Open problems in hedgehog dynamics

Ricardo Pérez-Marco (CNRS, IMJ-PRG, Paris 7)

DinamIC Seminar, Imperial College

December 19, 2016
Lyapunov Stability

Definition

A fixed point 0 of a homeomorphism f is Lyapunov stable if for any neighborhood $0 \in U$ there is a neighborhood V such that for all $n \geq 0$,

$$f^n(V) \subset U.$$
Birkhoff Theorem

Theorem (G.D. Birkhoff, 1922)

Let f be a germ of planar homeomorphism of a neighborhood of $0 \in \mathbb{R}^2$ which is a Lyapunov unstable fixed point for f^{-1}. Then there exist a full non-trivial continuum $K_+, 0 \in K_+$, which is positive invariant by the dynamics of f,

$$f(K_+) \subset K_+.$$
Birkhoff Theorem

Theorem (G.D. Birkhoff, 1922)

If f is a germ of planar homeomorphism of a neighborhood of $0 \in \mathbb{R}^2$ which is a Lyapunov unstable fixed point for f^{-1}. Then there exist a full non-trivial continuum $K_+, 0 \in K_+, which is positive invariant by the dynamics of f,

$$f(K_+) \subset K_+.$$
Birkhoff Theorem

Theorem (G.D. Birkhoff, 1922)

\[f \text{ germ of planar homeomorphism of a neighborhood of } 0 \in \mathbb{R}^2 \text{ which is a Lyapunov unstable fixed point for } f^{-1}. \text{ Then there exist a full non-trivial continuum } K_+, 0 \in K_+, \text{ which is positive invariant by the dynamics of } f, \]

\[f(K_+) \subset K_+. \]

We can replace \(\mathbb{R}^2 \) by \(\mathbb{R}^n \) or more generally a locally compact and locally connected space.
Birkhoff compacta

Corollary

If 0 is Lyapunov unstable for both f and f^{-1} there are two Birkhoff continua K_+ and K_- such that $0 \in K_+ \cap K_-$ and

$$f(K_+) \subset K_+,$$

$$f^{-1}(K_-) \subset K_-.$$

In general $K_+ \neq K_-$, for example, locally for an hyperbolic fixed point $K_+ \cap K_- = \{0\}$.

R. Pérez-Marco
CNRS, IMJ-PRG, Paris 7

Open problems in hedgehog dynamics
Let $f(z) = \lambda z + \mathcal{O}(z^2)$ with $\lambda \neq 0$ be a germ of holomorphic diffeomorphism with a fixed point at 0.

Theorem

The fixed point 0 is Lyapunov stable if and only if f is linearizable at 0, i.e. there is a change of variables $h(z) = z + \mathcal{O}(z^2)$ such that

$$h^{-1} \circ f \circ h = L_\lambda$$

where $L_\lambda(z) = \lambda z$.
Siegel continuum

Theorem (RPM, Acta Math. 1997)

Let $f(z) = \lambda z + O(z^2)$ holomorphic, with 0 indifferent fixed point, $f(0) = 0$,

$$|\lambda| = |f'(0)| = 1$$

There exist a full non-trivial compact connected K, $0 \in K$, and totally invariant by the dynamics of f,

$$f(K) = f^{-1}(K) = K$$
Siegel continuum

Theorem (RPM, Acta Math. 1997)

Let $f(z) = \lambda z + O(z^2)$ holomorphic, with 0 indifferent fixed point, $f(0) = 0$,

$$|\lambda| = |f'(0)| = 1$$

There exist a full non-trivial compact connected K, $0 \in K$, and totally invariant by the dynamics of f,

$$f(K) = f^{-1}(K) = K$$
Siegel continuum

Theorem (RPM, Acta Math. 1997)

Let \(f(z) = \lambda z + O(z^2) \) holomorphic, with 0 indifferent fixed point, \(f(0) = 0 \),

\[|\lambda| = |f'(0)| = 1 \]

There exist a full non-trivial compact connected \(K \), \(0 \in K \), and totally invariant by the dynamics of \(f \),

\[f(K) = f^{-1}(K) = K \]
Hedgehog

Definition (Hedgehog)

Let $\lambda = e^{2\pi i\alpha}$, $\alpha \in \mathbb{R} - \mathbb{Q}$, if $K \neq \overline{K}$, then K is a hedgehog.

Two types of hedgehogs:
Hedgehog

Definition (Hedgehog)

Let \(\lambda = e^{2\pi i \alpha} \), \(\alpha \in \mathbb{R} - \mathbb{Q} \), if \(K \neq \bar{K} \), then \(K \) is a hedgehog.

Two types of hedgehogs:

- \(K \) is a non-linearizable hedgehog when \(0 \notin \bar{K} \).

R. P´erez-Marco CNRS, IMJ-PRG, Paris 7

Open problems in hedgehog dynamics
Hedgehog

Definition (Hedgehog)

\[
\lambda = e^{2\pi i \alpha}, \quad \alpha \in \mathbb{R} - \mathbb{Q}, \quad \text{if} \quad K \neq \bar{K}, \quad \text{then} \quad K \text{ is a hedgehog.}
\]

Two types of hedgehogs:

- **K** is a non-linearizable hedgehog when \(0 \notin \bar{K}\).
- **K** is a linearizable hedgehog when \(0 \in \bar{K}\).
Hedgehog

Definition (Hedgehog)

Let $\lambda = e^{2\pi i \alpha}$, $\alpha \in \mathbb{R} - \mathbb{Q}$, if $K \neq \bar{K}$, then K is a hedgehog.

Two types of hedgehogs:

- K is a non-linearizable hedgehog when $0 \notin \bar{K}$.
- K is a linearizable hedgehog when $0 \in \bar{K}$.

Open problems in hedgehog dynamics
Hedgehog

Definition (Hedgehog)

Let $\lambda = e^{2\pi i \alpha}$, $\alpha \in \mathbb{R} - \mathbb{Q}$, if $K \neq \bar{K}$, then K is a hedgehog. Two types of hedgehogs:

- K is a non-linearizable hedgehog when $0 \notin \bar{K}$.
- K is a linearizable hedgehog when $0 \in \bar{K}$.

We focus on non-linearizable hedgehogs.
Circle maps

Theorem

Let \(f(z) = \lambda z + O(z^2) \) holomorphic, \(\lambda = e^{2\pi i \alpha} \). and \(K \) hedgehog for \(f \). Then the action on prime-ends of \(\mathbb{C} - K \) is an analytic circle diffeomorphism \(g \) with rotation number

\[\rho(g) = \alpha. \]
Circle maps

Theorem

Let \(f(z) = \lambda z + O(z^2) \) holomorphic, \(\lambda = e^{2\pi i \alpha} \). and \(K \) hedgehog for \(f \). Then the action on prime-ends of \(\mathbb{C} - K \) is an analytic circle diffeomorphism \(g \) with rotation number

\[
\rho(g) = \alpha.
\]
Circle maps

Theorem

Let \(f(z) = \lambda z + o(z^2) \) holomorphic, \(\lambda = e^{2\pi i \alpha} \). and \(K \) hedgehog for \(f \). Then the action on prime-ends of \(\mathbb{C} - K \) is an analytic circle diffeomorphism \(g \) with rotation number

\[
\rho(g) = \alpha.
\]
Naishul’s theorem

Theorem

Let f_1 and f_2 be topologically conjugated with indifferent fixed points at 0. Then

$$f_1'(0) = f_2'(0)$$
Naishul’s theorem

Theorem

Let f_1 and f_2 be topologically conjugated with indifferent fixed points at 0. Then

$$f_1'(0) = f_2'(0)$$
Naishul’s theorem

Theorem

Let f_1 and f_2 be topologically conjugated with indifferent fixed points at 0. Then

$$f'_1(0) = f'_2(0)$$

Follows from $\rho(g_1) = \rho(g_2)$ (Poincaré)
Naishul’s theorem

Theorem

Let f_1 and f_2 be topologically conjugated with indifferent fixed points at 0. Then

$$f'_1(0) = f'_2(0)$$

Follows from $\rho(g_1) = \rho(g_2)$ (Poincaré)
Linearization

Theorem

If f is non-linearizable then g is non-linearizable.
Linearization

Theorem

If f is non-linearizable then g is non-linearizable.
Linearization

Theorem

If \(f \) is non-linearizable then \(g \) is non-linearizable.

Proof: If \(g \) is linearizable then 0 is Lyapunov stable.
Linearization

Theorem

If f is non-linearizable then g is non-linearizable.

Proof: If g is linearizable then 0 is Lyapunov stable.

\implies Dictionary between linearization problems.
Linearization

Theorem

If f is non-linearizable then g is non-linearizable.

Proof: If g is linearizable then 0 is Lyapunov stable.

\longrightarrow Dictionary between linearization problems.

Theorem

Arnold linearization thm \longrightarrow *Siegel linearization thm.*
The interior of K is empty

$\mathring{K} = \emptyset$
The interior of K is empty

$\hat{K} = \emptyset$
Interior

Theorem

The interior of K is empty

$\hat{K} = \emptyset$

\implies No wandering components inside hedgehogs.
Local connectivity

Theorem

The only point where a hedgehog is locally connected is the fixed point.
Local connectivity

Theorem

The only point where a hedgehog is locally connected is the fixed point.
Local connectivity

Theorem

The only point where a hedgehog is locally connected is the fixed point.

Theorem (K. Biswas, 2003)

There are hedgehogs containing smooth combs.

A comb is Cantor \times Interval.
Theorem

The impression of all prime-ends of $\mathbb{C} - K$ is non-trivial and contains the fixed points.
The impression of all prime-ends of $\mathbb{C} - K$ is non-trivial and contains the fixed points.
Prime ends

Theorem

The impression of all prime-ends of $\mathbb{C} - K$ is non-trivial and contains the fixed points.

\implies Complex topology
Filtration

Theorem

A hedgehog is filtered by a unique family of sub-hedgehogs.
Filtration

Theorem

A hedgehog is filtered by a unique family of sub-hedgehogs.
Filtration

Theorem

A hedgehog is filtered by a unique family of sub-hedgehogs.

For any hedgehog K, there is a unique (up to parametrization) continuous family for the Haussdorf topology $(K_t)_{t \in [0,1]}$ with $K_0 = \{0\}$, $K_1 = K$, and K_t hedgehog.

\implies Rich structure
Measure

Theorem (K. Biswas)

There are hedgehogs with Hausdorff dimension 1 and also hedgehogs with positive area.
Harmonic Ergodicity

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let μ_H the harmonic measure of $\mathbb{C} - K$. The dynamics of f on K is μ_H-ergodic. The orbit of μ_H-almost every $z \in K$ is dense in K.**</td>
</tr>
</tbody>
</table>

R. Pérez-Marco

Open problems in hedgehog dynamics
Harmonic Ergodicity

Theorem

Let μ_H the harmonic measure of $\mathbb{C} - K$.

The dynamics of f on K is μ_H-ergodic.

The orbit of μ_H-almost every $z \in K$ is dense in K.
Harmonic Ergodicity

Theorem

Let μ_H the harmonic measure of $\mathbb{C} - K$.

The dynamics of f on K is μ_H-ergodic.

The orbit of μ_H-almost every $z \in K$ is dense in K.

Proof: By using Lebesgue ergodicity of analytic circle diffeomorphism with irrational rotation number (Katok, Herman).

R. Pérez-Marco
CNRS, IMJ-PRG, Paris 7
Open problems in hedgehog dynamics
Harmonic Ergodicity

Theorem

Let μ_H the harmonic measure of $\mathbb{C} - K$.

The dynamics of f on K is μ_H-ergodic.

The orbit of μ_H-almost every $z \in K$ is dense in K.

Proof: By using Lebesgue ergodicity of analytic circle diffeomorphism with irrational rotation number (Katok, Herman).

Corollary

The orbit of μ_H-almost every $z \in K$ is dense in K.

$\implies \mu_H(K_t) = 0$ for $t < 1$, i.e. the strata K_t are hidden inside K.

R. Pérez-Marco
CNRS, IMJ-PRG, Paris 7
Uniform Recurrence

Let \((p_n/q_n)\) be the sequence of convergents of \(\alpha \in \mathbb{R} - \mathbb{Q}\). For the rotation \(R_\alpha\) of angle \(\alpha\), we have uniformly

\[
R_{\alpha}^{q_n} \to \text{Id}
\]
Uniform Recurrence

Let \((p_n/q_n)\) be the sequence of convergents of \(\alpha \in \mathbb{R} - \mathbb{Q}\). For the rotation \(R_\alpha\) of angle \(\alpha\), we have uniformly

\[R_\alpha^{q_n} \rightarrow Id \]

Theorem (Uniform Recurrence)

*We have uniformly on \(K\)

\[f_{/K}^{q_n} \rightarrow Id_K \]
Uniform Recurrence

Let \((p_n/q_n) \) be the sequence of convergents of \(\alpha \in \mathbb{R} - \mathbb{Q} \).
For the rotation \(R_\alpha \) of angle \(\alpha \), we have uniformly
\[
R^{q_n}_\alpha \to \text{Id}
\]

Theorem (Uniform Recurrence)

We have uniformly on \(K \)
\[
f^{q_n}_{/K} \to \text{Id}_K
\]
Uniform Recurrence

Let \((p_n/q_n)\) be the sequence of convergents of \(\alpha \in \mathbb{R} - \mathbb{Q}\). For the rotation \(R_\alpha\) of angle \(\alpha\), we have uniformly

\[R_\alpha^{q_n} \to \text{Id}\]

Theorem (Uniform Recurrence)

\textit{We have uniformly on } K \textit{ }

\[f_{/K}^{q_n} \to \text{Id}_K\]

Corollary

\textit{The topological centralizer of } f_{/K} \textit{ is uncountable.}
Uniform Recurrence

Let \((p_n/q_n)\) be the sequence of convergents of \(\alpha \in \mathbb{R} - \mathbb{Q}\).
For the rotation \(R_\alpha\) of angle \(\alpha\), we have uniformly

\[R_\alpha^{q_n} \to \text{Id} \]

Theorem (Uniform Recurrence)

We have uniformly on \(K

\[f_{/K}^{q_n} \to \text{Id}_K \]

Corollary

The topological centralizer of \(f_{/K}\) is uncountable.
Uniform Recurrence

Let \((p_n/q_n)\) be the sequence of convergents of \(\alpha \in \mathbb{R} - \mathbb{Q}\). For the rotation \(R_\alpha\) of angle \(\alpha\), we have uniformly

\[R_{q_n} \rightarrow \text{Id} \]

Theorem (Uniform Recurrence)

We have uniformly on \(K\)

\[f_{/K}^{q_n} \rightarrow \text{Id}_K \]

Corollary

The topological centralizer of \(f_{/K}\) is uncountable.
Unique Ergodicity

Conjecture (RPM, 1995)

The dynamics of \(f \) in \(K \) is uniquely ergodic.
Unique Ergodicity

Conjecture (RPM, 1995)

The dynamics of f in K is uniquely ergodic.
Unique Ergodicity

Conjecture (RPM, 1995)

The dynamics of f in K is uniquely ergodic.

That is, the only invariant probability measure is the Dirac at 0.
Unique Ergodicity

Conjecture (RPM, 1995)

The dynamics of f in K is uniquely ergodic.

That is, the only invariant probability measure is the Dirac at 0.

Theorem (A. Avila, D. Cheraghi, 2013)

The conjecture is true for hedgehogs of a quadratic polynomial $P_{\alpha}(z) = e^{2\pi \alpha} z + z^2$ with α of “high type”.

R. Pérez-Marco

Open problems in hedgehog dynamics
Symmetries

Conjecture

Any element of the topological centralizer

\[\text{Cent}(f/K) = \{ g \in \text{Homeo}(K,0); g \circ f/K = f/K \circ g \} \]

has a well defined rotation number \(\rho(g) \).
Symmetries

Conjecture

Any element of the topological centralizer

\[\text{Cent}(f_K) = \{ g \in \text{Homeo}(K,0) ; g \circ f_K = f_K \circ g \} \]

has a well defined rotation number \(\rho(g) \).

Definition

\[G(f, K) = \{ \rho(g) ; g \in \text{Cent}(f_K) \} \]
Unbreakable symmetries

Theorem

The group

\[G(\alpha) = \bigcap_{f; \rho(f) = \alpha} G(f, K) \]

is non-trivial and uncountable.
Unbreakable symmetries

Theorem

The group

\[G(\alpha) = \bigcap_{f; \rho(f) = \alpha} G(f, K) \]

is non-trivial and uncountable.
Unbreakable symmetries

Theorem

The group

\[G(\alpha) = \bigcap_{f; \rho(f) = \alpha} G(f, K) \]

is non-trivial and uncountable.

Question

Determine the group

\[G(\alpha) = \bigcap_{f; \rho(f) = \alpha} G(f, K) . \]
Rigidity

Conjecture

If

\[G(f_1, K_1) = G(f_2, K_2) \]

then

\[K_1 \approx K_2 \]

and the dynamics of \(f_1 \) on \(K_1 \) and \(f_2 \) on \(K_2 \) are topologically conjugated.
Drawing hedgehogs

Problem (J. Milnor, 1997)

Make a computer picture of a hedgehog.
Higher dimension

Question

Do there exist hedgehogs in higher dimension?
<table>
<thead>
<tr>
<th>Hedgehogs</th>
<th>Applications</th>
<th>Structure</th>
<th>Dynamics</th>
<th>Open Problems</th>
</tr>
</thead>
</table>

Open problems in hedgehog dynamics
Open problems in hedgehog dynamics