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Introduction

Dans ce mémoire d’habilitation, je présente les travaux que j’ai effectués après mon
doctorat dans les domaines de l’analyse géométrique et de la géométrie spectrale. Une
grande partie de mes résultats se situe à l’interface entre la théorie des surfaces minimales
et l’optimisation de valeurs propres d’opérateurs différentiels en fonction de la géométrie
d’une variété.

Les surfaces minimales forment un champ très vaste d’étude qui demeure fondamen-
tal en géométrie différentielle, en calcul des variations et en physique mathématique.
Elles peuvent être vues comme une généralisation du problème des géodésiques. Dans
des contextes variés, on cherche à les construire, voire à les classifier, ou comprendre leur
rigidité. Elles sont aussi des outils centraux en analyse géométrique. Dans mes travaux,
je me concentre sur leur description paramétrique par des applications conformes et har-
moniques. Ce point de vue a été primordial dans la résolution du problème de Plateau
par Douglas [Dou31] et Radó [Rad30] ou encore Morrey [Mor48]. Cela a renforcé l’intérêt
d’obtenir des résultats d’existence et de régularité des applications harmoniques, ainsi que
des EDP elliptiques non linéaires de la même famille qui paramètrent des généralisations
des surfaces minimales (surfaces à courbure moyenne constante, surfaces de Willmore,
etc). Comme on le verra, ce point de vue permet aussi de relier des surfaces minimales
particulières aux points critiques de fonctionnelles spectrales.

En optimisation spectrale, les valeurs propres sont des fonctionnelles qui dépendent
de la forme et de la topologie du domaine, de l’opérateur associé, et/ou de la structure
géométrique ambiante. On cherche à les borner et à optimiser ces bornes. On décrit
également les formes critiques qui réalisent ces bornes si elles existent. Le problème le
plus emblématique formulé par Rayleigh a été résolu de manière indépendante par Faber
[Fab23] et Krahn [Kra25] : les domaines qui minimisent la première valeur propre de
l’opérateur de Laplace avec des conditions au bord de Dirichlet parmi les domaines de
même volume dans Rn sont les boules euclidiennes. Ce problème est très similaire au
problème isopérimétrique (remplacer la première valeur propre par le périmètre), et la
preuve de ce résultat utilise d’ailleurs l’inégalité isopérimétrique.

On distingue deux types de problèmes d’optimisation de valeurs propres. Dans le
premier type, l’espace ambiant est prescrit (par exemple, l’espace euclidien, sa sphère,
l’espace hyperbolique etc) et on optimise sur l’ensemble des domaines de cet espace. On
parle ici d’optimisation de forme. Les résultats emblématiques sont les inégalités de Faber-
Krahn [Fab23, Kra25], de Szegö-Weinberger [Sze54, Wei56] ou deWeinstock-Brock [Wei54,
Bro01]. Dans le deuxième type, la topologie ambiante est prescrite (sur une variété donnée)
mais l’optimisation a lieu par rapport à des potentiels qui apparaissent dans l’opérateur,
ou à la métrique riemannienne sur la variété (ou encore la structure CR, la métrique
sous-riemannienne, la structure RCD, etc). Un résultat emblématique est l’inégalité de
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Hersch [Her70] : la sphère ronde est le maximiseur de la première valeur propre non nulle
du Laplacien parmi les métriques de même aire sur une sphère topologique.

Mes travaux se concentrent plutôt sur le deuxième type de problèmes. Une de ses
spécificités est que les conditions d’Euler-Lagrange associées à des variations de métriques
sont riches, autant du point de vue analytique que géométrique. Par exemple, un lien entre
les métriques riemanniennes critiques de valeurs propres et certaines surfaces minimales
a d’abord été observé par Nadirashvili [Nad96] (pour le Laplacien), puis repopularisé par
Fraser et Schoen [FS16] (pour l’opérateur Dirichlet à Neumann). Ce lien permet à la
fois de calculer précisément des invariants spectraux et de construire par des méthodes
indirectes de nouvelles surfaces minimales. Depuis, de nombreux travaux ont identifié
des interprétations géométriques des conditions d’Euler-Lagrange associées aux points
critiques de fonctionnelles dépendant de valeurs propres pour d’autres opérateurs, ou de
leurs combinaisons. Bien que les EDPs associées aux fonctions propres sont linéaires, il
est amusant de constater que l’optimisation spectrale pour des opérateurs bien choisis est
associée à des systèmes d’EDPs non linéaires qui ont un sens géométrique.

Ma contribution principale au domaine est la construction d’une théorie variationnelle
robuste permettant de démontrer l’existence ou l’inexistence de métriques optimales pour
des fonctionnelles spectrales, c’est à dire définies comme des combinaisons finies de valeurs
propres d’opérateurs dépendant de la métrique. L’objet du Chapitre I est de restituer ce
travail de la manière la plus élémentaire possible à travers deux exemples types très diffé-
rents qu’on développe dans les chapitres suivants. Le premier exemple est la maximisation
renormalisée par l’aire de la première valeur propre du Laplacien dans la classe conforme
d’une surface (variété de dimension 2) riemannienne compacte sans bord donnée. Bien
qu’il soit résolu depuis [Pet14a], il est intéressant de revoir cet exemple à la lumière de
mes nouvelles techniques dans [Pet25d]. Les conséquences de ces techniques seront dé-
taillées dans le Chapitre II. Le deuxième exemple est l’optimisation renormalisée par le
volume des valeurs propres du Laplacien conforme dans la classe conforme d’une variété
riemannienne compacte sans bord de dimension n > 3. C’est le cadre typique de [HPP25]
détaillé dans le Chapitre IV.

Le Chapitre I synthétise donc les aspects théoriques de [PT24, Pet25d, Pet24a, HPP25]
et unifie ces papiers dans une approche commune. Dans [PT24], nous donnons des ou-
tils analytiques permettant de calculer des points critiques de fonctionnelles spectrales
grâce à l’utilisation du sous-différentiel de Clarke. Nous donnons également de nouveaux
exemples d’interprétation géométrique d’équations d’Euler Lagrange, et de nouvelles ca-
ractérisations fines de métriques localement optimales. Dans [Pet25d, Pet24a], j’introduis
une bonne façon d’appliquer le principe variationnel d’Ekeland pour montrer l’existence
de métriques maximales pour des fonctionnelles spectrales associées au laplacien et à
l’opérateur Dirichlet à Neumann en dimension 2. Cette approche s’applique autant pour
l’optimisation dans une classe conforme [Pet25d] que pour l’optimisation parmi toutes
les métriques [Pet24a]. Cette nouvelle approche nous a également permis de contribuer
significativement à l’optimisation des valeurs propres associées aux opérateurs covariants
conformes en dimension plus grande que 3 dans [HPP25]. Cela offre ainsi des perspec-
tives de résolution de problèmes d’optimisation spectrale avec d’autres opérateurs géomé-
triques, et également des problèmes mettant en jeu des combinaisons infinies de valeurs
propres. Ceci peut donc également donner accès à de nombreux problèmes d’optimisation
d’invariants Riemanniens.
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Dans le Chapitre II, je présente mon résultat le plus important [Pet24a] : l’existence
de métriques optimales pour une large classe de combinaisons finies de valeurs propres du
Laplacien renormalisées par l’aire sur une surface compacte donnée parmi l’ensemble des
métriques, quelque soit la topologie de la surface. En particulier, il existe un maximum
pour la première valeur propre du Laplacien renormalisée par l’aire. Cela achève le pro-
gramme initié par Hersch [Her70] qui avait résolu la question sur la sphère. Notons par
exemple que Berger [Ber73] cherchait déjà à comprendre cette question pour les autres
topologies comme le tore. Depuis, plusieurs travaux avaient résolu la question en genre
petit : le plan projectif [LY82], le tore [Nad96], la bouteille de Klein [ESGJ06][JNP06], les
surfaces orientables de genre 2 [JLN+05] [NS19].

Ce résultat général est obtenu dans la continuation de mes travaux de thèse qui conte-
naient une première étape essentielle : la construction de métriques qui maximisent une
valeur propre dans une classe conforme [Pet14a, Pet18, Pet19]. La maximisation dans une
classe conforme est naturelle pour plusieurs raisons : d’abord elle est plus simple puisque
le problème est réduit à une maximisation sur un espace de fonctions positives, mais sur-
tout, les métriques critiques à classe conforme contrainte sont associées à des applications
harmoniques : la théorie de la régularité sur ces applications permet de mettre en place des
approches variationnelles. Enfin, comme la maximisation parmi toutes les métriques est
une maximisation parmi les classes conformes, on obtient fondamentalement un problème
de maximisation en dimension finie puisqu’il a lieu sur l’espace de Teichmüller.

J’ai généralisé mes travaux de thèse dans le cadre de combinaisons de valeurs propres
[Pet23a, Pet24b], puis je les ai unifiés et rendus plus robustes dans [Pet25d]. Cela m’a
également permis d’identifier une condition suffisante à l’existence d’un minimiseur d’une
fonctionnelle spectrale parmi toutes les métriques. Je démontre cette condition suffisante
dans [Pet24a] pour une large classe de fonctionnelles spectrales sur des surfaces orientables.
Ainsi, il existe une métrique optimale pour la première valeur propre généralisée du Lapla-
cien sur toute surface orientable, mais aussi par exemple pour des fonctionnelles spectrales
introduites par Hersch [Her70], Berger [Ber73] et Li-Yau [LY82] (sommes d’inverses de va-
leurs propres), et pour bien d’autres fonctionnelles (produits de valeurs propres, sommes
partielles de la fonction zeta sur les valeurs propres, etc). Dans le cas particulier de la
première valeur propre, on étend ce résultat aux surfaces non orientables dans [KPS25]
par une méthode différente basée sur les travaux parallèles [KS23, KKMS24].

Dans le Chapitre III, je développe des applications de l’optimisation spectrale à la
théorie des surfaces minimales. En effet, j’ai remarqué dans [Pet23a] que les métriques
critiques de fonctionnelles spectrales associées au Laplacien sur une surface compacte
sans bord fournissent des surfaces minimales branchées dans des ellipsoïdes. De manière
similaire dans [Pet24b], les métriques critiques de fonctionnelles spectrales associées à
l’opérateur Dirichlet à Neumann sur une surface à bord fournissent des immersions mi-
nimales branchées à bord libre dans des ellipsoïdes. Réciproquement, toute immersion
minimale branchée dans un ellipsoïde peut être vue comme un point critique d’une cer-
taine fonctionnelle spectrale (voir [PT24]). Ce résultat élargit des travaux antérieurs de
Nadirashvili, El Soufi-Ilias et Fraser-Schoen qui ne mettaient en jeu qu’une seule valeur
propre (dans ce cas, la variété cible est une sphère).

Ce travail m’a permis de résoudre une question ouverte depuis 30 ans : je montre
l’existence de disques minimaux à bord libre plongés non plans dans des ellipsoïdes de R3

[Pet23b] par optimisation équivariante de combinaisons de la première et deuxième valeur
propre de Steklov sur le disque, renormalisées par la longueur du bord. Bien sûr, cette
méthode s’applique aussi dans le cadre sans bord [Pet25b]. L’optimisation équivariante
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présente un double avantage. Elle permet de restreindre le nombre de coordonnées en jeu
dans l’immersion minimale branchée naturellement construite par optimisation spectrale
afin que l’espace ambiant soit R3. C’est également une condition importante pour montrer
que les immersions minimales branchées en question sont en fait plongées. Les symétries
permettent donc de résoudre les principales difficultés géométriques liées à l’optimisation
spectrale. L’année suivante, une approche équivariante de maximisation de la première
valeur propre de Steklov renormalisée a aussi permis à Karpukhin-Kusner-McGrath-Stern
de démontrer l’existence de surfaces minimales à bord libre dans des boules de R3 pour
toute topologie orientable dans [KKMS24]. Tous ces résultats montrent la puissance de
cette méthode indirecte de construction de surfaces minimales, parachevant le programme
initié par Fraser et Schoen dans [FS16].

Enfin, dans le Chapitre IV, je détaille les résultats d’optimisation des valeurs propres
des opérateurs conformément covariants d’ordre 2s < n où s est un entier sur une variété
Riemannienne compacte sans bord de dimension n [HPP25]. C’est une généralisation des
problèmes d’optimisation de la Q-courbure (la courbure scalaire dans le cas du Laplacian
conforme). Les résultats sont riches, variés et parfois surprenants si on les compare avec
l’optimisation spectrale en dimension 2. L’approche détaillée dans le Chapitre I a permis
de fortement unifier et généraliser les résultats précédents d’existence ou d’inexistence
d’optimiseurs ou de calculs d’invariants spectraux de [AH06, GPA22].

Bien que cela ne soit pas mis en avant dans ce mémoire, je mentionne ici d’autres
travaux et questions qui ne sont pas directement liés à la géométrie spectrale :

— Analytiquement, j’ai réinterprété dans le cadre de fonctionnelles spectrales les
riches théories variationnelles non lisses fondées notamment par F. Clarke ou I.
Ekeland dans [Cla75, Eke74]. Il serait intéressant d’étendre cette compréhension au
cas non linéaire mettant en jeu des constantes optimales dans les inégalités fonc-
tionnelles, ou des invariants géométriques plus généraux. Etendre les problèmes
d’optimisation non lisse à un cadre variationnel min-max amplifierait aussi les ap-
plications géométriques. Enfin, on pourrait également développer une théorie des
points critiques dans ce même cadre non lisse, en cherchant par exemple des géné-
ralisations du théorème des fonctions implicites.

— Mes travaux [LP19, Pet25c] portent sur les problèmes variationnels invariants par
transformation conforme, et en particulier les applications harmoniques. Ils sont
basés sur les nombreux résultats de régularité et de quantification remontant à
[Hél90, Hél91, Riv07]. J’aimerais étendre la compréhension de ces problèmes sur des
variétés plus générales que riemanniennes, et avec des variétés cibles de dimension
infinie. Ceci a un lien avec des problèmes d’optimisation de combinaisons infinies de
valeurs propres ou encore les questions de plongements isométriques par fonctions
propres.

— Une méthode de Hélein [Hél02] basée sur la minimisation de l’énergie des repères
mobiles permet d’uniformiser des surfaces. Dans [LP24], on donne une façon na-
turelle d’adapter cette méthode aux parties simplement connexes du plan dont le
bord est une courbe Weil-Petersson. On fait un lien entre une énergie de repère
mobile renormalisée, l’énergie renormalisée de Ginzburg-Landau (voir [BBH17]) et
l’énergie de Loewner de la courbe au bord récemment introduite par Wang [Wan19].
L’objectif est d’appliquer ce travail aux surfaces minimales de l’espace hyperbolique
H3 afin de donner un lien quantitatif entre leur énergie de Willmore et l’énergie de
Loewner de leur trace sur le bord de H3. C’est un aspect manquant dans [Bis20].
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Les travaux [LP24] et [MW24] sont un premier pas dans cette direction. Dans un
autre contexte, mon étudiant Martijn Kluitenberg [Klu25] utilise également la mé-
thode de Hélein pour uniformiser les surfaces dites presque riemanniennes (un cas
particulier de variétés sous-riemanniennes) contenant une singularité au bord du
même type que celle de la "sphère de Grushin".

Chaque introduction de chapitre détaille un peu plus son contenu. Peu de preuves
détaillées de mes résultats apparaissent dans ce mémoire : le lecteur est renvoyé à mes
travaux. Toutefois, dans le Chapitre I, la synthétisation de mon approche variationnelle
apporte un point de vue nouveau auquel je fournis parfois des preuves qui n’apparaissent
pas tout à fait de la même façon dans mes travaux. Une extension de ce chapitre en un
tout auto-contenu peut d’ailleurs faire l’objet d’un survey ou d’un cours. Chaque fin de
chapitre propose des perspectives de recherche à plus ou moins long terme.
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Chapitre I

Une méthode variationnelle en
géométrie spectrale

Dans ce chapitre, je présente une méthode d’optimisation de valeurs propres qui peut
s’appliquer dans de nombreux contextes à travers deux exemples principaux. C’est une pré-
sentation synthétique des aspects théoriques de [PT24, Pet25d, Pet24a, HPP25]. La pré-
sentation de cette méthode est nouvelle et se veut unificatrice à travers les deux exemples.
Le chapitre n’est pas complètement auto-contenu puisqu’il renvoie à mes travaux mais une
démonstration est donnée pour chaque énoncé qui n’est pas écrit de la même façon dans
les articles dont il est tiré. Les 5 parties de ce chapitre suivent la démarche naturelle pour
ces problèmes d’optimisation spectrale :

1. Bien poser le problème d’optimisation : l’infimum (ou le supremum) de la fonction-
nelle doit être fini.

2. Calculer les points critiques de la fonctionnelle, c’est à dire comprendre les conditions
d’ordre 1 des maxima et minima locaux, en particulier dans un cadre non lisse.

3. Donner une théorie de la régularité sur les points critiques et déduire la compacité
des suites de points critiques grâce aux estimées de régularité.

4. Construire des suites optimisantes susceptibles d’être compactes au même titre que
les suites de points critiques. Ce sont par exemple des suites "à la Palais Smale" qui
sont proches d’être critiques pour une distance bien choisie.

5. Passer à la limite sur ces suites optimisantes et utiliser la théorie de la régularité
pour obtenir un optimiseur régulier.

I.1 Présentation de deux exemples
Dans tout le chapitre, nous référons au problème de maximisation de la première

valeur propre dans une classe conforme sur des surfaces avec le raccourci Optimn=2 et à
l’optimisation des valeurs propres du Laplacien conforme dans une classe conforme d’une
variété riemannienne de dimension n > 3 avec le raccourci Optimn>3.

I.1.1 Optimn=2 : Maximisation de la première valeur propre du
Laplacien en dimension 2

Soit Σ une surface (variété différentiable de dimension 2) compacte sans bord et
connexe. On note Met(Σ) l’ensemble des métriques Riemanniennes sur Σ. Pour g ∈
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16 CHAPITRE I. UNE MÉTHODE VARIATIONNELLE

Met(Σ) on note ∆g = −divg∇ le Laplacien associé et sa première valeur propre non
nulle :

λ1(Σ, g) = inf
φ∈C∞(Σ)∫
Σ φdAg=0

∫
Σ
|∇φ|2gdAg∫
Σ
φ2dAg

.

où dAg est la mesure d’aire par rapport à la métrique g. On note la première valeur propre
renormalisée (invariante par dilatation de la métrique)

λ̄1(Σ, g) = λ1(Σ, g)Ag(Σ)

où Ag(Σ) =
∫

Σ
dAg et on souhaite résoudre le problème de maximisation suivant

Λ1(Σ) = sup
g∈Met(Σ)

λ̄1(Σ, g).

ainsi qu’une version contrainte dans la classe conforme [g] = {βg ∈Met(Σ); β ∈ C∞>0(Σ)}

Λ1(Σ, [g]) = sup
g̃∈[g]

λ̄1(Σ, g̃).

Les propriétés d’invariance conforme du Laplacien permettent de reformuler ce problème
pour une métrique fixée g sur des espaces de fonctions où on peut noter λ̄1(β) = λ̄1(Σ, βg)

Λ1(Σ, [g]) = sup
β∈C∞>

λ̄1(β) = sup
β∈C∞>

inf
φ∈C∞(Σ)∫
Σ φβdAg=0

∫
Σ
|∇φ|2gdAg∫

Σ
φ2βdAg

∫
Σ

βdAg. (I.1)

La proposition suivante implique que λ̄1 ne peut pas avoir de minimiseur même parmi
les métriques d’une classe conforme. On utilise ici un argument classique de type "haltères
de Cheeger".

Proposition I.1.1.
inf
g̃∈[g]

λ̄1(Σ, g̃) = 0.

On peut écrire la démonstration avec une suite de métriques e2uig qui vérifient

e2uidAg ⇀? δx + ν

lorsque i→ +∞ pour la convergence faible-? des mesures où x ∈M et ν est une mesure
non nulle sans atome. On construit alors deux fonctions test cut-off à support disjoint
(donc orthogonales) d’énergie arbitrairement petite en utilisant que {x} est de capacité
nulle (voir par exemple [Kok14, Proposition 1.1, Lemma 2.1]). De manière générale avec
un argument similaire, on a inf g̃∈[g] λ̄k(Σ, g̃) = 0 où λk est la k-ème valeur propre non
nulle du Laplacien. Par contre, le problème de maximisation est bien posé

Théorème I.1.2 ([YY19, LY82, Kar16]).

Λ1(Σ, [g]) 6 2Ac(Σ, [g]) < +∞

où on note l’aire conforme

Ac(Σ, [g]) = lim
n→+∞

inf
φ:(Σ,g)→(Sn,h)

φ?h∈[g]

max
θ∈Conf(Sn)

A(θ◦φ)?h(Σ)

où (Sn, h) est la sphère de dimension n munie de la métrique ronde et Conf(Sn) est le
groupe des difféomorphismes conformes de la sphère. On a aussi si Σ est de genre γ,

Λ1(Σ) 6

{
8π
[
γ+3

2

]
si Σ est orientable

16π
[
γ+3

2

]
si Σ est non orientable

< +∞.
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La démonstration repose sur des utilisations astucieuses du célèbre argument de Hersch
qui avait résolu le problème pour la sphère Σ = S2 :

Λ1(S2) = 8π

où le maximum est uniquement atteint par les métriques rondes. En fait, l’argument topo-
logique de Hersch [Her70] remonte à Szegö [Sze54] pour le problème similaire de maximi-
sation de la première valeur propre non nulle du Laplacien à conditions de Neumann sur
les domaines simplement connexes du plan ou Weinstock [Wei54] pour la maximisation
de la première valeur propre non nulle de Steklov sur les domaines simplement connexes.

I.1.2 Optimn>3 : Optimisation des valeurs propres du Laplacien
conforme en dimension n > 3

Soit (M, g) une variété Riemannienne de dimension n > 3 compacte sans bord connexe.

λk(M, g) = inf
E∈Gk(C∞(M))

max
φ∈E\{0}

∫
M

(|∇φ|2g + cnSgφ
2)dvg∫

M
φ2dvg

= inf
E∈Gk(C∞(M))

max
φ∈E\{0}

∫
M
φLgφdvg∫
M
φ2dvg

où dvg est la mesure de volume par rapport à g, cn = n−2
4(n−1)

, Sg est la courbure scalaire
de g, Lg = ∆g + cnSg le Laplacien conforme (où Lg = −divg∇) et Gk(V ) est la k-
Grassmannienne de V : l’ensemble des sous-espaces vectoriels de dimension k de V . La
k-ème valeur propre renormalisée (invariante par dilatation) est

λ̄k(M, g) = λk(M, g)Vg(M)
2
n

où Vg(M) =
∫
M
dvg. On s’intéresse aux problèmes d’optimisation à classe conforme

contrainte suivants

Λk(M, [g]) =


inf g̃∈[g] λ̄k(g̃) si k > k+

0 si k− < k < k+

supg̃∈[g] λ̄k(g̃) si k 6 k−

où on définit
k+ = min{k ∈ N?;λk(g) > 0}

k− =

{
max{k ∈ N?;λk(g) < 0}
0 si ∀k ∈ N?, λk(g) > 0

de sorte que dim KerLg = k+−k−−1. Les propriétés d’invariance conforme du Laplacien
conforme permettent d’écrire pour β ∈ C∞> (M), λ̄k(β) = λ̄k(M,βg) comme

λ̄k(β) = inf
E∈Gk(C∞(M))

max
v∈E\{0}

∫
M
vLgvdvg∫

M
v2βdvg

(∫
M

β
n
2 dvg

) 2
n

.

Si on note g̃ = βg où β = u
4

n−2 , noter que les fonctions propres se réécrivent v = uφ

Lg̃φ = λφ⇔ Lgv = λβv.

On remarque que k+ et k− sont invariants conformes au sens où leur définition est indépen-
dante du choix de la métrique g dans sa classe conforme [g]. En effet, si E ∈ Gk(C∞(M)),

max
φ∈E\{0}

∫
M
φLg̃φdvg̃∫
M
φ2dvg̃

< 0⇐⇒ max
v∈(u·E)\{0}

∫
M
vLgvdvg∫

M
v2βdvg

< 0
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car le numérateur est invariant conforme et le signe du dénominateur est invariant conforme.
Par ailleurs, il est clair que la multiplication par u est un isomorphisme KerLg̃ → KerLg.

Le thérème suivant montre que les autres questions d’optimisation ne sont pas perti-
nentes.

Théorème I.1.3 ([AJ12]). Soit k ∈ N?,

Si k > k+, sup
g̃∈[g]

λ̄k(M, g̃) = +∞.

Si k 6 k+, inf
g̃∈[g]

λ̄k(M, g̃) = −∞.

En revanche, on montre

Théorème I.1.4 ([HPP25, Corollary 1.3]). Soit k ∈ N?,

Si k > k+, inf
g̃∈[g]

λ̄k(M, g̃) > 0.

Si k 6 k+, sup
g̃∈[g]

λ̄k(M, g̃) < 0.

Démonstration. Soit β ∈ C∞>0. Soit λ 6= 0 une valeur propre non nulle du Laplacien
conforme pour la métrique g̃ = βg, et v ∈ C∞(M) une fonction tels que

Lgv = λβv,

∫
M

β
n
2 dvg = 1,

∫
M

βv2dvg = 1

de sorte que λ = λk(β) pour k > k+ ou k 6 k−. On écrit v = w + κ où κ ∈ KerLg et
w ∈ (KerLg)

⊥ où ⊥ désigne l’espace orthogonal pour la norme L2(g). On obtient

Lgw = λβv.

Par théorie elliptique standard, il existe une constante Cg telle que

‖w‖H1(g) 6 Cg‖Lgw‖H−1(g) 6 Cg|λ|‖βg‖
L

2n
n+2

6 Cg|λ|‖β‖
1
2

L
n
2

(∫
M

βv2

) 1
2

= Cg|λ|

où la dernière inégalité est une inégalité de Hölder. Par ailleurs,

0 =

∫
M

(Lgκ) vdvg =

∫
M

(Lgv)κdvg = λ

∫
M

βvκ

implique comme λ 6= 0 que ∫
M

βvκdvg = 0.

Ainsi on a les minorations suivantes par injection de Sobolev (qui donne la constante Kg)
et une inégalité de Hölder,

‖w‖2
H1(g) > Kg‖w‖2

L
2n
n−2

> Kg

∫
M

βw2dvg = Kg

(∫
M

βv2dvg +

∫
M

βκ2dvg

)
> Kg.

On obtient

|λ| >
√
Kg

Cg
.
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On note que pour k = 1, le problème d’optimisation est équivalent au problème de
Yamabe.

Théorème I.1.5.
Λ1(M, [g]) = Y (M, [g])

où Y (M, [g]) est l’invariant de Yamabe :

Y (M, [g]) = inf
u∈C∞>0(M)

∫
M
uLgudvg(∫

M
u

2n
n−2dvg

)n−2
n

et Λ1(M, [g]) est atteint en β si et seulement si Y (M, [g]) est atteint en β
n−2

4 .

Démonstration. Supposons k+ = 1, un presque minimiseur u pour Y (M, [g]) peut être
testé dans la caractérisation de Λ1(M, [g]) par deux infimums avec β = u

4
n−2 et v = u. Cela

donne immédiatement Λ1(M, [g]) 6 Y (M, [g]). Réciproquement, un presque minimiseur
β pour Λ1(M, [g]) peut être testé avec v une solution non nulle de Lgv = λ1(β)βv dans la
caractérisation de Y (M, [g]). Noter qu’en tant que première fonction propre, v peut être
choisie strictement positive. La simple inégalité de Hölder∫

M

v2βdvg 6

(∫
M

β
n
2 dvg

) 2
n
(∫

M

v
2n
n−2dvg

)n−2
n

conclut l’inégalité Λ1(M, [g]) > Y (M, [g]).
Pour k− = 0 et k+ > 1, il est clair que Y (M, [g]) = Λ1(M, [g]) = 0.
Supposons maintenant k− > 1, c’est à dire Y (M, [g]) < 0. Soit u un minimiseur lisse

strictement positif de Y (M, [g]) (existe de manière élémentaire dans le cas strictement
négatif). Par définition on a d’abord Λ1(M, [g]) > λ̄1(β) où β = u

4
n−2 . Comme u est une

solution de Yamabe, c’est aussi une première fonction propre pour λ̄1(β) = Y (M, [g])
et on obtient Λ1(M, [g]) > Y (M, [g]). Réciproquement, si β est un presque maximiseur
pour Λ1(M, [g]), on teste u dans la caractérisation variationnelle de λ̄1(β) et l’inégalité de
Hölder précédente permet de conclure que Λ1(M, [g]) = Y (M, [g]).

I.2 Equations d’Euler-Lagrange
Il est bien compris depuis Nadirashvili [Nad96], El Soufi-Ilias [ESI03, ESI08] et Fraser-

Schoen [FS16, FS13] que les équations d’Euler-Lagrange pour les métriques extrémales
fournissent des conditions géométriques et analytiques très intéressantes à exploiter. De
nombreux autres travaux obtiennent des interprétations géométriques ou analytiques sur
les points critiques de valeurs propres [AH06, Amm09, KM21, KMP23, PA22, GPA22] ou
de fonctionnelles spectrales [ESI02, LM23, Med23, Pet23a, Pet24b, PT24]. On extrait ici
les résultats les plus importants de [PT24] en les adaptant le plus possible à la présentation
de ce chapitre.

Le but de [PT24] est de donner un cadre théorique unificateur pour calculer des équa-
tions d’Euler-Lagrange de points critiques et/ou les extrema locaux de fonctionnelles
spectrales générales et de donner de nombreux exemples d’applications géométriques. En
particulier, comme les fonctionnelles spectrales sont a priori non lisses en les points de
multiplicité des valeurs propres, on spécifie la théorie des sous-différentiels sur les fonc-
tionnelles Lipschitziennes non convexes initiée par Clarke [Cla75] à ce cadre. Par ailleurs,
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on donne de nouvelles conditions fines sur les extrema de valeurs propres du Théorème
I.2.7 qui donnent concrètement le Lemme I.2.10 et qui s’appliquent dans [HPP25] (voir
Théorème IV.3.7 dans le Chapitre IV).

I.2.1 Cadre théorique

Dans cette section, on se concentre sur le travail dans [PT24] qui concerne les métriques
localement extrémales pour une valeur propre donnée. Le but est de calculer les équations
d’Euler-Lagrange pour les deux problèmes de ce chapitre. La définition du sous-différentiel
de Clarke n’est pas utile ici. Par contre, une finesse supplémentaire apparaît dans ce
mémoire de manière nouvelle : nous calculons des équations d’Euler Lagrange pour des
points extremaux x qui sont sur le bord d’un domaine A. Les directions dans lesquelles
nous calculons les variations premières sont restreintes à un cône Cx. Nous quantifions
à quel point cela restreint l’équation d’Euler-Lagrange. Nous appliquerons ces résultats
au cône Cx des fonctions (ou mesures) positives ou nulles. C’est une façon unifiante de
présenter les calculs de [Pet25d, Pet24a, HPP25].

Soit X un espace de Banach muni de la norme ‖ · ‖X , A ⊂ X un sous-ensemble dit
admissible de X et H un espace de Hilbert muni de la norme ‖ · ‖H . Pour x ∈ X, on
note Q(x, ·) une forme quadratique définie positive sur H avec B(x, ·, ·) la forme bilinéaire
associée et G(x, ·) une forme quadratique sur H avec Γ(x, ·, ·) la forme bilinéaire associée.
On pose le quotient de Rayleigh

R : A×H \ {0} → R
(x, u) 7→ G(x,u)

Q(x,u)

Les choix concrets de X, A, H et R sont donnés dans la Sous-section I.2.2 pour Optimn=2

et Optimn>3, et plus finement dans la Sous-section I.4.3 pour Optimn=2 et dans la Sous-
section I.4.2 pour Optimn>3.

On écrit les hypothèses suivantes pour tout x ∈ A, il existe Cx > 1, un voisinage
ouvert Ux de x tels que

(H1) Il existe Λx > 0 tel que

∀x′ ∈ Ux ∩ A, C−1
x ‖ · ‖H 6 N(x′, ·) 6 Cx‖ · ‖H .

où N(x′, ·) = (G(x′, ·) + ΛxQ(x′, ·))
1
2 est une norme sur H.

(H2) Pour tout u ∈ H, Q(·, u) et G(·, u) sont différentiables (on note Qx et Gx leur
différentielle) et Q, G, Qx et Gx sont continus sur X ×H et

∀x′ ∈ Ux,∀u1, u2 ∈ H, ‖Bx(x
′, u1, u2)‖X? + ‖Γx(x′, u1, u2)‖X? 6 Cx‖u1‖H‖u2‖H .

(H3) L’identité (H,N(x, ·))→ (H,Q
1
2 (x, ·)) est compacte.

On remarque que l’hypothèse (H3) garantit que les valeurs propres abstraitement
définies par

λk(x) = inf
E∈Gk(H)

max
u∈E\{0}

R(x, u)

sont atteintes sur l’espace des fonctions propres

Ek(x) = {u ∈ H;∀v ∈ H,Γ(x, u, v) = λk(x)B(x, u, v)}.

Les hypothèses (H1) et (H2) vont garantir (sans l’hypothèse (H3)) que les applications
λk : A → R sont localement Lipschitziennes :
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Proposition I.2.1. On suppose (H1) et (H2). Pour k > 1, λk : A → R est localement
Lipschitzienne.

Démonstration. On procède en deux étapes
Etape 1 : λk est semi-continue supérieurement.
On suppose que pour xi, x ∈ A,

‖xi − x‖X → 0 et λk(xi)→ lim sup
y→x

λk(y)

lorsque i→ +∞. Soit δ > 0 et soit V ∈ Gk(H) tel que

max
u∈V \{0}

R(x, u) 6 λk(V ) + δ.

On teste V pour la caractérisation variationnelle de xi :

λk(xi) 6 max
u∈V \{0}

R(xi, u) = R(xi, ui)

où ui ∈ V est choisi atteignant le max et satisfaisant ‖ui‖H = 1. Comme V est de
dimension finie, quitte à prendre une sous-suite, ui converge dans H vers u ∈ V \{0}. Par
continuité de R,

lim sup
y→x

λk(y) = lim
i→+∞

λk(xi) 6 R(x, u) 6 λk(x) + δ

et en faisant δ → 0, on obtient la semi-continuité supérieure.
Etape 2 : λk : A → R est localement Lipschitzienne.
Soit x ∈ A. Soit ε > 0 et x1, x2 ∈ BX

ε (x) ⊂ Ux. Soit 0 < δ 6 1 et soit V1 ∈ Gk(H) tel que

max
u∈V1\{0}

R(x1, u) 6 λk(x1) + δ.

On teste V pour λk(x2). Soit v ∈ V1 \ {0} tel que

λk(x2) 6 max
u∈V1\{0}

R(x2, u) = R(x2, v).

On calcule par (H2)

G(x2, v) = G(x1, v) +

∫ 1

0

〈Gx((1− s)x1 + sx2, v)x2− x1〉 6 G(x1, v) +Cx‖v‖2
H‖x1− x2‖X .

Ensuite, (H3) garantit que

‖v‖2
H 6 C2

xN(x1, v)2 6 C2
xQ(x1, v) (Λx + λk(x1) + δ) .

En choisissant ε > 0 suffisamment petit, on peut supposer par la semi-continuité supé-
rieure que ∀y ∈ BX

ε (x) ⊂ Ux, λk(y) 6 λk(x)+1. Ce qui donne pour C ′x = C3
x(Λx+λk(x)+2)

G(x2, v) 6 G(x1, v) + C ′xQ(x1, v)‖x1 − x2‖X .

Par un calcul similaire, on a aussi

|Q(x2, v)−Q(x1, v)| 6 C ′xQ(x1, v)‖x1 − x2‖X .
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Quitte à réduire ε > 0, on peut supposer ε 6 (2C ′x)
−1 de sorte que

G(x2, v)

Q(x2, v)
6
G(x1, v)

Q(x1, v)

1

1± C ′x‖x1 − x2‖
+ 2C ′x‖x1 − x2‖X

où ± = + si G(x1, v) > 0 et ± = − si G(x1, v) 6 0. On déduit

R(x2, v) 6 λk(x1) + δ + 2C ′x (|λk(x)|+ 3) ‖x2 − x1‖X

en faisant δ → 0, on obtient C ′′x > 1 tel que

λk(x2) 6 λk(x1) + C ′′x‖x1 − x2‖X

et on échange les rôles de x1 et x2 pour obtenir la proposition.

On se propose avec les trois hypothèses de calculer les dérivées directionnelles à droite
de λk en x ∈ A dans les directions d’un cône Cx qui satisfait

(H4) ∀h ∈ Cx,∃εh > 0,∀t ∈ [0, εh], x+ th ∈ A.

Théorème I.2.2 ([PT24]). On suppose (H1), (H2) et (H3). Soit k ∈ N? alors pour x ∈ A
et h ∈ Cx (où Cx satisfait (H4)),

d

dt |t=0+
λk(x+ th) = min

F∈Gpk(x)(Ek(x))
max

u∈F\{0}
〈Rx(x, u), h〉

= max
F∈Gqk(x)(Ek(x))

min
u∈F\{0}

〈Rx(x, u), h〉
(I.2)

où pk(x) est défini tel que k = ik(x) + pk(x) − 1 où ik(x) = min{i ∈ N?, λi(x) = λk(x)}
et qk(x) est défini tel que k = Ik(x) − qk(x) + 1 où Ik(x) = max{i ∈ N?, λi(x) = λk(x)}
de sorte que si mk(x) = ]{i ∈ N?, λi(x) = λk(x)} est la multiplicité de Ek(x), on a
qk(x) + pk(x) = mk(x) + 1.

Démonstration. On procède en deux étapes.

Etape 1 : Soit xi, x ∈ A tels que ‖xi − x‖X → 0 lorsque i → +∞ et soit ui ∈ Ek(xi)
telle que Q(xi, ui) = 1. Alors quitte à prendre une sous-suite il existe u ∈ Ek(x) tel que
‖ui − u‖H → 0 lorsque i→ +∞.

On a N(xi, ui)
2 = λx + λk(xi) qui est borné car λk(xi) converge vers λk(x). Par (H1),

(ui) est bornée dans H donc quitte à prendre une sous-suite, elle converge faiblement vers
u dans H. En utilisant de plus (H3), on obtient

Q(x, ui)→ Q(x, u) et ∀v ∈ H,Γ(x, ui, v)→ Γ(x, u, v)

lorsque i→ +∞. En utilisant (H2), on obtient même

Q(xi, ui)→ Q(x, u) et ∀v ∈ H,Γ(xi, ui, v)→ Γ(x, u, v)

lorsque i → +∞. En particulier, on obtient Q(x, u) = 1. En passant à la limite sur
Γ(xi, ui, ·) = λk(xi)B(xi, ui, ·), on obtient alors

Γ(x, u, ·) = λk(x)B(x, u, ·)



I.2. EQUATIONS D’EULER-LAGRANGE 23

et en testant pour u, on déduit G(x, u) = λk(x). On obtient le cas d’égalité dans l’inégalité

N(x, u) 6 lim inf
i→+∞

N(x, ui)

ce qui montre la convergence forte dans H.

Etape 2 : Soit mk(x) = dimEk(x). Soit j ∈ {1, · · · ,mk(x)}. On note pour y ∈ A

λ̃j(y) = λik(x)+j−1(y)

de sorte que λk(y) = λ̃pk(x)(y). Soit (tn) une suite de réels positifs qui tend vers 0. On
note xn = x + tnh et on souhaite calculer limn→+∞

λ̃j(xn)−λ̃j(x)

tn
. Soit (un1 , · · · , unmk(x)) une

famille Q(xn, ·)-orthonormée telle que

Γ(xn, u
n
j , ·) = λ̃j(xn)B(xn, u

n
j , ·).

Soit π la projection Q(x, ·)-orthogonale sur Ek(x). On pose

Rn
j = unj − π(unj ).

Noter que par l’étape 1, il existe une famille Q(x, ·)-orthonormée (u1, · · · , un) telle que
uj ∈ Ek(x) et unj → uj dans H lorsque n→ +∞. En particulier Rn

j → 0 dans H lorsque
n→ +∞.

Γ(x, ·, Rn
j )− λ̃j(x)B(x, ·, Rn

j ) = Γ(x, ·, unj )− λ̃j(x)B(x, ·, unj )

=
(
Γ(x, ·, unj )− Γ(xn, ·, unj )

)
+ λ̃j(xn)

(
B(xn, ·, unj )−B(x, ·, unj )

)
+
(
λ̃j(xn)− λ̃j(x)

)
B(x, ·, unj )

=− tn
∫ 1

0

〈(
Γx − λ̃j(xn)Bx

)
(x+ stnh, ·, unj ), h

〉
ds+

(
λ̃j(xn)− λ̃j(x)

)
B(x, ·, unj )

On pose
τnj = tnj +

√
Q(x,Rn

j )

et on remarque que quitte à extraire une sous-suite, comme λ̃j est Lipschitz en x, on pose

tj = lim
n→+∞

tn
τnj

et Dj = lim
n→+∞

λ̃j(xn)− λ̃j(x)

τnj

De plus, en posant R̃n
j =

Rnj
τnj

et en utilisant (H2), on obtient

N(x, R̃n
j )2 = Λx +G(x, R̃n

j )

6Λx + λ̃j(x) +
((
tj + o(1)

)
Cx(1 + |λk(x)|+ o(1))‖h‖X

)
N(x, R̃n

j ) +Dj + o(1)

ce qui implique que (R̃n
j ) est borné dansH par (H1). Ainsi, quitte à extraire une sous-suite,

R̃n
j converge vers Rj ∈ H faiblement dans H. Avec (H3), on obtient

1− tj = lim
n→+∞

Q(x, R̃n
j ) = Q(x,Rj) et ∀v ∈ H,Γ(x, R̃n

j , v)→ Γ(x,Rj, v)
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lorsque n→ +∞. En passant à la limite sur l’équation satisfaite par R̃n
j , on obtient

Γ(x,Rj, ·)− λ̃j(x)B(x,Rj, ·) = −tj
〈(

Γx − λ̃j(x)Bx

)
(x, uj, ·), h

〉
+DjB(x, uj, ·).

En testant cette équation contre uj, on obtient

Dj = tj

〈(
Gx − λ̃j(x)Qx

)
(x, uj), h

〉
de sorte que si tj = 0, alors Dj = 0 et on déduit Rj ∈ Ek(x) ∩ Ek(x)⊥Q(x,·) = {0} ce qui
contredit Q(x,Rj) + tj = 1. Donc tj 6= 0 et

lim
n→+∞

λ̃j(x+ tnh)− λ̃j(x)

tn
=
Dj

tj
=
〈(
Gx − λ̃j(x)Qx

)
(x, uj), h

〉
De manière plus générale, en testant l’équation sur ui, on obtient〈(

Γx − λ̃j(x)Bx

)
(x, uj, ui), h

〉
= δi,j

Dj

tj
.

Ainsi l’endomorphisme Lh : Ek(x)→ Ek(x) défini par

∀v, u ∈ Ek(x),
〈(

Γx − λ̃j(x)Bx

)
(x, u, v), h

〉
= B(x, Lh(u), v)

admet pour base propre (u1, · · · , umk(x)) dont les valeurs propres associées forment une
suite croissante

(
Dj
tj

)
j
car (λ̃j(x + tnh))j est croissante pour tout n et λ̃j(x) = λk(x) ne

dépend pas de j. On obtient alors

lim
n→+∞

λ̃j(x+ tnh)− λ̃j(x)

tn
= λj(Lh) = min

F∈Gj(Ek(x))
max

u∈F\{0}

B(x, Lh(u), u)

Q(x, u)
.

Cette valeur est indépendante du choix de la suite tn → 0 et un simple calcul montre que
pour u ∈ Ek(x),

B(x, Lh(u), u)

Q(x, u)
= 〈Rx(x, u), h〉.

On obtient donc le résultat escompté.

Dans la proposition qui suit, on déduit une propriété sur les extrema locaux de λk. On
note

C? = {ξ ∈ X?;∀h ∈ C, 〈ξ, h〉 > 0}
le cône dual d’un cône C de X et on formule l’hypothèse

(H5) C?? = J(C)

où J : X → X?? est l’injection canonique. (H5) est équivalente à C = C?? lorsque X est
un espace de Banach réflexif.

Proposition I.2.3. On suppose (H1), (H2) et (H3). Soit k ∈ N?. Soit x ∈ A. On suppose
que Cx satisfait (H4) et (H5). Si x un minimum local de λk : A → R, alors

∀F ∈ Gpk(x)(Ek(x)), co{Rx(x, u);u ∈ F,Q(x, u) = 1} ∩ C?x 6= ∅.

Si x est un maximum local de λk : A → R, alors

∀F ∈ Gqk(x)(Ek(x)), co{−Rx(x, u);u ∈ F,Q(x, u) = 1} ∩ C?x 6= ∅.
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Démonstration. On n’écrit la démonstration que dans le cas où x est un minimum local,
l’autre cas est similaire. Soit F ∈ Gpk(x)(Ek(x)). Si l’intersection est vide, par le théorème
de séparation de Hahn-Banach, soit h ∈ X tel que

∀ξ ∈ C?x; 〈ξ, h〉 > 0 (I.3)

∀ξ ∈ co{Rx(x, u);u ∈ F,Q(x, u) = 1}, 〈ξ, h〉 < 0 (I.4)

(I.3) et (H5) impliquent que h ∈ Cx. Comme x est un minimum local,

0 6
d

dt |t=0+
λk(x+ th) = min

F ′∈Gpk(x)(Ek(x))
max

u∈F ′\{0}
〈Rx(x, u), h〉

ce qui se réécrit
∀F ′ ∈ Gpk(x)(Ek(x)), max

u∈F\{0}
〈Rx(x, u), h〉 > 0.

En choisisant u ∈ F tel que Q(x, u) = 1 et qui atteint ce maximum, ξ = Rx(x, u) contredit
(I.4).

I.2.2 Application aux deux problèmes

On applique d’abord la Proposition I.2.3 à Optimn=2. On pose pour une métrique g
et une fonction u :

R(g, u) =

∫
Σ
|∇u|2gdAg∫
Σ
u2dAg

∫
Σ

dAg.

Dans ce cas, on choisitX l’espace des 2-tenseurs symétriques continus sur Σ,A = Met0(Σ)
l’ensemble des métriques Riemanniennes continues sur la surface Σ et H = H1(Σ). On
suppose que u est une k-ème fonction propre telle que

∫
Σ
u2dAg = 1 et on renormalise à

Ag(Σ) =
∫

Σ
dAg = 1. On obtient la dérivée de R dans la direction h ∈ X

〈Rg(g, u), h〉 =

∫
Σ

(
|∇u|2g

g

2
− du⊗ du+ λk(g)

(
1− u2

) g
2
, h
)
dAg.

Pour un calcul de dérivées directionnelles en une métrique g̃ dans une classe conforme, on
spécifie la formule à h = b · g̃ où b est une fonction lisse par exemple. Dans ce cas X est
l’espace des fonctions continues et A est l’ensemble des fonctions continues strictement
positives.

Théorème I.2.4 ([Nad96]). Soit Σ une surface compacte sans bord connexe. Soit g ∈
Met(Σ) tel que Ag(Σ) = 1.

Alors, g est un extremum local de λ̄k(Σ, ·) si et seulement s’il existe p ∈ N? et Φ : Σ→
Rp tel que

(1) ∆gΦ = λk(Σ, g)Φ
(2) |Φ|2 = 1

(3) dΦ⊗ dΦ =
|∇Φ|2g

2
g

Soit maintenant g̃ = βg ∈ [g] tel que Ag̃(Σ) = 1. g̃ est un extremum local de λ̄k dans [g]
si et seulement s’il existe p ∈ N? et Φ : Σ→ Rp tel que

(1) ∆gΦ = λk(β)βΦ
(2) |Φ|2 = 1
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Remarque I.2.5. Noter qu’on déduit les interprétations géométriques :

(1) et (2)⇐⇒Φ : (Σ, g)→ Sp−1 est une application harmonique dans Sp−1

dont les coordonnées sont des fonctions propres pour λ̄k(g)

(3)⇐⇒ Φ : (Σ, g)→ Rp est une application conforme

(1), (2) et (3)⇐⇒Φ : (Σ, g)→ Sp−1 est une immersion minimale dans Sp−1

dont les coordonnées sont des fonctions propres pour λ̄k(Φ?ξ)

En particulier dans le cas à classe conforme contrainte, (1) et (2) impliquent par un simple
calcul de 0 = 1

2
∆|Φ|2 que β =

|∇Φ|2g
λ1(β)

.

Remarque I.2.6. Dans le cas à classes conformes contraintes, on peut autoriser β à
s’annuler (voir la Proposition I.4.9 ci-dessous) : on pose par exemple A l’ensemble des
fonctions non nulles positives. Les variations ne sont alors calculées que dans les directions
h ∈ C où C est le cône des fonctions positives. On obtient l’existence de p ∈ N? et
Φ : Σ→ Rp tels que

(1) ∆gΦ = λk(β)βΦ
(2) |Φ|2 > 1 et

∫
Σ
β|Φ|2dAg =

∫
Σ
βdAg

Dans ce cas, il est clair que |Φ|2 = 1 sur supp(β) et le calcul∫
Σ

(∣∣∣∣∇(Φ− Φ

|Φ|

)∣∣∣∣2
g

+ |∇Φ|2g −
∣∣∣∣∇ Φ

|Φ|

∣∣∣∣2
g

)
dAg = 2

∫
Σ

∇Φ∇
(

Φ− Φ

|Φ|

)
dAg

= 2λk(β)

∫
Σ

β
(
|Φ|2 − |Φ|

)
= 0

ainsi que la relation ponctuelle |∇Φ|2g = |Φ|2
∣∣∣∇ Φ
|Φ|

∣∣∣2
g

+ |∇|Φ||2g montrent que

∫
Σ

(∣∣∣∣∇(Φ− Φ

|Φ|

)∣∣∣∣2
g

+
(
|Φ|2 − 1

) ∣∣∣∣∇ Φ

|Φ|

∣∣∣∣2
g

+ |∇|Φ||2g

)
dAg = 0

et donc |Φ| = 1, ce qui implique de nouveau que Φ est harmonique. En particulier, les
points d’annulation de β sont les zéros de |∇Φ|2g. La métrique βg admet des singularités
coniques en ces points, dont les angles sont des multiples de 2π [Kok14, Pet14a].

De même, dans Optimn>3, on peut poser pour une fonction positive β

R(β, u) =

∫
M
Lgu · udvg∫
M
βu2dvg

(∫
M

β
n
2

) 2
n

.

On pose X = L
n
2 (M), A = L

n
2
>0(M) l’ensemble des fonctions L

n
2 de M non nulles stric-

tement positives (presque partout) et H = H1(M). Ce choix est possible grâce à la
Proposition I.4.4. Pour une fonction b dans le cône C ⊂ X des fonctions positives, pour
une k-ème fonction propre u telle que

∫
M
u2βdvg = 1 et en supposant ‖β‖

L
n
2

= 1, on a

〈Rβ(β, u), b〉 = λk(β)

∫
M

(
β
n−2

2 − u2
)
bdvg.

On obtient le résultat fin suivant :
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Théorème I.2.7 ([PT24, HPP25]). Soit (M, g) une variété compacte sans bord connexe
de dimension n > 3. Soit k ∈ N? tel que k > k+ ou k 6 k−. Soit β ∈ L

n
2
>0 tel que∫

M
β
n
2 dvg = 1.

Si β est un minimum local de λ̄k, alors pour tout V ∈ Gpk(β)(Ek(β)), il existe ik(β) 6 ` 6 k
et une application U = (v`, · · · , vk) : M → Rk−`+1 telle que

(1) LgU = λk(β)βU

(2) |U |2 = β
n−2

2

(3) (v`, · · · , vk) est une famille L2(βdvg)-orthogonale de V
Si β est un maximum local de λ̄k, alors pour tout V ∈ Gmk(β)−pk(β)+1(Ek(β)), il existe
k 6 ` 6 ik(β) +mk(β)− 1 et une application U = (vk, · · · , v`) : M → R`−k+1 telle que

(1) LgU = λk(β)βU

(2) |U |2 = β
n−2

2

(3) (vk, · · · , v`) est une famille L2(βdvg)-orthogonale de V

Remarque I.2.8. En toute rigueur, l’application de la Proposition I.2.3, donne seulement
|U |2 6 β

n−2
2 du fait qu’on calcule les variations dans le cône des fonctions positives. La

condition
∫
M
|U |2β =

∫
M
β
n
2 = 1 obtenue par nos renormalisations implique a posteriori

et de manière immédiate |U |2 = β
n−2

2 .

Insistons sur le fait que ce résultat s’applique pour tout β ∈ L
n
2
>0 tel que

∫
M
β
n
2 dvg = 1.

Néanmoins, le prolongement des fonctionnelles valeurs propres à cet espace de fonctions
nécessite un travail que nous ne traitons pas dans ce mémoire (pour cela, se référer à
[HPP25, Section 3]). On se contente du cadre plus simple β ∈ L

n
2
>0 en utilisant la Propo-

sition I.4.4.

I.2.3 Conclusions supplémentaires pour Optimn>3

Le Théorème I.2.7 a la conséquence suivante : si β est un minimum local de λ̄k et si
λ̄k(β) > λ̄k−1(β) alors quel que soit le choix de v ∈ Ek(β), tel que

∫
M
v2βdvg =

∫
M
β
n
2 = 1,

on obtient
Lgv = λk(β)βv et v2 = β

n−2
2 .

Il est facile de déduire que Ek(β) est de dimension 1 (mk(β) = 1). Ce trou spectral
λ̄k(β) > λ̄k−1(β) est par exemple automatique si k = 1, k = 2 ou k = k+. Si de plus
k > 2, on obtient nécessairement une solution de l’équation de Yamabe nodale (i.e qui
change de signe).

De manière analogue, si β est un maximum local de λ̄k et si λ̄k(β) < λ̄k+1(β), ce qui
est automatique pour k = k−, on obtient également que mk(β) = 1. Là aussi, si de plus
k > 2, on obtient une solution de l’équation de Yamabe nodale.

De manière plus générale énonçons et montrons le lemme I.2.10 qui met en valeur les
conditions restrictives imposées aux métriques extrémales par les conclusions du Théorème
I.2.7. Il est basé sur ce lemme élémentaire d’algèbre linéaire :

Lemme I.2.9 ([HPP25, Lemma 8.1]). Soit Ω un ensemble non vide. On note F(Ω,R)
l’espace vectoriel des focntions sur Ω à valeurs réelles. Soit ` > 1. On suppose qu’il existe

— β ∈ F(Ω, K) ;
— un sous-espace F ⊂ F(Ω, K) de dimension ` + 1 tel que pour tout sous-espace

V ⊂ F de dimension `, il existe une famille finie f1, · · · , fr ∈ V telle que

β =
r∑
i=1

f 2
i .
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Alors β = 0.

Démonstration. Soit x ∈ Ω et e : F → K l’évaluation en x. C’est à dire pour f ∈ F ,
e(f) = f(x). Le noyau de cette forme linéaire est de dimension ` si e 6= 0 et ` + 1 sinon.
Dans tous les cas, on choisit V ⊂ Ker (e) de dimension `. Avec les hypothèses, il existe
f1, · · · , fr ∈ V tels que

β = f 2
1 + · · ·+ f 2

r .

Ainsi, pour tous f ∈ V , f(x) = 0. En particulier, pour tous i = 1, · · · , r, fi(x) = 0 ce qui
implique β(x) = 0. Comme x est arbitraire, on obtient le Lemme I.2.9.

On déduit de ce Lemme I.2.9 et du Théorème I.2.7 le résultat suivant :

Lemme I.2.10 ([HPP25, Lemma 8.2]). Soit β ∈ Ln
2 (M)\{0}, β ≥ 0. Si β est un mini-

mum local de λ̄k pour un entier k > k+, alors λk+1(β) > λk(β). Si β est un maximum
local de λ̄k, pour un entier k 6 k−, alors λk−1(β) < λk(β).

Démonstration. Prouvons ce résultat pour k > k+. L’autre cas est similaire. Quitte à
renormaliser β, on suppose que ‖β‖

L
n
2

= 1 de sorte que λk(β) = Λk(M, [g]). On Suppose
par contradiction que λk+1(β) = λk(β). Soit ik(β) défini par

ik(β) = min {r > k+;λr(β) = λk(β)} .

Par le Théorème I.2.7, on choisit une famille indépendante (vi(k), · · · , vk+1) ∈ Ek(β) de
fonction telles que pour tout i,

Lgvi = λβvi

où λ = λi(β) pour i ∈ {i(k), · · · , k + 1}. Soit F = V ect{vi(k), · · · , vk+1}. Soit ` = k +
1 − i(k) ≥ 1 tel que dim(F ) = ` + 1. Soit V un sous-espace de F de dimension ` et soit
v′1, · · · , v′` une famille L2(βdvg)-orthogonale de fonctions de V . Alors, comme Λk(M, [g]) =
λk(β) = λ et comme pour tous 1 ≤ i ≤ `,

Lgv
′
i = λβv′i

on obtient du Théorème I.2.7 qu’il existe une famille f1, · · · , f` ∈ V telle que

β
n
2s
−1 = f 2

1 + · · ·+ f 2
` p.p. dans M. (I.5)

Comme β atteint λk(β), β et les fonctions (fi)1≤i≤` qui apparaissent dans (I.5) sont conti-
nues sur M (voir Sous-section I.3.2). L’égalité (I.5) est donc ponctuelle entre fonctions
sur M , et le Lemme I.2.9 s’applique : on déduit β = 0, ce qui contredit l’hypothèse
‖β‖

L
n
2

= 1.

I.3 Théorie de régularité sur les métriques critiques

I.3.1 Optimn=2 : Les applications harmoniques

On donne des résultats de régularité et de compacité sur les solutions de l’équation
d’Euler-Lagrange au sens le plus faible possible que satisfont des maximiseurs de λ̄1. Soit
β ∈ Pd(Σ) où Pd(Σ) est l’ensemble des mesures de probabilité sans atomes (ou diffuse).
On définit

λ̄1(β) = inf
φ∈C∞∫
Σ φdµ=0

∫
Σ
|∇φ|2gdAg∫
Σ
φ2dβ

∫
Σ

dβ.
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En un sens naturel le plus faible possible, on formule l’équation pour Φ ∈ H1(Σ,Rp),
∆gΦ = λ̄1(β)βΦ

|Φ|2 > 1∫
Σ
|Φ|2dβ =

∫
Σ
dβ = 1

(I.6)

Pour le moment, on ne dit rien sur l’existence de telles solutions : cela nécessite un peu
de régularité sur β ∈ Pd(Σ). Noter par exemple que β doit agir sur H1 × H1 comme
une forme bilinéaire continue (ou de manière équivalente H1 ⊂ L2(β) est une injection
continue) pour donner un sens à (I.6). 1.

D’après la Remarque I.2.6, les solutions de (I.6) satisfont |Φ| = 1 et sont faiblement
harmoniques dans Sp−1 (points critiques dans H1(Σ, Sp−1) de l’énergie de Dirichlet). Par
[Hél90], les applications faiblement harmoniques à valeurs dans une sphère [Hél90], et plus
généralement dans une variété compacte quelconque [Hél91] sont de classe C∞. La compa-
cité des suites d’applications harmoniques d’énergie uniformément bornée est également
bien comprise depuis [Par96] : on a sous-convergence en arbres de bulles dans C0 ∩ H1.
Néanmoins, les suites d’applications harmoniques sont associées à la maximisation de λ̄1.
Cela rend les résultats de compacité plus précis, et stables pour des solutions de (I.6)
"presque harmoniques" au sens où on perturbe la condition |Φ|2 > 1 par |Φ|2 > 1− θ2 où
θ2 est contrôlée dans un certain espace de fonction :

— Elles ne développent pas de bulles grâce au résultat de rigidité (voir Théorème I.3.2
et Théorème I.3.3).

— Les solutions de (I.6) ne nécessitent pas le résultat de régularité de Hélein [Hél90],
mais seulement le résultat de régularité des applications faiblement harmoniques
localement minimisantes de Morrey (Proposition I.3.6, [Mor48]). Cette remarque
est d’une importance particulière pour réaliser ce travail en toute dimension. En
toute généralité, les résultats de régularité des applications p-harmoniques sont
seulement connus dans le cas localement minimisant. Ainsi, nous ferons comme si
nous ne connaissons pas les résultats de Hélein [Hél90, Hél91].

— Pour les questions de compacité, la dimension de la sphère d’arrivée sera aussi
variable et peut éventuellement exploser. Ce n’est pas possible en dimension 2 car
le nombre de coordonnées indépendantes d’une application harmonique qui sont
des premières fonctions propres est borné par la multiplicité du premier espace
propre, elle-même contrôlée par la topologie de Σ [Che75]. Ces bornes utilisent de
manière cruciale la régularité des fonctions propres ainsi que la dimension 2. Néan-
moins, on requiert un résultat de compacité sur les suites d’applications "presque-
harmoniques" associées à des "presque-maximiseurs" de λ̄1 où seule la régularité
H1 est autorisée (H1 ne s’injecte pas dans C0). Des estimées de régularité sur les
applications harmoniques indépendantes de la dimension de la sphère d’arrivée
(Théorème I.3.1) seront donc nécessaires. On les fournit dans [Pet25c] dans un
cadre général. Une telle approche est également plus souple pour s’adapter à la
dimension supérieure où il n’y pas de borne topologique sur la multiplicité même
dans le cas lisse (voir [CdV86]).

1. Comme on le verra, la condition essentielle pour l’existence est qu’en plus l’injection H1 ⊂ L2(β)
est compacte, hypothèse bien identifiée dans [Kok14, KS23, GKL21] avec la notion de mesure admissible
et dans [PT24, Pet25d, Pet24a] pour fabriquer des espaces variationnels admissibles.
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Théorème I.3.1 ([KS22, Pet25c]). Il existe ε0 > 0, il existe C > 0 tels que pour tout
n ∈ N? et pour toute application harmonique Φ : D→ Sn de classe C∞, on a∫

D
|∇Φ|2 6 ε0 ⇒ ∀x ∈ D, |∇Φ(x)|2 6 C

∫
D |∇Φ|2

(1− |x|)2 .

Le théorème précédent est une conséquence classique de l’invariance conforme de
l’équation des applications harmoniques, de l’identité de Bochner et d’une formule de
monotonie.

Pour commencer, on suppose seulement la condition λ̄1(β) > 8π + c pour β ∈ Pd.
C’est justifié par le résultat de rigidité suivant :

Théorème I.3.2 ([Pet14a, Section 1]). Si (Σ, g) est une surface riemannienne compacte
sans bord connexe non difféomorphe à la sphère,

Λ1(Σ, [g]) > 8π.

On quantifie alors la non-concentration de la masse de β par une borne inférieure
uniforme en x ∈ Σ pour un rayon r suffisamment petit sur les valeurs propres de Dirichlet
locales

λ?(Dr(x), β) = inf
φ∈C∞c (Dr(x))

∫
Σ
|∇φ|2∫

Σ
φ2dβ

.

Proposition I.3.3 ([Kok14, Pet14a, Pet25d]). Soit c > 0. Soit (βi)i∈N une suite de Pd(Σ)
telles que λ̄1(βi) > 8π + c. Alors tout point adhérent de la suite pour la converge faible-?
est sans atome. Plus généralement, il existe r? = r?(Σ, g, c) > 0 tel que

∀β ∈ Pd(Σ), [λ̄1(β) > 8π + c] =⇒ [∀x ∈ Σ, λ?(Dr?(x), β) > λ1(β)].

De cette proposition, en faisant des particitions de l’unité sur une union de disques de
rayons inférieurs à r?, on déduit le résultat de régularité suivant :

Proposition I.3.4 ([Pet14a, Proof of Claim 4],[Pet25d, Proof of Claim 2.4]). Soit c > 0.
Soit β ∈ Pd(Σ) tel que λ̄1(β) > 8π + c alors β : H1 × H1 → R agit comme une forme
bilinéaire sur H1 et il existe une constante K = K(Σ, g, c) > 0 telle que

∀β ∈ Pd(Σ), λ̄1(β) > 8π + c⇒ ‖β‖g = sup
φ,ψ∈H1\{0}

|β(φ, ψ)|
‖φ‖H1‖ψ‖H1

6 K

A ma connaissance, c’est le seul résultat de régularité sur β qu’on puisse déduire sans
avoir besoin de (I.6). C’est une régularité en un sens très faible. Cela montre qu’une
condition de presque criticalité sera nécessaire pour déduire plus de régularité sur β.
Néanmoins, cette proposition donne un indice sur l’espace variationnel le plus adapté à
choisir pour résoudre notre problème et donne un sens à (I.6).

On donne maintenant des propriétes locales des solutions de (I.6). Par invariance
conforme de l’énergie de Dirichlet, on écrit toutes les estimées en coordonnées isothermes
par rapport à la métrique plate. Ajoutons à l’existence de (I.6) la condition de seuil
λ̄1(β) > 8π + c qui sera vraie pour les suites maximisantes par le Théorème I.3.2. Com-
mençons par une quantification de la non-concentration de la densité d’énergie de Φ

|Φ|
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Proposition I.3.5 ([Pet25d, Proof of Claim 2.6]). Soit c > 0 et r0 6 r2
? où r?(Σ, g, c) est

donné par la Proposition I.3.3. Alors il existe une constante universelle C? > 0 telle que
pour tous β ∈ Pd(R) et Φ ∈ H1(Σ,Rp), on a{

λ̄1(β) > 8π + c

(I.6)
⇒ ∀x ∈ Σ,

∫
Dr0 (x)

∣∣∣∣∇ Φ

|Φ|

∣∣∣∣2 6 C?
√
λ̄1(β)√

ln 1
r0

.

On appliquera les deux résultats suivants à Φ̃ = Φ
|Φ| . On doit la propriété de régularité

des applications harmoniques minimisantes à Morrey :

Proposition I.3.6 ([Mor48]). Pour tout p > 2 et Φ̃ ∈ H1 (D,Rp) alors, il existe une
application Ψ : D→ Sp−1 qui minimise le problème variationnel suivant∫

D
|∇Ψ|2 = inf

{∫
D
|∇Ψ̃|2; Ψ̃ ∈ H1

(
D,Sp−1

)
et Ψ̃ = Φ̃ sur ∂D

}
et Ψ est de classe C∞(D) et est une application harmonique dans Sp−1.

On appelle Ψ un prolongement harmonique de Φ̃. Colding et Minicozzi [CM08] ont
ensuite démontré l’inégalité de convexité à petite énergie suivante :

Proposition I.3.7 ([CM08, LP19, LSZ20]). Soit ε 6 min(ε0,
1

8C
). Pour tout p > 2,

toute application harmonique Ψ : D → Sp−1 telle que
∫
D |∇Ψ|2 6 ε et toute application

Φ̃ : D→ Sp−1 dont Ψ est un prolongement harmonique dans Sp−1 on a

1

2

∫
D

∣∣∣∇(Ψ− Φ̃)
∣∣∣2 6 ∫

D

∣∣∣∇Φ̃
∣∣∣2 − ∫

D
|∇Ψ|2

et Ψ est l’unique prolongement harmonique de Φ.

Suivant la terminologie de [CM08], on appelle alors Ψ le remplacement harmonique de
Φ̃. La démonstration suivante utilise seulement le résultat l’ε-régularité (Théorème I.3.1)
et une inégalité de Hardy. Elle est apparue pour la première fois dans [LP19, Theorem
3.1] et [LSZ20].

Démonstration. Par la Proposition I.3.6, un prolongement harmonique Ψ : D→ Sp−1 est
de classe C∞ et satisfait par le Théorème I.3.1

∆Ψ = |∇Ψ|2Ψ avec ∀y ∈ D, |∇Ψ(y)|2 6 C

∫
D |∇Ψ|2

(r − |y|)2
et
∫
D
|∇Ψ|2 6 1

8C
.

Ainsi on obtient∫
D

∣∣∣∇(Ψ− Φ̃)
∣∣∣2 − (∫

D

∣∣∣∇Φ̃
∣∣∣2 − ∫

D
|∇Ψ|2

)
= 2

∫
D
∇(Ψ− Φ̃) · ∇Ψ

= 2

∫
D
|∇Ψ|2 (Ψ− Φ̃) ·Ψ =

∫
D
|∇Ψ|2 |Ψ− Φ̃|2

6 C

(∫
D
|∇Ψ|2

)∫
D

|Ψ− Φ̃|2

(1− |y|)2 6
1

2

∫
D

∣∣∣∇(Ψ− Φ̃
)∣∣∣2

où on utilise |X − Y |2 = 2 (1−X · Y ) lorsque |X| = |Y |, et la célèbre inégalité de Hardy

∀u ∈ H1
0 (D),

∫
D

u2

(1− |y|)2
6 4

∫
D
|∇u|2.

On déduit le résultat.
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Proposition I.3.8. Soit c > 0 et r0 6 r2
? tel que C?

√
Λ1(Σ,[g])√

ln 1
r0

6 min(ε0,
1

8C
) où r?(Σ, g, c)

est donnée la Proposition I.3.3, ε0 > 0 et C > 0 par le Théorème I.3.1. Alors il existe une
constante universelle C ′? > 0 telle que pour tous β ∈ Pd(R) et Φ ∈ H1(Σ,Rp), on a{

λ̄1(β) > 8π + c

(I.6)
⇒ ∀x ∈ Σ,

∫
Dr(x)
|∇
(

Φ̃−Ψ
)
|2 6 C ′?

∫
Dr(x)

|∇|Φ||2
|Φ|2

où Ψ : Dr(x)→ Sp−1 est le prolongement harmonique de Φ̃

Démonstration. On note Dr = Dr(x). On multiplie maintenant ∆Φ = λ1(β)βΦ par
1
|Φ|

(
Φ
|Φ| −Ψ

)
et une intégration par partie donne

∫
Dr
∇Φ∇ 1

|Φ|
·
(

Φ

|Φ|
−Ψ

)
+

∫
Dr

1

|Φ|
∇Φ · ∇

(
Φ

|Φ|
−Ψ

)
= λ1(β)

∫
Dr
β

Φ

|Φ|

(
Φ

|Φ|
−Ψ

)
=

1

2
λ1(β)

∫
Dr
β

∣∣∣∣ Φ

|Φ|
−Ψ

∣∣∣∣2 6 1

2

∫
Dr

∣∣∣∣∇( Φ

|Φ|
−Ψ

)∣∣∣∣2
qu’on peut réécrire avec Φ̃ = Φ

|Φ|

1

2

(∫
Dr
|∇Φ̃|2 −

∫
Dr
|∇Ψ|2

)
=

∫
Dr
∇Φ̃ · ∇

(
Φ̃−Ψ

)
− 1

2

∫
Dr

∣∣∣∇(Φ̃−Ψ
)∣∣∣2

6
∫
Dr
∇ 1

|Φ|
·
(

Φ · ∇(Φ̃−Ψ)− (Φ̃−Ψ)∇Φ
)
.

Par un jeu de réécriture, on a

∇ 1

|Φ|
·
(

Φ · ∇(Φ̃−Ψ)− (Φ̃−Ψ)∇Φ
)

=
1

2

|∇|Φ||2

|Φ|2
|Φ̃−Ψ|2 +

∇|Φ|
|Φ|

(Φ̃ + Ψ)∇
(

Φ̃−Ψ
)

de sorte qu’on obtient une constante universelle C ′ telle que

∫
Dr

∣∣∣∇(Ψ− Φ̃)
∣∣∣2 6 C ′

(∫
Dr

|∇|Φ||2

|Φ|2
+

(∫
Dr

|∇|Φ||2

|Φ|2

) 1
2
(∫

Dr

∣∣∣∇(Ψ− Φ̃)
∣∣∣2) 1

2

)
.

On déduit la proposition.

En utilisant globalement l’équation (I.6), la Remarque I.2.6 donne Φ
|Φ| = Φ et |Φ| = 1.

Comme les coordonnées de Φ sont des fonctions propres associées à λ1(β), Φ est ainsi
harmonique. On déduit même de la Proposition I.3.8 que Φ est une application harmonique
localement minimisante. 2. Par ailleurs, ce schéma de preuve n’utilise jamais la régularité
a priori des solutions de (I.6) et le contrôle uniforme par l’énergie de |Φ| sera utile quand
on travaillera avec des presque solutions de (I.6).

2. On le savait déjà en utilisant la Proposition I.3.7 et le résultat de régularité de Hélein [Hél90].
Encore une fois, c’est spécifique à la dimension 2. En dimension n > 3, la régularité des applications
p-harmoniques est seulement bien comprise pour les p-harmoniques localement minimisantes
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I.3.2 Optimn>3 : Les systèmes de Yamabe

Comme précédemment, on cherche des résultats de régularité et de compacité sur les
solutions de l’équation d’Euler Lagrange au sens le plus faible possible que satisfont les
optimiseurs de λ̄k. Pour U ∈ H1((M, g),Rm) et β ∈ Ln

2 tel que β > 0, on a{
LgU = λk(β)βU

|U |2 =
∑m

j=1 U
2
j = β

n−2
2

(I.7)

Il vient par théorie elliptique classique et bootstrap que U ∈ C2,α et β = |U |
4

n−2 ∈ C0,α

pour un certain α ∈ (0, 1). Cette régularité est optimale pour m = 1 lorsque la solution
change de signe (sauf cas exceptionnels où 2

n−2
est un entier). Bien sûr, U est de classe

C∞ sur l’ouvert |U |−1(]0,+∞[) et on s’attend à davantage de régularité si m est grand
car les points d’irrégularité sont des intersections d’ensembles nodaux.

Concernant les suites de solutions de (I.7)

LgUi = λk(βi)|Ui|
4

n−2Ui et
∫
M

|Ui|
2n
n−2 = 1 où βi = |Ui|

4
n−2 , (I.8)

les obstructions à la compacité sont les mêmes que pour les solutions des équations de
Yamabe (m = 1 et k = 1) : il y a compacité pour λk(βi) 6 0 et des phénomènes
de concentration qu’on ne peut pas exclure a priori pour λk(βi) > 0 mais qu’on peut
quantifier grâce à la proposition plus générale suivante :

Proposition I.3.9 ([HPP25, Lemma 2.3]). Soit (λi) une suite de réels positifs bornée,
(βi) une suite de fonctions positives bornée dans L

n
2 et (vi) une suite de fonctions bornée

dans H1 telles que
Lgvi = λiβivi

Quitte à extraire une sous suite, on note v0 la limite faible de (vi). Alors (vi) converge vers
v0 fortement dans H1

loc(M \ A) où A est l’ensemble des points de concentration suivant :

A =

x ∈M ;∀δ > 0, lim sup
i→+∞

λi

(∫
Bg(x,δ)

β
n
2
i dvg

) 2
n

> K−2
n


où K−2

n est la constante de Sobolev

K−2
n = inf

u∈C∞c (Rn)\{0}

∫
Rn |∇u|

2(∫
Rn |u|

2n
n−2

)n−2
n

.

Soit k > k+. On définit un invariant naturel qui sera un seuil à ne pas dépasser pour
avoir compacité des suites de solutions de (I.8) :

Xk(M, [g]) = min
{(

Λ`0(M, [g])
n
2 + Λ`1(Sn)

n
2 + · · ·+ Λ`r(Sn)

n
2

) 2
n

}
(I.9)

où le minimum est pris parmi les indices r, `0 ∈ N et `1, · · · , `r ∈ N\{0} tels que
1. `0 ∈ {0} ∪ {k+, · · · , k − 1}, où par convention Λs

0(M, [g]) = 0 ;
2. `0 + · · ·+ `r = k if `0 > k+ et `1 + · · ·+ `r = k − k+ + 1 si `0 = 0 ;
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3. Λ`0(M, [g]) and Λ`i(Sn) sont atteints.

Proposition I.3.10 ([HPP25, Section 6]). Soit k ∈ N \ {0}. Soit (βi) une suite telle que
si k > k+,

lim sup
i→+∞

λ̄k(βi) < Xk(M, [g])

et tel qu’il existe (Ui) qui satisfait l’équation (I.8). Alors quitte à extraire une sous-suite,
βi converge vers β dans L

n
2 et (Ui) converge fortement vers U dans H1.

Noter que l’inégalité large Λk(M, [g]) 6 Xk(M, [g]) est démontrée en utilisant des
métriques test à la Aubin [Aub76].

I.4 Suites minimisantes presque critiques

I.4.1 Cadre théorique

Le moyen le plus simple pour obtenir des points critiques d’une fonctionnelle E est de
construire des extrema. La première tentative consiste à prendre des suites minimisantes
(ou maximisantes) 3 et les faire converger. La fonctionnelle donne naturellement un es-
pace variationnel dans lequel la suite minimisante est bornée, donc en général, quitte à en
extraire une sous-suite, elle converge en un sens faible dans cet espace. On souhaite alors
que les conditions de criticalité satisfaites par cette limite garantissent sa régularité, grâce
à la régularité elliptique des systèmes d’équations en jeu. Dans l’exemple de la maximi-
sation de la première valeur propre renormalisée par l’aire dans une classe conforme en
dimension 2 (Optimn=2),

sup
β>0

λ̄1(β) où λ̄1(β) = inf
φ;
∫
βφdvg=0

∫
|∇φ|2dvg∫
βφ2dvg

∫
βdvg,

quitte à renormaliser et extraire une sous-suite d’une suite minimisante (βn)n∈N, on peut
supposer que (βn)n∈N est une suite de mesures de probabilités qui converge au sens faible-?
vers une mesure de probabilité β. λ̄1 est semi-continue supérieurement pour la convergence
faible-? (voir [Kok14, Proposition 1.1] [Pet25d, Proposition 1.1]). Ainsi, β est un maximum
parmi toutes les mesures de probabilité. Malheureusement, on ne peut pas formuler de
conditions de criticalité pour β car il n’admet pas forcément de fonctions propres (fonctions
qui atteignent l’infimum dans la définition de λ̄1(β)). Pourtant, on a vu que les conditions
de criticalité sont indispensables pour espérer obtenir des minimiseurs réguliers.

Pour résoudre cette difficulté, on construit des suites minimisantes qui satisfont des
conditions "presque" critiques et on les passe à la limite.

Première approche

On relaxe le problème variationnel par un paramètre ε > 0 de sorte que la famille
de fonctionnelles (Eε) satisfait Eε → E lorsque ε → 0 et à ε > 0 fixé, on peut formuler
une condition de criticalité aux minimiseurs de Eε. J’ai adopté cette approche dans les
papiers [Pet14a, Pet18, Pet19, Pet23a, Pet24b] par régularisation avec le noyau de la

3. Au préalable, on doit s’assurer que le problème est bien posé : l’infimum (ou le supremum) est fini
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chaleur. On l’utilise aussi de façon assez différente pour minimiser des valeurs propres
positives renormalisées par le volume du Laplacien conforme (voir Optimn>3 et [HPP25])

inf
β>0

λ̄k(β) où λ̄k(β) = inf
F∈Gk(C∞(M))

sup
φ∈F

∫
M
|∇φ|2dvg∫
βφ2dvg

(∫
M

β
n
2

) 2
n

.

Dans ce cas, on construit une suite de minimiseurs pour les valeurs propres du problème
sous-critique Ep 4 où pour p > n

2
5

Ep(β) = inf
F∈Gk(C∞(M))

sup
φ∈F

∫
M
|∇φ|2dvg∫
βφ2dvg

(∫
M

βp
) 1

p

.

Le reste du travail est alors de démontrer la sous convergence de la suite des minimiseurs de
Ep pour p→ n

2
. Il faut prendre en compte les bulles qui apparaissent de manière classique

à cause de la non-compacité de l’injection de Sobolev H1 → L
2n
n−2 . Un inconvénient de

cette première approche est qu’elle ne permettra jamais de démontrer que toute suite
minimisante sous-converge vers un minimiseur.

Deuxième approche

On construit une suite "à la Palais-Smale" en travaillant directement sur la fonc-
tionnelle. Lorsque la fonctionnelle E : X → R est de classe C1 où X est un espace de
Banach, une suite de Palais-Smale (βn)n∈N se définit par la condition ‖DE(βn)‖ → 0
lorsque n → +∞ où la norme ‖ · ‖ est celle du dual X? de X. Une difficulté est que les
fonctionnelles spectrales ne sont pas nécessairement de classe C1. Néanmoins, elles sont
toujours semi-continues inférieurement et on peut toujours donner un sens à une condition
presque-critique pour un presque-minimiseur grâce au principe variationnel d’Ekeland :

Théorème I.4.1 ([Eke74]). Soit (A, d) un espace métrique complet et E : A → R une
fonctionnelle semi-continue inférieurement telle que infAE > −∞. Soit ε > 0 et x ∈ A
tel que

E(x) 6 inf
A
E + ε.

Alors pour tout c > 0, il existe β ∈ A tel que
(i) E(β) 6 E(x)
(ii) d(x, β) 6 c
(iii) Pour tout z ∈ A \ {β}, E(β)− E(z) < ε

c
d(β, z).

On transforme ainsi une suite minimisante (xε) en une meilleure suite minimisante
(βε) (par (i)) proche de la première (par (ii)) qui satisfait (iii). Si E est de classe C1 sur un
espaceX de Banach, la condition (iii) donne une suite de Palais-Smale ‖DE(βε)‖ 6 ε

c
→ 0

lorsque ε→ 0 par calcul de dérivées en βε. Dans le cadre des fonctionnelles spectrale, on
pourra calculer des dérivées directionnelles s’il existe des fonctions propres. Cela fournit

4. Eux-mêmes construits comme limites de suites "à la Palais-Smale" pour la fonctionnelle Ep (voir
deuxième approche) !

5. C’est sous-critique au sens où le réel q en jeu dans l’équation non linéaire Lgu = λ|u|q−1u qui
correspond au système d’équation aux fonctions propres Lgu = λβu associé à un minimiseur β := |u|

2
p−1

de Ep satisfait q := 2p
p−1 <

2n
n−2 où 2n

n−2 est le réel critique pour lequel l’injection de Sobolev H1 → L
2n

n−2

est continue non compacte. q est sous-critique au sens où l’injection H1 → Lq est compacte.
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un sens généralisé aux suites de Palais-Smale. Par ailleurs, en choisissant c =
√
ε, la suite

minimisante initiale (xε) et (βε) vont converger vers le même minimiseur.

On donne donc une application du théorème d’Ekeland pour des fonctionnelles spec-
trales. Pour minimiser une fonctionnnelle spectrale dans une classe conforme, l’espace
complet A à rechercher est un espace de fonctions positives. Par complétude, les éléments
βε ∈ A peuvent désormais s’annuler et c’est une difficulté : il faut généraliser la notion
de valeur propre. En outre, cet espace A ne sera pas un ouvert d’un espace vectoriel mais
seulement un fermé. En particulier, la condition (iii) ne donne que des dérivées à droite
en βε ∈ A dans des directions b ∈ C de fonctions positives. En apparence, on perd donc la
moitié des informations pour caractériser une suite minimisante "presque-critique". Voici
un résultat qu’on s’attend à utiliser :

Proposition I.4.2. On suppose (H1), (H2) et (H3). Soit k ∈ N?. Soit C un cône tel que
pour tout x ∈ A, Cx = C satisfait (H4) et (H5). On suppose que A est un fermé dans X
et infA λ̄k > −∞. Alors pour tout ε > 0, et xε ∈ A tel que λ̄k(xε) 6 infA λ̄k + ε2, il existe
βε ∈ A tel que

(i) λ̄k(βε) 6 λ̄k(xε)
(ii) dX(xε, βε) 6 ε
(iii) ∀F ∈ Gpk(βε)(Ek(βε)),

(
co{Rx(βε, u);u ∈ F,Q(βε, u) = 1}+BX?(0, ε)

)
∩ C? 6= ∅.

On suppose que A est un fermé dans X et supA λ̄k < +∞. Alors pour tout ε > 0, et
xε ∈ A tel que λ̄k(xε) > supA λ̄k − ε2, il existe βε ∈ A tel que

(i) λ̄k(βε) > λ̄k(xε)
(ii) dX(xε, βε) 6 ε
(iii) ∀F ∈ Gqk(βε)(Ek(βε)),

(
co{−Rx(βε, u);u ∈ F,Q(βε, u) = 1}+BX?(0, ε)

)
∩ C? 6=

∅.

Démonstration. On n’écrit la démonstration que dans le premier cas, l’autre cas est
similaire. On applique le principe variationnel d’Ekeland sur l’espace complet (A, dX),
E = λ̄k et x = xε (en remplaçant ε par ε2 et c par ε). On obtient βε ∈ A qui satisfait
dX(xε, βε) 6 ε, λ̄k(βε) 6 λ̄k(xε), et pour tout z ∈ A \ {βε}, λ̄k(βε) − λ̄k(z) < εdX(βε, z).
En particulier, pour t > 0 suffisamment petit,

∀b ∈ C, λ̄k(βε + tb)− λ̄k(βε)
t

> −ε‖b‖X

Soit F ∈ Gpk(βε)(Ek(βε)). Si l’intersection est vide, par le théorème de séparation de
Hahn-Banach, soit h ∈ X tel que

∀ξ ∈ C?; 〈ξ, h〉 > 0 (I.10)

∀ξ ∈ co{Rx(βε, u);u ∈ F,Q(βε, u) = 1}+BX?(0, ε), 〈ξ, h〉 6 −δ (I.11)

pour δ > 0. (I.10) et (H4) impliquent que h ∈ C. On obtient alors

−ε‖h‖X 6
d

dt |t=0+
λk(βε + th) = min

F∈Gpk(βε)(Ek(βε))
max

u∈F\{0}
〈Rx(βε, u), h〉

ce qui se réécrit

∀F ∈ Gpk(βε)(Ek(βε)), max
u∈F\{0}

〈Rx(βε, u), h〉+ ε‖h‖X > 0.
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Noter que
‖h‖X = ‖J(h)‖X?? = sup

ζ∈X?,‖ζ‖X?61

|〈ζ, h〉|

Soit u ∈ F tel que Q(βε, u) = 1 et Rx(βε, u) = maxv∈F\{0}〈Rx(βε, v), h〉, et ζ ∈ X? tel
que ‖ζ‖X? 6 1 et 〈ζ, h〉 > ‖h‖X − δ

ε
. Alors ξ = Rx(βε, u) + εζ contredit (I.11).

Remarque I.4.3. On note une certaine flexibilité dans les hypothèses. Par exemple, si
X = Z? et satisfait que pour toute fonction propre u ∈ Ek(β), Rx(βε, u) ∈ J(Z) où
J : Z → Z?? = X? est l’injection canonique, on obtient une meilleure conclusion

∀F ∈ Gpk(βε)(Ek(βε)),
(
co{Rx(βε, u);u ∈ F,Q(βε, u) = 1}+BZ(0, ε)

)
∩ C̃ 6= ∅,

en remplaçant X? par Z lorsque Z (ou X) n’est pas un espace réflexif. Ici, on note C̃ un
cône tel que C̃? = C et on n’a plus besoin de l’hypothèse (H5).

Grâce à cette proposition on peut prévoir l’équation d’Euler Lagrange approchée que
fournit le principe variationnel d’Ekeland. Au moins conceptuellement, elle est très utile
pour bien choisir l’espace variationnel complet adapté (A, d). En effet, son choix est la
difficulté principale. Si l’espace complet est trop gros, on ne peut pas formuler des dé-
rivées directionnelles de la fonctionnelle et la condition (iii) devient inexploitable. Par
exemple, dans Optimn=2, il existe des mesures de probablilité et des fonctions L1 posi-
tives qui n’admettent pas de fonctions propres car (H3) n’est pas satisfait. Pourtant, si
la Proposition I.4.2 s’appliquait pour X = L1(Σ), l’équation d’Euler-Lagrange approchée
dans X? = L∞(Σ) serait idéale. En effet, le schéma de preuve de la Sous-section I.3.1 écrit
pour les suites de points critiques s’appliquerait à ces suites minimisantes : elles seraient
compactes quand ε → 0. En effet, avec l’inégalité |Φε|2 > 1− OL∞(ε), on divise par |Φε|
et on définit le remplacement harmonique de Φε

|Φε| .
Si l’espace complet est trop petit, la condition presque critique qu’on déduit de (iii)

sur la suite minimisante n’est pas assez forte pour déduire la sous-convergence lorsque
ε → 0. Par exemple, si on choisit X = Lp(Σ) pour p > 1, la Proposition I.4.2 s’applique
cette fois très bien, mais l’équation d’Euler-Lagrange approchée dans X? = L

p
p−1 (Σ) n’est

pas suffisante pour appliquer le schéma de preuve de la Sous-section I.4.3 lorsque ε→ 0.

I.4.2 Optimn>3 : espaces de fonctions Lp positives

Pour p > n
2
, on pose X = Lp(M), A = {β ∈ Lp(M) \ {0}; β > 0, ‖β‖Lp > 1} et

H = H1(M). On pose pour β ∈ A et u ∈ H

G(u) =

∫
M

uLgudvg

Q(β, u) =

∫
M

β

‖β‖Lp
u2dvg.

On note λ̄pk la k-ème valeur propre renormalisée dans Lp associée au quotient de Rayleigh
R = G

Q
. Optimn>3 correspond à λ̄k = λ̄

n
2
k . On a la propriété suivante :

Proposition I.4.4 ([HPP25, Proposition 2.1, Proposition 3.1]). Soit β ∈ A. Si β > 0 ou
si λ̄p1(β) > −∞, alors (H1), (H2) et (H3) sont satisfaits.
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On déduit par continuité des valeurs propres sur A>0 = {β ∈ A; β > 0} et par densité
que pour k > k+,

inf
A>0

λ̄k = inf
C∞>0

λ̄k

et pour k 6 k−,
sup
A>0

λ̄k = sup
C∞>0

λ̄k.

Malheureusement, (H1) peut être mise à défaut si β s’annule sur un ensemble de mesure
strictement positive et si k− > 1 (plus précisément, dans ce cas, λ̄p1(β) = −∞ devient
possible). On a pourtant besoin d’appliquer la Proposition I.4.2 sur un espace complet.
On propose donc de changer légèrement la fonctionnelle 6 en posant pour δ > 0

Qδ(β, u) =

∫
M

(
β

‖β‖Lp
+ δ

)
u2dvg

pour s’assurer que γ = β
‖β‖Lp

+ δ > 0 et on note λ̄δ,pk la k-ème valeur propre renormalisée
dans Lp δ-approchée associée au quotient de Rayleigh Rδ = G

Qδ
. On obtient alors (voir

[HPP25, Proposition 4.7] pour la démonstration du résultat pour δ = 0) :

Proposition I.4.5. Pour k > k+

lim
(δ,p)→(0,n

2
)
inf
A
λ̄δ,pk = inf

A>0

λ̄k = inf
C∞>0

λ̄k

et pour k 6 k−,
lim

(δ,p)→(0,n
2

)
sup
A
λ̄δ,pk = sup

A>0

λ̄k = sup
C∞>0

λ̄k

On montre donc l’existence de minimiseurs pour infA λ̄
δ,p
k à (δ, p) fixés δ > 0 et p > n

2

puis de faire converger la suite de minimiseurs approchés lorsque (δ, p)→ (0, n
2
). En posant

C = {b ∈ Lp(M); b > 0},

Les hypothèses (H1), (H2), (H3), (H4) et (H5) sont toutes satisfaites pour λ̄δ,pk , et on peut
appliquer la Proposition I.4.2. On obtient :

Proposition I.4.6. Fixons k > 1, δ > 0 et p > n
2
. On suppose k > k+. Alors il existe

βε ∈ A tel que
(i) λεk = λ̄p,δk (βε) 6 infA λ̄

p,δ
k + ε2,

(ii) 1 6 ‖βε‖Lp 6 1 + ε,
(iii) Il existe `ε 6 k − k+ + 1 et Uε = (v1

ε , · · · , v`εε ) : M → R`ε et fε ∈ L
p
p−1 tels que

(a) LgUε = λεkγεUε où γε = βε
‖βε‖Lp

+ δ et on suppose
∫
M
γε|Uε|2dvg = 1,

(b) |Uε|2 6 µε

(
βε

‖βε‖Lp

)p−1

+ fε où µε =
∫
M

βε
‖βε‖Lp

|Uε|2dvg > 1,
(c) ‖fε‖

L
p
p−1

6 ε
λεk
.

On suppose k 6 k−.Alors il existe βε ∈ A tel que
(i) λεk = λ̄p,δk (βε) > supA λ̄

p,δ
k − ε2,

6. Dans [HPP25], on procéde autrement : on définit des valeurs propres généralisées λ̄k sur A et
des fonctions propres généralisées associées et on adapte la démonstration de la Proposition I.4.2. Cette
adaptation se fait au prix d’une modification de la définition des valeurs propres lorsque β s’annule sur
un ensemble de mesure non nulle (voir Sous-section IV.2.1)
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(ii) 1 6 ‖βε‖Lp 6 1 + ε,
(iii) Il existe `ε 6 k− − k + 1 et Uε = (v1

ε , · · · , v`εε ) : M → R`ε et fε ∈ L
p
p−1 tels que

(a) LgUε = λεkγεUε où γε = βε
‖βε‖Lp

+ δ et on suppose
∫
M
γε|Uε|2dvg = 1,

(b) |Uε|2 6 µε

(
βε

‖βε‖Lp

)p−1

+ fε où µε =
∫
M

βε
‖βε‖Lp

|Uε|2dvg 6 1,
(c) ‖fε‖

L
p
p−1

6 ε
|λεk|

.

Remarque I.4.7. On obtient bien une équation d’Euler-Lagrange approchée :
— En intégrant (b) contre γε, et par des inégalités de Hölder, on obtient

1 =

∫
M

γε|Uε|2dvg 6 µε

(
1 + δ

∫
M

(
βε
‖βε‖Lp

)p−1

dvg

)
+

∫
M

γεfεdvg

6 µε(1 + δ) +
ε

|λεk|
6 1 + δ +

ε

|λεk|
,

ce qui implique que µε est minoré par une constant strictement positive lorsque
ε→ 0 et que µε → 1 lorsque ε→ 0 et δ → 0.

— Si ε = 0, βε est critique pour λ̄δ,pk et on obtient l’égalité |Uε|2 = µεγ
p−1
ε

I.4.3 Optimn=2 : espace de formes bilinéaires positives sur H1

On note X l’espace de Banach des formes bilinéaires symétriques continues sur H1(Σ).
Il est muni de la norme

‖β‖g = sup
φ,ψ∈H1(Σ,g)

|β(φ, ψ)|
‖φ‖H1(g)‖ψ‖H1(g)

où ‖φ‖2
H1(g) =

∫
Σ
φ2dAg +

∫
Σ
|∇φ|2dAg. L’espace X (tout comme H1(Σ, g)) ne dépend pas

du choix de la métrique g et les normes associées à deux métriques g1 et g2, ‖β‖g1 et ‖β‖g2

sont équivalentes (avec constantes d’équivalence localement uniformes en la métrique).
On note C l’adhérence dans X du sous-ensemble Y

C = Y Y =

{
(φ, ψ) 7→

∫
Σ

e2uφψdAg;u ∈ C∞(Σ)

}
et on note

A = {β ∈ C; β(1, 1) > 1}.

Remarque I.4.8. L’espace (X, ‖ · ‖g) et C sont naturels pour les raisons suivantes
— Ils apparaissent dans la Proposition I.3.4 et l’équation (I.6) prend tout son sens.
— Un élément de C agit comme une forme linéaire continue sur l’espace vectoriel

engendré par les carrés de fonctions H1 noté Q, muni de la norme

‖q‖Q = inf

{∑
i∈I

‖φi‖H1(g)‖ψi‖H1(g); q =
∑
i∈I

φiψi et ∀i ∈ I, φi, ψi ∈ H1

}

= inf

{∑
i∈I

‖φi‖2
H1(g) +

∑
j∈J

‖ψj‖2
H1(g); q =

∑
i∈I

φiψi et ∀i ∈ I, φi, ψi ∈ H1

}
= inf

{
‖φ‖2

H1(g) + ‖ψ‖2
H1(g); q = φ2 − ψ2 et φ, ψ ∈ H1

}
.
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pour q ∈ Q. Autrement dit, c’est un élément du dual de Q. Avec la Proposition
I.4.2 et la remarque qui suit, on comprend que ce choix de C donne la condition
d’Euler-Lagrange approchée |Φ|2 > 1− θ2 où ‖θ‖2

H1 6 ε. La condition de petitesse
porte précisément dans l’espace Q. Cette condition sera suffisante en pratique pour
faire sous-converger les suites optimisantes lorsque ε→ 0.

— Ce n’est pas la première fois que cet espace est invoqué en géométrie spectrale :
voir par exemple des résultats sur l’opérateur de Schrödinger [FP82, MV02, CL22].

On définit alors pour β ∈ A et φ ∈ H1

G(φ) =

∫
Σ

|∇φ|2gdAg

Q(β, φ) =
β(φ, φ)

β(1, 1)

et on note λ̄1 la première valeur propre non nulle renormalisée généralisée associée au
quotient de Rayleigh R = G

Q
, c’est à dire lorsque Σ est connexe, la première valeur propre

est nulle associée aux fonctions constantes et :

λ̄1(β) = inf
φ∈H1\{0},β(φ,1)=0

R(β, φ)

Proposition I.4.9 ([Pet25d, Proposition 1.1, Proposition 1.3]). Soit β ∈ A. Alors (H1),
(H2) et (H3) sont satisfaits.

En particulier, on déduit de la continuité de λ̄1 dans A et par approximation que

sup
A
λ̄1 = sup

C∞>0

λ̄1

de sorte que le problème généralisé est bien posé.

Remarque I.4.10. On note X+ le cône des formes bilinéaires symétriques positives. Si
β ∈ X+, alors (H1) et (H2) sont satisfaits. Par contre, on utilise que β ∈ A est un point
adhérent de Y dans X pour démontrer (H3). Bien sûr X+ 6= C car un élément β ∈ C doit
satisfaire la propriété

∀(φi, ψi)i∈I , (φj, ψj)j∈J ∈ H1,
∑
i∈I

φiψi =
∑
j∈J

φjψj ⇒
∑
i∈I

β(φi, ψi) =
∑
j∈J

β(φj, ψj). (I.12)

Un élément de C est de surcroît une mesure positive sans atome. On peut noter X̃+ l’en-
semble des éléments deX+ satisfaisant la propriété I.12. Il serait intéressant de comprendre
précisément l’éventuelle différence entre X̃+ et C ⊂ X̃+ ⊂ X+. 7

Il n’est pas clair que (C + (−C) , ‖ · ‖X) est l’espace dual de (Q, ‖·‖Q). Cette heuristique
permet néanmoins d’adapter la démonstration de la Proposition I.4.2, pour obtenir :

Proposition I.4.11 ([Pet25d, Proposition 1.5]). Soit ε > 0 et soit β̃ε ∈ C∞>0 qui satisfait

λ̄1(β̃ε) > sup
A
λ̄1 − ε2 et

∫
Σ

β̃εdAg = 1

Alors, en notant gε = β̃εg, il existe βε ∈ A tel que

7. Durant la rédaction de ce manuscrit, une façon plus consistante de comprendre ces espaces de
fonction semble être apparue dans [Vin25b, Section 2.2]
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(i) λεβε(1, 1) = λ̄1(βε) > λ̄1(β̃ε) > supA λ̄1 − ε2,
(ii) ‖β̃εdAg − βε‖gε 6 ε et en particulier 1 6 βε(1, 1) 6 ‖βε‖gε 6 1 + ε,
(iii) Il existe Φε = (φ1

ε, · · · , φmεε ) ∈ H1(Σ,Rmε) tel que
(a) ∆gΦε = λεβε(Φε, ·)
(b) |Φε|2 > 1− θ2

ε et βε(Φε,Φε) = βε(1, 1)
(c) ‖θε‖2

H1(gε)
6 ε.

Ici, on applique le principe variationnel d’Ekeland à l’espace complet (A, ‖ · ‖gε). On
peut tout à fait avoir les conclusions de la Proposition pour g à la place de gε en choisissant
l’espace complet (A, ‖ · ‖g), mais c’est moins bien adapté en pratique pour obtenir la sous-
convergence des suites minimisantes (notamment lorsqu’on veut prendre en compte les
phénomènes de bulles qui peuvent survenir dans le problème analogue de l’optimisation
des valeurs propres à indices k > 1 ou de combinaisons de valeurs propres).

I.5 Convergence des suites optimisantes

I.5.1 Optimn>3 : Cas des valeurs propres négatives

Pour ne pas alourdir la présentation de la méthode d’optimisation, on se concentre
sur le cas simple des valeurs propres négatives du Laplacien conforme. En effet, les suites
minimisantes des valeurs propres positives peuvent se concentrer. Pour rappel, le cas
particulier de la première valeur propre strictement positive est équivalent au problème
de Yamabe avec un Laplacien conforme coercif. C’est un cas célèbre de fonctionnelle
invariante conforme où une événtuelle explosion apparaît à cause du défaut de compacité
de l’injection de Sobolev. On traite totalement cette difficulté dans [HPP25] : on construit
d’abord des suites de solutions de (I.7) dans le cadre sous-critique (on remplace 2n

n−2
par

qi <
2n
n−2

) puis on écrit la Proposition I.3.10 dans le cadre plus général où βi vérifie (I.7)
avec βi = |Ui|qi−2 et qi ↗ 2n

n−2
lorsque i → +∞. Détaillons le cas des valeurs propres

négatives :

Proposition I.5.1. Soit βε, γε et Uε satisfaisant (i) (ii) et (iii) dans la Proposition I.4.6
pour ε, δ > 0, k 6 k− et p = n

2
. Alors quitte à extraire une sous-suite, βε converge

fortement vers β dans L
n
2 lorsque (δ, ε)→ (0, 0) et Uε converge fortement vers U dans H1

lorsque (δ, ε)→ (0, 0). De plus β ∈ C0,α pour α ∈ (0, 1), β ∈ A>0 et λ̄k(β) = supA<0
λ̄k.

Démonstration. On choisit une sous suite (εi, δi) → (0, 0) lorsque i → +∞ et on note
avec un indice i toutes les suites dépendant de (εi, δi). On obtient

µi → 1 et
∫
M

β
n
2
i → 1 et (βi − γi)→ 0 fortement dans L

n
2 .

On déduit de

|Ui|2 6 µi
β
n
2
i

1− εi
+ fi et ‖fi‖L n

n−2
6 εi et

∫
M

γi|Ui|2dvg = 1

que (Ui) est borné dans L2 et de l’équation LgUi = λ̄k(γi)γiUi que (Ui) est borné dans
H1. Quitte à extraire une sous-suite, on peut supposer que

Ui ⇀ U dans H1 et βi ⇀ β dans L
n
2 et λk(γi)→ λ
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lorsque i → +∞. Bien sûr, γi ⇀ β dans L
n
2 . On montre d’abord la convergence forte de

(Ui)i∈N dans H1. On a l’équation

Lg (Ui − U) = (λk(γi)− λ)γiUi + λγi(Ui − U) + λ(γi − β).

En notant Wi = Ui − U et en intégrant cette equation contre Wi,

‖Wi‖2
H1 = λ

∫
M

γi|Wi|2 +

∫
M

(1−cnSg)|Wi|2 +

∫
M

(λk(βi)−λ)γiUi ·Wi+λ

∫
M

(γi−β)U ·Wi

Comme λ 6 0, et (Wi) converge fortement vers 0 dans L2 et λk(βi)→ λ, on a

‖Wi‖2
H1 6 o(1) + o(1)

∫
M

γiUi ·Wi + λ

∫
M

(γi − β)U ·Wi

De plus, le terme∣∣∣∣∫
M

γiUi ·Wi

∣∣∣∣ 6 (∫
M

γiU
2
i

) 1
2
(∫

M

γ
n
2
i

) 1
n
(∫

M

|Wi|
2n
n−2

)n−2
2n

6 K−1
n (1 + o(1)) ‖Wi‖H1

est borné. De plus, pour R > 0 on a∣∣∣∣∫
M

(γi − β)U ·Wi

∣∣∣∣ 6 ∣∣∣∣∫
M

(γi − β)
(
1|U |<RU ·Wi

)∣∣∣∣+ ‖γi − β‖Ln2 ‖Wi‖
L

2n
n−2
‖U‖

L
2n
n−2 (|U |>R)

.

Comme 1|U |<RU · Wi converge fortement vers 0 dans L
n
n−2 où n

n−2
< 2n

n−2
, en passant

d’abord à la limite quand i→ +∞ on obtient

lim sup
i→+∞

∣∣∣∣∫
M

(γi − β)U ·Wi

∣∣∣∣ 6 C‖U‖
L

2n
n−2 (|U |>R)

.

Pour une certaine constante C > 0. En faisant R → +∞, on obtient que le terme de
gauche est nul. Ainsi, ‖Wi‖2

H1 = o(1) lorsque i→ +∞. On passe à la limite faible sur

βi >

(
max

{
1− εi
µi

(
|Ui|2 − fi

)
; 0

}) 2
n−2

et
∫
M

γi|Ui|2 = 1.

Cela donne
β > |U |

4
n−2 et

∫
M

β|U |2 = 1.

En intégrant l’inégalité β
n−2

2 > |U |2 contre β, on obtient

1 6 ‖β‖
L
n
2
6 lim inf

i→+∞
‖βi‖Ln2 = 1

et β est la limite forte dans L
n
2 de (βi)i∈N. On obtient également

β
n−2

2 = |U |2.

Par ailleurs, la théorie de régularité et bootstrap sur l’équation

LgU = λβU

implique que U ∈ C2,α et β ∈ C0,α pour un certain α ∈ (0, 1). Par ailleurs, par un théorème
de continuation unique, toute coordonnée de U ne peut s’annuler que sur un ensemble de
mesure nulle. Ainsi β = |U |

4
n−2 > 0 presque partout et par continuité de λ̄k sur A>0,

λ = lim
i→+∞

λ̄k(βi) = λ̄k(β)

et λ̄k(β) = supA>0
λ̄k.
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En fin de démonstration, on utilise le résultat de continuation unique suivant

∀φ ∈ Ker (Lg), |φ−1({0})| 6= 0⇒ φ = 0 (I.13)

qui est vrai pour des opérateurs elliptiques d’ordre 2 mais devient problématique si on
remplace Lg par l’opérateur GJMS d’ordre 2s où s est un entier tel que 2s < n comme on
le remarque dans [HPP25]. Cette hypothèse est cruciale dans la construction de valeurs
propres généralisées, c’est à dire définies sur l’espace des fonctions Lp pour p > n

2
, positives,

mais qui peuvent s’annuler sur un ensemble de mesure non nulle. Ces valeurs propres
généralisées sont au fondement théorique de nos résultats dans [HPP25]. En effet, dès le
début de notre analyse sur les suites de solutions quelconques de l’équation aux fonctions
propres

Lgvi = λiβivi,

où (βi) est seulement bornée dans Lp, on montre que (vi) est borné dans H1 8. C’est
l’objet du lemme suivant dont la preuve est retranscrite ici pour montrer comment on
utilise (I.13). Cependant, lorsque l’opérateur Lg n’a pas de noyau, la propriété (I.13) n’est
pas nécessaire.

Lemme I.5.2 ([HPP25, Lemma 2.2]). Soit (vi)i∈N une suite de fonctions dans H1(M) et
(βi)i∈N une suite de fonctions positives dans Lpi(M) pour pi > n

2
et (λi)i∈N une suite de

réels tels que
— Lgvi = λiβivi
— (

∫
M
βpii )i∈N et (

∫
M
βiu

2
i )i∈N sont des suites bornées

— λi 6= 0 et (λi)i∈N bornée.
Alors en écrivant vi = wi + ki avec ki ∈ Ker (Lg) et wi ∈ (Ker (Lg))

⊥L2 , on a
(i) (wi)i∈N est borné dans H1

(ii) Il existe c > 0 tel que pour tout i ∈ N, ‖wi‖H1 > c et |λi| > c.
(iii) Si ‖vi‖H1 →i→+∞ +∞, alors

(a) (βi)i∈N converge faiblement vers 0 dans Lq lorsque i→ +∞ pour tout q 6 n
2

(b) (wi)i∈N converge faiblement vers 0 dans H1.
(c) pi → n

2
lorsque i→ +∞ et λi > c pour i assez grand.

(d) Quitte à extraire une sous-suite vi = ‖vi‖H1 (K + o(1)) lorsque i → +∞ où
K ∈ Ker (Lg) \ {0} et o(1) a lieu pour la convergence forte dans H1.

Démonstration. Pour (i) et (ii) il suffit de suivre et d’adapter la démonstration du Théo-
rème I.1.4, dont on déduit aussi

∫
M
βivikidvg = 0.

On suppose maintenant que ‖vi‖H1 →i→+∞ +∞. On pose

Vi =
vi

‖vi‖H1

Ki =
ki
‖vi‖H1

Wi =
wi
‖vi‖H1

.

Comme (wi)i∈N est bornée, Wi → 0 dans H1. Comme Ker (Lg) est de dimension finie,
quitte à extraire une sous-suite, Ki → K dans H1. On obtient (d).

On note β la limite faible d’une sous-suite de (βi)i∈N. Alors on a par convercence forte
de Vi et Ki dans H1 ⊂ L

2n
n−2∫

M

βiViKidvg →i→+∞

∫
M

βK2dvg

8. C’est la moindre des choses et ce n’est pas naturellement donné par notre problème. D’ailleurs,
pour cette raison, dans [GPA22], les auteurs supposent que Lg est sans noyau dans leurs résultats.
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De
∫
M
βiviki = 0, on déduit que

∫
M
βK2dvg = 0 ce qui implique que K = 0 sur supp β.

Comme K ∈ Ker (Lg)\{0}, le théorème d’unique continuation implique que β = 0. Cette
limite est indépendante du choix de la sous-suite : on obtient (a).

On note w la limite faible d’une sous-suite de (wi)i∈N dans H1. Soit ϕ ∈ C∞(M), on a∣∣∣∣∫
M

ϕLgwdvg

∣∣∣∣+ o(1) =

∣∣∣∣∫
M

ϕLgwidvg

∣∣∣∣ =

∣∣∣∣λi ∫
M

βiviϕdvg

∣∣∣∣
6 |λi|‖ϕ‖L∞

(∫
M

βi

) 1
2
(∫

M

βi(vi)
2

) 1
2

→i→+∞ 0

de sorte que w ∈ Ker (Lg) ∩ Ker (Lg)
⊥L2 = {0} et w = 0. Cette limite est indépendante

du choix de la sous-suite : on obtient (b).
On suppose par contradiction qu’il existe une sous-suite telle que pour tout i ∈ N,

pi > r > n
2
ou telle que pour tout i ∈ N, λi 6 0. On montre alors que

λi

∫
M

βiviwidvg 6 o(1)

lorsque i→ +∞. Cette propriété est vraie si λi 6 0 car
∫
M
βiviwi =

∫
M
βiv

2
i dvg > 0. Par

ailleurs, si pi > r > n
2
, par inégalité de Hölder,

λi

∫
M

βiviwidvg 6 λi

(∫
M

βiv
2
i dvg

) 1
2
(∫

M

βri dvg

) 1
2r
(∫

M

w
2r
r−1

i dvg

) r
2(r−1)

→ 0

lorsque i → +∞ car 2r
r−1

< 2n
n−1

et (wi)i∈N converge faiblement vers 0 dans H1, donc
fortement vers 0 dans L

2r
r−1 . Dans tous les cas, en intégrant l’équation Lgwi = λiβivi

contre wi, on obtient

‖wi‖2
H1 = λi

∫
M

βiviwidvg −
∫
M

cnSgw
2
i +

∫
M

w2
i dvg 6 o(1)

lorsque i→ +∞, ce qui entre en contradition avec (ii) ‖wi‖H1 > c. On obtient (c).

I.5.2 Optimn=2 : Etapes de démonstration

On décrit les étapes de la démonstration de l’existence d’un maximiseur dans une
classe conforme :

Théorème I.5.3 ([Pet25d, Proposition 2.1, Remark 2.1]). Soit (Σ, g) une surface Rie-
mannienne. Soit β̃ε ∈ A tel que

λ̄1(β̃ε) > sup
A
λ̄1 − ε2 et

∫
Σ

β̃εdAg = 1

Alors quitte à extraire une sous-suite β̃ε converge vers β ∈ C∞>0 au sens de la topologie
faible-? des mesures,

λ̄1(β) = sup
A
λ̄1 et

∫
Σ

βdAg = 1,

et β ne s’annule qu’en un nombre fini de points.
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La différence avec le résultat d’existence de [Pet14a] est que cette fois, toutes les suites
maximisantes sous-convergent vers un maximum.

Etape 0 : On applique la Proposition I.4.11. On obtient des suites gε = β̃εg, βε, Φε, θε
qui vérifient 

∆gΦε = λ̄1(βε)βε(Φε, ·)
|Φε|2 + θ2

ε > 1 où ‖θε‖2
H1(gε)

6 ε∫
Σ
|Φε|2dβε =

∫
Σ
dβε = 1 +O(ε)

(I.14)

Etape 1 : On reproduit le schéma de la Remarque I.2.6 en remplaçant Φε par

Φ̃ε = (Φε, θε)

et |Φε| par
ωε = |Φ̃ε| =

√
|Φε|2 + θ2

ε .

En effet, la Proposition I.4.11 garantit que ωε > 1 et que les termes d’erreurs vérifient
‖θε‖2

H1(gε)
6 ε. On obtient

∫
Σ

|∇ωε|2gdAg +

∫
Σ

∣∣∣∣∇(Φε −
Φε

ωε

)∣∣∣∣2
g

dAg +

∫
Σ

ω2
ε

∣∣∣∣∇Φε

ωε

∣∣∣∣2
g

dAg 6 C‖θε‖2
H1(gε)

(I.15)

Etape 2 : On applique le Théorème I.3.2 et la Proposition I.3.3 qui garantissent que pour
ε assez grand,

∀x ∈ Σ, λ?(Dr?(x), βε) > λ1(Σ, βε). (I.16)

Etape 3 : On applique une adaptation de la Proposition I.3.5 sous l’hypothèse (I.14)
(version approchée de (I.6)). On obtient que pour η > 0 et x ∈ Σ donnés, il existe r < r?
tel que ∫

Dr(x)

|∇Φ̃ε|2 6 η

Etape 4 : On définit le remplacement harmonique Ψε de Φ̃ε sur Dr(x) grâce à la Propo-
sition I.3.6 et l’étape 3. Grâce à la Proposition I.3.7 et l’étape 3, on obtient

1

2

∫
Dr(x)

∣∣∣∇(Ψε − Φ̃ε

)∣∣∣2 6 ∫
Dr(x)

∣∣∣∇Φ̃ε

∣∣∣2 − ∫
Dr(x)

|∇Ψε|2 (I.17)

Etape 5 : Une adaptation de la Proposition I.3.8 en utilisant encore l’hypothèse (I.14)
(au lieu de (I.6)) donne alors

1

2

∫
Dr(x)

∣∣∣∇(Ψε − Φ̃ε

)∣∣∣2 6 C

(∫
Dr(x)

|∇ωε|2 + ‖θε‖2
H1(gε)

)
(I.18)

Cela repose sur l’étape 2 et l’étape 4.
Etape 6 : Le Théorème I.3.1 fournit une borne L∞ à |∇Ψε|2. En réutilisant l’équation
des applications harmoniques, on peut même déduire une borne C0,α pour tout α.

‖|∇Ψε|2‖C0,α(D r
2

(x)) 6 C

∫
Dr(x)

|∇Ψε|2.
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Ceci implique que quitte à prendre une sous-suite |∇Ψε|2
λ̄1(βε)

converge fortement dans C0(D r
2
(x))

vers une fonction β ∈ C0. En utilisant l’étape 1 et l’étape 5, on déduit avec l’équation I.14
la convergence faible-? au sens des mesures

βε ⇀? β.

Quitte à globaliser l’argument avec des partitions de l’unité, β est défini sur Σ. La semi-
continuité supérieure de la valeur propre pour cette topologie [Kok14, Proposition 1.1]
implique

sup
A
λ̄1 = lim

ε→0
λ̄1(βε) 6 λ̄1(β)

où il est clair que β ∈ A. On réapplique la remarque I.2.6 au maximiseur β pour obtenir
que β = |∇Φ|2

λ̄1(β)
où Φ : Σ → Sp−1 est une application harmonique. Ainsi β ∈ C∞>0 et β ne

s’annule qu’un nombre fini de fois (voir [Kok14, Pet14a]).

I.6 Perspectives
Les chapitres suivants montrent que cette méthode variationnelle se généralise très

bien :
— Optimn=2 : aux combinaisons finies de valeurs propres associées au Laplacien sur

des surfaces compactes sans bord, ou associées à l’opérateur Dirichlet à Neumann
sur des surfaces à bord. Ces problèmes n’apparaissent pas dans ce chapitre pour
ne pas surcharger la présentation (les combinaisons de valeurs propres nécessitent
des notations plus lourdes), et également car l’analyse des suites optimisantes né-
cessite de prendre en compte des phénomènes de concentration a priori qui étaient
exclus dans le cas de la première valeur propre grâce au Théorème I.3.2. On ren-
voie à [Pet25d] pour ce cadre plus général. Par ailleurs, cette théorie s’applique
directement dans des espaces variationnels invariants sous l’action de groupes de
symétries (voir [Pet23b, Pet25b] détaillés dans le Chapitre III pour des applications
concrètes)

— Optimn>3 : aux opérateurs GJMS d’ordre 2s notés P s
g sur une variété Riemannienne

compacte (M, g) de dimension n > 2s pour s entier (voir Chapitre IV). Toutefois,
le résultat nécessaire de continuation unique (I.13) bien connu pour le Laplacien
conforme Lg (s = 1) est ouvert dans le cas général pour P s

g .
— Le principe variationnel d’Ekeland a aussi été utilisé dans [Pet24a] pour maximiser

les valeurs propres du Laplacien en dimension 2 parmi toutes les métriques (voir
Chapitre II)

Bien que plusieurs autres méthodes permettent l’optimisation de valeurs propres (par
exemple [AH06, Amm09, Pet14a, NS15, Pet18, Pet19, KNPP22, GPA22, KS23, Vin25a,
Vin25b]), il n’existe à mon sens pas d’approche aussi englobante que celle présentée dans
l’actuel chapitre (qui rassemble des résultats de [PT24, Pet25d, Pet24a, HPP25]). Néan-
moins, comme on le voit dans les grandes différences entre deux exemples, l’approche
analytique pour démontrer la compacité des suites optimisantes "à la Palais-Smale" ici
construites est très dépendante du cadre d’application. Des travaux actuels et futurs
consistent à affiner cette approche dans les cadres suivants :

— En dimension n > 3 pour les valeurs propres du Laplacien ou les valeurs propres
de Steklov sur des variétés Riemanniennes ou même dans un cadre RCD où la
renormalisation donnée dans (I.1) en dimension supérieure correspond à des espaces
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riemanniens à poids. Une partie de ce travail a été réalisée dans [KS22]. Pendant
la rédaction de ce mémoire, [Vin25b] donne une approche légèrement différente de
la mienne pour traiter cette question. Une partie de son analyse pourrait d’ailleurs
permettre une compréhension plus fine des espaces fonctionnels que j’ai choisis
dans Optimn=2 au début de la Sous-section I.4.3, et qui apparaîssent dans [Pet25d,
Pet24a].

— Les techniques de [HPP25] (Optimn>3), apportent une nouvelle approche pour
l’optimisation des valeurs propres de Dirac, introduite par Ammann [Amm09].
Par ailleurs, Karpukhin-Métras-Polterovich [KMP23] ont récemment donné un lien
entre les métriques critiques de l’opérateur de Dirac en dimension 2 et les applica-
tions harmoniques dans CPn. Ces questions font actuellement l’objet du travail de
mon étudiant Pavel Martynyuk.

— En partant de la caractérisation de certaines surfaces minimales à bord libre dans
des calottes sphériques comme points critiques de certaines fonctionnelles spectrales
constituées de valeurs propres de Robin dans [LM23] et l’extension de ces résultats
dans [Med23] aux surfaces minimales à bord libre dans des boules géodésiques de
l’espace hyperbolique, l’approche de [Pet25d, Pet24a] est sans doute la plus adaptée
à suivre pour produire ces surfaces minimales par optimisation spectrale.

— En dimension n > 3 pour les valeurs propres du Laplacien ou les valeurs propres de
Steklov sur des variétés riemanniennes dans le cadre géométrique. Actuellement,
les résultats préliminaires de bornitude de la fonctionnelle [Has11], de calcul de mé-
triques critiques [KM21], et de non concentration des suites de métriques critiques
pour la première valeur propre du Laplacien [Pet15] existent. La difficulté est de
bien construire des suites de Palais-Smale dans des espaces variationnels adaptés
construits à partir d’espaces de Sobolev à poids. Une combinaison de [Pet25d] et
de [Vin25b] offre des pistes pour résoudre ces difficultés.

— Pour les opérateurs GJMS d’ordre 2s sur des variétés Riemanniennes de dimension
critique n = 2s, et en particulier l’opérateur de Paneitz. Les résultats préliminaires
de calcul de bornes sur les valeurs propres [Che14], de calculs de métriques critiques
[PA22] existent. Dans ce cadre, il faut écarter d’une façon ou d’une autre les diffi-
cultés inhérentes aux opérateurs dominés par le bilaplacien (absence de principes
du maximum généraux, questions sur la continuation unique etc).

— Pour des combinaisons infinies de valeurs propres, d’abord pour le Laplacien en
dimension 2 et ensuite dans tous les cadres évoqués ci-dessus. Un premier pas dans
cette direction est l’existence d’estimées de régularité du même type que dans le
Théorème I.3.1 de ce que j’ai appelé les "harmonic eigenmaps" (voir [Pet25c]).
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Chapitre II

Optimisation de fonctionnelles
spectrales en dimension 2

Ce chapitre est une synthèse sur les travaux [Pet23a, Pet24b, Pet25d, Pet24a, Pet25a].
Il décrit ma contribution aux questions d’optimisation sur des surfaces (variétés différen-
tiables de dimension 2) compactes sans bord Σ de fonctionnelles spectrales, c’est à dire
construites comme des combinaisons d’un nombre fini de valeurs propres du Laplacien
renormalisées par l’aire. Les questions analogues avec des valeurs propres de Steklov re-
normalisées par la longueur du bord de surfaces compactes à bord seront aussi détaillées,
mais parfois plus rapidement.

La généralisation à des combinaisons de valeurs propres est bénéfique pour plusieurs
raisons. De manière générale, se concentrer uniquement sur l’état fondamental, ou sur le
bas du spectre dans les problèmes d’optimisation spectrale (même dans le cadre d’op-
timisation de formes classique) limite les possibles champs d’application physiques ou
théoriques.

Ensuite, on observe qu’uniquement travailler à la maximisation de valeurs propres qui
ne sont pas la première comme je l’ai fait pendant ma thèse [Pet18, Pet19] et comme cela
a été étudié dans [KNPP21] sur la sphère et dans [Kar21] sur le plan projectif semble ne
jamais fournir de nouveaux exemples de métriques maximales.

Par ailleurs, mes résultats se relient aux bornes classiques sur des sommes d’inverses
de valeurs propres renormalisées du Laplacien [Her70, YY19, Ber73] ou de Steklov [HP68]
ainsi que sur des produits de valeurs propres de Steklov [HPS75]. Ce nouveau point de vue
a permis de faire le lien entre les métriques critiques et les immersions minimales dans des
ellipsoïdes, généralisant les résultats précédents de [Nad96, FS13] où pour l’optimisation
d’une seule valeur propre, l’ellipsoïde est une sphère.

Géométriquement, ce lien fournit un moyen de construire de nouvelles surfaces mini-
males par optimisation spectrale comme on le verra dans le Chapitre III. Analytiquement,
il apporte une approche variationnelle très générale basée sur les résultats de régularité des
applications harmoniques dans des ellipsoïdes. Ce point de vue général m’a également per-
mis de reconsidérer les résultats existants pour l’optimisation d’une valeur propre avec une
approche plus simple, naturelle et généralisable que dans ma thèse [Pet14a, Pet18, Pet19],
comme je l’explique dans le Chapitre I.

Enfin, on ouvre de nombreuses perspectives de travail non encore étudiées comme par
exemple : les différences de valeurs propres pour identifier de nouveaux trous spectraux ;
les combinaisons de valeurs propres entre différents opérateurs ; des combinaisons infinies
de valeurs propres pour atteindre des invariants riemanniens globaux.

49
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En parallèle de ces travaux, Karpukhin et Stern [KS23] ont proposé une approche très
différente. Ils se concentrent plus finement sur l’optimisation de la première valeur propre
par une méthode variationnelle indirecte. Elle est basée sur un min-max de l’énergie d’ap-
plications à valeurs dans une sphère modelé sur le volume conforme de Li et Yau [LY82].
Ces travaux donnent une preuve alternative à [Pet14a] mais aussi des outils puissants pour
montrer des résultats de stabilité sur la première valeur propre [KNPS21], approfondire le
lien entre les optimiseurs de la première valeur propre de Steklov avec grand nombre de
composantes de bord et ceux des valeurs propres du Laplacien [KS24] initié par [GL21a],
construire des immersions minimales à bord libre sur n’importe quelle surface orientable
à bord par optimisation équivariante de la première valeur propre de Steklov [KKMS24].

En m’appuyant sur [KKMS24] et des constructions de suites de Palais-Smale de
[Pet25d], j’ai démontré l’existence de métriques optimales pour un grand nombre de com-
binaisons de valeurs propres du Laplacien (y compris des métriques maximales pour la
première) sur toute surface orientable sans bord dans [Pet24a]. Par un travail plus fin
sur les méthodes de [KS23, KKMS24], nous avons complété dans [KPS25] le résultat
d’existence de métrique maximales pour la première valeur propre du Laplacien à toute
topologie (y compris non orientable).

II.1 Formulations du problème, métriques critiques
Introduisons le cadre de travail. Etant donnée une fonction F : Rm

+ → R ∪ {+∞}
décroissante par rapport à chaque coordonnée. On peut avoir en tête les fonctions du
type

fm,a,s(x1, · · · , xm) =
m∑
k=1

ak(xk)
−s

hm,a,s(x1, · · · , xm) =

(
m∑
k=1

ak(xk)
s

)−1

pour a ∈ (R+)m \ {0} et s > 0. Pour e = (1, · · · , 1), on peut noter

fm = fm,e,1 et hm = hm,e,1

la somme des inverses et l’inverse de la somme des coordonnées. On regarde le problème
de minimisation de la fonctionnelle EF où :

I(Σ, F ) = inf
g∈Met(Σ)

EF (Σ, g)

où Met(Σ) désigne l’ensemble des métriques Riemanniennes sur Σ et pour g ∈Met(Σ),

EF (Σ, g) = F
(
λ̄1(Σ, g), · · · , λ̄m(Σ, g)

)
où pour k ∈ N?, λ̄k désigne la k-ème valeur propre généralisée du Laplacien au sens
suivant :

λ̄k(Σ, g) = inf
V ∈Gk+1(C∞(Σ))

max
φ∈V \{0}

∫
Σ
|∇φ|2gdAg∫
Σ
φ2dAg

∫
Σ

dAg,

où dAg est la mesure d’aire par rapport à la métrique g et Gk+1(C∞(Σ)) est l’ensemble
des sous espaces vectoriels de dimension k + 1 des fonctions de classe C∞(Σ). Même en
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ne supposant pas dans cette définition que Σ est connexe, il faut comprendre que la
convention sur les indices des valeurs propres est choisie de sorte que k désigne la k-ème
valeur propre non nulle pour les surfaces connexes. λ̄0 = 0 est associée aux fonctions
constantes. On définit également l’invariant conforme

Ic(Σ, [g], F ) = inf
g̃∈[g]

EF (Σ, g̃)

où pour une surface riemannienne compacte sans bord (Σ, g), [g] désigne la classe conforme
de g dans Σ. On note en particulier

Λk(Σ) = I(Σ, (x 7→ (xk)
−1))−1 et Λk(Σ, [g]) = I(Σ, [g], (x 7→ (xk)

−1))−1

les problèmes de maximisations de la k-ème valeur propre du Laplacien renormalisée.
Remarquons que I(Σ, F ) > −∞ (et Ic(Σ, [g], F ) > −∞) par [Kor93] (ou [Has11])

Λk(Σ) = sup
g∈Met(Σ,g)

λ̄k(Σ, g) < +∞

pour tout k ∈ N et les propriétés de monotonie de F .

De la même façon, on peut définir

IS(Σ, F ) = inf
g∈Met(Σ)

ES
F (Σ, g)

et
Isc (Σ, [g], F ) = inf

g̃∈[g]
ES
F (Σ, g̃)

où
ES
F (Σ, g) = F (σ̄1(Σ, g), · · · , σ̄m(Σ, g))

sur une surface compacte à bord munie d’une métrique g ∈ Met(Σ) et où pour k ∈ N?,
σ̄k désigne la k-ème valeur propre de Steklov généralisée au sens suivant :

σ̄k(Σ, g) = inf
V ∈Gk+1(C∞(Σ))

max
φ∈V \{0}

∫
Σ
|∇φ|2gdAg∫
∂Σ
φ2dLg

∫
∂Σ

dLg,

où dLg est la mesure de longueur par rapport à la métrique g sur le bord de Σ. On note
en particulier

σk(Σ) = I(Σ, (x 7→ (xk)
−1))−1 et σk(Σ, [g]) = I(Σ, [g], (x 7→ (xk)

−1))−1

les problèmes de maximisations de la k-ème valeur propre de Steklov renormalisée.
Encore une fois, IS(Σ, F ) > −∞ par [Has11]

σk(Σ) = sup
g∈Met(Σ,g)

σ̄k(Σ, g) < +∞

pour tout k ∈ N et les propriétés de monotonie de F .
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II.1.1 Métriques critiques

Dans [Pet23a] (resp [Pet24b]), on remarque le lien entre les métriques critiques de la
fonctionnelle E : g 7→ EF (Σ, g) (resp E : g 7→ ES

F (Σ, g)) et les immersions minimales
branchées (resp à bord libre) dans des ellipsoïdes. Enonçons précisément ce lien. Dans ce
mémoire, on n’utilise que la définition originelle de métrique critique de [Nad96] :

∀h ∈ S2
0(Σ), lim

t→0
>

E(g + th)− E(g)

t
lim
t→0
<

E(g + th)− E(g)

t
6 0. (II.1)

où S2
0(Σ) est l’espace tangent de l’ensemble des métriques : les 2-tenseurs symétriques.

Comme nous le remarquons dans [PT24], la condition II.1 est équivalente à 0 ∈ ∂E(Σ, g),
où ∂E(Σ, g) désigne le sous-différentiel classique (ou sous-différentiel de Fréchet). 1 De
manière analogue, une métrique est critique à classe conforme contrainte si

∀f ∈ C∞(Σ), lim
t→0
>

E(g(1 + tf))− E(g)

t
lim
t→0
<

E(g(1 + tf))− E(g)

t
6 0. (II.2)

Les minima locaux de E (resp dans la classe conforme) sont évidemment critiques au sens
de la définition (II.1) (resp définition (II.2)).

On note l’ellipsoïde
EΛ = {x ∈ Rn; |x|Λ = 1}

où |x|Λ = 〈Λ·x, x〉 et Λ est une matrice diagonale qui contient les paramètres de l’ellipsoïde.

Théorème II.1.1 ([Pet23a][PT24]). Soit (Σ, g) une surface Riemannienne compacte sans
bord. On Suppose que g est une métrique critique pour EF (Σ, ·). Alors, il existe une
application Φ : Σ→ Rn telle que

(1) Pour 1 6 i 6 n, la coordonnée φi est une fonction propre associée à λi := λi(Σ, g).
En notant Λ = diag(λ1, · · · , λm−1, λm, · · · , λm), on écrit l’équation vectorielle

∆gΦ = Λ · Φ

(2) |Φ|Λ = 1

(3) dΦ⊗ dΦ = |∇Φ|2
2
g

(4) Pour tout 1 6 i 6 m, en notant Ii = {1 6 j 6 n;λj = λi}, on a

∑
j∈Ii

∫
Σ

φ2
i dAg =

∑
k∈Ii∩{1,··· ,m} ∂kF (λ̄1, · · · , λ̄m)∑m

k=1 λk∂kF (λ̄1, · · · , λ̄m)
Ag(Σ).

où λ̄i = λiAg(Σ). Si g est seulement une métrique critique pour la fonctionnelle EF (Σ, ·)
restreinte à la classe conforme de g, alors il existe une application Φ : Σ→ Rn qui vérifie
les conditions (1), (2) et (4).

1. Tous les calculs de métriques critiques précédemment connus utilisent la définition II.1 qui est en
pratique suffisante pour des métriques extrémales. Dans [PT24], nous nous rattachons à la théorie des
sous-différentiels pour des fonctions localement Lipschitziennes introduite par Clarke. Celle-ci est plus
adaptée pour comprendre la notion de métrique critique, notamment dans le cas de combinaisons de
valeurs propres. En effet, le sous-différentiel de Clarke est construit pour satisfaire une règle de la chaîne,
ce qui n’est pas le cas du sous-différentiel classique en général.
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On remarque que (1) et (2) signifient que Φ : Σ→ EΛ est une application harmonique
au sens où c’est un point critique de l’énergie des applications Ψ : Σ → Rn sous la
contrainte |Ψ|Λ = 1. (3) signifie que Φ est conforme. (1), (2) et (3) signifient donc que Φ
est une immersion minimale dans EΛ, au sens où c’est un point critique de l’aire de Ψ(Σ)
parmi toutes les applications Ψ : Σ→ Rn satisfaisant la contrainte |Ψ|Λ = 1.

On quantifie également les masses individuelles des coordonnées de Φ dans (4) en
fonction du choix de la fonctionnelle spectrale EF . On donne dans [PT24] une description
plus fine que (4) dans le cas où des valeurs propres pour g sont multiples. 2 De plus,
on fournit dans [PT24] une réciproque au Théorème II.1.1 : toute immersion minimale
dans un ellipsoïde peut être associée à une métrique critique d’une certaine fonctionnelle
spectrale EF . 3

Insistons sur le fait que l’information qu’on perd en ne calculant la criticalité que dans
les directions conformes à g est exactement (3) : la conformalité de l’application Φ.

On énonce plus rapidement le résultat analogue dans le cadre à bord :

Théorème II.1.2 ([Pet24b, PT24]). Soit (Σ, g) une surface Riemannienne compacte avec
un bord. On Suppose que g est une métrique critique pour ES

F (Σ, ·). Alors, il existe une
application Φ : Σ→ Rn telle que

(1) Pour 1 6 i 6 n, la coordonnée φi est une fonction propre associée à σi := σi(Σ, g).
En notant σ = diag(σ1, · · · , σm−1, σm, · · · , σm), on écrit l’équation vectorielle{

∆gΦ = 0 dans Σ

∂νΦ = σ · Φ sur ∂Σ

(2) |Φ|σ = 1 sur ∂Σ

(3) dΦ⊗ dΦ = |∇Φ|2
2
g

(4) Pour tout 1 6 i 6 m, en notant Ii = {1 6 j 6 n;σj = σi}, on a∑
j∈Ii

∫
∂Σ

φ2
i dLg =

∑
k∈Ii∩{1,··· ,m} ∂kF (σ̄1, · · · , σ̄m)∑m

k=1 σk∂kF (σ̄1, · · · , σ̄m)
Lg(∂Σ).

où σ̄i = σiLg(∂Σ). Si g est seulement une métrique critique pour la fonctionnelle ES
F (Σ, ·)

restreinte à la classe conforme de g, alors il existe une application Φ : Σ→ Rn qui vérifie
les conditions (1), (2) et (4).

Comme pour le cas sans bord, on obtient des interprétations géométriques : (1) et (2)
signifient que Φ : (Σ, ∂Σ) → (co(Eσ), Eσ) est une application harmonique à bord libre au
sens où c’est un point critique de l’énergie des applications Ψ : Σ→ Rn sous la contrainte
|Ψ|σ = 1 sur ∂Σ. On note que par principe du maximum et convexité de l’ellipsoïde plein,
Φ est à valeurs dans co(Eσ) et n’atteint Eσ qu’au bord ∂Σ. (3) signifie que Φ est conforme.
(1), (2) et (3) signifient donc que Φ est une immersion minimale à bord libre proprement
immergée dans (co(Eσ), Eσ), au sens où c’est un point critique de l’aire de Ψ(Σ) parmi les
applications Ψ : Σ → Rn satisfaisant la contrainte |Ψ|σ = 1 sur ∂Σ. On dit que Φ est
proprement immergée du fait de la propriété Φ−1(Eσ) = ∂Σ.

Donnons un point de vocabulaire pour la suite du chapitre :

2. Ces conditions peuvent être comprises sur appliquation de la règle de la chaîne : le sous différentiel
de la combinaison de valeurs propres est inclus dans une combinaison linéaire des sous-différentiels de
Clarke associés à une seule valeur propre.

3. En pratique, nous montrons que certaines familles de fonctionnelles EF qui satisfont la condition
(4) conviennent en calculant précisément leur sous-différentiel en g. Les conditions (1), (2), (3) et (4)
imposent alors que 0 appartient au sous-différentiel de EF en g
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Définition II.1.3. On dit que I(Σ, F ) (resp Ic(Σ, [g], F )) est atteint s’il existe une mé-
trique minimale pour I(Σ, F ) (resp Ic(Σ, [g], F )) lisse en-dehors de singularités coniques.
On dit que IS(Σ, F ) (resp ISc (Σ, [g], F )) est atteint s’il existe une métrique minimale pour
IS(Σ, F ) (resp ISc (Σ, [g], F )) lisse.

Dans le cas sans bord, les singularités coniques sont autorisées pour les métriques
critiques g car elles apparaissent naturellement dans ces problèmes (voir Remarque I.2.6
pour les métriques critiques de la première valeur propre). Par exemple, en genre 2, toutes
les métriques maximales ont des singularités coniques [JLN+05, NS19]. Géométriquement,
ce sont les points de ramification des surfaces minimales Φ(Σ). Analytiquement ce sont
les zéros de la densité d’énergie |∇Φ|2g0

2
de l’application harmonique Φ : (Σ, g0) → Eσ

calculée par rapport à une métrique de référence lisse g0 dans la classe conforme de g.
Plus précisément, on déduit de (1) et (2) en utilisant 0 = 1

2
∆g0|Φ|2,

g =
|∇Φ|2Λ,g0

|ΛΦ|2
g0

où |∇Φ|2Λ,g0
=
∑

i λi|∇φi|2g0
. Dans une carte conforme, les zéros de ∇Φ sont des zéros de

fonctions complexes : l’angle du cône en cette singularité est un multiple entier de 2π.
Noter que le Théorème II.1.1 se généralise aux métriques à singularités coniques. 4

Au contraire, autoriser les métriques g à singularité conique n’est pas nécessaire dans
le cas à bord. En effet, choisissons une métrique lisse g0 dans la classe conforme de g.
Meme si l’image de l’application Φ : (Σ, ∂Σ, g0) → (co(Eσ), Eσ) peut avoir des points de
ramification, la critique associée g s’écrit

g = V g0 où V = ∂νΦ · Φ sur ∂Σ.

Autrement dit, V est un prolongement à Σ d’une certaine fonction positive sur ∂Σ. Les
valeurs propres de Steklov associées à g ne dépendent pas du choix du prolongement de
V à Σ car le numérateur du quotient de Rayleigh est invariant conforme et le dénomi-
nateur ne dépend que de la valeur du facteur conforme au bord. On peut donc choisir
un prolongement lisse de ∂νΦ · Φ qui est strictement positif à l’intérieur de Σ. On utilise
simplement la notion de métriques Steklov-isométriques au sens de [FS16]. Par ailleurs,
la Proposition III.1.8 impose ∂νΦ · Φ > 0 sur ∂Σ, c’est à dire que Φ(Σ) n’a pas de point
de ramification au bord. Ainsi, g peut être choisie lisse sur tout Σ.

II.1.2 Valeurs propres généralisées

On souhaite mieux prendre en compte l’invariance conforme de l’énergie de Dirichlet
(numérateur du quotient de Rayleigh) : une transformation conforme de la métrique g n’a
d’effet que sur le dénominateur du quotient de Rayleigh et sur l’aire dans la définition de
λ̄k(Σ, g). Par ailleurs, on rappelle que le calcul de métriques critiques (Théorèmes II.1.1
et II.1.2), donne une application Φ : Σ → Rn dont les coordonnées sont des fonctions
propres. La propriété (2) "|Φ|2Λ = 1" se déduit de la criticalité pour des variations dans
la direction conforme à g alors que la propriété (3) "dΦ ⊗ dΦ =

|∇Φ|2g
2
g" provient d’une

variation globale de la métrique mais reste invariante par transformation conforme de la

4. On peut utiliser par exemple la notion de valeur propre généralisée de la Sous-section II.1.2 pour
faire porter la singularité sur la "variable mesure" et l’espace variationnel de la Sous-section I.4.3 à la
place de l’espace des mesures.
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métrique. Il est alors naturel et crucial de séparer ces deux variations. Par ailleurs, d’un
point de vue analytique, comme on l’a vu dans la Sous-section I.4.3, on a besoin d’espaces
variationnels robustes qui permettent de construire des minimiseurs.

Ainsi, on définit des valeurs propres généralisées : pour une surface compacte Σ, une
métrique riemannienne g et une mesure positive µ, on pose

λ̄k(Σ, g, µ) = inf
V ∈Gk+1(C∞(Σ))

max
φ∈V \{0}

∫
Σ
|∇φ|2gdAg∫
Σ
φ2dµ

∫
Σ

dµ.

On remarque que si Σ est compacte sans bord, on a λ̄k(Σ, g) = λ̄k(Σ, g, dAg). Si Σ est
compacte à bord, on a σ̄k(Σ, g) = λ̄k(Σ, g, dLg). De plus, la propriété d’invariance conforme
se lit clairement sur notre nouvelle fonctionnelle : lorsque g̃ = e2ug,

EF (Σ, g̃, µ) = EF (Σ, g, µ)

où
EF (Σ, g, µ) = F

(
λ̄1(Σ, g, µ), · · · , λ̄m(Σ, g, µ)

)
.

Ainsi, pour les couples critiques (g, µ), la condition (2) vient des variations par rapport
à la variable métrique et la condition (3) vient des variations par rapport à la variable
mesure. 5

Ce point de vue unifie de surcroît le cadre sans bord (valeurs propres du Laplacien)
et le cadre à bord (valeurs propres de Steklov). Plus précisément, si Σ est compacte sans
bord, dès que µ est une mesure absolument continue par rapport à la mesure d’aire d’une
métrique de référence g0 ∈Met(Σ), c’est à dire µ = βdAg0 , alors comme toutes les mesures
d’aire par rapport aux métriques riemanniennes sont absolument continues les unes par
rapport aux autres avec une densité lisse et strictement positives, dAg0 = β0dAg pour
β0 ∈ C∞>0, ce qui donne

I(Σ, F ) = inf
g∈Met(Σ),β∈C∞>0(Σ)

EF (Σ, g, βdAg0)

De même, si Σ est compacte à bord, et si µ est une mesure absolument continue par
rapport à la mesure de longueur de g0 ∈Met(∂Σ) alors dLg0 = β0dLg pour β0 ∈ C∞>0, et

IS(Σ, F ) = inf
g∈Met(Σ),β∈C∞>0(∂Σ)

EF (Σ, g, βdLg0).

Avec mon approche du Chapitre I, tout le jeu analytique est de travailler sur des
espaces variationnels A dans Met(Σ)×Mes+(Σ) (selon si Σ a un bord ou non) qui sont
admissibles pour trois raisons principales : d’abord

I(Σ, F ) = inf
(g,µ)∈A

EF (Σ, g, µ) ou IS(Σ, F ) = inf
(g,µ)∈A

EF (Σ, g, µ),

ensuite ils permettent la formulation d’équations d’Euler-Lagrange sur les points critiques,
et enfin la complétude permet d’appliquer le principe variationnel d’Ekeland (voir Cha-
pitre I). La notion de mesure admissible formulée dans [Kok14, KS23, GKL21] demande
l’injection compacte H1(Σ, g) ⊂ L2(Σ, µ). Dans un autre point de vue, cela correspond
à l’hypothèse (H3) du Chapitre I donné dans [PT24, hypothèse D]. Cette condition ré-
sout en partie le problème mais ne fournit pas d’espace complet. Dans le Chapitre I et

5. A la condition que les espaces variationnels de calcul soient adaptés pour formuler une équation
d’Euler-Lagrange (voir Chapitre I)
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[Pet25d, Pet24a], on se restreint à des mesures qui agissent comme des formes bilinéaires
continues sur des fonctions H1 pour obtenir un espace variationnel admissible.

Gardons également à l’esprit l’invariance par difféomorphisme θ : Σ′ → Σ

EF (Σ′, θ∗g, θ∗µ) = EF (Σ, g, µ).

II.2 Optimisation dans une classe conforme
L’optimisation dans une classe conforme est intéressante en soi, car elle s’inscrit dans

une longue tradition (recherche de métriques à courbure de Gauss constante dans la classe
conforme, et de courbure scalaire ou de Q-courbure constante en dimension supérieure
dans la classe conforme, etc). Par ailleurs, la maximisation des valeurs propres est d’autant
plus pertinente en dimension n > 3 qu’il existe une borne supérieure des valeurs propres
renormalisées parmi toutes les métriques dans une classe conforme [Kor93, Has11], ce qui
n’est pas le cas parmi toutes les métriques [Dod94]. Remarquons que la sphère S2 dans
le cas sans bord et le disque D dans le cas à bord joueront un rôle prépondérant car leur
groupe conforme est non compact. Par ailleurs, en dimension 2, en notant h la métrique
ronde sur S2 et ξ la métrique euclidienne sur D,

IF (S2, [h]) = IF (S2) et ISF (D, [ξ]) = ISF (D)

par l’invariance par difféomorphisme et le théorème d’uniformisation.
Dans ce chapitre, l’optimisation dans une classe conforme est également vue comme

une étape vers les résultats d’optimisation parmi toutes les métriques. En effet, si Σ est
compacte sans bord,

I(Σ, F ) = inf
g∈Met(Σ)

Ic(Σ, [g], F )

où pour g0, g ∈Met(Σ) fixés,

Ic(Σ, [g], F ) = inf
β∈C∞>0

EF (Σ, g, βdAg0).

On obtient un problème de minimisation par rapport à la variable mesure puis par rapport
à la variable métrique de EF (Σ, ·, ·). On sépare les difficultés. Par ailleurs la minimisation
par rapport à la variable métrique est réduite à une minimisation parmi toutes les classes
conformes de métriques par invariance conforme de g 7→ EF (Σ, g, µ). La minimisation
dans une classe conforme (par rapport à la variable mesure) suit les étapes analytiques
énumérées dans le Chapitre I. Du fait de l’invariance par difféomorphismes de I(Σ, [g], F ),
sa minimisation parmi toutes les classes conformes se réduit alors à un espace variationnel
de dimension finie : l’espace de Teichmuller, par exemple difféomorphe à R6γ−6 si Σ est
compacte sans bord orientable de genre γ. Le principe est le même dans le cas à bord.

II.2.1 Fonctionnelles sur le spectre du Laplacien

On énonce le résultat principal de [Pet23a] redémontré dans [Pet25d].

Théorème II.2.1 ([Pet23a]). Soit (Σ, g) une surface riemannienne compacte sans bord.
On suppose que pour tout Σ̃ qui s’écrit comme une union finie du type

(Σ̃, g̃) = (Σ, g) t (S2, h) t · · · t (S2, h) (II.3)
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ou du type
(Σ̃, g̃) = (S2, h) t · · · t (S2, h) (II.4)

où h est la métrique ronde de S2, on a

Ic(Σ, [g], F ) < Ic(Σ̃, [g̃], F ). (II.5)

Alors Ic(Σ, [g], F ) est atteint.

On remarque que pour toute surface (Σ̃, g̃) du type (II.3) ou (II.4),

Ic(Σ, [g], F ) 6 Ic(Σ̃, [g̃], F ) (II.6)

par une adaptation des résultats de [CES03]. Cette égalité s’obtient en testant pour
Ic(Σ, [g], F ) une métrique conforme à g qui s’approche de la géométrie d’une métrique
presque minimale pour Σ̃ via le recolement local de bulles. De plus, si k est le plus grand
entier tel que F est non constante par rapport à la k-ème coordonnée, tester (II.5) pour
des surfaces Σ̃ ayant au maximum un nombre de composantes connexes plus petit que k
est suffisant.

Dans un cas général, cette hypothèse portant sur des déconnexions de surfaces (ou
dans un autre vocabulaire l’apparition de bulles) est optimale. En effet, dans le cas de la
maximisation de la k-ème valeur propre sur la sphère, on a l’égalité (voir [KNPP21])

Λk(S2) = 8πk = kΛ1(S2) = Λk(S2 t · · · t S2) (II.7)

où l’union du terme à droite fait intervenir k copies de la sphère. De même, on a [Kar21]

Λk(RP2) = 12π + 8π(k− 1) = Λ1(RP2) + (k− 1)Λ1(S2) = Λk(RP2 t S2 t · · · t S2) (II.8)

où l’union du terme à droite fait intervenir k − 1 copies de la sphère. C’est d’ailleurs
précisément en utilisant le Théorème II.2.1 dans sa version initiale prouvée dans ma thèse
pour des fonctionnelles spectrales faisant intervenir une seule valeur propre [Pet18] (voir
aussi [KNPP22]) qu’il est démontré dans [KNPP21] et [Kar21] les égalités (II.7) et (II.8).
Les preuves procèdent par contraposée. Par exemple, dans le cas de la sphère, Λk(S2)
n’est pas atteint pour k > 2. En effet, la k-ème valeur propre renormalisée des métriques
induites des immersions minimales branchées Φ : S2 → SN associées aux k-ème valeurs est
strictement plus petite que 8πk. C’est un résultat d’Ejiri [Eji98]. Ainsi, l’inégalité (II.6)
ne peut être qu’une égalité pour tous F (x) = (xk)

−1 pour k > 2.

Néanmoins, pour certains choix de F : Rm
+ → R ∪ {∞}, on peut énoncer un résultat

pour lequel il n’est pas nécessaire de tester des inégalités strictes pour des surfaces non
connexes. On note F̂ : Rm

+ → R ∪ {∞} la fonction définie par

F̂ (x1, x2, · · · , xm) = F (0, x2, · · · , xm).

Théorème II.2.2 ([Pet23a]). Soit (Σ, g) une surface riemannienne compacte sans bord.
On suppose que

Ic(Σ, [g], F ) < Ic(Σ, [g], F̂ ) (II.9)

et si
Σ 6= S2 ⇒ Ic(Σ, [g], F ) < Ic(S2, F ). (II.10)

Alors Ic(Σ, [g], F ) est atteint.
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L’hypothèse (II.9) peut s’interpréter comme une demande de stabilité sur l’indice de
la première valeur propre. Elle empêche les suites minimisantes du problème de dégénérer
en des surfaces non connexes car la suite des premières valeurs propres associées ne tend
pas vers 0. Autrement dit, les "haltères de Cheeger" sont proscrites. Dans ce contexte,
(II.10) est la conséquence de l’hypothèse (II.5) pour les surfaces Σ̃ connexes. On note que
(II.9) est automatique pour fm,a,s si a1 > 0, mais elle nécessite des vérifications pour les
fonctions hm,a,s. Dans le cas le plus simple de la maximisation de la première valeur propre
sue n’importe quelle classe conforme, (II.9) est automatique mais (II.10) a nécessité une
preuve (voir Théorème I.3.2).

Dans [Pet23a, Pet24b], on donne des hypothèses plus générales où tester l’inégalité
que pour des surfaces à k composantes connexes est suffisant sous une condition sur F
qui empêche la k-ème valeur propre des suites minimisantes de tendre vers 0.

Noter que la condition (II.10) est vide lorsque Σ est difféomorphe à une sphère. Le
Chapitre III donne des exemples d’application sur la sphère où la démonstration de (II.9)
est nécessaire (par exemple h2,(1,t),1 pour t > 1).

On donne un aperçu de la démonstration du Théorème II.2.1 en suivant les mêmes
étapes que dans la Sous-section I.5.2. On insiste sur les différences entre le cas de la
première valeur propre et celui des combinaisons. Le vocabulaire d’analyse multibulle
qu’on utilise n’est pas défini ici, on renvoie à [Pet25d].

Etape 0 : On applique un principe variationnel d’Ekeland sur une suite maximisante
(Σ, gε, β̃ε) (analogue de la Proposition I.4.11 pour des combinaisons). On obtient des
suites gε = β̃εg, βε, Φε, θε qui vérifient

∆gΦε = βε(Λε.Φε, ·)
|Φε|2Λε + θ2

ε > 1 où ‖θε‖2
H1(gε)

6 ε∫
Σ
|Φε|2Λεdβε =

∫
Σ
dβε = 1 +O(ε)

(II.11)

où Λε = diag
(
(λ̄1, · · · , λ̄m)(Σ, g, βεdAg)

)
.

Etape 1 : On pose
ωε =

√
|Φε|2Λε + θ2

ε .

D’après l’Etape 0, ωε > 1 et les termes d’erreurs vérifient ‖θε‖2
H1(gε)

6 ε. On obtient

∫
Σ

|∇ωε|2gdAg +

∫
Σ

∣∣∣∣∇(Φε −
Φε

ωε

)∣∣∣∣2
Λε,g

dAg +

∫
Σ

ω2
ε

∣∣∣∣∇Φε

ωε

∣∣∣∣2
Λε,g

dAg 6 C‖θε‖2
H1(gε)

(II.12)

Etape 2 : C’est à cette étape qu’interviennent deux grandes différences matérialisées par
deux sous-étapes :

Etape 2.1 : La suite des mesures (βε) peut admettre des points de concentration lorsque
ε → 0. Par un argument de type "haltères de Cheeger", il n’est pas difficile d’identifier
une convergence en arbre de bulle par rapport à la convergence faible* de cette suite.
Outre l’échelle de Σ, où on ne fait aucune transformation, quitte à faire une projection
stéréographique et une dilatation, on peut observer les autres échelles de convergence de
βε sur des sphères.

Le nombre de rééchelonnements de βε à masse uniformément minorée est majoré par
le plus petit indice k tel que λk(Σ, g, βε) ne tend pas vers 0. Noter que dans le cadre plus
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simple du Théorème II.2.2, on n’a que deux possibilités : soit (βε) ne se concentre pas,
soit il n’a qu’une échelle de concentration qui prend toute la masse quand ε→ 0.

Enfin, il faut noter que si Σ est une sphère, quitte à utiliser le groupe conforme de la
sphère, on peut supposer que si βε se concentre, alors il existe au moins deux échelles pour
lesquelles βε a une masse uniformément minorée. Dans le cadre plus simple du Théorème
II.2.2, on peut donc toujours supposer que βε n’a pas de point de concentration.

A partir de maintenant, par invariance par difféomorphisme conforme des deux pre-
mières lignes du système (II.11), elles sont vérifiées à chaque échelle.

Etape 2.2 : A chaque échelle où βε est de masse uniformément minorée lorsque ε → 0,
on peut démontrer l’inégalité

∀x ∈ Σ \ {p1, · · · , pk},∃r(x) > 0, λ?(Dr(x)(x), βε) > λm(Σ, βε) (II.13)

ici écrite sur Σ mais qui peut s’écrire sur les copies de S2 après rééchelonnement. Ces inéga-
lités locales ont lieu seulement en-dehors de points p1, · · · , pk. Les points de concentration
de βε en font partie, mais ce ne sont a priori pas les seuls ! Cet entier k est borné par
m − 1. L’inégalité (II.13) avec λm(Σ, βε) comme majorant est primordiale pour montrer
l’étape 3 et surtout la propriété (II.14).

Une fois cette étape 2 établie, l’analyse de la Sous-section I.5.2 se généralise à chaque
échelle identifiée à l’Etape 2.1 où le rééchelonnement βε a une masse uniformément mi-
norée. On travaille donc sur Σ ou par dilatation puis projection stéréographique sur S2.
Toutes les estimées locales ont alors lieu en-dehors des points p1, · · · , pk donnés par l’Etape
2.2.

Etape 3 : On montre que pour ε0 > 0 et x ∈ Σ \ {p1, · · · , pk} donné, il existe r < r(x)
tel que ∫

Dr(x)

|∇Φε|2 6 ε0.

Etapes 4, 5, 6 : Sans rentrer dans les détails, on définit un bon remplacement harmonique
Ψε de Φε sur Dr(x) de sorte que

1

2

∫
Dr(x)

|∇ (Ψε − Φε)|2 = o(1) (II.14)

lorsque ε → 0 et en utilisant une borne L∞ sur |∇Ψε|2 grâce à des estimées qui ne
dépendent pas du nombre possiblement arbitrairement grand de coordonnées de Ψε (voir
[Pet25c]),

‖|∇Ψε|2‖L∞(D r
2

(x)) 6 C

∫
Dr(x)

|∇Ψε|2.

Ceci implique que quitte à prendre une sous-suite on obtient une mesure β absolument
continue par rapport à la mesure de Lebesgue avec densité L∞ telle que

βε ⇀? β sur D r
2
(x).

Quitte à globaliser l’argument avec des partitions de l’unité, β est défini sur Σ et éven-
tuellement sur plusieurs copies de S2 qui correspondent aux échelles de concentration. La
semi-continuité supérieure des valeurs propres pour la convergence faible* multibulle et
les propriétés de monotonie de F impliquent

IF (Σ, [g]) = lim
ε→0

EF (Σ, g, βε) > EF (Σ t S2 t · · · t S2, g̃, β)
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où g̃ est la métrique valant g sur Σ et la métrique de la sphère ronde h sur les copies de
S2. Ainsi, cela contredit l’une des inégalités strictes (II.5) en cas de concentration de la
suite βε. La limite β fournit alors un minimiseur pour Ic(Σ, [g]) qui est a posteriori lisse
avec nombre fini de singularités coniques par régularité des minimiseurs.

II.2.2 Fonctionnelles sur le spectre de Steklov

Plus rapidement, énonçons le résultat pour le cas à bord tiré de [Pet24b] et revu avec
les méthodes de [Pet25d].

Théorème II.2.3 ([Pet24b]). Soit (Σ, g) une surface riemannienne compacte à bord. On
suppose que pour tout Σ̃ qui s’écrit comme une union finie du type

(Σ̃, g̃) = (Σ, g) t (D, ξ) t · · · t (D, ξ) (II.15)

ou du type
(Σ̃, g̃) = (D, ξ) t · · · t (D, ξ) (II.16)

où ξ est la métrique euclidienne de D, on a

Ic(Σ, [g], F ) < Ic(Σ̃, [g̃], F ). (II.17)

Alors Ic(Σ, [g], F ) est atteint.

On note que pour toute surface (Σ̃, g̃) du type (II.15) ou (II.16),

Ic(Σ, [g], F ) = Ic(Σ̃, [g̃], F )

par un résultat qui n’a étonnamment jamais été écrit avant [Pet25a]. Le résultat est
optimal. En effet, le seul disque minimal (immergé branché) à bord libre dans une boule
unité de RN est le disque euclidien (par [FS15]). Le supremum de σk(D) ne peut pas
être atteint pour k > 2 car le seul point critique de σk - le disque euclidien - satisfait
σk(D, ξ) = π

[
k+1

2

]
et on a σk(D) > 2πk. On déduit du Théorème II.2.3 :

σk(D) = 2πk = kσ1(D) = σk(D t · · · t D).

On obtient une preuve alternative d’un résultat de [HPS75], avec l’information supplé-
mentaire que ce n’est jamais atteint pour k > 2.

On donne aussi la version "surfaces connexes" du Théorème II.2.3.

Théorème II.2.4 ([Pet24b]). Soit (Σ, g) une surface riemannienne compacte à bord. On
suppose que

Ic(Σ, [g], F ) < Ic(Σ, [g], F̂ ) (II.18)

et si
Σ 6= D⇒ Ic(Σ, [g], F ) < Ic(D, F ). (II.19)

Alors Ic(Σ, [g], F ) est atteint.

Encore une fois, noter que (II.19) est une hypothèse vide si Σ est difféomorphe à un
disque. Une application détaillée de ce résultat est donnée dans le Chapitre III. Contrai-
rement au cas analogue de la première valeur propre du Laplacien (Théorème I.3.2), l’in-
égalité (II.19) qui se traduit pour la première valeur propre de Steklov par σ1(Σ, [g]) > 2π
reste ouverte en général. Dans [Pet25a], nous montrons qu’elle est vraie pour toutes les
classes conformes de l’anneau et de la bande de Möbius.
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II.2.3 Applications à l’optimisation parmi toutes les métriques

Soit Σ et Σ̃ deux surfaces compactes sans bord (non nécessairement connexes). On dit
que Σ̃ est de topologie strictement inférieure à Σ et on note

Σ̃ < Σ

si Σ̃ peut être construite à partir de Σ en la découpant le long d’un nombre fini non nul
de courbes simples fermées disjointes. Σ̃ est la surface compacte sans bord obtenue en
recollant un disque le long de chaque composante connexe du bord.

De plus, pour des surfaces compactes connexes sans bord Σ, Σ1, Σ2, on dit que Σ est
la somme connexe de Σ1 et Σ2 et on note

Σ = Σ1]Σ2

si Σ est obtenue en découpant un disque dans Σ1 et Σ2 et en les recollant bord à bord.
Avec ces définitions, on a par exemple Σ1 < Σ, Σ2 < Σ et Σ1 t Σ2 < Σ.

Théorème II.2.5 ([Pet23a]). Soit Σ une surface connexe compacte sans bord. Si

∀Σ̃ < Σ, I(Σ, F ) < I(Σ̃, F ). (II.20)

Alors I(Σ, F ) est atteint.

On déduit de [CES03] et des hypothèses de monotonie sur F que

∀Σ̃ < Σ, I(Σ, F ) 6 I(Σ̃, F ). (II.21)

La grande difficulté est de montrer des inégalités strictes comme on le verra.
En se focalisant sur les surfaces compactes connexes sans bord, leur classification à

homéomorphisme/difféomorphisme près implique

Σ =

{
(T2)

]γ si Σ est orientable(
RP2

)]γ si Σ est non orientable

où T2 désigne un tore, RP2 un plan projectif et si γ est un entier positif, la puissance ]γ
est le nombre de fois qu’on fait la somme connexe de la variété avec une copie d’elle même.
Ici, γ désigne le genre de la surface. Bien sûr, si γ = 0, Σ est une sphère par convention.

La terminologie de la "topologie strictement inférieure" était introduite pour prendre
en compte les possibles déconnexions de surfaces, mais on peut énoncer un résultat qui
les interdit en faisant une hypothèse supplémentaire sur F : Rm

+ → R∪{∞} : on rappelle
que F̂ : Rm

+ → R ∪ {∞} est la fonction définie par

F̂ (x1, x2, · · · , xm) = F (0, x2, · · · , xm).

Théorème II.2.6 ([Pet23a]). Soit Σ une surface connexe compacte sans bord qui vérifie
les trois hypothèses suivantes :

(i) S’il existe une surface Σ′ telle que Σ = T2]Σ′, alors I(Σ, F ) < I(Σ′, F ).
(ii) S’il existe une surface Σ′ telle que Σ = RP2]Σ′, alors I(Σ, F ) < I(Σ′, F ).
(iii) I(Σ, F ) < I(Σ, F̂ )

Alors I(Σ, F ) est atteint.
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De nouveau, (iii) empêche les suites minimisantes du problème de dégénérer en des
surfaces non connexes car la suite des premières valeurs propres associées ne tend pas vers
0. (i) et (ii) sont une traduction du Théorème II.2.6 et de (II.21) car il suffit d’obtenir
(II.20) dans les cas où Σ̃ est connexe. (ii) est vide si Σ est orientable et (i) est vide si Σ
est une sphère.

Voici un exemple d’application du Théorème II.2.6. Sur le tore T2, Berger avait montré
que le tore équilatéral plat n’était pas un minimum parmi les tores plats pour I(T2, f6)
alors qu’il est le maximum de λ̄1(T2, ·) (de multiplicité 6 pour le tore équilatéral plat)
parmi tous les tores plats [Ber73] 6. Pourtant, par Hersch [Her70], la sphère ronde est
l’unique minimiseur de I(S2, f3) et donc l’unique maximiseur de λ̄1(S2, ·) (de multiplicité
3 pour la sphère ronde). Dans le Théorème II.2.6, pour obtenir le minimiseur de Berger,
la seule hypothèse non triviale à vérifier est la première, c’est à dire

I(T2, f6) < I(S2, f6).

Celle-ci est vraie par le Théorème II.3.2 ci-dessous, mais on n’en a pas besoin ici :

I(S2, f6) > I(S2, f3) +
6∑

k=4

Λk(S2)−1 =
3

8π
+

1

32π
+

1

40π
+

1

48π

>
3
√

3

4π2
=

6

Λ1(T2)
> I(T2, f6),

où on a utilisé le résultat principal de [Her70], et Λk(S2) = 8πk (II.7). Le minimiseur
obtenu correspond à une immersion minimale dans un ellipsoïde.

Donnons rapidement l’analogue pour les fonctionnelles spectrales de Steklov. Soit Σ
et Σ̃ deux surfaces compactes à bord (non nécessairement connexes). On dit que Σ̃ est de
topologie strictement inférieure à Σ et on note

Σ̃ < Σ

si Σ̃ peut être construite à partir de Σ en la découpant le long d’un nombre fini non nul
de courbes simples disjointes dont l’extrémité est exactement l’intersection de la courbe
avec le bord ∂Σ.

Théorème II.2.7 ([Pet24b]). Soit Σ une surface connexe compacte avec un bord. Si

∀Σ̃ < Σ, IS(Σ, F ) < IS(Σ̃, F )

Alors IS(Σ, F ) est atteint.

On spécifie également le résultat dans le cas connexe :

Théorème II.2.8 ([Pet24b]). Soit Σ une surface connexe compacte sans bord qui vérifie

IS(Σ, F ) < IS(Σ, F̂ )

et pour toutes surfaces Σ′ telles que Σ s’obtient de Σ′ en collant chaque côté opposé d’un
rectangle au voisinage de deux points distincts du bord de Σ′ on a

IS(Σ, F ) < IS(Σ′, F ).

Alors IS(Σ, F ) est atteint.

6. On sait maintenant que le tore équilatéral plat est maximiseur de λ̄1(T2, ·) parmi toutes les métriques
[Nad96]
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C’est un cas particulier particulier de Théorème II.2.7, pour les surfaces Σ̃ < Σ ob-
tenues à partir de Σ par découpage le long d’une seule courbe simple qui intersecte le
bord de Σ en ses extrémités et qui sont connexes. Cette hypothèse est vide si Σ est un
disque. A partir d’une surface compacte orientable Σ′, Σ peut avoir 4 formes topologiques
possibles, selon si le collage du rectangle se fait au voisinage de points du bord dans la
même composante connexe ou non, et selon si le collage renverse l’orientation ou non.

II.3 Optimisation parmi toutes les métriques

II.3.1 Avec le principe variationnel d’Ekeland

On énonce le résultat principal de cette sous-section. Pour une fonction F : Rm
+ →

R ∪ {∞}, on note F̂ : Rm
+ → R ∪ {∞} la fonction définie par

F̂ (x1, x2, · · · , xm) = F (0, x2, · · · , xm).

Théorème II.3.1 ([Pet24a]). Soit Σ une surface connexe compacte sans bord. On a les
deux résultats (a) et (b) suivants

(a) S’il existe une surface Σ′ telle que Σ = T2]Σ′ et telle que I(Σ′, F ) est atteint, alors

I(Σ, F ) < I(Σ′, F ). (II.22)

(b) Si Σ est orientable et si
I(Σ, F ) < I(Σ, F̂ ), (II.23)

alors I(Σ, F ) est atteint.

Dans le résultat (b), on interprète encore l’hypothèse (II.23) comme une demande de
stabilité sur l’indice de la première valeur propre. Elle empêche les suites minimisantes
du problème de dégénérer en des surfaces non connexes en interdisant à la suite des
premières valeurs propres associées de tendre vers 0. Bien sûr, le contenu principal du
Théorème II.3.1 est une démonstration du résultat (a). Le reste n’est qu’une conséquence
du Théorème II.2.6 et de la monotonie de Σ 7→ I(Σ, F̂ ) par rapport au genre de Σ avec
une preuve par récurrence (l’initialisation de la récurrence est le Théorème II.2.2 sur la
sphère). En appliquant le Théorème II.3.1 à une fonction F telle que F̂ est une fonction
constante égale à +∞, alors (II.23) est automatique. C’est par exemple vrai pour la
maximisation de la première valeur propre en posant F (x1) = (x1)−1.

Théorème II.3.2 ([Pet24a]). Si F vérifie que F̂ est constante égale à +∞, alors I(Σ, F )
est atteint pour toute surface Σ connexe compacte sans bord orientable. De plus,

Σ 7→ I(Σ, F )

est strictement décroissante par rapport au genre de Σ.

Pour le cas de la maximisation de la première valeur propre parmi toutes les métriques,
on répond déjà à une question ouverte pour les surfaces orientables de genre γ > 3. Ce
résultat était connu sur la sphère [Her70] le tore [Nad96] et les surfaces de genre 2 [NS19].
De manière plus générale, on montre que I(Σ, fm,a,s) est atteint sur toute surface orientable
Σ telles que où a1 = 1 et ak > 0 sont des réels quelconques et s > 0. En supposant m = 2,
on retrouve l’étude spécifique du Chapitre III. Si on suppose ak = 1 pour tous 1 6 k 6 m,
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c’est une somme partielle de la fonction ζ sur les valeurs propres. Elle intervient pour
s = 1 dans les inégalités de Hersch (m = 3), Berger (m = 6), Yang-Yau (m = 3).

On donne maintenant les idées de démonstration pour (II.22) sous l’hypothèse que
Σ = T2]Σ′ et I(Σ′, F ) est atteint. Pour simplifier la présentation, on se restreint au cas
de la maximisation de la première valeur propre. On suppose que Λ1(Σ′) est atteint en g.
Le but est de démontrer

Λ1(Σ) > Λ1(Σ′). (II.24)

Etape 1 : Sélection d’une suite initiale par attachement d’anse

On construit une suite adaptée (Σ̃ε, g̃ε, β̃ε) lorsque ε → 0 sur une suite de surfaces
Σ̃ε difféomorphes à Σ′]T2 obtenues à partir de (Σ′, g, dAg) par l’attachement d’une anse
dont l’aire est d’ordre ε2. Les techniques d’attachement d’anse en géométrie spectrale qui
remontent à Anné [Ann87], permettent d’obtenir

λ̄k(Σ̃ε, g̃ε, β̃ε)→ λ̄k(Σ
′, g, dAg)

lorsque ε→ 0. Une idée naturelle, pour démontrer l’inégalité stricte (II.24) était de trouver
la meilleure géométrie de l’anse pour laquelle on obtient un développement asymptotique

λ̄1(Σ̃ε, g̃ε, β̃ε) = λ̄1(Σ′, g, dAg) + θ(ε) = Λ1(Σ′) + θ(ε)

où θ(ε) → 0 lorsque ε → 0 et θ(ε) > 0 pour ε suffisamment petit. On s’attend à ce que
la première valeur propre λ1 diminue lors de l’attachement de l’anse, mais on espère que
la renormalisation par l’aire λ̄1 = λ1.A compense largement cette diminution. Après de
longues investigations dans [FS16, MS19, MP20] on a toujours θ(ε) 6 0 malgré le niveau
de calcul fin auquel on aboutit dans [MP20].

Dans des problèmes d’optimisation équivariantes de la première valeur propre de Stek-
lov [KKMS24], une nouvelle approche utilise le fait que g est choisie sur Σ′ comme une
métrique maximale. Inspiré par leur approche, j’ai démontré (II.24) en prenant en compte
cette information avec une toute autre méthode. On attache d’abord une anse de sorte
que même si θ(ε) 6 0, δε = −θ(ε)→ 0 suffisamment rapidement.

Soit p, q ∈ Σ′ deux points distincts. On pose

Σε = Σ′ \ (Dε(p) tDε(q))

et

C`,ε = εS1 ×
[
−`ε

2
,
`ε

2

]
et on pose

Σ̃ε = (Σε t C`,ε) / ∼

où ∼ dénote un recollement bord à bord de Σε et de C`,ε (que ce recollement respecte
l’orientation ou non ne change rien à l’analyse qui suit). On munit Σ̃ε de la métrique
ĝε qui vaut g sur Σ′ et la métrique plate sur C`,ε. Il faut noter que cette métrique n’est
pas continue sur Σ̃ε a priori et qu’elle peut avoir un nombre fini de singularités coniques.
Néanmoins, comme les fonctionnelles spectrales EF (Σ, g, µ) sont invariantes conformes
par rapport à la variable métrique, on peut ne faire porter cette discontinuité que sur la
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mesure. On peut trouver une fonction L∞ notée Vε et une métrique lisse (y compris en
les points de singularité conique de ĝε) telles que

ĝε = Vεg̃ε

et on pose la mesure
β̃ε = dAĝε .

On obtient alors

Proposition II.3.3. Il existe une constante Cλ,`,p,q > 0 telle que si λk(Σ̃ε, g̃ε, β̃ε) 6 λ,

λk(Σ̃ε, g̃ε, β̃ε) > λk(Σ, g, dAg)− Cλ,`,p,qε2 ln
1

ε
(II.25)

lorsque ε→ 0.

Comme on l’a dit, l’échelle ε2 ln 1
ε
n’est pas compensée par l’ajout de l’aire de C`,ε de

l’ordre de π`ε2. Dans la suite on note

δε =
√
Cλ,`,p,qε

√
ln

1

ε
(II.26)

la racine carrée du défaut de convergence de notre suite initiale.

Etape 2 : Perturbation de la suite avec le principe variationnel d’Ekeland

g est une métrique maximale pour Λ1(Σ′). Pour exploiter cette propriété, on suppose
par contradiction que Λ1(Σ) n’est pas atteint, ce qui implique par (II.21) Λ1(Σ) = Λ1(Σ′).
Désormais, la suite (Σ̃ε, g̃ε, β̃ε) précédemment construite est maximisante pour Λ1(Σ) avec
défaut δε. On appliquera alors le principe variationnel d’Ekeland (Théorème I.4.1) à cette
suite en définissant un espace variationnel complet adapté. Par invariance par difféomor-
phisme des fonctionnelles spectrales, on ramène tout le problème sur Σ. On note donc
Σ = Σ̃ε.

On note Met0(Σ) l’ensemble des métriques riemanniennes continues sur Σ. On munit
cet ensemble de la distance entre deux métriques g1, g2 ∈Met0(Σ)

δ(g1, g2) := max
x∈Σ

(
ln

(
max

v∈TxΣ\{0}

g1(x)(v, v)

g2(x)(v, v)

)2

+ ln

(
max

v∈TxΣ\{0}

g2(x)(v, v)

g1(x)(v, v)

)2
) 1

2

où on note pour g ∈Met0(Σ) et un 2-tenseur symétrique h ∈ S2
0(Σ) = Tg (Met0(Σ)),

lim
t→0

δ(g, g + th)

t
= max

x∈Σ

((
max

v∈TxΣ\{0}

h(x)(v, v)

g(x)(v, v)

)2

+

(
min

v∈TxΣ\{0}

h(x)(v, v)

g(x)(v, v)

)2
) 1

2

=: max
x∈Σ

√
〈h, h〉g(x)

(II.27)

où on définit pour un repère orthonormé local (e1, e2) par rapport à g au voisinage de x
et pour h1, h2 ∈ S2

0(Σ) = Tg (Met0(Σ)),

〈h1, h2〉g(x) =
∑
i,j

h1(x)(ei(x), ej(x)) · h2(x)(ei(x), ej(x))



66 CHAPITRE II. OPTIMISATION EN DIMENSION 2

un produit scalaire qui est indépendant du choix du repère orthonormé. Autrement dit,
δ est la distance géodésique sur Met0(Σ) pour la métrique riemannienne qui vaut ‖h‖g
sur l’espace tangent S2

0(Σ) de g ∈Met0(Σ). Il faut noter que (Met0(Σ), δ) est localement
complet dans le but d’appliquer le théorème d’Ekeland.

Maintenant, comme on l’a vu dans le Chapitre I on munit l’espace X où

X =

{
(ϕ, ψ) 7→

∫
Σ

e2uϕψ;u ∈ C∞(Σ)

}
et son adhérence est prise dans l’espace des formes bilinéaires continues sur H1 munies
de la norme

‖β‖ε = sup
ϕ,ψ∈H1

β(ϕ, ψ)

‖ϕ‖g̃ε,β̃ε‖ψ‖g̃ε,β̃ε
où

‖ϕ‖2
g̃ε,β̃ε

=

∫
Σ

ϕ2dβ̃ε +

∫
Σ

|∇ϕ|2g̃εdAg̃ε .

On cherche à minimiser −λ̄1 qui est semi-continue inférieurement sur l’espace complet

Aε = {g ∈Met0(Σ); δ(g, g̃ε) 6 1} × {β ∈ X, β(1, 1) > 1}

muni de la distance

dε((g1, β1), (g2, β2)) = max (δ(g1, g2); ‖β1 − β2‖ε) .

Par le principe variationnel d’Ekeland (Théorème I.4.1), il existe (gε, βε) ∈ Aε tel que

dε((g̃ε, β̃ε), (gε, βε)) 6 δε (II.28)

et tel que pour tous (g, β) ∈ Aε,

λ̄1(Σ, g, β)− λ̄1(Σ, gε, βε) 6 δεdε ((gε, βε), (g, β)) . (II.29)

Bien sûr, on a en particuler |βε(1, 1) − β̃ε(1, 1)| 6 δεβ̃ε(1, 1). On déduit alors l’équation
d’Euler-Lagrange associée :

Proposition II.3.4. Il existe une application Φε : Σ→ Rnε ∈ H1 (Σ,Rnε) telle que
∆gεΦε = λ1(Σ, gε, βε)βε (Φε, .)

|Φε|2 >a.e 1− θ2
ε dans Σ où ‖θε‖2

g̃ε,β̃ε
6 δε

βε (Φε,Φε) = βε(1, 1).

et

∀h ∈ S2
0(Σ),

∣∣∣∣∣∣
∫

Σ

(
dΦε ⊗ dΦε −

|∇Φε|2gε
2

gε, h

)
gε

dAgε

∣∣∣∣∣∣ 6 δε‖h‖gε

où ‖h‖gε = supx∈Σ

√
〈h, h〉gε(x).

L’objectif est désormais de passer à la limite quand ε→ 0 sur ce système d’équations
(voir le passage à la limite final dans l’Etape 5 : (II.39)). De la première partie de cette
proposition, on déduit en posant ωε =

√
|Φε|2 + θ2

ε∫
Σ̃ε

(ω2
ε−1)

∣∣∣∣∇Φε

ωε

∣∣∣∣2
gε

dAgε +

∫
Σ̃ε

|∇ωε|2gε dAgε +

∫
Σ̃ε

∣∣∣∣∇(Φε −
Φε

ωε

)∣∣∣∣2
gε

dAgε 6 O(δε) (II.30)

lorsque ε→ 0, de sorte que si on a besoin de rendre Φε borné dans L∞ dans nos estimées,
c’est son remplacement global Φε

ωε
qui jouera ce rôle.
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Etape 3 : Petite énergie sur l’anse d’attachement

De la construction précédente, on déduit d’abord que pour tout k ∈ N∗,

|λk(Σ, gε, βε)− λk(Σ′, g)| 6 O(δε) (II.31)

lorsque ε→ 0. En particulier, quitte à réarranger les coordonnées de Φε de sorte qu’elles
soient indépendentes, on peut supposer que nε est borné. Quitte à prendre une sous-suite,
nε = n est une constante.

On définit l’énergie de l’application sur le cylindre.

Qε =

∫
Cl,ε

∣∣∣∣∇Φε

ωε

∣∣∣∣2
gε

dAgε . (II.32)

Proposition II.3.5.

Qε = O

(
1

ln 1
ε

)
lorsque ε→ 0. (II.33)

Idée de démonstration. Pour tout 1 6 i 6 n, on teste la fonction ηε
φεi
ωε

pour λ1(Σ′, g) où
ηε ∈ C∞c (Σε) tel que 0 6 ηε 6 1, ηε = 1 sur Σ√ε et∫

Σ

|∇ηε|2gdAg 6 O

(
1

ln 1
ε

)
lorsque ε→ 0.

On obtient(∫
Σ′

(
ηε
φεi
ωε

)2

dAg −
(∫

Σ′
ηε
φεi
ωε
dAg

)2
)
λ1(Σ′, g) 6

∫
Σ′
|∇ηε

φεi
ωε
|2gdAg. (II.34)

En jouant avec (II.28), (II.29) (II.30), le fait que Φε
ωε

est uniformément borné dans L∞ et
par rapport à la norme ‖ · ‖2

gε,βε
, on obtient∫

Σ′
|∇φ

ε
i

ωε
|2gdAg 6

∫
Σ̃ε

|∇φεi |2gεdAgε −
∫
C`,ε

|∇φεi |2gεdAgε +O(δε)

∫
Σ′

(
ηε
φεi
ωε

)2

dAg = βε(φ
ε
i , φ

ε
i ) +O(δε)∫

Σ′
ηε
φεi
ωε
dAg = βε(φ

ε
i , 1) +O(δε).

On calcule le terme de droite dans (II.34) et on fait une somme sur i :∫
Σ′
|∇ηε

Φε

ωε
|2gdAg =

∫
Σ′
η2
ε |∇

Φε

ωε
|2gdAg +

∫
Σ

〈∇ηε,∇
∣∣∣∣Φε

ωε

∣∣∣∣2〉gdAg +

∫
Σ

|∇ηε|2
∣∣∣∣Φε

ωε

∣∣∣∣2 dAg
Comme on a par (II.30) avec |Φε|2 + θ2

ε = ω2
ε∫

Σ

〈∇ηε,∇
∣∣∣∣Φε

ωε

∣∣∣∣2〉gdAg = −
∫

Σ

〈∇ηε,∇
∣∣∣∣ θεωε
∣∣∣∣2〉gdAg = O

((
δε
ωε

) 1
2

)
,
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On obtient avec (II.26),∫
Σ′
|∇ηε

Φε

ωε
|2gdAg 6

∫
Σ̃ε

|∇Φε|2gεdAgε −Qε +O

(
1

ln 1
ε

)
.

En sommant sur i en partant de (II.34) et avec l’équation ∆gεφ
ε
i = λ1(Σ, gε, βε)βε(φ

ε
i , ·),

on obtient :

(βε(Φε,Φε) +O(δε))λ1(Σ′, g) 6 λ1(Σ, gε, βε)βε(Φε,Φε)−Qε +O

(
1

ln 1
ε

)
.

En utilisant (II.26) et (II.31), on obtient la proposition.

Etape 4 : Projection sur Σ des coordonnées de Φε

On note Ψε l’extension harmonique sur Σ′ de la fonction Φε
ωε

définie sur Σε. On pose

B(F, F ) =
n∑
i=1

(∫
Σ′
|∇Fi|2gdAg − λ1(Σ′, g)

(∫
Σ′
F 2
i dAg −

(∫
Σ′
FidAg

)2
))

(II.35)

Proposition II.3.6. On a

B(Ψε,Ψε) 6 Ce−`Qε +O (δε) lorsque ε→ 0.

Idée de démonstration. En jouant avec (II.28), (II.29) (II.30), le fait que Ψε est uniformé-
ment borné dans L∞ et par rapport à la norme ‖ · ‖2

gε,βε
, on obtient :∫

Σ′
|∇ψεi |2gdAg =

∫
Σ̃ε

|∇φεi |2gεdAgε +

∫
Dε(p,q)

|∇ψεi |2gεdAgε −
∫
C`,ε

|∇φ
ε
i

ωε
|2gεdAgε +O(δε)∫

Σ′
(ψεi )

2 dAg = βε(φ
ε
i , φ

ε
i ) +O(δε)∫

Σ′
ψεi dAg = βε(φ

ε
i , 1) +O(δε).

D’après le lemme II.3.7,∫
Dε(p,q)

|∇Ψε|2gεdAgε −
∫
C`,ε

|∇Φε

ωε
|2gεdAgε 6 Ce−`

∫
C`,ε

|∇Φε

ωε
|2gεdAgε = Ce−`Qε

En utilisant l’équation ∆gεφ
ε
i = λ1(Σ, gε, βε)βε(φ

ε
i , ·) puis en sommant sur i,

B(Ψε,Ψε) = (λ1(Σ, gε, βε)− λ1(Σ, g)) βε(Φε,Φε) + Ce−`Qε +O(δε)

lorsque ε→ 0. On utilise (II.31) pour conclure.

Le lemme suivant était nécessaire :

Lemme II.3.7 ([KKMS24]). There is a constant C > 0 such that for any l > 3 ln 2 and
ψ a H1 function defined on the cylinder C+

l := S1 × [0, l
2
], the harmonic extension of ψ

on S1 × {0} → R to the disk ψ̂ : D→ R satisfies∫
D
|∇ψ̂|2 6

(
1 + Ce−l

) ∫
[0, l2 ]×S1

|∇ψ|2.
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On décompose alors

Ψε = Fε +

∫
Σ′

ΨεdAg +Rε.

où F ε
i = π(ψεi ) est la projection orthogonale dans L2(g) sur l’espace propre associé à

λ1(Σ′, g). On a alors

Proposition II.3.8.
‖Rε‖2

W 1,2 6 Ce−`Qε +O(δε) (II.36)

∣∣∣∣1ε
∫
Sε(p)

RεdLξ

∣∣∣∣2 +

∣∣∣∣1ε
∫
Sε(q)

RεdLξ

∣∣∣∣2 6 Ce−` +O(δε ln
1

ε
) (II.37)

lorsque ε→ 0.

Démonstration. Montrons (II.36). Une inégalité de Cauchy-Schwarz donne,

B(Rε, Rε) = B(Ψε, Rε) 6
√
B(Ψε,Ψε)

√
B(Rε, Rε)

et la Proposition II.3.6 donne

B(Rε, Rε) 6 B(Ψε,Ψε) 6 C
Qε

`
+O(δ

1
2
ε ).

lorsque ε→ 0. Comme Rε
i ∈

⊕
λ>λ1(Σ′,g) Eλ, on obtient

B(Rε, Rε) >

(
1− λ1(Σ′, g)

λk+1(Σ′, g)

)∫
Σ′
|∇Rε|2gdAg. (II.38)

où k est la multiplicité de λ1(Σ′, g). On obtient (II.36).
Montrons l’inégalité (II.37). Dans une carte conforme au voisinage de p et q, on a

1

ε

∫
Sε(p)

RεdLξ =

∫
S1(p)

RεdLξ −
∫
D1(p)\Dε(p)

〈∇ ln |x|∇Rε〉ξdAξ

de sorte que ∣∣∣∣1ε
∫
Sε(p)

RεdLξ

∣∣∣∣2 +

∣∣∣∣1ε
∫
Sε(q)

RεdLξ

∣∣∣∣2 6 C ln
1

ε
‖Rε‖2

W 1,2 .

et (II.33) et (II.36) permettent de conclure.

Etape 5 : Convergences finales et contradiction

En faisant tendre ε→ 0, Ψε − Fε tend vers 0 fortement dans H1
loc(Σ

′ \ {p, q}) (utiliser
(II.36) et que la moyenne de Ψε sur Σ′ tend vers 0). Comme Fε est une suite de premières
fonctions propres bornées dans H1, quitte à prendre une sous-suite, (Fε) converge forte-
ment dans C1 vers Φ en faisant ε → 0 puis ` → +∞. La Proposition II.3.4, (II.31) et
(II.37) impliquent sur Σ′ : 

∆gΦ = λ1(Σ′, g)Φ

|Φ|2 = 1

dΦ⊗ dΦ =
|∇Φ|2g

2
g

(II.39)
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Mais (II.37) implique aussi en faisant ε→ 0 puis `→ +∞
Φ(p) = Φ(q).

Il faut noter que l’application obtenue Φ dépend de p et q. Soit X ∈ Tp(Σ′) \ {0}. Alors
en faisant q → p dans la direction de X, on obtient une application Φ qui vérifie (II.39)
et

DpΦ(X) = 0.

En utilisant que Φ est conforme (équation 3 de (II.39)), |DpΦ(X⊥)| = |DpΦ(X)| = 0.
Ainsi ∇Φ(p) = 0. Par les équations 1 et 2 de (II.39), si p n’est pas un point de singularité
conique, λ1(Σ, g) = |∇Φ(p)|2g = 0. C’est une contradiction.

II.3.2 Avec la théorie de Karpukhin-Stern

On énonce maintenant le résultat de cette sous-section en notant

Λ1(Σ) = sup
g∈Met(Σ)

λ̄1(Σ, g).

Théorème II.3.9 ([KPS25]). Soit Σ une surface connexe compacte sans bord. Alors
Λ1(Σ) est atteint.

Ce théorème généralise à toute topologie (y compris non-orientable) le résultat de la
sous-section précédente pour la maximisation de la première valeur propre. Cette géné-
ralisation demeure spécifique à la première valeur propre. On répond donc à la question
qui était ouverte en genre non orientable γ > 2. Le cas du plan projectif [LY82] et de la
bouteille de Klein [JNP06, ESGJ06] étaient déjà connus.

Pour démontrer le Théorème II.3.9 on utilise le résultat suivant qui est une spécification
du Théorème II.2.6 à la maximisation de la première valeur propre.

Théorème II.3.10 (cas orientable : [Pet14a], cas non orientable : [MS21]). Soit Σ une
surface connexe compacte sans bord qui vérifie les deux hypothèses suivantes :

(i) S’il existe une surface Σ′ telle que Σ = T2]Σ′, alors Λ1(Σ) > Λ1(Σ′).
(ii) S’il existe une surface Σ′ telle que Σ = RP2]Σ′, alors Λ1(Σ) > Λ1(Σ′).

Alors Λ1(Σ) est atteint.

Le Théorème II.3.1 fournit (i). Il suffit donc de montrer (ii) pour obtenir le Théorème
II.3.9 dans le cas où Σ est non orientable. La démonstration utilise astucieusement la
construction de [KS23] dans le cas de l’ajout d’une cross-cap à Σ′. Une preuve alternative
de (i) par recollement d’anse est aussi donnée avec une technique similaire.

Etape 1 : Choix de la suite de classes conformes initiale

Soit g un maximum de Λ1(Σ′). On choisit un point p ∈ Σ′. Comme nos constructions
respecteront une invariance conforme, on choisit g̃ une métrique conforme à g qui est lisse
sur Σ′ et qui est plate au voisinage de p. On pose

Σε = Σ \Dε(p)

et en notant ΓL := S1 × [−L,L]/ ∼ la bande de Möbius plate de taille 2π et longueur L,
où (z, t) ∼ (−z,−t), et on pose

Σ̃ε = (Σε t ΓL) / ∼

où ∼ est le recollement bord à bord naturel de Σε et de ΓL. On munit Σ̃ε de la métrique
g̃ε qui vaut g̃ sur Σ′ et la métrique plate sur ΓL.
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Etape 2 : Création d’applications presque harmoniques équilibrées

Cette étape est la grosse boîte noire de ce mémoire. Elle repose sur la théorie Karpukhin-
Stern [KS23]. Cela rend la technique très spécifique à la première valeur propre. On ne
travaille plus tout à fait avec les applications harmoniques associées aux maximiseurs de
Λ1(Σ̃ε, [gε]) mais avec des applications harmoniques sur (Σ̃ε, [gε]) qui ressemblent le plus
possible aux maximiseurs de Λ1(Σ′, [g]) en passant par un opérateur de projection bien
choisi T : H1(Σ̃ε) → H1(Σ′). Plus précisément, [KS23] donne une marge de manoeuvre
pour ajuster la mesure β pour laquelle l’application harmonique est bien équilibrée : son
centre de gravité par rapport à β est en 0, dans l’esprit du résultat topologique de [Her70] :

Proposition II.3.11 ([KNPS21], Proposition 3.1 ou [KS23], Proposition 2.2). Soit (M,h)
une variété Riemannienne de dimension 2. Alors, il existe un entier n = n([g]) ∈ N tel
que pour tous β ∈ H−1(M), il existe une application Φ ∈ H1(M, Sn) telle que

β(Φ) = 0 ∈ Rn+1

et
∫
M

|∇Φ|2h dAh 6 Λ1(M, [h]).

On appliquera cette proposition à (M,h) = (Σ̃ε, g̃ε) où β est défini par un opérateur
T : H1(Σ̃ε)→ H1(Σ′) :

β(ϕ) =

∫
Σ′
T (ϕ)dAg.

On obtient une application Φε. Les coordonnées de T (Φε) sont alors orthogonales aux
fonctions constantes, par construction, ce qui permet l’estimée directe :(∫

Σ′
|T (Φε)|2dAg

)
λ1(Σ′, g) 6

∫
Σ′
|∇(T (Φε))|2gdAg. (II.40)

Remarque : comparaison entre méthodes

On compare ce qu’on obtient ici et ce qu’on obtenait avec la méthode utilisant le
principe variationnel d’Ekeland. Noter que ΓL ou C`,ε jouent le même rôle. Par le Lemme
II.3.7, l’opérateur le plus naturel à choisir est ϕ ∈ H1(Σ̃ε) 7→ ϕ̂ ∈ H1(Σ′) définie par
l’extension continue de ϕ de Σε à Σ′ comme une fonction harmonique sur Dε(p) (ou
Dε(p, q)). En notant Ψε = Φ̂ε, on a alors par la Proposition II.3.11 et (II.40) :(

1 +

∫
Dε(p,q)

(
|Ψε|2 − 1

)
dAg

)
λ1(Σ′, g) 6 Λ1(Σ̃ε, [g̃ε])+

∫
Dε(p)

|∇Ψε|2ξdAξ−
∫
C`,ε

|∇Φε|2ξdAξ.

On utilise une inégalité de Poincaré sur le disque pour obtenir∫
Dε(p,q)

(
|Ψε|2 − 1

)
dAg 6 Cε2

√∫
Dε(p)

|∇Ψε|2ξdAξ, (II.41)

et en rappelant la définition de B donnée dans (II.35). on obtient grâce au lemme II.3.7,

B(Ψε,Ψε) 6 Λ1(Σ̃ε, [g̃ε])− λ1(Σ′, g) + Ce−`
∫
C`,ε

|∇Φε|2ξdAξ + Cε2

√∫
Dε(p)

|∇Ψε|2ξdAξ.
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En supposant que Λ1(Σ̃ε, [g̃ε]) 6 λ1(Σ′, g), ce qui est le cas si Λ1(Σ′) est atteint en g et si
on suppose par l’absurde Λ1(Σ) = Λ1(Σ′), on obtient

B(Ψε,Ψε) 6 Ce−`Qε + Cε2
√
Qε où Qε =

∫
C`,ε

|∇Φε|2ξdAξ. (II.42)

Cette inégalité correspond à la Proposition II.3.6 sans le "bruit" δε précédemment dû à
l’application du principe variationnel d’Ekeland. C’est le principal avantage de la théorie
de Karpukhin-Stern : on peut espérer obtenir des estimées très fines car très naturelement,
le terme de droite est seulement local : c’est l’énergie de Φε sur ΓL (ou sur C`,ε).

Une contrepartie inconvéniente est que, quelque soit la vitesse de convergence de Qε

vers 0, l’application limite Φ de Ψε sera seulement harmonique sur Σ′ (équations 1 et 2
dans (II.39)), pas conforme (l’équation 3 de (II.39) n’est donc pas vérifiée). Pour obtenir
une contradiction, on demande que le passage à la limite lorsque ε→ 0 donne directement
∇Φ(p) = 0. Le choix naturel ϕ 7→ ϕ̂ de T ne le permet pas car on ne peut pas obtenir
mieux que Qε = O(ε2) lorsque ε → 0, cette estimée n’est pas suffsante pour avoir le
résultat attendu à l’ordre 1.

Etape 3 : Choix de l’opérateur de prolongement

La fonction u ∈ W 1,2(ΓL) sur la bande de Möbius ΓL peut être identifiée à une fonction
u ∈ W 1,2(CL) qui satisfait u(z, 0) = u(−z, 0), de sorte que l’opérateur d’extension harmo-
niqueH : W 1,2(ΓL)→ W 1,2(D) satisfait les estimées du lemme II.3.7 (avec L = `

2
). Comme

précedemment dit, on a besoin ici d’un opérateur plus fin K : W 1,2(ΓL)→ W 1,2(D) adapté
à la bande de Möbius ΓL. On définit la décomposition orthogonale

W 1,2(ΓL) = E ⊕ O,

de W 1,2(ΓL) dans l’espace des fonctions paires

E := {u ∈ W 1,2(ΓL) | u(−z, t) = u(z, t)}

et des fonctions impaires

O := {u ∈ W 1,2(ΓL) | u(−z, t) = −u(z, t)}

pour la rotation (z, t) 7→ (−z, t). Noter que pour tout u ∈ O, l’identification (z, 0) ∼
(−z, 0) donne

u(z, 0) = u(−z, 0) = −u(z, 0) = 0 pour tous z ∈ S1. (II.43)

En posant πE : W 1,2(ΓL)→ E et πO : W 1,2(ΓL)→ O la projection évidente, on définit un
nouvel opérateur K comme suit :

Lemme II.3.12. Pour L > 3
2

log(2), il existe un opéreateur K : W 1,2(ΓL)→ W 1,2(D) tel
que

K(u)(z) = u(z, L) pour z ∈ S1,

‖K(u)‖L∞(D) 6 2‖u‖L∞(ΓL),

et en écrivant uE = πE(u) et uO = πO(u), on a

‖∇[K(uE)]‖2
L2(D) 6 (1 + Ce−2L)‖∇(uE)‖2

L2(ΓL)
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et
‖∇[K(uO)]‖2

L2(D) = ‖∇(uO)‖2
L2(ΓL).

De plus, K(uE) est pair et K(uO) est impair par rapport à l’antipodie z 7→ −z du disque,
et K(uO) ≡ 0 sur De−L(0).

Une conséquence clé du Lemme II.3.12, est l’égalité suivante :

‖∇(K(u))‖2
L2(D) − ‖∇u‖2

L2(ΓL) = ‖∇(K(u)E)‖2
L2(D) − ‖∇uE‖2

L2(ΓL), (II.44)

où K(u)E est la partie paire de K(u) par rapport à la rotation z 7→ −z. Cela provient des
estimées de ‖d(K(uE))‖L2 et ‖d(K(uO))‖L2 , sachant que K(uE) = K(u)E et K(uO) =
K(u)O sont orthogonaux dans W 1,2(D).

Etape 4 : Estimées à l’ordre 1

Cette fois, on pose T : H1(Σ̃ε)→ H1(Σ′) l’opérateur de projection tel que ϕ ∈ H1(Σ̃ε)

a pour image lorsque x ∈ Σ̃ε{
T (ϕ)(x) = ϕ(x) si x ∈ Σε

T (ϕ)(x) = K(ϕ|ΓL)(x) si x ∈ Dε(p).

En appliquant (II.40) à cet opérateur et en notant comme dans le Lemme II.3.12 ϕE et ϕO
les parties paires et impaires de ϕ sur ΓL, et en utilisant (II.44), les calculs qui menaient
à (II.42) donnent maintenant en notant Ψε = T (Φε)

B(Ψε,Ψε) 6 ‖∇(Ψε)E‖2
L2(Dε(p))

− ‖∇(Φε)E‖2
L2(ΓL) + C ′ε2‖∇Φε‖L2(ΓL), (II.45)

On pose Rε = Ψε−Fε où F ε
i est la projection orthogonale pour L2(g) sur l’espace propre

correspondant à λ1(Σ′, g) de ψεi . Une démonstration de la proposition suivante est donnée
pour bien sentir l’auto-amélioration des estimées :

Proposition II.3.13. On a lorsque ε→ 0 :

‖Rε‖2
H1 6 C ′ε3. (II.46)

Démonstration. Comme dans la démonstration précédente de (II.36), on obtient (II.38),
ce qui implique

‖Rε‖2
H1 6 C

(
‖∇(Ψε)E‖2

L2(Dε(p))
− ‖∇(Φε)E‖2

L2(ΓL) + ε2‖∇Φε‖L2(ΓL)

)
. (II.47)

Première amélioration : On montre

‖Rε‖2
H1 6 C ′e−2L‖∇ (Ψε)E ‖

2
L2(Dε)

+ C ′ε2‖∇Φε‖L2(ΓL). (II.48)

Comme le terme de gauche est positif dans (II.47), on obtient

‖∇(Φε)E‖2
L2(ΓL) 6 ‖∇(Ψε)E‖2

L2(Dε)
+ Cε2‖∇Φε‖L2(ΓL),

ce qui avec l’application du Lemme II.3.12

‖∇(Ψε)E‖2
L2(Dε(p))

6 (1 + Ce−2L)‖∇(Φε)E‖2
L2(ΓL),
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donne

‖∇(Ψε)E‖2
L2(Dε(p))

− ‖∇(Φε)E‖2
L2(ΓL) 6 Ce−2L

(
‖∇(Ψε)E‖2

L2(Dε(p))
+ ε2‖∇Φε‖L2(ΓL)

)
(II.49)

et (II.47) devient (II.48).

Deuxième amélioration : On montre

‖Rε‖2
H1 6 C(ε2‖∇Φε‖L2(ΓL) + ε4). (II.50)

Maintenant, on peut tirer parti du fait que les coordonnées de Fε sont bornées dans
H1 dans un espace de dimension finie, ainsi, on a les estimées uniformes suivantes pour
la parties impaire et paire de Fε

(Fε)O(z) =
1

2
(Fε(z)− Fε(−z)) = dFε(0) · z +O(|z|3)

and
(Fε)E(z) =

1

2
(Fε(z) + Fε(−z)) = Fε(0) +O(|z|2),

sur le disque Dε(p) ∼= Dε(0), de sorte que

|∇(Fε)E(z)|ξ 6 ‖(Fε)E‖C2|z| 6 C|z|,

et donc
‖∇(Fε)E‖2

L2(Dε(p))
6 Cε4.

En utilisant la définition Fε = Ψε +Rε,

‖∇(Ψε)E‖2
L2(Dε(p))

6 2‖∇(Φε)E‖2
L2(Dε(p))

+ 2‖Rε‖2
H1 6 2‖Rε‖2

H1 + Cε4, (II.51)

puis avec (II.48), on peut écrire

‖Rε‖2
H1 6 C ′′e−2L(‖Rε‖2

H1 + ε4) + C ′ε2‖∇Φε‖L2(ΓL).

En prenant L suffisammant grand tel que C ′′e−2L < 1
2
, on obtient (II.50).

Troisième amélioration : On montre (II.46)

On applique (II.50) et on utilise les estimées uniformes sur Fε, pour déduire

‖∇Ψε‖2
L2(Dε(p))

6 2‖∇Fε‖2
L2(Dε(p))

+ 2C(ε2‖∇Φε‖L2(ΓL) + ε4) 6 C ′ε2,

et comme on a par définition de Ψε et (II.40),

‖∇Ψε‖2
L2(Σ,g) > λ1(Σ, g)‖Ψε‖2

L2(Σ,g) > λ1(Σ, g)− Cε2,

ce qui impose en utilisant (II.44), (II.49) et (II.51),

‖∇Φε‖2
L2(Σ′\Dε(p)) > λ̄1(Σ′, g)− C ′ε2.

De plus, en utilisant l’hypothèse Λ1(Σ) = Λ1(Σ′),

‖∇Φε‖2
L2(Σ̃ε,g̃ε)

6 Λ1(Σ̃ε, [g̃ε]) 6 λ1(Σ′, g)

on obtient
‖∇Φε‖2

L2(ΓL) = ‖∇Φε‖2
L2(Σ̃ε,g̃ε)

− ‖∇Φε‖2
L2(Σ′\Dε(p)) 6 C ′ε2.

On applique cette estimée au terme de droite de (II.50), et on obtient (II.46).
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La proposition impose en particulier sur les parties impaires de Ψε, Fε sur Dε(p) que

‖∇(Ψε)O −∇(Fε)O‖2
L2(Dε(p))

6 C ′ε3. (II.52)

Par construction de K (Lemme II.3.12), on a (Ψε)O ≡ 0 sur De−Lε(p). Ainsi, (II.52) donne

‖d(Fε)O‖2
L2(D

e−Lε(p))
6 C ′ε3.

Des estimées uniformes sur Fε (borné C3 par exemple) permettent d’écrire

|∇(Fε)O(z)−∇Fε(p)| 6 C|z − p| 6 Cε

pour tous z ∈ Dε(p). On calcule maintenant la valeur moyenne sur De−Lε(p) par rapport
à z du carré l’inégalité précédente, et

|∇Fε(p)|2 6 Cε2 +
C ′

ε2

∫
D
e−Lε(p)

|d(Fε)O|2 6 C ′′ε. (II.53)

Etape 5 : Convergence finale et contradiction

On remarque que quitte à prendre une sous-suite, Fε converge vers Φ lorsque ε → 0.
L’équation (II.50) permet d’écrire avec l’inégalité de Poincaré (II.41)

∫
Σ′

(1−|Fε|)2 6 Cε2.
Ainsi |Fε|2 → 1 lorsque ε→ 0. Enfin, avec (II.53), on peut écrire

∆gΦ = λ1(Σ′, g)Φ

|Φ|2 = 1

∇Φ(p) = 0.

(II.54)

Ceci fournit une contradiction lorsque p n’est pas une singularité conique de g.

II.4 Perspectives
On dispose de deux approches qui permettent de démontrer des inégalités strictes sur

des invariants spectraux du type I(Σ, F ) en fonction de perturbations topologiques sur
Σ et de montrer qu’ils sont atteint pour toute topologie. Chacune a ses avantages et ses
inconvénients.

L’une des méthodes (par application du principe variationnel d’Ekeland) permet de
traiter les combinaisons de valeurs propres et peut s’envisager avec des changements d’opé-
rateurs, voire des combinaisons de valeurs propres pour différents opérateurs. Il peut aussi
être utilisé quand il n’existe pas a priori de maximiseurs dans la classe conforme, puis-
qu’on raisonne avec des presque-minimiseurs. C’est exactement ce qu’on fait dans [Pet25a]
pour démontrer par contradiction le résultat de rigidité suivant : σ̄1(Σ, [g]) > σ̄1(D) = 2π
lorsque Σ est un anneau ou une bande de Möbius. En effet, si on suppose par contradic-
tion σ̄1(Σ, [g]) = 2π, on est dans le cas limite où on ne sait pas s’il existe un maximiseur.
On a donc une piste prometteuse pour montrer ce résultat de rigidité pour toute surface
compacte sans bord (Σ, [g]) non difféomorphe au disque. En effet, la construction devrait
permettre, comme dans [Pet25a] de démontrer que ce résultat est vrai partout en-dehors
d’un ensemble compact de l’espace de Teichmüller d’une surface compacte à bord.

L’autre méthode (par application de la théorie de Karpukhin-Stern) permet de faire
des estimées plus fines car le principe variationnel d’Ekeland induit un "bruit" δε qui



76 CHAPITRE II. OPTIMISATION EN DIMENSION 2

semble répercuté dans toutes les estimées. Cependant, elle semble limitée au cas où une
seule valeur propre de Steklov ou du Laplacien apparaît dans la fonctionnelle spectrale.

Il serait intéressant de tirer parti de ces différentes approches pour étendre au maxi-
mum leurs champs d’application. En étant plus attentif sur les estimées, il n’est pas exclus
qu’on traite le cas non-orientable avec la première méthode, ou le cas des combinaisons
de valeurs propres dans la deuxième méthode, voire qu’on fournisse un point de vue plus
unificateur.

Pour insister sur la portée de toutes les techniques mises en jeu dans les Chapitres I
et II, je donne dans les chapitres suivants des exemples divers où leur adaptation permet
des résultats dans la théorie des surfaces minimales et en géométrie spectrale. Je souhaite
également tirer parti de ces techniques pour obtenir des résultats sur d’autres opérateurs,
des combinaisons positives infinies de valeurs propres ou des combinaisons non positives
de valeurs propres.



Chapitre III

Applications à la construction de
surfaces minimales

Ce chapitre synthétise les travaux [Pet23b, Pet25b, Pet25a]. On énonce un résultat
d’existence de disques minimaux plongés à bord libre non plans dans des ellipsoïdes de
révolution suffisamment allongés de R3. Cela répond à une question posée 30 ans aupa-
ravant de Dierkes, Hildebrandt, Küster, Wohlrab [DHKW92, page 335]. Pour le montrer,
on optimise des fonctionnelles spectrales de Steklov sur le disque. Plus précisément, ces
plongements sont par exemple construits par minimisation de combinaisons linéaires des
inverses de la première et de la deuxième valeur propre de Steklov non nulle, parmi des
métriques symétriques par rapport aux deux axes du plan sur le disque unité centré en
0. Avec ces contraintes de symétrie, on parle d’optimisation équivariante. L’équivariance
va à la fois porter sur la métrique optimale et sur l’immersion minimale associée à cette
métrique critique.

Après l’idée initialement introduite par Fraser et Schoen de construire des surfaces mi-
nimales à bord libre par optimisation spectrale, [Pet23b] présente donc le premier exemple
où l’optimisation spectrale équivariante a permis de construire de nouvelles surfaces mi-
nimales. Dans la même idée, Karpukhin, Kusner, McGrath, Stern [KKMS24] ont par la
suite construit des plongements de n’importe quelle surface à bord orientable dans la
boule unité de R3 par optimisation équivariante de la première valeur propre de Stek-
lov. Le cadre équivariant est une façon commode de résoudre une difficulté inhérente aux
points critiques que nous obtenons : ils ne fournissent a priori que des immersions mini-
males branchées de codimension quelconque, pas des plongements dans R3. On sait que
les coordonnées des immersions minimales en jeu sont des fonctions propres. Le célèbre
théorème de Courant impose des bornes sur le nombre de domaines nodaux. Couplé aux
symétries imposées par le cadre équivariant, le nombre de domaines nodaux des fonctions
propres est alors d’autant plus contraint. Ainsi, si le cadre équivariant est bien posé, on
montre que la multiplicité des valeurs propres est bornée pour obtenir au plus 3 coordon-
nées et les immersions ne peuvent être que des plongements.

Il est important de rappeler que, bien que cette méthode indirecte de construction de
surfaces minimales par optimisation spectrale donne de nouveaux résultats spectaculaires
et fins, elle reste spécifique à des problèmes particuliers, où les variétés ambiantes sont
certaines quadriques de l’espace Euclidien ou de l’espace de Minkowski. 1 Ces dernières
décennies, les méthodes de min-max ont apporté de grandes avancées (résolution de la

1. Quadriques qu’on ne peut pas prescrire a priori (sauf si c’est la sphère) puisque leurs paramètres
sont les valeurs propres associées à la métrique critique qui apparaissent dans la fonctionnelle spectrale

77



78 CHAPITRE III. APPLICATIONS AUX SURFACES MINIMALES

conjecture de Willmore [MN14], de la conjecture de Yau [MNS19, Son23] etc) et restent
les approches variationnelles les plus naturelles. Dans une moindre mesure, on a aussi
contribué dans [LP19] à la construction de disques minimaux à bord libre dans une plus
large classe de variétés par une méthode de min-max dans le même esprit que Colding
et Minicozzi dans [CM08]. Par ailleurs, il est désormais montré dans [HK23] par des
méthodes de min-max, que tous les ellipsoïdes suffisamment allongés contiennent des
disques minimaux plongées à bord libre non plans. Il serait intéressant de savoir s’ils
produisent les mêmes objets que dans ce chapitre.

On peut enfin évoquer le problème analogue des sphères minimales plongés non hyper-
planes dans des ellipsoïdes de R4. Dans [HK19], les auteurs résolvaient une conjecture de
Yau en prouvant leur existence dans des ellipsoïdes suffisamment allongés. Dans [BP22],
les auteurs montrent que pour un nombre entier arbitrairement grand fixé, il existe un
ellipsoïde suffisamment allongé qui contient au moins ce nombre de sphères minimales
plongées non hyperplanes. Dans cet esprit, j’ai donné un point de vue nouveau par op-
timisation de combinaison de la première et de la deuxième valeur propre du Laplacien
sur la sphère parmi toutes les métriques symétriques par rapport à un plan équatorial et
invariantes par rotation autour de l’axe orthogonal à au plan équatorial.

III.1 Existence de disque minimal à bord libre non plan
dans un ellipsoïde

On considère l’ellipsoïde de R3 paramétré par σ = (σ1, σ2, σ3) :

Eσ := {(x1, x2, x3) ∈ R3;σ1x
2
1 + σ2x

2
2 + σ3x

2
3 = 1}

de demi-axes (σi)
− 1

2 pour i = 1, 2, 3. Les courbes equatoriales {xi = 0}∩Eσ pour i = 1, 2, 3
sont des géodésiques fermées simples de Eσ. Par [Mor31] ce sont les seules parmi les ellipses
proches de la sphère. Dans un célèbre résultat, démontré par une combinaison de la mé-
thode min-max de Lusternik and Schnirelmann [LS47] et le flot de courbure moyenne par
Grayson [Gra89], toute 2-sphère munie d’une métrique riemannienne quelconque contient
au moins 3 géodésiques fermées. C’est un rafinement de la méthode de min-max de Bir-
khoff [Bir17] pour montrer l’existence de géodésiques fermées sur une sphère. De nom-
breux exemples d’ellipsoïdes Eσ réalisent donc le nombre minimal de géodésiques fermées
simples ; 3. Plus tard, Viesel [Vie71] a démontré l’existence d’ellipsoïdes qui contiennent
un nombre arbitrairement grand de géodésiques fermées simples.

Une question analogue pour les disques minimaux à bord libre dans Eσ se pose. On
rappelle qu’un disque minimal à bord libre dans Σ ⊂ R3 est un disque topologique qui
est un point critique de la fonctionnelle d’aire parmi tous les disques D tels que ∂D ⊂ Σ.
Ce sont exactement les disques minimaux D de R3 tels que ∂D ⊂ Σ et D rencontre Σ
orthogonalement sur ∂D. Les disques plans {xi = 0} ∩ co (Eσ) sont les premiers exemples
triviaux de de disques minimaux à bord libre dans un ellipsoïde Σ = Eσ. La question est
la suivante :

Question 1 (Dierkes, Hildebrandt, Küster, Wohlrab, 1993, [DHKW92] p335). Existe-t-il
des disques minimaux à bord libre non plans dans des ellipsoïdes de R3 ?

Cette question est analogue à celle des géodésiques non planes sur les ellipsoïdes pour
deux raisons.
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D’abord, c’est la version à bord de la question suivante : existe-t-il des 2-sphères
minimales dans un ellipsoïde de R4 qui sont non équatoriales ? Cette question avait été
posée par Yau, et a la réponse donnée par Haslhofer and Ketover [HK19] est oui pour des
ellipsoïdes suffisamment allongés, grâce à des méthodes de min-max et de flot de courbure
moyenne. On discutera du cas sans bord dans la section III.2 où j’ai construit de telles
sphères minimales par optimisation spectrale.

Ensuite, on peut directement voir cette question comme la recherche de géodésiques
non locales fermées simples non planes sur des ellipsoïdes. En effet, il existe une corres-
pondance entre les disques minimaux à bord libre et les géodésiques non locales associées
au demi-Laplacien (voir [DLR11]). Plus précisément, pour une surface Σ ⊂ R3, il y a une
correspondance bijective entre les courbes fermées paramétrées sur R : γ : R→ Σ et qui
satisfont l’équation 2

∆
1
2γ ⊥ TγΣ et γ(−∞) = γ(+∞)

et les disques minimaux à bord libre dans Σ qui lorsqu’ils sont paramétrés par le disque
Φ : D→ R3 satisfont l’équation {

∆Φ = 0 dans D
∂rΦ ⊥ TΦΣ sur S1.

On peut obtenir Φ comme l’extension harmonique de γ ◦ π où π : D → R2
+ est une

application biholomorphe. On peut obtenir γ comme la restriction à R de Φ ◦ π−1. En
effet, l’opérateur Dirichlet à Neumann sur R vu comme le bord de R2

+ est exactement le
demi-Laplacien sur R et les équations sont invariantes conforme. La Question 1 a donc
une version plus faible intéressante :

Question 2. Existe-t-il une géodésique fermée simple non locale associée à ∆
1
2 non plane

dans un ellipsoïde ?

La réponse aux Questions 1 et 2 est non si l’ellipsoïde est une sphère ronde (σ1 =
σ2 = σ3) par [Nit85] : les seuls disques minimaux à bord libre dans la 2-sphère sont les
disques plans équatoriaux. On a d’ailleurs le même résultat dans le cas sans bord pour
les 2-spheres dans les 3-spheres par Almgren [Alm66]. Par contre, on sait que la version à
bord est en un certain sens plus rigide, parce que même en augmentant la codimension et
en autorisant les disques à être seulement immergés, on a le résultat suivant de [FS15] :
pour tout n, les seuls disques immergés (possiblement branchés) à bord libre dans Sn sont
plans. Dans le cas sans bord, on peut construire de nombreuses sphères minimales non
planes dans des sphères de dimension paires S2n avec n > 2 (théorie initiée par Calabi
[Cal67]).

Dans le théorème suivant, ces deux questions ont une réponse :

Théorème III.1.1 ([Pet23b]). Il existe une famille à un paramètre (pt)t>0 telle qu’il
existe un disque Dt minimal à bord libre plongé dans l’ellipsoïde de révolution

Ept := {x ∈ R3; ptx
2
0 + x2

1 + x2
2 = 1}

et tel que les coordonnées x0, x2, x2 sont des premières et secondes fonctions propres de
Steklov pour la métrique gt = e2vtξ sur Dt satisfaisant

evt =
1

(p2
tx

2
0 + x2

1 + x2
2)

1
2

sur ∂Dt

2. L’équation classique des géodésiques sur Σ s’écrit ∆γ ⊥ TγΣ
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où ξ est la métrique Euclidienne de R3. Pour tous t1 < t2, Dt1 is n’est pas isométrique
à Dt2. De plus, en notant Lt la longueur de ∂Dt par rapport à la métrique gt, t 7→ Ltpt
est strictement décroissante et t 7→ Lt est strictement croissante. Enfin, pt → 0 et Lt →
4π lorsque t → +∞ et Dt converge au sens des varifolds vers le disque {0} × D avec
multiplicité 2 lorsque t→ +∞.

Depuis, la réponse aux Questions 1 et 2 a été généralisée à tous les ellipsoïdes suf-
fisamment allongés de R3 par des méthodes de min-max [HK23]. Dans les sous-sections
suivantes, on détaille les étapes de la démonstration originale par optimisation spectrale.

Etape 1 : Optimisation spectrale. Il existe des minimiseurs pour de nombreuses
combinaisons bien choisies de premières et deuxièmes valeurs propres de Steklov parmi
les métriques riemanniennes sur le disque. Les minimiseurs existent également parmi les
métriques qui sont paires par rapport aux deux coordonnées du plan. C’est l’objet de la
Sous-section III.1.1

Etape 2 : Bornes sur la multiplicité. Les immersions (possiblement branchées)
minimales à bord libre dans des ellipsoïdes associées aux métriques minimales ont au plus
3 coordonnées. C’est une conséquence directe de [Jam16] : la deuxième valeur propre de
Steklov sur le disque est de multiplicité au plus 2.

Etape 3 : Les surfaces sont non planes. Il existe des choix de combinaisons de
première et deuxième valeurs propres pour lesquels une immersion (possiblement bran-
chée) minimale à bord libre associée à une métrique minimisante est forcément non plane.
C’est l’objet de la Sous-section III.1.2

Etape 4 : Les surfaces sont plongées. Des immersions (possiblement branchées)
minimales à bord libre obtenues sont en fait des plongements. Plus précisément, les im-
mersions minimales n’ont jamais de points de branchement du fait qu’elles le sont par
premières et deuxièmes fonctions propres. Sous hypothèse de symétries (métriques mini-
males paires par rapport à chaque coordonnée), ce sont des plongements. C’est l’objet de
la Sous-section III.1.3.

III.1.1 Existence de minimiseurs

Le point de départ de cette étude est le Théorème II.2.4, donné dans [Pet24b]. L’exis-
tence de minimiseurs pour des combinaisons de valeurs propres de Steklov sur une surface
fournit une immersion (possiblement branchée) minimale à bord libre dans un ellipsoïde
(voir Théorème II.1.2). Ainsi, pour donner un exemple le plus simple possible de construc-
tion, on suppose que la surface est un disque et que seules la première et la deuxième fonc-
tion propre de Steklov interviennent dans la combinaison. Il reste à choisir une famille
de combinaisons suffisamment simple pour être exploitée. On peut énoncer l’inégalité de
Weinstock [Wei54], qui se généralise très bien à la somme des inverses des deux premières
fonctions propres sur le disque [HP68] :

λ̄1(D, ·)−1 + λ̄2(D, ·)−1 >
1

π
. (III.1)

La fonctionnelle de gauche n’est atteinte que pour des disques isométriques au disque muni
de la métrique euclidienne. Par ailleurs, les combinaisons linéaires de valeurs propres sont
assez simples à manipuler. Partant de ces observations, on pose pour t > 0 et s ∈ R∗

hs,t(x1, x2) =
(
x−s1 + tx−s2

) 1
s .



III.1. DISQUE MINIMAL À BORD LIBRE PLONGÉ NON PLAN 81

afin de déterminer les métriques qui atteignent

IS(D, hs,t) = inf
g∈Met(D)

ES
hs,t(D, g)

où g désigne l’ensemble des métriques sur le disque et

ES
hs,t(D, g) = hs,t(σ̄1(D, g), σ̄2(D, g)).

Il est important de noter à ce stade que par le théorème d’uniformisation, minimiser
ES
hs,t

sur l’espace des métriques d’un disque topologique est équivalent à le minimiser
dans l’ensemble des métriques conformes à la métrique euclidienne sur le disque. Comme
les valeurs propres de Steklov ne dépendent que de la valeur du facteur conforme au
bord, c’est même équivalent à un problème de minimisation parmi des fonctions lisses et
strictement positives sur un cercle. D’ailleurs, on dit que deux métriques g1 et g2 sont
Steklov-isométriques s’il existe un difféomorphisme du disque Φ tel que g2 est conforme à
Φ?g1 avec un facteur conforme valant 1 au bord.

Pour les fonctionnelles hs,t, on remarque que si t = 0, on obtient le maximiseur de σ̄1,
c’est à dire par Weinstock (III.1), c’est le disque euclidien. Plus particulièrement, pour
s = 1 et 0 6 t 6 1, (III.1) implique que le seul minimiseur est un disque. De manière
diamétralement opposée pour tout s, si t = +∞, un minimiseur de hs,t correspond à un
maximiseur de σ̄2. Par [HPS75]

σ̄2 < 4π (III.2)
et ce n’est pas atteint (voir [GP10]). Par contre, 4π correspond à la deuxième valeur
propre renormalisée de l’union de deux disques euclidiens disjoints dont les bords ont la
même longueur. En particulier, il existe des suites maximisantes dont la deuxième valeur
propre tend vers 4π qui explosent et convergent vers une union disjointe de deux disques.

En utilisant le Théorème II.2.4 pour ces choix de combinaison hs,t, on obtient le Théo-
rème suivant :

Théorème III.1.2 ([Pet23b]). Pour tous s ∈ R∗ et t > 0, IS(D, hs,t) est atteint.

Pour démontrer ce Théorème, il s’agit simplement de vérifier (voir Théorème II.2.3)
que

IS(D, hs,t) < IS(D t D, hs,t). (III.3)
Pour toute métrique g sur D t D, on a σ̄1(D t D, g) = 0 car D t D est une surface non
connexe. Le maximiseur de σ̄2(DtD) est 4π atteint en une union disjointe de deux disques
euclidiens isométriques. Ainsi :

IShs,t(D t D) =

{
+∞ si s > 0

(4π)−1t
1
s si s < 0.

(III.4)

Ainsi, (III.3) est évident quand s > 0. Quand s < 0, on construit une suite de métriques
qui impliquent (III.3) pour tout t > 0 :

Théorème III.1.3 ([Pet23b]). Il existe une famille à 1 paramètre de métriques hε =
e2vε(dx2 + dy2) telles que

σ̄1(hε) =
2π

ln
(

1
ε

) +O

(
1

ln
(

1
ε

)2

)
and σ̄2(gε) = 4π − 16πε+ o(ε)

lorsque ε→ 0 et e2vε satisfait les propriétés de symétrie suivantes

∀(x, y) ∈ D, e2vε(x, y) = e2vε(−x, y) = e2vε(x,−y).



82 CHAPITRE III. APPLICATIONS AUX SURFACES MINIMALES

Ces métriques gε = e2uεξ sont définies naturellement comme une somme de deux
"bulles" 3

e2vε(z) =
β2
ε − 1

|βε − z|2
+

β2
ε − 1

|βε + z|2
,

où
βε =

1 + ε

1− ε
> 1 .

au sens où chaque terme de la somme est le facteur conforme associée à un disque
plat euclidien obtenu par tiré en arrière de la conjugaison par des applications biholo-
morphes f± : R2

+ → D telles que f±(0) = (±1, 0) d’une dilatation d’un facteur ε dans R2
+.

Par construction, on induit une concentration de chaque facteur conforme vers le point
(±1, 0) du disque. Cette construction de métriques est relativement standard. Néanmoins,
il n’était pas connu que la première et la seconde valeur propre pour hε ne convergent pas
du tout à la même vitesse vers leur valeur limite, ce qui permet d’obtenir (III.3).

Enfin, on remarque dans la Sous-section III.1.3 qu’une hypothèse supplémentaire de
symétrie permet de montrer que les immersions minimales de disques à bord libre par
première et deuxième fonction propre de Steklov sont en fait plongées. Pour construire de
tels objets, on adapte la démonstration du Théorème III.1.2 au cas de la minimisation de
ES
hs,t

parmi les métriques g qui vérifient

∀(x, y) ∈ D, g(x, y) = g(−x, y) = g(x,−y).

On note Meteq(D) l’ensemble de ces métriques et

ISeq(D, hs,t) = inf
g∈Meteq(D)

ES
hs,t(D, g).

Noter que cette optimisation est équivalente à l’optimisation parmi toutes les métriques
de la forme g = e2uξ sur le disque D qui satisfont la propriété

∀(x, y) ∈ D, eu(x, y) = eu(−x, y) = eu(x,−y) sur S1.

On a aussi dans ce cas l’existence d’un minimiseur

Théorème III.1.4 ([Pet23b]). Pour tous s ∈ R∗ et t > 0, ISeq(D, hs,t) est atteint.

Les métriques minimales pour ce problème correspondent également à des immersions
(possiblement branchées) minimales dans un ellipsoïde. La démonstration de ce théorème
nécessite encore de vérifier une inégalité stricte du type

ISeq(D, hs,t) < ISeq(D t D, hs,t). (III.5)

où ISeq(D t D, hs,t) et l’infimum de ES
hs,t

parmi toutes les métriques sur D t D qui sont
égales sur chaque copie du disque et qui sont paires par rapport à une coordonnée du
disque. Cette inégalité se vérifie encore car toutes les métriques test de (III.1.3) vérifient
cette propriété.

Comme on l’a dit, un minimiseur de IS(D, hs,t) ou ISeq(D, hs,t) est un disque euclidien
pour t = 0, et l’union disjointe de deux disques euclidiens pour t = +∞. Si on imagine que
les minimiseurs de I(D, hs,t) ou ISeq(D, hs,t) sont continus le long de t, les disques minimaux
à bord libre associés ne peuvent pas rester plans le long de t. Dans la sous-section suivante
on montre en effet qu’à partir d’une certaine valeur t, les disques minimaux à bord libre
ainsi construits sont non plans.

3. Le terme de bulle est plus couramment utilisé dans le cas analogue des facteurs conformes qui se
concentrent en un point intérieur à la surface avec la géométrie de la sphère ronde. Ici, c’est le disque
euclidien qui joue le rôle de la sphère ronde.
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III.1.2 Ellipses critiques non minimisantes

Pour montrer que les minimiseurs de ES
hs,t

sont non plans, on classifie les points cri-
tiques qui admettent des immersions minimales à bord libre dans une ellipse par première
et deuxième valeurs propres de Steklov. Ainsi, on montre que pour tous s 6= 0, il existe
un certain rang t(s) > 0 tel que ceux-ci ne peuvent plus être minimiseurs de hs,t.

Pour q > 1, on note l’ellipse co(Eq) = {x2 + qy2 6 1} où

Eq = {x2 + qy2 = 1}

munie de la métrique riemannienne gq = e2vq(dx2 + dy2) telle que

evq = (x2 + q2y2)−
1
2

sur Eq. Dans le résultat suivant, on montre que (co(Eq), gq) est critique pour de nom-
breuses combinaisons de valeurs propres de Steklov. C’est donc un bon candidat à être
un extremum pour ces combinaisons. On note que si σ est une valeur propre de Steklov
de (Σ, g), l’indice de σ est le plus petit entier k tel que σk(Σ, g) = σ.

Théorème III.1.5 ([Pet25a]). Pour q > 1, l’ellipse (co(Eq), gq) a la suite suivante de
fonctions propres (Re(P q

n), Im(P q
n)) et de valeurs propres associées (σqn, τ

q
n) :

σqn = n
√
q

(
√
q + 1)n − (

√
q − 1)n

(
√
q + 1)n + (

√
q − 1)n

and τ qn = n
√
q

(
√
q + 1)n + (

√
q − 1)n

(
√
q + 1)n − (

√
q − 1)n

et

P q
n(z) =

1

2n−1

[n2 ]∑
k=0

(
n

2k

)
zn−2k

(
z2 −

(
1− 1

q

))k
.

De plus, pour q > 1, gq est une métrique critique pour toutes les fonctionnelles spectrales
g 7→ f(σ̄k1(g), σ̄k2(g)) telles que

∂1f(σ̄k1(gq), σ̄k2(gq))

∂2f(σ̄k1(gq), σ̄k2(gq))
=

∫
Eq
Re(P q

n)2dLgq∫
Eq
Im(P q

n)2dLgq
.

où (k1, k2) est le couple des indices du couple de valeurs propres distinctes (σqn, τ
q
n).

On note que pour q = 1, P q
n = zn correspond aux fonctions propres de Steklov sur

le disque plat : les polynômes homogènes harmoniques. Bien que le résultat soit simple
et que les polynômes en jeu sont connus, c’est à ma connaissance la première fois qu’on
décrit une nouvelle surface riemannienne à bord simplement connexe, critique pour des
fonctionnelles spectrales. Insistons sur le fait que l’ordre des valeurs propres sur le disque

1 = σ1
1 = τ 1

1 < 2 = σ1
2 = τ 1

2 < · · · < n = σn2 = τn2 < · · ·

n’est à un certain point plus respecté lorsque q croît du fait des propriétés suivantes :

∀q ∈ [1,+∞[, (σqn)n>1 et (τ qn)n>1 sont strictement croissants

∀n ∈ N∗, (σqn)q>1 est borné et τ qn ∼ q lorsque q → +∞.
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Dans la suite, on se restreint aux fonctionnelles spectrales sur le disque mettant en
jeu la première et la deuxième valeur propre de Steklov sur le disque. C’est à dire pour
F : R2

+ → R ∪ {∞} décroissante par rapport à chaque coordonnée, on pose

ES
F (D, g) = F (σ̄1(D, g), σ̄2(D, g)).

Dans ce cas, la proposition suivante indique que les seuls points critiques de ES
F (D, ·)

tels qu’il existe une immersion minimale branchée associée qui prend ses valeurs dans des
ellipses sont (quitte à reparamétrer le disque) du type (Eq, gq) pour q > 1.

Proposition III.1.6 ([Pet23b, Pet25a]). Soit Φ : D → co (Eσ) ⊂ R2 une application
harmonique à bord libre conforme dans une ellipse. On suppose que les coordonnées de Φ
sont des premières et deuxièmes fonctions propres de Steklov par rapport à la métrique

g = e2vΦ?ξ tel que ev = (σ2
1(φ1)2 + σ2

2(φ2)2)−
1
2 sur S1

où ξ est la métrique Euclidienne sur Eq. Alors Φ est un biholomorphisme. Ainsi, il existe
q > 1 tel que (D, g) est (Steklov)-isométrique à dilatation près à (Eq, gq).

Démonstration. Comme une application conforme harmonique entre deux ouverts de C
est holomorphe, le contenu du théorème est de démontrer que Φ est un difféomorphisme du
disque fermé vers l’ellipsoïde fermé. La démonstration est relativement simple et demande
les étapes suivantes

Etape 1 : On montre par une application astucieuse du principe du maximum et du
lemme de Hopf que sur S1 le facteur conforme associé à Φ?ξ par rapport à dθ ne peut pas
s’annuler. Ce résultat est en fait plus général (voir Proposition (III.1.8)).

Etape 2 : On utilise qu’une coordonnée, disons φ1 est une première fonction propre de
Steklov. Elle n’a donc que deux domaines nodaux, ce qui se traduit par une seule ligne
nodale qui ne coupe que 2 fois le bord. Ainsi, Φ|S1 : S1 → Eσ ne peut être que de degré 1.

Etape 3 : Pour des raisons topologiques, l’application holomorphe Φ entre deux domaines
simplement connexes, de degré 1 au bord est un biholomorphisme.

Reprenons les exemples de fonctions F = hs,t de [Pet23b] pour s > 0 et t > 0,

hs,t(x1, x2) =
(
x−s1 + tx−s2

) 1
s .

On obtient alors la proposition suivante :

Proposition III.1.7 ([Pet23b, Pet25a]). On Suppose que pour q > 1, (Eq, gq) est critique
pour ES

F (D, ·). Alors :

q 6 3 et
∂1F ( 2π√

q
, 2π
√
q)

∂2F ( 2π√
q
, 2π
√
q)

= q. (III.6)

En particulier, soit gs,t un minimiseur de ES
hs,t

(D, ·). On suppose que

s > 0 et t > 3s ou s < 0 et t > (2−s − 1)−1.

Alors toute immersion minimale à bord libre dans un ellipsoïde par premières et deuxièmes
fonctions propres de Steklov associée à la métrique gs,t est non plane.
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III.1.3 Caractère plongé et hypothèses de symétrie

On donne maintenant des conditions suffisantes pour que des immersions minimales à
bord libre dans des ellipsoïdes soient plongées. Soit Φ : Σ→ Rn une immersion (possible-
ment branchée) conforme à bord libre dans un ellipsoïde.

Eσ = {(x1, · · · , xn) ∈ Rn;σ1x
2
1 + · · ·+ σnx

2
n = 1} ,

paramétré par σ = diag(σ1, · · · , σn). Soit e2u (dx2 + dy2) = Φ?ξ le tiré en arrière de la
métrique euclidienne ξ par Φ. Les points de ramification x correspondent à u(x) = −∞. On
sait que les fonctions coordonnées de Φ sont des fonctions propres de Steklov par rapport
au facteur conforme ev = eu

|σΦ| au bord. La proposition suivante est une conséquence du
principe du maximum et du lemme de Hopf.

Proposition III.1.8 ([Pet23b]). Soit Φ : Σ→ Rn une immersion (possiblement branchée)
conforme à bord libre dans Eσ. Alors Φ(Σ) ⊂ co(Eσ), Φ−1(Eσ) = ∂Σ et Φ(Σ) n’a pas de
point de ramification sur Φ(∂Σ).

Démonstration. Soit x ∈ ∂Σ. On pose ψ = σ1φ1(x)φ1 + · · ·+ σnφn(x)φn. On a pour tous
y ∈ D,

ψ(y) = 〈σφ(x), φ(y)〉 6
√
〈σφ(x), φ(x)〉

√
〈σφ(y), φ(y)〉 =

√
〈σφ(y), φ(y)〉

La fonction f : y 7→ 〈σφ(y), φ(y)〉 est sous-harmonique car

∆f = −〈σ∇φ,∇φ〉 6 0 ,

donc f réalise sont maximum au bord, et f = 1 au bord implique que

ψ(y) 6 1 = ψ(x) .

ψ est une fonction harmonique qui réalise son maximum en x ∈ S1. Comme ψ est harmo-
nique, le lemme de Hopf implique ∂νψ(x) 6= 0 et on déduit

eu(x) = |σΦ(x)|2 ev(x) = 〈σΦ(x), ∂νΦ(x)〉 = ∂νψ(x) 6= 0 .

Cet outil important permet d’utiliser des propriétés topologiques des lignes nodales et
des domaines nodaux des premières et secondes fonctions de Steklov 4 sur un disque :

Proposition III.1.9 ([Pet23b]). Soit x ∈ D et soit ψ une première ou deuxième fonction
propre de Steklov sur le disque associé à un certain poids sur le bord ev. Alors

ψ(x) = 0⇒ ∇ψ(x) 6= 0 .

4. On rappelle qu’une ligne nodale est l’ensemble des points d’annulation de la fonction propre et qu’un
domaine nodal est une composante connexe de l’ensemble des points où la fonction propre ne s’annule
pas. Le théorème de Courant dans le cadre des valeurs propres de Steklov indique qu’une fonction propre
associé à σk admet au plus k + 1 domaines nodaux.
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Démonstration. Par le théorème de Courant, ψ a au plus 3 domaines nodaux. De plus,
l’ensemble nodal est soit une courbe lisse dont les extrémités sont deux points distincts du
bord de S1 ou l’union disjointe de deux courbes lisses ayant chacune pour extrémités deux
points distincts du bord de S1 (noter que les deux courbes peuvent avoir une extrémité
commune). En effet, comme les fonctions propres sont non constantes et harmoniques,
les ensembles nodaux ne peuvent pas contenir une courbe fermée. De plus, ils ne peuvent
pas contenir une singularité à l’intérieur car sinon, la fonction propre aurait au moins 4
domaines nodaux. Maintenant, soit x ∈ D un point intérieur tel que ψ(x) = 0. Soit D
un domaine nodal tel que x ∈ ∂D. Comme on l’a dit ∂D est lisse en x et x est un point
extrémal de ψ sur D. Par le lemme de Hopf, ∂νψ(x) 6= 0.

On déduit de manière générale qu’une application conforme harmonique à bord libre
dans un ellipsoïde par premières ou deuxièmes fonctions propres sur le disque ne peut pas
avoir de points de ramification.

Proposition III.1.10 ([Pet23b]). On suppose que Φ = (φ0, φ1, φ2) : D → R3 est une
immersion (possiblement branchée) minimale à bord libre dans E = {x ∈ R2;σ1x

2
0 +

σ2(x2
1 + x2

2) = 1}, où σ1 < σ2 et φ0 est une première fonction propre et φ1 et φ2 sont des
secondes fonctions propres. Alors Φ n’admet pas de points de ramification.

Démonstration. Grâce à la proposition III.1.8, Φ n’a pas de point de ramification au bord
du disque. Il reste à le montrer à l’intérieur : pour z ∈ D, on montre que ∇Φ(z) 6= 0. On
va même montrer que ∇η(z) 6= 0, où η = (φ1, φ2). Soit v ∈ S1 tel que 〈v, η(z)〉 = 0. Alors
〈v, η〉 s’annule en z et la Proposition III.1.9 donne 〈v,∇η(z)〉 = ∇ (〈v,∇η〉) (z) 6= 0.

Il n’est pas clair qu’une immersion minimale à bord libre du disque dans un ellipsoïde
par premières et deuxièmes fonctions propres Φ = (φ0, φ1, φ2) : D→ R3 est plongée. Bien
sûr comme on l’a vu dans la Proposition III.1.6, elle est plongée si elle est plane (c’est à
dire φ1 et φ2 sont colinéaires). En fait, elle est plongée sous une hypothèse de symétrie.

Théorème III.1.11 ([Pet23b]). On suppose que Φ = (φ0, φ1, φ2) : D → R3 est une
immersion minimale à bord libre dans E = {x ∈ R2;σ1x

2
0 + σ2(x2

1 + x2
2) = 1}, où σ1 < σ2

et φ0 est une première fonction propre et φ1 et φ2 sont des secondes fonctions propres. On
suppose de plus qu’étant donnée la métrique e2u (dx2 + dy2) = Φ?ξ, le facteur conforme
ev = eu

|σΦ| satisfait

∀(x, y) ∈ S1, ev(x, y) = ev(−x, y) = ev(x,−y).

Alors Φ est un plongement.

La démonstration de ce résultat repose sur une description fine des domaines nodaux
des fonctions propres associées à la première et deuxième valeur propre de Steklov dans le
cas symétrique. On comprend qu’une association avec le théorème de Courant contraint
très fortement le problème. 5

5. Une première étape de la démonstration repose sur le fait que l’ensemble nodal des fonctions propres
à deux domaines nodaux est forcément {0}× [−1, 1] ou [−1, 1]×{0}. Une deuxième propriété est que par
le Théorème de Courant, une fonction propre ne peut pas s’annuler sur chacun de ces deux ensembles car
elle aurait au moins 4 domaines nodaux.
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Proposition III.1.12 ([Pet23b]). Sous les hypothèses du Théorème III.1.11, quitte à faire
une rotation d’angle π

2
du disque paramètre et une rotation de l’ellipsoïde de révolution,

on a
∀x, y ∈ D, φ0(x,−y) = −φ0(x, y) et φ0(−x, y) = φ0(x, y)

∀x, y ∈ D, φ1(x,−y) = φ1(x, y) et φ1(−x, y) = −φ1(x, y)

∀x, y ∈ D, φ2(x,−y) = φ2(x, y) et φ2(−x, y) = φ2(x, y)

où φ0 et φ1 ont exactement 2 domaines nodaux et φ2 a exactement 3 domaines nodaux.
De plus, φ2 ne s’annule pas sur [−1, 1]× {0} ∪ {(0,±1)}.

La deuxième étape de la démonstration du Théorème III.1.11 est essentiellement
de démontrer grâce aux équations sur Φ (Φ est conforme et harmonique à l’intérieur,
et ∂νΦ est parallèle à σ · Φ au bord) que sa projection restreinte à un demi-disque
η = (φ1, φ2) : D+ → η(D+) est un homéomorphisme. Par les propriétés de symétrie (Pro-
position III.1.12) on déduit que Φ est injective et donc que c’est un plongement. L’outil
est une utilisation fine d’une généralisation d’un théorème de Kneser [Kne26]. 6 On utilise
pour cela une généralisation formulée dans [AN09, AN21]. L’adaptation du théorème de
Kneser est nécessaire en plusieurs sens : l’image de ∂D+ par η n’est pas nécessairement
en ensemble convexe. Le domaine de départ D+ n’est pas un disque et surtout, il admet
un bord avec deux singularités : on ne peut pas appliquer directement la théorie d’Ales-
sandrini et Nesi mais devons adapter le résultat en faisant une approximation lisse de η
dont le domaine de départ est lisse.

Ce schéma de preuve du Théorème III.1.11 s’inspire de la démonstration du résultat
suivant de [FS16] : toute immersion minimale à bord libre d’une surface de genre 0 dans
une boule par les premières fonctions propres est plongée. Néanmoins, dans notre cas,
la démonstration est plus difficile car il y a moins de symétries du problème à exploiter,
l’image de l’immersion étant seulement un ellipsoïde de révolution, pas une sphère : la
différence notable est que dans notre cas, une combinaison linéaire de (φ0, φ1, φ2) n’est pas
une fonction propre en général, et donc ne satisfait pas forcément le théorème de Courant.
Cette propriété, lorsque toutes les coordonnées sont des premières fonctions propres, était
un ingrédient important de la démonstration de Fraser et Schoen. Dans notre cas, seule
une combinaison linéaire de (φ1, φ2) est une deuxième fonction propre. On ne peut donc
travailler que sur l’application η = (φ1, φ2) : D→ R2. C’est aussi une raison pour laquelle
on ajoute une hypothèse de symétrie.

III.2 Sphères minimales plongées non hyperplanes dans
des ellipsoïdes

Dans cette section, on pourrait de manière analogue à la section précédente détailler
la construction de sphères minimales non hyperplanes plongées dans des ellipsoïdes de
révolution suffisamment allongés de R4. On se contentera de contextualiser rapidement ce
travail et de donner l’énoncé principal.

6. Le théorème classique de Kneser stipule qu’une application harmonique du disque à valeurs dans
R2 tel que l’image du cercle est une courbe qui borde un ensemble convexe est un difféomorphisme sur son
image. On pouvait utiliser ce résultat dans la démonstration de la Proposition III.1.6 sans avoir besoin
de la conformalité de l’application.
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Répondant à une question de Yau de 1987, Haslhofer et Ketover [HK19] ont montré
qu’il existe des 2-sphères non équatoriales plongées dans des ellipsoïdes de R4 suffisamment
allongés, On énonce dans cette section une preuve alternative du résultat de Haslhofer
and Ketover [HK19] dans le cas particulier où les ellipsoïdes sont de révolution. On note
également que par une théorie de bifurcation, Bettiol et Piccione [BP22] ont montré
l’existence d’un nombre arbitrairement grand de 2-spheres minimales dans des ellipsoïdes
de révolution (au moins deux demi-axes coincident).

Théorème III.2.1 ([Pet25b]). Il existe une famille à un paramètre (pt, qt)t telle qu’il
existe une sphère minimale non hyperplane St dans l’ellipsoïde de révolution

Et := {x ∈ R4; ptx
2
0 + qtx

2
1 + qtx

2
2 + qtx

2
3 = 1}

et tel que les coordonnées x0, x2, x2, x3 sont des premières et secondes fonctions propres
du Laplacien pour la métrique

gt =
HSt(x)

(p2
tx

2
0 + q2

t x
2
1 + q2

t x
2
2 + q2

t x
2
3)

1
2

ξ

sur St, où ξ est la métrique euclidienne et HSt est la norme du vecteur courbure moyenne
de St dans R4. Pour tous t1 < t2, St1 n’est pas isométrique à St2. De plus t 7→ pt est
strictement décroissante et t 7→ qt est strictement croissante. Enfin pt → 0 et qt → 16π
lorsque t → +∞ et St converge au sens des varifold vers la sphère ronde {0} × S2 avec
multiplicité 2 lorsque t→ +∞.

Bien qu’il soit spécifique, ce résultat apporte une compréhension spectrale sur les
sphères plongées minimales construites : les fonctions coordonnées restreintes à ces sphères
sont des premières et secondes fonctions propres du Laplacien pour une métrique donnée
sur la surface (ici, gt). Cela impose une certaine géométrie à la sphère minimale dans
le même esprit que la Proposition III.1.12 dans le cas à bord. Par ailleurs, dans l’esprit
de [BP22], notre suivi fin du paramètre des fonctionnelles spectrales peut permettre de
résoudre la question naturelle suivante : quelle est la valeur précise de bifurcation sur un
paramètre d’ellongation de l’ellipsoïde à partir de laquelle il existe une sphère minimale
plongée non plane ?

Dans le même esprit qu’après le Théorème III.1.1, donnons quelques éléments de
chaque étape de démonstration :

Etape 1 : Optimisation spectrale. Il existe des minimiseurs pour de nombreuses
combinaisons bien choisies de premières et deuxièmes valeurs propres du Laplacien parmi
des métriques riemanniennes sur le disque. Les minimiseurs existent également parmi les
métriques qui sont symétrique par rapport à un plan équatorial et invariantes par rotation
par rapport à l’axe orthogonal. L’analogue de l’inégalité de Weinstock qui inspire le choix
des fonctionnelles spectrales est l’inégalité de Hersch :(

λ̄1(S2, ·)
)−1

+ 2
(
λ̄2(S2, ·)

)−1
>

3

8π
.

Les minima de λ̄−1
1 +tλ̄−1

2 passent d’une sphère ronde pour 0 6 t 6 2 à une union disjointe
de deux sphères rondes de même aire pour t = +∞, ce qui laisse intuitivement penser
que certaines sphères minimales doivent sortir d’un hyperplan à partir d’un certain point
de bifurcation t.
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Etape 2 : Bornes sur la multiplicité. Les immersions (possiblement branchées)
minimales de sphères dans des ellipsoïdes associées aux métriques minimales ont au plus
4 coordonnées. C’est une conséquence directe de [HOHON99] : la deuxième valeur propre
du Laplacien sur une sphère est de multiplicité au plus 3.

Etape 3 : Les surfaces sont non hyperplanes. Il existe des choix de combi-
naisons de première et deuxième valeurs propres pour lesquels une immersion (possible-
ment branchée) minimale associée à une métrique minimisante est forcément non hyper-
plane. D’ailleurs, le Théorème III.2.1 répond à une question de [HOHON99] : il existe
des métriques sur la sphère pour lesquelles la multiplicité maximale 3 est atteinte pour la
deuxième valeur propre. Dans ce cas, les valeurs propres associées aux sphères critiques
sont moins faciles à calculer que dans le cas à bord. Le comportement est néanmoins
similaire.

Etape 4 : Les surfaces sont plongées. Des immersions (possiblement branchées)
minimales obtenues sont en fait des plongements. Plus précisément, les immersions mi-
nimales n’ont jamais de points de branchement du fait qu’elles le sont par premières et
deuxièmes fonctions propres. Sous les hypothèses de symétries mentionnées ci-dessus, ce
sont des plongements. Sans rentrer dans le détail dans ce mémoire, les arguments ici
utilisés sont assez différents du cas à bord.

III.3 Perspectives
On donne des questions dans le cadre à bord même si les mêmes questions peuvent se

formuler dans le cas sans bord.
Une question naturelle est de savoir à quel point le nombre de disques minimiaux à

bord libre dans un ellipsoïde donné est rare. Il est possible que parmi toutes les immersions
par premières et deuxièmes fonctions propres, ceux qui sont construits dans le Théorème
III.1.1 sont les seuls possibles.

Par contre, l’analogue du résultat de [BP22] a de bonnes raisons d’être vérifié dans
le cas à bord : pour un entier k donné, il existe une élongation à partir de laquelle tous
les ellipsoïdes de révolution plus allongés contiennent au moins k disques minimaux à
bord libres non plans plongés. Dans [BP22], les auteurs construisent leurs sphères par des
méthodes de bifurcation. Dans le cas à bord, leur méthode ne peut pas fonctionner en
l’état. En effet, leur méthode joue sur sur le paramètre associé à l’invariance par rotation
des sphères minimales qu’ils construisent. Dans le cas sans bord, l’ellipsoïde perd une
dimension et les disques minimaux ne sont plus invariants par rotation. Pourtant, dans le
même esprit, se concentrer sur des bifurcations des valeurs propres associées à la métrique
critique est prometteur : on identifie dans le Théorème III.1.5 des bifurcations des valeurs
propres associées au ellipses planes (Eq, gq). On conjecture que les disques minimaux à
bord libre dans un ellipsoïde ne peuvent apparaître que dans les ellipsoïdes

Ep = {px2
0 + x2

1 + x2
2 = 1}

d’ellongation 1
p
> 3, où 3 correspond à l’ellongation critique de l’ellipse critique (Eq, gq)

pour lequelle la deuxième valeur propre de Steklov est multiple, c’est à dire

σ1(gq) = σq1 = 1 et σ2(gq) = q = τ q1 = σq2.

Comme on l’a vu, cette condition apparaît dans la démonstration Théorème III.1.1 pour
montrer que les objets construits sont non plans. De manière plus générale, les élongations
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critiques sont les valeurs 1
p
> qk ou qk est le réel défini pour k > 1 comme le plus petit

réel plus grand que 1 satisfaisant :

σ1(gqk) = σqk1 = 1 et σk+1(gqk) = qk = τ qk1 = σqkk+1.

Ici, q1 = 3. On conjecture alors que pour 1
p
> qk, il existe au moins k disques minimaux

à bord libre plongés dans Ep. On s’attend à ce que cet ensemble de disques se plonge par
première et j-ème valeur propre de Steklov pour 1 6 j 6 k.

On peut envisager ces questions par optimisation de combinaisons de la première et
de la k-ème valeur propre de Steklov. Ici, une difficulté supplémentaire est de montrer que
l’immersion (à points de branchement) a bien lieu dans R3 et qu’elle est plongée alors que
les k-èmes fonctions propres peuvent avoir beaucoup de domaines nodaux. Il faut bien
choisir les symétries du problème. On peut aussi imaginer une méthode non variationnelle
qui suit les métriques critiques le long du paramètre t pour la fonction hs,t qui définit
la combinaison de valeurs propres. C’est un bon objet d’étude pour trouver de nouvelles
méthodes à la création de points critiques de fonctionnelles spectrales.

En terme d’inégalités spectrales, on s’attend à une inégalité généralisée de Weinstock

σ̄1(D, ·)−1 + tσ̄2(D, ·)−1 >

{
1+t
2π

si 0 6 t 6 1
√
t
π

si 1 6 t 6 3

où la valeur pour 0 6 t 6 1 vient directement de l’inégalité de [HP68] et est atteinte sur
les disques euclidiens et la valeur pour 1 6 t 6 3 est conjecturale et l’égalité est atteinte
pour les ellipses (Et, gt). Pour t > 3, la Proposition III.1.7 montre que le minimum est
forcément atteint pour un disque minimal à bord libre non plan dans un ellipsoïde. De
manière plus générale, les ellipses critiques du Théorème III.1.5 donnent des candidats
aux bornes optimales de fonctionnelles spectrales.

Bien sûr, des questions similaires se posent en changeant la topologie de la surface.
D’un point de vue plus général, la construction de surfaces minimales par optimisation
équivariante est actuellement donnée par plusieurs approches, chacune ayant son avantage.
Comme on l’a vu, pour le moment, seule la méthode de [Pet25d, Pet24a] fonctionne dans
le cas de combinaisons de valeurs propres et seule la méthode de [KKMS24] basée sur
la théorie de [KS23] fonctionne dans le cas non orientable. Par ailleurs, la démonstration
d’inégalités strictes sur des fonctionnelles spectrales par recollement d’anses dans le cas
sans bord ou de bandes dans le cas à bord s’adapte très naturellement au cadre équivariant
avec la méthode qui utilise le principe variationnel d’Ekeland.



Chapitre IV

Valeurs propres d’opérateurs
conformément covariants

Ce chapitre synthétise [HPP25]. Il traite de l’optimisation de valeurs propres d’opé-
rateurs GJMS (Graham-Jenne-Sparkling-Mason [GJMS92]) dans une classe conforme de
métriques sur une variété riemannienne compacte de dimension n > 3. Parmi ces opéra-
teurs notés P s

g d’ordre 2s où 2s < n, le modèle est le Laplacien conforme sur des variétés
riemanniennes de dimension n > 3 pour s = 1. Comme on l’a vu dans le Chapitre I, l’op-
timisation de la première valeur propre du Laplacien conforme est équivalent à résoudre
le problème de Yamabe. Par ailleurs, au-delà de l’intérêt qu’elle suscite en géométrie spec-
trale, l’optimisation des valeurs propres suivantes permet la construction de solutions d’un
système de type Yamabe, et en particulier parfois de solutions nodales de l’équation de Ya-
mabe. De la même façon, l’optimisation des valeurs propres de P s

g pour des ordres 2s plus
grands est reliée à des problèmes de Q-courbure qui généralisent le problème de Yamabe.
Dans [HPP25], on donne un cadre général de travail et de nombreux nouveaux résultats,
améliorant de manière significative les précédents travaux sur le sujet [AH06, GPA22].

IV.1 Opérateurs GJMS

IV.1.1 Introduction aux opérateurs GJMS

Soit (M, g) une variété Riemannienne compacte sans bord de dimension n > 3. Soit s ∈
N∗ = N\{0} tel que s < n

2
. On note P s

g l’opérateur GJMS d’ordre 2s surM . Cet opérateur
différentiel sur M , a été introduit par Graham-Jenne-Sparkling-Mason [GJMS92]. Il est
conformément covariant au sens suivant : si u ∈ C∞(M), u > 0 et ĝ = u

4
n−2s g est une

métrique conforme à g,

P s
ĝ (f) = u−

n+2s
n−2sP s

g (uf) pour tout f ∈ C∞(M). (IV.1)

Les opérateurs P s
g sont auto-adjoints dans L2(M) (voir par exemple [GZ03]) et leur terme

dominant est la s-ème puissance du Laplacien ∆g : précisément (voir encore [GJMS92])
on a

P s
g = ∆s

g + Asg (IV.2)

où ∆g = −divg(∇·) et où Asg est un opérateur différentiel à coefficients de classe C∞
d’ordre 2s − 1 qui permet la covariance conforme de P s

g . Si s = 1 et n ≥ 3, P 1
g est le

91
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Laplacien conforme

P 1
g = ∆g +

n− 2

4(n− 1)
Sg,

où Sg est la courbure scalaire de (M, g). Si s = 2 et n ≥ 5, P 2
g est l’opérateur de Paneitz-

Branson [Bra87, Pan08], qui s’écrit

P 2
g u = ∆2

gu− divg
[(
anSgg −

4

n− 2
Ricg

)
(∇u, ·)

]
+
n− 4

2
Qgu

pour u ∈ C∞(M). Ici, an = (n−2)2+4
2(n−1)(n−2)

, Ricg est le tenseur de Ricci de (M, g) et Qg est
appelée la Q-curvature dont l’expression est

Qg =
1

2(n− 1)
∆gSg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
S2
g −

2

(n− 2)2
|Ricg|2g.

On trouve une expression de P 3
g dans [Juh13], mais des formules explicites pour P s

g , s ≥
4, dans le cas de métriques g générales n’existe pas : les termes d’ordre inférieur dans
(IV.2) deviennent exponentiellement complexes en fonction de la géométrie de (M, g).
Des formules de récurrences existent dans [Juh13]. De plus, une formule explicite existe
si on suppose que (M, g) est une variété Einstein : Il est montré dans Fefferman-Graham
[FG12, Proposition 7.9] que si Ric(g) = S

n
g, alors

P s
g =

s∏
j=1

(
∆g +

(n+ 2j − 2)(n− 2j)

4n(n− 1)
S
)
. (IV.3)

IV.1.2 Un problème de continuation unique

Comme on l’a identifié dans le Chapitre I, l’hypothèse suivante de continuation unique
est requise dans la plupart de nos résultats :

∀ϕ ∈ Ker (P s
g ); |ϕ−1({0})| > 0⇒ ϕ = 0 (IV.4)

C’est crucial pour définir des valeurs propres généralisées λk(β) lorsque β ∈ L n
2s (M)\{0}

est une fonction seulement positive. L’hypothèse (IV.4) est bien sûr satisfaite si le noyau
est trivial Ker (P s

g ) = {0}. Quand Ker (P s
g ) 6= {0}, (IV.4) garantit qu’un élément non nul

de Ker (P s
g ) s’annule sur un ensemble de mesure nulle de M . La littérature, fournit tout

de même plusieurs autres cas où cette hypothèse est satisfaite :

Proposition IV.1.1 ([HPP25]). Soit (M, g) une variété riemannienne de dimension
n ≥ 3 et soits ∈ N∗, avec 2s < n. On suppose que l’une des hypothèses suivantes est
satisfaite :

— s = 1
— s ≥ 1 et Ker (P s

g ) = {0}
— s ≥ 1 et M et g sont analytiques
— s ≥ 1 et (M, g) est locallement conformément Einstein.

Alors P s
g satisfait (IV.4).

Le cas locallement conformément Einstein couvre le cas localement conformément plat.
L’hypothèse (IV.4) est aussi sans doute vérifiée pour toute variété (M, g), telle que

s ∈ {1, 2, 3, 4} et 2s < n. En effet, par covariance conforme (IV.1) de P s
g , l’ensemble
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des zéros des éléments du noyau est un invariant conforme de (M, g), et c’est suffisant de
montrer (IV.4) pour n’importe quelle métrique fixée de [g]. Au voisinage d’un point deM ,
et quitte à changer conformément g, on peut utiliser les coordonnées normales conformes
(voir [LP87]) où det g ≡ 1. Dans ces coordonnées P s

g s’écrit P s
g = ∆s

g + T où T est un
opérateur différentiel d’ordre 6 2s− 2 : (voir par exemple [MV20, Equation (2.7)]). Dans
des ouverts de Rn un résultat d’unique continuation pour les operateurs polyharmoniques
(voir [Pro60, Lin07]) stipule que des solutions u de ∆s

ξu + Tu = 0 dans une boule B qui
s’annulent à l’ordre infini en un point doit satisfaire u = 0 dans B à la condition que
T est opérateur différentiel à coefficients réguliers T d’ordre ≤ [3s

2
]. Ainsi, on s’attend

au même résultat pour P s
g sous les hypothèses identifiées par [Lin07, Pro60], c’est à dire

2s − 2 ≤ [3s
2

], ce qui est équivalent à s ∈ {1, 2, 3, 4}. L’analyse dans [Lin07, Pro60] est
seulement écrite pour le Laplacien plat mais les estimées de Carleman qui apparaissent
dans ces papiers devraient s’adapter à un opérateur de Laplace-Beltrami général : c’est
ce qu’il faut vérifier.

IV.2 Théorie générale
Soit (M, g) une variété riemannienne compacte sans bord de dimension n > 3, et

s ∈ N∗ tel que s < n
2
, pour noter P s

g l’opérateur GJMS d’ordre 2s sur M . Comme M est
compacte, le spectre de P s

g est discret et les valeurs propres s’écrivent

λk(g) = inf
V⊂Hs(M)

dimV=k

max
v∈V \{0}

∫
M
vP s

g v dvg∫
M
v2 dvg

.

On pose
k− = max

{
k > 1, λk(g) < 0

}
et k+ = min

{
k > 1, λk(g) > 0

}
.

k+ et k− sont invariant conformes (voir Chapitre I ou [CGJP14, ES14]) et ne dépendent
que de [g]. On a alors dim Ker (P s

g ) = k+− k−− 1 et si λ1(g) > 0, on écrit par convention
k− = 0.

On s’intéresse à la fonctionnelle

h ∈ [g] 7→ λk(h)V ol(M,h)
2s
n

pour k ≥ 1 donné. On observe d’abord que

sup
h∈[g]

λk(h)V ol(M,h)
2s
n = +∞ si k > k+,

inf
h∈[g]

λk(h)V ol(M,h)
2s
n = −∞ si k 6 k−.

(IV.5)

Ce résultat est montré dans [HPP25] (c’est le Théorème I.1.3 pour le Laplacien conforme)
en combinant les résultats principaux de [AJ12] et [CM24]. Ainsi, avec (IV.5) on ne consi-
dère que la minimisation des valeurs propres strictement positives 1 et la maximisation

1. Ce constat peut paraître troublant quand on sait que c’est précisemment l’inverse qu’il faut faire
pour le Laplacien en dimension 2. On peut l’expliquer par une différence fondamentale entre les lois de
covariance conforme des opérateurs GJMS pour n = 2s et celle des opérateurs GJMS pour n > 2s. En
terme de fonctionnelle spectrale, c’est la différence de choix de renormalisation de β par la norme L1 ou
une norme Lp pour p > 1 dans IV.7
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des valeurs propres strictement négatives de P s
h pour h ∈ [g] :

Λs
k(M, [g]) =


inf
h∈[g]

λk(h)V ol(M,h)
2s
n si k > k+,

sup
h∈[g]

λk(h)V ol(M,h)
2s
n si k 6 k−.

(IV.6)

On appelle ici Λs
k(M, [g]) la k-ème valeur propre conforme de (M, [g]). Si k+ − k− ≥ 2

et k− < k < k+ on définit Λk(M, [g]) = 0. Pour tous k ≥ 1, Λs
k(M, [g]) est un invariant

conforme de (M, g). Le but est de déterminer des conditions pour lesquelles Λs
k(M, [g]) est

atteint ou n’est pas atteint, et de déterminer les métriques extrémales si elles existent.

IV.2.1 Valeurs propres généralisées

Dans le même esprit que dans le Chapitre I, on cherche à définir l’espace variationnel
de travail. Par ailleurs, contrairement à la dimension 2 où les métriques extrémales du
Laplacien ne peuvent présenter qu’un nombre fini de singularités coniques d’angle un
multiple de 2π, les singularités des métriques extrémales du Laplacien conforme P 1

g , (voir
[AH06, GPA22]) sont bien plus pathologiques 2. Ainsi, dans [HPP25], on généralise la
définition des valeurs propres aux fonctions β ∈ L n

2s (M)\{0} positives. Pour k ≥ 1, on
pose

λ̄k(β) = inf
V ∈Gβk (C∞(M))

max
v∈V \{0}

∫
M
vP s

g v dvg∫
M
βv2 dvg

(∫
M

β
n
2sdvg

) 2s
n

. (IV.7)

Ici, Gβk (C∞(M)) est l’ensemble des sous-espaces vectoriels V = Vect(v1, · · · , vk) de fonc-
tions de classe C∞ telles que β

1
2v1, · · · , β

1
2vk sont linéairement indépendantes. Comme on

ne suppose pas β > 0 presque partout dans M , λk(β) peut valoir −∞ quand k ≤ k−.
On dit que λ̄k(β) est la k-ème valeur propre généralisée renormalisée associée à β. En
effet géométriquement, si u ∈ C∞(M), u > 0, les propriétés de covariance conforme de
P s
g donnent

λk(u
4

n−2s g) = inf
V⊂Hs(M),dimV=k

max
v∈V \{0}

∫
M
vP s

g v dvg∫
M
u

4s
n−2sv2 dvg

.

Ainsi λ̄k(β) doit être vue comme la k-ème valeur propre de P s
h pour la métrique h = β

1
s g

multipliée par V ol(h)
2s
n . On prove dans [HPP25]

Λs
k(M, [g]) =


inf

β∈L
n
2s (M)\{0},β≥0

λ̄k(β) si k > k+,

sup
β∈L

n
2s (M)\{0},β≥0

λ̄k(β) si k 6 k−.
(IV.8)

On dira alors que Λs
k(M, [g]) est atteint s’il existe β ∈ L n

2s (M)\{0}, β ≥ 0, tel que

Λs
k(M, [g]) = λ̄k

(
β
)
.

On peut aussi dire que Λs
k(M, [g]) est atteint en la métrique généralisée β

1
s g.

2. L’espace singulier correspond aux zéros du facteur conforme : c’est une intersection d’ensembles
nodaux de fonctions propres comme on l’a vu au Chapitre I. Sans résultat de continuation unique ou sans
théorème de Courant dans le cas GJMS général, l’ensemble singulier est encore moins bien compris.
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Remarque IV.2.1. On rappelle ici que la plupart des résultats reposent sur l’hypothèse
(IV.4). Dans [HPP25], sa nécessité est identifiée pour montrer que λ̄k(β) admet des fonc-
tions propres lorsqu’on autorise β à s’annuler sur un ensemble de mesure non nulle. Pour
cela, on a besoin du lemme I.5.2 adapté au cas GJMS. Le Chapitre I montre bien que l’exis-
tence des fonctions propres est primordiale pour formuler des équations d’Euler-Lagrange
sur les métriques extrémales ou presque extrémales.

IV.2.2 Résultats théoriques

Lorsque k ≤ k−, on maximise les valeurs propres généralisées négatives. Cela donne
un résultat d’existence général :

Théorème IV.2.2. Soit s ∈ N∗ et soit (M, g) une variété riemannienne compacte de
dimension n > 2s. Soit P s

g l’opérateur GJMS d’ordre 2s dans M et on suppose qu’il
satisfait (IV.4) et k− ≥ 1. Soit k ≤ k− un entier. Alors Λs

k(M, [g]) < 0 et Λk(M, [g]) est
atteint en une métrique généralisée β

1
s g, où β est une fonction positive, β ∈ C0,α(M) pour

un certain 0 < α < 1 et β est de classe C∞ sur β−1(R∗+).

Le Théorème IV.2.2 a été prouvé dans le cas s = 1 et k = 2 dans [GPA22], sous l’hypo-
thèse supplémentaire Ker (P s

g ) = {0}. Nous ne supposons que (IV.4) et donc quand s = 1
et k ≤ k− nous n’avons pas besoin de supposer que P 1

g est sans noyau. Λs
k(M, [g]) < 0 est

une conséquence de notre analyse (adapter aux valeurs propres généralisées la démons-
tration du Théorème I.1.4). On peut reconstituer la démonstration du Théorème IV.2.2
en adaptant la Proposition I.5.1 du présent mémoire aux opérateurs GJMS.

Lorsque k ≥ k+ on minimise les valeurs propres positives. Ce cas est plus difficile à
cause de possibles phénomènes de concentration. Pour énoncer un résultat satisfaisant,
on introduit un nouvel invariant conforme : en notant la sphère ronde (Sn, g0), on peut
simplifier l’écriture de Λs

k(Sn, [g0]) en Λs
k(Sn). Pour k > k+ et s ∈ N∗ on définit alors

Xs
k(M, [g]) = min

{(
Λs
`0

(M, [g])
n
2s + Λs

`1
(Sn)

n
2s + · · ·+ Λs

`r(S
n)

n
2s

) 2s
n

}
, (IV.9)

Où le minimum est pris parmi l’ensemble des indices r, `0 ∈ N et `1, · · · , `r ∈ N∗ tels que

1. `0 ∈ {0} ∪ {k+, · · · , k − 1}, où par convention, Λs
0(M, [g]) = 0 ;

2. `0 + · · ·+ `r = k si `0 > k+ et `1 + · · ·+ `r = k − k+ + 1 si `0 = 0 ;

3. Λ`i(Sn), 1 ≤ i ≤ r sont atteints, et Λs
`0

(M, [g]) est atteint si `0 > 0.

On établit alors que Λs
k(M, [g]), pour k ≥ k+, est atteint sous l’hypothèse qu’il est stric-

tement inférieur à Xs
k(M, [g]) :

Théorème IV.2.3. Soit (M, g) une variété compacte de dimension n ≥ 3 et soit s ∈ N∗,
s < n

2
. Soit P s

g l’opérateur GJMS d’ordre 2s dans M . Soit k > k+ un entier. Alors :

1. On a Λs
k(M, [g]) 6 Xs

k(M, [g]).

2. On suppose que P s
g satisfait (IV.4). Alors Λk(M, [g]) > 0. De plus, si Λs

k(M, [g]) <

Xs
k(M, [g]) alors Λs

k(M, [g]) est atteint en une métrique généralisée β
1
s g, où β est

une fonction positive β ∈ C0,α(M) pour un certain 0 < α < 1 et β est de classe C∞
sur β−1(R∗+).
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Comme précédemment, Λs
k(M, [g]) > 0 est une conséquence de notre analyse (voir

[HPP25] ou adapter la démonstration du Théorème I.1.4 au cas des valeurs propres géné-
ralisées des opérateurs GJMS). On peut donc écrire sous l’hypothèse (IV.4) :

Λs
k(M, [g]) = 0⇐⇒ k− < k < k+. (IV.10)

La condition Λs
k(M, [g]) < Xs

k(M, [g]) dans le théorème IV.2.3 peut se comparer aux
résultats [Pet14a, Pet18, Pet25d, NS15, KS23] pour le Laplacien en dimension 2 (voir Cha-
pitre II). Dans la preuve du Théorème IV.2.3 l’invariant Xs

k(M, [g]) apparaît comme un
seuil d’énergie pour une suite minimisante de Λs

k(M, [g]) bien construite : plus précisément,
l’hypothèse Λs

k(M, [g]) < Xs
k(M, [g]), permet d’empêcher les phénomènes d’explosion en

arbre de bulles. Le théorème IV.2.3 généralise de façon significative tous les résultats pré-
cédents sur (IV.6) qui étaient connus dans des cas spécifiques : dans [AH06] lorsque s = 1,
k = 2 et quand λ1(g) ≥ 0, dans [ES14] lorsque s = 1, k = 2 et λ1(g) < 0, et dans [BB10]
lorsque s = 2, k = 2, λ1(g) ≥ 0 et (M, g) est une variété Einstein. Le théorème IV.2.3
implique aussi les résultats de [SX20]. La nouveauté de l’approche du Théorème IV.2.3
est que Xk(M, [g]) ne fait intervenir que les invariants Λs

`(M, [g]) et Λs
`(Sn) d’ordre infé-

rieurs qui sont eux-mêmes atteints. Cette observation permet de déduire par récurrence
de nombreux nouveaux résultats d’existence et d’inexistence de métriques généralisées
extrémales pour Λk(M, [g]).

IV.3 Résultats d’existence, d’inexistence et calculs d’in-
variants conformes

On donne ici les nombreuses conséquences des Théorèmes IV.2.2 et IV.2.3. On obtient
des résultats d’existence et d’inexistence pour les invariants Λs

k(M, [g]) (y compris lorsque
(M, g) est la sphère ronde) ainsi que la structure de l’équation d’Euler-Lagrange (et son
utilité) pour les métriques généralisées extrémales de Λs

k(M, [g]).

IV.3.1 Simplicité lorsque k = k− et k = k+.

Pour les cas k = k− et k = k+ dans les Théorèmes IV.2.2 et IV.2.3, qui correspondent
à la valeur propre strictement négative la plus grande et la valeur propre strictement
positive la plus petite nous remarquons une propriété particulière.

En effet, si λ̄sk(M, [g]) est atteint, cette valeur propre est simple en ses métriques
extrémales et les résultats des Théorèmes IV.2.2 et IV.2.3 sont plus précis. C’est dû à la
Proposition I.2.3 appliquée aux opérateurs GJMS 3 et aux trous spectraux λ̄k+(β) > 0 >
λ̄k+−1(β) lorsque β est minimale pour λ̄sk+

(M, [g]) et λ̄k−(β) < 0 6 λk−+1(β) lorsque β est
maximale pour λ̄sk−(M, [g]). 4 On donne plus tard (voir Théorème IV.3.7) une conséquence
qui utilise également les subtilités de la Proposition I.2.3 (ou du Théorème I.2.7). Le cas
k = k− donne :

3. C’est aussi réécrire l’énoncé du Théorème I.2.7 avec le Laplacien conforme au cadre plus général
des GJMS.

4. C’est un fait général : pour avoir la conclusions du Corollaire IV.3.1 il suffit que β soit un maximum
local de λ̄k(β) et que λ̄k(β) < λ̄k+1(β) ou que β soit un minimum local de λ̄k(β) et que λ̄k(β) > λ̄k−1(β).
Ces conditions sont automatiques pour k = k+ et k = k− par (IV.10). Cette condition avait aussi été
exploitée de manière similaire dans [Amm09] pour la minimisation de la première valeur propre de Dirac.
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Corollaire IV.3.1. Soit s ∈ N∗ et soit (M, g) une variété riemannienne compacte sans
bord de dimension n > 2s. Soit P s

g l’opérateur GJMS d’ordre 2s dans M dont on suppose
qu’il vérifie (IV.4) et k− ≥ 1. Alors l’espace propre correspondant à Λs

k−
(M, [g]) est de

dimension 1 et il existe une fonction propre ϕ ∈ C2s,α(M), 0 < α < 1, qui satisfait
‖ϕ‖

L
2n
n−2s

= 1 et

P s
gϕ = Λs

k−(M, [g])|ϕ|
4s

n−2sϕ in M.

et elle est associée à la métrique généralisée |ϕ|
4

n−2s g qui atteint Λs
k−

(M, [g]). Si de plus
s = 1 et k− > 2, ϕ change de signe.

Si s = 1, k− ≥ 2 et P 1
g satisfait (IV.4), le Corollaire IV.3.1 montre en particulier qu’il

existe des solutions qui changent de signe pour les équations de courbure scalaire prescrite
strictement négative constante sur M . Cela généralise des résultats de [GPA22]. Le cas
k = k+ est similaire sous l’hypothèse que Λs

k+
(M, [g]) est atteint :

Corollaire IV.3.2. Soit s ∈ N∗ et soit (M, g) une variété riemannienne de dimension
n > 2s. Soit P s

g l’opérateur GJMS d’ordre2s sur M et on suppose qu’il satisfait (IV.4).
On suppose que Λs

k+
(M, [g]) < Λs

1(Sn). Alors Λs
k+

(M, [g]) est atteint, et son premier espace
propre généralisé est de dimension 1. De plus, il existe une fonction propre ϕ ∈ C2s,α(M),
0 < α < 1, qui satisfait ‖ϕ‖

L
2n
n−2s

= 1 et

P s
gϕ = Λs

k+
(M, [g])|ϕ|

4s
n−2sϕ in M.

et elle est associée à la métrique généralisée |ϕ|
4

n−2s g qui atteint Λs
k+

(M, [g]). Si de plus
s = 1 et k+ > 2, alors ϕ change de signe.

Les fonctions ϕ obtenues dans les IV.3.1 et IV.3.2 satisfont les équations de Q-courbure
constante prescrite (à changement de signe possible pour ϕ). Ce n’est pas surprenant
puisque comme on l’a vu dans le Chapitre I (Théorème I.1.5) pour k = 1 et s = 1, op-
timiser Λ1

1(M, [g]) est équivalent au problème de minimisation de Yamabe. De manière
générale, dans le cas s > 1, lorsque k+ = 1, minimiser Λs

1(M, [g]) est équivalent au pro-
blème de Yamabe pour la Q-courbure associée à P s

g (voir [HPP25]) 5. On peut donc voir
les problèmes d’optimisation de Λs

k(M, [g]) comme une généralisation du problème de Ya-
mabe pour la Q-curvature, et les Théorèmes IV.2.2 et IV.2.3 montrent l’analogie directe :
les valeurs propres négatives sont toujours atteintes (lorsque P s

g satisfait (IV.4)), et les
valeurs propres strictement négatives le sont si Λs

k(M, [g]) < Xs
k(M, [g]), ce qui est une gé-

néralisation de la célèbre condition de seuil d’Aubin pour l’équation de Yamabe [Aub76].
Cette remarque fournit une autre motivation pour étudier les invariants Λs

k(M, [g]).
Ces résultats de simplicité de Λs

k±
(M, [g]) sont spécifiques aux problèmes des valeurs

propres de P s
g . Comme on l’a vu dans le Chapitre I, si une k-ème valeur propre du

Laplacien est maximisée par une métrique riemannienne dans une classe conforme d’une
variété compacte sans bord de dimension 2, celle-ci n’est jamais simple pour cette métrique
(sauf si c’est la valeur propre nulle). 6

5. Montrer l’analogue dans le cas k− > 1 est possible s’il y a unicité de l’ensemble des minimiseurs du
problème de Q-courbure strictement négative pour P sg , comme dans la preuve du Théorème I.1.5 pour le
Laplacien conforme.

6. Intuitivement, ceci peut encore s’expliquer par la différence fondamentale entre la covariance
conforme des opérateurs GJMS pour n > 2s et celle pour n = 2s et sa conséquence : le fait qu’on
minimise les valeurs propres strictement positives dans un cas induit des trous spectraux au moins pour
le bas du spectre ; le fait qu’on les maximise dans l’autre cas encourage au contraire leur multiplicité.
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IV.3.2 Valeurs propres conformes de la sphère

Les valeurs propres conformes Λs
k(Sn) de la sphère ronde (Sn, g0) sont fondamentales

car dans la (I.9) et le Théorème IV.2.3, elles interviennent dans les seuils d’énergies qui
décident de l’existence de métriques extrémales pour Λs

k(M, [g]) pour n’importe quelle
classe conforme sur une variété (M, g). Sur (Sn, g0), λ1(g0) > 0 : on a donc k− = 0,
k+ = 1, et (IV.4) a lieu pour P s

g0
. Pour tous s ≥ 1, la covariance conforme de P s

g0
, Λs

1(Sn)
est la constante de Sobolev optimale dans Rn et est atteint pour la métrique ronde de
[g0] (voir [HPP25]). Par contre, à l’instar des résultats principaux de [GNP09, Pet14b,
BH19, GL21b, FL22, Kim22] qui optimisent des deuxièmes valeur propre non nulle dans
de nombreux contextes différents, Λs

2(Sn) n’est jamais atteint

Théorème IV.3.3. Soit n ≥ 3 et 1 ≤ s < n
2
. Alors

Λs
2(Sn)

n
2s = 2Λs

1(Sn)
n
2s

et Λs
2(Sn) n’est pas atteint.

Le Théorème IV.3.3 ainsi que ce qu’il se passe dans le cas analogue de la maximisation
des valeurs propres du Laplacien sur S2 (voir (II.7)) pourraient laisser penser que l’en-
semble des entiers k ≥ 1 tels que Λs

k(Sn) est atteint se réduit à {1}. Pourtant, de manière
surprenante, c’est toujours faux en grande dimension :

Théorème IV.3.4. Soit s ≥ 1 et on suppose que n ≥ 2s+ 5. Il existe k ∈ {3, · · · , n+ 1}
tel que Λs

k(Sn) est atteint. De plus, Λs
k(Sn) n’est pas atteint en la métrique ronde.

On ne sait rien dire pour 2s < n ≤ 2s + 5. Pour tout n ≥ 2s + 5, l’indice minimal
k > 3 pour lequel Λs

k(Sn) est atteinte reste inconnu. Néanmoins, nous montrons l’existence
d’une borne indépendante de n ≥ 2s+ 5 sur cet indice (voir [HPP25]).

IV.3.3 Extrémales pour Λs
k+

(M, [g]).

On décrit maintenant le cas k = k+ de la plus petite valeur propre strictement positive.
Si (M, g) est une variété riemannienne compacte sans bord, nous donnons une condition
suffisante sur (M, g) pour que Λs

k+
(M, [g]) soit atteinte. On suppose d’abord que P s

g est
sans noyau :

Théorème IV.3.5. Soit s ∈ N∗ and (M, g) une variété riemannienne compacte de dimen-
sion n > 2s. Soit P s

g l’opérateur GJMS d’ordre 2s sur M . On suppose que KerP s
g = {0}

et que l’une des conditions suivantes est satisfaite :
— n ≥ 2s+ 4 et (M, g) n’est pas localement conformément plat
— [2s+ 1 ≤ n ≤ 2s+ 3 ou (M, g) est localement conformément plat] et il existe ξ ∈

M tel que m(ξ) > 0, où m(ξ) est la masse de la fonction de Green de P s
g en ξ.

Alors Λs
k+

(M, [g]) < Λs
1(Sn) et Λs

k+
(M, [g]) est atteint.

Lorsque le Théorème IV.3.5 s’applique, le Corollaire IV.3.2 montre que Λs
k+

(M, [g])
est simple. Lorsque 2s + 1 ≤ n ≤ 2s + 3 ou lorsque (M, g) est localement conformément
plate, la masse en ξ ∈ M est définie comme le terme constant dans le développement
asymptotique de la fonction de Green de P s

g en ξ (voir par exemple [HPP25] pour sa
définition). Lorsque k+ ≥ 2, le Théorème IV.3.5 est nouveau sauf dans les cas s = 1 et
k+ = 2 déjà montrés par [ES14].
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Lorsque k+ = 1, c’est à dire si P s
g est coercif, le Théorème IV.3.5 est équivalent

au problème de Yamabe pour la Q-courbure de P s
g (voir [HPP25]). Pour s = 1, cette

équivalence est aussi vraie dans le cas k+ > 2 (voir Théorème I.1.5). Ainsi, c’est déjà
connu pour l’équation de Yamabe lorsque s = 1 par [Aub76, Sch84], pour l’opérateur
de Paneitz lorsque s = 2 par [DHL00, ER02, GHL16, GM15, HY16] et pour s ≥ 2
par [MV20]. Le théorème IV.3.5 est nouveau pour toutes les valeurs propres k+ ≥ 1 :
l’approche par fonction test à la Aubin est améliorée. Lorsque k+ = 1, s = 1, en supposant
3 ≤ n ≤ 5 ou (M, g) est localement conformément plat et non conforme à (Sn, g0), le
célèbre théorème de la masse positive ([SY79, LP87]) montre que la masse est strictement
positive. Lorsque s = 2 et 5 ≤ n ≤ 7 ou (M, g) est localement conformément plat la
fonction de masse est strictement positive surM dans le cas k+ = 1, l’invariant de Yamabe
de g est strictement positif, la Q-courbure est positive et (M, g) n’est pas conformément
difféomorphe à (Sn, g0), voir [HY16] (et des résultats précédents de [GM15, HR09, Mic11]).
Aucun autre résultat de masse strictement positive n’est connu pour la fonction de Green
de P s

g surM lorsque s ≥ 3. Bien sûr, dans le Théorème IV.3.5 on n’a besoin que d’un point
où la masse est strictement positive, on peut donc l’appliquer à de nombreux exemples
spécifiques.

On suppose que le noyau de P s
g n’est pas nécessairement trivial, ce qui est possible

grâce au Théorème IV.2.3 sous l’hypothèse (IV.4). On a alors un résultat analogue au
Théorème IV.3.5 :

Théorème IV.3.6. Soit s ∈ N∗ et (M, g) une variété riemannienne de dimension n > 2s.
Soit P s

g l’opérateur GJMS d’ordre 2s, et on suppose que Ker (P s
g ) 6= {0}. On suppose que

n ≥ 4s+ 5 et que (M, g) n’est pas conformément plat. Alors

Λs
k+

(M, [g]) < Λs
1(Sn, [g0]).

Ainsi, si P s
g satisfait (IV.4), alors Λs

k+
(M, [g]) est atteint.

Dans le cas où le noyau de P s
g est non trivial les calculs de fonctions test deviennent

plus compliqués pour Λs
k+

(M, [g]), c’est la raison pour laquelle les hypothèses du Théorème
IV.3.6 sont plus fortes que pour le Théorème IV.3.5. Néanmoins, le Théorème IV.3.6
fournit le premier résultat d’existence pour des minimiseurs de Λs

k(M, [g]) avec k ≥ k+

dans le cas Ker (P s
g ) 6= {0}, ce qui en fait aussi un résultat nouveau pour le Laplacien

conforme s = 1.

IV.3.4 Autres résultats

On donne ici d’autres conséquences des Théorèmes IV.2.2 et IV.2.3. Le premier est la
généralisation du trou spectral (IV.10) pour tous k > k+ et k 6 k− :

Théorème IV.3.7. Soit s ∈ N∗, (M, g) une variété riemannienne compacte sans bord
de dimension n > 2s st soit P s

g l’opérateur GJMS d’ordre 2s. On suppose que P s
g sa-

tisfait (IV.4). Soit k, k′ ∈ N∗ tel que k < k′ et tel que Λs
k(M, [g])Λs

k′(M, [g]) 6= 0. Alors
Λs
k(M, [g]) < Λs

k′(M, [g]).

Ce résultat et IV.10 montrent que la suite (Λs
k(M, [g])){k6k−}∪{k>k+} est strictement

croissante. On n’a pas besoin que Λs
k(M, [g]) soit atteint pour obtenir le Théorème IV.3.7.

On écrit ici la preuve du Théorème IV.3.7 car elle utilise de façon relativement succinte
et nouvelle les finesses de plusieurs résultats théoriques précédemment énoncés dans ce
mémoire.
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Démonstration. On suppose que k > k+, et on montre que Λs
k+1(M, [g]) > Λs

k(M, [g]). Le
cas k 6 k− est plus simple car Λs

k(M, [g]) est toujours atteint dans ce cas (seul le Cas 1
ci-dessous sera utilisé). On suppose par l’absurde que Λs

k+1(M, [g]) = Λs
k(M, [g]).

Cas 1 :On suppose que Λk+1(M, [g]) est atteint en β ∈ L n
2s (M)\{0}, β ≥ 0, avec ‖β‖

L
n
2s

=
1. Par définition de Λs

k(M, [g]),

Λs
k(M, [g]) 6 λk(β) 6 λk+1(β) = Λs

k+1(M, [g]) = Λs
k(M, [g]). (IV.11)

Cela implique Λs
k(M, [g]) = λk(β), et ainsi que Λs

k(M, [g]) est atteint, et que λk(β) =
λk+1(β). On contredit le Lemme I.2.10 (qui reste vrai en remplaçant Lg par P s

g ).
Cas 2 : On suppose que Λs

k+1(M, [g]) n’est pas atteint. Par le théorème IV.2.3, il existe
des entiers `0, · · · , `r tels que

1. `0 ∈ {0} ∪ {k+, · · · , k}, où par convention, Λs
0(M, [g]) = 0 ;

2. `0 + · · ·+ `r = k + 1 si `0 > k+ et `1 + · · ·+ `r = k − k+ + 2 si `0 = 0 ;

3. Λ`i(Sn), 1 ≤ i ≤ r sont atteints, et Λs
`0

(M, [g]) est atteint si `0 > 0.

et
Λs
k+1(M, [g])

n
2s = Λs

`0
(M, [g])

n
2s + Λs

`1
(Sn)

n
2s + · · ·+ Λs

`r(S
n)

n
2s . (IV.12)

Comme `0 < k + 1 on a r > 1, et en particulier `1 > 1 et donc Λs
`′1

(Sn) > 0. Avec
Λs
k+1(M, [g]) = Λs

k(M, [g]) et (IV.12), on obtient

Λs
k(M, [g])

n
2s = Λs

`0
(M, [g])

n
2s + Λs

`1
(Sn)

n
2s + · · ·+ Λs

`r(S
n)

n
2s > Λs

`0
(M, [g])

n
2s ,

ce qui implique
`0 ∈ {0} ∪ {k+, · · · , k − 1}. (IV.13)

Pour 0 ≤ i ≤ on définit

`′0 = `0, `′1 = `1 − 1 and `′i = `i if 2 ≤ i ≤ r,

de sorte que par (IV.13), on a

1. `′0 ∈ {0} ∪ {k+, · · · , k − 1} ;
2. `′0 + · · ·+ `′r = k if `0 > k+ and `′1 + · · ·+ `′r = k − k+ + 1 if `0 = 0.

Par simple calcul de fonctions tests à la Aubin, on a l’inégalité (voir [HPP25]) 7

Λs
k(M, [g])

n
2s 6 Λs

`′0
(M, [g])

n
2s + Λs

`′1−1(Sn)
n
2s + · · ·+ Λs

`′r
(Sn)

n
2s .

Cette inégalité, l’hypothèse Λs
k+1(M, [g]) = Λs

k(M, [g]) et (IV.12) impliquent alors Λs
`′1

(Sn) >
Λs
`1

(Sn) dont on déduit
Λs
`1−1(Sn) = Λs

`1
(Sn). (IV.14)

Si Λs
`1

(Sn) était atteint, on obtient une contradiction comme dans (IV.11) en utilisant
(IV.14) et le Lemme I.2.10. Ainsi Λs

`1
(Sn) n’est pas atteint mais cela contredit la définition

de `1. On a donc démontré le Théorème IV.3.7.

7. Il faut noter qu’ici, on n’utilise pas l’inégalité Λsk(M, [g]) 6 Xk(M, [g]) du Théorème IV.2.3 car on
ne sait pas si Λs`′1−1(Sn) est atteint. L’inégalité a aussi lieu si on ne demande pas que les invariants soient
atteints pour les invariants qui apparaissent dans la formule de Xk(M, [g])
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Le deuxième résultat concerne les opérateurs P s
g coercifs, c’est à dire sur une variété

riemannienne compacte (M, g) de dimension n ≥ 3 on suppose que λ1(g) > 0 (ou k+ = 1).
Bien sûr, dans ce cas Ker (P s

g ) = {0} et l’hypothèse (IV.4) est satisfaite. Si s ≥ 1 et
n ≥ 2s+5, on note kn ∈ {3, · · · , n+1} le plus petit indice k pour lequel Λs

k(Sn) est atteint.
Son existence est donnée par le Théorème IV.3.4. Comme conséquence du Théorème IV.3.4
et une approche par récurrence permise par le Théorème IV.2.3 on montre qu’en grandes
dimensions, Λs

k(M, [g]) est atteint pour tous k < kn lorsque (M, [g]) est non localement
conformément plate et P s

g est coercif :

Théorème IV.3.8. Soit s ∈ N∗, (M, g) une variété riemannienne compacte de dimension
n > 2s et soit P s

g l’opérateur GJMS d’ordre 2s sur M . On suppose que k+ = 1, n ≥ 2s+9
et que (M, g) n’est pas localement conformément plat. Alors Λs

k(M, [g]) est atteint pour
tous k ≤ kn − 1.

Sous les hypothèses du Théorème IV.3.8, on déduit directement du Théorème IV.3.5
que Λs

1(M, [g]) est atteint. Comme kn ≥ 3, le Théorème IV.3.8 implique que si P s
g est

coercif, si (M, g) n’est pas localement conformément plat et si n ≥ 2s + 9, Λs
1(M, [g])

et Λs
2(M, [g]) sont atteints. Dans [PV24], les auteurs on montré que lorsque s = 1, le

Théorème IV.3.8 est optimal pour k = 2. En effet, ils montrent que lorsque 3 ≤ n ≤ 10,
il existe un voisinage ouvert U de la métrique ronde g0 de Sn en un sens fort tel que pour
g ∈ U , Λ1

2(Sn, [g]) n’est jamais atteint et satisfait Λ1
2(Sn, [g])

n
2 = Λ1

1(Sn, [g])
n
2 + Λ1

1(Sn)
n
2 .

IV.4 Perspectives
On identifie d’abord deux questions qui ne relèvent pas de la géométrie spectrale, mais

plutôt de la structure des opérateurs GJMS. Le but est essentiellement d’étendre des pro-
priétés bien comprises du Laplacien conforme aux opérateurs GJMS d’ordres supériéurs
pour compléter mécaniquement notre cadre théorique et les applications. Le résultat de
continuation unique (IV.4) est il vrai en toute généralité ? Peut-on énoncer un théorème
de la masse positive pour tous les opérateurs P s

g ?
On se concentre maintenant sur des questions typiques d’optimisation spectrale. L’im-

portance du Théorème IV.2.3 est qu’il permet de jouer sur l’alternative suivante : soit
Λk(M, [g]) est atteint pour un grand nombre d’entiers k et on peut travailler avec des
métriques extrémales et leurs équations d’Euler-Lagrange associées (systèmes d’équations
de type Yamabe généralisé en plusieurs sens : on autorise un système d’équations, ou une
équation nodale, et on a l’analogue pour les problèmes de Q-courbure associés à P s

g ), soit
Λk(M, [g]) n’est pas atteint et on obtient l’égalité Λk(M, [g]) = Xk(M, [g]) qui permet
de calculer cet invariant en fonction des précédents qui sont atteints. Ce principe a été
identifié dans ma thèse [Pet18, Pet19] pour les valeurs propres du Laplacien en dimension
2 (et plus généralement leurs combinaisons, voir le Chapitre II) pour être ensuite utilisé
pour des résultats d’existence ou des calculs précis d’invariants spectraux. Nous utilisons
largement ce principe dans les applications du Théorème IV.2.3.

Néanmoins, les questions d’existence et d’inexistence de métriques critiques sont encore
mystérieuses. En effet, même pour les invariants de la classe conforme de la sphère ronde
Λk(Sn), à part l’existence pour k = 1, l’inexistence pour k = 2 (Théorème IV.3.3) et
l’existence pour un certain entier 3 6 k 6 n + 1 en dimensions grandes 8 (Théorème
IV.3.4), tout reste ouvert. Par exemple, peut-on calculer précisément kn, le premier entier

8. Comme on l’a dit, on a même borne sur k qui ne dépend pas de n
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plus grand que 3 pour lequel Λk(Sn) est atteint ? A n fixé, l’ensemble des indices k pour
lesquels Λk(Sn) est atteint est-il fini ? Existe-t-il des indices k > n + 2 pour lesquels la
sphère ronde est de nouveau le minimiseur de Λk(Sn) ? Il est important de rappeler que
la situation est bien différente du cas du Laplacien en dimension 2 où on peut calculer
Λk(S2) = kΛ1(S2) = 8πk car il n’est jamais atteint pour k > 2.

On observe maintenant l’asymptotique de (Λk(M, [g]))k∈N, en particulier sur la sphère
ronde. Pour le moment, on sait seulement que cette suite est strictement croissante (Théo-
rème IV.3.7). On constate aussi qu’il existe une constante c > 0 telle que pour tout k,
Λk(M, [g]) 6 ck

2
n . Ce terme est exactement le terme dominant dans l’asymptotique de

Weyl des valeurs propres pour une métrique fixé lorsque k → +∞. Il serait intéressant
de pouvoir identifier une loi de Weyl uniforme dans la classe conforme. Cette question est
relièe aux précédentes : par exemple si Λk(Sn) n’est atteint qu’un nombre fini de fois, une
loi de Weyl uniforme Λk(Sn) ∼ a([g])k

2
n se déduit mécaniquement du Théorème IV.2.3.

Autrement dit on obtiendrait une minoration de Weyl uniforme dans la classe conforme.
Plus généralement, calculer la densité dans N? des indices k pour lesquels Λk(Sn) est
atteint peut donner accès à une telle loi. Une telle loi de Weyl uniforme rappelle les ma-
jorations uniformes dans la classe conforme pour le Laplacien (en toutes dimensions) de
[Kor93, Has11]. Néanmoins, il faut rappeler qu’il est conceptuellement plus facile d’ob-
tenir des majorations sur les valeurs propres que des minorations : la méthode la plus
naturelle de choisir de bonnes fonctions test pour la caractérisation min-max des valeurs
propres n’est adapté qu’à la recherche de majorations. C’est fondamentalement ce qui est
fait dans [Kor93, Has11].

Des questions similaires se posent aussi pour d’autres opérateurs (non nécessairement
différentiels) covariants conformes : l’opérateur de Dirac, les opérateurs conformément
covariants sur les variétés à bords, les opérateurs covariants conformes fractionnaires et
leurs combinaisons. Optimiser des combinaisons de valeurs propres peut également s’avérer
utile pour ces problèmes.
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