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Signatures in Bitcoin

• to spend an output, users must provide a signature proving
ownership

• spending a P2PKH output requires one signature
• spending a m-of-n multisig output (P2MS or P2SH) requires m
signatures (and n public keys)

• signature data ⇒ transaction data ⇒ transaction fees (BTC/byte)
• typical size of an ECDSA signature over secp256k1 (two 32-bytes
integers + 6 bytes DER encoding) = 72 bytes

• 300 000 000 transactions in the blockchain, ∼ 2 inputs/tx
⇒ at least 54 GB of signature data (28% blockchain size)

• could we use less/smaller signatures without harming security?
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MuSig: Schnorr-based multi-signatures

https://eprint.iacr.org/2018/068.pdf
Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 4 / 43
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History of discrete log-based signature schemes

• 1984: ElGamal signatures
• 1985: Elliptic Curve Cryptography proposed by
Koblitz and Miller

• 1989: Schnorr signatures, U.S. Patent 4,995,082
• 1991: DSA (Digital Signature Algorithm) proposed
by NIST

• 1992: ECDSA (Elliptic Curve DSA) proposed by
Vanstone

• 1993: DSA standardized by NIST as FIPS 186
• 2000: ECDSA included in FIPS 186-2
• 2008: Schnorr’s patent expires
• 2009: Bitcoin is launched

C.P. Schnorr

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 7 / 43
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Signature scheme: definition

A signature scheme consists of three algorithms:
1. key generation algorithm Gen:

• returns a public/secret key pair (pk, sk)
2. signature algorithm Sign:

• takes as input a secret key sk and a message m
• returns a signature σ

3. verification algorithm Ver:
• takes as input a public key pk, a message m, and a signature σ
• returns 1 if the signature is valid and 0 otherwise

Correctness property:

∀(pk, sk)← Gen, ∀m, Ver
(
pk,m, Sign(sk,m)

)
= 1
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Signature scheme: security

skA pkA

m1

σ1
...

mq

σq

pkA

(m∗, σ∗)

m∗ 6= m1, . . . ,mq
Ver(pkA,m∗, σ∗) = 1

• “gold” security notion: Existential Unforgeability against Chosen
Message Attacks (EUF-CMA)

• strong-EUF-CMA: (m∗, σ∗) 6= (m1, σ1), . . . , (mq, σq)
• strong-EUF-CMA ⇔ EUF-CMA + non-malleability
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Provable security
• security proof = proving that breaking a cryptosystem is at least as
hard as solving a hard problem P (factoring, discrete log, etc.)

• one assumes there exists an algorithm A breaking the cryptosystem
• one builds an algorithm solving P using A as an oracle
• also called reduction (solving P is reduced to breaking the
cryptosystem)

pk (m∗, σ∗)

P instance solution
Algorithm
solving P
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Mathematical background (1/2)

Abelian group
An abelian group is a set G with a binary operation + : G×G→ G
such that the following holds:
• (associativity): ∀A,B,C ∈ G, (A + B) + C = A + (B + C)
• (identity element):
∃E ∈ G such that E + A = A + E = A for all A ∈ G

• (inverse): ∀A ∈ G, ∃B ∈ G such that A + B = B + A = E
• (commutativity): ∀A,B ∈ G, A + B = B + A

Notation: for n ∈ N, nA = A + · · ·+ A︸ ︷︷ ︸
n times

(with 0A = E )

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 11 / 43
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Mathematical background (2/2)

Cyclic group and generator
Let G be an abelian group of order p. An element G ∈ G is called a
generator if

〈G〉 def= {0G , 1G , 2G , . . .} = G.

If G is a generator, then for any X ∈ G, there exists a unique
x ∈ {0, . . . , p − 1} such that X = xG .

Discrete logarithm problem
Given X ∈ G, find x ∈ {0, . . . , p − 1} such that X = xG .

NB: with multiplicative notation, xG ∼ Gx

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 12 / 43
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Schnorr authentication protocol [Sch89, Sch91]

Public parameters: a cyclic group G
of prime order p, a generator G of G{

skAlice = x ←$ Zp
pkAlice = xG = X pkAlice = X

r ←$ Zp, R = rG R

c ←$ Zp
c

s = r + cx mod p s
Check sG ?= R + cX

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 13 / 43
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Schnorr’s protocol is a “proof of knowledge”

Theorem
Schnorr’s protocol is secure against impersonation under the discrete
logarithm assumption.

Proof.
• assume there exists an attacker A which is able to authenticate
with good probability

• we run A on public key X : it sends R = rG , we answer with c1,
and A returns the correct answer s1 = r + c1x mod p

• we rewind A and run it again: it sends R = rG , we answer with
c2 6= c1, and A returns the correct answer s2 = r + c2x mod p

• we compute x = (s1 − s2)(c1 − c2)−1 mod p

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 14 / 43
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The Fiat-Shamir transform [FS86]

• it is easy to obtain a valid transcript (R, c, s) without knowledge of
the secret key x by computing “backwards”:

• choose s ←$ Zp
• choose c ←$ Zp
• compute R = sG − cX

• what convinces Bob is that he knows that c was chosen after R
was committed by Alice

• how could we make the protocol non-interactive?
• answer: replace the verifier (Bob) by a hash function H
• Alice computes the challenge by herself as c = H(X ,R)
• assuming H “behaves randomly”, this can be proved secure
(random oracle model)
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Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 16 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 16 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 16 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 16 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Schnorr signatures [Sch89, Sch91]
• public parameters:

• a cyclic group G of prime order p and a generator G
• a hash function H

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = H(X ,R,m) and s = r + cx mod p
• output σ = (R, s)

• verification: on input X , m and σ = (R, s),
• compute c = H(X ,R,m) and check sG ?= R + cX

• alternative:
• signature σ = (c, s)
• verification: compute R = sG − cX and check H(X ,R,m) ?= c

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 16 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Public key-prefixing and BIP 32 (HD wallets)

• Schnorr signatures usually don’t include the public key in the hash,
i.e., the challenge is c = H(R,m) rather than c = H(X ,R,m)

• Schnorr signatures without key-prefixing are secure in the
strong-EUF-CMA model

• BIP 32 (Hierarchical Deterministic wallets) allows to generate child
key pairs from a master key pair (x ,X = xG) as

xi = x + H ′(i ,X ) mod p, Xi = X + H ′(i ,X )G

• without key-prefixing, any signature (R, s) valid under X can be
turned into a valid signature for Xi : since c = H(R,m),

sG = R + cX ⇒ (s + cH ′(i ,X ))G = R + cXi

• key-prefixing avoids this problem
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“Generic” DSA signatures

• public parameters:
• a cyclic group G of prime order p and a generator G
• a hash function H
• a “conversion” function f : G→ Zp

• key generation:
• secret key x ←$ Zp
• public key X = xG

• signature: on input m and x ,
• draw r ←$ Zp and compute R = rG
• compute c = f (R) and s = r−1(H(m) + cx) mod p
• output σ = (c, s)

• verification: on input X , m and σ = (c, s),
• compute u = H(m)s−1 mod p, v = cs−1 mod p, and R = uG + vX
• check whether f (R) ?= c
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(EC)DSA signatures
DSA and ECDSA are instantiations of the “generic” DSA scheme:
• for DSA:

• G = cyclic subgroup of prime order p of Z∗q for some large prime q
(|q| ≥ 3072 bits)

• conversion function: f (X ) = X mod p
• for ECDSA:

• G = cyclic subgroup of prime order p of an elliptic curve group over
some finite field (Fq for q prime or q = 2n)

• for q prime, group elements are pairs of integers (x , y) ∈ F2
q

satisfying the curve equation E : y2 = x3 + ax + b
• conversion function: f (X ) = x mod p where X = (x , y)
• Bitcoin uses curve secp256k1 [SEC10] (not a NIST curve!)

(Standards for Efficient Cryptography, Koblitz curve over prime field
Fq where q = 2256 − 232 − 977, a = 0, b = 7)

• Schnorr can be based on any group where DL is hard, in part. on
any secure elliptic curve group (Ed25519 [BDL+11]?)
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ECDSA signature malleability
• ECDSA is not strongly EUF-CMA
• given a valid signature (c, s) for message m, it is possible to “maul”
a different signature which is also valid, namely (c,−s mod p)

• verification equations:
(c, s) (c,−s)

u = H(m)s−1 mod p u′ = −H(m)s−1 mod p = −u
v = cs−1 mod p v ′ = −cs−1 mod p = −v
R = uG + vX R ′ = −uG − vX = −R

f (R) ?= c f (−R) ?= c
• verification succeeds in both cases because:

• if R = (x , y) then −R = (x ,−y mod q)
• f only depends on the first coordinate: f (x , y) = x mod p

• fixed by requiring a canonical “low-s” encoding
(Bitcoin PR #6769)
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Schnorr versus ECDSA

• Schnorr security:
• Schnorr signatures have a security proof under the Discrete

Logarithm assumption in the Random Oracle Model for H [PS96]
• no known attacks against Schnorr based on H collisions

• ECDSA security:
• security analysis of (EC)DSA is much more brittle [Bro05] (uses

generic group model, proves non-malleability!)
• the conversion function f in ECDSA is too “simple” to be

realistically modeled as a random oracle
• collisions on H directly give forgery attacks

• efficiency:
• Schnorr signatures verification slightly more efficient
• Schnorr allows efficient batch verification
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Schnorr versus ECDSA: Summary
Schnorr: σ = (R, s) ECDSA: σ = (c, s)

Ver sG ?= R + H(R,m)X f
(
H(m)s−1G + cs−1X

) ?= c
Fiat-Shamir X ×
sec. proof X ×

H 2nd preimage collision
non-mall. X ×
batch ver. X ×

Reminder:
• computing two signatures with the same r leaks the private key!
• even minor weaknesses in the generation of r can leak the private
key after a few hundreds of signatures [NS03]

• practical attacks (Sony PlayStation 3 hack, Android RNG)
• solution: derandomization (RFC 6979)
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What is a multi-signature protocol?

• assume n signers with public keys {pk1, . . . , pkn} want to sign the
same message (e.g., spending from an n-of-n multisig address)

• trivial solution: compute one signature for each pki and output
Σ = (σ1, . . . , σn)

• problem: the length of Σ grows linearly with the number of signers.
Can we do better? (Ideally, the size of the “multi-signature” should
be independent from the number of signers)

• well-studied problem in cryptography originally tackled in [IN83]
• hard to achieve for ECDSA due to its complex algebraic structure
(modular division)
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“Naive” Schnorr multi-signatures

• Alice’s public key X1 = x1G , Bob’s public key X2 = x2G
• signature protocol:

• Alice draws R1 = r1G , Bob draws R2 = r2G
• they both compute R = R1 + R2 = (r1 + r2)G
• they both compute c = H(X1,X2,R,m)
• Alice computes s1 = r1 + cx1 mod p
• Bob computes s2 = r2 + cx2 mod p
• they both compute s = s1 + s2 mod p = (r1 + r2) + c(x1 + x2) mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R + c (X1 + X2)︸ ︷︷ ︸
aggregated key X̃

where c = H(X1,X2,R,m)

• can be generalized to n > 2 signers
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Wait! Rogue-key attacks

• assume that signers can claim whatever public key they want
(plain public key model)

• Bob knows Alice’s public key X1

• he can “choose” public key X2 = x ′G − X1

• Bob can forge a valid multi-signature (R, s) on his own with x ′:

sG = R + H(X1,X2,R,m)︸ ︷︷ ︸
c

(X1 + X2)︸ ︷︷ ︸
x ′G

= (r + cx ′)G

• note that Bob does not know the private key for X2 = (x ′ − x1)G
• this can thwarted using a key setup procedure [MOR01] or by
requiring signers to prove knowledge of their private key (with a
zero-knowledge proof) [RY07]
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Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...
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• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

Bellare-Neven multi-signature scheme [BN06]

• list of signers pubic keys L = {X1 = x1G , . . . ,Xn = xnG}
• signature protocol:

• each signer draws Ri = riG
• all signers compute R =

∑n
i=1 Ri =

(∑n
i=1 ri

)
G

• each signer computes a distinct challenge ci = H(L,Xi ,R,m) and a
partial signature si = ri + cixi mod p

• partial signatures are added: s =
∑n

i=1 si mod p
• the multi-signature is σ = (R, s)

• verification: a multi-signature σ = (R, s) is valid if

sG = R +
n∑

i=1
ciXi

• thwarts rogue-key attacks but key aggregation is not possible...

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 27 / 43



Digital Signature Schemes Signature and Key Aggregation Other Applications Conclusion

MuSig: key aggregation in the plain public key model
• variant of BN where the challenge for the i-th signer is

ci = H0(L,Xi )︸ ︷︷ ︸
ai

H1(X̃ ,R,m)︸ ︷︷ ︸
c

where X̃ =
n∑

i=1
H0(L,Xi )Xi

• partial signature si = ri + caixi mod p, s =
∑n

i=1 si mod p
• X̃ is called the aggregated key
• verification identical to “normal” signature with public key X̃ :

sG = R +
n∑

i=1
ciXi = R + H1(X̃ ,R,m)︸ ︷︷ ︸

c

n∑
i=1

H0(L,Xi )Xi︸ ︷︷ ︸
X̃

• variant with X̃ =
∑n

i=1 H0(Xi )Xi is insecure (Wagner’s algorithm)
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Application 1: replacing OP_CHECKMULTISIG

• using MuSig, n-of-n multisig outputs can be replaced by standard
P2PKH output for the aggregated key X̃

• this improves privacy
• individual public keys are never revealed
• the resulting output is indistinguishable from a standard P2PKH

output
• for “threshold” m-of-n multisigs with m < n:

• build a Merkle tree where leaves are all
(n

m
)
possible aggregated

keys and only put the root in the ScriptPubKey
• to spend, give a Merkle proof of membership of some X̃ and a

signature valid for X̃
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Application 2: cross-input signature aggregation

• transaction with multiple inputs: each key signs a different message
• ⇒ Interactive Aggregate Signature (IAS) scheme
• BN proposed to use a multi-signature scheme with message

M = m1‖m2‖ . . . ‖mn (generic conversion MS → IAS)
• insecure in the plain public key model (credit: R. O’Connor):

• Alice has two outputs O1 and O2 (same pub. key Xa = xaG)
• let mi be the message for spending Oi
• Alice wants to spend O1 (only) in a CoinJoin with Bob
• Bob claims he has the same key Xa, and chooses as message m2
• both Alice and Bob run the protocol on input Xa and M = m1‖m2
• Bob can simply copy Alice’s messages (although he does not know

private key xa)
• both O1 and O2 are spent
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Application 2: cross-input signature aggregation

• a secure IAS scheme requires “breaking the symmetry” for signers
with the same public key

• solution: modify BN to compute the challenge for i-th signer as

ci = H
(
{(X1,m1), . . . , (Xn,mn)},R, i

)
• the previous attack does not work since Alice computes

c1 = H({(Xa,m1), (Xa,m2)},R, 1)

whereas Bob must use

c2 = H({(Xa,m1), (Xa,m2)},R, 2)
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Benefits: Space savings
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Benefits: UTXO set consolidation

• actors handling a large number of transactions can end up with a
large number of “dust” UTXOs (e.g. exchanges)

• they become impossible to spend when fees are too high
• cross-input signature aggregation allows to merge them into a
single UTXO with a single signature rather than one signature per
input ⇒ lower transaction fees
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Taproot (G. Maxwell)

• conditions for spending an output often of the form
(n parties agree to sign)︸ ︷︷ ︸

n-of-n multisig

OR (some more complex conditions)︸ ︷︷ ︸
script S

• this can be achieved indistinguishably from a standard P2PKH
output

• let X̃ be the MuSig aggregated key for the n parties
• output uses public key Y = X̃ + H(X̃ , S)G
• two ways to spend the output:

• the n parties agree to sign with Y (one of them simply adds a
corrective term cH(X̃ , S) to its partial signature)

• X̃ and S are revealed and a ScriptSig S ′ is provided; the network
checks X̃ + H(X̃ , S)G ?= Y and that S‖S ′ returns True
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Scriptless scripts (A. Poelstra)
• goal: enforce smart contracts without publishing the contract in
the blockchain

• relies on “adaptor” signatures:
• Alice has key pair (x ,X = xG)
• Alice draws two ephemeral keys R = rG , T = tG
• she computes s = r + t + H(X ,R + T ,m)x and sends (R,T , s ′) to

Bob where s ′ = s − t
• Bob can check s ′G ?= R + H(X ,R + T ,m)X but can’t compute a

valid signature for m
• now revealing signature s ⇔ revealing t

• t can be some secret value necessary for an auxiliary protocol
(correctness can be proved in zero-knowledge from T )

• using a 2-of-2 multisig and an adaptor signature, one can obtain a
cross-chain atomic swap protocol indistinguishable from standard
spendings on each chain
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Discreet Log Contracts (T. Dryja)

• allows to enforce contracts based on external events
• oracle Olivia has public key: pair (X = xG ,R = rG)
• Olivia’s signature on m is simply sm = r + H(R,m)x
• for any message m, anybody can compute

Sm = smG = R + H(R,m)X
• to establish a contract, Alice and Bob send funds to a shared
multisig address (∼ payment channels in Lightning Network)

• for each possible outcome mi of the external event, Alice and Bob
have public keys Xa,mi = Xa + Smi , resp. Xb,mi = Xb + Smi

allowing to spend from the funding channel
• when the external event happens, Olivia signs the observed
outcome mobs

• Alice and Bob can compute resp. Xa,mobs and Xb,mobs and execute
the contract
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Conclusion

• Schnorr signatures can:
• reduce the size of transaction and speed up verification (lower cost,

less network overhead, . . . )
• improve privacy (private multisigs, incentive to use CoinJoin, . . . )
• enable fun new applications (Sciptless scripts, Discreet Log

Contracts, . . . )
• can be activated as a soft fork (thanks to Segwit script versioning)
• careful: any change to cryptographic algorithms requires A LOT of
review
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The end. . .

Thanks for your attention!

Comments or questions?

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 40 / 43



References

References I

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-Speed High-Security Signatures. In Cryptographic Hardware and
Embedded Systems - CHES 2011, volume 6917 of LNCS, pages 124–142.
Springer, 2011.

Mihir Bellare and Gregory Neven. Multi-Signatures in the Plain Public-Key
Model and a General Forking Lemma. In ACM Conference on Computer and
Communications Security - CCS 2006, pages 390–399. ACM, 2006.

Daniel R. L. Brown. Generic Groups, Collision Resistance, and ECDSA. Des.
Codes Cryptography, 35(1):119–152, 2005.

Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Advances in Cryptology - CRYPTO
’86, volume 263 of LNCS, pages 186–194. Springer, 1986.

K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research and Development, 71:1–8, 1983.

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 41 / 43



References

References II
Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-Subgroup
Multisignatures. In ACM Conference on Computer and Communications
Security - CCS 2001, pages 245–254. ACM, 2001.

Phong Q. Nguyen and Igor Shparlinski. The Insecurity of the Elliptic Curve
Digital Signature Algorithm with Partially Known Nonces. Des. Codes
Cryptography, 30(2):201–217, 2003.

David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes.
In Advances in Cryptology - EUROCRYPT ’96, volume 1070 of LNCS, pages
387–398. Springer, 1996.

Thomas Ristenpart and Scott Yilek. The Power of Proofs-of-Possession:
Securing Multiparty Signatures against Rogue-Key Attacks. In Advances in
Cryptology - EUROCRYPT 2007, volume 4515 of LNCS, pages 228–245.
Springer, 2007.

Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards.
In Advances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages
239–252. Springer, 1989.

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 42 / 43



References

References III

Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. J.
Cryptology, 4(3):161–174, 1991.

Certicom Research. SEC 2: Recommended Elliptic Curve Domain
Parameters, v2.0, 2010. Available at http://www.secg.org/sec2-v2.pdf.

Y. Seurin (ANSSI) Schnorr Signatures for Bitcoin 14/03/2018 — Cryptofinance 43 / 43

http://www.secg.org/sec2-v2.pdf

	Digital Signature Schemes
	Signature and Key Aggregation
	Other Applications
	Conclusion
	Appendix

