Feuille 3 : Unités, groupe des classes

Outils en vrac

1. La borne de Minkowski d'un corps K de degré n et de signature (r_1,r_2) est

$$M_K = \sqrt{|\operatorname{disc}(K)|} \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n}$$

2. Tout idéal fractionnaire I de \mathcal{O}_K contient un élément α tel que

$$|\operatorname{Norm}_{K/\mathbb{Q}}(\alpha)| \leq M_K \operatorname{Norm}_{K/\mathbb{Q}}(I).$$

3. Quelques constantes de Minkowski

Signature (r_1, r_2)	$\left(\frac{\pi}{4}\right)^{-r_2} \frac{n!}{n^n}$
(2,0)	0.5
(0, 1)	0.63661
(3,0)	0.2222
(1, 1)	0.28299
(4,0)	0.09375
(2,1)	0.11937
(0, 2)	0.15198

- 4. Le discriminant de $x^3 + px + q$ est $-4p^3 27q^2$.
- 5. Si un polynôme unitaire $f(x) \in \mathbb{Z}[x]$ est un polynôme d'Eisenstein en un premier p, alors en notant α une racine de f, (p) est totalement ramifié dans $\mathbb{Q}(\alpha)$ et $\mathbb{Z}[\alpha]$ y est p-maximal.
- 6. Soit $f(x) \in \mathbb{Z}[x]$ irréductible unitaire, dans $K = \mathbb{Q}(\alpha)$ on a

$$\operatorname{Norm}_{K/\mathbb{O}}(k-\alpha) = f(k).$$

7. Soit $K=\mathbb{Q}(\sqrt{d})$ un corps quadratique, où $d\in\mathbb{Z}$ est sans facteur carré. On note d_K son discriminant : si $d\equiv 1\mod 4$, on a $d_K=d$ et $\mathcal{O}_K=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$, sinon $d_K=4d$ et $\mathcal{O}_K=\mathbb{Z}[\sqrt{d}]$. Un premier p>3 qui ne divise pas d_K est décomposé dans K si d_K est un carré modulo p, et inerte sinon.

Exercice 1. Montrer que toute classe d'idéaux contient un idéal entier J de norme $\operatorname{Norm}_{K/\mathbb{Q}}(J) \leq M_K$ (considérer un élément $\alpha \in I^{-1}$).

Exercice 2. On considère le corps $K = \mathbb{Q}(\sqrt{-43})$.

1. Calculer la décomposition de (2) et (3) dans \mathcal{O}_K .

- 2. Calculer M_K , et montrer que \mathcal{O}_K est principal.
- 3. Soit $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$ qui engendre un idéal premier, montrer que $\operatorname{Norm}_{K/\mathbb{Q}}(\alpha)$ est un nombre premier.
- 4. Montrer que si $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$ alors $\operatorname{Norm}_{K/\mathbb{Q}}(\alpha) \geq 11$.
- 5. Soient x et $y \neq 0$ deux entiers premiers entre eux tels que $x^2 + xy + 11y^2 < 121$. Montrer que $x^2 + xy + 11y^2$ est un nombre premier.

Remarque : On en déduit en particulier que $x^2 + x + 11$ est un nombre premier pour x compris entre 0 et 9. Le même raisonnement avec $\mathbb{Q}(\sqrt{-163})$ montre que $x^2 + x + 41$ est premier pour x allant de 0 à 39.

Exercice 3. Soit d > 1 un entier sans facteur carré, $K = \mathbb{Q}(\sqrt{-d})$ et d_K son discriminant. Soit p un nombre premier décomposé dans K, et \mathfrak{p} un idéal au dessus de p.

- 1. Montrer que pour tout i > 1 tel que $p^i < \frac{|d_K|}{4}$, \mathfrak{p}^i n'est pas principal.
- 2. En déduire que $h_K > 1 + \left\lfloor \frac{\log |d_K|}{\log p} \right\rfloor$.

Exercice 4. Soit K un corps de nombres cubique, tel que $\operatorname{disc}(K) < 0$.

- 1. Montrer que la signature de K est (1,1) (commencer par supposer \mathcal{O}_K monogène).
- 2. Désormais, on utilise le plongement réel pour voir K comme un sous-corps de \mathbb{R} . Montrer qu'il existe $\varepsilon > 1$ tel que $\mathcal{O}_K^* = \{ \pm \varepsilon^k, k \in \mathbb{Z} \}$.
- 3. Montrer que $K=\mathbb{Q}(\varepsilon)$, et que le polynôme minimal de ε est de la forme $g(x)=(x-\varepsilon)(x-\sqrt{\varepsilon^{-1}}e^{it})(x-\sqrt{\varepsilon^{-1}}e^{-it})$ pour $t\in\mathbb{R}$.
- 4. Montrer l'inégalité d'Artin : $|\operatorname{disc}(g(x))| < 4(\varepsilon^3 + 6)$ (utiliser sans preuve l'inégalité magique $\left(\frac{u^3+u^{-3}}{2} \cos t\right)^2 \sin^2 t < \frac{u^6+6}{4}$, valable pour tous réels u,t).
- 5. Montrer que si u > 1 est une unité qui vérifie $4(u^{3/2} + 6) < |\operatorname{disc}(K)|$, alors $u = \varepsilon$.
- 6. Soit $K = \mathbb{Q}(\alpha)$ où $\alpha^3 + \alpha = 1$. Déterminer une unité fondamentale de K (on donne $\alpha \approx 0.6823$ dans \mathbb{R}).

Exercice 5. Soit $K = \mathbb{Q}(\zeta_p)$ le p-ème corps cyclotomic, pour p premier et $p \leq 11$. Démontrer que \mathcal{O}_K est principal (le cas p = 11 est difficile).

Exercice 6. Soit $K = \mathbb{Q}(\alpha)$, où α est une racine de $x^3 + 6x + 6$.

- 1. Déterminer le discriminant d_K de K et son anneau d'entiers.
- 2. Déterminer la signature de K, et sa constante de Minkowski M_K .
- 3. Déterminer les idéaux premiers de norme inférieure à M_K .
- 4. Calculer $\mathrm{Norm}_{K/\mathbb{Q}}(\alpha)$ et $\mathrm{Norm}_{K/\mathbb{Q}}(\alpha+2)$ et en déduire que $\mathrm{Cl}(K)$ est cyclique.
- 5. Montrer que $u = \alpha + 1 \in \mathcal{O}_K^*$ est une unité.

- 6. Montrer que u est une unité fondamentale et en déduire que u est non triviale dans $\mathcal{O}_K^*/(\mathcal{O}_K^*)^3$ (utiliser l'inégalité d'Artin avec une calculatrice : $\alpha \approx -0.884$).
- 7. Montrer que 2, 2u et $2u^2$ ne sont pas des cubes dans \mathcal{O}_K (regarder modulo \mathfrak{p}_7 , un idéal premier au-dessus de (7).
- 8. En déduire Cl(K).

Exercice 7. Soit K un corps de nombres, et m > 1 un entier. On pose $Cl(K)[m] = \{a \in Cl(K), a^m = 1\}$ le groupe de m-torsion.

- 1. Montrer que si h_K est premier à m, alors $Cl(K)[m] = \{1\}$. On définit $G_m(K) = \{x^m, x \in K^*\}$ et $L_m(K)$ l'ensemble des éléments $x \in K^*$ tels que dans la factorisation en idéaux premiers de (x) tous les exposants sont multiples de m. On pose $S_m(K) = L_m(K)/G_m(K)$.
- 2. Montrer qu'on a un morphisme de groupes $\phi: S_m(K) \to \operatorname{Cl}(K)[m]$ défini par $\phi(x) = a_x$, où a_x est l'unique idéal fractionnaire tel que $a_x^m = (x)$.
- 3. Montrer que ϕ est surjectif et déterminer son noyau. On suppose désormais que $K=\mathbb{Q}(\sqrt{-d})$ est un corps quadratique imaginaire, avec d>0 sans facteur carré.
- 4. Soit $x = a + b\sqrt{-d} \in K$ tel que $\operatorname{Norm}_{K/\mathbb{Q}}(x) = 1$. Montrer qu'il existe $y \in K^*$ tel que $x = \frac{y}{y}$, où \overline{y} désigne le conjugué complexe de y (on pourra considérer l'application $\psi : K \to K$ définie par $\psi(y) = \overline{y} xy$).
- 5. Soit $\mathfrak{a} \in \mathrm{Cl}(K)[2]$, on pose $a = \mathrm{Norm}_{K/\mathbb{Q}}(\mathfrak{a})$. Montrer qu'il existe $y \in K^*$ tel que $\mathfrak{a}^2 = \left(\frac{a\overline{y}}{y}\right)$.
- 6. On pose $\mathfrak{b} = y\mathfrak{a}$, montrer qu'il existe $b \in \mathbb{Q}^*$ tel que $\mathfrak{b}^2 = (b)$.
- 7. Montrer que $\mathfrak{a} \in \mathrm{Cl}(K)[2]$ est dans la classe d'un produit d'idéaux ramifiés.
- 8. On note $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ les premiers ramifiés de K. Soit une famille $0 \le e_i \le 1$, montrer que si $\prod_{i=1}^t \mathfrak{p}_i^{e_i}$ est principal, ce produit vaut (1) ou (\sqrt{d}) .
- 9. Montrer que $Cl(K)[2] \cong \mathbb{F}_2^{t-1}$.