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Introduction

Dans ce mémoire d’habilitation, je présente les travaux que j’ai effectués aprés mon
doctorat dans les domaines de l'analyse géométrique et de la géométrie spectrale. Une
grande partie de mes résultats se situe a I'interface entre la théorie des surfaces minimales
et 'optimisation de valeurs propres d’opérateurs différentiels en fonction de la géométrie
d’une variété.

Les surfaces minimales forment un champ trés vaste d’étude qui demeure fondamen-
tal en géométrie différentielle, en calcul des variations et en physique mathématique.
Elles peuvent étre vues comme une généralisation du probléme des géodésiques. Dans
des contextes variés, on cherche & les construire, voire & les classifier, ou comprendre leur
rigidité. Elles sont aussi des outils centraux en analyse géométrique. Dans mes travaux,
je me concentre sur leur description paramétrique par des applications conformes et har-
moniques. Ce point de vue a été primordial dans la résolution du probléme de Plateau
par Douglas [Dou31] et Rado [Rad30] ou encore Morrey [Mor4S]. Cela a renforcé I'intérét
d’obtenir des résultats d’existence et de régularité des applications harmoniques, ainsi que
des EDP elliptiques non linéaires de la méme famille qui paramétrent des généralisations
des surfaces minimales (surfaces a courbure moyenne constante, surfaces de Willmore,
etc). Comme on le verra, ce point de vue permet aussi de relier des surfaces minimales
particuliéres aux points critiques de fonctionnelles spectrales.

En optimisation spectrale, les valeurs propres sont des fonctionnelles qui dépendent
de la forme et de la topologie du domaine, de l'opérateur associé, et/ou de la structure
géométrique ambiante. On cherche & les borner et a optimiser ces bornes. On décrit
également les formes critiques qui réalisent ces bornes si elles existent. Le probléme le
plus emblématique formulé par Rayleigh a été résolu de maniére indépendante par Faber
[Fab23| et Krahn [Kra25| : les domaines qui minimisent la premiére valeur propre de
I'opérateur de Laplace avec des conditions au bord de Dirichlet parmi les domaines de
méme volume dans R™ sont les boules euclidiennes. Ce probléme est trés similaire au
probléme isopérimétrique (remplacer la premiére valeur propre par le périmétre), et la
preuve de ce résultat utilise d’ailleurs I'inégalité isopérimétrique.

On distingue deux types de problémes d’optimisation de valeurs propres. Dans le
premier type, l'espace ambiant est prescrit (par exemple, l'espace euclidien, sa spheére,
I'espace hyperbolique etc) et on optimise sur ’ensemble des domaines de cet espace. On
parle ici d’optimisation de forme. Les résultats emblématiques sont les inégalités de Faber-
Krahn [Fab23| [Kra25|, de Szego-Weinberger [Sze54) [Weib6] ou de Weinstock-Brock [Weih4,
Bro01]. Dans le deuxiéme type, la topologie ambiante est prescrite (sur une variété donnée)
mais ['optimisation a lieu par rapport a des potentiels qui apparaissent dans 1’opérateur,
ou & la métrique riemannienne sur la variété (ou encore la structure CR, la métrique
sous-riemannienne, la structure RCD, etc). Un résultat emblématique est 'inégalité de

5



Hersch [Her70] : la sphére ronde est le maximiseur de la premiére valeur propre non nulle
du Laplacien parmi les métriques de méme aire sur une sphére topologique.

Mes travaux se concentrent plutdt sur le deuxiéme type de problémes. Une de ses
spécificités est que les conditions d’Euler-Lagrange associées a des variations de métriques
sont riches, autant du point de vue analytique que géométrique. Par exemple, un lien entre
les métriques riemanniennes critiques de valeurs propres et certaines surfaces minimales
a d’abord été observé par Nadirashvili [Nad96| (pour le Laplacien), puis repopularisé par
Fraser et Schoen [FS16| (pour l'opérateur Dirichlet & Neumann). Ce lien permet a la
fois de calculer précisément des invariants spectraux et de construire par des méthodes
indirectes de nouvelles surfaces minimales. Depuis, de nombreux travaux ont identifié
des interprétations géométriques des conditions d’Euler-Lagrange associées aux points
critiques de fonctionnelles dépendant de valeurs propres pour d’autres opérateurs, ou de
leurs combinaisons. Bien que les EDPs associées aux fonctions propres sont linéaires, il
est amusant de constater que I'optimisation spectrale pour des opérateurs bien choisis est
associée a des systemes d’EDPs non linéaires qui ont un sens géométrique.

Ma contribution principale au domaine est la construction d’une théorie variationnelle
robuste permettant de démontrer ’existence ou l'inexistence de métriques optimales pour
des fonctionnelles spectrales, c’est a dire définies comme des combinaisons finies de valeurs
propres d’opérateurs dépendant de la métrique. L’objet du Chapitre |I| est de restituer ce
travail de la maniére la plus élémentaire possible a travers deux exemples types trés diffé-
rents qu’on développe dans les chapitres suivants. Le premier exemple est la maximisation
renormalisée par ’aire de la premiére valeur propre du Laplacien dans la classe conforme
d’une surface (variété de dimension 2) riemannienne compacte sans bord donnée. Bien
qu’il soit résolu depuis [Petl4al, il est intéressant de revoir cet exemple & la lumiére de
mes nouvelles techniques dans [Pet25d|. Les conséquences de ces techniques seront dé-
taillées dans le Chapitre [[Il Le deuxiéme exemple est 'optimisation renormalisée par le
volume des valeurs propres du Laplacien conforme dans la classe conforme d’une variété
riemannienne compacte sans bord de dimension n > 3. C’est le cadre typique de [HPP25)|
détaillé dans le Chapitre [[V]

Le Chapitre[[synthétise donc les aspects théoriques de [PT24) [Pet25d, [Pet24al, [HPP25)
et unifie ces papiers dans une approche commune. Dans [PT24], nous donnons des ou-
tils analytiques permettant de calculer des points critiques de fonctionnelles spectrales
grace a l'utilisation du sous-différentiel de Clarke. Nous donnons également de nouveaux
exemples d’interprétation géométrique d’équations d’Euler Lagrange, et de nouvelles ca-
ractérisations fines de métriques localement optimales. Dans [Pet25d, [Pet24al, j’introduis
une bonne fagon d’appliquer le principe variationnel d’Ekeland pour montrer 'existence
de métriques maximales pour des fonctionnelles spectrales associées au laplacien et a
I'opérateur Dirichlet & Neumann en dimension 2. Cette approche s’applique autant pour
I'optimisation dans une classe conforme |[Pet25d| que pour l'optimisation parmi toutes
les métriques [Pet24a). Cette nouvelle approche nous a également permis de contribuer
significativement a 1’optimisation des valeurs propres associées aux opérateurs covariants
conformes en dimension plus grande que 3 dans [HPP25|. Cela offre ainsi des perspec-
tives de résolution de problémes d’optimisation spectrale avec d’autres opérateurs géomé-
triques, et également des problémes mettant en jeu des combinaisons infinies de valeurs
propres. Ceci peut donc également donner accés & de nombreux problémes d’optimisation
d’invariants Riemanniens.



Dans le Chapitre [II} je présente mon résultat le plus important [Pet24al : I'existence
de métriques optimales pour une large classe de combinaisons finies de valeurs propres du
Laplacien renormalisées par 1’aire sur une surface compacte donnée parmi ’ensemble des
métriques, quelque soit la topologie de la surface. En particulier, il existe un maximum
pour la premiére valeur propre du Laplacien renormalisée par l'aire. Cela achéve le pro-
gramme initié par Hersch [Her70] qui avait résolu la question sur la sphére. Notons par
exemple que Berger [Ber73| cherchait déja & comprendre cette question pour les autres
topologies comme le tore. Depuis, plusieurs travaux avaient résolu la question en genre
petit : le plan projectif [LY82], le tore [Nad96], la bouteille de Klein [ESGJ06][INPOG], les
surfaces orientables de genre 2 [JLNT05| [NST19).

Ce résultat général est obtenu dans la continuation de mes travaux de thése qui conte-
naient une premiere étape essentielle : la construction de métriques qui maximisent une
valeur propre dans une classe conforme [Pet14al [Pet18 [Pet19]. La maximisation dans une
classe conforme est naturelle pour plusieurs raisons : d’abord elle est plus simple puisque
le probléme est réduit a une maximisation sur un espace de fonctions positives, mais sur-
tout, les métriques critiques a classe conforme contrainte sont associées a des applications
harmoniques : la théorie de la régularité sur ces applications permet de mettre en place des
approches variationnelles. Enfin, comme la maximisation parmi toutes les métriques est
une maximisation parmi les classes conformes, on obtient fondamentalement un probléme
de maximisation en dimension finie puisqu’il a lieu sur ’espace de Teichmiiller.

J’ai généralisé mes travaux de thése dans le cadre de combinaisons de valeurs propres
|[Pet23a, [Pet24b], puis je les ai unifiés et rendus plus robustes dans [Pet25d|. Cela m’a
également permis d’identifier une condition suffisante a I’existence d’un minimiseur d’une
fonctionnelle spectrale parmi toutes les métriques. Je démontre cette condition suffisante
dans [Pet24al pour une large classe de fonctionnelles spectrales sur des surfaces orientables.
Ainsi, il existe une métrique optimale pour la premiére valeur propre généralisée du Lapla-
cien sur toute surface orientable, mais aussi par exemple pour des fonctionnelles spectrales
introduites par Hersch [Her70|, Berger [Ber73| et Li-Yau [LY82] (sommes d’inverses de va-
leurs propres), et pour bien d’autres fonctionnelles (produits de valeurs propres, sommes
partielles de la fonction zeta sur les valeurs propres, etc). Dans le cas particulier de la
premiére valeur propre, on étend ce résultat aux surfaces non orientables dans [KPS25)|
par une méthode différente basée sur les travaux paralléles [KS23| [KKMS24].

Dans le Chapitre [[TI] je développe des applications de l'optimisation spectrale a la
théorie des surfaces minimales. En effet, j’ai remarqué dans [Pet23a] que les métriques
critiques de fonctionnelles spectrales associées au Laplacien sur une surface compacte
sans bord fournissent des surfaces minimales branchées dans des ellipsoides. De maniére
similaire dans [Pet24b], les métriques critiques de fonctionnelles spectrales associées a
I'opérateur Dirichlet & Neumann sur une surface a bord fournissent des immersions mi-
nimales branchées & bord libre dans des ellipsoides. Réciproquement, toute immersion
minimale branchée dans un ellipsoide peut étre vue comme un point critique d’une cer-
taine fonctionnelle spectrale (voir [PT24]). Ce résultat élargit des travaux antérieurs de
Nadirashvili, El Soufi-Ilias et Fraser-Schoen qui ne mettaient en jeu qu’une seule valeur
propre (dans ce cas, la variété cible est une sphére).

Ce travail m’a permis de résoudre une question ouverte depuis 30 ans : je montre
'existence de disques minimaux a bord libre plongés non plans dans des ellipsoides de R?
[Pet23b| par optimisation équivariante de combinaisons de la premiére et deuxiéme valeur
propre de Steklov sur le disque, renormalisées par la longueur du bord. Bien siir, cette
méthode s’applique aussi dans le cadre sans bord [Pet25b]. L’optimisation équivariante



présente un double avantage. Elle permet de restreindre le nombre de coordonnées en jeu
dans I'immersion minimale branchée naturellement construite par optimisation spectrale
afin que l’espace ambiant soit R3. C’est également une condition importante pour montrer
que les immersions minimales branchées en question sont en fait plongées. Les symétries
permettent donc de résoudre les principales difficultés géométriques liées a I'optimisation
spectrale. L’année suivante, une approche équivariante de maximisation de la premiére
valeur propre de Steklov renormalisée a aussi permis & Karpukhin-Kusner-McGrath-Stern
de démontrer I'existence de surfaces minimales & bord libre dans des boules de R? pour
toute topologie orientable dans [KKMS24|. Tous ces résultats montrent la puissance de
cette méthode indirecte de construction de surfaces minimales, parachevant le programme
initié par Fraser et Schoen dans [FS16].

Enfin, dans le Chapitre [[V] je détaille les résultats d’optimisation des valeurs propres
des opérateurs conformément covariants d’ordre 2s < n oul s est un entier sur une variété
Riemannienne compacte sans bord de dimension n [HPP25|. C’est une généralisation des
problémes d’optimisation de la Q-courbure (la courbure scalaire dans le cas du Laplacian
conforme). Les résultats sont riches, variés et parfois surprenants si on les compare avec
'optimisation spectrale en dimension 2. L’approche détaillée dans le Chapitre [ a permis
de fortement unifier et généraliser les résultats précédents d’existence ou d’inexistence
d’optimiseurs ou de calculs d’invariants spectraux de [AHO06, (GPA22].

Bien que cela ne soit pas mis en avant dans ce mémoire, je mentionne ici d’autres

travaux et questions qui ne sont pas directement liés a la géométrie spectrale :

— Analytiquement, j’ai réinterprété dans le cadre de fonctionnelles spectrales les
riches théories variationnelles non lisses fondées notamment par F. Clarke ou I.
Ekeland dans [Cla75, [Eke74]. Il serait intéressant d’étendre cette compréhension au
cas non linéaire mettant en jeu des constantes optimales dans les inégalités fonc-
tionnelles, ou des invariants géométriques plus généraux. Etendre les problémes
d’optimisation non lisse & un cadre variationnel min-max amplifierait aussi les ap-
plications géométriques. Enfin, on pourrait également développer une théorie des
points critiques dans ce méme cadre non lisse, en cherchant par exemple des géné-
ralisations du théoréme des fonctions implicites.

— Mes travaux |[LP19, [Pet25c] portent sur les problémes variationnels invariants par
transformation conforme, et en particulier les applications harmoniques. Ils sont
basés sur les nombreux résultats de régularité et de quantification remontant a
[Hel90, [Helo1l Riv07]. J’aimerais étendre la compréhension de ces problémes sur des
variétés plus générales que riemanniennes, et avec des variétés cibles de dimension
infinie. Ceci a un lien avec des problémes d’optimisation de combinaisons infinies de
valeurs propres ou encore les questions de plongements isométriques par fonctions
propres.

— Une méthode de Hélein [HéI02] basée sur la minimisation de ’énergie des repéres
mobiles permet d’uniformiser des surfaces. Dans |[LP24], on donne une fagon na-
turelle d’adapter cette méthode aux parties simplement connexes du plan dont le
bord est une courbe Weil-Petersson. On fait un lien entre une énergie de repére
mobile renormalisée, I’énergie renormalisée de Ginzburg-Landau (voir [BBHI17]) et
I’énergie de Loewner de la courbe au bord récemment introduite par Wang [Wan19].
L’objectif est d’appliquer ce travail aux surfaces minimales de I’espace hyperbolique
H? afin de donner un lien quantitatif entre leur énergie de Willmore et I’énergie de
Loewner de leur trace sur le bord de H?. C’est un aspect manquant dans [Bis20)].



Les travaux |[LP24] et [MW24] sont un premier pas dans cette direction. Dans un
autre contexte, mon étudiant Martijn Kluitenberg [KIu25| utilise également la mé-
thode de Hélein pour uniformiser les surfaces dites presque riemanniennes (un cas
particulier de variétés sous-riemanniennes) contenant une singularité au bord du
méme type que celle de la "sphére de Grushin".

Chaque introduction de chapitre détaille un peu plus son contenu. Peu de preuves
détaillées de mes résultats apparaissent dans ce mémoire : le lecteur est renvoyé a mes
travaux. Toutefois, dans le Chapitre [I, la synthétisation de mon approche variationnelle
apporte un point de vue nouveau auquel je fournis parfois des preuves qui n’apparaissent
pas tout a fait de la méme facon dans mes travaux. Une extension de ce chapitre en un
tout auto-contenu peut d’ailleurs faire 'objet d’un survey ou d’un cours. Chaque fin de
chapitre propose des perspectives de recherche a plus ou moins long terme.
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Chapitre 1

Une méthode variationnelle en
géométrie spectrale

Dans ce chapitre, je présente une méthode d’optimisation de valeurs propres qui peut
s’appliquer dans de nombreux contextes a travers deux exemples principaux. C’est une pré-
sentation synthétique des aspects théoriques de [PT24., [Pet25d, [Pet24al [HPP25]. La pré-
sentation de cette méthode est nouvelle et se veut unificatrice a travers les deux exemples.
Le chapitre n’est pas complétement auto-contenu puisqu’il renvoie & mes travaux mais une
démonstration est donnée pour chaque énoncé qui n’est pas écrit de la méme facon dans
les articles dont il est tiré. Les 5 parties de ce chapitre suivent la démarche naturelle pour
ces problémes d’optimisation spectrale :

1. Bien poser le probléme d’optimisation : I'infimum (ou le supremum) de la fonction-
nelle doit étre fini.

2. Calculer les points critiques de la fonctionnelle, c’est a dire comprendre les conditions
d’ordre 1 des maxima et minima locaux, en particulier dans un cadre non lisse.

3. Donner une théorie de la régularité sur les points critiques et déduire la compacité
des suites de points critiques grace aux estimées de régularité.

4. Construire des suites optimisantes susceptibles d’étre compactes au méme titre que
les suites de points critiques. Ce sont par exemple des suites "a la Palais Smale" qui
sont proches d’étre critiques pour une distance bien choisie.

5. Passer a la limite sur ces suites optimisantes et utiliser la théorie de la régularité
pour obtenir un optimiseur régulier.

I.1 Présentation de deux exemples

Dans tout le chapitre, nous référons au probléme de maximisation de la premiére
valeur propre dans une classe conforme sur des surfaces avec le raccourci Optim,,—s et a
I'optimisation des valeurs propres du Laplacien conforme dans une classe conforme dune
variété riemannienne de dimension n > 3 avec le raccourci Optim,,>s.

I.1.1  Optim,—s : Maximisation de la premiére valeur propre du
Laplacien en dimension 2

Soit ¥ une surface (variété différentiable de dimension 2) compacte sans bord et
connexe. On note Met(X) l'ensemble des métriques Riemanniennes sur X. Pour g €

15
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Met(X) on note A, = —div,V le Laplacien associé et sa premiére valeur propre non
nulle : v 2dA
M (2, 9) = é nf %
?)Zeq&dAg*O >

ot dA, est la mesure d’aire par rapport a la métrique g. On note la premiére valeur propre
renormalisée (invariante par dilatation de la métrique)

5\1<§:7 g) - >\1<E7 g)Ag(E)
ol Ay(¥) = [ dA, et on souhaite résoudre le probléme de maximisation suivant

M) = sup M(Z,9).

gEMet(X)

ainsi qu'une version contrainte dans la classe conforme [g] = {#g € Met(X); 5 € CZH(X)}
Ai(2, [g]) = sup M (%, g).
g€lgl
Les propriétés d’invariance conforme du Laplacien permettent de reformuler ce probléme
pour une métrique fixée g sur des espaces de fonctions ot on peut noter A\ (5) = A1(2, Bg)

B < o Js |VelidA,
Al(z,[g])—ﬁs&g M (B) = s d)egolof) LA, / BdA,. (1.1)

La proposition suivante implique que \; ne peut pas avoir de minimiseur méme parmi
les métriques d’une classe conforme. On utilise ici un argument classique de type "haltéres
de Cheeger".

Proposition I.1.1.
inf A\ (3, 7) = 0.

g€lg]

2u;

On peut écrire la démonstration avec une suite de métriques e“"g qui vérifient

eQ“idAg —, 0, + v

lorsque ¢ — 400 pour la convergence faible-x des mesures ot x € M et v est une mesure
non nulle sans atome. On construit alors deux fonctions test cut-off & support disjoint
(donc orthogonales) d’énergie arbitrairement petite en utilisant que {z} est de capacité
nulle (voir par exemple [Kok14, Proposition 1.1, Lemma 2.1]). De maniére générale avec
un argument similaire, on a infge(y Me(X,G) = 0 ot A\ est la k-éme valeur propre non
nulle du Laplacien. Par contre, le probléme de maximisation est bien posé

Théoréme 1.1.2 ([YY19, LY82] Karl6]).
A1(27 [g]) < 2AC(Z7 [gD < +00

ot on note l’aire conforme

A2, [g]) = L inf Aosyn(E
(Eolol) = Mo o 2o 1y sedtiiony 00 n(2)
¢*helg]

o (S", h) est la sphére de dimension n munie de la métrique ronde et Conf(S™) est le
groupe des difféomorphismes conformes de la sphére. On a aussi st Y est de genre 7,
A(E) < {87r [W?’] st X est orientable

< +00.
167 [7+3} st X est non orientable
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La démonstration repose sur des utilisations astucieuses du célébre argument de Hersch
qui avait résolu le probléme pour la sphére ¥ = S? :

A1(82> = 87

ot le maximum est uniquement atteint par les métriques rondes. En fait, 'argument topo-
logique de Hersch [Her70]| remonte a Szegd [Szeb4] pour le probléme similaire de maximi-
sation de la premiére valeur propre non nulle du Laplacien a conditions de Neumann sur
les domaines simplement connexes du plan ou Weinstock [Weib4| pour la maximisation
de la premiére valeur propre non nulle de Steklov sur les domaines simplement connexes.

I.1.2  Optim,>3 : Optimisation des valeurs propres du Laplacien
conforme en dimension n > 3

Soit (M, g) une variété Riemannienne de dimension n > 3 compacte sans bord connexe.

V|2 + c,S,¢?)dv L,odv
(M, g) = inf max fM(| i 5 o0 vy = inf max —fM¢ odvy
FE€G,(C>(M)) ¢ E\{0} [oy $2dvg  BeGu(cx () seBN{0} [, ¢2duy,
ou dv, est la mesure de volume par rapport a g, ¢, = m Sy est la courbure scalaire
de g, L, = Ay + ¢,5, le Laplacien conforme (ot L, = —div,V) et Gi(V) est la k-

Grassmannienne de V' : I’ensemble des sous-espaces vectoriels de dimension k de V. La
k-éme valeur propre renormalisée (invariante par dilatation) est

M(M, g) = M(M, g)V,(M)=

ou V(M) = [,,dvy. On s'intéresse aux problémes d’optimisation & classe conforme
contrainte suivants

infye ) M) si k> ky
A(M,lg]) =1 0si k- <k <k,
SUDgelq] Me(§) sik < ke
ot on définit
ky = min{k € N*; \i.(¢9) > 0}
~Jmax{k € N*; \(g9) <0}
T {o si Vk € N5, \(g) = 0

de sorte que dim Ker L, = ky —k_ — 1. Les propriétés d’invariance conforme du Laplacien
conforme permettent d’écrire pour § € CX (M), M\p(B) = \p(M, Bg) comme

5 ) of vaL vdvg / 5 2

= in max v

g E€Gy,(C>(M)) ve E\{0} fM v2Bdv, I

Si on note g = fg ou B = uﬁ, noter que les fonctions propres se réécrivent v = u¢
Lip = Ao & Lyv = \fv.

On remarque que k4 et k_ sont invariants conformes au sens ot leur définition est indépen-
dante du choix de la métrique g dans sa classe conforme [g]. En effet, si £ € G,(C>(M)),

e [y @Lgddvg 0  max Jyy vLgvdu,
SeEN {0} [5y P*dvg veBEN0} [,, v2Bdy,
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car le numérateur est invariant conforme et le signe du dénominateur est invariant conforme.
Par ailleurs, il est clair que la multiplication par u est un isomorphisme Ker Lz — Ker L,.

Le théréme suivant montre que les autres questions d’optimisation ne sont pas perti-
nentes.

Théoréme 1.1.3 (JAJ12]). Soit k € N*,

Sik > ky,sup \y(M, §) = +oo.
g€lg]

Si k <k, inf \p(M, §) = —oo.
g€lg]
En revanche, on montre
Théoréme 1.1.4 ([HPP25| Corollary 1.3]). Soit k € N*,
Sik >k, inf \p(M,3) > 0.
g€lgl

Sik < ky,sup \(M, §) < 0.

G€lg]

Démonstration. Soit f € CZ. Soit A # 0 une valeur propre non nulle du Laplacien
conforme pour la métrique § = g, et v € C*(M) une fonction tels que

Lgv = \Bv, / B2dv, =1, / Bvidv, = 1
M M

de sorte que A = A\g(B) pour k > ki ou k < k_. On écrit v = w+ k ot k € Ker L, et
w € (Ker Lg)L ot L désigne I'espace orthogonal pour la norme L?(g). On obtient

Lyw = A\pv.

Par théorie elliptique standard, il existe une constante C, telle que

1 2
lwlin g < CollLywlln-re) < ColAIBg 2, < ColAIBIE ( / W) =G,

ol la derniére inégalité est une inégalité de Holder. Par ailleurs,

0= /M (Lyk) vdv, = /M (Lyv) kdvy = A /M Buk

implique comme A\ # 0 que
/ Bukdv, = 0.
M

Ainsi on a les minorations suivantes par injection de Sobolev (qui donne la constante K)
et une inégalité de Holder,

Jwl g = KgHwHi% > Kg/ Buwidv, = K, (/ Bv*dv, +/ 5/@2dvg) > K,.
M M M

On obtient
VK
Al > -

C,
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On note que pour £ = 1, le probléme d’optimisation est équivalent au probléme de
Yamabe.

Théoréme 1.1.5.
ou Y (M, [g]) est Uinvariant de Yamabe :
[y uLgudv,

n—2

Y(M = inf
(M, [g]) el 2
(fMunﬂdvg)

et Ay(M, [g]) est atteint en B si et seulement si'Y (M, [g]) est atteint en "7

Démonstration. Supposons k; = 1, un presque minimiseur u pour Y (M, [g]) peut étre

testé dans la caractérisation de A (M, [g]) par deux infimums avec § = w7 et v = u. Cela
donne immédiatement A; (M, [g]) < Y (M, [g]). Réciproquement, un presque minimiseur
S pour Ay(M, [g]) peut étre testé avec v une solution non nulle de L,v = A\(f)Sv dans la
caractérisation de Y (M, [g]). Noter qu’en tant que premiére fonction propre, v peut étre
choisie strictement positive. La simple inégalité de Holder

/v25dvg< (/ ﬁgdvg) (/ vf—%dvg) ’
M M M

conclut I'inégalité A1(M, [g]) > Y (M, [g]).

Pour k- =0 et ky > 1, il est clair que Y (M, [g]) = A1 (M, [g]) = 0.

Supposons maintenant k_ > 1, c’est a dire Y (M, [g]) < 0. Soit w un minimiseur lisse
strictement positif de Y (M, [g]) (existe de maniére élémentaire dans le cas strictement
négatif). Par définition on a d’abord A;(M, [g]) = M\ (B) ou B = w2, Comme u est une
solution de Yamabe, c’est aussi une premiére fonction propre pour A\ (8) = Y (M, [g])
et on obtient A;(M,[g]) = Y (M, [g]). Réciproquement, si § est un presque maximiseur
pour Aj(M, [g]), on teste u dans la caractérisation variationnelle de \; () et I'inégalité de
Holder précédente permet de conclure que Ay (M, [g]) = Y (M, [g]). ]

S

I.2 Equations d’Euler-Lagrange

Il est bien compris depuis Nadirashvili [Nad96|, El Soufi-Ilias [ESI03], [ESIOg| et Fraser-
Schoen [FS16], [FS13] que les équations d’Euler-Lagrange pour les métriques extrémales
fournissent des conditions géométriques et analytiques trés intéressantes a exploiter. De
nombreux autres travaux obtiennent des interprétations géométriques ou analytiques sur
les points critiques de valeurs propres [AHO6, [Amm09, KM21], KMP23|, [PA22, [GPA22| ou
de fonctionnelles spectrales [ESI02), LM23| [Med23), [Pet23al, [Pet24b, [PT24]. On extrait ici
les résultats les plus importants de [PT24] en les adaptant le plus possible a la présentation
de ce chapitre.

Le but de [PT24] est de donner un cadre théorique unificateur pour calculer des équa-
tions d’Euler-Lagrange de points critiques et/ou les extrema locaux de fonctionnelles
spectrales générales et de donner de nombreux exemples d’applications géométriques. En
particulier, comme les fonctionnelles spectrales sont a priori non lisses en les points de
multiplicité des valeurs propres, on spécifie la théorie des sous-différentiels sur les fonc-
tionnelles Lipschitziennes non convexes initiée par Clarke [Cla75] & ce cadre. Par ailleurs,
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on donne de nouvelles conditions fines sur les extrema de valeurs propres du Théoréme
qui donnent concrétement le Lemme [1.2.10| et qui s’appliquent dans [HPP25| (voir

Théoreme [[V.3.7] dans le Chapitre [[V]).

I[.2.1 Cadre théorique

Dans cette section, on se concentre sur le travail dans [PT24] qui concerne les métriques
localement extrémales pour une valeur propre donnée. Le but est de calculer les équations
d’Euler-Lagrange pour les deux problémes de ce chapitre. La définition du sous-différentiel
de Clarke n’est pas utile ici. Par contre, une finesse supplémentaire apparait dans ce
mémoire de maniére nouvelle : nous calculons des équations d’Euler Lagrange pour des
points extremaux x qui sont sur le bord d’un domaine A. Les directions dans lesquelles
nous calculons les variations premiéres sont restreintes a un cone C,. Nous quantifions
a quel point cela restreint 1’équation d’Euler-Lagrange. Nous appliquerons ces résultats
au cone C, des fonctions (ou mesures) positives ou nulles. C’est une fagon unifiante de
présenter les calculs de [Pet25d| [Pet24al, HPP25].

Soit X un espace de Banach muni de la norme || - [|x, A C X un sous-ensemble dit
admissible de X et H un espace de Hilbert muni de la norme || - ||g. Pour x € X, on
note Q(z, -) une forme quadratique définie positive sur H avec B(x, -, -) la forme bilinéaire
associée et G(z, -) une forme quadratique sur H avec I'(z, -, -) la forme bilinéaire associée.
On pose le quotient de Rayleigh

R : AxH\{0} - R

G(z,u)
(x,u) = G

Les choix concrets de X, A, H et R sont donnés dans la Sous-section [.2.2] pour Optim,,—o
et Optim,,>3, et plus finement dans la Sous-section pour Optim,—o et dans la Sous-

section pour Optim,,ss.
On écrit les hypothéses suivantes pour tout x € A, il existe C;, > 1, un voisinage
ouvert U, de x tels que

(Hy) Il existe A, > 0 tel que
Vo' e Uy NA GO - la S N(2',) < ol - [l

ou N(z/,-) = (G(2',-) + A Q(2, ))% est une norme sur H.
(Hy) Pour tout u € H, Q(-,u) et G(-,u) sont différentiables (on note @, et G, leur
différentielle) et @, G, Q. et G, sont continus sur X x H et

Va' € Uy, Yur,ug € H, || By (2, uy, ug) || x+ + ||Ta(a’, ur, ug) || x+ < Collu|| ml|usl|a-

(Hs) L'identité (H, N(z,-)) — (H,Qz(xz,-)) est compacte.
On remarque que 'hypothése (Hj) garantit que les valeurs propres abstraitement
définies par

Me(z) = inf  max R(z,u)
EcGy(H) ue E\{0}

sont atteintes sur 1’espace des fonctions propres
Ex(x) ={u € H;Yv € H,T'(z,u,v) = M\(2) B(z,u,v)}.

Les hypothéses (H;) et (Hs) vont garantir (sans 'hypothése (Hjz)) que les applications
A o A — R sont localement Lipschitziennes :
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Proposition 1.2.1. On suppose (Hy) et (Hs). Pour k > 1, A\ : A — R est localement
Lipschitzienne.

Démonstration. On procéde en deux étapes
Etape 1 : )\, est semi-continue supérieurement.
On suppose que pour z;,z € A,

|z — z||lx — 0 et M\g(z;) — limsup Ax(y)
y—x

lorsque i — +00. Soit & > 0 et soit V' € Gi(H) tel que

R < M(V) + 6.
e (z,u) < (V) +

On teste V pour la caractérisation variationnelle de z; :

) < . = L
)\k (xz) X uér\l/%?o} R(xza U) R(xza U”L)

ou u; € V est choisi atteignant le max et satisfaisant [|u;||z = 1. Comme V est de
dimension finie, quitte & prendre une sous-suite, u; converge dans H vers u € V' \ {0}. Par
continuité de R,

limsup Ay (y) = lim Ag(z;) < Rz, u) < Ap(z) +6

y—T i——+o00

et en faisant 6 — 0, on obtient la semi-continuité supérieure.
Etape 2 : \; : A — R est localement Lipschitzienne.
Soit x € A. Soit € > 0 et z1, 75 € BX(z) C U,. Soit 0 < § < 1 et soit V; € Gy(H) tel que

max R(x1,u) < Ag(x1) + 0.
ueV1\{0}

On teste V' pour A (z2). Soit v € Vi \ {0} tel que

Ae(22) < ) = Rz, v),
k(x2) ueql/ﬁ}fo} R(z2,u) = R(xa,v)

On calcule par (Hs)
1
G(x2,v) = G(z1,v) —i—/ (Go((1 = 8)x1 + 829, 0w — 1) < G(21,0) + Cp||v]|5 |21 — 72| x -
0
Ensuite, (Hj3) garantit que

vl < CoN(21,0)* < C7Q(x1,v) (As + Ai(21) +9).

En choisissant € > 0 suffisamment petit, on peut supposer par la semi-continuité supé-
rieure que Vy € BX(x) C U,, M(y) < M\i(2)+1. Ce qui donne pour C’, = C3(A,+\.(2)+2)

G(22,v) < G(21,0) + CoQ(z1,v) |21 — 22| x.
Par un calcul similaire, on a aussi

|Q(2,v) — Qw1,v) < CQ(w1, v) |71 — T2
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Quitte a réduire € > 0, on peut supposer € < (20;)71 de sorte que

G(zg,v) _ G(x1,v) 1
<
Q(I%U) Q(‘T17v)l:l:0;:||x1 _‘r2|l

ol £ =+ si G(z1,v) 2 0 et £ = — si G(x1,v) < 0. On déduit

+ 20;”1’1 — xgHX

R(w2,v) < (1) + 0 + 20, (|Ae(2)] + 3) |2 — 21 x
en faisant § — 0, on obtient C? > 1 tel que
Ae(22) < Ae(z1) + Cfllan — 22 x
et on échange les roles de xy et x5 pour obtenir la proposition. O

On se propose avec les trois hypothéses de calculer les dérivées directionnelles & droite
de A\, en z € A dans les directions d'un cone C, qui satisfait

(H4) Vh € Cp,dep, > 0,Vt € [O,eh],x +th € A.

Théoréme 1.2.2 ([PT24]). On suppose (Hy), (Hs) et (Hs). Soit k € N* alors pour x € A
et h € C, (ou C, satisfait (Hy)),

d

— Ae(z +th) = min max (R.(z,u),h

dt jt=0+ d ) Fegpk(x)(Ek(ac))ueF\{O}< (,u), by (1.2)
= max min (R, (x,u),h)

 FEG,, (o (By(x)) ueF\{0}

ol pp(x) est défini tel que k = i3 (x) + pp(v) — 1 ot ix(x) = min{i € N*, \;j(z) = \p(2)}
et qi(x) est défini tel que k = I(x) — qp(x) + 1 ot Ix(x) = max{i € N*, \;(z) = ()}
de sorte que si mg(z) = #{i € N*, \i(z) = M\e(x)} est la multiplicité de Ei(z), on a
qr(z) + pr(x) = me(z) + 1.

Démonstration. On procéde en deux étapes.

Etape 1 : Soit z;,2 € A tels que ||z; — z||x — 0 lorsque i — 400 et soit u; € Ey(x;)
telle que Q(x;,u;) = 1. Alors quitte a prendre une sous-suite il existe u € Ey(x) tel que
|ui — u||g — 0 lorsque i — +o0.

On a N(z;,u;)? = A\ + A\e(x;) qui est borné car A\, (z;) converge vers \z(x). Par (Hy),
(u;) est bornée dans H donc quitte & prendre une sous-suite, elle converge faiblement vers
u dans H. En utilisant de plus (Hj), on obtient

Qz,u;) = Q(z,u) et Yo € H,I'(z,u;,v) — ['(x,u,v)
lorsque ¢ — +o0. En utilisant (H3), on obtient méme
Q(xzvuZ) - Q(l‘a ’LL) et Vo € Hu F(:Eza U, U) - F(I7ua U)

lorsque i — +o00. En particulier, on obtient Q(x,u) = 1. En passant a la limite sur
Dz, ui,+) = A(x;) B(xy, u;, +), on obtient alors

['(x,u,-) = \(2)B(z,u, )
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et en testant pour u, on déduit G(z,u) = A\i(x). On obtient le cas d’égalité dans I'inégalité

N(z,u) < liminf N(x,u;)

i——400

ce qui montre la convergence forte dans H.

Etape 2 : Soit my(x) = dim Eg(z). Soit j € {1,--- ,mg(z)}. On note pour y € A

Ai(Y) = Nip@)+i-1(y)

de sorte que A\y(y) = Apk y(y). Soit (t,) une suite de réels positifs qui tend vers 0. On

note x,, = x + t,h et on souhaite calculer lim,, M Soit, (uf, - - - ,u%k(x)) une

famille Q(z,, -)-orthonormée telle que
D, uf, ) = :\j(xn)B(xn, uy, ).
Soit 7 la projection Q(z,-)-orthogonale sur Ej(z). On pose

R} =wuj — W(u?)
Noter que par 'étape 1, il existe une famille Q(x,-)-orthonormée (uy,--- ,u,) telle que
u; € Ey(r) et uf — u; dans H lorsque n — +o0. En particulier R} — 0 dans H lorsque
n — +00.

F('ru'aRT'L) —Xﬂl‘)B( 7'>Rn) _P(xv ) ]) ( )B(xvvu;b>

= (I'(z, -, ul) — T'(zp, -, ])) +/\ (x )(B(:vn, ,uj) — Bz, u”))

77] (|

+ () = A(@) B )
:_tn/01<<rx_ij(x B (@ + stah, ), k) ds + (X (ea) = Xy(2)) B(a, - u)

T = t] 44/ Q(z, BY)

et on remarque que quitte a extraire une sous-suite, comme \; est Lipschitz en x, on pose

— tn Ni(z,) — s
tj= lim — et D; = lim i(%n) i(@)
n—-+00 7' n— 400 Tjn

On pose

~ R» . :
De plus, en posant R} = # et en utilisant (Hy), on obtient

N(z,R?)? = A, + G(2, R})
<As + (@) + (& + (1) Ca(1 + [Me(@)] + o(1) | Bl x) N(x, BE) + D + o(1)

ce qui implique que (}A%?) est borné dans H par (H;). Ainsi, quitte & extraire une sous-suite,

I/RZTL converge vers R; € H faiblement dans H. Avec (Hj), on obtient

1—t;= lim Q(z, R”) = Q(r,R;) et Vv € H,F(x,/R?L,v) — T(z, Rj,v)

n—-+oo
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lorsque n — 400. En passant a la limite sur ’équation satisfaite par /R?, on obtient
D(e,R;,) = X (@) Bl B ) = =5 (Do = M(@)B.) (@5, ). h) + Dy Bla,uj. )
En testant cette équation contre u;, on obtient
D; =1 (G = X(@)Q.) (@ u). )

de sorte que si #; = 0, alors D; = 0 et on déduit R; € Ey(z) N Ey(z)*ee) = {0} ce qui
contredit Q(z, R;) +t; = 1. Donc ¢; # 0 et

lim Ai(@ + tuh) = Ay(2) = & = <<Gm - ;\](x)QgC) (z,u;), h>

n——+00 tn t;

De maniére plus générale, en testant I’équation sur u;, on obtient
<(FI - S\J(x)Bx) (@, u), u;), h> = 51',3‘? 
Ainsi 'endomorphisme Ly, : Ey(z) — Ey(z) défini par

Yo, u € Eg(x), <(Fm - S\J(x)Bx> (x,u,v), h> = B(z, Lp(u),v)

admet pour base propre (ui,- -, Um,(z)) dont les valeurs propres associées forment une

suite croissante (%) car (\j(z 4 t,h)); est croissante pour tout n et \;(x) = \(z) ne

dépend pas de j. On obtient alors

Aj(x 4 tah) — Bz, L
lim J(m + ) ](33'> — )\](Lh) — min max M
no>-too t Feg;(Bp(o) ueF\[0}  Q(x,u)

Cette valeur est indépendante du choix de la suite ¢,, — 0 et un simple calcul montre que
pour u € Ey(z),
Bz, Lp(u), u)
Q(z,u)

On obtient donc le résultat escompté. O]

= (R.(z,u),h).

Dans la proposition qui suit, on déduit une propriété sur les extrema locaux de A\;. On
note

C* = {€ € X*;Yh € C, (¢, h) > 0}
le cone dual d’un cone C de X et on formule 'hypothése
(H5) € =J(C)

ou J : X — X* est 'injection canonique. (Hs) est équivalente & C = C** lorsque X est
un espace de Banach réflexif.

Proposition 1.2.3. On suppose (Hy), (Hz) et (Hs). Soit k € N*. Soit v € A. On suppose
que C, satisfait (Hy) et (Hs). Si x un minimum local de A, : A — R, alors

VE € Gy () (Er(x)), co{Rup(x,u);u € F,Q(x,u) =1} NC; # 0.
St x est un maximum local de A\, : A — R, alors

VE € Gy (o) (Er(x)), co{f —Ru(z,u);u € F,Q(x,u) =1} NC; # 0.
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Démonstration. On n’écrit la démonstration que dans le cas ol z est un minimum local,
I'autre cas est similaire. Soit ' € G, (2)(Ek(x)). Si I'intersection est vide, par le théoréme
de séparation de Hahn-Banach, soit h € X tel que

VEeCr (€, h) >0 (1.3)

V€ € co{ R, (z,u);u € F,Q(x,u) =1},({,h) <0 (L.4)
et (Hs) impliquent que h € C,. Comme x est un minimum local,

d
— Me(x +th) = min max (R,(x,u),h
= dt =0+ a ) F’egpk(x)(Ek(w))uGF’\{0}< (@, u) 1)

ce qu1 se réécrit
% F’ € Q T E , Imax P,x y ,h 2 0.

En choisisant u € F tel que Q(z,u) = 1 et qui atteint ce maximum, £ = R, (x, u) contredit

=) =

I1.2.2 Application aux deux problémes

On applique d’abord la Proposition a Optim,—,. On pose pour une métrique ¢

et une fonction wu : f v |2dA
U
(gv u) fz UQdAg 5 g

Dans ce cas, on choisit X 1’espace des 2-tenseurs symétriques continus sur X, A = Mety(X)
I'ensemble des métriques Riemanniennes continues sur la surface ¥ et H = H'(X). On
suppose que u est une k-éme fonction propre telle que fz u?dA, =1 et on renormalise &
Ay(¥) = [ dA; = 1. On obtient la dérivée de R dans la direction h € X

<Rg(g,u),h>:/ (|Vu\§%—du®du+)\k(g) (1—u2)g,h> dA,.
b

Pour un calcul de dérivées directionnelles en une métrique g dans une classe conforme, on
spécifie la formule & h = b - g ol b est une fonction lisse par exemple. Dans ce cas X est
I’espace des fonctions continues et A est 'ensemble des fonctions continues strictement
positives.

Théoréme 1.2.4 ([Nad96|). Soit ¥ une surface compacte sans bord connexe. Soit g €
Met(Y) tel que Ay(X) = 1.

Alors, g est un extremum local de \(3, ) si et seulement s'il exviste p € N* et & : ¥ —
RP tel que

(1) Ag® = X(X, 9)®

(2) |2 =1

(3) dP ® dP =
Soit maintenant § = Bg € [g] tel que A;(X) = 1. § est un extremum local de Ay dans [g]
si et seulement s’il existe p € N* et  : X — RP tel que

(1) D@ = \y(5)5P

(2) |2 =1

V|2
59
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Remarque 1.2.5. Noter qu’on déduit les interprétations géométriques :

(1) et (2) <= : (Z,9) — S est une application harmonique dans SP~!

dont les coordonnées sont des fonctions propres pour Ax(g)

(3) <= @ : (X, g) — R? est une application conforme

(1),(2) et (3) <= : (,9) — SP~! est une immersion minimale dans SP~*

dont les coordonnées sont des fonctions propres pour A (®*¢)

En particulier dans le cas a classe conforme contrainte, (1) et (2) impliquent par un simple

e de 0= A av 5= 525

Remarque 1.2.6. Dans le cas & classes conformes contraintes, on peut autoriser 3 a
s’annuler (voir la Proposition ci-dessous) : on pose par exemple A l'ensemble des
fonctions non nulles positives. Les variations ne sont alors calculées que dans les directions
h € C ou C est le cone des fonctions positives. On obtient 'existence de p € N* et
d : Y — RP tels que

(1) A,® = M (8)30

(2) [®*>1 et s Bl®[?dA, = J BdA,

Dans ce cas, il est clair que |®|> = 1 sur supp(B) et le calcul

L(M‘D‘%) ) 4, =2 [ Vo9 (0 g )i,

=2Ak<6>/2/3(|<1>|2—|¢|) -

2

®
]

+ ]V@\j - ’

ainsi que la relation ponctuelle VO[> = |®]? ‘V@‘ ‘ + |V|®[|2 montrent que

(e (-2

et donc |®| = 1, ce qui implique de nouveau que ® est harmonique. En particulier, les
points d’annulation de 5 sont les zéros de |V(I>|§. La métrique Sg admet des singularités
coniques en ces points, dont les angles sont des multiples de 27 [Kok14l [Pet14al.

2

o
oI -1 ’V—
(% =1) V57|

+ |V|<1>H§) dA, =0

De méme, dans Optim,,>3, on peut poser pour une fonction positive 3

[ Lyu - udv %%
R(B,u) = —A}MBUZdvgg(Aﬂ) .

On pose X = Lz (M), A = LEO(M) I'ensemble des fonctions Lz de M non nulles stric-
tement positives (presque partout) et H = H'(M). Ce choix est possible grace a la
Proposition [[.4.4] Pour une fonction b dans le cone C C X des fonctions positives, pour
une k-éme fonction propre u telle que [, u*fdvy, =1 et en supposant |||, =1, on a

Ro(B.0.0) = (6) [ (55 =) b,

On obtient le résultat fin suivant :
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Théoréme 1.2.7 (|[PT24, HPP25)). Soit (M, g) une variété compacte sans bord conneze
de dimension n > 3. Soit k € N* tel que k > ky ou k < k_. Soit 8 € Lgo tel que

[o B2dvo, = 1. )
Si B est un minimum local de Ny, alors pour tout V' € G, (3)(Ex(83)), il existeip(f) <L < k
et une application U = (vy, - -+ ,vg) : M — RF1 telle que

(1) LU = M(B)BU

(2) U =p=

(3) (v, ,v) est une famille L*(Bdv,)-orthogonale de V
Si 3 est un mazimum local de N, alors pour tout V. € G, (8)—pe(s)+1(Ek(B)), il existe
k< <in(B) +mp(B) — 1 et une application U = (vy, -+ ,vp) : M — RFH telle que
(1) LU = Ak(B)BU
(2) |UP = 5%
(3) (vg, -+ ,ve) est une famille L*(Bdv,)-orthogonale de V

Remarque 1.2.8. En toute rigueur, application de la Proposition [[.2.3] donne seulement
n—2

|UI? < 872 du fait qu'on calcule les variations dans le cone des fonctions positives. La

condition [, |U[*8 = [,, 2 = 1 obtenue par nos renormalisations implique a posteriori

et de maniére immédiate |U|2 = 8"2".

. . . ) . bl 2 —
Insistons sur le fait que ce résultat s’applique pour tout 3 € L3, tel que f y B2dvg = 1.
Néanmoins, le prolongement des fonctionnelles valeurs propres a cet espace de fonctions
nécessite un travail que nous ne traitons pas dans ce mémoire (pour cela, se référer a
n

[HPP25|, Section 3]). On se contente du cadre plus simple § € L2, en utilisant la Propo-
sition [[.4.4l

I.2.3 Conclusions supplémentaires pour Optim,>3

Le Théoreme a la conséquence suivante : si 4 est un minimum local de A et si
Ae(B) > Ap—1(B) alors quel que soit le choix de v € Ex(B), tel que [, v*Bdv, = [,, B2 =1,
on obtient

Ly = M\(B)Bv et v* = BnT_Q.
Il est facile de déduire que FEy(5) est de dimension 1 (my(8) = 1). Ce trou spectral
Me(B) > A_1(B) est par exemple automatique si k = 1, k = 2 ou k = k. Si de plus
k > 2, on obtient nécessairement une solution de 'équation de Yamabe nodale (i.e qui
change de signe).

De maniére analogue, si 3 est un maximum local de ) et si Ai(8) < Apy1(83), ce qui
est automatique pour k = k_, on obtient également que my(5) = 1. La aussi, si de plus
k > 2, on obtient une solution de 1’équation de Yamabe nodale.

De maniére plus générale énongons et montrons le lemme qui met en valeur les
conditions restrictives imposées aux métriques extrémales par les conclusions du Théoréme
[[.2.7 11 est basé sur ce lemme élémentaire d’algébre linéaire :

Lemme 1.2.9 ([HPP25, Lemma 8.1]). Soit Q un ensemble non vide. On note F(2,R)

I’espace vectoriel des focntions sur ) a valeurs réelles. Soit £ > 1. On suppose qu’il existe

— e F(QK);
— un sous-espace F' C F(Q,K) de dimension { + 1 tel que pour tout sous-espace
V C F de dimension {, il existe une famille finie fy,--- , f, € V telle que

B=Y_ 1
i=1
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Alors 5 = 0.

Démonstration. Soit x € Q et e : F — K ’évaluation en x. C’est a dire pour f € F,
e(f) = f(z). Le noyau de cette forme linéaire est de dimension ¢ si e # 0 et £ + 1 sinon.
Dans tous les cas, on choisit V' C Ker (e) de dimension ¢. Avec les hypotheses, il existe
fi,-, fr €'V tels que

B=fit ot f
Ainsi, pour tous f € V| f(x) = 0. En particulier, pour tous ¢ = 1,--- ,r, fi(x) = 0 ce qui
implique B(x) = 0. Comme z est arbitraire, on obtient le Lemme m O]

On déduit de ce Lemme [.2.9 et du Théoréme [[L2.7] le résultat suivant :

Lemme 1.2.10 (JHPP25, Lemma 8.2]). Soit # € L2 (M)\{0},3 > 0. Si § est un mini-
mum local de A\, pour un entier k > ky, alors \y1(8) > Me(B). Si B est un mazimum
local de \g, pour un entier k < k_, alors \p—1(8) < Ak(B).

Démonstration. Prouvons ce résultat pour k£ > k.. L’autre cas est similaire. Quitte a
renormaliser (3, on suppose que |[3||,z = 1 de sorte que A\,(8) = Ax(M, [g]). On Suppose
par contradiction que A\g11(5) = Ak(B). Soit ix(F) défini par

i(8) = min {r > ky; M (8) = M(8)}

Par le Théoréme [[.2.7, on choisit une famille indépendante (vixy, - -, vp1) € Ex(B) de
fonction telles que pour tout 7,

Lg’UZ‘ = )\ﬁ’UZ
ot A = \(B) pour ¢ € {i(k),--- ,k+ 1}. Soit F' = Vect{vip), - ,Vp41}. Soit £ = k +
1 —i(k) > 1 tel que dim(F') = ¢+ 1. Soit V un sous-espace de F' de dimension ¢ et soit
vy, -+, v, une famille L?(Bdv,)-orthogonale de fonctions de V. Alors, comme A (M, [g]) =
Ak(B) = A et comme pour tous 1 < i </,

Lyv; = AP,
on obtient du Théoréme qu’il existe une famille fi,---, f, € V telle que
Bet = f24 ...+ f2 p.p. dans M. (L5)

Comme [ atteint \x(53), 0 et les fonctions (f;)1<i<, qui apparaissent dans ([.5]) sont conti-
nues sur M (voir Sous-section [.3.2]). L’égalité (.5 est donc ponctuelle entre fonctions
sur M, et le Lemme s’applique : on déduit 5 = 0, ce qui contredit I'hypothése

1503 = 1. U

I.3 Théorie de régularité sur les métriques critiques

1.3.1 Optim,—s : Les applications harmoniques

On donne des résultats de régularité et de compacité sur les solutions de I'équation
d’Euler-Lagrange au sens le plus faible possible que satisfont des maximiseurs de A;. Soit
f € Pa(X) ot Py(X) est 'ensemble des mesures de probabilité sans atomes (ou diffuse).

On définit f ]V(b|2dA
\ — : f > g g
M) = nf I 8%dB

Jx ¢du=0

dg.
by
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En un sens naturel le plus faible possible, on formule I'équation pour ® € H'(X, R?),

qu) = ;\1(5)5@
2> > 1 (L6)
fz [D2dp = fz df =1

Pour le moment, on ne dit rien sur 'existence de telles solutions : cela nécessite un peu
de régularité sur 8 € Py(X). Noter par exemple que 3 doit agir sur H' x H' comme
une forme bilinéaire continue (ou de maniére équivalente H' C L?(3) est une injection
continue) pour donner un sens a E]

D’apres la Remarque , les solutions de satisfont |®| = 1 et sont faiblement
harmoniques dans SP~! (points critiques dans H'(3,SP™!) de I'énergie de Dirichlet). Par
[HeI90], les applications faiblement harmoniques a valeurs dans une sphére [Hél90], et plus
généralement dans une variété compacte quelconque [Hél91] sont de classe C*°. La compa-
cité des suites d’applications harmoniques d’énergie uniformément bornée est également
bien comprise depuis [Par96] : on a sous-convergence en arbres de bulles dans C° N H'.
Néanmoins, les suites d’applications harmoniques sont associées & la maximisation de ;.
Cela rend les résultats de compacité plus précis, et stables pour des solutions de
"presque harmoniques" au sens ot on perturbe la condition |®[*> > 1 par [®|> > 1 —6? ou
0% est controlée dans un certain espace de fonction :

— Elles ne développent pas de bulles grace au résultat de rigidité (voir Théoréme m

et Théoreme [[.3.3)).

— Les solutions de ([.6]) ne nécessitent pas le résultat de régularité de Hélein [HEI90],
mais seulement le résultat de régularité des applications faiblement harmoniques
localement minimisantes de Morrey (Proposition [Mor4g|). Cette remarque
est d’une importance particuliére pour réaliser ce travail en toute dimension. En
toute généralité, les résultats de régularité des applications p-harmoniques sont
seulement connus dans le cas localement minimisant. Ainsi, nous ferons comme si
nous ne connaissons pas les résultats de Hélein [Hél90, [HeI9T].

— Pour les questions de compacité, la dimension de la sphére d’arrivée sera aussi
variable et peut éventuellement exploser. Ce n’est pas possible en dimension 2 car
le nombre de coordonnées indépendantes d’une application harmonique qui sont
des premiéres fonctions propres est borné par la multiplicité du premier espace
propre, elle-méme controlée par la topologie de ¥ [Che75|. Ces bornes utilisent de
maniére cruciale la régularité des fonctions propres ainsi que la dimension 2. Néan-
moins, on requiert un résultat de compacité sur les suites d’applications "presque-
harmoniques" associées a des "presque-maximiseurs" de \; ot seule la régularité
H' est autorisée (H' ne s’injecte pas dans CY). Des estimées de régularité sur les
applications harmoniques indépendantes de la dimension de la sphére d’arrivée
(Théoreme seront donc nécessaires. On les fournit dans [Pet25¢| dans un
cadre général. Une telle approche est également plus souple pour s’adapter a la
dimension supérieure ou il n’y pas de borne topologique sur la multiplicité méme
dans le cas lisse (voir [CAVE6]).

1. Comme on le verra, la condition essentielle pour I'existence est qu’en plus l'injection H' C L?(3)
est compacte, hypothése bien identifiée dans [Kok14l [KS23| [GKT.21] avec la notion de mesure admissible
et dans [PT24] [Pet25d. [Pet24a] pour fabriquer des espaces variationnels admissibles.
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Théoréme 1.3.1 (|[KS22| [Pet25d]). 11 existe €g > 0, il existe C' > 0 tels que pour tout
n € N* et pour toute application harmonique ® : D — S™ de classe C*°, on a

Vo
/ IVO|? < ¢g = Vo €D, |[VO(2)]* < Cjb‘—|2.
D (1 — )

Le théoréme précédent est une conséquence classique de l'invariance conforme de
I’équation des applications harmoniques, de l'identité de Bochner et d'une formule de
monotonie.

Pour commencer, on suppose seulement la condition A\;(8) > 87 + ¢ pour 3 € Py.
C’est justifié par le résultat de rigidité suivant :

Théoréme 1.3.2 ([Petldal, Section 1]). Si (X, g) est une surface riemannienne compacte
sans bord connexe non difféomorphe a la sphére,

A(X, [g]) > 8.

On quantifie alors la non-concentration de la masse de [ par une borne inférieure
uniforme en x € ¥ pour un rayon r suffisamment petit sur les valeurs propres de Dirichlet

locales f )
Vol

A(Dy (), 8) = in dxl T

(), 5) veC (Dr(2) [g, $%dP3

Proposition 1.3.3 ([Kokl14| Pet14al Pet25d|). Soit ¢ > 0. Soit (53;)ien une suite de Pa(X)
telles que A\ (B;) = 8w + c. Alors tout point adhérent de la suite pour la converge faible-x
est sans atome. Plus généralement, il existe r, = (%, g,¢) > 0 tel que

VB € Pa(R), [M(B) = 87 + ] = [Vx € S, A (D, (2), 8) = Mi(B)].

De cette proposition, en faisant des particitions de I'unité sur une union de disques de
rayons inférieurs a r,, on déduit le résultat de régularité suivant :

Proposition 1.3.4 ([Petl4al Proof of Claim 4],[Pet25d, Proof of Claim 2.4]). Soit ¢ > 0.
Soit B € Py(X) tel que M\ (B) = 87 + ¢ alors f: H' x H* — R agit comme une forme
bilinéaire sur H' et il existe une constante K = K(3,g,c) > 0 telle que

vﬁepd(z)vj‘l(ﬁ) 287T+C:> ||6||g: sup Mg}{
pawernfoy [[Qll a0

A ma connaissance, c’est le seul résultat de régularité sur 8 qu’on puisse déduire sans
avoir besoin de . C’est une régularité en un sens trés faible. Cela montre qu'une
condition de presque criticalité sera nécessaire pour déduire plus de régularité sur f.
Néanmoins, cette proposition donne un indice sur l'espace variationnel le plus adapté a
choisir pour résoudre notre probléme et donne un sens a .

On donne maintenant des propriétes locales des solutions de . Par invariance
conforme de I’énergie de Dirichlet, on écrit toutes les estimées en coordonnées isothermes
par rapport a la métrique plate. Ajoutons & D'existence de la condition de seuil
A1 (B) = 87 + ¢ qui sera vraie pour les suites maximisantes par le Théoréme . Com-
mencons par une quantification de la non-concentration de la densité d’énergie de %
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Proposition 1.3.5 ([Pet25d, Proof of Claim 2.6]). Soit ¢ > 0 et ro < 12 o r (%, g,c¢) est
donné par la Proposition [[.3.5 Alors il existe une constante universelle C, > 0 telle que
pour tous 3 € Py(R) et ® € HY(X,RP), on a

_ N )
M(B) = 8m+c :>Vx€Z/ Vg C\/)\l
" Dro (x) |¢| ln%

2

On appliquera les deux résultats suivants a & =
des applications harmoniques minimisantes a Morre

Proposition 1.3.6 ([Mord8|). Pour tout p > 2 et ® € H' (D, RP) alors, il existe une
application W : D — SP~ qui minimise le probleme variationnel suivant

| On doit la propriété de régularité

%5

/ |IVU|? = inf {/ IVU|%: U e H (D, SP1) et U= sur 8]1))}
D D

et U est de classe C*(D) et est une application harmonique dans SP~1.

On appelle ¥ un prolongement harmonique de d. Colding et Minicozzi |[CMOS| ont
ensuite démontré 'inégalité de convexité a petite énergie suivante :

Proposition 1.3.7 ([CMO08, [LP19, [LSZ20]). Soit ¢ < min(ey, z5). Pour tout p > 2,
toute application harmonique ¥ : D — SP~! telle que fD |[VU|? < € et toute application

®:D — St dont U est un prolongement harmonique dans SP~1 on a

%/D(V(\If—@‘zg/]m‘vif—/Dyv\m?

et U est ['unique prolongement harmonique de .

Suivant la terminologie de [CMOS|, on appelle alors ¥ le remplacement harmonique de

®. La démonstration suivante utilise seulement le résultat I'e-régularité (Théoréme [I.3.1))
et une inégalité de Hardy. Elle est apparue pour la premiére fois dans [LP19, Theorem
3.1] et |[LSZ20].

Démonstration. Par la Proposition [[.3.6] un prolongement harmonique ¥ : D — SP~! est
de classe C*™ et satisfait par le Théoréme [[.3.1]

V
= |[VU|2V¥ avec Vy € D, [VU(y)|? < fD ’ / V|2 <
Ainsi on obtient
~ 2 2 ~
/‘V(\If—@)‘ - (/‘vﬂ —/|v\1/|2) :2/V(\D—<I>)-V\II
D
- 2/ VP (O — ) / VP | — B
T — P2
<o(fiv) [ar =z
L= yl)’ D
ol on utilise |[ X —Y[?=2(1—-X-Y) lorsque | X | = |Y], et la célébre inégalité de Hardy

Yu € Hy(D), / — |y| /|Vu|2

On déduit le résultat. O]

v(xp—&>>2
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Proposition 1.3.8. Soit c > 0 et rog < 72 tel que C,. Y 1nE 191) < min(gy, %) ot (%, g,c)

est donnée la Proposition[.3.3, ¢g > 0 et C' > 0 par le Théoreme (.31 Alors il existe une
constante universelle C!. > 0 telle que pour tous 3 € Py(R) et ® € H' (X, RP), on a

3 Y V|||
MB) zsmhe _ VeeS [, IV(S-) <O, S i
(L.6) ou U : D, (z) — SP~! est le prolongement harmonique de ®

Démonstration. On note D, = D,(x). On multiplie maintenant A® = \(8)5P par

ﬁ (% - \I/> et une intégration par partie donne

1 6} 6} 6} 6}
oV — — V([ — W)= Bl (I
LY V\@\ (r@r )*fwmv V(vm ) 1“)/Drﬁr<br(r@r )

2

1 1 >
=Ml — =V <[ V|-V
2 ! ﬁ ‘ |D| 2 Jp, (|q>| >
qu’on peut réécrire avec o = %

%(/DT|V<T>|2—/[D)T|v\1/|2>:/Drv&»v(ci—\y)—%/Dr‘v(cf)—\p)‘2

g/mvé'<¢'V@_\D)_@_\DW¢)'

Par un jeu de réécriture, on a

L[V|e[]”
2 |of

V|o|
el

VF%I : (@-v@—qf) (@ — qf)ch) S — W+

@+ v (ci - m)
de sorte qu’on obtient une constante universelle C’ telle que

el <e (f S+ (f5) (] Ime-ai)’).

On déduit la proposition. O

En utilisant globalement 1’équation , la Remarque [[.2.6( donne 2

@) = © et |®| = 1.
Comme les coordonnées de ® sont des fonctions propres associées a Ai(f), ® est ainsi
harmonique. On déduit méme de la Proposition[[.3.8/que ® est une application harmonique
localement minimisante.ﬂ Par ailleurs, ce schéma de preuve n’utilise jamais la régularité
a priori des solutions de et le contrdle uniforme par I’énergie de |®| sera utile quand
on travaillera avec des presque solutions de .

2. On le savait déja en utilisant la Proposition et le résultat de régularité de Hélein [HEIOO0].
Encore une fois, c’est spécifique a la dimension 2. En dimension n > 3, la régularité des applications
p-harmoniques est seulement bien comprise pour les p-harmoniques localement minimisantes
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I1.3.2 Optim,>3 : Les systémes de Yamabe

Comme précédemment, on cherche des résultats de régularité et de compacité sur les
solutions de I'équation d’Euler Lagrange au sens le plus faible possible que satisfont les
optimiseurs de . Pour U € H'((M,g),R™) et 3 € L= tel que 8> 0, on a

LU=\ U
g , kglﬁ)ﬁ ; - (17)
U =S, U7 = 5%

Il vient par théorie elliptique classique et bootstrap que U € C?*“ et 8 = |U \ﬁ € (o«
pour un certain a € (0, 1). Cette régularité est optimale pour m = 1 lorsque la solution
change de signe (sauf cas exceptionnels ou % est un entier). Bien str, U est de classe
C*> sur louvert |U|7!(]0, +oc]) et on s’attend a davantage de régularité si m est grand
car les points d’irrégularité sont des intersections d’ensembles nodaux.

Concernant les suites de solutions de (|[.7))
4 2n 4
L,Us = M (8|75, et / U5 = 1 ot §, = |Ui|72, (18)
M

les obstructions a la compacité sont les mémes que pour les solutions des équations de
Yamabe (m = 1 et k = 1) : il y a compacité pour \g(5;) < 0 et des phénoménes
de concentration qu’'on ne peut pas exclure a priori pour Agx(3;) > 0 mais qu’on peut
quantifier grace a la proposition plus générale suivante :

Proposition 1.3.9 (JHPP25, Lemma 2.3]). Soit (\;) une suite de réels positifs bornée,
(B;) une suite de fonctions positives bornée dans L= et (v;) une suite de fonctions bornée
dans H" telles que

Lgvi = \iBiv;

Quitte & extraire une sous suite, on note vy la limite faible de (v;). Alors (v;) converge vers
vo fortement dans H (M \ A) ou A est l’ensemble des points de concentration suivant :

2

A=<z e M;Vo>0,limsup \; (/ B;dvg> > K2
By (x,0)

i—+00
ot K2 est la constante de Sobolev

2
K7?2%= inf fR" Vel

n n—2"°

weCss (RM)\ {0} <f P
- |u|n_2>

Soit k > k.. On définit un invariant naturel qui sera un seuil a ne pas dépasser pour
avoir compacité des suites de solutions de ([[.§]) :

S

Xe(M, [g]) = min { (A (M, [g) % + A, (8)F + -+ A (89%) "} (19)

ol le minimum est pris parmi les indices r, ¢y € N et ¢y,--- ¢, € N\{0} tels que
1. by € {0} U{ky, -,k — 1}, on par convention A§(M,[g]) =0;
2. lg+ -+l =kifbg>kiet i+ -+l =k—Fk,+1sil=0;
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3. Ay, (M, [g]) and Ay, (S™) sont atteints.

Proposition 1.3.10 (JHPP25, Section 6]). Soit k € N\ {0}. Soit (8;) une suite telle que
st k 2 k+,

lim sup \x(5;) < Xx(M, [g])

1—+400
et tel qu’il existe (U;) qui satisfait I’équation . Alors quitte a extraire une sous-suite,
B; converge vers 3 dans Lz et (U;) converge fortement vers U dans H'.

Noter que l'inégalité large Ax(M,[g]) < Xix(M,[g]) est démontrée en utilisant des
métriques test a la Aubin [Aub76].

I.4 Suites minimisantes presque critiques

I.4.1 Cadre théorique

Le moyen le plus simple pour obtenir des points critiques d’une fonctionnelle E est de
construire des extrema. La premiére tentative consiste a prendre des suites minimisantes
(ou maximisantes)ﬂ et les faire converger. La fonctionnelle donne naturellement un es-
pace variationnel dans lequel la suite minimisante est bornée, donc en général, quitte a en
extraire une sous-suite, elle converge en un sens faible dans cet espace. On souhaite alors
que les conditions de criticalité satisfaites par cette limite garantissent sa régularité, grace
a la régularité elliptique des systémes d’équations en jeu. Dans I'exemple de la maximi-
sation de la premiére valeur propre renormalisée par ’aire dans une classe conforme en
dimension 2 (Optim,,—),

3 Y _ f|V¢|2dvg
,Sé’li% A1(B) ou A (B) = qb,f,é}qbdfvg—[) T B, /ﬁd Vg,

quitte & renormaliser et extraire une sous-suite d’une suite minimisante (f3,)nen, on peut
supposer que (S, )nen est une suite de mesures de probabilités qui converge au sens faible-x
vers une mesure de probabilité 3. \; est semi-continue supérieurement pour la convergence
faible-x (voir [Kok14l Proposition 1.1] [Pet25d], Proposition 1.1]). Ainsi, # est un maximum
parmi toutes les mesures de probabilité. Malheureusement, on ne peut pas formuler de
conditions de criticalité pour § car il n’admet pas forcément de fonctions propres (fonctions
qui atteignent I'infimum dans la définition de A;(3)). Pourtant, on a vu que les conditions
de criticalité sont indispensables pour espérer obtenir des minimiseurs réguliers.

Pour résoudre cette difficulté, on construit des suites minimisantes qui satisfont des
conditions "presque" critiques et on les passe a la limite.

Premiére approche

On relaxe le probléme variationnel par un parameétre € > 0 de sorte que la famille
de fonctionnelles (E.) satisfait E. — E lorsque ¢ — 0 et a ¢ > 0 fixé, on peut formuler
une condition de criticalité aux minimiseurs de F.. J'ai adopté cette approche dans les
papiers [Petl4al [Pet18], Pet19, Pet23al, Pet24b] par régularisation avec le noyau de la

3. Au préalable, on doit s’assurer que le probléme est bien posé : 'infimum (ou le supremum) est fini
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chaleur. On I'utilise aussi de facon assez différente pour minimiser des valeurs propres
positives renormalisées par le volume du Laplacien conforme (voir Optim,>3 et [HPP25])

M

B>0 FeGr(C>(M)) ¢peF f ﬁ@devg

3

Dans ce cas, on construit une suite de minimiseurs pour les valeurs propres du probléme
sous-critique Epﬁ ou pour p > 5|ﬂ

. I V6 [2d, ( / )i
E = f JMUVT T 9 P ‘
A, [Bedn, \J,"

Le reste du travail est alors de démontrer la sous convergence de la suite des minimiseurs de
E, pour p — 7. Il faut prendre en compte les bulles qui apparaissent de manicre classique

a cause de la non-compacité de 'injection de Sobolev H' — L7—2. Un inconvénient de
cette premiere approche est qu’elle ne permettra jamais de démontrer que toute suite
minimisante sous-converge vers un minimiseur.

Deuxiéme approche

On construit une suite "a la Palais-Smale" en travaillant directement sur la fonc-
tionnelle. Lorsque la fonctionnelle £ : X — R est de classe C! ot X est un espace de
Banach, une suite de Palais-Smale (/3,,)nen se définit par la condition ||[DE(S,)|| — 0
lorsque n — +o00 ot la norme || - || est celle du dual X* de X. Une difficulté est que les
fonctionnelles spectrales ne sont pas nécessairement de classe C'. Néanmoins, elles sont
toujours semi-continues inférieurement et on peut toujours donner un sens & une condition
presque-critique pour un presque-minimiseur grace au principe variationnel d’Ekeland :

Théoréme 1.4.1 ([Eke74]). Soit (A,d) un espace métrique complet et E : A — R une
fonctionnelle semi-continue inférieurement telle que inf 4 £ > —o0. Soit e > 0 et x € A

tel que
E(x) < iI}le +e.

Alors pour tout ¢ > 0, il existe § € A tel que
(1) E(8) < E(z)
(i) d(z,B) < c
(iii) Pour tout z € A\{B}, E(B) — E(z) < £d(B, 2).

On transforme ainsi une suite minimisante (x.) en une meilleure suite minimisante
(B:) (par (i)) proche de la premiére (par (ii)) qui satisfait (iii). Si £ est de classe C! sur un
espace X de Banach, la condition (iii) donne une suite de Palais-Smale [ DE(5;)|| < £ — 0
lorsque € — 0 par calcul de dérivées en (.. Dans le cadre des fonctionnelles spectrale, on
pourra calculer des dérivées directionnelles s’il existe des fonctions propres. Cela fournit

4. Eux-mémes construits comme limites de suites "a la Palais-Smale" pour la fonctionnelle E, (voir
deuzieme approche) !
5. Cest sous-critique au sens ou le réel ¢ en jeu dans 'équation non linéaire L,u = A|u|?"'u qui

correspond au systéme d’équation aux fonctions propres Lyu = ASu associé & un minimiseur 5 := |u|»—1
j 3 . 2p 2n s 2n ., e ge . . 1 ”21L
de E, satisfait g := -1 < 7o3 O ;=5 est le réel critique pour lequel 'injection de Sobolev H* — L»-2

est continue non compacte. ¢ est sous-critique au sens ot I'injection H' — L7 est compacte.
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un sens généralisé aux suites de Palais-Smale. Par ailleurs, en choisissant ¢ = /2, la suite
minimisante initiale (z.) et (5.) vont converger vers le méme minimiseur.

On donne donc une application du théoreme d’Ekeland pour des fonctionnelles spec-
trales. Pour minimiser une fonctionnnelle spectrale dans une classe conforme, ’espace
complet A & rechercher est un espace de fonctions positives. Par complétude, les éléments
B. € A peuvent désormais s’annuler et c¢’est une difficulté : il faut généraliser la notion
de valeur propre. En outre, cet espace A ne sera pas un ouvert d’un espace vectoriel mais
seulement un fermé. En particulier, la condition (iii) ne donne que des dérivées a droite
en 3. € A dans des directions b € C de fonctions positives. En apparence, on perd donc la
moitié des informations pour caractériser une suite minimisante "presque-critique". Voici
un résultat qu’on s’attend a utiliser :

Proposition 1.4.2. On suppose (Hy), (Ha) et (Hs). Soit k € N*. Soit C un cone tel que
pour tout x € A, C, = C satisfait (Hy) et (Hs). On suppose que A est un fermé dans X
et inf 4 A\, > —o0. Alors pour tout € > 0, et x. € A tel que M\p(z.) < inf 4 A\ + €2, il emiste
B. € A tel que

(“) d)((l’s, /66) <€ o

(iii) VF € Gy (5.)(Er(B2)), (co{ Ra(Be,u);u € F,Q(Be,u) = 1} + Bx+(0,€)) NC* # 0.
On suppose que A est un fermé dans X et sup Ay < +00. Alors pour tout € > 0, et
x. € A tel que A\g(2) = sup g A\ — 2, il existe 5. € A tel que

(“) dx(l’s, /86) <eé .

(iii) VE € Gy, (8.)(Er(B:)), (co{—Rm(ﬂa,u);u € F,Q(fB.,u) = 1} + Bx+(0, 6)) NC* #

0.

Démonstration. On n’écrit la démonstration que dans le premier cas, I'autre cas est
similaire. On applique le principe variationnel d’Ekeland sur I'espace complet (A, dx),
E = )\, et x = z. (en remplagant € par €2 et ¢ par ). On obtient 3. € A qui satisfait

dx (2, B:) < &, M(Be) < M=), et pour tout z € A\ {B.}, Me(Be) — Ml2) < edx (B, 2).
En particulier, pour ¢ > 0 suffisamment petit,

C 5‘]@ (Be + tb) - 5\k(ﬁa)
’ t

Vb €

> —¢l|bl|x

Soit F' € Gy, (5.)(Ek(B:)). Si I'intersection est vide, par le théoréme de séparation de
Hahn-Banach, soit h € X tel que

vEeCh{§h) 20 (1.10)
VE € co{R.(B.,u);u € F,Q(B.,u) = 1} + Bx+(0,¢), (£, h) < =6 (I.11)
pour 6 > 0. ([.10) et (H4) impliquent que h € C. On obtient alors
d
— h < - )\ e th - i Rz €9 7h
AL < Gy M) = g 0 5 oy T e ) )

ce qui se réécrit

VI € Opyao) (B(Be)), max (Ra(fe, ), h) +ef[hllx > 0.
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Noter que
1hllx = J(W)lx~=  sup  [{¢,h)]
CeX |IClxx<1
Soit v € F tel que Q(fBe,u) = 1 et Ry(fe, 1) = maxyem foy (Ra(Be,v), h), et ¢ € X* tel
que [|¢[lx+ < 1et (¢,h) > ||h]lx — 2. Alors € = R, (B, u) + &¢ contredit (TII). O

Remarque 1.4.3. On note une certaine flexibilité dans les hypothéses. Par exemple, si
X = Z* et satisfait que pour toute fonction propre u € Ei(f3), Ru(5:,u) € J(Z) on
J: Z — Z** = X* est 'injection canonique, on obtient une meilleure conclusion

VF € Gy 5y (Er(B2)), (co{ Ru(Beyu);u € F,Q(B.,u) = 1} + B(0,€)) NC # 0,

en remplacant X* par Z lorsque Z (ou X) n’est pas un espace réflexif. Ici, on note C un
cone tel que C* = C et on n’a plus besoin de ’hypothése (Hs).

Grace a cette proposition on peut prévoir I’équation d’Euler Lagrange approchée que
fournit le principe variationnel d’Ekeland. Au moins conceptuellement, elle est trés utile
pour bien choisir 'espace variationnel complet adapté (A, d). En effet, son choix est la
difficulté principale. Si I'espace complet est trop gros, on ne peut pas formuler des dé-
rivées directionnelles de la fonctionnelle et la condition (iii) devient inexploitable. Par
exemple, dans Optim,—, il existe des mesures de probablilité et des fonctions L! posi-
tives qui n’admettent pas de fonctions propres car (Hs) n’est pas satisfait. Pourtant, si
la Proposition s’appliquait pour X = L!(X), I'équation d’Euler-Lagrange approchée
dans X* = L*>°(X) serait idéale. En effet, le schéma de preuve de la Sous-section écrit
pour les suites de points critiques s’appliquerait a ces suites minimisantes : elles seraient
compactes quand € — 0. En effet, avec I'inégalité |®.]> > 1 — Op~(¢), on divise par |®,|
et on définit le remplacement harmonique de ;Z E

Si 'espace complet est trop petit, la condition presque critique qu’on déduit de (iii)
sur la suite minimisante n’est pas assez forte pour déduire la sous-convergence lorsque
e — 0. Par exemple, si on choisit X = LP(3) pour p > 1, la Proposition s’applique
cette fois trés bien, mais ’équation d’Euler-Lagrange approchée dans X* = L(E) n’est
pas suffisante pour appliquer le schéma de preuve de la Sous-section lorsque € — 0.

I1.4.2  Optim,>3 : espaces de fonctions L positives

Pour p > %, on pose X = LP(M), A = {8 € LP(M)\ {0};8 = 0,||B||lzr = 1} et
H = H*(M). On pose pour 3 € Aet u e H

G(u):/ uLgjudv,
M

[ B
W= [, [

On note A} la k-éme valeur propre renormalisée dans LP associée au quotient de Rayleigh

R = g Optimy>3 correspond & A, = 5\2. On a la propriété suivante :

Proposition 1.4.4 ([HPP25, Proposition 2.1, Proposition 3.1]). Soit 3 € A. Si 8> 0 ou
si \{(B) > —oc, alors (Hy), (Ha) et (Hs) sont satisfaits.
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On déduit par continuité des valeurs propres sur A~g = {f € A; 5 > 0} et par densité
que pour k > k.,
inf A\, = inf A
A>o g €% g

et pour k < k_,

Sup Ay = sup .

Ao )
Malheureusement, (H;) peut étre mise a défaut si 5 s’annule sur un ensemble de mesure
strictement positive et si k_ > 1 (plus précisément, dans ce cas, \}(8) = —oo devient
possible). On a pourtant besoin d’appliquer la Proposition sur un espace complet.
On propose donc de changer légérement la fonctionnelleﬁ en posant pour d > 0

_ B >
Qs(B,u) = /M (HﬁHLP +(5> u’du,

pour s’assurer que 7y = 4+ 60 > 0 et on note >\ 0P a k-éme Valeur propre renormalisée

HﬁH
dans LP é-approchée associée au quotient de Rayleigh Rs = @. On obtient alors (voir

[HPP25| Proposition 4.7] pour la démonstration du résultat pour 6 = 0) :

Proposition 1.4.5. Pour k > k.

lim inf /_\i’p = inf \, = 1nf Y
(6717)*)(0»% A -A>0 C

et pour k < k_,

lim sup )\ = sup A\ = sup A
(0,p)—(0,3) A Aso c,

On montre donc 'existence de minimiseurs pour inf 4 Xi’p a (6,p) fixés 6 >0 et p> %
puis de faire converger la suite de minimiseurs approchés lorsque (0, p) — (0, §). En posant

C ={be LP(M);b >0},

Les hypotheses (H;), (Hs), (Hs), (Hy) et (Hs) sont toutes satisfaites pour S\i’p, et on peut
appliquer la Proposition [.4.2] On obtient :

Proposition 1.4.6. Fizons k > 1,6 > 0 et p > 5. On suppose k > k.. Alors il existe
B. € A tel que
(i) X :Ap’ (B:) < mfA/\p’ + &2,
(i) 1< HﬁEHLp\l—i-é
(111) 1l existe b. < k —ky +1 etU (vl Jvle): M — R et f. € Lv T tels que
(a) LyU. = N Ue 00 v = AP H + 5 et on suppose [, 7e|Ue[*dvg = 1,

p—1
(b) |U5|2 < He (Mﬁ) + fe ot He = fM ||5 HLp |U |2dvg = ;

() 1ol o < 5=
On suppose k < k_.Alors il existe 3. € A tel que
(i) A= Xp(5.) > supa MO — <2,

6. Dans [HPP25|, on procéde autrement : on définit des valeurs propres généralisées \j, sur A et
des fonctions propres généralisées associées et on adapte la démonstration de la Proposition [[4:2] Cette
adaptation se fait au prix d’une modification de la définition des valeurs propres lorsque S s’annule sur
un ensemble de mesure non nulle (voir Sous-section [IV.2.1])
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(1)) 1< ||Bellr < 1+¢,
(iii) Il existe b. < k_ —k+1 etU (vl - vf) M — R et f. € Lv— tels que
(a) LyU: = XN;v.U: ou ”ygl— AP H +(5 et on suppose fM’yglU\ dvg =1,
.
(b) U] < (Hﬁ'fﬁ?p) + fe 0t pie = [y iy (UelPdog < 1,
(C) erH =21 |>\s\'

Remarque 1.4.7. On obtient bien une équation d’Euler-Lagrange approchée :
— En intégrant (b) contre 7., et par des inégalités de Holder, on obtient

p—1
1:/ Y| Ue)Pdv, < pie 1+5/ ( b ) dv, —|—/ Ve fedv,
M m \ I Bell e

<u5(1+5)+|5| 1+5+|>\E|
k

ce qui implique que p. est minoré par une constant strictement positive lorsque
e — 0 et que pu. — 1 lorsque €= 0et 0 — 0.
— Sie =0, B. est critique pour )\i’p et on obtient I'égalité |U.|? = puAP~"

1.4.3 Optim,—s : espace de formes bilinéaires positives sur H'

On note X 'espace de Banach des formes bilinéaires symétriques continues sur H'(X).
Il est muni de la norme

18], = sup 18(¢, ¥l
I swemsg |0lm @Il g

ot |9ll31p) = J5 9*dAy+ [5 [V§|?dA,. L'espace X (tout comme H'(X, g)) ne dépend pas

du choix de la métrique g et les normes associées a deux métriques gy et go, || 5|4, €t ||5]/4

sont équivalentes (avec constantes d’équivalence localement uniformes en la métrique).
On note C 'adhérence dans X du sous-ensemble Y

e v={eun [P}
>

et on note

A={peCp1,1) =1}

Remarque 1.4.8. L’espace (X, || - ||4) et C sont naturels pour les raisons suivantes
— Ils apparaissent dans la Proposition et ’équation prend tout son sens.
— Un élément de C agit comme une forme linéaire continue sur ’espace vectoriel
engendré par les carrés de fonctions H' noté ), muni de la norme

lqllq = inf {Z il llWill s g0 =D ¢t et Vi € I, s, 4hs € Hl}

i€l el
= inf {Z 1ill3 g + Y Nl gyia =D dithi et Vi € I, 5,0 € Hl}
iel jeJ iel

— inf {1613 + 16130 = 6° = w2 ot 6, € H'}.
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pour ¢ € Q. Autrement dit, c’est un élément du dual de (). Avec la Proposition
et la remarque qui suit, on comprend que ce choix de C donne la condition
d’Euler-Lagrange approchée |®[? > 1 — 62 ou ||f||3,, < e. La condition de petitesse
porte précisément dans l'espace (). Cette condition sera suffisante en pratique pour
faire sous-converger les suites optimisantes lorsque ¢ — 0.

— Ce n’est pas la premiére fois que cet espace est invoqué en géométrie spectrale :
voir par exemple des résultats sur 'opérateur de Schrodinger [FP82, IMV02] [CL22].

On définit alors pour B € Aet ¢ € H'
G(o) = [ Vol
s

8o, ¢)
A1, 1)

et on note A\ la premiére valeur propre non nulle renormalisée généralisée associée au

quotient de Rayleigh R = %, c’est a dire lorsque X est connexe, la premiére valeur propre
est nulle associée aux fonctions constantes et :

inf R(S, )

 6eHN\{0},8(6,1)=0

Proposition 1.4.9 (|[Pet25d, Proposition 1.1, Proposition 1.3|). Soit 5 € A. Alors (Hy),
(Hy) et (Hs) sont satisfaits.

QB ¢) =

A (P)

En particulier, on déduit de la continuité de A; dans A et par approximation que

SUp A\; = sup A\
A

S
C>0

de sorte que le probléme généralisé est bien posé.
Remarque 1.4.10. On note X, le cone des formes bilinéaires symétriques positives. Si
p € X, alors (Hy) et (Hy) sont satisfaits. Par contre, on utilise que 3 € A est un point

adhérent de Y dans X pour démontrer (H3). Bien sir X, # C car un élément 5 € C doit
satisfaire la propriété

V(i i)ier, (07, 01)jes € HYLD dithi = > sty = Y Blon i) = Y Bley.0y). (1.12)
iel jeJ i€l jeJ

Un élément de C est de surcroit une mesure positive sans atome. On peut noter )/(: I’en-
semble des éléments de X | satisfaisant la propriété|l.12| Il serait intéressant de comprendre
précisément ’éventuelle différence entre X, et C C X C X+.

Il n’est pas clair que (C + (—=C), || - ||x) est 'espace dual de (@, ||||o). Cette heuristique
permet néanmoins d’adapter la démonstration de la Proposition [[.4.2] pour obtenir :

Proposition 1.4.11 (|[Pet25d, Proposition 1.5|). Soit € > 0 et soit B. € CY qui satisfait

M (B.) =sup A —e? et / BEdAg =1
A b))

Alors, en notant g. = B.g, il existe B € A tel que

7. Durant la rédaction de ce manuscrit, une fagon plus consistante de comprendre ces espaces de
fonction semble étre apparue dans [Vin25bl, Section 2.2]
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(Z) )\a@a(la 1) = 5‘1(5&) = (5&) Sup 4 )\1 - 52;

(it) ||B-dAy — Bellg. < € et en particulier 1 < f.(1,1) < ||Be|lg. < 1+¢,
(iii) I existe . = (gL, -+ , ") € Hl(E,R’”E) tel que
(a) Ay®@. = \.S.(De,-)
(b) |®>>1— 02 et B (P, D) = 5.(1,1)
(¢) 1017015y <
Ici, on applique le principe variationnel d’Ekeland a I'espace complet (A, || - [, ). On
peut tout a fait avoir les conclusions de la Proposition pour g a la place de g. en choisissant
I'espace complet (A, || - ||;), mais c’est moins bien adapté en pratique pour obtenir la sous-

convergence des suites minimisantes (notamment lorsqu’on veut prendre en compte les
phénomeénes de bulles qui peuvent survenir dans le probléme analogue de I'optimisation
des valeurs propres a indices k > 1 ou de combinaisons de valeurs propres).

I.5 Convergence des suites optimisantes

I.5.1 Optim,>3 : Cas des valeurs propres négatives

Pour ne pas alourdir la présentation de la méthode d’optimisation, on se concentre
sur le cas simple des valeurs propres négatives du Laplacien conforme. En effet, les suites
minimisantes des valeurs propres positives peuvent se concentrer. Pour rappel, le cas
particulier de la premiére valeur propre strictement positive est équivalent au probléme
de Yamabe avec un Laplacien conforme coercif. C’est un cas célébre de fonctionnelle
invariante conforme ot une événtuelle explosion apparait a cause du défaut de compacité
de l'injection de Sobolev. On traite totalement cette difficulté dans [HPP25] : on construit
d’abord des suites de solutions de ) dans le cadre sous-critique (on remplace 5 par
q < n72) puis on écrit la Proposmon dans le cadre plus général o 3; Verlﬁe (L.7)
avec 3; = |Ui|%2 et q; ) % lorsque ¢+ — +o00. Détaillons le cas des valeurs propres
négatives :

Proposition 1.5.1. Soit ., . et U. satisfaisant (i) (i) et (i) dans la Proposition[[.4.0
pour €,0 > 0, k < k_ et p = 3. Alors quitte a extraire une sous-suite, (. converge
fortement vers B dans L= lorsque (8,¢) — (0,0) et U. converge fortement vers U dans H*
lorsque (6,¢) — (0,0). De plus 8 € CO pour o € (0,1), B € Asq et \e(B) = SUp4_, k-

Démonstration. On choisit une sous suite (g;,d;) — (0,0) lorsque i — +00 et on note
avec un indice i toutes les suites dépendant de (e;,d;). On obtient

i — 1 et / BZ% — 1et (B; —7i) — 0 fortement dans L2.
M

On déduit de

5%
1-—

U < 2t foet I fill o < et [ ulUiPdu, =1
M

que (U;) est borné dans L? et de I'équation L,U; = Me(7)7:Ui que (U;) est borné dans
H'. Quitte & extraire une sous-suite, on peut supposer que

U; — U dans H' et 8; — 8 dans L? et (7)) = A
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lorsque i — +o00. Bien str, 7; — 3 dans Lz. On montre d’abord la convergence forte de
(Uy)ien dans H'. On a I'équation

Ly (Ui =U) = (M(i) = A)viUs + MU = U) + Ay — B).

En notant W; = U; — U et en intégrant cette equation contre W,

Wil = A / WP+ /M (1= caSy) Wil + /M a3 =AU Wt [ (=00 W,

M

Comme A < 0, et (W;) converge fortement vers 0 dans L? et A\x(53;) — A, on a

IWill2n < o(1) + o(1) /M s - Wi+ A / (i — B)U - W,

M

De plus, le terme
n—2

3 o\ 7 o\ T
\/ | < (/ %Uf) (/ 7) (/ IVW”) < K2 (14 0(1)) [ Wi
M M M M

est borné. De plus, pour R > 0 on a

[ im0 <| [ (= 8) (nenl - 15) |+ I = Bl Wil e 101, gy
Comme 1)y<gU - W; converge fortement vers 0 dans L7 on s < %, en passant

d’abord a la limite quand ¢ — +o00 on obtient

lim sup ’ / (vi —
1——+00 M

Pour une certaine constante C' > 0. En faisant R — +o00, on obtient que le terme de
gauche est nul. Ainsi, [|W;]|%, = o(1) lorsque i — +00. On passe a la limite faible sur

1_ i ni2
Bi > (max{ - (IUI> = f) ;0}> et / ulUi* = 1.
i M

82U e [ BUF =1
M

< U]l 2

Ln 2 (U|>R)

Cela donne

En intégrant Uinégalité 3"z° > |U|? contre 3, on obtient
1< 18l 5 < lminf 18],5 =1
et 3 est la limite forte dans L2 de ($3;);en. On obtient également
= U
Par ailleurs, la théorie de régularité et bootstrap sur I’équation
L,U = \sU

implique que U € C*>* et 8 € C% pour un certain a € (0, 1). Par ailleurs, par un théoréme

de continuation unique, toute coordonnée de U ne peut s’annuler que sur un ensemble de
4 —

mesure nulle. Ainsi 5 = |U|»2 > 0 presque partout et par continuité de A, sur Ao,

A= ZEHIOO A (B:) = Me(B)

et j\k(ﬁ) = SupA>O S\k ]
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En fin de démonstration, on utilise le résultat de continuation unique suivant

Vo € Ker (Ly), [¢7 ({0})| #0= ¢ =0 (L.13)

qui est vrai pour des opérateurs elliptiques d’ordre 2 mais devient problématique si on
remplace L, par I'opérateur GJMS d’ordre 2s ot s est un entier tel que 2s < n comme on
le remarque dans [HPP25]. Cette hypothése est cruciale dans la construction de valeurs
propres généralisées, c’est a dire définies sur I'espace des fonctions LP pour p > 7, positives,
mais qui peuvent s’annuler sur un ensemble de mesure non nulle. Ces valeurs propres
généralisées sont au fondement théorique de nos résultats dans [HPP25|. En effet, dés le
début de notre analyse sur les suites de solutions quelconques de 1’équation aux fonctions
propres
Lgvi = \ifivs,

ol (/%) est seulement bornée dans LP, on montre que (v;) est born¢ dans H'f] Clest
I'objet du lemme suivant dont la preuve est retranscrite ici pour montrer comment on
utilise ([.13]). Cependant, lorsque I'opérateur L, n’a pas de noyau, la propriété n’est
pas nécessaire.

Lemme 1.5.2 (JHPP25, Lemma 2.2|). Soit (v;)ien une suite de fonctions dans H*(M) et
(Bi)ien une suite de fonctions positives dans LPi(M) pour p; > § et (A;)ien une suite de
réels tels que
— Lgvi = \ifiv;
— ([ Bien et ([, Biud)ien sont des suites bornées
— XN #0 et (Ai)ien bornée.
Alors en écrivant v; = w; + k; avec k; € Ker (L) et w; € (Ker (Ly))"**, on a
(1) (w;)ien est borné dans H*
(i1) Il existe ¢ > 0 tel que pour tout i € N, ||w;||g = c et [N\ = c.
(111) Si ||vil|l gt —imsto00 +00, alors
(a) (Bi)ien converge faiblement vers 0 dans L7 lorsque i — 400 pour tout q < §
(b) (w;)ien converge faiblement vers 0 dans H*.
(c) pi — § lorsque i — +00 et \; = ¢ pour i assez grand.
(d) Quitte a extraire une sous-suite v; = ||v;||g1 (K 4 o(1)) lorsque i — +00 ot
K € Ker (L,) \ {0} et o(1) a lieu pour la convergence forte dans H'.

Démonstration. Pour (i) et (ii) il suffit de suivre et d’adapter la démonstration du Théo-

réme [[.1.4]) dont on déduit aussi [,, B;vk;dvy = 0.

On suppose maintenant que ||v;|| g1 —i— 100 +00. On pose

U; k; w;

Vi= R L (A
[|vi| 1 l|vil| 2 V3] 1

Comme (w;);en est bornée, W; — 0 dans H'. Comme Ker (L,) est de dimension finie,
quitte & extraire une sous-suite, K; — K dans H'. On obtient (d).
On note f la limite faible d’une sous-suite de (;);en. Alors on a par convercence forte

de V; et K; dans H' C L%

/ﬁi‘/iKidUg —>H+oo/ BK?dv,
M M

8. C’est la moindre des choses et ce n’est pas naturellement donné par notre probléme. D’ailleurs,
pour cette raison, dans [GPA22], les auteurs supposent que L, est sans noyau dans leurs résultats.
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De [,, Bivik; = 0, on déduit que [,, BK?dv, = 0 ce qui implique que K = 0 sur supp 3.
Comme K € Ker (L,)\ {0}, le théoréme d’unique continuation implique que 5 = 0. Cette
limite est indépendante du choix de la sous-suite : on obtient (a).

On note w la limite faible d’une sous-suite de (w;);eny dans H'. Soit ¢ € C®°(M), on a

‘/ wLywdv,| 4+ o(1) = ‘/ pLyw;dv, )\i/ Bivipdu,
M M M

<MMWMM(LﬁQQQ@@wm)V%+mo

de sorte que w € Ker (L,) NKer (L,)*22 = {0} et w = 0. Cette limite est indépendante
du choix de la sous-suite : on obtient (b).

On suppose par contradiction qu’il existe une sous-suite telle que pour tout ¢ € N,
pi = r > 5 ou telle que pour tout < € N, A\; < 0. On montre alors que

)\Z/ Biviwidvg < 0(1)
M

lorsque @ — +00. Cette propriété est vraie si A; < 0 car [, Bvjw; = [, Bividv, > 0. Par
ailleurs, si p; > r > %, par inégalit¢ de Holder,

% % 27 2(7“7;1)
/\i/ Biviwdvg < N; </ Bivfdvg) </ B{dvg) </ w[‘ldvg) -0
M M M M

2r
r—1

2r_ . , , .
fortement vers 0 dans L71. Dans tous les cas, en intégrant I’équation L,w; = \;Bv;
contre w;, on obtient

2n
n—1

lorsque ¢ — 400 car < et (w;);oy converge faiblement vers 0 dans H', donc

i = [ Beowsdv, — [ cuSyut+ [ wtdv, <ot

lorsque ¢ — +00, ce qui entre en contradition avec (ii) ||w;||g1 = ¢. On obtient (c). O

1.5.2 Optim,—s : Etapes de démonstration

On décrit les étapes de la démonstration de l'existence d’'un maximiseur dans une
classe conforme :

Théoréme 1.5.3 ([Pet25d, Proposition 2.1, Remark 2.1]). Soit (X, g) une surface Rie-
mannienne. Soit B. € A tel que

M(B.) =sup A —e? et / ﬁNEdAg =1
A b))

Alors quitte a extraire une sous-suite 3. converge vers 3 € C3y au sens de la topologie
faible-x des mesures,

A (B) =sup A\ et /BdAg =1,
A b

et B ne s’annule qu’en un nombre fini de points.
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La différence avec le résultat d’existence de [Petl4al est que cette fois, toutes les suites
maximisantes sous-convergent vers un maximum.

Etape 0 : On applique la Proposition [[.4.11] On obtient des suites g. = Bsg, Be, O, 0.
qui vérifient

Ay®. = Xl(ﬁs)ﬂs(q)s» )
[c[? + 62 > 1 ou [[0-F,, <& (1.14)
Jo1®|?dB. = [ dB- =1+ O(e)

Etape 1 : On reproduit le schéma de la Remarque en remplacant ®, par

(/Iv)a = (CI)67 06)

et |®.| par
we = |P| = /| P2 + 62
En effet, la Proposition garantit que w. > 1 et que les termes d’erreurs vérifient

||95||12ql(g£) < €. On obtient

o\ |
/ Ve |2dA, —i—/ 'V (@5 - —) dAg—l—/wf
by b We / g b

Etape 2 : On applique le Théoréme et la Proposition qui garantissent que pour
€ assez grand,

P,
We

\Y dAg < O3,  (1.15)

2
g

Vo € 0D, (2), 82) = M(Z,5.). (1.16)

Etape 3 : On applique une adaptation de la Proposition sous I’hypothese ([[.14)
(version approchée de ([[.6))). On obtient que pour n > 0 et z € ¥ donnés, il existe r < r,

tel que
/ Vo* <7
Dy (x)

Etape 4 : On définit le remplacement harmonique ¥, de ®. sur D, (x) grace a la Propo-
sition et 'étape 3. Grace a la Proposition et I'étape 3, on obtient

7 <
2 b, () = @

Etape 5 : Une adaptation de la Proposition en utilisant encore I'hypothése ([.14))
(au lieu de (L.6)) donne alors

3
2 b, ()

Cela repose sur I'étape 2 et I'étape 4.
Etape 6 : Le Théoréme fournit une borne L>* & |VV_|?. En réutilisant 'équation
des applications harmoniques, on peut méme déduire une borne C%* pour tout «.

Vo,

v (w. - 9.)

2
- / Vo (L17)
Dy (z)

v (v.-3.)

2
<C </D " Vw|* + HegH?{l(gE)) (1.18)

IV 2lcony o < c/ V..

r(z)
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Ceci implique que quitte & prendre une sous-suite |;\v1 \(I’;'j converge fortement dans CO(]D)Q (x))

vers une fonction 8 € C°. En utilisant I'étape 1 et 'étape 5, on déduit avec I'’équation [[.14]
la convergence faible-x au sens des mesures

Be = B

Quitte a globaliser 'argument avec des partitions de 'unité, 5 est défini sur ¥. La semi-
continuité supérieure de la valeur propre pour cette topologie [Kok14, Proposition 1.1]
implique

Sup A= lim A (B:) < M(B)

ou il est clair que 8 € A. On réapplique la remarque [[.2.6| au maximiseur § pour obtenir

que 8 = E\Vl?gj ol @ : X — SP~! est une application harmonique. Ainsi § € C2) et § ne

s’annule qu'un nombre fini de fois (voir [Kok14] [Pet14al).

I.6 Perspectives

Les chapitres suivants montrent que cette méthode variationnelle se généralise trés

bien :

— Optim,—o : aux combinaisons finies de valeurs propres associées au Laplacien sur
des surfaces compactes sans bord, ou associées a l'opérateur Dirichlet & Neumann
sur des surfaces a bord. Ces problémes n’apparaissent pas dans ce chapitre pour
ne pas surcharger la présentation (les combinaisons de valeurs propres nécessitent
des notations plus lourdes), et également car I’analyse des suites optimisantes né-
cessite de prendre en compte des phénomeénes de concentration a priori qui étaient
exclus dans le cas de la premiére valeur propre grace au Théoréme On ren-
voie & [Pet25d| pour ce cadre plus général. Par ailleurs, cette théorie s’applique
directement dans des espaces variationnels invariants sous 'action de groupes de
symétries (voir [Pet23D] [Pet25D] détaillés dans le Chapitre[III| pour des applications
concrétes)

— Optimy,>3 : aux opérateurs GJMS d’ordre 2s notés P} sur une variété Riemannienne
compacte (M, g) de dimension n > 2s pour s entier (voir Chapitre . Toutefois,
le résultat nécessaire de continuation unique bien connu pour le Laplacien
conforme L, (s = 1) est ouvert dans le cas général pour P;.

— Le principe variationnel d’Ekeland a aussi été utilisé¢ dans [Pet24a] pour maximiser
les valeurs propres du Laplacien en dimension 2 parmi toutes les métriques (voir
Chapitre [LI)

Bien que plusieurs autres méthodes permettent 1'optimisation de valeurs propres (par
exemple [AHOG, [Amm09, [Pet14al INS15, [Pet18] [Pet19, [KNPP22l (GPA22l [KS23| [Vin25al,
Vin25b|), il n’existe & mon sens pas d’approche aussi englobante que celle présentée dans
l'actuel chapitre (qui rassemble des résultats de [PT24] [Pet25d|, [Pet24al [HPP25]). Néan-
moins, comme on le voit dans les grandes différences entre deux exemples, ’approche
analytique pour démontrer la compacité des suites optimisantes "a la Palais-Smale" ici
construites est trés dépendante du cadre d’application. Des travaux actuels et futurs
consistent a affiner cette approche dans les cadres suivants :

— En dimension n > 3 pour les valeurs propres du Laplacien ou les valeurs propres
de Steklov sur des variétés Riemanniennes ou méme dans un cadre RCD ou la
renormalisation donnée dans en dimension supérieure correspond a des espaces
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riemanniens & poids. Une partie de ce travail a été réalisée dans [KS22|. Pendant
la rédaction de ce mémoire, [Vin25b| donne une approche légérement différente de
la mienne pour traiter cette question. Une partie de son analyse pourrait d’ailleurs
permettre une compréhension plus fine des espaces fonctionnels que j’ai choisis
dans Optim,,—s au début de la Sous-section et qui apparaissent dans [Pet25d,
Pet24al.

— Les techniques de [HPP25| (Optim,>3), apportent une nouvelle approche pour
I'optimisation des valeurs propres de Dirac, introduite par Ammann [Amm09].
Par ailleurs, Karpukhin-Métras-Polterovich [KMP23| ont récemment donné un lien
entre les métriques critiques de 'opérateur de Dirac en dimension 2 et les applica-
tions harmoniques dans CP". Ces questions font actuellement 1'objet du travail de
mon étudiant Pavel Martynyuk.

— En partant de la caractérisation de certaines surfaces minimales & bord libre dans
des calottes sphériques comme points critiques de certaines fonctionnelles spectrales
constituées de valeurs propres de Robin dans [LM23] et I'extension de ces résultats
dans [Med23] aux surfaces minimales & bord libre dans des boules géodésiques de
I'espace hyperbolique, I'approche de [Pet25d. [Pet24al est sans doute la plus adaptée
a suivre pour produire ces surfaces minimales par optimisation spectrale.

— En dimension n > 3 pour les valeurs propres du Laplacien ou les valeurs propres de
Steklov sur des variétés riemanniennes dans le cadre géométrique. Actuellement,
les résultats préliminaires de bornitude de la fonctionnelle [Has11], de calcul de mé-
triques critiques [KM21], et de non concentration des suites de métriques critiques
pour la premiére valeur propre du Laplacien [Pet15] existent. La difficulté est de
bien construire des suites de Palais-Smale dans des espaces variationnels adaptés
construits a partir d’espaces de Sobolev & poids. Une combinaison de [Pet25d| et
de [Vin25b] offre des pistes pour résoudre ces difficultés.

— Pour les opérateurs GJMS d’ordre 2s sur des variétés Riemanniennes de dimension
critique n = 2s, et en particulier 'opérateur de Paneitz. Les résultats préliminaires
de calcul de bornes sur les valeurs propres [Chel4|, de calculs de métriques critiques
[PA22] existent. Dans ce cadre, il faut écarter d’une fagon ou d’une autre les diffi-
cultés inhérentes aux opérateurs dominés par le bilaplacien (absence de principes
du maximum généraux, questions sur la continuation unique etc).

— Pour des combinaisons infinies de valeurs propres, d’abord pour le Laplacien en
dimension 2 et ensuite dans tous les cadres évoqués ci-dessus. Un premier pas dans
cette direction est 'existence d’estimées de régularité du méme type que dans le
Théoréme de ce que j’ai appelé les "harmonic eigenmaps" (voir [Pet25¢]).
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Chapitre 11

Optimisation de fonctionnelles
spectrales en dimension 2

Ce chapitre est une synthése sur les travaux [Pet23al, [Pet24b), [Pet25d, [Pet24al [Pet25al.
Il décrit ma contribution aux questions d’optimisation sur des surfaces (variétés différen-
tiables de dimension 2) compactes sans bord 3 de fonctionnelles spectrales, c’est a dire
construites comme des combinaisons d’un nombre fini de valeurs propres du Laplacien
renormalisées par 'aire. Les questions analogues avec des valeurs propres de Steklov re-
normalisées par la longueur du bord de surfaces compactes a bord seront aussi détaillées,
mais parfois plus rapidement.

La généralisation & des combinaisons de valeurs propres est bénéfique pour plusieurs
raisons. De maniére générale, se concentrer uniquement sur ’état fondamental, ou sur le
bas du spectre dans les problémes d’optimisation spectrale (méme dans le cadre d’op-
timisation de formes classique) limite les possibles champs d’application physiques ou
théoriques.

Ensuite, on observe qu'uniquement travailler & la maximisation de valeurs propres qui
ne sont pas la premiére comme je 1’ai fait pendant ma thése [Pet18, [Pet19)] et comme cela
a ¢té étudié dans [KNPP21] sur la sphére et dans [Kar21] sur le plan projectif semble ne
jamais fournir de nouveaux exemples de métriques maximales.

Par ailleurs, mes résultats se relient aux bornes classiques sur des sommes d’inverses
de valeurs propres renormalisées du Laplacien [Her70l Y'Y 19, Ber73| ou de Steklov [HPGS)|
ainsi que sur des produits de valeurs propres de Steklov [HPS75|. Ce nouveau point de vue
a permis de faire le lien entre les métriques critiques et les immersions minimales dans des
ellipsoides, généralisant les résultats précédents de [Nad96, [FS13] ot pour I'optimisation
d’une seule valeur propre, l'ellipsoide est une sphére.

Géométriquement, ce lien fournit un moyen de construire de nouvelles surfaces mini-
males par optimisation spectrale comme on le verra dans le Chapitre [Tl Analytiquement,
il apporte une approche variationnelle trés générale basée sur les résultats de régularité des
applications harmoniques dans des ellipsoides. Ce point de vue général m’a également per-
mis de reconsidérer les résultats existants pour I'optimisation d’une valeur propre avec une
approche plus simple, naturelle et généralisable que dans ma thése [Pet14al, [Pet18] [Pet19],
comme je I'explique dans le Chapitre [I|

Enfin, on ouvre de nombreuses perspectives de travail non encore étudiées comme par
exemple : les différences de valeurs propres pour identifier de nouveaux trous spectraux;
les combinaisons de valeurs propres entre différents opérateurs ; des combinaisons infinies
de valeurs propres pour atteindre des invariants riemanniens globaux.

49
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En paralléle de ces travaux, Karpukhin et Stern [KS23] ont proposé une approche treés
différente. Ils se concentrent plus finement sur I'optimisation de la premiére valeur propre
par une méthode variationnelle indirecte. Elle est basée sur un min-max de I’énergie d’ap-
plications & valeurs dans une sphére modelé sur le volume conforme de Li et Yau [LY82].
Ces travaux donnent une preuve alternative a [Pet14a] mais aussi des outils puissants pour
montrer des résultats de stabilité sur la premiére valeur propre [KNPS21]|, approfondire le
lien entre les optimiseurs de la premiére valeur propre de Steklov avec grand nombre de
composantes de bord et ceux des valeurs propres du Laplacien [KS24] initié par [GL21al,
construire des immersions minimales & bord libre sur n’importe quelle surface orientable
a bord par optimisation équivariante de la premiére valeur propre de Steklov [KKMS24].

En m’appuyant sur [KKMS24] et des constructions de suites de Palais-Smale de
[Pet25d|, j’ai démontré I'existence de métriques optimales pour un grand nombre de com-
binaisons de valeurs propres du Laplacien (y compris des métriques maximales pour la
premiére) sur toute surface orientable sans bord dans [Pet24al. Par un travail plus fin
sur les méthodes de [KS23, [KKMS24|, nous avons complété dans [KPS25| le résultat
d’existence de métrique maximales pour la premiére valeur propre du Laplacien a toute
topologie (y compris non orientable).

II.1 Formulations du probléme, métriques critiques

Introduisons le cadre de travail. Etant donnée une fonction F' : R — R U {400}
décroissante par rapport a chaque coordonnée. On peut avoir en téte les fonctions du

type

m

fm,a,s('rly T wrm) = Z ak('xk)is

k=1
m -1
hm,a,s(:El; e 7xm) = (Z ak(mk)s>

k=1

pour a € (R;)™\ {0} et s > 0. Pour e = (1,--- ,1), on peut noter

fm = fm,e71 et hm = hm7e,1

la somme des inverses et l'inverse de la somme des coordonnées. On regarde le probléme
de minimisation de la fonctionnelle Er ou :

I(X,F)= inf Er(%,g)

gEMet(X)

ou Met(X) désigne I'ensemble des métriques Riemanniennes sur ¥ et pour g € Met(X),

ott pour k € N*, )\, désigne la k-éme valeur propre généralisée du Laplacien au sens
suivant : 214
_ Volod
(X, 9) = inf max M/dAg,
VEG(C=(D) seV\{0} [ ¢2dA, s

ol dA, est la mesure d’aire par rapport a la métrique g et G11(C> (X)) est I’ensemble
des sous espaces vectoriels de dimension k + 1 des fonctions de classe C*°(X). Méme en
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ne supposant pas dans cette définition que ¥ est connexe, il faut comprendre que la
convention sur les indices des valeurs propres est choisie de sorte que k£ désigne la k-éme
valeur propre non nulle pour les surfaces connexes. \g = 0 est associée aux fonctions
constantes. On définit également I'invariant conforme

Ic(27 [9]7F) = inf EF(Eag)

g€lgl

ol pour une surface riemannienne compacte sans bord (X, g), [g] désigne la classe conforme
de g dans . On note en particulier

AR(B) = I(Z, (2 = (2) ™) 7" et Ar(E, [g]) = I(Z, [g], (& = () ™))~

les problémes de maximisations de la k-éme valeur propre du Laplacien renormalisée.
Remarquons que I(X, F) > —oo (et I.(%, [g], F) > —o0) par [Kor93| (ou [Has1l])

Ap(X) = sup  M(X,9) < +o0
gEMet(3,9)

pour tout k € N et les propriétés de monotonie de F'.

De la méme facon, on peut définir

(%, F)= inf ER(%,9)

geEMet(X)
et
I3(3,[g], F) = inf E3(%,7)
g€lgl
ou

E}?(E,g) = F(a—l(Eag)?' o ’a—m(zag))

sur une surface compacte a bord munie d’'une métrique g € Met(X) et ou pour k € N*,
0 désigne la k-éme valeur propre de Steklov généralisée au sens suivant :

Vo|2dA
(2, 9) = inf max M/ dL,,
VeGr(C=(2) 0eV\{0}  [on ¢?dLy  Jox

ol dL, est la mesure de longueur par rapport a la métrique g sur le bord de . On note
en particulier

01(2) = I(Z, (2 = (2) ™))" et 0w (S, [g]) = I(2, [g], (x = (2x)71) 7

les problémes de maximisations de la k-éme valeur propre de Steklov renormalisée.
Encore une fois, I°(%, F) > —oo par [HasI1]

or(X) = sup 0ox(X%,g) < +oo
gEMet(X,9)

pour tout k € N et les propriétés de monotonie de F'.
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II1.1.1 Meétriques critiques

Dans |Pet23al (resp [Pet24b]), on remarque le lien entre les métriques critiques de la
fonctionnelle E : g — Er(X,g) (tesp E : g — E7(X,g)) et les immersions minimales
branchées (resp a bord libre) dans des ellipsoides. Enongons précisément ce lien. Dans ce
mémoire, on n’utilise que la définition originelle de métrique critique de [Nad96] :

E(g+th) — E(g) lim E(g+th) — E(g)

t—0 t
<

2 .
Vh € S3(%), lim <. (IL1)

>
ot SZ(X) est I'espace tangent de 'ensemble des métriques : les 2-tenseurs symétriques.
Comme nous le remarquons dans [PT24], la condition est équivalente & 0 € OE (X, g),

ot IE(Y, g) désigne le sous-différentiel classique (ou sous-différentiel de Fréchet).[[] De
maniére analogue, une métrique est critique a classe conforme contrainte si

E(g(1+tf)) — E(g) .. FE(g9(1+tf))— E(g)

0 : : <
VfecC (Z),llé% . 1%% ; < 0. (I1.2)

Les minima locaux de E (resp dans la classe conforme) sont évidemment critiques au sens
de la définition (II.1)) (resp définition (I1.2))).

On note ellipsoide
En={x e R";|z|]p =1}

ot |z|p = (A-x, ) et A est une matrice diagonale qui contient les parameétres de Iellipsoide.

Théoréme I1.1.1 (|[Pet23a][PT24]). Soit (X, g) une surface Riemannienne compacte sans
bord. On Suppose que g est une métrique critique pour Ep(X,-). Alors, il existe une
application ® : X — R™ telle que
(1) Pour1 < i < n, la coordonnée ¢; est une fonction propre associée a \; := X\;(2, g).
En notant A = diag(M\1, -+, Am—1, A, -+ Am), on écrit [’équation vectorielle

AD=A-D
(2) |®|x =1

(3) d® @ dd = V224
(4) Pour tout 1 <i < m, en notant I; ={1 < j<n;\; =N}, ona

2 Zkelim{l,--. ,m} akF(j‘la ) 5\m>
> [ ¢dA, = il _ _ Ay(2).
— Jx o1 MO F (M, -+ A)

JEL;

ot Ay = NA(X). Si g est seulement une métrique critique pour la fonctionnelle Ep(%, )
restreinte a la classe conforme de g, alors il existe une application ® : 3 — R" qui vérifie
les conditions (1), (2) et (4).

1. Tous les calculs de métriques critiques précédemment connus utilisent la définition qui est en
pratique suffisante pour des métriques extrémales. Dans [PT24], nous nous rattachons a la théorie des
sous-différentiels pour des fonctions localement Lipschitziennes introduite par Clarke. Celle-ci est plus
adaptée pour comprendre la notion de métrique critique, notamment dans le cas de combinaisons de
valeurs propres. En effet, le sous-différentiel de Clarke est construit pour satisfaire une régle de la chaine,
ce qui n’est pas le cas du sous-différentiel classique en général.
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On remarque que (1) et (2) signifient que ® : ¥ — &, est une application harmonique
au sens ol c’est un point critique de I’énergie des applications W : > — R” sous la
contrainte |W|, = 1. (3) signifie que ® est conforme. (1), (2) et (3) signifient donc que @
est une immersion minimale dans €,, au sens o ¢’est un point critique de I'aire de V(%)
parmi toutes les applications U : 3 — R™ satisfaisant la contrainte ||, = 1.

On quantifie également les masses individuelles des coordonnées de ® dans (4) en
fonction du choix de la fonctionnelle spectrale Er. On donne dans [PT24] une description
plus fine que (4) dans le cas ou des valeurs propres pour g sont multiples.ﬂ De plus,
on fournit dans [PT24] une réciproque au Théoréme : toute immersion minimale
dans un ellipsoide peut étre associée a une métrique critique d’une certaine fonctionnelle
spectrale EFE|

Insistons sur le fait que I'information qu’on perd en ne calculant la criticalité que dans
les directions conformes a g est exactement (3) : la conformalité de I'application ®.

On énonce plus rapidement le résultat analogue dans le cadre & bord :

Théoréme I1.1.2 ([Pet24bl [PT24]). Soit (¥, g) une surface Riemannienne compacte avec
un bord. On Suppose que g est une métrique critique pour Ew(X,-). Alors, il existe une
application ® : X — R™ telle que
(1) Pour 1 < i < n, la coordonnée ¢; est une fonction propre associée a o; := 0;(3,g).
En notant 0 = diag(o1, -+ ,0m—1,0m, " ,0m), on écrit l’équation vectorielle

Ay® =0 dans &
0,9 =0 D sur X
(2) |®|, =1 sur 0%

(3) d® @ dd = V224
(4) Pour tout 1 < i< m, en notant I; = {1 < j < n;o; =0}, on a

> / $2dL, = 2 kenngi, - my O (01, ’5’”)L (O%)
oy 0 S ok F (51, om) '

JeL;

o, 5; = 0;L,(0%). Si g est seulement une métrique critique pour la fonctionnelle E%(3, -)
restreinte a la classe conforme de g, alors il existe une application ® : 3 — R™ qui vérifie

les conditions (1), (2) et (4).

Comme pour le cas sans bord, on obtient des interprétations géométriques : (1) et (2)
signifient que @ : (X,0%) — (co(&,), &) est une application harmonique a bord libre au
sens oll ¢’est un point critique de ’énergie des applications ¥ : 3 — R™ sous la contrainte
|W|, = 1 sur 0X. On note que par principe du maximum et convexité de I'ellipsoide plein,
® est a valeurs dans co(&,) et n’atteint £, qu’au bord 9%. (3) signifie que ® est conforme.
(1), (2) et (3) signifient donc que ® est une immersion minimale & bord libre proprement
immergée dans (co(&,), E,), au sens ou ¢’est un point critique de I’aire de ¥(X) parmi les
applications ¥ : ¥ — R" satisfaisant la contrainte |¥|, = 1 sur 0. On dit que & est
proprement immergée du fait de la propriété ®—1(&,) = 9.

Donnons un point de vocabulaire pour la suite du chapitre :

2. Ces conditions peuvent étre comprises sur appliquation de la régle de la chaine : le sous différentiel
de la combinaison de valeurs propres est inclus dans une combinaison linéaire des sous-différentiels de
Clarke associés & une seule valeur propre.

3. En pratique, nous montrons que certaines familles de fonctionnelles Fr qui satisfont la condition
(4) conviennent en calculant précisément leur sous-différentiel en g. Les conditions (1), (2), (3) et (4)
imposent alors que 0 appartient au sous-différentiel de Fr en g
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Définition II.1.3. On dit que (3, F') (resp 1.(X,[g], F)) est atteint s'il existe une mé-
trique minimale pour (X, F) (resp I.(%, [g], F')) lisse en-dehors de singularités coniques.
On dit que I°(%, F) (resp I9(3, [g], F)) est atteint s'il existe une métrique minimale pour
I5(3, F) (resp I3(%, [g], F)) lisse.

Dans le cas sans bord, les singularités coniques sont autorisées pour les métriques
critiques g car elles apparaissent naturellement dans ces problémes (voir Remarque m
pour les métriques critiques de la premiére valeur propre). Par exemple, en genre 2, toutes
les métriques maximales ont des singularités coniques [JLNT05, [NS19]. Géométriquement,

ce sont les points de ramification des surfaces minimales ®(X). Analytiquement ce sont
VP2,

les zéros de la densité d’énergie de T'application harmonique ® : (3, g0) — &,
calculée par rapport a une métrique de référence lisse gy dans la classe conforme de g.
Plus précisément, on déduit de (1) et (2) en utilisant 0 = 3A, [P?,

_ IVl
Aoz

ou [VO[3 = >, AilVey|% . Dans une carte conforme, les zéros de V& sont des zéros de
fonctions complexes : 'angle du cone en cette singularité est un multiple entier de 2.
Noter que le Théoréme se généralise aux métriques & singularités coniques.[]

Au contraire, autoriser les métriques ¢ a singularité conique n’est pas nécessaire dans
le cas a bord. En effet, choisissons une métrique lisse gy dans la classe conforme de g.
Meme si 'image de 'application ® : (3,03, go) — (co(&,),E,) peut avoir des points de
ramification, la critique associée g s’écrit

g=VgoouV =09, - sur 0%.

Autrement dit, V' est un prolongement a > d’une certaine fonction positive sur 0%. Les
valeurs propres de Steklov associées & g ne dépendent pas du choix du prolongement de
V a ¥ car le numérateur du quotient de Rayleigh est invariant conforme et le dénomi-
nateur ne dépend que de la valeur du facteur conforme au bord. On peut donc choisir
un prolongement lisse de 0,P - ® qui est strictement positif & U'intérieur de 3. On utilise
simplement la notion de métriques Steklov-isométriques au sens de [FS16|. Par ailleurs,
la Proposition impose 9,® - ® > 0 sur 9%, c’est a dire que ®(X) n’a pas de point
de ramification au bord. Ainsi, g peut étre choisie lisse sur tout X.

I1.1.2 Valeurs propres généralisées

On souhaite mieux prendre en compte 'invariance conforme de 1’énergie de Dirichlet
(numeérateur du quotient de Rayleigh) : une transformation conforme de la métrique g n’a
d’effet que sur le dénominateur du quotient de Rayleigh et sur ’aire dans la définition de
(2, g). Par ailleurs, on rappelle que le calcul de métriques critiques (Théorémes
et , donne une application ® : ¥ — R"™ dont les coordonnées sont des fonctions
propres. La propriété (2) "|®[3 = 1" se déduit de la criticalité pour des variations dans

Vo2

la direction conforme & g alors que la propriété (3) "d® @ d® = |Tg” provient d’une

variation globale de la métrique mais reste invariante par transformation conforme de la

4. On peut utiliser par exemple la notion de valeur propre généralisée de la Sous-section [[I.1.2[ pour
faire porter la singularité sur la "variable mesure" et I'espace variationnel de la Sous-section a la
place de I'espace des mesures.
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métrique. Il est alors naturel et crucial de séparer ces deux variations. Par ailleurs, d’un
point de vue analytique, comme on I’a vu dans la Sous-section [[.4.3] on a besoin d’espaces
variationnels robustes qui permettent de construire des minimiseurs.

Ainsi, on définit des valeurs propres généralisées : pour une surface compacte X, une
métrique riemannienne g et une mesure positive p, on pose

_ Vo|?dA
inf max —f2| ¢|g g/d

(S _
fE g0 = o ) SR [y, ¢%dp

On remarque que si ¥ est compacte sans bord, on a M(2,9) = (2, 9,dA,). Si T est
compacte a bord, on a 6,(X, g) = M\p(X, g, dL,). De plus, la propriété d’invariance conforme
se lit clairement sur notre nouvelle fonctionnelle : lorsque § = e*g,

EF(E7§7,U/) = EF(Evgulu>

ou
EF(ng)M) =F ()‘1(2797”)’ T 7)‘771(2797“)) .

Ainsi, pour les couples critiques (g, i), la condition (2) vient des variations par rapport
a la variable métrique et la condition (3) vient des variations par rapport a la variable
mesure.[]

Ce point de vue unifie de surcroit le cadre sans bord (valeurs propres du Laplacien)
et le cadre a bord (valeurs propres de Steklov). Plus précisément, si ¥ est compacte sans
bord, dés que p est une mesure absolument continue par rapport a la mesure d’aire d'une
métrique de référence go € Met(X), c’est a dire p = SdA,,, alors comme toutes les mesures
d’aire par rapport aux métriques riemanniennes sont absolument continues les unes par
rapport aux autres avec une densité lisse et strictement positives, dA, = BydA, pour
Bo € Cy, ce qui donne

I(X,F) = inf Er(X,g,BdA,,)

gEMet(%),eCTH ()

De méme, si X est compacte a bord, et si pu est une mesure absolument continue par
rapport & la mesure de longueur de gy € Met(0X) alors dL,, = podL, pour By € C, et

I°(%,F) = inf Er(%,g,B8dLg,).

gEMet(%),8€C,(0%)

Avec mon approche du Chapitre [, tout le jeu analytique est de travailler sur des
espaces variationnels A dans Met(X) x Mes, (%) (selon si ¥ a un bord ou non) qui sont
admissibles pour trois raisons principales : d’abord

I(S,F)= inf Ep(¥,g,pu) oul’X, F)= inf Ep(%,g,u),
(g:n)eA (g,p)eA
ensuite ils permettent la formulation d’équations d’Euler-Lagrange sur les points critiques,
et enfin la complétude permet d’appliquer le principe variationnel d’Ekeland (voir Cha-
pitre [[). La notion de mesure admissible formulée dans [Kok14) [KS23, [GKL21]| demande
I'injection compacte H'(3,g) C L*(Z, ). Dans un autre point de vue, cela correspond
a 'hypothése (H3) du Chapitre [I| donné dans [PT24, hypothése D|. Cette condition ré-
sout en partie le probléme mais ne fournit pas d’espace complet. Dans le Chapitre []] et

5. A la condition que les espaces variationnels de calcul soient adaptés pour formuler une équation
d’Euler-Lagrange (voir Chapitre I
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|[Pet25d), [Pet24a], on se restreint & des mesures qui agissent comme des formes bilinéaires
continues sur des fonctions H! pour obtenir un espace variationnel admissible.
Gardons également & I'esprit 'invariance par difféomorphisme 6 : 3/ — X

EF(Elu 0*97 (9*,“) = EF<EJ g, :U’)

II1.2 Optimisation dans une classe conforme

L’optimisation dans une classe conforme est intéressante en soi, car elle s’inscrit dans
une longue tradition (recherche de métriques a courbure de Gauss constante dans la classe
conforme, et de courbure scalaire ou de ()-courbure constante en dimension supérieure
dans la classe conforme, etc). Par ailleurs, la maximisation des valeurs propres est d’autant
plus pertinente en dimension n > 3 qu’il existe une borne supérieure des valeurs propres
renormalisées parmi toutes les métriques dans une classe conforme [Kor93, [Has11], ce qui
n’est pas le cas parmi toutes les métriques [Dod94]. Remarquons que la sphére S? dans
le cas sans bord et le disque DD dans le cas a bord joueront un role prépondérant car leur
groupe conforme est non compact. Par ailleurs, en dimension 2, en notant h la métrique
ronde sur S? et ¢ la métrique euclidienne sur D,

Ip(S%[h]) = Ip(S?) et I3(D, [¢]) = I3(DD)

par l'invariance par difféomorphisme et le théoréme d’uniformisation.
Dans ce chapitre, 'optimisation dans une classe conforme est également vue comme
une étape vers les résultats d’optimisation parmi toutes les métriques. En effet, si X est

compacte sans bord,
I3, F)= inf [I.(%[g],F)

gEMet(X)

ou pour go,g € Met(3) fixés,

10(27 [g]vF) = Blerégo EF(EagaﬁdAgo>‘

On obtient un probléme de minimisation par rapport a la variable mesure puis par rapport
a la variable métrique de Er(X, -, ). On sépare les difficultés. Par ailleurs la minimisation
par rapport a la variable métrique est réduite & une minimisation parmi toutes les classes
conformes de métriques par invariance conforme de g — FEp(3, g, ;). La minimisation
dans une classe conforme (par rapport a la variable mesure) suit les étapes analytiques
énumérées dans le Chapitre [} Du fait de I'invariance par difféomorphismes de I(%, [g], F'),
sa minimisation parmi toutes les classes conformes se réduit alors a un espace variationnel
de dimension finie : I’espace de Teichmuller, par exemple difféomorphe a R67=6 si ¥ est
compacte sans bord orientable de genre 7. Le principe est le méme dans le cas a bord.

I1.2.1 Fonctionnelles sur le spectre du Laplacien

On énonce le résultat principal de [Pet23al redémontré dans [Pet25d].

Théoréme 11.2.1 ([Pet23a]). Soit (3, g) une surface riemannienne compacte sans bord.
On suppose que pour tout X qui s’écrit comme une union finie du type

(5,9) = (3, 9) U (S%h)U--- U (S% h) (11.3)
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ou du type B
(Z,f]) = (827 h) .- (827 h) (II4)

ot h est la métrique ronde de S?, on a

L(3, 9], F) < Le(%, 9], F). (IL.5)
Alors 1.(%,[g], F') est atteint.

On remarque que pour toute surface (3, ) du type (IT.3) ou (IT.4),
I.(%, [g], F) < I.(3,[g), F) (IL6)

par une adaptation des résultats de [CES03|. Cette égalité s’obtient en testant pour
I.(%, [g], F) une métrique conforme & g qui s’approche de la géométrie d’une métrique
presque minimale pour 3 via le recolement local de bulles. De plus, si k est le plus grand
entier tel que F' est non constante par rapport a la k-éme coordonnée, tester ([1.5) pour
des surfaces 3. ayant au maximum un nombre de composantes connexes plus petit que k
est suffisant.

Dans un cas général, cette hypothése portant sur des déconnexions de surfaces (ou
dans un autre vocabulaire 'apparition de bulles) est optimale. En effet, dans le cas de la
maximisation de la k-éme valeur propre sur la sphére, on a I’égalité (voir [KNPP21])

A(S?) = 87k = kA (S?) = Ap(SP U -+ US?) (IL.7)
ou l'union du terme & droite fait intervenir k copies de la sphére. De méme, on a [Kar21]
Ap(RP?) = 127 + 87(k — 1) = Ay (RP?) + (k — 1)A;(S?) = Ap(RPPUS? U - - - US?) (IL8)

ol l'union du terme & droite fait intervenir £ — 1 copies de la sphére. C’est d’ailleurs
précisément en utilisant le Théoréme dans sa version initiale prouvée dans ma thése
pour des fonctionnelles spectrales faisant intervenir une seule valeur propre [Pet1§] (voir
aussi [KNPP22|) qu’il est démontré dans [KNPP21| et [Kar21] les égalités et (ILg).
Les preuves procédent par contraposée. Par exemple, dans le cas de la sphére, Ay (S?)
n’est pas atteint pour k > 2. En effet, la k-éme valeur propre renormalisée des métriques
induites des immersions minimales branchées ® : S — S¥ associées aux k-éme valeurs est
strictement plus petite que 87k. C’est un résultat d’Ejiri [Eji9g|. Ainsi, I'inégalité (I1.6)
ne peut étre quune égalité pour tous F'(z) = (zx)~" pour k > 2.

Néanmoins, pour certains choix de F' : R — R U {oo}, on peut énoncer un résultat

pour lequel il n’est pas nécessaire de tester des inégalités strictes pour des surfaces non
connexes. On note F': RT — R U {oo} la fonction définie par

A

F<xlax27"' 7xm) :F(Oax%'” 7xm)-

Théoréme I1.2.2 ([Pet23al). Soit (3, g) une surface riemannienne compacte sans bord.

On suppose que )
1(%,[g], F) < I(%,[g], ') (11.9)

et st
S#£S=1.(%, ], F) < I(S*, F). (I1.10)

Alors I.(%,[g], F') est atteint.
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L’hypothése peut s’interpréter comme une demande de stabilité sur I'indice de
la premiére valeur propre. Elle empéche les suites minimisantes du probléme de dégénérer
en des surfaces non connexes car la suite des premiéres valeurs propres associées ne tend
pas vers 0. Autrement dit, les "haltéres de Cheeger" sont proscrites. Dans ce contexte,
(I1.10) est la conséquence de 'hypothése pour les surfaces > connexes. On note que
est automatique pour f,, ., s si a; > 0, mais elle nécessite des vérifications pour les
fonctions Ay, 4 5. Dans le cas le plus simple de la maximisation de la premiére valeur propre
sue n’importe quelle classe conforme, est automatique mais a nécessité une
preuve (voir Théoréme [[.3.2)).

Dans [Pet23al [Pet24b], on donne des hypothéses plus générales ou tester I'inégalité
que pour des surfaces a k composantes connexes est suffisant sous une condition sur F'
qui empéche la k-éme valeur propre des suites minimisantes de tendre vers 0.

Noter que la condition est vide lorsque ¥ est difféomorphe & une spheére. Le
Chapitre [[II) donne des exemples d’application sur la sphére ou la démonstration de ((I1.9))
est nécessaire (par exemple hg 141 pour ¢t > 1).

On donne un apercu de la démonstration du Théoréme en suivant les mémes
étapes que dans la Sous-section [[.5.2] On insiste sur les différences entre le cas de la
premiére valeur propre et celui des combinaisons. Le vocabulaire d’analyse multibulle
qu’on utilise n’est pas défini ici, on renvoie a [Pet25d].

Etape 0 : On applique un principe Varlatlonnel d’Ekeland sur une suite maximisante
(2, -, B-) (analogue de la Proposition 1| pour des combinaisons). On obtient des
suites g. = B.9, B, P., 0. qui vérifient

qu)e = ﬂs( )
(@3 +62 > 1o 02, <e (IL11)
J5 |®[3.dB- = [ dB. =14 O(e)

ou A, = diag ((5\1, e ,Xm)(E,g,ﬁEdAg)).

Etape 1 : On pose
=\ ‘(I)z-:’?\s + 93

D’apreés I'Etape 0, w. > 1 et les termes d’erreurs vérifient ||6.]%, () S € On obtient

0.\ |?
/ \ng\f]dAg +/ ‘V (<I>E — —) dA, +/
b pX We / [Aeyg X

Etape 2 : C’est a cette étape qu’interviennent deux grandes différences matérialisées par
deux sous-étapes :

o, |?
w? | V—=

£

dAy < O3,y (11.12)
Acyg

Etape 2.1 : La suite des mesures (f3.) peut admettre des points de concentration lorsque
e — 0. Par un argument de type "haltéres de Cheeger", il n’est pas difficile d’identifier
une convergence en arbre de bulle par rapport a la convergence faible* de cette suite.
Outre ’échelle de X, ot on ne fait aucune transformation, quitte a faire une projection
stéréographique et une dilatation, on peut observer les autres échelles de convergence de
Be sur des sphéres.

Le nombre de rééchelonnements de 3. a masse uniformément minorée est majoré par
le plus petit indice k tel que A\gx(2, g, B:) ne tend pas vers 0. Noter que dans le cadre plus
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simple du Théoréme , on n’a que deux possibilités : soit (/3.) ne se concentre pas,
soit il n’a qu’une échelle de concentration qui prend toute la masse quand € — 0.

Enfin, il faut noter que si % est une sphére, quitte a utiliser le groupe conforme de la
sphére, on peut supposer que si 3. se concentre, alors il existe au moins deux échelles pour
lesquelles 5. a une masse uniformément minorée. Dans le cadre plus simple du Théoréme
[1.2.2] on peut donc toujours supposer que 3. n’a pas de point de concentration.

A partir de maintenant, par invariance par difféomorphisme conforme des deux pre-
mieéres lignes du systéme , elles sont vérifiées & chaque échelle.

Etape 2.2 : A chaque échelle ou S, est de masse uniformément minorée lorsque ¢ — 0,
on peut démontrer 'inégalité

Vo € S\ {p, - o}, 3r(@) > 0, M Dy (@), B2) = An(S, Bz) (I1.13)

ici écrite sur ¥ mais qui peut s’écrire sur les copies de S? aprés rééchelonnement. Ces inéga-
lités locales ont lieu seulement en-dehors de points py, - - - , px. Les points de concentration
de . en font partie, mais ce ne sont a priori pas les seuls! Cet entier k est borné par
m — 1. L'inégalité avec A, (X, f.) comme majorant est primordiale pour montrer

I’étape 3 et surtout la propriété (II1.14)).

Une fois cette étape 2 établie, 'analyse de la Sous-section [.5.2] se généralise a chaque
échelle identifiée & I’'Etape 2.1 ou le rééchelonnement . a une masse uniformément mi-
norée. On travaille donc sur ¥ ou par dilatation puis projection stéréographique sur S2.

Toutes les estimées locales ont alors lieu en-dehors des points pq, - - - , pr, donnés par I’'Etape
2.2.

Etape 3 : On montre que pour €9 > 0 et x € X\ {p1, -, pr} donné, il existe r < r(x)
tel que

/ |Vq)a|2 < £o-
Dy (z)

Etapes 4, 5, 6 : Sans rentrer dans les détails, on définit un bon remplacement harmonique
U, de &, sur D,(z) de sorte que

1

: / Ve = o) (IL.14)

lorsque € — 0 et en utilisant une borne L sur |VW.|? grace a des estimées qui ne

dépendent pas du nombre possiblement arbitrairement grand de coordonnées de W, (voir
[Pet25d]),
IV Pl L@ (2)) < C/ A
2 D, (x)
Ceci implique que quitte a prendre une sous-suite on obtient une mesure 3 absolument
continue par rapport a la mesure de Lebesgue avec densité L> telle que

Be = B sur De(z).

Quitte a globaliser 'argument avec des partitions de 'unité, S est défini sur X et éven-
tuellement sur plusieurs copies de S? qui correspondent aux échelles de concentration. La
semi-continuité supérieure des valeurs propres pour la convergence faible® multibulle et
les propriétés de monotonie de F' impliquent

]F<27 [g]) - hI%EF(Z7g7B€> = -EF(2 |—|S2 - US27.§75)
e—
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ou ¢ est la métrique valant g sur X et la métrique de la sphére ronde h sur les copies de
S?. Ainsi, cela contredit I'une des inégalités strictes en cas de concentration de la
suite B.. La limite § fournit alors un minimiseur pour 7.(3, [g]) qui est a posteriori lisse
avec nombre fini de singularités coniques par régularité des minimiseurs.

I1.2.2 Fonctionnelles sur le spectre de Steklov

Plus rapidement, énongons le résultat pour le cas a bord tiré de [Pet24b| et revu avec
les méthodes de [Pet25d)].

Théoréme I1.2.3 (|[Pet24b]). Soit (X, g) une surface riemannienne compacte & bord. On
suppose que pour tout ¥ qui $’écrit comme une union finie du type

(3,9) =&, 9)u DU U (D) (IL.15)

ou du type N
(%,9) =MD, u---u(D,E) (11.16)

ot & est la métrique euclidienne de D, on a

1(3, [g], F) < 1(3, [g], F). (I1.17)
Alors I.(%,[g], F') est atteint.
On note que pour toute surface (i], g) du type (I1.15)) ou (II.16)),

IC(E, [9]7 F) = 10(27 [g]a F)

par un résultat qui n’a étonnamment jamais été écrit avant |[Pet25al. Le résultat est
optimal. En effet, le seul disque minimal (immergé branché) a bord libre dans une boule
unité de RY est le disque euclidien (par [FS15]). Le supremum de o4 (ID) ne peut pas
étre atteint pour k£ > 2 car le seul point critique de o} - le disque euclidien - satisfait

or(D,§) = 7 5] et on a 0y (D) = 27k. On déduit du Théoréme [I1.2.3]:

0r(D) =27k = ko1 (D) = o (DU - - - LU D).

On obtient une preuve alternative d’un résultat de [HPS75|, avec I'information supplé-
mentaire que ce n’est jamais atteint pour k > 2.
On donne aussi la version "surfaces connexes" du Théoréme [1.2.3]

Théoréme I1.2.4 (|[Pet24b]). Soit (X, g) une surface riemannienne compacte & bord. On

Suppose que )
1(3,[g], F) < 1(3,[g], F) (I1.18)

et st
S#D=1.(3 ][9], F) < I.(D, F). (I1.19)

Alors 1.(X, [g], F) est atteint.

Encore une fois, noter que est une hypothese vide si ¥ est difféomorphe a un
disque. Une application détaillée de ce résultat est donnée dans le Chapitre [[II} Contrai-
rement au cas analogue de la premiére valeur propre du Laplacien (Théoréme , I'in-
égalité (I1.19) qui se traduit pour la premiére valeur propre de Steklov par o1(%, [g]) > 27
reste ouverte en général. Dans [Pet25a], nous montrons qu’elle est vraie pour toutes les
classes conformes de ’anneau et de la bande de Mdbius.
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I1.2.3 Applications a 'optimisation parmi toutes les métriques

Soit X et 3 deux surfaces compactes sans bord (non nécessairement connexes). On dit
que X est de topologie strictement inférieure a ¥ et on note

Y <X

si % peut étre construite a partir de 3 en la découpant le long d’un nombre fini non nul
de courbes simples fermées disjointes. ¥ est la surface compacte sans bord obtenue en
recollant un disque le long de chaque composante connexe du bord.

De plus, pour des surfaces compactes connexes sans bord X, 31, s, on dit que X est
la somme connexe de >; et ¥y et on note

2 - ElijQ

si 2 est obtenue en découpant un disque dans X; et X5 et en les recollant bord a bord.
Avec ces définitions, on a par exemple Yy < X, Yp < M et 3 LI Xy < 2.

Théoréme I1.2.5 ([Pet23al). Soit ¥ une surface connexe compacte sans bord. Si
VE < X, I(3, F) < I(S, F). (11.20)
Alors I(X, F) est atteint.

On déduit de [CESO03] et des hypothéses de monotonie sur F' que
VE < B, 1(3, F) < I(S, F). (11.21)

La grande difficulté est de montrer des inégalités strictes comme on le verra.
En se focalisant sur les surfaces compactes connexes sans bord, leur classification a
homéomorphisme/difféomorphisme prés implique

B (T2)" si X est orientable
B (]RIP’2)tw si X est non orientable

ott T? désigne un tore, RP? un plan projectif et si v est un entier positif, la puissance 7
est le nombre de fois qu’on fait la somme connexe de la variété avec une copie d’elle méme.
Ici, v désigne le genre de la surface. Bien stir, si v = 0, X est une spheére par convention.

La terminologie de la "topologie strictement inférieure" était introduite pour prendre
en compte les possibles déconnexions de surfaces, mais on peut énoncer un résultat qui
les interdit en faisant une hypothése supplémentaire sur /' : R — RU {oo} : on rappelle

que F: R — R U {oo} est la fonction définie par

~

F(xlax%”' 7Im) :F(O,Jfg,"' 7Im)-

Théoréme 11.2.6 ([Pet23al). Soit 3 une surface conneze compacte sans bord qui vérifie
les trois hypothéses suivantes :

(i) S’il existe une surface X' telle que ¥ = T4, alors (X, F) < I(X', F).

(ii) S’il existe une surface X' telle que ¥ = RP*4Y, alors (3, F) < I(X/, F).

(iii) 1(S,F) < (%, F)
Alors I(X, F) est atteint.
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De nouveau, (iii) empéche les suites minimisantes du probléme de dégénérer en des
surfaces non connexes car la suite des premiéres valeurs propres associées ne tend pas vers
0. (¢) et (27) sont une traduction du Théoréme et de car il suffit d’obtenir
dans les cas ot 2 est connexe. (ii) est vide si ¥ est orientable et (i) est vide si &
est une sphére.

Voici un exemple d’application du Théoréme . Sur le tore T?, Berger avait montré
que le tore équilatéral plat n’était pas un minimum parmi les tores plats pour I(T?, fs)
alors qu’il est le maximum de A;(T?,-) (de multiplicité 6 pour le tore équilatéral plat)
parmi tous les tores plats [Ber73| ﬁ Pourtant, par Hersch [Her70], la sphére ronde est
'unique minimiseur de I(S?, f3) et donc 'unique maximiseur de A;(S?,-) (de multiplicité
3 pour la sphére ronde). Dans le Théoréme [[1.2.6, pour obtenir le minimiseur de Berger,
la seule hypothése non triviale a vérifier est la premiére, c’est a dire

I(T?, f6) < I(S?, fo).
Celle-ci est vraie par le Théoréme [[1.3.2] ci-dessous, mais on n’en a pas besoin ici :

6
L3 1 11
I8, fo) 2 I8, fa) + D M(8) ™" = oo+ oo+ o+ 4
k=4

33 6
471'2 N Al(T2>

oll on a utilisé le résultat principal de [Her70], et Ax(S?) = 8vk ([L.7). Le minimiseur
obtenu correspond a une immersion minimale dans un ellipsoide.

> I(T27f6)7

‘Donnons rapidement '’analogue pour les fonctionnelles spectrales de Steklov. Soit 3
et X deux surfaces compactes a bord (non nécessairement connexes). On dit que ¥ est de
topologie strictement inférieure a > et on note

<%
si Y peut étre construite a partir de ¥ en la découpant le long d’un nombre fini non nul

de courbes simples disjointes dont ’extrémité est exactement l'intersection de la courbe
avec le bord 90%.

Théoréme 11.2.7 ([Pet24b]). Soit ¥ une surface connexe compacte avec un bord. Si
VE < 8,158, F) < I5(3, F)
Alors IS(X, F) est atteint.
On spécifie également le résultat dans le cas connexe :
Théoréme I1.2.8 ([Pet24b]). Soit ¥ une surface connexe compacte sans bord qui vérifie
I%(, F) < I%(%, F)

et pour toutes surfaces X' telles que X s’obtient de X' en collant chaque coté opposé d’un
rectangle au voisinage de deux points distincts du bord de X' on a

I°(%,F) < I°(Y, F).
Alors IS(X, F) est atteint.

6. On sait maintenant que le tore équilatéral plat est maximiseur de A; (T2, -) parmi toutes les métriques
[Nad96]
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C’est un cas particulier particulier de Théoréeme , pour les surfaces Y <Y ob
tenues a partir de X par découpage le long d’une seule courbe simple qui intersecte le
bord de X en ses extrémités et qui sont connexes. Cette hypothése est vide si X est un
disque. A partir d’une surface compacte orientable ¥’, 3 peut avoir 4 formes topologiques
possibles, selon si le collage du rectangle se fait au voisinage de points du bord dans la
méme composante connexe ou non, et selon si le collage renverse ’orientation ou non.

II.3 Optimisation parmi toutes les métriques

I1.3.1 Avec le principe variationnel d’Ekeland

On énonce le résultat principal de cette sous-section. Pour une fonction F' : R —
R U {oo}, on note F': R — R U {00} la fonction définie par

~

F(xlax%"' 7mm) :F(Oax%”' 7xm)'

Théoréme I1.3.1 (|[Pet24al). Soit ¥ une surface connexe compacte sans bord. On a les
deux résultats (a) et (b) suivants
(a) S’il existe une surface X' telle que 33 = T*4Y) et telle que (X', F) est atteint, alors

I(S,F) < (2, F). (11.22)

(b) Si ¥ est orientable et si )
I(S,F) < I(3, F), (I1.23)

alors I(X, F') est atteint.

Dans le résultat (b), on interpréte encore I’hypothese (I1.23)) comme une demande de
stabilité sur l'indice de la premiére valeur propre. Elle empéche les suites minimisantes
du probléme de dégénérer en des surfaces non connexes en interdisant a la suite des
premiéres valeurs propres associées de tendre vers 0. Bien str, le contenu principal du
Théoréme est une démonstration du résultat (a). Le reste n’est qu'une conséquence
du Théoré et de la monotonie de ¥ — I(X, F ) par rapport au genre de ¥ avec
une preuve par récurrence (l'initialisation de la récurrence est le Théoréme sur la
sphére). En appliquant le Théoréme a une fonction F telle que F' est une fonction
constante égale a +oo, alors est automatique. C’est par exemple vrai pour la
maximisation de la premiére valeur propre en posant F(x) = (z1)~'.

Théoréme I11.3.2 ([Pet24a]). Si F vérifie que F est constante égale o +oo, alors I(3, F)
est atteint pour toute surface X connexe compacte sans bord orientable. De plus,

Y= I3 F)
est strictement décroissante par rapport au genre de 3.

Pour le cas de la maximisation de la premiére valeur propre parmi toutes les métriques,
on répond déja & une question ouverte pour les surfaces orientables de genre v > 3. Ce
résultat était connu sur la sphére [Her70] le tore [Nad96] et les surfaces de genre 2 [NS19].
De manieére plus générale, on montre que I (X, f,,.4,5) est atteint sur toute surface orientable
> telles que ot a1 = 1 et ag > 0 sont des réels quelconques et s > 0. En supposant m = 2,
on retrouve 1'étude spécifique du Chapitre[[Il] Si on suppose a; = 1 pour tous 1 < k < m,
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c’est une somme partielle de la fonction ¢ sur les valeurs propres. Elle intervient pour
s = 1 dans les inégalités de Hersch (m = 3), Berger (m = 6), Yang-Yau (m = 3).

On donne maintenant les idées de démonstration pour sous I’hypothése que
Y = T?Y et I(X, F) est atteint. Pour simplifier la présentation, on se restreint au cas
de la maximisation de la premiére valeur propre. On suppose que A;(X’) est atteint en g.
Le but est de démontrer

Etape 1 : Sélection d’une suite initiale par attachement d’anse

On construit une suite adaptée (ie, Je, ﬁ;) lorsque € — 0 sur une suite de surfaces
3. diffésomorphes a ¥ #T? obtenues & partir de (X', g, dA,) par 'attachement d’une anse
dont laire est d’ordre 2. Les techniques d’attachement d’anse en géométrie spectrale qui
remontent & Anné [Ann87|, permettent d’obtenir

)\k<287 gsa Bs) — S\k(z/v g, dAg)

lorsque € — 0. Une idée naturelle, pour démontrer I'inégalité stricte ([1.24)) était de trouver
la meilleure géométrie de I'anse pour laquelle on obtient un développement asymptotique

)\1<Eav gea Bs) = 5\1(2/7 g, dAg) + 9(5) = Al (E/) + ‘9(8)

ou () — 0 lorsque ¢ — 0 et A(g) > 0 pour ¢ suffisamment petit. On s’attend a ce que
la premiére valeur propre \; diminue lors de I'attachement de ’anse, mais on espére que
la renormalisation par 'aire \; = A\;.A compense largement cette diminution. Aprés de
longues investigations dans [F'S16, MS19, MP20] on a toujours 6(e) < 0 malgré le niveau
de calcul fin auquel on aboutit dans [MP20].

Dans des problémes d’optimisation équivariantes de la premiére valeur propre de Stek-
lov [KKMS24], une nouvelle approche utilise le fait que g est choisie sur ¥’ comme une
métrique maximale. Inspiré par leur approche, j'ai démontré ([1.24) en prenant en compte
cette information avec une toute autre méthode. On attache d’abord une anse de sorte
que méme si 0(e) < 0, §. = —0(e) — 0 suffisamment rapidement.

Soit p, g € ¥’ deux points distincts. On pose

Ea - E/ \ (Da(p) L DE(Q))

et
—le le
Cpe = eS' x [T’ 5}

et on pose
Y = (ZE L Cgﬁ)/ ~

ol ~ dénote un recollement bord a bord de . et de Cy. (que ce recollement respecte
I'orientation ou non ne change rien a l'analyse qui suit). On munit ie de la métrique
g- qui vaut g sur ¥’ et la métrique plate sur Cy.. I faut noter que cette métrique n’est
pas continue sur i; a priori et qu’elle peut avoir un nombre fini de singularités coniques.
Néanmoins, comme les fonctionnelles spectrales Fr(3, g, ;) sont invariantes conformes
par rapport & la variable métrique, on peut ne faire porter cette discontinuité que sur la
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mesure. On peut trouver une fonction L notée V. et une métrique lisse (y compris en
les points de singularité conique de g.) telles que

~

ge = Vega

et on pose la mesure

Be = dA;..
On obtient alors
Proposition I1.3.3. 1l existe une constante Cyy,, > 0 telle que si )\k(ia,ga,ﬁa) < A,

= = 1
)\k(zea gsv ﬁs) > )\k<27 9, dAg) - C’/\,E,p,qéj In — (1125>
3

lorsque € — 0.

Comme on 'a dit, I’échelle 2 lné n’est pas compensée par I'ajout de l'aire de Cy. de
I'ordre de mfe?. Dans la suite on note

[ 1
55 = v/ C,\,g,nqg In E (1126)

la racine carrée du défaut de convergence de notre suite initiale.

Etape 2 : Perturbation de la suite avec le principe variationnel d’Ekeland

g est une métrique maximale pour A;(X’). Pour exploiter cette propriété, on suppose
par contradiction que A;(X) n’est pas atteint, ce qui implique par A (X)) = A (2).
Désormais, la suite (ig, Ge, B.) précédemment construite est maximisante pour A;(X) avec
défaut d.. On appliquera alors le principe variationnel d’Ekeland (Théoréme a cette
suite en définissant un espace variationnel complet adapté. Par invariance par difféomor-
phisme des fonctionnelles spectrales, on raméne tout le probléme sur 3. On note donc
¥ =73

On note Mety(2) 'ensemble des métriques riemanniennes continues sur 3. On munit
cet ensemble de la distance entre deux métriques g1, go € Meto(X)

2 2\ 2
5(g1,92) == max | In ( max —gl(:v)(’u,v)> +1In ( max —gQ(:c)(v,v))
z€eY veTe2\{0} go(2) (v, v) veT\{0} g1 () (v, v)
ol on note pour g € Meto(X) et un 2-tenseur symétrique h € S3(X) = T, (Meto(X)),

L Oggrth) (0 h()(@0)) @)
}r—>o t zeL ((vETzE\{O} g(x)(v,@) + (UETIZ\{O} g(x)(v,v)) ) (I1.27)

=:max /(h, h),(z)

TeEX

ou on définit pour un repére orthonormé local (eq, es) par rapport a g au voisinage de x
et pour hy, hy € S3(X) =T, (Meto(X)),

(h1s ho)g(2) = Z hi(z)(ei(), ¢;(x)) - ha(w)(ei(), ¢;(x))
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un produit scalaire qui est indépendant du choix du repére orthonormé. Autrement dit,
J est la distance géodésique sur Mety(X) pour la métrique riemannienne qui vaut ||h,
sur Pespace tangent Sz(X) de g € Meto(X). Il faut noter que (Mety(X), ) est localement
complet dans le but d’appliquer le théoréme d’Ekeland.

Maintenant, comme on 1’a vu dans le Chapitre || on munit 'espace X oil

x={enrn [ e}
b
et son adhérence est prise dans 'espace des formes bilinéaires continues sur H' munies

de la norme B(p, )
@,
[B]le = sup
Lp,’LZJGHl ||¢||§5,Bg”¢||§8756

ou
Io1E 5, = [ ¢+ [ 190k a5
On cherche 4 minimiser —\; qui est semi-continue inférieurement sur I’espace complet
A. ={g € Mety(2);0(9,3.) < 1} x {8 € X, 5(1,1) > 1}
muni de la distance
d=((91, 51), (92, B2)) = max (6(g1, 92); 151 — Ballc) -
Par le principe variationnel d’Ekeland (Théoréme [[.4.1]), il existe (g., 8.) € A. tel que
de((Ge, B), (9, Bc)) < 6. (11.28)

et tel que pour tous (g, 5) € A.,

M(Z,9.8) = M(Z, g, B) < dede (92, B), (9. 8)) - (I1.29)

Bien str, on a en particuler |5.(1,1) — Bs(l, 1)| < §EB~E(1, 1). On déduit alors ’équation
d’Euler-Lagrange associée :

Proposition I1.3.4. II existe une application @, : ¥ — R" € H' (X, R") telle que
Agsq)é: - )‘1(27 Ge, 56)/65 ((I)sa )
1D.|* =40 1 — 0% dans ¥ od ||0€||!27 5 < e
/Ba (q)a’ CI)E) - ﬁs(L 1)

2

V.|,
d@a ® d@g - 2 g67 h dAgg < 5a||h||95
9ge

Vh € S3(%), /
b
ot |1y, = sup,ex v/ (s 1), ().

L’objectif est désormais de passer a la limite quand € — 0 sur ce systéme d’équations
(voir le passage a la limite final dans 'Etape 5 : (I1.39))). De la premiére partie de cette

proposition, on déduit en posant w. = /|®.|? + 62
P
v(*-3)
We

[w-nl|vi

lorsque € — 0, de sorte que si on a besoin de rendre ®. borné dans L> dans nos estimées,
c’est son remplacement global % qui jouera ce role.
£

2
dA,

ge

< 0(3.) (IL30)

£

2
dAg, + | |w€|§€ dA,, + /
ge e &
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Etape 3 : Petite énergie sur ’anse d’attachement

De la construction précédente, on déduit d’abord que pour tout £ € N*,

|>‘k(zvga7ﬁa) - )\k<2,>g)| < O((Sa) (1131)

lorsque ¢ — 0. En particulier, quitte a réarranger les coordonnées de ®. de sorte qu’elles
soient indépendentes, on peut supposer que n. est borné. Quitte & prendre une sous-suite,
n. = n est une constante.

On définit I'énergie de 'application sur le cylindre.

2

P,
Q. = / V—| dA,. (I1.32)
Clﬂ? w€ 9ge
Proposition 11.3.5.
1
Q=0 (1 l) lorsque € — 0. (I1.33)
Idée de démonstration. Pour tout 1 < i < n, on teste la fonction nsf)—z pour A (¥, g) ou

ne € C(X) tel que 0 < m. <1, . = 1sur X et

1
/ |V775|§dAg <O (—1) lorsque € — 0.
» hl p
On obtient

Qﬁ‘? 2 € 2 ¢5
( / (nw—) dAg — ( new—’dAg) )Al(z’, g9) < |Vn€ | dA,. (I1.34)
’ < S e

En jouant avec ([1.28)), (I1.29)) (I1.30)), le fait que i—z est uniformément borné dans L™ et
par rapport  la norme || - [|2_; , on obtient

|v |dA /~\V¢§Z€dA
e

%—47Wﬁ@M%+M®
l,e

A
[ (n2) aa, = suei.on + o)

n-—tdAg = Be(¢5,1) + O(.).

v We

On calcule le terme de droite dans ([1.34]) et on fait une somme sur i :

2 2

dA

. .
\V%—Ed/lg = / 2|v ‘ dA /(Vﬁs, \% ‘_
S We Y We

>gdAg+/ |V77€|2 -
b

&€

Comme on a par ([I.30) avec |®.|* + 62 = w?

P

/(vnsa VI |—
» W,

£

0c

s =0 ((fiﬁ /

£

2
>gdAg = _/E‘<V775>v
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On obtient avec (|I1.26]),
D, 9 1
|Vne—|,dA, < VO [, dA,, —Q-+O0 | — | .
SV We is

Ini
€

En sommant sur ¢ en partant de ([1.34)) et avec I'équation A, ¢ = A\ (2, ge, 5:)5:(¢5, ),
on obtient :

(300 + O() M 5) < (92, )0, 2) Q.+ 0 (7).

£

En utilisant (I1.26]) et (II.31]), on obtient la proposition. O

Etape 4 : Projection sur > des coordonnées de P,

On note W, 'extension harmonique sur Y’ de la fonction % définie sur .. On pose
€

B(F,F) = i (/E IVF|2dA, — M (X, g) (/E F2dA, — (/2 EdAg)2>) (I1.35)

Proposition 11.3.6. On a
B(V.,¥.) < Ce‘Q.+ O (6.) lorsque ¢ — 0.

Idée de démonstration. En jouant avec ([1.28)), (I1.29]) (I1.30), le fait que W, est uniformé-
ment borné dans L™ et par rapport a la norme [ - [|> 5, on obtient :

/Nwmw@z/ﬂvmﬁm%+/ WM@M%—/IVJ&M%+QM
r 3e Dc(p,q) We

Cl,s

[ wer s, = 565,60+ 06

PidAg = B:(¢7,1) + O(0).
-

D’aprés le lemme [[1.3.7]

/ VU2 dA, — /
D, (p:q) CZ

En utilisant 'équation A, ¢f = A (X, g:, B:)B:(¢, -) puis en sommant sur 1,
B(‘Ilz-:a ‘Ije) = <)\1<E> Ge, ﬁs) - )‘1(27 g)) /BE<¢€7 (I)E) + CeieQe + O(6€>
lorsque € — 0. On utilise ([I.31]) pour conclure.

. . ]
VR dd, <0t [ 9IER s, = cee.
e A e

€ €

Le lemme suivant était nécessaire :

Lemme I1.3.7 ([KKMS24]). There is a constant C > 0 such that for any l > 3In2 and
Y a H' function defined on the cylinder C;t :=S' x [0, é], the harmonic extension of i

on St x {0} = R to the disk ¢ : D — R satisfies

A2\ C—l 2.
AHWI<G+6)4QV§WM
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On décompose alors

v, =F, +/ U.dA, + R..

ol Ff = m(¢5) est la projection orthogonale dans L?(g) sur I'espace propre associé¢ a
A1 (2, g). On a alors

Proposition I1.3.8.
IR}z < Ce™ Q. + O(6:) (11.36)

1 2

1
! / RodLe < Ce +0(5.In ) (11.37)
€ Js.(n) <

2
+‘— / R.dL¢
€ Js(q)

lorsque € — 0.

Démonstration. Montrons (I1.36)). Une inégalité de Cauchy-Schwarz donne,

B(R.,R.) = B(V.,R.) < \/B(V., V.)\/B(R.,R.)

et la Proposition donne

B(R.,R.) < B(V,U.) < (J% +0(62),

lorsque € — 0. Comme R; € D)., s, £, on obtient

)\1(2/,9) )/ 2
B(R.,R.))>(1— ——— VR.|2dA,. 11.38
( ) ( >\k+1(2/79) 2'| |g J ( )

ou k est la multiplicité de A;(Y', g). On obtient (I1.36)).
Montrons l'inégalité ([I.37)). Dans une carte conforme au voisinage de p et ¢, on a

1
- R.dL¢ = R.dL¢ — / (VIn|z|VR.)dA;
< Js:(p) S1(p) D1(p)\D=(p)
de sorte que
1 b 2 1
—/ R.dL¢ +‘—/ R.dLe| < Cln=|Re|?m.s.
€ Js(p) € JS.(q) €
et (II.33]) et (II.36) permettent de conclure. O

Etape 5 : Convergences finales et contradiction

En faisant tendre ¢ — 0, U, — F. tend vers 0 fortement dans H. (X' \ {p, ¢}) (utiliser
(11.36)) et que la moyenne de W, sur 3’ tend vers 0). Comme F est une suite de premiéres

fonctions propres bornées dans H', quitte a prendre une sous-suite, (F.) converge forte-
ment dans C! vers ® en faisant ¢ — 0 puis ¢ — +o00. La Proposition [I1.3.4] (IT.31)) et

impliquent sur ¥’ :
Ag® =N (X, 9)®
B2 =1 (I1.39)
i @ do = T2

2
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Mais ([I.37)) implique aussi en faisant € — 0 puis ¢ — +o0

®(p) = ®(q).
Il faut noter que 'application obtenue ® dépend de p et ¢. Soit X € T,,(X') \ {0}. Alors
en faisant ¢ — p dans la direction de X, on obtient une application ® qui vérifie ([1.39)
et

D,®(X) = 0.
En utilisant que ® est conforme (équation 3 de (I1.39)), |D,®(X*)| = |D,®(X)| = 0.
Ainsi V®(p) = 0. Par les équations 1 et 2 de ([1.39)), si p n’est pas un point de singularité
conique, A\ (X, g) = [V®(p)|2 = 0. C’est une contradiction.

I1.3.2 Avec la théorie de Karpukhin-Stern

On énonce maintenant le résultat de cette sous-section en notant

M(Z) = sup Ai(3,9).
gEMet(X)
Théoréme I1.3.9 (|[KPS25|). Soit ¥ une surface connexe compacte sans bord. Alors
A1 (X) est atteint.

Ce théoréme généralise & toute topologie (y compris non-orientable) le résultat de la
sous-section précédente pour la maximisation de la premiére valeur propre. Cette géné-
ralisation demeure spécifique a la premiére valeur propre. On répond donc a la question
qui était ouverte en genre non orientable v > 2. Le cas du plan projectif [LY82] et de la
bouteille de Klein [JNPOG, ESGJ06| étaient déja connus.

Pour démontrer le Théorémel(ll.3.9on utilise le résultat suivant qui est une spécification
du Théoréme [[I.2.6] a la maximisation de la premiére valeur propre.

Théoréme I1.3.10 (cas orientable : [Petl4al, cas non orientable : [MS21]). Soit ¥ une
surface connexe compacte sans bord qui vérifie les deux hypothéses suivantes :

(i) S’il existe une surface X' telle que ¥ = TY, alors A;(3) > A (Y).

(ii) S’il existe une surface ' telle que ¥ = RP?1YY, alors Ay () > Ay (X).

Alors A1 (X) est atteint.

Le Théoréme fournit (i). Il suffit donc de montrer (ii) pour obtenir le Théoréme
IL3.9 dans le cas ou X est non orientable. La démonstration utilise astucieusement la
construction de [KS23| dans le cas de I'ajout d’une cross-cap a ¥’. Une preuve alternative
de (i) par recollement d’anse est aussi donnée avec une technique similaire.

Etape 1 : Choix de la suite de classes conformes initiale

Soit g un maximum de A;(3’). On choisit un point p € ¥'. Comme nos constructions
respecteront une invariance conforme, on choisit g une métrique conforme a g qui est lisse
sur ¥/ et qui est plate au voisinage de p. On pose

Ze =X \ Da(p)

et en notant I'y := S' x [~L, L]/ ~ la bande de Mobius plate de taille 27 et longueur L,
ou (z,t) ~ (—z,—t), et on pose

.= (S.UTy)/ ~

ou ~ est le recollement bord & bord naturel de Y. et de I';,. On munit is de la métrique
Je qui vaut g sur X’ et la métrique plate sur I';.
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Etape 2 : Création d’applications presque harmoniques équilibrées

Cette étape est la grosse boite noire de ce mémoire. Elle repose sur la théorie Karpukhin-
Stern [KS23|. Cela rend la technique trés spécifique a la premiére valeur propre. On ne
travaille plus tout a fait avec les applications harmoniques associées aux maximiseurs de
A1 (%, [ge]) mais avec des applications harmoniques sur (X, [g:]) qui ressemblent le plus
possible aux maximiseurs de A;(3',[g]) en passant par un opérateur de projection bien
choisi T : H'(S.) — H'(X'). Plus précisément, [KS23] donne une marge de manoeuvre
pour ajuster la mesure [ pour laquelle I’application harmonique est bien équilibrée : son

centre de gravité par rapport a 3 est en 0, dans Uesprit du résultat topologique de [Her70] :

Proposition I1.3.11 ([KNPS21], Proposition 3.1 ou [KS23|, Proposition 2.2). Soit (M, h)
une variété Riemannienne de dimension 2. Alors, il existe un entier n = n([g]) € N tel
que pour tous 3 € H~' (M), il existe une application ® € H'(M,S") telle que

B(®) =0 e R™
et/ VOl dA, < (M, [A]).
M

On appliquera cette proposition a (M, h) = (ia, g-) ou [ est défini par un opérateur

T:H\(X.) — H(Y):
8o = [ T(o)iA,

On obtient une application ®.. Les coordonnées de T'(P.) sont alors orthogonales aux
fonctions constantes, par construction, ce qui permet l'estimée directe :

([ r@araa, ) .o < [ 1@, (11.40)

Remarque : comparaison entre méthodes

On compare ce qu’on obtient ici et ce qu’on obtenait avec la méthode utilisant le
principe variationnel d’Ekeland. Noter que I'y, ou Cy. jouent le méme role. Par le Lemme
, Popérateur le plus naturel a choisir est ¢ € HY(Z.) — ¢ € HY(Y') définie par
I'extension continue de ¢ de Y. & ¥’ comme une fonction harmonique sur D.(p) (ou
D.(p,q)). En notant ¥, = ®., on a alors par la Proposition [[1.3.11] et (TL.40) :

(1 n /DE(M) (lw.? - 1) dAg> (2L g) < A(E [QE])+/

De(p

)|V\IJ€|§dA§—/ VO, [ZdAe.

C@,s

On utilise une inégalité de Poincaré sur le disque pour obtenir

/ (. —1)d4, < 052\// VW [2dA, (I1.41)
De(p.a) D<(p)

et en rappelant la définition de B donnée dans ([I.35)). on obtient grace au lemme |[1.3.7],

B, 0.) < A(Ee, [3]) — M (T, g) +(Je—f/c Vo, [2dA, +052\//D | IVwfA
l,e e\pP
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En supposant que A;(2., [7:]) < A (X, g), ce qui est le cas si A1(X) est atteint en g et si
on suppose par 'absurde A;(X) = A;(X'), on obtient

B(V_,V,) < Ce™ Q. + C*/Q. ot Q. = / VO, [ZdA. (I1.42)
Cy

yE

Cette inégalité correspond a la Proposition sans le "bruit" J. précédemment da a
I’application du principe variationnel d’Ekeland. C’est le principal avantage de la théorie
de Karpukhin-Stern : on peut espérer obtenir des estimées treés fines car trés naturelement,
le terme de droite est seulement local : ¢’est I'énergie de ®. sur I'y, (ou sur Cy.).

Une contrepartie inconvéniente est que, quelque soit la vitesse de convergence de ().
vers 0, 'application limite ® de W, sera seulement harmonique sur ¥’ (équations 1 et 2
dans (I1.39)), pas conforme (I’équation 3 de (I1.39)) n’est donc pas vérifiée). Pour obtenir
une contradiction, on demande que le passage a la limite lorsque € — 0 donne directement
V®(p) = 0. Le choix naturel ¢ — ¢ de T ne le permet pas car on ne peut pas obtenir
mieux que Q. = O(&?) lorsque ¢ — 0, cette estimée n’est pas suffsante pour avoir le
résultat attendu a 'ordre 1.

Etape 3 : Choix de opérateur de prolongement

La fonction u € W2(T';) sur la bande de Mébius I'y, peut étre identifiée & une fonction
u € WH2(Cp) qui satisfait u(z,0) = u(—z,0), de sorte que Popérateur d’extension harmo-
nique H: Wh(T') — W1?(D) satisfait les estimées du lemme (avec L = £). Comme
précedemment dit, on a besoin ici d’un opérateur plus fin K: W3(T';) — Wh?(D) adapté
a la bande de Mobius I'. On définit la décomposition orthogonale

W2 T =Ea O,
de W2(T'L) dans l'espace des fonctions paires
E={ue W) | u(—21t) = u(z,t)}
et des fonctions impaires
O :={uecW3Ty) | u(—2t) = —u(z,1)}

pour la rotation (z,t) — (—z,t). Noter que pour tout v € O, l'identification (z,0) ~
(—2,0) donne

u(z,0) = u(—z,0) = —u(z,0) = 0 pour tous z € S". (I1.43)

En posant mg: WH3(T'L) — € et mo: WH3(T'L) — O la projection évidente, on définit un
nouvel opérateur K comme suit :

Lemme I1.3.12. Pour L > 3log(2), il existe un opéreateur K: WV3(') — W2(D) tel
que
K(u)(z) = u(z, L) pour z € S',

(@2 < 2l ooy,

et en écrivant up = w(u) et up = mo(u), on a

IVIE (up)lllz2m) < (1+ Ce™)IV (up) | Z2r,)
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et
IVE (uo)lll72my = IV (wo)l|Z2r,)-

De plus, K(ug) est pair et K(up) est impair par rapport a l'antipodie z — —z du disque,
et K(up) =0 sur D, (0).

Une conséquence clé du Lemme est I'égalité suivante :
IV(E ()22 = IVullzaw,) = IVE (@)@ — IVueliw,), (I1.44)

ou K (u)g est la partie paire de K (u) par rapport a la rotation z — —z. Cela provient des
estimées de ||d(K(ug))||z et ||d(K(uo))||r2, sachant que K(ug) = K(u)g et K(up) =
K (u)o sont orthogonaux dans W12(D).

Etape 4 : Estimées a ordre 1

Cette fois, on pose T : H'(3.) — H'(X') I'opérateur de projection tel que p € H(%.)
a pour image lorsque x € X,

T(p)(x) = o(x) si € X
T(p)(x) = K(ppr,)(x)  siz € De(p).
En appliquant (I1.40)) a cet opérateur et en notant comme dans le Lemme [[1.3.12| o5 et o
les parties paires et impaires de ¢ sur 'z, et en utilisant ([1.44]), les calculs qui menaient
a ([1.42) donnent maintenant en notant ¥, = T'(P,)
B(V.,¥.) < [[V(Y) el p.p) — IV(®)ElZ2r,) + C €IV 20y, (11.45)

On pose R, = U, — F. ou F¥ est la projection orthogonale pour L?(g) sur I’espace propre
correspondant a A;(Y', g) de ¥F. Une démonstration de la proposition suivante est donnée
pour bien sentir 'auto-amélioration des estimées :

Proposition 11.3.13. On a lorsque ¢ — 0 :
| R:||5: < C'e3. (11.46)

Démonstration. Comme dans la démonstration précédente de (I1.36[), on obtient (II.38)),
ce qui implique

IR < C (IV () 6l320,) — IV (@)l + IV iwy) . (1147)

Premiére amélioration : On montre
IR:|l7r < C'e IV (Vo) g 2, + CE¥ IV el 12y ). (I1.48)
Comme le terme de gauche est positif dans , on obtient
IV(®)ell7ew, < V(P elZa(n,) + CEIVO 2y,

ce qui avec l'application du Lemme

IV () el 220,y < (L + Ce*M) V(@) r, ).
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donne
IV (Y2 elli2. ) — IV(®)El 720,y < Ce?F <Hv<\Ij€)EH%2(DE(p)) +€2HV<I>EHL2<FL>>
(11.49)
et ([1.47) devient ([I.48]).
Deuxiéme amélioration : On montre
|R\3 < C(E2IVPe| 12ry) + &%) (11.50)

Maintenant, on peut tirer parti du fait que les coordonnées de F. sont bornées dans
H' dans un espace de dimension finie, ainsi, on a les estimées uniformes suivantes pour
la parties impaire et paire de F;

(F2)o(z) = % (Fe(2) = Fx(=2)) = dF:(0) - z + O(|2]")

and

(F2)e(2) = % (Fe(2) + Fe(=2)) = F:(0) + O(|=),

sur le disque D.(p) = D.(0), de sorte que
IV(F)e(2)le < [(Fo)plle2l2] < O,

et donc
IV(F2) el Z2(p. iy < Ce.

En utilisant la définition F, = ¥, + R,,
IIV( )Ellm 0. < 2IV(2) N2, () + 20 Bl < 2| Bellzp + Ce, (IL.51)
puis avec , on peut écrire
IR-|7n < C"e (| Rellip + ") + ||V 2r,.

En prenant L suffisammant grand tel que C”e™2* < £, on obtient (II.50).
Troisiéme amélioration : On montre (1.46))
On applique ([1.50|) et on utilise les estimées uniformes sur F., pour déduire

IV epopy < 20VENZe(p. iy + 202V 2(r,) + 1) < Ce2,
et comme on a par définition de U, et ([1.40)),
IVPelZomg = ME IVl T2mg) = M(E,g) — Ce%,
ce qui impose en utilisant (I1.44}), (11.49) et (LL.51)),
IV®|725n by = M (X, 9) = C'e.
De plus, en utilisant 'hypothese A;(X) = A;(Y),
V.|, <M, [3:]) S M (T 9)

on obtient
IV Lo, = IVellZas 5 ||V<1> ||L2(E’\D <CO'e

On applique cette estimée au terme de dr01te de , et on obtlent . O
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La proposition impose en particulier sur les parties impaires de V., F. sur D.(p) que
IV(V.)o — V(FE)OH%Q(DE(Z))) < C'é. (I1.52)
Par construction de K (Lemme, ona (¥.)o =0sur D,-r.(p). Ainsi, donne
ld(FolZap,_, oy < O
Des estimées uniformes sur F. (borné C? par exemple) permettent d’écrire
IV(F.)o(z) = VE.(p)| < Clz —p| < Ce

pour tous z € D.(p). On calcule maintenant la valeur moyenne sur D,-r.(p) par rapport
a z du carré 'inégalité précédente, et
!

IVF.(p)* < Ce* + S—Q |d(F)ol* < C'. (I1.53)

D,-r_(p)

Etape 5 : Convergence finale et contradiction

On remarque que quitte & prendre une sous-suite, F. converge vers ® lorsque € — 0.

L’équation (IL50]) permet d’écrire avec I'inégalité de Poincaré (IL41)) [i, (1 —|F])* < Ce?
Ainsi |F.|*> — 1 lorsque € — 0. Enfin, avec (IL.53)), on peut écrire

A,D = M\ (S, g)®
B2 =1 (I1.54)
Vo(p) = 0.

Ceci fournit une contradiction lorsque p n’est pas une singularité conique de g.

II.4 Perspectives

On dispose de deux approches qui permettent de démontrer des inégalités strictes sur
des invariants spectraux du type I(3, F') en fonction de perturbations topologiques sur
Y. et de montrer qu’ils sont atteint pour toute topologie. Chacune a ses avantages et ses
inconvénients.

L’une des méthodes (par application du principe variationnel d’Ekeland) permet de
traiter les combinaisons de valeurs propres et peut s’envisager avec des changements d’opé-
rateurs, voire des combinaisons de valeurs propres pour différents opérateurs. Il peut aussi
étre utilisé quand il n’existe pas a priori de maximiseurs dans la classe conforme, puis-
qu’on raisonne avec des presque-minimiseurs. C’est exactement ce qu’on fait dans [Pet25al
pour démontrer par contradiction le résultat de rigidité suivant : a1(3, [g]) > 7:(D) = 27
lorsque ¥ est un anneau ou une bande de Mdbius. En effet, si on suppose par contradic-
tion 71 (%, [g]) = 27, on est dans le cas limite ot on ne sait pas sil existe un maximiseur.
On a donc une piste prometteuse pour montrer ce résultat de rigidité pour toute surface
compacte sans bord (X, [¢g]) non diffécomorphe au disque. En effet, la construction devrait
permettre, comme dans [Pet25a] de démontrer que ce résultat est vrai partout en-dehors
d’un ensemble compact de 'espace de Teichmiiller d’une surface compacte a bord.

L’autre méthode (par application de la théorie de Karpukhin-Stern) permet de faire
des estimées plus fines car le principe variationnel d’Ekeland induit un "bruit" J, qui
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semble répercuté dans toutes les estimées. Cependant, elle semble limitée au cas ot une
seule valeur propre de Steklov ou du Laplacien apparait dans la fonctionnelle spectrale.

Il serait intéressant de tirer parti de ces différentes approches pour étendre au maxi-
mum leurs champs d’application. En étant plus attentif sur les estimées, il n’est pas exclus
qu’on traite le cas non-orientable avec la premiére méthode, ou le cas des combinaisons
de valeurs propres dans la deuxiéme méthode, voire qu’on fournisse un point de vue plus
unificateur.

Pour insister sur la portée de toutes les techniques mises en jeu dans les Chapitres []]
et [l je donne dans les chapitres suivants des exemples divers ou leur adaptation permet
des résultats dans la théorie des surfaces minimales et en géométrie spectrale. Je souhaite
également tirer parti de ces techniques pour obtenir des résultats sur d’autres opérateurs,
des combinaisons positives infinies de valeurs propres ou des combinaisons non positives
de valeurs propres.



Chapitre 111

Applications a la construction de
surfaces minimales

Ce chapitre synthétise les travaux [Pet23b, [Pet25b] [Pet25a]. On énonce un résultat
d’existence de disques minimaux plongés & bord libre non plans dans des ellipsoides de
révolution suffisamment allongés de R3. Cela répond & une question posée 30 ans aupa-
ravant de Dierkes, Hildebrandt, Kiister, Wohlrab [DHKW92| page 335|. Pour le montrer,
on optimise des fonctionnelles spectrales de Steklov sur le disque. Plus précisément, ces
plongements sont par exemple construits par minimisation de combinaisons linéaires des
inverses de la premiére et de la deuxiéme valeur propre de Steklov non nulle, parmi des
métriques symétriques par rapport aux deux axes du plan sur le disque unité centré en
0. Avec ces contraintes de symétrie, on parle d’optimisation équivariante. L’équivariance
va a la fois porter sur la métrique optimale et sur I'immersion minimale associée a cette
métrique critique.

Aprés I'idée initialement introduite par Fraser et Schoen de construire des surfaces mi-
nimales & bord libre par optimisation spectrale, [Pet23b| présente donc le premier exemple
ou l'optimisation spectrale équivariante a permis de construire de nouvelles surfaces mi-
nimales. Dans la méme idée, Karpukhin, Kusner, McGrath, Stern [KKMS24| ont par la
suite construit des plongements de n’importe quelle surface a bord orientable dans la
boule unité de R3 par optimisation équivariante de la premiére valeur propre de Stek-
lov. Le cadre équivariant est une facon commode de résoudre une difficulté inhérente aux
points critiques que nous obtenons : ils ne fournissent a priori que des immersions mini-
males branchées de codimension quelconque, pas des plongements dans R3. On sait que
les coordonnées des immersions minimales en jeu sont des fonctions propres. Le célébre
théoréme de Courant impose des bornes sur le nombre de domaines nodaux. Couplé aux
symétries imposées par le cadre équivariant, le nombre de domaines nodaux des fonctions
propres est alors d’autant plus contraint. Ainsi, si le cadre équivariant est bien posé, on
montre que la multiplicité des valeurs propres est bornée pour obtenir au plus 3 coordon-
nées et les immersions ne peuvent étre que des plongements.

Il est important de rappeler que, bien que cette méthode indirecte de construction de
surfaces minimales par optimisation spectrale donne de nouveaux résultats spectaculaires
et fins, elle reste spécifique a des problémes particuliers, ot les variétés ambiantes sont
certaines quadriques de 'espace Euclidien ou de I'espace de Minkowski.E] Ces derniéres
décennies, les méthodes de min-max ont apporté de grandes avancées (résolution de la

1. Quadriques qu’on ne peut pas prescrire a priori (sauf si c’est la sphére) puisque leurs paramétres
sont les valeurs propres associées & la métrique critique qui apparaissent dans la fonctionnelle spectrale
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conjecture de Willmore [MN14], de la conjecture de Yau [MNS19, [Son23| etc) et restent
les approches variationnelles les plus naturelles. Dans une moindre mesure, on a aussi
contribué dans [LP19] a la construction de disques minimaux a bord libre dans une plus
large classe de variétés par une méthode de min-max dans le méme esprit que Colding
et Minicozzi dans [CMOS§|. Par ailleurs, il est désormais montré dans [HK23| par des
méthodes de min-max, que tous les ellipsoides suffisamment allongés contiennent des
disques minimaux plongées a bord libre non plans. Il serait intéressant de savoir s’ils
produisent les mémes objets que dans ce chapitre.

On peut enfin évoquer le probléme analogue des sphéres minimales plongés non hyper-
planes dans des ellipsoides de R*. Dans [HKT9], les auteurs résolvaient une conjecture de
Yau en prouvant leur existence dans des ellipsoides suffisamment allongés. Dans [BP22],
les auteurs montrent que pour un nombre entier arbitrairement grand fixé, il existe un
ellipsoide suffisamment allongé qui contient au moins ce nombre de sphéres minimales
plongées non hyperplanes. Dans cet esprit, j’ai donné un point de vue nouveau par op-
timisation de combinaison de la premiére et de la deuxiéme valeur propre du Laplacien
sur la sphére parmi toutes les métriques symétriques par rapport a un plan équatorial et
invariantes par rotation autour de ’axe orthogonal & au plan équatorial.

II1I1.1 Existence de disque minimal & bord libre non plan
dans un ellipsoide

On considére ellipsoide de R? paramétré par o = (01,09, 03) :
Ey = {(x1, 72, 73) € R*; 0127 + 0923 + 0373 = 1}

de demi-axes (oi)_% pour i = 1,2, 3. Les courbes equatoriales {z; = 0}NE, pouri = 1,2,3
sont des géodésiques fermées simples de &,. Par [Mor31] ce sont les seules parmi les ellipses
proches de la sphére. Dans un célébre résultat, démontré par une combinaison de la mé-
thode min-max de Lusternik and Schnirelmann [L.S47] et le flot de courbure moyenne par
Grayson [Gra89], toute 2-sphére munie d’une métrique riemannienne quelconque contient
au moins 3 géodésiques fermées. C’est un rafinement de la méthode de min-max de Bir-
khoff [Birl7] pour montrer I'existence de géodésiques fermées sur une sphére. De nom-
breux exemples d’ellipsoides &, réalisent donc le nombre minimal de géodésiques fermées
simples ; 3. Plus tard, Viesel [Vie7l] a démontré I'existence d’ellipsoides qui contiennent
un nombre arbitrairement grand de géodésiques fermées simples.

Une question analogue pour les disques minimaux & bord libre dans &, se pose. On
rappelle qu'un disque minimal & bord libre dans ¥ C R? est un disque topologique qui
est un point critique de la fonctionnelle d’aire parmi tous les disques D tels que 9D C .
Ce sont exactement les disques minimaux D de R? tels que 0D C ¥ et D rencontre ¥
orthogonalement sur 0D. Les disques plans {z; = 0} N co (€,) sont les premiers exemples
triviaux de de disques minimaux & bord libre dans un ellipsoide ¥ = &,. La question est
la suivante :

Question 1 (Dierkes, Hildebrandt, Kiister, Wohlrab, 1993, [DHKW92| p335). Existe-t-il
des disques minimaux & bord libre non plans dans des ellipsoides de R3?

Cette question est analogue a celle des géodésiques non planes sur les ellipsoides pour
deux raisons.
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D’abord, c’est la version a bord de la question suivante : existe-t-il des 2-spheéres
minimales dans un ellipsoide de R* qui sont non équatoriales ? Cette question avait été
posée par Yau, et a la réponse donnée par Haslhofer and Ketover [HK19| est oui pour des
ellipsoides suffisamment allongés, grace & des méthodes de min-max et de flot de courbure
moyenne. On discutera du cas sans bord dans la section ou j'ai construit de telles
sphéres minimales par optimisation spectrale.

Ensuite, on peut directement voir cette question comme la recherche de géodésiques
non locales fermées simples non planes sur des ellipsoides. En effet, il existe une corres-
pondance entre les disques minimaux a bord libre et les géodésiques non locales associées
au demi-Laplacien (voir [DLRII]). Plus précisément, pour une surface ¥ C R?, il y a une
correspondance bijective entre les courbes fermées paramétrées sur R : v : R — X et qui
satisfont l’équationﬂ )

Azy L T.Y et y(—00) = (400)

et les disques minimaux & bord libre dans > qui lorsqu’ils sont paramétrés par le disque
® : D — R? satisfont I’équation

AP =0 dans D
0,® L TpY sur S'.

On peut obtenir ® comme l'extension harmonique de yomw ou 7w : D — Ri est une
application biholomorphe. On peut obtenir v comme la restriction & R de ® o 771, En
effet, Popérateur Dirichlet & Neumann sur R vu comme le bord de R% est exactement le
demi-Laplacien sur R et les équations sont invariantes conforme. La Question [I] a donc
une version plus faible intéressante :

Question 2. Existe-t-il une géodésique fermée simple non locale associée & Az non plane
dans un ellipsoide ?

La réponse aux Questions [1| et [2 est non si lellipsoide est une sphére ronde (o7 =
o9 = o3) par |Nit85] : les seuls disques minimaux & bord libre dans la 2-sphére sont les
disques plans équatoriaux. On a d’ailleurs le méme résultat dans le cas sans bord pour
les 2-spheres dans les 3-spheres par Almgren [AIm66|. Par contre, on sait que la version a
bord est en un certain sens plus rigide, parce que méme en augmentant la codimension et
en autorisant les disques & étre seulement immergés, on a le résultat suivant de [FS15] :
pour tout n, les seuls disques immergés (possiblement branchés) a bord libre dans S™ sont
plans. Dans le cas sans bord, on peut construire de nombreuses sphéres minimales non
planes dans des sphéres de dimension paires S** avec n > 2 (théorie initiée par Calabi
[Cal67]).

Dans le théoréme suivant, ces deux questions ont une réponse :

Théoréme II1.1.1 ([Pet23b]). Il existe une famille a un paramétre (p;)i>o telle qu’il
existe un disque D; minimal a bord libre plongé dans l’ellipsoide de révolution

&y = {r € RY pag + 27 + 25 = 1}
et tel que les coordonnées xq,xa, o sont des premiéres et secondes fonctions propres de
Steklov pour la métrique g, = e**¢ sur D, satisfaisant
1
(%3

eVt — T sur 0D,
(piag + i + 13)>

2. L’équation classique des géodésiques sur X s’écrit Ay L T3
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ou & est la métrique Euclidienne de R3. Pour tous t; < ty, Dy, is n'est pas isométrique
a Dy,. De plus, en notant Ly la longueur de 0Dy par rapport a la métrique g, t — Lyp;
est strictement décroissante et t — L; est strictement croissante. Enfin, p, — 0 et Ly —
47t lorsque t — +oo et Dy converge au sens des varifolds vers le disque {0} x D avec
multiplicité 2 lorsque t — 400.

Depuis, la réponse aux Questions [I| et [2] a été généralisée a tous les ellipsoides suf-
fisamment allongés de R?® par des méthodes de min-max [HK23]. Dans les sous-sections
suivantes, on détaille les étapes de la démonstration originale par optimisation spectrale.

Etape 1 : Optimisation spectrale. Il existe des minimiseurs pour de nombreuses
combinaisons bien choisies de premiéres et deuxiémes valeurs propres de Steklov parmi
les métriques riemanniennes sur le disque. Les minimiseurs existent également parmi les
métriques qui sont paires par rapport aux deux coordonnées du plan. C’est 'objet de la

Sous-section [TL1.1]

Etape 2 : Bornes sur la multiplicité. Les immersions (possiblement branchées)
minimales a bord libre dans des ellipsoides associées aux métriques minimales ont au plus
3 coordonnées. C’est une conséquence directe de [Jam16| : la deuxiéme valeur propre de
Steklov sur le disque est de multiplicité au plus 2.

Etape 3 : Les surfaces sont non planes. Il existe des choix de combinaisons de
premiére et deuxiéme valeurs propres pour lesquels une immersion (possiblement bran-
chée) minimale & bord libre associée & une métrique minimisante est forcément non plane.

C’est I'objet de la Sous-section [[I11.1.2

Etape 4 : Les surfaces sont plongées. Des immersions (possiblement branchées)
minimales a bord libre obtenues sont en fait des plongements. Plus précisément, les im-
mersions minimales n’ont jamais de points de branchement du fait qu’elles le sont par
premiéres et deuxiémes fonctions propres. Sous hypothése de symétries (métriques mini-
males paires par rapport a chaque coordonnée), ce sont des plongements. C’est 'objet de

la Sous-section [[I1.1.3l

I11.1.1 Existence de minimiseurs

Le point de départ de cette étude est le Théoréme [[1.2.4] donné dans [Pet24b). L’exis-
tence de minimiseurs pour des combinaisons de valeurs propres de Steklov sur une surface
fournit une immersion (possiblement branchée) minimale & bord libre dans un ellipsoide
(voir Théoréme . Ainsi, pour donner un exemple le plus simple possible de construc-
tion, on suppose que la surface est un disque et que seules la premiére et la deuxiéme fonc-
tion propre de Steklov interviennent dans la combinaison. Il reste a choisir une famille
de combinaisons suffisamment simple pour étre exploitée. On peut énoncer I'inégalité de
Weinstock [Weib4], qui se généralise trés bien a la somme des inverses des deux premiéres
fonctions propres sur le disque [HPGS| :

M(D, ) + Ro(D, ) > % (TTL.1)
La fonctionnelle de gauche n’est atteinte que pour des disques isométriques au disque muni
de la métrique euclidienne. Par ailleurs, les combinaisons linéaires de valeurs propres sont
assez simples a manipuler. Partant de ces observations, on pose pour t > 0 et s € R*

@ =

hst(z1,12) = (ZEl_s + tx;s)



III.1. DISQUE MINIMAL A BORD LIBRE PLONGE NON PLAN 81

afin de déterminer les métriques qui atteignent

I°(D,hs,) = inf E° (D
(D, s z) gej}let(m hs’t( ,9)

ou g désigne I'ensemble des métriques sur le disque et

E}iyt(Da g) = hs,t(a—l(]Da g)a 5—2(D7 g))

Il est important de noter a ce stade que par le théoréme d’uniformisation, minimiser
E}i’t sur ’espace des métriques d'un disque topologique est équivalent & le minimiser
dans I’ensemble des métriques conformes a la métrique euclidienne sur le disque. Comme
les valeurs propres de Steklov ne dépendent que de la valeur du facteur conforme au
bord, ¢’est méme équivalent a un probléme de minimisation parmi des fonctions lisses et
strictement positives sur un cercle. D’ailleurs, on dit que deux métriques g; et go sont
Steklov-isométriques s’il existe un difféomorphisme du disque ® tel que g, est conforme a
®*g, avec un facteur conforme valant 1 au bord.

Pour les fonctionnelles Ay, on remarque que si t = 0, on obtient le maximiseur de o4,
c’est a dire par Weinstock , c’est le disque euclidien. Plus particuliérement, pour
s=1let0<t <1, implique que le seul minimiseur est un disque. De maniére
diamétralement opposée pour tout s, si ¢ = +o00, un minimiseur de hg; correspond a un
maximiseur de 5. Par [HPST5|

oo < 4w (I1.2)

et ce n’'est pas atteint (voir [GPI10]). Par contre, 47 correspond a la deuxiéme valeur
propre renormalisée de I'union de deux disques euclidiens disjoints dont les bords ont la
méme longueur. En particulier, il existe des suites maximisantes dont la deuxiéme valeur
propre tend vers 47 qui explosent et convergent vers une union disjointe de deux disques.

En utilisant le Théoréme pour ces choix de combinaison hs;, on obtient le Théo-
réme suivant :

Théoréme I11.1.2 ([Pet23b]). Pour tous s € R* et t >0, I°(D, hy;) est atteint.

Pour démontrer ce Théoréme, il s’agit simplement de vérifier (voir Théoréme [11.2.3)
que
I5(D, hyy) < I5(DUD, hyy). (I11.3)

Pour toute métrique g sur DUD, on a (D UD,g) = 0 car D UD est une surface non
connexe. Le maximiseur de 2 (DUD) est 47 atteint en une union disjointe de deux disques
euclidiens isométriques. Ainsi :

+oosis>0

I11.4
(47)~Lts si s < 0. (1L.4)

15 (DUD) - {

Ainsi, (IL1.3) est évident quand s > 0. Quand s < 0, on construit une suite de métriques
qui impliquent (III.3]) pour tout ¢t > 0 :

Théoréme I11.1.3 ([Pet23b]). Il existe une famille a 1 paramétre de métriques h. =
e?v=(dx® + dy?) telles que

2 1

a1(he) = —Wl +0 <ﬁ> and d4(g.) = 41 — 16me + o(e)
In (2) In (1)

lorsque € — 0 et e?Ve satisfait les propriétés de symétrie suivantes

V(z,y) € D, e*(z,y) = ¢ (—x,y) = ¢ (z, —y).
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Ces métriques g. = e?“=£ sont définies naturellement comme une somme de deux
"bulles"F] ) )
621)5(,2) _ ﬁa —1 + B& -1
= 2 2
B — 27 B + 2]
o 1+
€
B = >1.
1—¢

au sens ou chaque terme de la somme est le facteur conforme associée & un disque
plat euclidien obtenu par tiré en arriére de la conjugaison par des applications biholo-
morphes f; : R2 — D telles que f1(0) = (£1,0) d’une dilatation d'un facteur ¢ dans R2.
Par construction, on induit une concentration de chaque facteur conforme vers le point
(£1,0) du disque. Cette construction de métriques est relativement standard. Néanmoins,
il n’était pas connu que la premieére et la seconde valeur propre pour h. ne convergent pas
du tout a la méme vitesse vers leur valeur limite, ce qui permet d’obtenir ([11.3]).

Enfin, on remarque dans la Sous-section qu’une hypothése supplémentaire de
symétrie permet de montrer que les immersions minimales de disques a bord libre par
premiére et deuxiéme fonction propre de Steklov sont en fait plongées. Pour construire de
tels objets, on adapte la démonstration du Théoréme au cas de la minimisation de
Efi,t parmi les métriques g qui vérifient

V(J:a y) < ]D),g(l’, y) = g(_x7y) = g(l’, _y>
On note Met.,(D) 'ensemble de ces métriques et

Li](Dv h’s,t) = Hlf Elfgt(]D)ug)'

gEMeteq (D)

Noter que cette optimisation est équivalente a 'optimisation parmi toutes les métriques
de la forme g = e*“¢ sur le disque D qui satisfont la propriété

Y(z,y) €D, e"(z,y) = e“(—xz,y) = e“(x, —y) sur S*.
On a aussi dans ce cas 'existence d’un minimiseur
Théoréme II1.1.4 ([Pet23b]). Pour tous s € R* et t >0, I5 (D, hyy) est atteint.

Les métriques minimales pour ce probléme correspondent également a des immersions
(possiblement branchées) minimales dans un ellipsoide. La démonstration de ce théoréme
nécessite encore de vérifier une inégalité stricte du type

15 (D, hyy) < I5(DUD, hyy). (I11.5)

ol IgI(D LD, hsy) et Vinfimum de E,i’t parmi toutes les métriques sur D U D qui sont
égales sur chaque copie du disque et qui sont paires par rapport a une coordonnée du
disque. Cette inégalité se vérifie encore car toutes les métriques test de (III.1.3]) vérifient
cette propriété.

Comme on 'a dit, un minimiseur de I¥(ID, hy ) ou I3 (D, hyy) est un disque euclidien
pour t = 0, et 'union disjointe de deux disques euclidiens pour t = +o00. Si on imagine que
les minimiseurs de I(ID, i, ) ou I3, (D, hyy) sont continus le long de ¢, les disques minimaux
a bord libre associés ne peuvent pas rester plans le long de ¢. Dans la sous-section suivante
on montre en effet qu’a partir d’une certaine valeur ¢, les disques minimaux a bord libre
ainsi construits sont non plans.

3. Le terme de bulle est plus couramment utilisé dans le cas analogue des facteurs conformes qui se
concentrent en un point intérieur & la surface avec la géométrie de la sphére ronde. Ici, c’est le disque
euclidien qui joue le role de la sphére ronde.



III.1. DISQUE MINIMAL A BORD LIBRE PLONGE NON PLAN 83

I11.1.2 Ellipses critiques non minimisantes

Pour montrer que les minimiseurs de E7 .. sont non plans, on classifie les points cri-
tiques qui admettent des immersions minimales a bord libre dans une ellipse par premieére
et deuxiéme valeurs propres de Steklov. Ainsi, on montre que pour tous s # 0, il existe
un certain rang t(s) > 0 tel que ceux-ci ne peuvent plus étre minimiseurs de hg ;.

Pour ¢ > 1, on note lellipse co(E,) = {z% + qy*> < 1} ou
Ey={a"+qy* =1}

munie de la métrique riemannienne g, = e**1(dz? + dy?) telle que

1

eVa — (132 +q2y2)—2

sur E,. Dans le résultat suivant, on montre que (co(E,), g,) est critique pour de nom-
breuses combinaisons de valeurs propres de Steklov. C’est donc un bon candidat & étre
un extremum pour ces combinaisons. On note que si ¢ est une valeur propre de Steklov
de (X, g), I'indice de o est le plus petit entier k tel que oy (X%, g) = 0.

Théoréme II1.1.5 (|Pet25al). Pour ¢ > 1, Uellipse (co(E,), g,) a la suite suivante de
fonctions propres (Re(P?), Im(P2)) et de valeurs propres associées (o2, 1d) :

nr'n

O R LIPS ES VR B
W+ (va- 1y W+ =(a-1y

B ™ Y
2 ) (- 0-0))

De plus, pour ¢ > 1, g, est une métrique critique pour toutes les fonctionnelles spectrales
g+— f(5k1 (9)7 Ok (g)) telles que

ol =n./q

et

81f(5k1 (QQ)7 6-]{22 (gq)) qu Re ( )2dL
02 f (T41(94), Ths(94)) [, Im(PR)2dLy,"

ot (k1,k2) est le couple des indices du couple de valeurs propres distinctes (o, 77).

n’'n

On note que pour ¢ = 1, P? = 2" correspond aux fonctions propres de Steklov sur
le disque plat : les polynomes homogénes harmoniques. Bien que le résultat soit simple
et que les polynémes en jeu sont connus, c¢’est & ma connaissance la premiére fois qu’on
décrit une nouvelle surface riemannienne a bord simplement connexe, critique pour des
fonctionnelles spectrales. Insistons sur le fait que 'ordre des valeurs propres sur le disque

n’est & un certain point plus respecté lorsque ¢ croit du fait des propriétés suivantes :
Vg € [1,+00[, (08)n=1 et (7),>1 sont strictement croissants

Vn € N, (o)1 est borné et 7,1 ~ ¢ lorsque ¢ — +o00.
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Dans la suite, on se restreint aux fonctionnelles spectrales sur le disque mettant en
jeu la premieére et la deuxiéme valeur propre de Steklov sur le disque. C’est a dire pour
F Ri — R U {00} décroissante par rapport a chaque coordonnée, on pose

E;(D,g) = F<51(D79)752(D7Q>>'

Dans ce cas, la proposition suivante indique que les seuls points critiques de E%(D,-)
tels qu’il existe une immersion minimale branchée associée qui prend ses valeurs dans des
ellipses sont (quitte a reparamétrer le disque) du type (E,, g,) pour ¢ > 1.

Proposition II1.1.6 ([Pet23bl [Pet25a]). Soit ® : D — co(E,) C R? une application
harmonique a bord libre conforme dans une ellipse. On suppose que les coordonnées de ®
sont des premieres et deuxiémes fonctions propres de Steklov par rapport a la métrique

g = V¢ tel que ¢’ = (07(¢1)” + 03(62)*) "7 sur §!

ou & est la métrique Euclidienne sur E,. Alors ® est un biholomorphisme. Ainsi, il existe
q > 1 tel que (D, g) est (Steklov)-isométrique a dilatation prés a (Ey, gq)-

Démonstration. Comme une application conforme harmonique entre deux ouverts de C
est holomorphe, le contenu du théoréme est de démontrer que ¢ est un difféomorphisme du
disque fermé vers ’ellipsoide fermé. La démonstration est relativement simple et demande
les étapes suivantes

Etape 1 : On montre par une application astucieuse du principe du maximum et du
lemme de Hopf que sur S! le facteur conforme associé a ®*¢ par rapport a df ne peut pas
s’annuler. Ce résultat est en fait plus général (voir Proposition ([11.1.8])).

Etape 2 : On utilise qu'une coordonnée, disons ¢; est une premiére fonction propre de
Steklov. Elle n’a donc que deux domaines nodaux, ce qui se traduit par une seule ligne
nodale qui ne coupe que 2 fois le bord. Ainsi, @51 : St — &, ne peut étre que de degré 1.

Etape 3 : Pour des raisons topologiques, ’application holomorphe ® entre deux domaines
simplement connexes, de degré 1 au bord est un biholomorphisme. O

Reprenons les exemples de fonctions F' = hy,; de [Pet23b] pour s > 0 et t > 0,

1
hst(z1,12) = (xl_s + tx;s) s
On obtient alors la proposition suivante :
Proposition ITI.1.7 (|[Pet23bl [Pet25al). On Suppose que pour ¢ > 1, (E,, g,) est critique
pour E2(D,-). Alors :
81F(\2/—’%, 21,/q)

g<3et - =q. (I1L.6)
agF(a—a, 2m\/q)

En particulier, soit gs; un minimiseur de E;? (D, -). On suppose que

s>0ett>3 ous<Oett>(27°—1)"

Alors toute immersion minimale a bord libre dans un ellipsoide par premieres et deuxiémes
fonctions propres de Steklov associée a la métrique gs, est non plane.
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II1.1.3 Caractére plongé et hypothéses de symétrie

On donne maintenant des conditions suffisantes pour que des immersions minimales &
bord libre dans des ellipsoides soient plongées. Soit ® : ¥ — R™ une immersion (possible-
ment branchée) conforme a bord libre dans un ellipsoide.

&f:{(xl,-.. ’xn)eRn;le%‘i‘"’ﬁ-O’nl’i:l}?

paramétré par o = diag(oy, -+ ,0,). Soit e* (dz? + dy?) = P*¢ le tiré en arriere de la
métrique euclidienne £ par ®. Les points de ramification x correspondent & u(z) = —oo. On
sait que les fonctions coordonnées de ® sont des fonctions propres de Steklov par rapport
au facteur conforme e’ = |§;| au bord. La proposition suivante est une conséquence du
principe du maximum et du lemme de Hopf.

Proposition ITI1.1.8 ([Pet23b]). Soit ® : ¥ — R™ une immersion (possiblement branchée)
conforme a bord libre dans E,. Alors ®(X) C co(&,), ®7HE,) = X et ®(X) n'a pas de
point de ramification sur ®(0%).

Démonstration. Soit x € 0%. On pose ¢ = 01¢1(x)p1 + -+ - + 0,Pn(2)d,. On a pour tous
yeD,

P(y) = (0¢(x), (1)) < V{oo(x), d(2))\/(06(y), d(y)) = V/(06(y), d(y))

La fonction f :y +— (0¢(y), ¢(y)) est sous-harmonique car
Af=—={oV¢, Vo) <0,

donc f réalise sont maximum au bord, et f =1 au bord implique que

1) est une fonction harmonique qui réalise son maximum en z € S'. Comme v est harmo-
nique, le lemme de Hopf implique 0,1 (x) # 0 et on déduit

'@ = |o®(z)|? e*@ = (6®(x),0,P(x)) = Db(z) #0.
[

Cet outil important permet d’utiliser des propriétés topologiques des lignes nodales et
des domaines nodaux des premiéres et secondes fonctions de SteklovF_f] sur un disque :

Proposition I11.1.9 ([Pet23b]). Soit x € D et soit ¢ une premiére ou deuxiéme fonction
propre de Steklov sur le disque associé a un certain poids sur le bord €. Alors

() = 0= Vib(x) £0.

4. On rappelle qu’une ligne nodale est I’ensemble des points d’annulation de la fonction propre et qu’'un
domaine nodal est une composante connexe de I’ensemble des points ot la fonction propre ne s’annule
pas. Le théoréme de Courant dans le cadre des valeurs propres de Steklov indique qu’une fonction propre
associé a o, admet au plus k£ + 1 domaines nodaux.
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Démonstration. Par le théoréme de Courant, ¢ a au plus 3 domaines nodaux. De plus,
I’ensemble nodal est soit une courbe lisse dont les extrémités sont deux points distincts du
bord de S ou I'union disjointe de deux courbes lisses ayant chacune pour extrémités deux
points distincts du bord de S* (noter que les deux courbes peuvent avoir une extrémité
commune). En effet; comme les fonctions propres sont non constantes et harmoniques,
les ensembles nodaux ne peuvent pas contenir une courbe fermée. De plus, ils ne peuvent
pas contenir une singularité a l'intérieur car sinon, la fonction propre aurait au moins 4
domaines nodaux. Maintenant, soit € I un point intérieur tel que ¢ (z) = 0. Soit D
un domaine nodal tel que z € 9D. Comme on ’a dit 0D est lisse en x et z est un point
extrémal de ¢ sur D. Par le lemme de Hopf, 0,9 (x) # 0. O

On déduit de maniére générale qu'une application conforme harmonique & bord libre
dans un ellipsoide par premiéres ou deuxiémes fonctions propres sur le disque ne peut pas
avoir de points de ramification.

Proposition II1.1.10 ([Pet23b]). On suppose que ® = (¢g, ¢, ¢2) : D — R est une
immersion (possiblement branchée) minimale o bord libre dans & = {x € R?* o122 +
ooz +22) = 1}, ou 01 < 09 et ¢y est une premiere fonction propre et ¢y et ¢ sont des
secondes fonctions propres. Alors ® n’admet pas de points de ramification.

Démonstration. Grace a la proposition [[IL1.8) ® n’a pas de point de ramification au bord
du disque. Il reste a le montrer a I'intérieur : pour z € D, on montre que V®(z) # 0. On
va méme montrer que Vn(z) # 0, ott 1 = (¢1, ¢o). Soit v € St tel que (v,7(z)) = 0. Alors

(v,n) s’annule en z et la Proposition [[II.1.9donne (v, Vn(z)) =V ((v,Vn)) (z) #0. O

Il n’est pas clair qu'une immersion minimale & bord libre du disque dans un ellipsoide
par premiéres et deuxiémes fonctions propres ® = (¢, ¢y, o) : D — R3 est plongée. Bien
stir comme on 1’a vu dans la Proposition , elle est plongée si elle est plane (c’est a
dire ¢, et ¢y sont colinéaires). En fait, elle est plongée sous une hypothése de symétrie.

Théoréme ITI1.1.11 ([Pet23b]). On suppose que ® = (¢g, d1,¢2) : D — R3 est une
immersion minimale & bord libre dans € = {x € R?; 0122 + 0o(2? + 23) = 1}, ot 01 < 09
et ¢g est une premiére fonction propre et ¢y et ¢po sont des secondes fonctions propres. On
suppose de plus qu’étant donnée la métrique e* (da® + dy?) = ®*E, le facteur conforme

Vo eu . .
¢ = 3 satisfait

V(z,y) € 8% e"(x,y) = e'(~2,y) = e"(z, —y).
Alors ® est un plongement.

La démonstration de ce résultat repose sur une description fine des domaines nodaux
des fonctions propres associées a la premiére et deuxiéme valeur propre de Steklov dans le
cas symétrique. On comprend qu’une association avec le théoréme de Courant contraint
trés fortement le probléme. [’

5. Une premiére étape de la démonstration repose sur le fait que I’ensemble nodal des fonctions propres
a deux domaines nodaux est forcément {0} x [—1,1] ou [—1, 1] x {0}. Une deuxiéme propriété¢ est que par
le Théoréme de Courant, une fonction propre ne peut pas s’annuler sur chacun de ces deux ensembles car
elle aurait au moins 4 domaines nodaux.



III.2. SPHERES MINIMALES PLONGEES NON HYPERPLANES 87

Proposition II1.1.12 (|[Pet23b]). Sous les hypothéses du Théoreme|lll.1.11}, quitte a faire
une rotation d’angle 3 du disque parametre et une rotation de lellipsoide de révolution,
on a

Va,y € D, ¢o(x, —y) = —do(z,y) et do(—z,y) = do(z,Yy)
Va,y €D, ¢1(x, —y) = ¢1(x,y) et ¢1(—z,y) = —d1(z,y)
Va,y € D, ¢a(x, —y) = ¢o(x,y) et ¢2(—z,y) = ¢2(7,y)

ol ¢g et ¢1 ont exactement 2 domaines nodaux et ¢s a eractement 3 domaines nodaux.
De plus, ¢ ne s’annule pas sur [—1,1] x {0} U {(0,£1)}.

La deuxiéme étape de la démonstration du Théoréme est essentiellement
de démontrer grace aux équations sur ® (P est conforme et harmonique a lintérieur,
et 0,P est parallele & o - & au bord) que sa projection restreinte & un demi-disque
n = (¢1,¢2) : Dy — n(D,) est un homéomorphisme. Par les propriétés de symétrie (Pro-
position [[II.1.12]) on déduit que ® est injective et donc que c’est un plongement. L’outil
est une utilisation fine d’une généralisation d'un théoréeme de Kneser [Kne26].|ﬂ On utilise
pour cela une généralisation formulée dans [ANQ9, [AN21]. I’adaptation du théoréme de
Kneser est nécessaire en plusieurs sens : I'image de dD, par n n’est pas nécessairement
en ensemble convexe. Le domaine de départ D, n’est pas un disque et surtout, il admet
un bord avec deux singularités : on ne peut pas appliquer directement la théorie d’Ales-
sandrini et Nesi mais devons adapter le résultat en faisant une approximation lisse de 7
dont le domaine de départ est lisse.

Ce schéma de preuve du Théoréme s’inspire de la démonstration du résultat
suivant de |[F'S16] : toute immersion minimale & bord libre d’une surface de genre 0 dans
une boule par les premiéres fonctions propres est plongée. Néanmoins, dans notre cas,
la démonstration est plus difficile car il y a moins de symétries du probléme a exploiter,
I'image de I'immersion étant seulement un ellipsoide de révolution, pas une sphére : la
différence notable est que dans notre cas, une combinaison linéaire de (¢, ¢1, ¢2) n’est pas
une fonction propre en général, et donc ne satisfait pas forcément le théoréme de Courant.
Cette propriété, lorsque toutes les coordonnées sont des premiéres fonctions propres, était
un ingrédient important de la démonstration de Fraser et Schoen. Dans notre cas, seule
une combinaison linéaire de (¢1, ¢2) est une deuxiéme fonction propre. On ne peut donc
travailler que sur I'application n = (¢1, ¢2) : D — R2. C’est aussi une raison pour laquelle
on ajoute une hypothése de symétrie.

III.2 Sphéres minimales plongées non hyperplanes dans
des ellipsoides

Dans cette section, on pourrait de maniére analogue a la section précédente détailler
la construction de sphéres minimales non hyperplanes plongées dans des ellipsoides de
révolution suffisamment allongés de R%. On se contentera de contextualiser rapidement ce
travail et de donner 1’énoncé principal.

6. Le théoréeme classique de Kneser stipule qu’une application harmonique du disque & valeurs dans
R? tel que I"image du cercle est une courbe qui borde un ensemble convexe est un difféomorphisme sur son
image. On pouvait utiliser ce résultat dans la démonstration de la Proposition sans avoir besoin
de la conformalité de I’application.
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Répondant & une question de Yau de 1987, Haslhofer et Ketover [HK19| ont montré
qu’il existe des 2-sphéres non équatoriales plongées dans des ellipsoides de R* suffisamment
allongés, On énonce dans cette section une preuve alternative du résultat de Haslhofer
and Ketover [HK19| dans le cas particulier ou les ellipsoides sont de révolution. On note
également que par une théorie de bifurcation, Bettiol et Piccione [BP22] ont montré
I'existence d’un nombre arbitrairement grand de 2-spheres minimales dans des ellipsoides
de révolution (au moins deux demi-axes coincident).

Théoréme II1.2.1 (|[Pet25b]). Il eziste une famille a un paramétre (pg, qi)e telle qu’il
existe une sphere minimale non hyperplane S; dans lellipsoide de révolution

& = {z € RY puaf + qua] + quas + qas = 1}

et tel que les coordonnées xg,xa, To, x3 sont des premicres et secondes fonctions propres
du Laplacien pour la métrique

Hgt(l‘)

1
(pad + qia? + qia3 + qfa3)?

gt = §

sur Sy, ot & est la métrique euclidienne et Hg, est la norme du vecteur courbure moyenne
de S; dans R*. Pour tous t; < t, S;, n'est pas isométrique a Sy,. De plus t — p; est
strictement décroissante et t — q; est strictement croissante. Enfin p, — 0 et ¢ — 167
lorsque t — +00 et S; converge au sens des varifold vers la sphére ronde {0} x S? avec
multiplicité 2 lorsque t — +00.

Bien qu’il soit spécifique, ce résultat apporte une compréhension spectrale sur les
sphéres plongées minimales construites : les fonctions coordonnées restreintes a ces sphéres
sont des premiéres et secondes fonctions propres du Laplacien pour une métrique donnée
sur la surface (ici, g;). Cela impose une certaine géométrie a la sphére minimale dans
le méme esprit que la Proposition dans le cas & bord. Par ailleurs, dans 'esprit
de [BP22], notre suivi fin du parameétre des fonctionnelles spectrales peut permettre de
résoudre la question naturelle suivante : quelle est la valeur précise de bifurcation sur un
parameétre d’ellongation de l'ellipsoide a partir de laquelle il existe une sphére minimale
plongée non plane ?

Dans le méme esprit qu’aprés le Théoréme [[II.1.1] donnons quelques éléments de
chaque étape de démonstration :

Etape 1 : Optimisation spectrale. Il existe des minimiseurs pour de nombreuses
combinaisons bien choisies de premiéres et deuxiémes valeurs propres du Laplacien parmi
des métriques riemanniennes sur le disque. Les minimiseurs existent également parmi les
métriques qui sont symétrique par rapport a un plan équatorial et invariantes par rotation
par rapport a ’axe orthogonal. L’analogue de 'inégalité de Weinstock qui inspire le choix
des fonctionnelles spectrales est 'inégalité de Hersch :

W Yo(<2 )L 3
8
Les minima de A\[* +£\; ' passent d’une sphére ronde pour 0 < ¢ < 2 & une union disjointe
de deux sphéres rondes de méme aire pour ¢ = 400, ce qui laisse intuitivement penser
que certaines sphéres minimales doivent sortir d'un hyperplan a partir d’un certain point
de bifurcation t.
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Etape 2 : Bornes sur la multiplicité. Les immersions (possiblement branchées)
minimales de sphéres dans des ellipsoides associées aux métriques minimales ont au plus
4 coordonnées. C’est une conséquence directe de [HOHON99) : la deuxiéme valeur propre
du Laplacien sur une spheére est de multiplicité au plus 3.

Etape 3 : Les surfaces sont non hyperplanes. Il existe des choix de combi-
naisons de premiére et deuxiéme valeurs propres pour lesquels une immersion (possible-
ment branchée) minimale associée & une métrique minimisante est forcément non hyper-
plane. D’ailleurs, le Théoréme répond a une question de [HOHONO99] : il existe
des métriques sur la sphére pour lesquelles la multiplicité maximale 3 est atteinte pour la
deuxiéme valeur propre. Dans ce cas, les valeurs propres associées aux sphéres critiques
sont moins faciles & calculer que dans le cas & bord. Le comportement est néanmoins
similaire.

Etape 4 : Les surfaces sont plongées. Des immersions (possiblement branchées)
minimales obtenues sont en fait des plongements. Plus précisément, les immersions mi-
nimales n’ont jamais de points de branchement du fait qu’elles le sont par premiéres et
deuxiemes fonctions propres. Sous les hypothéses de symétries mentionnées ci-dessus, ce
sont des plongements. Sans rentrer dans le détail dans ce mémoire, les arguments ici
utilisés sont assez différents du cas a bord.

IT1.3 Perspectives

On donne des questions dans le cadre & bord méme si les mémes questions peuvent se
formuler dans le cas sans bord.

Une question naturelle est de savoir a quel point le nombre de disques minimiaux a
bord libre dans un ellipsoide donné est rare. Il est possible que parmi toutes les immersions
par premiéres et deuxiémes fonctions propres, ceux qui sont construits dans le Théoréme
[11.1.1] sont les seuls possibles.

Par contre, 'analogue du résultat de [BP22] a de bonnes raisons d’étre vérifié dans
le cas a bord : pour un entier k£ donné, il existe une élongation a partir de laquelle tous
les ellipsoides de révolution plus allongés contiennent au moins k& disques minimaux a
bord libres non plans plongés. Dans [BP22], les auteurs construisent leurs sphéres par des
méthodes de bifurcation. Dans le cas & bord, leur méthode ne peut pas fonctionner en
I’état. En effet, leur méthode joue sur sur le parameétre associé a l'invariance par rotation
des sphéres minimales qu’ils construisent. Dans le cas sans bord, l'ellipsoide perd une
dimension et les disques minimaux ne sont plus invariants par rotation. Pourtant, dans le
méme esprit, se concentrer sur des bifurcations des valeurs propres associées a la métrique
critique est prometteur : on identifie dans le Théoréme des bifurcations des valeurs
propres associées au ellipses planes (E,, g,). On conjecture que les disques minimaux a
bord libre dans un ellipsoide ne peuvent apparaitre que dans les ellipsoides

& = {pzg + i + 23 =1}
d’ellongation 1 > 3, ot 3 correspond a I’ellongation critique de ellipse critique (Eyq. 94)
pour lequelle la deuxiéme valeur propre de Steklov est multiple, c’est a dire
o1(g,) = 0f =1 et 0a(g,) = ¢ =1 = 03.

Comme on l'a vu, cette condition apparait dans la démonstration Théoréme [[IL1.1] pour
montrer que les objets construits sont non plans. De maniére plus générale, les élongations
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critiques sont les valeurs % > qr ou gy est le réel défini pour £ > 1 comme le plus petit

réel plus grand que 1 satisfaisant :

Ul(qu) = O'(lpc =1let 0k+1(qu) =4k = T{Zk = 0;3'11-

Ici, ¢; = 3. On conjecture alors que pour % > qi, 1l existe au moins k disques minimaux

a bord libre plongés dans &,. On s’attend a ce que cet ensemble de disques se plonge par
premiére et j-éme valeur propre de Steklov pour 1 < j < k.

On peut envisager ces questions par optimisation de combinaisons de la premiére et
de la k-éme valeur propre de Steklov. Ici, une difficulté supplémentaire est de montrer que
I'immersion (& points de branchement) a bien lieu dans R? et qu’elle est plongée alors que
les k-émes fonctions propres peuvent avoir beaucoup de domaines nodaux. Il faut bien
choisir les symétries du probléme. On peut aussi imaginer une méthode non variationnelle
qui suit les métriques critiques le long du parametre ¢ pour la fonction hy; qui définit
la combinaison de valeurs propres. C’est un bon objet d’étude pour trouver de nouvelles
méthodes a la création de points critiques de fonctionnelles spectrales.

En terme d’inégalités spectrales, on s’attend a une inégalité généralisée de Weinstock
51<D7 ')_1 + t62(D7 ')_1 > { o

ou la valeur pour 0 < t < 1 vient directement de 'inégalité de [HPGS| et est atteinte sur
les disques euclidiens et la valeur pour 1 < ¢ < 3 est conjecturale et 1’égalité est atteinte
pour les ellipses (E;, g;). Pour ¢ > 3, la Proposition montre que le minimum est
forcément atteint pour un disque minimal a bord libre non plan dans un ellipsoide. De
maniére plus générale, les ellipses critiques du Théoreme donnent des candidats
aux bornes optimales de fonctionnelles spectrales.

Bien str, des questions similaires se posent en changeant la topologie de la surface.
D’un point de vue plus général, la construction de surfaces minimales par optimisation
équivariante est actuellement donnée par plusieurs approches, chacune ayant son avantage.
Comme on 'a vu, pour le moment, seule la méthode de [Pet25d|, [Pet24al fonctionne dans
le cas de combinaisons de valeurs propres et seule la méthode de [KKMS24| basée sur
la théorie de [KS23| fonctionne dans le cas non orientable. Par ailleurs, la démonstration
d’inégalités strictes sur des fonctionnelles spectrales par recollement d’anses dans le cas
sans bord ou de bandes dans le cas & bord s’adapte trés naturellement au cadre équivariant
avec la méthode qui utilise le principe variationnel d’Ekeland.



Chapitre 1V

Valeurs propres d’opérateurs
conformément covariants

Ce chapitre synthétise [HPP25|. 1l traite de 'optimisation de valeurs propres d’opé-
rateurs GJMS (Graham-Jenne-Sparkling-Mason [GJMS92|) dans une classe conforme de
métriques sur une variété riemannienne compacte de dimension n > 3. Parmi ces opéra-
teurs notés P d’ordre 2s ou 2s < n, le modele est le Laplacien conforme sur des variétés
riemanniennes de dimension n > 3 pour s = 1. Comme on I’a vu dans le Chapitre[l} I'op-
timisation de la premiére valeur propre du Laplacien conforme est équivalent & résoudre
le probléme de Yamabe. Par ailleurs, au-dela de I'intérét qu’elle suscite en géométrie spec-
trale, ’optimisation des valeurs propres suivantes permet la construction de solutions d’un
systéme de type Yamabe, et en particulier parfois de solutions nodales de I’équation de Ya-
mabe. De la méme fagon, 'optimisation des valeurs propres de P} pour des ordres 2s plus
grands est reliée a des problémes de (Q-courbure qui généralisent le probléme de Yamabe.
Dans [HPP25|, on donne un cadre général de travail et de nombreux nouveaux résultats,
améliorant de maniére significative les précédents travaux sur le sujet [AHOG, (GPA22].

IV.1 Opérateurs GJMS

IV.1.1 Introduction aux opérateurs GJMS

Soit (M, g) une variété Riemannienne compacte sans bord de dimension n > 3. Soit s €
N* = N\{0} tel que s < . On note P; 'opérateur GJMS d’ordre 2s sur M. Cet opérateur
différentiel sur M, a été introduit par Graham-Jenne-Sparkling-Mason [GJMS92]. 11 est
conformément covariant au sens suivant : si v € C°(M), u > 0 et § = ur g est une
métrique conforme a g,

Pi(f) = u_%giP;(uf) pour tout f € C*°(M). (IV.1)

Les opérateurs P? sont auto-adjoints dans L*(M) (voir par exemple [GZ03]) et leur terme
dominant est la s-éme puissance du Laplacien A, : précisément (voir encore [GJMS92|)
on a

Py = A3+ A (IV.2)

ot Ay = —divy(V:) et ot A} est un opérateur différentiel a coefficients de classe C*

d’ordre 2s — 1 qui permet la covariance conforme de P;. Si s = 1 et n > 3, Pg1 est le

91
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Laplacien conforme

n—2
Pl=Aj+— "
e ATy

ou S, est la courbure scalaire de (M, g). Sis=2etn > 5, sz est l'opérateur de Paneitz-
Branson |Bra87, [Pan08], qui s’écrit

Sy,

—4
szu - A?;“ — div, {(ansgg R 2Ricg) (Vu, )} + nTqu

pour u € C*(M). Ici, a, = %, Ric, est le tenseur de Ricci de (M, g) et @, est

appelée la Q)-curvature dont ’expression est

1 n® — 4n? + 16n — 16 2
—A,S 52—
2(n—1) 7 g

= S— 1P —27 " -2

5| Ricy|?.

On trouve une expression de Pg3 dans [Juh13], mais des formules explicites pour P;, s >

4, dans le cas de métriques g générales n’existe pas : les termes d’ordre inférieur dans
deviennent exponentiellement complexes en fonction de la géométrie de (M, g).
Des formules de récurrences existent dans |[Juh13]. De plus, une formule explicite existe
si on suppose que (M, g) est une variété Einstein : Il est montré dans Fefferman-Graham
[FG12, Proposition 7.9] que si Ric(g) = 2g, alors

s

P =11 (Ag ks ijn (_RQ_)(?)_ 2)) S). (IV.3)

J=1

IV.1.2 Un probléme de continuation unique

Comme on l'a identifié¢ dans le Chapitre [[, 'hypothése suivante de continuation unique
est requise dans la plupart de nos résultats :

Vo € Ker (P2); [ ' ({0})] > 0= ¢ =0 (IV .4)

C’est crucial pour définir des valeurs propres généralisées A\i(/3) lorsque 8 € Lzs (M)\{0}
est une fonction seulement positive. L’hypothése (IV.4)) est bien stir satisfaite si le noyau
est trivial Ker (Py) = {0}. Quand Ker (P;) # {0}, (IV.4) garantit qu'un élément non nul
de Ker (P;) s’annule sur un ensemble de mesure nulle de M. La littérature, fournit tout
de méme plusieurs autres cas ot cette hypothése est satisfaite :

Proposition IV.1.1 ([HPP23|). Soit (M,g) une variété riemannienne de dimension
n > 3 et soits € N*, avec 2s < n. On suppose que l'une des hypothéses suivantes est
satisfaite :

—s=1

— s> 1 et Ker(P;) = {0}

— s>1 et M et g sont analytiques

— s> 1 et (M,g) est locallement conformément Einstein.

Alors Py satisfait (IV.4).

Le cas locallement conformément Einstein couvre le cas localement conformément plat.
L’hypothése (IV.4) est aussi sans doute vérifiée pour toute variété (M, g), telle que
s € {1,2,3,4} et 2s < n. En effet, par covariance conforme (IV.1)) de P;, I'ensemble
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des zéros des éléments du noyau est un invariant conforme de (M, g), et c’est suffisant de
montrer pour n’importe quelle métrique fixée de [g]. Au voisinage d’un point de M,
et quitte a changer conformément g, on peut utiliser les coordonnées normales conformes
(voir [LP87]) ot detg = 1. Dans ces coordonnées Py s’écrit P; = A + T ou T est un
opérateur différentiel d’ordre < 2s — 2 : (voir par exemple [MV20, Equation (2.7)]). Dans
des ouverts de R™ un résultat d’unique continuation pour les operateurs polyharmoniques
(voir [Pro60} Lin07]) stipule que des solutions u de Afu + Tw = 0 dans une boule B qui
s’annulent & 'ordre infini en un point doit satisfaire v = 0 dans B a la condition que
T est opérateur différentiel & coefficients réguliers 7' d’ordre < [2f]. Ainsi, on s’attend
au méme résultat pour PJ sous les hypotheses identifi¢es par [Lin07, Pro60], c’est a dire
2s — 2 < [3—25], ce qui est équivalent & s € {1,2,3,4}. L’analyse dans |[Lin07, [Pro60] est
seulement écrite pour le Laplacien plat mais les estimées de Carleman qui apparaissent
dans ces papiers devraient s’adapter a un opérateur de Laplace-Beltrami général : c’est
ce qu’il faut vérifier.

IV.2 Théorie générale

Soit (M, g) une variété riemannienne compacte sans bord de dimension n > 3, et
s € N tel que s < g, pour noter ] 'opérateur GJMS d’ordre 2s sur M. Comme M est
compacte, le spectre de P est discret et les valeurs propres s’écrivent

Psvd
A(g) = inf max —IMU i

S(M) v 2
VCH® (M) veV\{0} [y V2 dug

On pose
ko =max {k >1,\(g) <0} et ky =min{k >1,\(g) > 0}.

ky et k_ sont invariant conformes (voir Chapitre (Il ou [CGJP14) [ES14]) et ne dépendent
que de [g]. On a alors dim Ker (P;) =k, —k_ —1 et si \;(g) > 0, on écrit par convention
k_=0.

On s’intéresse & la fonctionnelle

2s
n

h € [g] = Ae(h)Vol(M, h)
pour k > 1 donné. On observe d’abord que

sup A(M)Vol(M,h)" = +o0  si k> k,,

helol (IV.5)

inf Ae(R)Vol(M,h)" = —c0 si k<k_.
helg]

Ce résultat est montré dans [HPP25| (c’est le Théoréme pour le Laplacien conforme)
en combinant les résultats principaux de [AJ12] et [CM24]. Ainsi, avec (IV.5]) on ne consi-
dére que la minimisation des valeurs propres strictement positiveslﬂ et la maximisation

1. Ce constat peut paraitre troublant quand on sait que c’est précisemment 'inverse qu’il faut faire
pour le Laplacien en dimension 2. On peut I'expliquer par une différence fondamentale entre les lois de
covariance conforme des opérateurs GJMS pour n = 2s et celle des opérateurs GJMS pour n > 2s. En
terme de fonctionnelle spectrale, c’est la différence de choix de renormalisation de 8 par la norme L' ou
une norme LP pour p > 1 dans[[V.7]
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des valeurs propres strictement négatives de P} pour h € [g] :

N

S

inf M(WVOI(M.M) si k> ke,

s €lg

(M, [g]) = n (IV.6)
sup \g(R)Vol(M,h)» st k<k_.

helg]

On appelle ici A (M, [g]) la k-éme valeur propre conforme de (M, [g]). Si ky — k- > 2
et k- < k < k4 on définit Ax(M,[g]) = 0. Pour tous k > 1, Aj(M,[g]) est un invariant
conforme de (M, g). Le but est de déterminer des conditions pour lesquelles A§ (M, [g]) est
atteint ou n’est pas atteint, et de déterminer les métriques extrémales si elles existent.

IV.2.1 Valeurs propres généralisées

Dans le méme esprit que dans le Chapitre [I, on cherche a définir espace variationnel
de travail. Par ailleurs, contrairement a la dimension 2 ou les métriques extrémales du
Laplacien ne peuvent présenter qu'un nombre fini de singularités coniques d’angle un
multiple de 27, les singularités des métriques extrémales du Laplacien conforme Pgl, (voir
[AHOG, [GPA22]) sont bien plus pathologiquesP| Ainsi, dans [HPP25], on généralise la
définition des valeurs propres aux fonctions 8 € L2s(M)\{0} positives. Pour k& > 1, on

pose
2s
- vP?v dv n "
Me(B) = inf max fM—gzg (/ B?sdvg) : (IV.7)
vegg (=) v\ [y frrdug \Ju
Ici, GZ(C*°(M)) est 'ensemble des sous-espaces vectoriels V = Vect(vy, - - - ,vy,) de fonc-
tions de classe C* telles que 3 %vl, e B %vk sont linéairement indépendantes. Comme on

ne suppose pas 5 > 0 presque partout dans M, A\y(3) peut valoir —oco quand k < k_.
On dit que M\.(B) est la k-éme valeur propre généralisée renormalisée associée a 3. En
effet géométriquement, si u € C°(M), u > 0, les propriétés de covariance conforme de
P; donnent

4 f VP v dyy

A(un=2sg) = inf max — .
VCHS$(M),dim V=Fk veV\{0} fM un—2s 2 dvg

Ainsi A\, (B) doit étre vue comme la k-éme valeur propre de P¢ pour la métrique h = 3 %g
multipliée par Vol(h)% . On prove dans [HPP25)

inf e(B)  sik >k,
BeL s (M)\{0},6>0

sup Me(B)  sik <k
BeL3s (M)\{0},620

(IV.8)

On dira alors que A (M, [g]) est atteint il existe B € L2 (M)\{0}, B > 0, tel que
AL(M, [g]) = A (B)-

On peut aussi dire que Aj (M, [g]) est atteint en la métrique généralisée [ 5q.

2. L’espace singulier correspond aux zéros du facteur conforme : c’est une intersection d’ensembles
nodaux de fonctions propres comme on I'a vu au Chapitre[l] Sans résultat de continuation unique ou sans
théoréme de Courant dans le cas GJMS général, I’ensemble singulier est encore moins bien compris.
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Remarque IV.2.1. On rappelle ici que la plupart des résultats reposent sur 'hypothése
(TV.4)). Dans [HPP25], sa nécessité est identifiée pour montrer que A\ (3) admet des fonc-
tions propres lorsqu’on autorise  a s’annuler sur un ensemble de mesure non nulle. Pour
cela, on a besoin du lemme|[[.5.2)adapté au cas GIMS. Le Chapitre[[lmontre bien que 'exis-
tence des fonctions propres est primordiale pour formuler des équations d’Euler-Lagrange
sur les métriques extrémales ou presque extrémales.

IV.2.2 Résultats théoriques

Lorsque k£ < k_, on maximise les valeurs propres généralisées négatives. Cela donne
un résultat d’existence général :

Théoréme IV.2.2. Soit s € N* et soit (M, g) une variété riemannienne compacte de
dimension n > 2s. Soit P, lopérateur GJMS d’ordre 2s dans M et on suppose qu’il
satisfait et k_ > 1. Soit k < k_ un entier. Alors Aj(M,[g]) < 0 et Ap(M,]g]) est
atteint en une métrique généralisée 5%g, ou 3 est une fonction positive, 5 € C’O’O‘(M) pour
un certain 0 < a <1 et § est de classe C* sur 371 (R%).

Le Théoréme a été prouveé dans le cas s = 1 et k = 2 dans |[GPA22], sous I’hypo-
thése supplémentaire Ker (Py) = {0}. Nous ne supposons que ([V.4)) et donc quand s = 1
et k < k_ nous n’avons pas besoin de supposer que Pg1 est sans noyau. Aj (M, [g]) < 0 est
une conséquence de notre analyse (adapter aux valeurs propres généralisées la démons-

tration du Théoréme |[.1.4). On peut reconstituer la démonstration du Théoréme [IV.2.2
en adaptant la Proposition du présent mémoire aux opérateurs GJMS.

Lorsque k& > k. on minimise les valeurs propres positives. Ce cas est plus difficile a
cause de possibles phénoménes de concentration. Pour énoncer un résultat satisfaisant,
on introduit un nouvel invariant conforme : en notant la sphére ronde (S, gy), on peut
simplifier 'écriture de A (S™, [go]) en A (S™). Pour k > ki et s € N* on définit alors

XE(M, [g]) = min { (A3, (M, [) & + A3, (8% + -+ A (8ME) "}, (v.9)

Ou le minimum est pris parmi ’ensemble des indices r, ¢y € N et ¢1,--- , /¢, € N* tels que
1. 4y € {0} U{ky, -,k — 1}, ou par convention, Aj(M,[g]) =0;
2. bo+ -+l =ksiby ket b+ -+l =k—ki+15sil=0;
3. Ay, (S"), 1 <i < rsont atteints, et Aj (M, [g]) est atteint si £y > 0.

On établit alors que Aj (M, [g]), pour k > k., est atteint sous I'hypothése qu’il est stric-
tement inférieur a X;(M, [g]) :

Théoréme IV.2.3. Soit (M, g) une variété compacte de dimension n > 3 et soit s € N*,
s < 5. Soit P; lopérateur GJMS d’ordre 2s dans M. Soit k > ky un entier. Alors :
1. On a Ay (M, [g]) < X3(M, [g]).

2. On suppose que P; satisfait (IV.4)). Alors Ax(M, [g]) > 0. De plus, si Aj(M, [g]) <

Xi(M,[g]) alors AL(M,[g]) est atteint en une métrique généralisée Bvg, o B est
une fonction positive 3 € C%*(M) pour un certain 0 < o < 1 et 3 est de classe C*
sur B7HRY).
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Comme précédemment, Aj(M,[g]) > 0 est une conséquence de notre analyse (voir
[HPP25| ou adapter la démonstration du Théoréme au cas des valeurs propres géné-
ralisées des opérateurs GJMS). On peut donc écrire sous I’hypothése ([V.4)) :

AN(M,]g]) =0<=k_ <k <ky. (IV.10)

La condition Aj(M,[g]) < X;(M,|g]) dans le théoréme [[V.2.3| peut se comparer aux
résultats [Pet14al [Pet18] [Pet25d, NS15, [KS23| pour le Laplacien en dimension 2 (voir Cha-
pitre . Dans la preuve du Théoréme I'invariant X7 (M, [g]) apparait comme un
seuil d’énergie pour une suite minimisante de Af (M, [g]) bien construite : plus précisément,
I'hypothese A3 (M, [g]) < X3(M,[g]), permet d’empécher les phénoménes d’explosion en
arbre de bulles. Le théoréme généralise de fagon significative tous les résultats pré-
cédents sur qui étaient connus dans des cas spécifiques : dans [AHO6] lorsque s = 1,
k =2 et quand A\(g) > 0, dans [ES14] lorsque s = 1, k = 2 et \i(g) < 0, et dans [BB10]
lorsque s = 2, k = 2, Ai(g) > 0 et (M, g) est une variété Einstein. Le théoréme [[V.2.3]
implique aussi les résultats de [SX20]. La nouveauté de 'approche du Théoréme [IV.2.3
est que Xi (M, [g]) ne fait intervenir que les invariants Aj(M, [g]) et AJ(S™) d’ordre infé-
rieurs qui sont eux-mémes atteints. Cette observation permet de déduire par récurrence
de nombreux nouveaux résultats d’existence et d’inexistence de métriques généralisées
extrémales pour Ag (M, [g]).

IV.3 Résultats d’existence, d’inexistence et calculs d’in-
variants conformes

On donne ici les nombreuses conséquences des Théorémes[[V.2.2 et [[V.2.3] On obtient
des résultats d’existence et d’inexistence pour les invariants Aj (M, [g]) (y compris lorsque
(M, g) est la sphére ronde) ainsi que la structure de I’équation d’Euler-Lagrange (et son
utilité) pour les métriques généralisées extrémales de Aj (M, [g]).

IV.3.1 Simplicité lorsque kK =k_ et k= k..

Pour les cas k = k_ et k = k. dans les Théorémes[[V.2.2] et [TV.2.3] qui correspondent
a la valeur propre strictement négative la plus grande et la valeur propre strictement
positive la plus petite nous remarquons une propriété particuliére.

En effet, si \j(M, [g]) est atteint, cette valeur propre est simple en ses métriques
extrémales et les résultats des Théorémes [[V.2.2] et [V.2.3] sont plus précis. Cest da a la
Proposition appliquée aux opérateurs GJMS et aux trous spectraux My L(B)>02>
A, —1(B) lorsque 3 est minimale pour 5\2+(M, [9]) et Ax_(B) < 0 < A\p_41(B) lorsque 3 est
maximale pour ] (M, [g]) On donne plus tard (voir Théoréme [[V.3.7]) une conséquence
qui utilise également les subtilités de la Proposition m (ou du Théoréme . Le cas
k = k_ donne :

3. C’est aussi réécrire ’énoncé du Théoréme avec le Laplacien conforme au cadre plus général
des GJMS.

4. C’est un fait général : pour avoir la conclusions du Corollaireil suffit que £ soit un maximum
local de Ak (8) et que A\g(B) < Apy1(B) ou que 3 soit un minimum local de A, (3) et que A\x(8) > A\p_1(5).
Ces conditions sont automatiques pour k = k; et k = k_ par . Cette condition avait aussi été
exploitée de maniére similaire dans [Amm09] pour la minimisation de la premiére valeur propre de Dirac.
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Corollaire IV.3.1. Soit s € N* et soit (M, g) une variété riemannienne compacte sans
bord de dimension n > 2s. Soit P, lopérateur GJMS d’ordre 2s dans M dont on suppose
qu’il vérifie et k- > 1. Alors l’espace propre correspondant a A; (M, [g]) est de
dimension 1 et il existe une fonction propre ¢ € C**(M), 0 < a < 1, qui satisfait
ol 2, =1 et

n—

_4s .
Plo=NA; (M, [g])|¢|"—=¢ in M.

et elle est associée a la métrique généralisée |gp|ﬁg qui atteint A3 (M, [g]). Si de plus
s=1cetk_ =2, ¢ change de signe.

Sis=1,k.>2et Pg1 satisfait , le Corollaire montre en particulier qu’il
existe des solutions qui changent de signe pour les équations de courbure scalaire prescrite
strictement négative constante sur M. Cela généralise des résultats de [GPA22|. Le cas
k = k4 est similaire sous I'hypothése que Ay, (M, [g]) est atteint :

Corollaire 1V.3.2. Soit s € N* et soit (M, g) une variété riemannienne de dimension
n > 2s. Soit P; Uopérateur GJMS d’ordre2s sur M et on suppose qu’il satisfait (IV.4)).
On suppose que Ay (M, [g]) < A5(S™). Alors Ay, (M, [g]) est atteint, et son premier espace
propre généralisé est de dimension 1. De plus, il existe une fonction propre o € C*5%(M),
0 < a <1, qui satisfait H@HL% =1cet

_4s 3
P;SO - AZ+(M7 [g])|pl*=2¢ in M.

et elle est associée a la métrique généralisée |<p]ﬁg qui atteint Ay, (M, [g]). Si de plus
s=1etky > 2, alors ¢ change de signe.

Les fonctions ¢ obtenues dans les[[V.3.1] et [V.3.2]satisfont les équations de Q-courbure
constante prescrite (& changement de signe possible pour ¢). Ce n’est pas surprenant
puisque comme on ’a vu dans le Chapitre [I| (Théoréme pour Kk =1et s =1, op-
timiser Aj(M, [g]) est équivalent au probléme de minimisation de Yamabe. De maniére
générale, dans le cas s > 1, lorsque k, = 1, minimiser A{(M, [g]) est équivalent au pro-
bléme de Yamabe pour la Q-courbure associée a P? (voir [HPP25])E|. On peut donc voir

g
les problémes d’optimisation de A§ (M, [g]) comme une généralisation du probléme de Ya-

mabe pour la Q-curvature, et les Théorémes[[V.2.2 et [[V.2.3] montrent I’analogie directe :
les valeurs propres négatives sont toujours atteintes (lorsque P satisfait ), et les
valeurs propres strictement négatives le sont si Af (M, [g]) < X (M, [g]), ce qui est une gé-
néralisation de la célebre condition de seuil d’Aubin pour I’équation de Yamabe [Aub76].
Cette remarque fournit une autre motivation pour étudier les invariants Aj (M, [g]).

Ces résultats de simplicité de Ag, (M, [g]) sont spécifiques aux problemes des valeurs
propres de PJ. Comme on l'a vu dans le Chapitre |I|, si une k-éme valeur propre du
Laplacien est maximisée par une métrique riemannienne dans une classe conforme d’une
variété compacte sans bord de dimension 2, celle-ci n’est jamais simple pour cette métrique
(sauf si c’est la valeur propre nulle).[]

5. Montrer 'analogue dans le cas k_ > 1 est possible s’il y a unicité de I’ensemble des minimiseurs du
probléme de Q)-courbure strictement négative pour Pj, comme dans la preuve du Théoreme pour le
Laplacien conforme.

6. Intuitivement, ceci peut encore s’expliquer par la différence fondamentale entre la covariance
conforme des opérateurs GJMS pour n > 2s et celle pour n = 2s et sa conséquence : le fait qu'on
minimise les valeurs propres strictement positives dans un cas induit des trous spectraux au moins pour
le bas du spectre; le fait qu’on les maximise dans ’autre cas encourage au contraire leur multiplicité.
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IV.3.2 Valeurs propres conformes de la sphére

Les valeurs propres conformes Aj(S™) de la sphére ronde (S", gg) sont fondamentales
car dans la et le Théoréeme , elles interviennent dans les seuils d’énergies qui
décident de l'existence de métriques extrémales pour Aj (M, [g]) pour n’importe quelle
classe conforme sur une variété (M, g). Sur (S™, go), Ai(go) > 0 : on a donc k- = 0,
ky=1,et a lieu pour P; . Pour tous s > 1, la covariance conforme de P; , A7(S")
est la constante de Sobolev optimale dans R™ et est atteint pour la métrique ronde de
[g0] (voir [HPP25]). Par contre, a l'instar des résultats principaux de [GNP09, Pet14b)
BH19, IGL21bl, [FL22, [Kim22| qui optimisent des deuxiémes valeur propre non nulle dans
de nombreux contextes différents, A5(S™) n’est jamais atteint

Théoréme IV.3.3. Soitn >3 etl <s< 5 Alors

A3(S")E = 245(SM)%

et A5(S™) n’est pas atteint.

Le Théoréme ainsi que ce qu’il se passe dans le cas analogue de la maximisation
des valeurs propres du Laplacien sur S? (voir ([1.7)) pourraient laisser penser que ’en-
semble des entiers k > 1 tels que A (S™) est atteint se réduit & {1}. Pourtant, de maniére
surprenante, c’est toujours faux en grande dimension :

Théoréme IV.3.4. Soit s > 1 et on suppose que n > 2s+5. Il existe k € {3,--- ,n+1}
tel que AL (S™) est atteint. De plus, A (S™) n’est pas atteint en la métrique ronde.

On ne sait rien dire pour 2s < n < 2s + 5. Pour tout n > 2s + 5, 'indice minimal
k > 3 pour lequel A7 (S™) est atteinte reste inconnu. Néanmoins, nous montrons ’existence
d’une borne indépendante de n > 2s + 5 sur cet indice (voir [HPP25)]).

IV.3.3 Extrémales pour A; (M, [g]).

On décrit maintenant le cas k = k. de la plus petite valeur propre strictement positive.
Si (M, g) est une variété riemannienne compacte sans bord, nous donnons une condition
suffisante sur (M, g) pour que Ay, (M, [g]) soit atteinte. On suppose d’abord que P, est
sans noyau :

Théoréme IV.3.5. Soit s € N* and (M, g) une variété riemannienne compacte de dimen-
sion n > 2s. Soit P; opérateur GJMS d’ordre 2s sur M. On suppose que Ker P; = {0}
et que 'une des conditions suivantes est satisfaite :
— n>2s+4 et (M,g) nest pas localement conformément plat
— [2s4+1<n<2s+3 ou(M,g) est localement conformément plat] et il existe & €
M tel que m(§) > 0, ou m(§) est la masse de la fonction de Green de Py en &.
Alors Ay, (M, [g]) < AJ(S") et Ay, (M, [g]) est atteint.

Lorsque le Théoréme [[V.3.5| s’applique, le Corollaire TV.3.2] montre que Aj, (M, lg])

est simple. Lorsque 2s + 1 < n < 2s + 3 ou lorsque (M, g) est localement conformément
plate, la masse en & € M est définie comme le terme constant dans le développement
asymptotique de la fonction de Green de P? en £ (voir par exemple [HPP25| pour sa
définition). Lorsque ky > 2, le Théoréme est nouveau sauf dans les cas s = 1 et
k, = 2 déja montrés par [ES14].
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Lorsque ky = 1, c’est a dire si P; est coercif, le Théoréme est équivalent
au probléeme de Yamabe pour la @Q-courbure de P (voir [HPP25]). Pour s = 1, cette
équivalence est aussi vraie dans le cas k, > 2 (voir Théoréme . Ainsi, c’est déja
connu pour ’équation de Yamabe lorsque s = 1 par [Aub76, [Sch84], pour 'opérateur
de Paneitz lorsque s = 2 par [DHL00, [ER02, [GHL16, IGM15, HY16] et pour s > 2
par [MV20]. Le théoréme est nouveau pour toutes les valeurs propres ky > 1 :
I’approche par fonction test a la Aubin est améliorée. Lorsque k. = 1,s = 1, en supposant
3 < n < 5ou(M,g) est localement conformément plat et non conforme a (S", go), le
céleébre théoréme de la masse positive ([SY79, [LP87]) montre que la masse est strictement
positive. Lorsque s = 2 et 5 < n < 7 ou (M, g) est localement conformément plat la
fonction de masse est strictement positive sur M dans le cas k. = 1, 'invariant de Yamabe
de g est strictement positif, la Q-courbure est positive et (M, g) n’est pas conformément
diffeomorphe a (S", go), voir [HY16] (et des résultats précédents de [GM15, [HR09, Mic11]).
Aucun autre résultat de masse strictement positive n’est connu pour la fonction de Green
de P; sur M lorsque s > 3. Bien siir, dans le Théorémeon n’a besoin que d’un point
ol la masse est strictement positive, on peut donc 'appliquer & de nombreux exemples
spécifiques.

On suppose que le noyau de P, n’est pas nécessairement trivial, ce qui est possible

grace au Théoréme [IV.2.3| sous 'hypothése ([V.4). On a alors un résultat analogue au
Théoréeme [V.3.5) :

Théoréme 1V.3.6. Soit s € N* et (M, g) une variété riemannienne de dimensionn > 2s.
Soit Py lopérateur GJMS d’ordre 2s, et on suppose que Ker (P;) # {0}. On suppose que
n > 4s+5 et que (M, g) n’est pas conformément plat. Alors

Ay, (M [g]) < AS(S™, [90])-
Ainsi, si Py satisfait (IV.4), alors Aj, (M, [g]) est alteint.

Dans le cas ou le noyau de P, est non trivial les calculs de fonctions test deviennent
plus compliqués pour Aj, (M, [g]), c’est la raison pour laquelle les hypotheses du Théoréme
[V.3.6] sont plus fortes que pour le Théoréme Néanmoins, le Théoréme [[V.3.6]
fournit le premier résultat d’existence pour des minimiseurs de A§ (M, [g]) avec k > k.
dans le cas Ker (Py) # {0}, ce qui en fait aussi un résultat nouveau pour le Laplacien
conforme s = 1.

IV.3.4 Autres résultats

On donne ici d’autres conséquences des Théorémes [[V.2.2] et [V.2.3] Le premier est la
généralisation du trou spectral (IV.10) pour tous k > k et k < k— :

Théoréme 1V.3.7. Soit s € N*, (M, g) une variété riemannienne compacte sans bord
de dimension n > 2s st soit P; l'opérateur GJMS d’ordre 2s. On suppose que P; sa-
tisfait (IV.4). Soit k, k" € N* tel que k < k' et tel que A; (M, [g]))A;, (M, [g]) # 0. Alors
Ap(M, [g]) < A% (M, [g]).

Ce résultat et montrent que la suite (A}(M, [9]))rcr yugrsn,) st strictement
croissante. On n’a pas besoin que Aj (M, [g]) soit atteint pour obtenir le Théoreme[[V.3.7]
On écrit ici la preuve du Théoréme car elle utilise de fagon relativement succinte
et nouvelle les finesses de plusieurs résultats théoriques précédemment énoncés dans ce
mémoire.
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Démonstration. On suppose que k > k., et on montre que Aj, (M, [g]) > A (M, [g]). Le
cas k < k_ est plus simple car Aj (M, [g]) est toujours atteint dans ce cas (seul le Cas 1
ci-dessous sera utilis¢). On suppose par I'absurde que Aj_ (M, [g]) = A (M, [g]).

Cas 1 : On suppose que Agy1(M, [g]) est atteint en 3 € Lz (M)\{0}, 8 > 0, avec 181, 2 =
1. Par définition de A (M, [g]),

AL(M, [g]) < MB) < Mea(B) = Ay (M, [g) = A(M.[g]). (IV.11)

Cela implique A{(M,[g]) = M(B), et ainsi que Af(M,[g]) est atteint, et que \g(5) =
Ak+1(8). On contredit le Lemme (qui reste vrai en remplagant L, par P;).

Cas 2 : On suppose que Aj (M, [g]) n’est pas atteint. Par le théoréme il existe
des entiers (g, - - - , £, tels que

1. by € {0} U{ky, -, k}, ou par convention, Aj(M,[g]) =0;
2. bg+- -+l =k+1sibyg=2k,etby+---+0,=k—k, +2sily=0;
3. Ay, (S™), 1 <i < r sont atteints, et Aj (M, [g]) est atteint si £y > 0.
et
A (M, [g)3 = A7 (M, [g]) 3 + A (S™)% + - + A (8")%. (IV.12)

Comme ¢y < k+ 1 on ar > 1, et en particulier ¢; > 1 et donc AZ'1<S”) > 0. Avec
A7 (M, [g]) = Aj(M, [g]) et (IV.12)), on obtient
AL(M, [g) % = A (M, [g])2 + A (S™)% + -+ 4+ AF (S*)2 > A} (M, [g])%,
ce qui implique
loe {0} U{ky, -+ k—1}. (IV.13)

Pour 0 <7 < on définit
6/0260, Ellzfl—l and g;:& lfQSZST,

de sorte que par (IV.13]), on a
Ly e {0yU Lk, B 1}
2. 0y +--+ Ul =kifbyg > kyand O] +---+ 0 =k —ky +1if by = 0.
Par simple calcul de fonctions tests a la Aubin, on a l'inégalité (voir [HPP25])[]

Cette inégalité, 'hypothese Aj_ | (M, [g]) = A (M, [g]) et (IV.12) impliquent alors Ay (S™) >
A7, (S™) dont on déduit

Ay (S") = A7 (S™). (IV.14)
Si Aj (S") était atteint, on obtient une contradiction comme dans en utilisant

(IV.14)) et le Lemme|[.2.10] Ainsi A7 (S™) n’est pas atteint mais cela contredit la définition
de ¢;. On a donc démontré le Théoréme O

7. 11 faut noter qu’ici, on n’utilise pas U'inégalité Af (M, [g]) < Xy (DM, [g]) du Théoréme [[V.2.3| car on
ne sait pas si Aj,l _1(S™) est atteint. L’inégalité a aussi lieu si on ne demande pas que les invariants soient
atteints pour les invariants qui apparaissent dans la formule de X (M, [g])
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Le deuxieme résultat concerne les opérateurs P; coercifs, c’est a dire sur une variété
riemannienne compacte (M, ¢g) de dimension n > 3 on suppose que A;(g) > 0 (ou k. = 1).
Bien stir, dans ce cas Ker (P;) = {0} et 'hypothése est satisfaite. Si s > 1 et
n > 2s+5, on note k, € {3,--- ,n+1} le plus petit indice k pour lequel A} (S™) est atteint.
Son existence est donnée par le Théoréme[[V.3.4] Comme conséquence du Théoréme[[V.3.4]
et une approche par récurrence permise par le Théoréeme on montre qu’en grandes
dimensions, A} (M, [g]) est atteint pour tous k < k, lorsque (M, [g]) est non localement
conformément plate et P est coercif :

Théoréme IV.3.8. Soit s € N*, (M, g) une variété riemannienne compacte de dimension
n > 2s et soit P} 'opérateur GJMS d’ordre 2s sur M. On suppose que ky =1, n > 25+9
et que (M, g) n'est pas localement conformément plat. Alors A (M, [g]) est atteint pour
tous k <k, — 1.

Sous les hypothéses du Théoréme [[V.3.8] on déduit directement du Théoréme
que Aj(M,|g]) est atteint. Comme k, > 3, le Théoréme implique que si P est
coercif, si (M, g) n’est pas localement conformément plat et si n > 2s + 9, Aj(M,[g])
et AS(M,[g]) sont atteints. Dans [PV24], les auteurs on montré que lorsque s = 1, le
Théoreme est optimal pour £ = 2. En effet, ils montrent que lorsque 3 < n < 10,
il existe un voisinage ouvert U de la métrique ronde gy de S™ en un sens fort tel que pour
g €U, AL(S™, [g]) n'est jamais atteint et satisfait AL(S™, [g])2 = AL(S™, [g])2 + AL(S™)2.

IV.4 Perspectives

On identifie d’abord deux questions qui ne relévent pas de la géométrie spectrale, mais
plutét de la structure des opérateurs GJMS. Le but est essentiellement d’étendre des pro-
priétés bien comprises du Laplacien conforme aux opérateurs GJMS d’ordres supériéurs
pour compléter mécaniquement notre cadre théorique et les applications. Le résultat de
continuation unique ([V.4)) est il vrai en toute généralité 7 Peut-on énoncer un théoréme
de la masse positive pour tous les opérateurs P;'?

On se concentre maintenant sur des questions typiques d’optimisation spectrale. L’im-
portance du Théoréme est qu’il permet de jouer sur l'alternative suivante : soit
Ar(M, [g]) est atteint pour un grand nombre d’entiers k£ et on peut travailler avec des
métriques extrémales et leurs équations d’Euler-Lagrange associées (systémes d’équations
de type Yamabe généralisé en plusieurs sens : on autorise un systéme d’équations, ou une
équation nodale, et on a I’analogue pour les problémes de ()-courbure associés a Pgs), soit
Ar(M,[g]) n’est pas atteint et on obtient I’égalité Ay(M,[g]) = Xi(M,[g]) qui permet
de calculer cet invariant en fonction des précédents qui sont atteints. Ce principe a été
identifi¢ dans ma thése [Pet18), [Pet19] pour les valeurs propres du Laplacien en dimension
2 (et plus généralement leurs combinaisons, voir le Chapitre pour étre ensuite utilisé
pour des résultats d’existence ou des calculs précis d’invariants spectraux. Nous utilisons
largement ce principe dans les applications du Théoréme [[V.2.3]

Néanmoins, les questions d’existence et d’inexistence de métriques critiques sont encore
mystérieuses. En effet, méme pour les invariants de la classe conforme de la sphére ronde
Ak(S™), a part lexistence pour k = 1, I'inexistence pour k = 2 (Théoréme et
I’existence pour un certain entier 3 < k& < n + 1 en dimensions grandesﬂ (Théoréme
, tout reste ouvert. Par exemple, peut-on calculer précisément k,,, le premier entier

8. Comme on ’a dit, on a méme borne sur k qui ne dépend pas de n
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plus grand que 3 pour lequel Ax(S™) est atteint ? A n fixé, 'ensemble des indices k pour
lesquels Ag(S™) est atteint est-il fini 7 Existe-t-il des indices k > n + 2 pour lesquels la
sphére ronde est de nouveau le minimiseur de Ag(S™)? Il est important de rappeler que
la situation est bien différente du cas du Laplacien en dimension 2 oli on peut calculer
Ak(S?) = kA1 (S?) = 87k car il n’est jamais atteint pour k > 2.

On observe maintenant I'asymptotique de (Ax(M, [g])), ey, en particulier sur la sphére
ronde. Pour le moment, on sait seulement que cette suite est strictement croissante (Théo-
réeme . On constate aussi qu’il existe une constante ¢ > 0 telle que pour tout k,
Ap(M,[g]) < ck=. Ce terme est exactement le terme dominant dans lasymptotique de
Weyl des valeurs propres pour une métrique fixé lorsque k — +4o00. Il serait intéressant
de pouvoir identifier une loi de Weyl uniforme dans la classe conforme. Cette question est
relice aux précédentes : par exemple si Ax(S™) n’est atteint qu'un nombre fini de fois, une
loi de Weyl uniforme A4(S") ~ a([g])k= se déduit mécaniquement du Théoréme [IV.2.3]
Autrement dit on obtiendrait une minoration de Weyl uniforme dans la classe conforme.
Plus généralement, calculer la densité dans N* des indices k pour lesquels Ax(S") est
atteint peut donner accés a une telle loi. Une telle loi de Weyl uniforme rappelle les ma-
jorations uniformes dans la classe conforme pour le Laplacien (en toutes dimensions) de
|[Kor93|, [Has11]. Néanmoins, il faut rappeler qu’il est conceptuellement plus facile d’ob-
tenir des majorations sur les valeurs propres que des minorations : la méthode la plus
naturelle de choisir de bonnes fonctions test pour la caractérisation min-max des valeurs
propres n’est adapté qu’a la recherche de majorations. C’est fondamentalement ce qui est
fait dans [Kor93, Has11].

Des questions similaires se posent aussi pour d’autres opérateurs (non nécessairement
différentiels) covariants conformes : l'opérateur de Dirac, les opérateurs conformément
covariants sur les variétés a bords, les opérateurs covariants conformes fractionnaires et
leurs combinaisons. Optimiser des combinaisons de valeurs propres peut également s’avérer
utile pour ces problémes.
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