
WHAT IS A SIX FUNCTOR FORMALISM? (PART II)

REIN JANSSEN GROESBEEK

Abstract. We explain §III of [Sch22] on the definition of a 6 functor formalism. This is the

third talk in the 6 functor formalism seminar at Jussieu.
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Welcome back to the third talk of the seminar. Last time, Qixiang Wang introduced the ideas
behind the 6 functor formalism and gave an introduction on ∞-categories.

Today we build on this work and give more details on the definition of the 6 functor formalism
in the sense of [Sch22] and explain how the ∞-categorical tools introduced by Lurie are used in
the definition. In particular, we recall the notion of commutative monoids in Cat(1,1) and see
how it extends to Cat(∞,1).

1. A three functor formalism

A six functor formalism is a special type of a three functor formalism.

Definition 1 (Three functor formalism). A three functor formalism is a lax symmetric monoidal
functor

D : Corr(C,E)⊗ → Cat(∞,1) .

♢

Remark 1. Here as was explained by Qixiang last time, Corr(C,E) encodes the cartesian squares
that can be formed by f∗, f! and ⊗, while the morphism D : Corr(C,E)⊗ → Cat(∞,1) encodes
the commutativity relations and higher coherences that all the diagrams involving f∗, f! and ⊗
have to satisfy.

Definition 2 (Six functor formalism, [Man22, p.306 Def A.5.7]). A six functor formalism is a
three functor formalism such that for a morphism f : X → Y the morphism

f∗ := D(Y
f←− X

id−→ X)
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has a right adjoint f∗ and the morphism

f! := D(X
id←− X

f−→ Y )

has a right adjoint f !. Moreover the tensor product

−⊗− := ∆∗ ◦D(−×−) : D(X)×D(X)
D(−×−)−−−−−−→ D(X ×X)

∆∗

−−→ D(X)

has a right adjoint Mor. In other words, D(X) is a closed symmetric monoidal ∞-category. ♢

We will define the category of diagrams Corr(C,E) in two steps:

(1) first in Definition 4 as a simplicial set, which encodes f∗ and f!,
(2) then in section 3 as a commutative monoid, which encodes ⊠ := D(−×−).

Definition 3 ((∆•)2+). We define the cosimplicial category C(∆n) := (∆•)2+ as the full subcat-
egory of (∆•)op ×∆•, by defining as the objects

Obj((∆n)2+) := {(i, j) ∈ Obj((∆n)op ×∆n) = {0, 1, . . . , n}2 | i ≥ j}.
♢

Remark 2. These objects can be visualised as correspondence diagrams or “roofs”:

(2, 0)

(1, 0) (2, 1)

(0, 0) (1, 1) (2, 2)

Definition 4 (Two functor formalism). As a simplicial set, Corr(C,E) is defined as the cartesian
diagrams where the vertical arrows are in E, or more precisely as follows:

Corr(C,E)n :=



f ∈ MorCat(1,1)((∆
n)2+, C) |

f(i, j)

f(i, j + 1)

∈ E,

f(i, j) f(i+ 1, j)

f(i, j + 1) f(i+ 1, j + 1)

⌞


♢

Proposition 1 ([LZ17, p.83 Lem 6.1.2]). The simplicial set Corr(C,E) is in Cat(∞,1), i.e. all
inner horns can be filled.

2. Commutative monoids

The simplicial set structure on Corr(C,E) encodes the cartesian squares involving f∗ and
f!, hence the name “two functor formalism”. To also encode diagrams involving ⊗, which is a
functor of a different arity, we instead put a commutative monoid structure on Corr(C,E).

Recall: In the case of C ∈ Cat(1,1) we define
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Definition 5 ([nLa23]). A commutative monoid in C is a unit object 1C ∈ C and a morphism

−⊗− : C × C → C

such that we have:

(1) A unitality constraint uX : 1C ⊗X
∼−→ X functorially in X

(2) A commutativity constaint cX,Y : X ⊗ Y
∼−→ Y ⊗X functorially in X,Y

(3) An associativity constraint aX,Y,Z : (X ⊗ Y )⊗ Z
∼−→ X ⊗ (Y ⊗ Z) functorially in X,Y, Z.

(4) For all W,X, Y, Z the pentagon diagram commutes

W ⊗ (X ⊗ (Y ⊗ Z)) (W ⊗X)⊗ (Y ⊗ Z) ((W ⊗X)⊗ Y )⊗ Z

W ⊗ ((X ⊗ Y )⊗ Z) (W ⊗ (X ⊗ Y ))⊗ Z

aW,X,Y ⊗Z

idW ⊗aX,Y,Z

aW⊗X,Y,Z

aW,X⊗Y,Z

aW,X,Y ⊗idZ

(5) for all X,Y, Z the hexagon diagram commutes

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z) Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

aX,Y,Z

cX,Y ⊗idZ

cX,Y ⊗Z

aY,Z,X

aY,X,Z idY ⊗cX,Z

♢

Problem 1. This language does not work in the Cat(∞,1) setting as it is unknown how to
enumerate all coherence diagrams (analogues of the pentagon axiom and hexagon axiom).

Solution 1. Therefore we take a different point of view, where we add for all n the n-ary operations⊗
n all at once, instead of just the binary operation − ⊗ −. This was introduced by Lurie in

[Lur17, §2].

Definition 6. Let Finpart (in [Sch22, p.19]) or Fin∗ (in [Lur17, p.165 Not 2.0.0.2]) be the
category of finite sets with partially defined maps. ♢

Definition 7 ([Lur17, p.293 Def 2.4.2.1], [Sch22, p.19 Def 3.3]). Let C ∈ Cat(∞,1) be an ∞-

category. Then a (straightened) monoid in C is a functor M : N (Finpart) → C satisfying the
following commutativity and associativity property:

For every finite set I, the map induced by the universal property of the product

M(I)→
∏

1≤i≤n

M({i})

is an isomorphism in C. ♢

Problem 2. This definition uses the “straightened” point of view, and it is harder to construct
monoidal functors to ∞-categories than it is to construct fibrations of ∞-categories.

Solution 2.

MorCat(∞,1)
(C,Cat(∞,1)) {φ ∈ MorCat(∞,1)

(D,C) | φ coCartesian, D ∈ Cat(∞,1)}.
Un

St

Therefore we apply Lurie’s unstraightening functor to obtain the unstraightened point of view,
expressing the condition of a monoid in terms of fibrations.

Definition 8 ([Lur17, p.123 Prop 2.4.2.8], [Sch22, p.20 Def 3.5]). A coCartesian fibration is a
map F : D → C such that
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(1) F is an inner fibration: any inner horn can be lifted
(2) any morphism of C admits a locally F -coCartesian lift
(3) The composition of locally F -coCartesian lifts is locally F -coCartesian.

A map g : Y → Y ′ in D is a locally F -coCartesian lift of f : X → X ′ if it is initial among all
morphism with source Y that lift f . ♢

Definition 9 ([Lur17, p.169 Def 2.0.0.7], [Sch22, p, 21 Def 3.7]). A (unstraightened) symmetric
monoidal ∞-category is a coCartesian fibration

C⊗ → N(Finpart)

such that for all finite sets I ∈ Finpart

C⊗
I →

∏
i∈I

C

is an equivalence. ♢

2.1. Morphisms of monoids. To conclude the study of the category of symmetric monoidal
∞-categories, we have to define what are the morphisms between them.

Recall the situation in the classical (1, 1)-categorical world. Here, a functor F : (C,⊗, 1C) →
(D,⊗, 1D) between monoidal categories has to preserve the monoidal structure, so we have the
following coherence maps

ϕX,Y : FX ⊗ FY → F (X ⊗ Y )

ϕ : 1D → F1C

which make the following diagrams commute [Wik22]

(1)

(FX ⊗ FY )⊗ FZ FA⊗ (FB ⊗ FZ)

F (X ⊗ Y )⊗ FZ FX ⊗ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

aFX,FY,FZ

ϕX,Y ⊗idFZ idFX ⊗ϕY,Z

ϕX⊗Y,Z ϕX,Y ⊗Z

FaX,Y,Z

and

FX ⊗ 1D FX ⊗ F1C

FX F (X ⊗ 1C)

idFA ⊗ϕ

uFA ϕX,1C

FuX

Depending on how strictly we want to preserve the monoidal structure, we have three possibilities
[Wik22]:

• (Lax monoidal functors): The coherence maps ϕX,Y , ϕ satisfy no additional properties, they
are just maps.

• (Strong monoidal functors): The coherence maps ϕX,Y , ϕ are invertible.
• (Strict monoidal functors): The coherence maps ϕX,Y , ϕ are identity maps. This definition

violates the “principle of equivalence” 1 so its usage is uncommon.

To translate these notions to the (∞, 1)-categorical setting, we again pass to the unstraightened
point of view. By doing so, we can automatically generate the infinite families of commuting
diagrams, which are the ∞-categorical counterparts of the two in Equation 1.

Definition 10 ([Sch22, p.8 Def 3.8], lax symmetric monoidal functor). Let (C,⊗) and (D,⊗)
be (unstraightened) symmetric monoidal ∞-categories. Then a functor F⊗ : C⊗ → D⊗ over
N(Fin∗) is

1https://ncatlab.org/nlab/show/principle+of+equivalence

https://ncatlab.org/nlab/show/principle+of+equivalence
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(1) lax symmetric monoidal if F⊗ preserves locally coCartesian lifts of the morphisms of the
form I 99K {i}.

(2) strong symmetric monoidal if F⊗ preserves all locally coCartesian lifts of all morphisms
I 99K J .

♢

Remark 3. • In [Man22, p.305] a 6 functor formalism was defined to be a map of ∞-operads
([Lur17, p. 180 Def 2.1.2.7]) instead of a lax symmetric monoidal functor. But these two
definitions are the same by [Lur17, p. 180 Rmk 2.1.2.9].

• Similarly, the definition of a strong symmetric monoidal functor in Definition 10 is the same
as a “symmetric monoidal functor” in [Lur17, p.185 Def 2.1.3.7].

3. Monoidal structure on Corr(C,E)

We will now apply the definitions of the previous section and define a monoidal structure on
Corr(C,E). We first choose the following monoidal structure on Cop ([Lur09, p.26 1.2.1]):

Definition 11. Let

(Cop)⨿ → N(Fin∗)

(f : {Yj}1≤j≤n → {Xi}1≤i≤m) 7→ (α : ⟨m⟩ → ⟨n⟩)

be the coCartesian symmetric monoidal ∞-category with monoidal structure on Cop induced by
the coproduct ⨿. ♢

Proposition 2 ([LZ17, p. 84 Prop 6.1.3]). The fibration

Corr((Cop)
∐

,op, E)→ N(Fin∗)

{Yj}1≤j≤n {Xi}1≤i≤m

{Zj}1≤j≤n

7→ (α : ⟨m⟩ → ⟨n⟩)

defines a coCartesian symmetric monoidal ∞-category with underlying ∞-category Corr(C,E).

Remark 4 ((Cop)⨿,op versus C×). Why do we consider the complicated ∞-category (Cop)⨿,op

instead of the simpler C×?

(1) First, as was remarked by Yifeng Liu via e-mail, (Cop)⨿,op lives over N(Fin∗)
op and C×

lives over N(Fin∗) so the two are not interchangeable.

(2) Another reason is that the definition of commutative monoids is not self-dual. Hence for
example (Cop)⨿,op is not in an obvious way a monoid, nor is (C×)op.

This means that if we were to choose as correspondence category Corr(C×, E), we would
have an inclusion of the horizontal arrows

C×,op ⊂ Corr(C×, E)

but where C×,op does not have an obvious monoidal structure!

Hence to remedy this, we want to “conjugate” by (−)op and consider (Cop)⨿,op instead.
Then indeed we have the inclusion of the horizontal arrows

(2) (Cop)⨿ ⊂ Corr((Cop)⨿,op, E)
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where by construction (Cop)⨿ has a monoidal structure given by the coproduct ⨿. Recall
that an inclusion of monoidal categories like in Equation 2 is needed to apply [Lur17, p.302
Thm 2.4.3.18]. See also the discussion in [Man22, p. 306 Def A.5.6(a)].

Now that Corr(C,E) is a coCartesian (unstraightened) symmetric monoidal∞-category, Def-
inition 1 makes sense.

4. Three examples

To illustrate how Definition 1 encodes the different commuting diagram relations such as
projection formula, we give three examples of commuting diagrams.

Example 1 ([Sch22, p.24]). Let D be a three functor formalism. Let f : X → Y in E, A ∈ D(X)
and B ∈ D(Y ). Then we have in Figure 1 the projection formula in terms of correspondences.

f!(A⊗ f∗B)

X

X ×X X

X × Y X ×X Y

∆
id

id×f

id× id

∆

f
f!A⊗B

Y

X × Y Y

X × Y Y × Y Y

Γf

f

id× id

f×id

∆
id

≜≜ ∼=

Projection formula

Figure 1. Projection formula.

Example 2. Let D be a three functor formalism. Let

X ′ X Y

S′ S T

g

f
⌟

t

f
⌟

h

g t

be a composition of fibred squares. We illustrate in Figure 2 several alternative descriptions of
the functor f !(t ◦ g)∗ and its associated correspondence diagrams.

Example 3. Let D be a three functor formalism. Let

X ′ X

S′ S

g

f
⌟

f

g

be a cartesian square. Then for M ∈ D(X) and N ∈ D(S), we can consider the multiple ways
we can write

T := g∗f!(M ⊗ f∗N) ∈ D(S′).

This is illustrated in Figure 3.
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Figure 3. Nine different ways to write T := g∗f!(M ⊗ f∗N).
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