimes(X \otimes(Y \otimes Z)) \xrightarrow{a_{W, X, Y} \otimes Z}(W \otimes X) \otimes(Y \otimes Z) \xrightarrow{a_{W \otimes X, Y, Z}}((W \otimes X) \otimes Y) \otimes Z \\
\underset{\text { id }_{W} \otimes a_{X, Y, Z}}{ }(W \otimes(W \otimes(X \otimes Y)) \otimes Z
\end{gathered}
$$

(5) for all X, Y, Z the hexagon diagram commutes

$$
\begin{aligned}
& (X \otimes Y) \otimes Z \xrightarrow{a_{X, Y, Z}} X \otimes(Y \otimes Z) \xrightarrow{c_{X, Y} \otimes Z}(Y \otimes Z) \otimes X \\
& \downarrow_{c_{X, Y} \otimes \mathrm{id}_{Z}} \xrightarrow[a_{Y, Z, X}]{ } \\
& (Y \otimes X) \otimes Z) \xrightarrow{a_{Y, X, Z}} Y \otimes(X \otimes Z) \xrightarrow{\operatorname{id}_{Y} \otimes c_{X, Z}} Y \otimes(Z \otimes X)
\end{aligned}
$$

Problem 1. This language does not work in the $\operatorname{Cat}_{(\infty, 1)}$ setting as it is unknown how to enumerate all coherence diagrams (analogues of the pentagon axiom and hexagon axiom).
Solution 1. Therefore we take a different point of view, where we add for all n the n-ary operations \bigotimes_{n} all at once, instead of just the binary operation $-\otimes-$. This was introduced by Lurie in [Lur17, §2].
Definition 6. Let Fin ${ }^{\text {part }}$ (in [Sch22, p.19]) or Fin $_{*}$ (in [Lur17, p. 165 Not 2.0.0.2]) be the category of finite sets with partially defined maps.
Definition 7 ([Lur17, p. 293 Def 2.4.2.1], [Sch22, p. 19 Def 3.3]). Let $\mathcal{C} \in \operatorname{Cat}_{(\infty, 1)}$ be an ∞ category. Then a (straightened) monoid in \mathcal{C} is a functor $M: \mathcal{N}\left(\right.$ Fin $\left.^{\text {part }}\right) \rightarrow \mathcal{C}$ satisfying the following commutativity and associativity property:
For every finite set I, the map induced by the universal property of the product

$$
M(I) \rightarrow \prod_{1 \leq i \leq n} M(\{i\})
$$

is an isomorphism in \mathcal{C}.
Problem 2. This definition uses the "straightened" point of view, and it is harder to construct monoidal functors to ∞-categories than it is to construct fibrations of ∞-categories.

Solution 2.

$$
\underline{\operatorname{Mor}}_{\operatorname{Cat}(\infty, 1)}\left(C, \operatorname{Cat}_{(\infty, 1)}\right) \stackrel{\mathrm{Un}}{\stackrel{\mathrm{St}}{\leftrightarrows}}\left\{\varphi \in \underline{\operatorname{Mor}}_{\mathrm{Cat}}^{(\infty, 1)}(D, C) \mid \varphi \operatorname{coCartesian}, D \in \operatorname{Cat}(\infty, 1)\right\}
$$

Therefore we apply Lurie's unstraightening functor to obtain the unstraightened point of view, expressing the condition of a monoid in terms of fibrations.
Definition 8 ([Lur17, p. 123 Prop 2.4.2.8], [Sch22, p. 20 Def 3.5]). A coCartesian fibration is a map $F: D \rightarrow C$ such that
(1) F is an inner fibration: any inner horn can be lifted
(2) any morphism of C admits a locally F-coCartesian lift
(3) The composition of locally F-coCartesian lifts is locally F-coCartesian.

A map $g: Y \rightarrow Y^{\prime}$ in D is a locally F-coCartesian lift of $f: X \rightarrow X^{\prime}$ if it is initial among all morphism with source Y that lift f.

Definition 9 ([Lur17, p. 169 Def 2.0.0.7], [Sch22, p, 21 Def 3.7]). A (unstraightened) symmetric monoidal ∞-category is a coCartesian fibration

$$
C^{\otimes} \rightarrow N\left(\mathrm{Fin}^{\mathrm{part}}\right)
$$

such that for all finite sets $I \in$ Fin $^{\text {part }}$

$$
C_{I}^{\otimes} \rightarrow \prod_{i \in I} C
$$

is an equivalence.
2.1. Morphisms of monoids. To conclude the study of the category of symmetric monoidal ∞-categories, we have to define what are the morphisms between them.
Recall the situation in the classical $(1,1)$-categorical world. Here, a functor $F:\left(C, \otimes, 1_{C}\right) \rightarrow$ $\left(D, \otimes, 1_{D}\right)$ between monoidal categories has to preserve the monoidal structure, so we have the following coherence maps

$$
\begin{aligned}
\phi_{X, Y}: F X \otimes F Y & \rightarrow F(X \otimes Y) \\
\phi: 1_{D} & \rightarrow F 1_{C}
\end{aligned}
$$

which make the following diagrams commute [Wik22]

Depending on how strictly we want to preserve the monoidal structure, we have three possibilities [Wik22]:

- (Lax monoidal functors): The coherence maps $\phi_{X, Y}, \phi$ satisfy no additional properties, they are just maps.
- (Strong monoidal functors): The coherence maps $\phi_{X, Y}, \phi$ are invertible.
- (Strict monoidal functors): The coherence maps $\phi_{X, Y}, \phi$ are identity maps. This definition violates the "principle of equivalence" ${ }^{1}$ so its usage is uncommon.
To translate these notions to the $(\infty, 1)$-categorical setting, we again pass to the unstraightened point of view. By doing so, we can automatically generate the infinite families of commuting diagrams, which are the ∞-categorical counterparts of the two in Equation 1.

Definition 10 ([Sch22, p. 8 Def 3.8], lax symmetric monoidal functor). Let (C, \otimes) and (D, \otimes) be (unstraightened) symmetric monoidal ∞-categories. Then a functor $F^{\otimes}: C^{\otimes} \rightarrow D^{\otimes}$ over $N\left(\right.$ Fin $\left._{*}\right)$ is

[^1](1) lax symmetric monoidal if F^{\otimes} preserves locally coCartesian lifts of the morphisms of the form $I \longrightarrow\{i\}$.
(2) strong symmetric monoidal if F^{\otimes} preserves all locally coCartesian lifts of all morphisms $I \rightarrow J$.

Remark 3. - In [Man22, p.305] a 6 functor formalism was defined to be a map of ∞-operads ([Lur17, p. 180 Def 2.1.2.7]) instead of a lax symmetric monoidal functor. But these two definitions are the same by [Lur17, p. 180 Rmk 2.1.2.9].

- Similarly, the definition of a strong symmetric monoidal functor in Definition 10 is the same as a "symmetric monoidal functor" in [Lur17, p. 185 Def 2.1.3.7].

3. Monoidal structure on $\operatorname{Corr}(C, E)$

We will now apply the definitions of the previous section and define a monoidal structure on $\operatorname{Corr}(C, E)$. We first choose the following monoidal structure on $C^{\text {op }}$ ([Lur09, p. 26 1.2.1]):
Definition 11. Let

$$
\begin{aligned}
\left(C^{\mathrm{op}}\right)^{\amalg} & \rightarrow N\left(\mathrm{Fin}_{*}\right) \\
\left(f:\left\{Y_{j}\right\}_{1 \leq j \leq n} \rightarrow\left\{X_{i}\right\}_{1 \leq i \leq m}\right) & \mapsto(\alpha:\langle m\rangle \rightarrow\langle n\rangle)
\end{aligned}
$$

be the coCartesian symmetric monoidal ∞-category with monoidal structure on C^{op} induced by the coproduct \amalg.

Proposition 2 ([LZ17, p. 84 Prop 6.1.3]). The fibration

$$
\begin{aligned}
& \operatorname{Corr}\left(\left(C^{\mathrm{op}}\right)^{\amalg, \mathrm{op}}, E\right) \rightarrow N\left(\operatorname{Fin}_{*}\right) \\
&\left\{Y_{j}\right\}_{1 \leq j \leq n} \longrightarrow\left\{X_{i}\right\}_{1 \leq i \leq m} \mapsto(\alpha:\langle m\rangle \rightarrow\langle n\rangle) \\
& \downarrow_{\left\{Z_{j}\right\}_{1 \leq j \leq n}}
\end{aligned}
$$

defines a coCartesian symmetric monoidal ∞-category with underlying ∞-category $\operatorname{Corr}(C, E)$.
Remark $4\left(\left(C^{\text {op }}\right)^{\amalg, o p}\right.$ versus $\left.C^{\times}\right)$. Why do we consider the complicated ∞-category $\left(C^{\text {op }}\right)^{\amalg, o p}$ instead of the simpler C^{\times}?
(1) First, as was remarked by Yifeng Liu via e-mail, $\left(C^{\mathrm{op}}\right)^{\amalg \text {,op }}$ lives over $N\left(\mathrm{Fin}_{*}\right)^{\mathrm{op}}$ and C^{\times} lives over $N\left(\mathrm{Fin}_{*}\right)$ so the two are not interchangeable.
(2) Another reason is that the definition of commutative monoids is not self-dual. Hence for example $\left(C^{\mathrm{op}}\right)^{\amalg \text {,op }}$ is not in an obvious way a monoid, nor is $\left(C^{\times}\right)^{\mathrm{op}}$.
This means that if we were to choose as correspondence category $\operatorname{Corr}\left(C^{\times}, E\right)$, we would have an inclusion of the horizontal arrows

$$
C^{\times, \mathrm{op}} \subset \operatorname{Corr}\left(C^{\times}, E\right)
$$

but where $C^{\times, \text {op }}$ does not have an obvious monoidal structure!
Hence to remedy this, we want to "conjugate" by $(-)^{\mathrm{op}}$ and consider $\left(C^{\mathrm{op}}\right)^{\amalg, o p}$ instead. Then indeed we have the inclusion of the horizontal arrows

$$
\begin{equation*}
\left(C^{\mathrm{op}}\right)^{\amalg} \subset \operatorname{Corr}\left(\left(C^{\mathrm{op}}\right)^{\amalg, \mathrm{op}}, E\right) \tag{2}
\end{equation*}
$$

where by construction $\left(C^{\mathrm{op}}\right)^{\amalg}$ has a monoidal structure given by the coproduct \amalg. Recall that an inclusion of monoidal categories like in Equation 2 is needed to apply [Lur17, p. 302 Thm 2.4.3.18]. See also the discussion in [Man22, p. 306 Def A.5.6(a)].

Now that $\operatorname{Corr}(C, E)$ is a coCartesian (unstraightened) symmetric monoidal ∞-category, Definition 1 makes sense.

4. Three examples

To illustrate how Definition 1 encodes the different commuting diagram relations such as projection formula, we give three examples of commuting diagrams.
Example 1 ([Sch22, p.24]). Let D be a three functor formalism. Let $f: X \rightarrow Y$ in $E, A \in D(X)$ and $B \in D(Y)$. Then we have in Figure 1 the projection formula in terms of correspondences.

Figure 1. Projection formula.

Example 2. Let D be a three functor formalism. Let

be a composition of fibred squares. We illustrate in Figure 2 several alternative descriptions of the functor $\bar{f}_{!}(\bar{t} \circ \bar{g})^{*}$ and its associated correspondence diagrams.

Example 3. Let D be a three functor formalism. Let

be a cartesian square. Then for $M \in D(X)$ and $N \in D(S)$, we can consider the multiple ways we can write

$$
T:=g^{*} f_{!}\left(M \otimes f^{*} N\right) \in D\left(S^{\prime}\right)
$$

This is illustrated in Figure 3.

References

[Lur09] Jacob Lurie. Higher topos theory. Vol. 170. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. ISBN: 978-0-691-14049-0; 0-691-14049-9. DOI: 10.1515/9781400830558. URL: https://doi.org/10.1515/ 9781400830558 (cit. on p. 5).
[Lur17] Jacob Lurie. Higher Algebra. 2017. URL: https : / /www . math.ias.edu / ~lurie / papers/HA.pdf (visited on $10 / 30 / 2023$) (cit. on pp. 3-6).

$$
\begin{aligned}
& Y^{\swarrow_{\bar{t} \circ \bar{g}}^{X^{\prime}} \searrow_{S^{\prime}}^{\bar{f}}} \\
& \text { Composition } \mathbb{R} \\
& g^{*} t^{*} h_{!} \cong \\
& g^{*} f_{!} \bar{t}^{*}
\end{aligned}
$$

Figure 2. Five different ways to write $\bar{f}_{!}(\bar{t} \circ \bar{g})^{*}$.

Figure 3. Nine different ways to write $T:=g^{*} f_{!}\left(M \otimes f^{*} N\right)$.
[LZ17] Yifeng Liu and Weizhe Zheng. Enhanced six operations and base change theorem for higher Artin stacks. 2017. arXiv: 1211.5948 [math.AG] (cit. on pp. 2, 5).
[Man22] Lucas Mann. A p-Adic 6-Functor Formalism in Rigid-Analytic Geometry. 2022. arXiv: 2206.02022 [math.AG] (cit. on pp. 1, 5, 6).
[nLa23] nLab authors. symmetric monoidal category. https://ncatlab.org/nlab/show/ symmetric+monoidal+category. Revision 53. Nov. 2023 (cit. on p. 3).
[Sch22] Peter Scholze. Six-Functor Formalisms. 2022. URL: https://people .mpim-bonn . mpg.de/scholze/SixFunctors.pdf (visited on 10/30/2023) (cit. on pp. 1, 3, 4, 6).
[Wik22] Wikipedia contributors. Monoidal functor - Wikipedia, The Free Encyclopedia. https: //en.wikipedia.org/w/index.php?title=Monoidal_functor\&oldid=1110520596. [Online; accessed 15-November-2023]. 2022 (cit. on p. 4).

[^0]: Date: 2023 Nov 16 Thu 14h00-16h00.

[^1]: 1https://ncatlab.org/nlab/show/principle+of+equivalence

