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Abstract. The paper deals with infinite-dimensional random dynamical systems. Under the con-
dition that the system in question is of mixing type and possesses a random compact attracting set,
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Introduction

This paper deals with random dynamical systems (RDS)

ϕk : H → H, H � u �→ ϕku, k � 0, (0.1)

on a Polish∗∗ space H . Here the ϕk are random transformations (that is, ϕk = ϕk(ω), where ω is
a random parameter). As functions of k, these transformations are assumed to have independent
increments. Usually the time will be discrete (i.e., k ∈ Z+); however, RDS with continuous time
will also be briefly discussed in the context of stochastic partial differential equations.

Many features of long-time behavior of the trajectories of (0.1) are described by random attrac-
tors of this RDS. Of many possible definitions of random attractors (e.g., see [3, 5, 6]), we choose the
following: a compact random set Aω is called a random attractor if all trajectories ϕk(ω)u of (0.1)
converge to Aω in probability. See Sec. 1.2 for the precise definition and a discussion of it.

The RDS (0.1) defines a Markov chain in H with transition function

Pk(u,Γ) = P{ω : ϕk(ω)u ∈ Γ}, (0.2)

where Γ is a Borel subset in H . The long-time behavior of this process is described to some extent
by its stationary measures. Recall that a probability Borel measure µ on H is said to be stationary if
µ(Γ) =

∫
H Pk(u,Γ)µ(du) for every k � 0 and every Borel set Γ. For systems in question, every

stationary measure µ admits a Markov disintegration:

µ(Γ) = Eµω(Γ).

Here ω �→ µω is a measure-valued map measurable with respect to the past, i.e., with respect to
the σ-algebra generated by the random transformations ϕk(θ−mω), where k � m � 0 and θn is the
corresponding measure-preserving shift in the probability space; see [3, 6] and Sec. 1.1. It is known
that

suppµω ⊂ Aω a.s., (0.3)

where Aω is an arbitrary random attractor; see [7] and Sec. 1.2.
The main result of this paper is Theorem 2.4, which states that the support of the disintegration

of the unique stationary measure for the discrete time RDS (0.1) is its minimal random attractor

∗The work was supported by EPSRC Grant GR/N63055/01.
∗∗A metric space is said to be Polish if it is complete and separable.
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provided that the system satisfies some nonrestrictive compactness condition and is of mixing type
in the sense that

E f(ϕk(ω)u)→
∫

H
f(u)µ(du) as k → +∞ (0.4)

for every bounded continuous function f : H → R , where u ∈ H is an arbitrary initial point and µ
is the stationary measure. In other words, under the preceding conditions we have the equality
in (0.3), where Aω is the minimal random attractor. The proof is based on an ergodic type theorem
for the dynamical system {Θk} defined on the phase space Ω×H as the skew product of θk and ϕk :

Θk(ω, u) = (θkω, ϕk(ω)u), k � 0;

see Theorem 2.3.
In Sec. 4 we consider the randomly forced 2D Navier–Stokes equations

u̇− ν∆u+ (u,∇)u+∇p = η(t, x), div u = 0, (0.5)

where u = u(t, x) is the velocity field, p = p(t, x) is the pressure, and η(t, x) is a random exter-
nal force. The equations are supplemented by the Dirichlet or periodic boundary conditions. The
random force η is smooth in x, while as a function of t it is either a kick force (then (0.5) defines
a discrete-time RDS) or a white force (then it defines a continuous-time RDS). In both cases, the
RDS satisfies the compactness condition. Imposing some nonrestrictive nondegeneracy assumption,
we find from the results in [13] or [14], respectively, that the RDS satisfies the mixing type condi-
tion as well. Therefore, the abstract Theorems 2.3 and 2.4 apply to system (0.5) both for the kick
and white forces. Accordingly, the support of the Markov disintegration for the unique stationary
measure defines the minimal random attractor for (0.5) (see Theorems 4.1 and 4.2), and functionals
depending on both the solution u and the corresponding forces satisfy a theorem of ergodic type
(see Theorem 4.3).

Notation. Let (H, d) be a Polish space, let Cb(H) be the space of bounded continuous functions
on H equipped with the norm supu∈H |f(u)|, and let L(H) be the space of functions f : H → R

such that
‖f‖L(H) = sup

u∈H
|f(u)|+ sup

u,v∈H

|f(u)− f(v)|
|u− v| < ∞.

If (Ω,F,P) is a probability space and F ′ is a sub-σ-algebra, then by L(H,F ′) we denote the set
of functions F (ω, u) : Ω × H → R that are F ′-measurable in ω for any given u ∈ H and satisfy
the condition

ess sup
ω∈Ω

‖F (ω, · )‖L(H) < ∞. (0.6)

For u ∈ H and A ⊂ H , we define the distance between u and A as

d(u,A) = inf
v∈A

d(u, v).

Acknowledgements. We thank James Robinson for discussion.

1. Preliminaries

In this section, we recall some basic notions of the theory of random dynamical systems (RDS)
and state a few results that will be used later. We mainly follow the book [3]. To simplify the
presentation, we confine ourselves to the case of discrete time.

1.1. Random dynamical systems. Let (Ω,F,P) be a probability space, let θk : Ω → Ω,
k ∈ Z, be a group of measure preserving transformations of Ω, and let H be a Polish space
equipped with a metric d and the Borel σ-algebra BH .

Definition 1.1. A (continuous) random dynamical system over θk is a family of mappings
ϕk(ω) : H → H , where k ∈ Z+ and ω ∈ Ω, with the following properties.
(i) Measurability. The mapping (ω, u) �→ ϕk(ω)u of the space Ω × H equipped with the σ-

algebra F ⊗ BH into H is measurable for each k � 0.
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(ii) Continuity. For any ω ∈ Ω and k � 0, the mapping ϕk(ω) is continuous.
(iii) Cocycle property. For each ω ∈ Ω, we have

ϕ0(ω) = IdH , ϕk+l(ω) = ϕk(θlω) ◦ ϕl(ω) for all k, l � 0. (1.1)

For any integers m � n, by F[m,n] we denote the σ-algebra generated by the family of H -valued
random variables ϕk(θm−1ω)u, where u ∈ H and k = 0, . . . , n−m+1. We extend this notation to
the case in which m = −∞ and/or n = +∞ by setting F[−∞,n] = σ{F[m,n], m � n} and similarly
for F[m,+∞] and F[−∞,+∞] . A straightforward verification shows that

θ−1
k F[m,n] = F[m+k,n+k] for all m � n and k. (1.2)

The σ-algebras F− = F[−∞,0] and F+ = F[1,+∞] are called the past and the future of ϕk(ω).
Let PP be the set of probability measures on (Ω×H,F⊗BH) whose projections on Ω coincide

with P. It is well known (see [3, Sec. 1.4]) that each measure M ∈ PP admits a unique disintegration
ω �→ µω , which is a random variable ranging in the space of measures such that

M(Γ) =
∫

Ω

∫
H
IΓ(ω, u)µω(du)P(dω) ∀Γ ∈ F ⊗ BH ,

where IΓ is the indicator function of Γ.
Given an RDS ϕk(ω) over θk , we introduce the following semigroup of measurable mappings

on Ω×H :
Θk(ω, u) = (θkω, ϕk(ω)u), k � 0.

The semigroup Θk is called the skew product of θk and ϕk(ω). A measure M ∈ PP is said to
be invariant for Θk if Θk(M) = M (that is, M(Θ−1

k (Γ)) = M(Γ) for every Γ ∈ F ⊗ BH ). By
Theorem 1.4.5 in [3], a measure M ∈ PP is invariant if and only if its disintegration µω satisfies
the following relation for P-almost all ω ∈ Ω:

ϕk(ω)µω = µθkω for all k � 0.

The set of all invariant measures for Θk will be denoted by IP(ϕ).
Definition 1.2. An invariant measure M ∈ IP(ϕ) is said to be Markov if its disintegration µω

is measurable with respect to the past F− . The set of such measures will be denoted by IP,F−(ϕ).

We now proceed to the important class of RDS with independent increments (also called white
noise RDS ).

Definition 1.3. We say that an RDS ϕk(ω) has independent increments if its past and future
are independent.

It follows from (1.2) that ϕk(ω) has independent increments if and only if the σ-algebras F[m,n]

and F[m′,n′] are independent for any disjoint (finite or infinite) intervals [m,n] and [m′, n′].
For each RDS ϕk(ω) with independent increments, the set of random sequences {ϕk( · )u, k �

0}, u ∈ H , is a family of Markov chains with respect to the filtration Fk = θ−1
k F− . The corre-

sponding transition function Pk(u,Γ) has the form (0.2), and the Markov operators associated with
Pk are given by the formulas

Pkf(u) =
∫

H
Pk(u, dv)f(v), P∗

kµ(Γ) =
∫

H
Pk(u,Γ)µ(du),

where f ∈ Cb(H) and µ ∈ P(H). We recall that µ ∈ P(H) is called a stationary measure for
the Markov family if P∗

1µ = µ. The set of such measures will be denoted by Sϕ . The following
important result is established (for different situations) in [6, 15, 16].

Proposition 1.4. Let ϕk(ω) be an RDS with independent increments. Then there is a one-
to-one correspondence between Markov invariant measures IP,F−(ϕ) for the skew product Θk and
the stationary measures Sϕ for the associated Markov family. Namely, if µ ∈ Sϕ, then the limit

µω = lim
k→+∞

ϕk(θ−kω)µ (1.3)
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exists in the ∗-weak topology almost surely and gives the disintegration of a Markov invariant
measure M. Conversely, if M ∈ IP,F− is a Markov invariant measure and µω is its disintegration,
then µ = Eµω is a stationary measure for the Markov family.

1.2. Point attractors. Let {ϕk(ω)} be an RDS in a Polish space H over {θk} as above.
A family of subsets Aω , ω ∈ Ω, is called a random compact (closed) set if Aω is compact (closed)
for almost all ω and ΩU := {ω ∈ Ω : Aω ∩ U �= ∅} ∈ F for every open set U ⊂ H . A random
compact set Aω is said to be measurable with respect to a sub-σ-algebra F ′ ⊂ F if ΩU ∈ F ′ for
any open set U ⊂ H .

Definition 1.5. A random compact set Aω is called a random point attractor (in the sense
of convergence in probability) if for each u ∈ H the sequence of random variables d(ϕk(ω)u,Aθkω)
converges to zero in probability, i.e.,

lim
k→+∞

P{d(ϕk(ω)u,Aθkω) > δ} = 0 (1.4)

for each δ > 0. A random point attractor Aω is said to be minimal if for any other random point
attractor A ′

ω we have Aω ⊂ A ′
ω for almost all ω.

It is clear that a minimal random point attractor is unique (if it exists); i.e., if Aω and A ′
ω

are two minimal random attractors, then Aω = A ′
ω almost surely. Since θk is a measure-preserving

transformation, it follows that (1.4) is equivalent to

lim
k→+∞

d(ϕk(θ−kω)u,Aω) = 0, (1.5)

where the limit is understood in the sense of convergence in probability. This type of convergence
of a trajectory to a random set (the initial data are specified at time −k, k → ∞, and the distance
is evaluated at time zero) is normally used to define random attractors. We prefer the “forward”
definition (1.4), which seems to be more natural. We note that of various types of random attractors
considered in modern mathematical literature, the one in Definition 1.5 is the smallest; cf. [3, 5, 6].

If we replace relation (1.4) in Definition 1.5 by the condition that (1.5) holds for all u ∈ H and
ω ∈ Ω0 , where Ω0 ∈ F is a set of full measure independent of u, then we obtain the definition of
a random point attractor in the sense of almost sure convergence. Since almost sure convergence
implies convergence in probability, it follows that the resulting attractor also satisfies (1.4). In what
follows, we mainly deal with random point attractors in the sense of convergence in probability;
therefore, they will simply be called random attractors.

The following proposition is a straightforward consequence of Theorems 3.4 and 4.3 and Re-
mark 3.5(iii) in [7].

Proposition 1.6. (i) Let ϕk(ω) be an RDS with independent increments. Suppose that there
exists a random compact set Kω attracting the trajectories of ϕk(ω) in the following sense: there
exists a set Ω0 ∈ F such that P(Ω0) = 1 and

lim
k→+∞

d(ϕk(θ−kω)u,Kω) = 0 for any ω ∈ Ω0 , u ∈ H. (1.6)

Then ϕk(ω) possesses a random attractor Aω that is measurable with respect to the past F−.
(ii) For each Markov invariant measure M ∈ Iϕ,F− , its disintegration µω is supported by each

random attractor A ′
ω ; i.e., µω(A ′

ω) = 1 almost surely.

Outline of proof. (i) As shown in [7], under the assumptions of the proposition the RDS ϕk(ω)
possesses a random point attractor Aω in the sense of almost sure convergence. Since θk is a
measure-preserving transformation, we conclude that (1.5) holds for Aω . The construction implies
that Aω is measurable with respect to the past.

(ii) Let A ′
ω be an arbitrary random attractor. To show that the disintegration of each invariant

measure M ∈ Iϕ,F− is supported in A ′
ω , it suffices to observe that (1.4) implies the almost

sure convergence (1.5) along an appropriate subsequence k = kn and repeat the argument in [7,
Theorem 4.3].
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2. Main Results

As before, by (Ω,F,P) we denote a probability space and by H a Polish space equipped with
a metric d and the Borel σ-algebra BH . Let {ϕk(ω)} be an RDS in H over a measure-preserving
group of transformations θk . We introduce the following two hypotheses.

Condition 2.1. Mixing. The Markov family {ϕk(ω)u} is a system of mixing type in the
following sense: it has a unique stationary measure µ, and

Pkf(u) = E f(ϕk( · )u)→ (µ, f) =
∫

H
f(u)µ(du) as k → ∞ (2.1)

for each f ∈ L(H) and each initial point u ∈ H .
Condition 2.2. Compactness. There is a random compact set attracting the trajectories

of ϕk(ω) (in the sense specified in Proposition 1.6). Moreover, for any u ∈ H and ε > 0 there
exists an Ωε ∈ F, a compact set Kε ⊂ H , and an integer kε = kε(u) � 1 such that P(Ωε) � 1− ε
and

ϕk(θ−kω)u ∈ Kε for ω ∈ Ωε , k � kε . (2.2)
Let µ ∈ Sϕ be the unique stationary measure for the Markov semigroup P∗

k , and let M ∈ Iϕ,F−

be the corresponding Markov invariant measure for the skew product Θk (see Proposition 1.4).
Theorem 2.3. Suppose that Condition 2.1 is satisfied. Then for each function F (ω, u) ∈

L(H,F−) we have

EF (Θk( · , u))→ (M, F ) =
∫

Ω

∫
H
F (ω, u)µω(du)P(dω) as k → ∞, (2.3)

where u ∈ H is an arbitrary initial point.
We now discuss the relationship between invariant measures and random attractors. We denote

the disintegration of M by µω and set

Aω =

{
suppµω, ω ∈ Ω0,

H, ω /∈ Ω0,
(2.4)

where Ω0 ∈ F is a set of full measure on which the limit (1.3) exists. By Corollary 1.6.5 in [3], Aω is
a random closed set. Moreover, it follows from (1.3) that Aω is measurable with respect to F− .

Theorem 2.4. Suppose that Conditions 2.1 and 2.2 are satisfied. Then Aω is a minimal
random point attractor.

The proofs of these theorems are given in Sec. 3. We now discuss a class of RDS satisfying
Conditions 2.1 and 2.2.

Example 2.5. Randomly forced dynamical systems. Let H be a Hilbert space with norm | · |
and an orthonormal basis {ej}, and let PN be the orthogonal projection onto the subspace HN ⊂ H
generated by e1, . . . , eN . Suppose that a continuous operator S : H → H satisfies the following two
conditions:

|S(u)| � q|u| for u ∈ H, (2.5)

|PN (S(u)− S(v))| � 1
2 |u− v| for |u| ∨ |v| � R, (2.6)

where q < 1 is a constant independent of u, R > 0 is an arbitrary constant, and N � 1 is an
integer depending only on R. Consider the RDS generated by the equation

uk = S(uk−1) + ηk, (2.7)

where k ∈ Z and ηk is a sequence of i.i.d. H -valued random variables. If the distribution χ of
the random variables ηk is compactly supported, then Condition 2.2 is satisfied. If, moreover, χ is
sufficiently nondegenerate (in the sense of [13]), then the Markov family corresponding to (2.7) is
of mixing type. Thus, under the above hypotheses, the support of the unique invariant measure is a
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random point attractor. We note that Equation (4.3) below, which corresponds to the kick-forced
Navier–Stokes system, satisfies (2.5) and (2.6); see [13].

Conditions 2.1 and 2.2 are also satisfied for a large class of unbounded kicks ηk (see (2.7)). We
do not dwell upon that case.

Remark 2.6. Theorems 2.3 and 2.4 remain valid for RDS ϕt(ω) with continuous time t � 0. In
this case, we assume that ϕt(ω)u is continuous with respect to (t, u) for any given ω ∈ Ω and that
Conditions 2.1 and 2.2 hold with k replaced by t. Reformulation of the above results for continuous
time is rather obvious, and therefore we do not give detailed statements.

3. Proofs

3.1. Proof of Theorem 2.3. Step 1. We first assume that F (ω, u) ∈ L(H,F[−�,0]), where )� 0
is an integer. Since θk is a measure-preserving transformation, we have

pk(u) := EF (θkω, ϕk(ω)u) = EF (ω, ϕk(θ−kω)u) = EE{F (ω, ϕk(θ−kω)u) | F[1−m,0]}
for each m � 1. By the cocycle property (see (1.1)),

ϕk(θ−kω) = ϕm(θ−mω)ϕk−m(θ−kω), m � k.

Hence, by setting Fm(ω, u) = F (ω, ϕm(θ−mω)u), we obtain

pk(u) = EE{Fm(ω, ϕk−m(θ−kω)u) | F[1−m,0]} (3.1)

for each m � k. We now note that Fm ∈ L(H,F[1−m,0]) for m � ) + 1. Since ϕk−m(θ−kω)u
is measurable with respect to F[1−k,−m] and since the σ-algebras F[1−m,0] and F[1−k,−m] are
independent, it follows from (3.1) that

pk(u) = EE′{Fm(ω, ϕk−m(θ−kω
′)u)} = E (Pk−mFm)(ω, u), (3.2)

where )+1 � m � k and E′ stands for the expectation with respect to ω′ . In view of Condition 2.1
and the Lebesgue theorem, the right-hand side of (3.2) tends to E (µ, Fm(ω, · )) as k → +∞ for
each m � )+ 1. Recalling the definition of Fm , we see that

(µ, Fm(ω, · )) = (ϕm(θ−mω)µ, F (ω, · ))→ (µω, F (ω, · )) as m → ∞,

where we have used Proposition 1.4. It follows that

lim
k→+∞

pk(u) = E (µω, F (ω, · )),

which coincides with (2.3).
Step 2. We now show that (2.3) holds for functions of the form F (ω, u) = f(u)g(ω), where

f ∈ L(H) and g is a bounded F−-measurable function. To this end, we use a version of the
monotone class theorem (see [2, Theorem 3.3]).

We take some f ∈ L(H) and denote the set of bounded F−-measurable functions g for which
the convergence (2.3) holds with F = fg by H. It is clear that H is a linear space containing the
constant functions. Moreover, as was shown at Step 1, it contains all bounded functions measurable
with respect to F[−�,0] for some ) � 0. Since the union of F[−�,0] , ) � 0, generates F− , we see that
the desired assertion will be proved as soon as we establish the following property: if gn ∈ H is an
increasing sequence of nonnegative functions such that g = sup gn is bounded, then g ∈ H.

Suppose that a sequence {gn} ⊂ H satisfies the above conditions. Without loss of generality,
we can assume that 0 � g, gn � 1. By Egorov’s theorem, for each ε > 0 there exists an Ωε ∈ F

such that P(Ωε) � 1− ε and
lim

k→+∞
sup
ω∈Ωε

|gn(ω)− g(ω)| = 0.

It follows that for each ε > 0 there exists an integer nε � 1 such that nε → +∞ as ε → 0 and

gnε(ω) � g(ω) � gnε(ω) + ε+ IΩc
ε
(ω) for all ω ∈ Ω.
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Multiplying this inequality by f(ϕk(θ−kω)u), taking the expectation, passing to the limit as k →
+∞, and using the estimate P(Ωc

ε) � ε, we obtain

E{(µω, f)gnε(ω)} � lim inf
k→+∞

E{f(ϕk(θ−kω)u)g(ω)}
� lim sup

k→+∞
E{f(ϕk(θ−kω)u)g(ω)} � E{(µω, f)gnε(ω)}+ 2ε.

Since ε > 0 is arbitrary and E{(µω, f)gnε(ω)} → E{(µω, f)g(ω)} as ε → 0 (by the monotone
convergence theorem), we conclude that

E{f(ϕk(ω)u)g(θkω)} = E{f(ϕk(θ−kω)u)g(ω)} −→
k→+∞

E{(µω, f)g(ω)},

which means that g ∈ H. This completes the proof of (2.3) for the case in which F (ω, u) = f(u)g(ω).
Step 3. Now consider the general case. Let F ∈ L(H) be an arbitrary function such that

‖F (ω, · )‖L(H) � 1 for almost every ω ∈ Ω. For any u ∈ H and ε > 0, we take an integer kε(u) � 1
and sets Ωε ∈ F and Kε � H for which (2.2) holds. By the Arzelà–Ascoli theorem, the unit ball
Bε = {f ∈ L(Kε) : ‖f‖L(H) � 1} is compact in the space Cb(Kε), and therefore, there exists
a finite set {hj} ⊂ Bε whose ε-neighborhood contains Bε . It follows that Bε can be covered by
disjoint Borel sets Uj � hj , j = 1, . . . , N , whose diameters do not exceed 2ε. By fj ∈ L(H) we
denote arbitrary extensions of hj to H such that ‖fj‖L(H) � 2. For instance, we can take

fj(u) = inf
v∈Kε

(hj(v) + d(u, v) ∧ 1).

Consider the following approximation to F :

Gε(ω, u) =
N∑

j=1

fj(u)gj(ω), gj(ω) = IUj (FKε(ω, · )),

where FKε(ω, u) is the restriction of F to Ω×Kε . Since only one of the functions gj can be nonzero,
we have ‖Gε(ω, · )‖∞ � 2. Therefore,

|Gε(ω, u)− F (ω, u)| � 2ε+ IKc
ε
(u)(‖Gε(ω, · )‖∞ + ‖F (ω, · )‖∞) � 2ε+ 3IKc

ε
(u) (3.3)

for any u ∈ H and almost every ω ∈ Ω, where we have used the inequality ‖F (ω, · )‖∞ � 1. We
set

pk(u) = EF (θkω, ϕk(ω)u), pk(u, ε) = EGε(θkω, ϕk(ω)u).

It is clear that

|pk(u)− (M, F )| � |pk(u)− pk(u, ε)|+ |pk(u, ε)− (M, Gε)|+ |(M, Gε − F )|. (3.4)

Let us estimate each term on the right-hand side in (3.4). Combining (2.2) with (3.3), we obtain

|pk(u)− pk(u, ε)| � |E{F (ω, ϕk(θ−kω)u)−Gε(ω, ϕk(θ−kω)u)}|
� 2ε+ 3P{ϕk(θ−kω)u) /∈ Kε} � 2ε+ 3P(Ωc

ε) � 5ε (3.5)

for k � kε(u). Furthermore, the functions gj are F−-measurable, and hence, by Step 2,

pk(u, ε)→ (M, Gε) as k → +∞ (3.6)

for each given ε > 0. Finally, inequality (3.3) implies that

|(M, Gε − F )| � 2ε+ 3(M, IKc
ε
) = 2ε+ 3µ(Kc

ε). (3.7)

Since ε > 0 is arbitrary, it follows from (3.4)–(3.7) that the desired convergence (2.3) will be
established once we show that µ(Kc

ε)→ 0 as ε → 0.
To this end, we note that

µ(Kc
ε) =

∫
H

P{ϕk(ω)u /∈ Kε}µ(du). (3.8)
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It follows from Condition 2.1 that

lim sup
k→+∞

P{ϕk(ω)u /∈ Kε} = lim sup
k→+∞

P{ϕk(θ−kω)u /∈ Kε} � ε

for each given u ∈ H . Passing to the limit as k → +∞ in (3.8), we conclude that µ(Kc
ε) � ε for

each ε > 0. This completes the proof of Theorem 2.3.

3.2. Proof of Theorem 2.4. We first show that the random compact set Aω is a random
attractor. We take a δ ∈ (0, 1) and consider the function

F (ω, u) = 1− d(u,Aω)
δ

∧ 1, u ∈ H, ω ∈ Ω.
We claim that F ∈ L(H,F−). Indeed, the definition of F implies that F (ω, u) is bounded and

|F (ω, u)− F (ω, v)| � d(u, v)
δ

for all u, v ∈ H and ω ∈ Ω.
Thus F satisfies (0.6). Since Aω is a random compact set measurable with respect to F− , we
conclude that the random variable ω → d(u,Aω) is measurable with respect to F− for each u ∈ H
(see Sec. 6.1 in [3]). This proves the desired properties of F .

Since F (ω, u) = 1 for u ∈ Aω , it follows that (M, F ) = 1. By applying Theorem 2.3, we obtain

EF (θkω, ϕk(ω)u) = 1− E
(
d(ϕk(ω)u,Aθkω)

δ
∧ 1

)
→ (M, F ) = 1,

that is,

pk(u) := E
(
d(ϕk(ω)u,Aθkω)

δ
∧ 1

)
→ 0. (3.9)

We now note that, by Chebyshev’s inequality,

P{d(ϕk(ω)u,Aθkω) > δ} � pk(u)
δ

.

In view of (3.9), the right-hand side of this inequality tends to zero as k → +∞. This completes
the proof of the fact that Aω is a random attractor.

To show that Aω is a minimal random attractor, it suffices to note that the invariant mea-
sure M ∈ IP,F− is supported in every random attractor A ′

ω , by Proposition 1.6. Therefore,
suppµω ⊂ A ′

ω for almost every ω ∈ Ω.

4. The Navier–Stokes Equations

In this section, we consider the randomly forced 2D Navier–Stokes system

u̇− ν∆u+ (u,∇)u+∇p = η(t, x), div u = 0. (4.1)

The space variable x belongs either to a smooth bounded domain D, and then the boundary condi-
tion u|∂D = 0 is imposed, or to the torus T

2 = R
2/2πZ

2 , and then we assume that
∫
u dx =

∫
η dx ≡

0. We are interested in the time evolution of the velocity field u (but not of the pressure p). Accord-
ingly, we replace the force η by its divergence-free component (neglecting the gradient component)
and assume in what follows that

div η = 0.
We first consider the case in which the right-hand side η is a random kick force of the form

η(t, x) =
∑
k∈Z

δ(t− k)ηk(x), (4.2)

where the ηk are i.i.d. random fields as in [12, 13]. Let H be the Hilbert space of divergence-free
vector fields in the domain in question satisfying the boundary conditions in the usual sense (e.g.,
see [1]). We normalize the solutions u(t, x) of (4.1), (4.2), treated as random curves in H , to be
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right continuous. Then, by evaluating the solutions at integer times t = k ∈ Z+ and by setting
uk = u(k, · ), we obtain the equation

uk = S(uk−1) + ηk. (4.3)

Here S is the time-one shift along trajectories of the free Navier–Stokes system (4.1) (with η ≡ 0);
see [12, 13] for details. Defining ϕk , k � 0, as the map sending u ∈ H to the solution uk of (4.3)
equal to u at t = 0, we obtain an RDS of the form (0.1). One readily verifies that it satisfies the
desired compactness condition (cf. [12, Sec. 2.2.1]). Moreover, if the distribution of the kicks ηk

satisfies a nonrestrictive nondegeneracy assumption specified in [13], then the corresponding Markov
chain in H has a unique stationary measure µ and condition (0.4) holds. Hence Theorem 2.4 applies,
and we arrive at the following result:

Theorem 4.1. If the kick force (4.2) satisfies the above conditions, then the support Aω of the
Markov disintegration µω of its unique stationary measure µ is a minimal random attractor of the
RDS (4.3). Moreover, there is a deterministic constant D = Dν such that the Hausdorff dimension
of the set Aω does not exceed D for almost every ω.

In Remark 2.6, we point out that Theorems 2.3 and 2.4 remain valid for a class of RDS with
continuous time t � 0. This class includes the system describing the white-forced 2D Navier–Stokes
equations, i.e., Eq. (4.1) with

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑
j=1

bjβj(t)ej(x). (4.4)

Here {ej} is the L2-normalized trigonometric basis in H and {βj , t ∈ R} is a family of independent
standard Wiener processes. It is assumed that the real coefficients bj decay faster than any negative
degree of j :

|bj | � Cmj−m for all j,m � 1,

so that η(t, x) is almost surely smooth in x. Consider the space H of continuous curves ξ : R → H
such that ξ(0) = 0 equipped with the topology of uniform convergence on bounded intervals.
Let B be the σ-algebra of Borel subsets of H, {θt} the group of canonical shifts of H (θtξ(s) =
ξ(s+ t)− ξ(t)) and P the distribution of the process ζ in H. We take (H,B,P) for the probability
space (Ω,F,P). Then the Navier–Stokes system (4.1), (4.4) defines a continuous-time RDS over θt

(see [3]) and a Markov process in H . This RDS satisfies the compactness condition; see [5, Sec. 3.1].
Moreover, it is shown in [14] (see also [4, 11]) that there exists an integer N = Nν such that if

bj �= 0 for 1 � j � N, (4.5)

then the corresponding Markov process in H has a unique stationary measure µ and satisfies (0.4).
Thus we arrive at the following result:

Theorem 4.2. If (4.5) holds, then the white-forced 2D Navier–Stokes system (4.1), (4.4) has
a unique stationary measure µ. The supports Aω of its Markov disintegration µω define the min-
imal random attractor of the corresponding RDS in H . Moreover, there exists a deterministic
constant D = Dν such that the Hausdorff dimension of the set Aω does not exceed D for almost
every ω.

The fact that suppµω has finite Hausdorff dimension in both discrete and continuous cases
follows from the general results on upper bounds for the Hausdorff dimension of global random
attractors (see [8–10]), since these attractors contain suppµω (see Corollary 3.6 in [7]).

Consider the skew product system {Θk} corresponding to the RDS in question. By applying
the continuous-time version of Theorem 2.3, we obtain the following result:

Theorem 4.3. Let G be a bounded measurable functional on H × H uniformly Lipschitz in
the first variable and such that G(u, ζ( · )) depends only on {ζ(s), s � 0}. Let u(t) be the solution
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of (4.1), (4.4) equal to u0 for t = 0. Then

EG(u(t), θtζ)→ E
∫

H
F (v, ζ)µζ(dv) as t → ∞

for each u0 ∈ H provided that assumption (4.5) is satisfied.
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