Poincaré inequalities for maps with target manifold of negative curvature

T. Kappeler *, V. Schroeder ${ }^{\dagger}$, Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland email: tk@math.unizh.ch, vschroed@math.unizh.ch
S. Kuksin
Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK; and Steklov Institute of Mathematics, 8 Gubkina St., 117966 Moscow, Russia email: kuksin@ma.hw.ac.uk
(to appear in Moscow Mathematical Journal)

Abstract

We prove that for any given homotopic C^{1}-maps $u, v: G \rightarrow M$ in a nontrivial homotopy class from a metric graph into a closed manifold of negative sectional curvature, the distance between u and v can be bounded by $3(\operatorname{length}(u)+\operatorname{length}(v))+C(\kappa, \varrho / 20)$ where $\varrho>0$ is a lower bound of the injectivity radius and $-\kappa<0$ an upper bound for the sectional curvature of M. The constant $C(\kappa, \varepsilon)$ is given by $$
C(\kappa, \varepsilon)=8 s h_{\kappa}^{-1}(1)+8 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)
$$ with $s h_{\kappa}(t)=\sinh (\sqrt{\kappa} t)$. Various applications are given.

[^0]
0 Introduction

Let G be a finite graph and $M=X / \Gamma$ a complete Riemannian manifold with universal cover X and Γ as group of deck transformations. Assume that M has negative sectional curvature bounded from above by $-\kappa<0$ and injectivity radius bounded from below by $\varrho>0$. A map $u: G \rightarrow M$ is called C^{1} if the restriction of u to every edge is a C^{1}-map. In an obvious way one defines the length $L(u)$ of a C^{1}-map $u: G \rightarrow M$ by summing up the lengths of the restriction of u to any of the edges of G. Denote by $N(u, v)$ the distance between two homotopic C^{1}-maps $u, v: G \rightarrow M$,

$$
N(u, v)=\inf _{H}\left\{\sup _{z \in G} \ell_{H}(z)\right\}
$$

where the infimum is taken over all C^{1}-homotopies $H: G \times[0,1] \rightarrow M$ between u and v and $\ell_{H}(x)$ is the length of the curve $s \mapsto H(x, s)$.

Theorem 0.1 Let $\kappa>0$ and $\varrho>0$ be given. Then for any Riemannian manifold M with sectional curvature bounded from above by $-\kappa<0$ and injectivity radius bounded from below by $\varrho>0$, for any finite graph G and for any homotopic C^{1}-maps $u, v: G \rightarrow M$, which are not in the trivial homotopy class

$$
\begin{equation*}
N(u, v) \leq 3(L(u)+L(v))+C(\kappa, \varrho / 20) \tag{0.1}
\end{equation*}
$$

where $C(\kappa, \varepsilon):=8 s h_{\kappa}^{-1}(1)+8 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)$ and $s h_{\kappa}(t)=\sinh (\kappa t)$.

Remark 0.2 For C^{1}-maps $u, v: G \rightarrow M$ in the trivial homotopy class inequality (0.1) is not true. Assuming that M is closed, one obtains in this case an estimate of the form $N(u, v) \leq \frac{1}{2}(L(u)+L(v))+\operatorname{diam}(M)$ where $\operatorname{diam}(M)$ denotes the diameter of M.

Remark 0.3 In the case the manifold M is closed we give in Appendix C an algebraic reformulation of estimate (0.1) involving the conjugation of finite subsets of the fundamental group of M.

As an application of Theorem 0.1 we obtain a Poincaré inequality for homotopic C^{1}-maps $u, v: M^{\prime} \rightarrow M$ where M^{\prime} is a closed Riemannian manifold. To state it we need to introduce some further notation. For any $1 \leq p<\infty$ and arbitrary homotopic C^{1}-maps $u, v: M^{\prime} \rightarrow M$ introduce the distance function

$$
\begin{aligned}
N_{p}(u, v):=\inf \left\{N_{p}(H) \mid\right. & H: M^{\prime} \times[0,1] \rightarrow M \\
& \left.C^{1}-\text { homotopy between } u \text { and } v\right\}
\end{aligned}
$$

where

$$
N_{p}(H):=\left(\int_{M} \ell_{H}(x)^{p} d \operatorname{vol}(x)\right)^{1 / p}
$$

and $\ell_{H}(x)=\int_{0}^{1}\left\|\frac{d}{d s} H(x, s)\right\| d s$ as above. Finally we introduce the energy $E(u)$ of a C^{1}-map $u: M^{\prime} \rightarrow M$,

$$
E(u):=\int_{M}\left\|d_{x} u\right\|^{2} d \operatorname{vol}(x)
$$

where $\left\|d_{x} u\right\|$ denotes the Hilbert-Schmidt norm of the differential $d_{x} u$: $T_{x} M^{\prime} \rightarrow T_{u(x)} M$.

Theorem 0.4 Let M and M^{\prime} be closed Riemannian manifolds and assume that M has negative sectional curvature. Then there exists $C_{2}>0$ depending only on the geometry of M and M^{\prime} so that for any homotopic C^{1}-maps u, v : $M^{\prime} \rightarrow M$

$$
\begin{equation*}
N_{2}(u, v) \leq C_{2}\left(E(u)^{1 / 2}+E(v)^{1 / 2}+1\right) . \tag{0.2}
\end{equation*}
$$

Related work: In [KKS1], by different methods, inequalities (0.1) and (0.2) were proved for target manifolds M with nonpositive sectional curvature with constants C_{1} and C_{2} which depend on the geometry of M and M^{\prime} and, in addition, on the homotopy class of the maps u, v considered. If M^{\prime} has negative sectional curvature we show in this paper that the constants C_{1}, C_{2} are independent of the homotopy class of the maps u, v.
Theorem 0.4 can be applied to improve Theorem 0.2 in [KKS1] on perturbations of the harmonic map equation for maps $u: M^{\prime} \rightarrow M$,

$$
\begin{equation*}
\tau(u)+F(x, u)+L(x, u) u_{*} G(x, u)=0 . \tag{0.3}
\end{equation*}
$$

For the compactness result of Theorem 0.2 in [KKS1] to hold, the bound C_{*} on the size of the perturbation $L(x, u) u_{*} G(x, u)$,

$$
\max _{\substack{x \in M^{\prime} \\ y \in M}}\|L(x, y)\|\|G(x, y)\| \leq C_{*}
$$

can now be chosen independently of the homotopy class of maps considered if M has negative sectional curvature. Here $\tau(u)$ denotes the tension field, $F(x, y)$ is an x-dependent vector field on $M, L(x, y)$ an x-dependent linear operator on the tangent space $T_{y} M$ and $G(x, y)$ an y-dependent vector field on M^{\prime}.

Many of the arguments in this paper hold in the context of Gromov hyperbolic spaces, rather than Riemannian manifolds. After the preprint of this paper has appeared generalizations in this direction have been made, independently, by M. R. Bridson, J. Howie [BH] and by D. Ruoss [Ru].

The paper is organized as follows: Theorem 0.1 is proved in section 2 and the applications mentioned above, including Theorem 0.4 , are treated in section 3. In section 1 we show estimates on the displacement functions needed in the proof of Theorem 0.1. To make the paper selfcontained we have included two appendices.

Acknowledgments: The authors thank A. Katok for helpful discussions.

1 Estimates of the displacement function

Assume that (M, g) is a complete Riemannian manifold of negative sectional curvature with

$$
\begin{equation*}
K \leq-\kappa<0 \tag{1.1}
\end{equation*}
$$

for some constant $\kappa>0$ and of injectivity radius $\operatorname{inj}(M)$ bounded from below,

$$
\begin{equation*}
\operatorname{inj}(M) \geq \varrho>0 \tag{1.2}
\end{equation*}
$$

Then $M \cong X / \Gamma$ where X is the universal covering of M and Γ is the group of deck transformations of M. The main result of this section is Proposition 1.5 which states an estimate for displacement functions used in the proof of Theorem 0.1 - see section 2.

First we need to introduce some more notation and establish three lemmas. For any $\gamma \in \Gamma$ denote by $d_{\gamma}: X \rightarrow \mathbb{R}$ the displacement function, $d_{\gamma}(x):=$ $d(x, \gamma x)$, where d denotes the distance function on X and by $\operatorname{MIN}(\gamma)$ the closed subset

$$
\operatorname{MIN}(\gamma):=\left\{x \in X \mid d_{\gamma}(x)=\inf _{X} d_{\gamma}\right\}
$$

Assumptions (1.1) - (1.2) imply that for any $\gamma \in \Gamma \mathrm{MIN}(\gamma)$ consists of one geodesic curve - see Appendix B where we collect results needed about such manifolds. As d_{γ} is convex $\operatorname{MIN}(\gamma)$ is a convex set. This allows to define the metric projection $\pi_{\gamma}: X \rightarrow \operatorname{MIN}(\gamma)$ with $\pi_{\gamma} x$ the unique point in $\operatorname{MIN}(\gamma)$ satisfying

$$
s_{\gamma}(x):=d\left(x, \pi_{\gamma} x\right)=\min \{d(x, y) \mid y \in \operatorname{MIN}(\gamma)\} .
$$

Given a complete geodesic $A \subseteq X$, considered as a closed subset of X, and a unit speed geodesic $c: \mathbb{R} \rightarrow X$, consider the distance function $r(t):=$ $d(c(t), A)$. As $t \mapsto r(t)$ is a convex function, the set $r^{-1}([0, \varepsilon])$, consisting of all $t \in \mathbb{R}$ with $c(t)$ in or on the tube of given radius $\varepsilon>0$ around A, is either empty or an interval $[a, b] \cap \mathbb{R}$ where $a:=\inf r^{-1}([0, \varepsilon]) \in \mathbb{R} \cup\{-\infty\}, b:=$ $\sup r^{-1}([0, \varepsilon]) \in \mathbb{R} \cup\{+\infty\}$. The following result says that $r(t)$ grows at least linearly outside $[a, b] \cap \mathbb{R}$. Recall that

$$
s h_{\kappa}(t):=\sinh (\sqrt{\kappa} t) .
$$

Lemma 1.1 Assume (1.1) - (1.2) and let $C_{1}(\kappa, \varepsilon):=s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)$. For $\varepsilon>0$ with $[a, b] \cap \mathbb{R} \neq \emptyset$ the following statements hold:
(i) If $a>-\infty$, then $r(a-t) \geq t-C_{1}(\kappa, \varepsilon) \forall t \geq 0$.
(ii) If $b<+\infty$, then $r(b+t) \geq t-C_{1}(\kappa, \varepsilon) \forall t \geq 0$.

Remark: $C_{1}(\kappa, \varepsilon)$ is strictly decreasing in both κ and ε.
Proof: (i) and (ii) are proved in the same fashion so we consider (ii) only. Denote by x and $y=y(t)$ the orthogonal projections of $c(b)$ and $c(b+t)$ onto the geodesic A and consider the geodesic quadrilateral $x, c(b), c(b+t), y(t)$.

As $r(t)$ is convex, $\left.r\right|_{[b, b+t]}$ is monotone increasing and hence the angles at the points $x, c(b)$ and $y(t)$ are $\geq \pi / 2$. By Lemma A.1,

$$
\begin{equation*}
s h_{\kappa}(d(x, y)) \leq 1 / s h_{\kappa}(\varepsilon) . \tag{1.3}
\end{equation*}
$$

On the other hand, as the angle at $c(b)$ is $\geq \pi / 2, t=d(c(b), c(b+t))$ satisfies $t \leq d(x, c(b+t))$ and by the triangle inequality,

$$
d(x, c(b+t)) \leq r(b+t)+d(x, y)
$$

Combining these inequalities with (1.3), one obtains

$$
t \leq r(b+t)+s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)
$$

as claimed.
Recall that for $\gamma \in \Gamma, s_{\gamma}(x)$ denotes the distance of x to $\operatorname{MIN}(\gamma), s_{\gamma}(x)=$ $d\left(x, \pi_{\gamma} x\right)$.

Lemma 1.2 Assume (1.1) - (1.2) holds. Then for any $\gamma \in \Gamma \backslash i d, x \in X$

$$
d_{\gamma}(x) \geq \inf _{X} d_{\gamma}+2 s_{\gamma}(x)-C_{2}(\kappa, \varrho)
$$

where $C_{2}(\kappa, \varepsilon):=4 s h_{\kappa}^{-1}(1)+2 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)$.
Proof: Let $c:\left[0, d_{\gamma}(x)\right] \rightarrow X$ be an arclength parametrization of the unique geodesic $[x, \gamma x]$ from x to γx and $t \in\left[0, d_{\gamma}(x)\right]$ the parameter so that for $z:=c(t)$

$$
d(z, \operatorname{MIN}(\gamma))=\inf _{0 \leq s \leq d_{\gamma}(x)} d(c(s), \operatorname{MIN}(\gamma))
$$

Let us treat first the case where $z \neq x$ and $z \neq \gamma x$. Denote by $x^{\prime}, y^{\prime}, z^{\prime}$ the projections of $x, \gamma x$, and z respectively onto $\operatorname{MIN}(\gamma)$. Then the geodesic from z to z^{\prime} intersects $\operatorname{MIN}(\gamma)$ and $[x, \gamma x]$ orthogonally. Further note that, by the definition of ϱ,

$$
\max \left(d\left(z^{\prime}, y^{\prime}\right), d\left(z^{\prime}, x^{\prime}\right)\right) \geq \frac{1}{2} \inf _{X} d_{\gamma} \geq \varrho
$$

As $s h_{\kappa}(t)$ is increasing in t, Lemma A. 1 leads to the following upper bound for $d\left(z, z^{\prime}\right)$,

$$
\begin{equation*}
s h_{\kappa}\left(d\left(z, z^{\prime}\right)\right) \leq 1 / s h_{\kappa}(\varrho) \tag{1.4}
\end{equation*}
$$

Let $x^{\prime \prime}$ be the projection of x^{\prime} onto the geodesic $\left[x, z^{\prime}\right]$ connecting x and z^{\prime} and $y^{\prime \prime}$ the projection of y^{\prime} onto the geodesic $\left[\gamma x, z^{\prime}\right]$. As the geodesic $\left[x^{\prime}, x^{\prime \prime}\right]$ intersects $\left[x, z^{\prime}\right]$ orthogonally and $\left[x, x^{\prime}\right]$ intersects $\operatorname{MIN}(\gamma)$ orthogonally one can apply Lemma A. 2 either to the geodesic triangle $\left(x, x^{\prime}, x^{\prime \prime}\right)$ or $\left(x^{\prime}, x^{\prime \prime}, z^{\prime}\right)$ to conclude that

$$
\begin{equation*}
s h_{\kappa}\left(d\left(x^{\prime}, x^{\prime \prime}\right)\right) \leq 1 \tag{1.5}
\end{equation*}
$$

Arguing in the same way one gets

$$
\begin{equation*}
s h_{\kappa}\left(d\left(y^{\prime}, y^{\prime \prime}\right)\right) \leq 1 \tag{1.6}
\end{equation*}
$$

Inequalities (1.4) - (1.6) are now used to obtain the claimed statement: First note that

$$
d_{\gamma}(x)=d(x, \gamma x)=d(x, z)+d(z, \gamma x) .
$$

By the triangle inequality

$$
d(x, z) \geq d\left(x, z^{\prime}\right)-d\left(z, z^{\prime}\right) ; d(z, \gamma x) \geq d\left(\gamma x, z^{\prime}\right)-d\left(z, z^{\prime}\right)
$$

As $d\left(x, z^{\prime}\right)=d\left(x, x^{\prime \prime}\right)+d\left(x^{\prime \prime}, z^{\prime}\right)$ and $d\left(\gamma x, z^{\prime}\right)=d\left(\gamma x, y^{\prime \prime}\right)+d\left(y^{\prime \prime}, z^{\prime}\right)$ it then follows again by the triangle inequality

$$
d\left(x, z^{\prime}\right) \geq d\left(x, x^{\prime}\right)+d\left(x^{\prime}, z^{\prime}\right)-2 d\left(x^{\prime}, x^{\prime \prime}\right)
$$

and

$$
d\left(\gamma x, z^{\prime}\right) \geq d\left(\gamma x, y^{\prime}\right)+d\left(y^{\prime}, z^{\prime}\right)-2 d\left(y^{\prime}, y^{\prime \prime}\right)
$$

Combining these inequalities with (1.4) - (1.6) and using that $d\left(x^{\prime}, z^{\prime}\right)+$ $d\left(z^{\prime}, y^{\prime}\right)=d\left(x^{\prime}, y^{\prime}\right)=\inf _{X} d_{\gamma}$ as well as $d\left(\gamma x, y^{\prime}\right)=d\left(x, x^{\prime}\right)=s_{\gamma}(x)$ it then follows that

$$
d_{\gamma}(x) \geq \inf _{X} d_{\gamma}+2 s_{\gamma}(x)-C_{2}(\kappa, \varrho)
$$

where

$$
C_{2}(\kappa, \varepsilon):=4 s h_{\kappa}^{-1}(1)+2 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)
$$

The cases where $z=x$ or $z=\gamma x$ are treated in a similar way - in fact they are easier.

Given $\gamma_{1}, \gamma_{2} \in \Gamma \backslash i d$ with $\operatorname{MIN}\left(\gamma_{1}\right) \neq \operatorname{MIN}\left(\gamma_{2}\right)$ and a unit speed geodesic $c: \mathbb{R} \rightarrow X$, consider the distance function

$$
r_{i}(t):=d\left(c(t), \operatorname{MIN}\left(\gamma_{i}\right)\right) \quad(1 \leq i \leq 2)
$$

and denote by I_{ε} the set of all $t \in \mathbb{R}$ with $c(t)$ in the ε-tube around $\operatorname{MIN}\left(\gamma_{1}\right)$ and $\operatorname{MIN}\left(\gamma_{2}\right)$,

$$
I_{\varepsilon}:=r_{1}^{-1}([0, \varepsilon]) \cap r_{2}^{-1}([0, \varepsilon]) .
$$

As r_{1} and r_{2} are both convex and the intersection of convex sets is again convex, I_{ε} is convex. The following result gives an estimate of the length of I_{ε}.

Lemma 1.3 Assume that (1.1) - (1.2) hold and $\gamma_{1}, \gamma_{2} \in \Gamma \backslash$ id satisfy $\operatorname{MIN}\left(\gamma_{1}\right) \neq$ $\operatorname{MIN}\left(\gamma_{2}\right)$. Then for any $0<\varepsilon<\operatorname{inj}(M) / 10$,

$$
\operatorname{length}\left(I_{\varepsilon}\right) \leq \inf _{X} d_{\gamma_{1}}+\inf _{X} d_{\gamma_{2}} .
$$

Proof: Assume that the contrary holds. As I_{ε} is convex we may assume without loss of generality that c is parametrized in such a fashion that $[0, a] \subseteq$ I_{ε} where $a:=a_{1}+a_{2}$ and $a_{i}:=\inf _{X} d_{\gamma_{i}}$. Denote by $\pi_{i} \equiv \pi_{\gamma_{i}}: X \rightarrow \operatorname{MIN}\left(\gamma_{i}\right)$ the metric projection onto $\operatorname{MIN}\left(\gamma_{i}\right)$ and let

$$
x_{i}:=\pi_{i} c(0), y_{i}:=\pi_{i}(c(a)) .
$$

Let $c_{i}=c_{\gamma_{i}}: \mathbb{R} \rightarrow X$ be unit speed parametrizations of $\operatorname{MIN}\left(\gamma_{i}\right)$ such that $c_{i}(0)=x_{i}$ and $c_{i}\left(d\left(x_{i}, y_{i}\right)\right)=y_{i}$ and choose $\bar{\gamma}_{i} \in\left\{\gamma_{i}, \gamma_{i}^{-1}\right\}$ so that

$$
\bar{\gamma}_{i}\left(c_{i}(t)\right)=c_{i}\left(t+a_{i}\right) \quad \forall t \in \mathbb{R} .
$$

By the triangle inequality

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, c(0)\right)+d\left(c(0), x_{2}\right) \leq 2 \varepsilon \tag{1.7}
\end{equation*}
$$

and similarly $d\left(y_{1}, y_{2}\right) \leq 2 \varepsilon$. Further for $i=1,2$,

$$
d(c(0), c(a))-2 \varepsilon \leq d\left(x_{i}, y_{i}\right) \leq d(c(0), c(a))+2 \varepsilon
$$

As $d(c(0), c(a))=a$, this means that $\left|d\left(x_{j}, y_{j}\right)-a\right|<2 \varepsilon$. Together with the fact that $d\left(x_{j}, y_{j}\right)=d\left(x_{j}, c_{j}(a)\right) \pm d\left(c_{j}(a), y_{j}\right)$ one then concludes that $d\left(c_{j}(a), y_{j}\right) \leq 2 \varepsilon$. Hence

$$
\begin{equation*}
d\left(c_{1}(a), c_{2}(a)\right) \leq d\left(c_{1}(a), y_{1}\right)+d\left(y_{1}, y_{2}\right)+d\left(y_{2}, c_{2}(a)\right) \leq 6 \varepsilon . \tag{1.8}
\end{equation*}
$$

As $d\left(c_{1}(t), c_{2}(t)\right)$ is convex in $t(c f[B G S$, Theorem 1.3]) it then follows from (1.7) - (1.8) that

$$
d\left(c_{1}(t), c_{2}(t)\right) \leq 6 \varepsilon \quad \forall t \in[0, a] .
$$

We claim that for $x:=c(0)$,

$$
\begin{equation*}
d\left(\bar{\gamma}_{2} \bar{\gamma}_{1} x, \bar{\gamma}_{1} \bar{\gamma}_{2} x\right) \leq 20 \varepsilon \tag{1.9}
\end{equation*}
$$

Hence the projection of the geodesic $\left[x,\left(\bar{\gamma}_{2} \bar{\gamma}_{1}\right)^{-1} \bar{\gamma}_{1} \bar{\gamma}_{2} x\right] \subseteq X$ leads to a closed geodesic in M of length $20 \varepsilon<2 \operatorname{inj}(M)$. This implies that $\bar{\gamma}_{1} \bar{\gamma}_{2}=\bar{\gamma}_{2} \bar{\gamma}_{1}$ or, by Lemma B.2, $\operatorname{MIN}\left(\bar{\gamma}_{1}\right)=\operatorname{MIN}\left(\bar{\gamma}_{2}\right)$. As $\bar{\gamma}_{i} \in\left\{\gamma_{i}, \gamma_{i}^{-1}\right\}, \operatorname{MIN}\left(\bar{\gamma}_{i}\right)=\operatorname{MIN}\left(\gamma_{i}\right)$ and hence $\operatorname{MIN}\left(\gamma_{1}\right)=\operatorname{MIN}\left(\gamma_{2}\right)$, contradicting our assumption.
It remains to prove (1.9). As $\bar{\gamma}_{1} c_{1}(0)=c_{1}\left(a_{1}\right)$,

$$
d\left(\bar{\gamma}_{1} x, c_{1}\left(a_{1}\right)\right)=d\left(x, c_{1}(0)\right) \leq \varepsilon
$$

and therefore

$$
d\left(\bar{\gamma}_{1} x, c_{2}\left(a_{1}\right)\right) \leq d\left(\bar{\gamma}_{1} x, c_{1}\left(a_{1}\right)\right)+d\left(c_{1}\left(a_{1}\right), c_{2}\left(a_{1}\right)\right) \leq 7 \varepsilon .
$$

As $\bar{\gamma}_{2} c_{2}\left(a_{1}\right)=c_{2}\left(a_{1}+a_{2}\right)=c_{2}(a)$ this leads to

$$
d\left(\bar{\gamma}_{2} \bar{\gamma}_{1} x, c_{2}(a)\right) \leq 7 \varepsilon .
$$

Similarly one gets

$$
d\left(\bar{\gamma}_{1} \bar{\gamma}_{2} x, c_{1}(a)\right) \leq 7 \varepsilon
$$

and thus, by the triangle inequality

$$
\begin{aligned}
& d\left(\bar{\gamma}_{2} \bar{\gamma}_{1} x, \bar{\gamma}_{1} \bar{\gamma}_{2} x\right) \\
& \leq d\left(\bar{\gamma}_{2} \bar{\gamma}_{1} x, c_{2}(a)\right)+d\left(c_{2}(a), c_{1}(a)\right)+d\left(c_{1}(a), \bar{\gamma}_{1} \bar{\gamma}_{2} x\right) \\
& \leq 20 \varepsilon
\end{aligned}
$$

The following estimate of the displacement function is the main ingredient into our proof of Proposition 1.5 stated below.

Proposition 1.4 Assume (1.1) - (1.2) holds. Then for any $\gamma_{1}, \gamma_{2} \in \Gamma \backslash i d$ with $\gamma_{1} \gamma_{2} \neq \gamma_{2} \gamma_{1}$ and any $x, y \in X$,

$$
\max _{1 \leq j \leq 2}\left(d_{\gamma_{j}}(x)+d_{\gamma_{j}}(y)\right) \geq d(x, y)-C_{4}(\kappa, \varrho / 20)
$$

where

$$
C_{4}(\kappa, \varepsilon):=4 C_{1}(\kappa, \varepsilon)+2 C_{2}(\kappa, \varepsilon) .
$$

Proof: Let $\varepsilon:=\varrho / 20$ and for any given $x, y \in X$, denote by $c:[0, d(x, y)] \rightarrow$ X the unit speed parametrization of the geodesic $[x, y]$. First consider the case where there exists $\gamma \in\left\{\gamma_{1}, \gamma_{2}\right\}$ with $d(c(t), \operatorname{MIN}(\gamma))>\varepsilon$ for any $0 \leq t \leq d(x, y)$. Denote by $t_{0} \in[0, d(x, y)]$ the parameter so that $\varepsilon_{1}:=$ $d\left(c\left(t_{0}\right), \operatorname{MIN}(\gamma)\right)$ is the minimal value of $r(t):=d(c(t), \operatorname{MIN}(\gamma))$. By Lemma 1.1, applied with $a:=t_{0}, b:=t_{0}$ if $0<t_{0}<d(x, y)$ with $a<0, b:=0$ if $0=t_{0}$ and with $a:=t_{0}, b>t_{0}$ if $t_{0}=d(x, y)$ one gets

$$
r(0) \geq t_{0}-C_{1}\left(\kappa, \varepsilon_{1}\right)
$$

and

$$
r(d(x, y)) \geq\left(d(x, y)-t_{0}\right)-C_{1}\left(\kappa, \varepsilon_{1}\right)
$$

As $\varepsilon \leq \varepsilon_{1}$, one has $C_{1}(\kappa, \varepsilon)>C_{1}\left(\kappa, \varepsilon_{1}\right)$ and thus, adding the two inequalities above,

$$
r(0)+r(d(x, y)) \geq d(x, y)-2 C_{1}(\kappa, \varepsilon) .
$$

As $s_{\gamma}(x)=r(0)$ and $s_{\gamma}(y)=r(d(x, y))$, it then follows from Lemma 1.2,

$$
\begin{aligned}
d_{\gamma}(x)+d_{\gamma}(y) & \leq 2 \inf _{X} d_{\gamma}+2 r(0)+2 r(d(x, y))-2 C_{2}(\kappa, \varrho) \\
& \leq 2 \inf _{X} d_{\gamma}+2 d(x, y)-C_{4}(\kappa, \varepsilon)
\end{aligned}
$$

and the claimed estimate is proved in this case. In the case where no such γ exists it follows that for the convex functions $(i=1,2)$

$$
r_{i}(t):=d\left(c(t), \operatorname{MIN}\left(\gamma_{i}\right)\right) \quad 0 \leq t \leq d(x, y),
$$

$J_{i}:=r_{i}^{-1}([0, \varepsilon]) \neq \emptyset$ is an interval, $J_{i}=\left[a_{i}, b_{i}\right]$ with $0 \leq a_{i} \leq b_{i} \leq d(x, y)$. By Lemma 1.1 one obtains in the case $0<a_{i}$

$$
\begin{equation*}
r_{i}(0) \geq a_{i}-C_{1}(\kappa, \varepsilon) \tag{1.10}
\end{equation*}
$$

and, similarly, if $b_{i}<d(x, y)$

$$
\begin{equation*}
r_{i}(d(x, y)) \geq\left(d(x, y)-b_{i}\right)-C_{1}(\kappa, \varepsilon) . \tag{1.11}
\end{equation*}
$$

As $-C_{1}(\kappa, \varepsilon) \leq 0$, (1.10) and (1.11) trivially hold in the case $a_{i}=0$ and $b_{i}=d(x, y)$ respectively. Hence

$$
r_{i}(0)+r_{i}(d(x, y)) \geq d(x, y)-\text { length }\left(J_{i}\right)-2 C_{1}(\kappa, \varepsilon) .
$$

As $s_{\gamma_{i}}(x)=r_{i}(0)$ and $s_{\gamma_{i}}(y)=r_{i}(d(x, y))$ it then follows from Lemma 1.2,

$$
\begin{align*}
d_{\gamma_{i}}(x) & +d_{\gamma_{i}}(y) \geq 2 \inf _{X} d_{\gamma_{i}}+2 r_{i}(0)+2 r_{i}(d(x, y))-2 C_{2}(\kappa, \varrho) \tag{1.12}\\
& \geq 2 \inf _{X} d_{\gamma_{i}}+2 d(x, y)-2 \text { length }\left(J_{i}^{\prime}\right)-C_{4}(\kappa, \varepsilon)
\end{align*}
$$

where for the last inequality we used that as $\varepsilon<\varrho$

$$
\begin{aligned}
C_{4}(\kappa, \varepsilon):= & 4 C_{1}(\kappa, \varepsilon)+2 C_{2}(\kappa, \varepsilon) \\
& \geq 4 C_{1}(\kappa, \varepsilon)+2 C_{2}(\kappa, \varrho) .
\end{aligned}
$$

Now add the inequalities (1.12) for $i=1$ and 2. As $\gamma_{1} \gamma_{2} \neq \gamma_{2} \gamma_{1}$ one has by Lemma B. $2 M I N\left(\gamma_{1}\right) \neq M I N\left(\gamma_{2}\right)$ and hence Lemma 1.3 leads to

$$
\inf _{X} d_{\gamma_{1}}+\inf _{X} d_{\gamma_{2}} \geq \operatorname{length}\left(J_{1} \cap J_{2}\right)
$$

and

$$
2 \max _{1 \leq i \leq 2}\left(d_{\gamma_{i}}(x)+d_{\gamma_{i}}(y)\right) \geq \sum_{i=1}^{2}\left(d_{\gamma_{i}}(x)+d_{\gamma_{i}}(y)\right)
$$

to obtain

$$
\begin{aligned}
& 2 \max _{1 \leq i \leq 2}\left(d_{\gamma_{i}}(x)+d_{\gamma_{i}}(y)\right) \geq \\
& \geq 4 d(x, y)+2\left(\text { length }\left(I_{1} \cap I_{2}\right)-\operatorname{length} I_{1}-\operatorname{length} I_{2}\right)-2 C_{4}(\kappa, \varepsilon) \\
& \geq 2\left(2 d(x, y)-C_{4}(\kappa, \varepsilon)\right)
\end{aligned}
$$

leading to the claimed inequality.
Given elements $\gamma_{1}, \ldots, \gamma_{n}$ in $\Gamma \backslash i d$, recall that $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ denotes the centralizer of $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$.

Proposition 1.5 Assume that (1.1) - (1.2) hold. Let x, y be arbitrary points in X and $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma \backslash i d$ with $n \geq 1$. Then there exist $\gamma \in\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ and $\alpha \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ such that

$$
d_{\gamma}(x)+d_{\gamma}(y) \geq d(x, \alpha y)-C_{4}(\kappa, \varrho / 20)
$$

Proof: Consider first the case where $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\{i d\}$. This implies in particular that $n \geq 2$ and that there are two elements $\gamma_{i}, \gamma_{j} \in\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ with $\gamma_{i} \gamma_{j} \neq \gamma_{j} \gamma_{i}$. Hence by Lemma 1.4, there exists $\gamma \in\left\{\gamma_{i}, \gamma_{j}\right\}$ so that

$$
d_{\gamma}(x)+d_{\gamma}(y) \geq d(x, y)-C_{4}(\kappa, \varrho / 20) .
$$

Thus in this case the conclusion holds with $\alpha=i d$. In the case $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \neq$ $\{i d\}$, we have $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and this group is cyclic by Lemma B.2, i.e. there exists $\beta \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with

$$
Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\left\{\beta^{n} \mid n \in \mathbb{Z}\right\}
$$

Let $\pi_{\beta}: X \rightarrow \operatorname{MIN}(\beta)$ be the metric projection, set $x^{\prime}:=\pi_{\beta}(x), y^{\prime}:=\pi_{\beta}(y)$ and choose $\gamma \in\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ arbitrary. Recall that $s_{\gamma}(x)=d\left(x, \pi_{\gamma}(x)\right)$. Then $s_{\gamma}=s_{\beta}$ as $\operatorname{MIN}(\gamma)=\operatorname{MIN}(\beta)$ - see Lemma B. $2-\operatorname{and} \inf _{X} d_{\beta} \leq \inf _{X} d_{\gamma}$ as γ is an element of $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and hence of the form $\gamma=\beta^{i}$ for some $i \in \mathbb{Z}$. Further there exists $m \in \mathbb{Z}$ so that $d\left(\beta^{m} y^{\prime}, x^{\prime}\right) \leq \inf _{X} d_{\beta}$. Combining these inequalities one obtains

$$
\begin{aligned}
d\left(x, \beta^{m} y\right) & \leq d\left(x, x^{\prime}\right)+d\left(x^{\prime}, \beta^{m} y^{\prime}\right)+d\left(\beta^{m} y^{\prime}, \beta^{m} y\right) \\
& \leq s_{\beta}(x)+\inf _{X} d_{\beta}+s_{\beta}(y) \\
& \leq s_{\gamma}(x)+\inf _{X} d_{\gamma}+s_{\gamma}(y) \\
& \leq d_{\gamma}(x)+d_{\gamma}(y)+2 C_{2}(\kappa, \varrho)
\end{aligned}
$$

where for the last inequality we used Lemma 1.2 . As $2 C_{2}(\kappa, \varrho) \leq 2 C_{2}(\kappa, \varrho / 20) \leq$ $C_{4}(\kappa, \varrho / 20)$, the claimed statement holds in this case with $\alpha:=\beta^{m}$.

2 Short homotopies between graphs

In this section we prove Theorem 0.1 as stated in the introduction. Let G be a finite graph. For simplicity of exposition only, we assume that G is a connected metric graph (i.e. every edge has some positive length) and has no terminals (i.e. that every vertex is incident to at least two edges).
As above, let (M, g) denote a complete Riemannian manifold with

$$
\begin{equation*}
K \leq-\kappa<0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{inj}(M) \geq \varrho>0 \tag{2.2}
\end{equation*}
$$

for some given constants $\varrho>0, \kappa>0$. A map $u: G \rightarrow M$ is called C^{1} if the restriction of u to every edge is C^{1}. In an obvious way one defines the length $L(u)$ of a C^{1}-map $u: G \rightarrow M$ by summing the lengths of the restriction of u to any of the edges of G.

Theorem 2.1 Assume that (M, g) satisfies (2.1) - (2.2). Then for any homotopic C^{1}-maps $u, v: G \rightarrow M$ which are not in the trivial homotopy class there exists a C^{1}-homotopy $H: G \times[0,1] \rightarrow M$ so that $\sup _{z \in G} \ell_{H}(z) \leq$ $3(L(u)+L(v))+C(\kappa, \varrho / 20)$ where $C(\kappa, \varepsilon):=8 s h_{\kappa}^{-1}(1)+8 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)$ with $s h_{\kappa}(\varepsilon):=\sinh (\sqrt{\kappa} \varepsilon)$ and $\ell_{H}(t)$ is the length of $[0,1] \rightarrow M, s \mapsto H(t, s)$.

Remark 1 Note that the constant $C(\kappa, \varrho / 20)$ is independent of G.
Remark 2 In the case where $u, v: G \rightarrow M$ are homotopic C^{1}-maps which are in the trivial homotopy class it is necessary to assume that M is compact. By lifting u and v to the universal cover X one verifies easily that for any closed Riemannian manifold (M, g) of nonpositive sectional curvature there exists a C^{1}-homotopy $H: G \times[0,1] \rightarrow M$ so that

$$
\sup _{z \in G} \ell_{H}(z) \leq \frac{1}{2}(L(u)+L(v))+\operatorname{diam}(M)
$$

where $\operatorname{diam}(M)$ denotes the diameter of M.
In the remainder of this section we prove Theorem 2.1. We begin arguing as in the proof of Theorem 5.1 in [KKS1]. Recall that the Euler characteristic $\chi(G)$ of G is defined by

$$
\chi(G):=\sharp \text { vertices }-\sharp \text { edges }
$$

By a straight forward inductive argument one sees that $\chi(G) \leq 1$ as G is connected. Further, G is said to be a tree if it does not contain any loop. Again by a straight forward inductive argument one verifies that a connected graph G is a tree iff $\chi(G)=1$. Let $T_{1} \subseteq G$ be a maximal connected subgraph of G such tat T_{1} is in addition a tree. T_{1} is obtained from G by removing m edges, denoted by e_{1}, \ldots, e_{m}. It then follows from the above characterization of trees that $m=1-\chi(G)$. Let p_{1}, \ldots, p_{m} be the midpoints
of e_{1}, \ldots, e_{m} and consider the abstract metric tree T which is obtained from G by removing the points p_{j} and then completing the metric tree. A point p_{i} then gives rise to two points, p_{i}^{+}and p_{i}^{-}, in T. Thus T is a metric tree whose terminals are the vertices $p_{i}^{+}, p_{i}^{-}, i=1, \ldots, m$, and G is obtained from T by identifying p_{i}^{+}with p_{i}^{-}for any $1 \leq i \leq m$. Let us denote by $\varphi: T \rightarrow G$ this identification map. We choose a base point t_{0} in the interior of the tree T. For every terminal p_{i}^{+}, p_{i}^{-}of T there is a unique shortest path $\sigma_{i}^{+}, \sigma_{i}^{-}:[0,1] \rightarrow T$ parametrized proportionally to arclength from t_{0} to p_{i}^{+}, p_{i}^{-}. By our assumption there exists a homotopy $H^{G}: G \times[0,1] \rightarrow M$ with $H_{0}^{G}=v$ and $H_{1}^{G}=u$. Let $H^{T}: T \times[0,1] \rightarrow M$ be the map

$$
H^{T}(t, s)=H^{G}(\varphi(t), s) .
$$

Since T is contractible, we can lift H^{T} to a map

$$
\bar{H}^{T}: T \times[0,1] \rightarrow X
$$

where $\pi: X \rightarrow M$ is the universal covering of M. Since $H^{T}\left(p_{i}^{+}, s\right)=$ $H^{T}\left(p_{i}^{-}, s\right)$ for any $i=1, \ldots, m$ and $s \in[0,1]$, the points $\bar{H}^{T}\left(p_{i}^{+}, s\right)$ and $\bar{H}^{T}\left(p_{i}^{-}, s\right)$ are identified by deck transformations. Hence there are isometries $\gamma_{1}, \ldots, \gamma_{m}$ in the deck transformation group Γ so that for any $0 \leq s \leq 1$,

$$
\gamma_{i}\left(\bar{H}^{T}\left(p_{i}^{+}, s\right)\right)=\bar{H}^{T}\left(p_{i}^{-}, s\right) .
$$

Introduce

$$
L\left(\sigma_{i}^{ \pm}, s\right):=\operatorname{length}\left(\tau \mapsto \bar{H}^{T}\left(\sigma_{i}^{ \pm}(\tau), s\right)\right)
$$

and note that

$$
L\left(\sigma_{i}^{ \pm}, 0\right) \leq L(v)
$$

as well as

$$
L\left(\sigma_{i}^{ \pm}, 1\right) \leq L(u)
$$

Since we assume that u, v are not in the trivial homotopy class, $\left\{\gamma_{1}, \ldots, \gamma_{m}\right\} \cap$ $\Gamma \backslash i d \neq \emptyset$. W.l.o.g. assume that $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}=\left\{\gamma_{j} \mid 1 \leq j \leq m, \gamma_{j} \neq i d\right\}$ where $k \geq 1$ and let

$$
\begin{equation*}
x:=\bar{H}^{T}\left(t_{0}, 0\right) \in X ; y:=\bar{H}^{T}\left(t_{0}, 1\right) \in X \tag{2.3}
\end{equation*}
$$

By Proposition 1.5 there exists $\gamma \in\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ and $\alpha \in Z\left(\gamma_{1}, \ldots, \gamma_{k}\right)$ so that

$$
\begin{equation*}
d_{\gamma}(x)+d_{\gamma}(y) \geq d(x, \alpha y)-C_{4}(\kappa, \varrho / 20) \tag{2.4}
\end{equation*}
$$

W.l.o.g. we may assume that $\gamma=\gamma_{1}$. Consider the pathes $\tau \mapsto \bar{H}^{T}\left(\sigma_{1}^{-}(\tau), 0\right)$ from $x=\bar{H}^{T}\left(t_{0}, 0\right)$ to $\bar{H}^{T}\left(p_{1}^{-}, 0\right)$ and $\tau \mapsto \gamma_{1} \bar{H}^{T}\left(\sigma_{1}^{+}(\tau), 0\right)$ from $\gamma_{1} x$ to $\gamma_{1} \bar{H}^{T}\left(p_{1}^{+}, 0\right)=\bar{H}^{T}\left(p_{1}^{-}, 0\right)$. By the triangle inequality and the estimate above

$$
\begin{align*}
d_{\gamma_{1}}(x) & \leq \operatorname{length}\left(\tau \mapsto \bar{H}^{T}\left(\sigma_{1}^{-}(\tau), 0\right)\right) \\
& +\operatorname{length}\left(\tau \mapsto \gamma_{1} \bar{H}^{T}\left(\sigma_{1}^{+}(\tau), 0\right)\right) \tag{2.5}\\
& \leq 2 L(v)
\end{align*}
$$

and similarly

$$
\begin{equation*}
d_{\gamma_{1}}(y) \leq 2 L(u) \tag{2.6}
\end{equation*}
$$

Define the homotopy $\hat{H}^{T}: T \times[0,1] \rightarrow X$ given for any $t \in T$ by the geodesic $s \mapsto c_{t}(s)$ from $\bar{H}^{T}(t, 0)$ to $\alpha \bar{H}^{T}(t, 1)$, parametrized proportional to arclength with $\alpha \in Z\left(\gamma_{1}, \ldots, \gamma_{k}\right)$ given as above. Then \hat{H}^{T} is a C^{1}-homotopy. We claim that for any $1 \leq i \leq m$ and any $0 \leq s \leq 1$

$$
\begin{equation*}
\gamma_{i} \hat{H}^{T}\left(p_{i}^{+}, s\right)=\hat{H}^{T}\left(p_{i}^{-}, s\right) . \tag{2.7}
\end{equation*}
$$

To see it, let $c_{p_{i}^{ \pm}}$be the geodesic from $\bar{H}^{T}\left(p_{i}^{ \pm}, 0\right)$ to $\alpha \bar{H}^{T}\left(p_{i}^{ \pm}, 1\right)$. Then $\gamma_{i} c_{p_{i}^{+}}$ is the geodesic from $\gamma_{i} \bar{H}^{T}\left(p_{i}^{+}, 0\right)=\bar{H}^{T}\left(p_{i}^{-}, 0\right)$ to

$$
\gamma_{i} \alpha \bar{H}^{T}\left(p_{i}^{+}, 1\right)=\alpha \gamma_{i} \bar{H}^{T}\left(p_{i}^{+}, 1\right)=\alpha \bar{H}^{T}\left(p_{i}^{-}, 1\right)
$$

as α is an element in the centralizer $Z\left(\gamma_{1}, \ldots, \gamma_{m}\right)$. Thus $\gamma_{i} c_{p_{i}^{+}}$is the geodesic $c_{p_{i}^{-}}$and hence (2.7) established. By (2.7), \hat{H}^{T} induces a homotopy H : $G \times[0,1] \rightarrow M$. For $z_{0}:=\varphi\left(t_{0}\right) \in G$ (with $\varphi: T \rightarrow G$ the identification map) we have

$$
\ell_{H}\left(z_{0}\right)=d\left(\bar{H}^{T}\left(t_{0}, 0\right), \alpha \bar{H}^{T}\left(t_{0}, 1\right)\right)=d(x, \alpha y)
$$

Hence by (2.4) - (2.6)

$$
\ell_{H}\left(z_{0}\right) \leq 2(L(v)+L(u))+C_{4}(\kappa, \varrho / 20)
$$

where (cf Lemma 1.4, Lemma 1.1 and Lemma 1.2)

$$
\begin{aligned}
C_{4}(\kappa, \varepsilon) & =4 C_{1}(\kappa, \varepsilon)+2 C_{2}(\kappa, \varepsilon) \\
& =4 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)+8 s h_{\kappa}^{-1}(1)+4 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right) \\
& =8 s h_{\kappa}^{-1}\left(1 / s h_{\kappa}(\varepsilon)\right)+8 s h_{\kappa}^{-1}(1)
\end{aligned}
$$

which by definition equals $C(\kappa, \varepsilon)$. By the triangle inequality we then obtain for any $z \in G$,

$$
\ell_{H}(z) \leq 3(L(u)+L(v))+C(\kappa, \varrho / 20)
$$

as claimed.

3 Proof of Theorem 0.4

First we need to prove the following
Proposition 3.1 Assume that M^{\prime} has negative sectional curvature. Denote by $2 r$ the convexity radius of M and let $x_{0} \in M$ and $0<\mu<1$ be arbitrary. Then there exists a constant $C_{3}>0$ so that for any homotopic C^{1}-maps $u, v: M^{\prime} \rightarrow M$ there is an open subset $A_{u v} \subseteq B_{r}\left(x_{0}\right)$ with

$$
\operatorname{vol}\left(A_{u v}\right)>\mu \operatorname{vol}\left(B_{r}\left(x_{0}\right)\right)
$$

and the property that for any $z \in A_{u v}$ there exists a geodesic homotopy ${ }^{1}$ $H: M^{\prime} \times[0,1] \rightarrow M$ from u to v satisfying

$$
\text { length }(s \mapsto H(z, s)) \leq C_{3}\left(E(u)^{1 / 2}+E(v)^{1 / 2}+1\right)
$$

The constant C_{3} depends only on the geometry of M and M^{\prime}.

Proof: (of Proposition 3.1) Following the proof of Theorem 6.1 in [KKS1] word by word the claimed statement follows from Proposition 6.2 and Proposition 6.3 in [KKS1] together with Theorem 0.1.
Proof: (of Theorem 0.4) Following the proof of Proposition 3.2 in [KKS1] word for word the claimed statement follows from Proposition 3.1 in [KKS1] together with Theorem 0.1.

[^1]
A Appendix: Hyperbolic trigonometry

In this appendix we collect elementary facts on hyperbolic geometry. Assume that (X, g) is a Hadamard space with bounded sectional curvature,

$$
K(x) \leq-\kappa \quad \forall x \in X
$$

where $\kappa>0$ and denote by $d: X \times X \rightarrow X$ the distance function. Further let \mathbb{H}_{κ}^{2} be the upper half plane with constant curvature $-\kappa$ and denote the corresponding distance function by d_{κ}

Lemma A. 1 Let $\left(x_{j}\right)_{0 \leq j \leq 3}$ be the four distinct corners of a geodesic quadrilateral in X so that for $1 \leq j \leq 3$, the angle α_{j} at x_{j} satisfies $\alpha_{j} \geq \pi / 2$. Then $a:=d\left(x_{1}, x_{2}\right)$ and $b:=d\left(x_{2}, x_{3}\right)$ satisfy

$$
s h_{\kappa}(a) \cdot s h_{\kappa}(b) \leq 1
$$

where $\operatorname{sh}_{\kappa}(t):=\sinh (\sqrt{\kappa} t)$.
Proof: Let \bar{x}_{2} and \bar{x}_{0} be points in the hyperbolic plane \mathbb{H}_{κ}^{2} with $d_{\kappa}\left(\bar{x}_{2}, \bar{x}_{0}\right)=$ $d\left(x_{2}, x_{0}\right)$ and choose \bar{x}_{1} and \bar{x}_{3} in \mathbb{H}_{κ}^{2} so that the geodesic triangles $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{0}\right)$ and $\left(\bar{x}_{2}, \bar{x}_{3}, \bar{x}_{0}\right)$ in \mathbb{H}_{κ}^{2} have the same sidelengths as the triangles $\left(x_{1}, x_{2}, x_{0}\right)$ and $\left(x_{2}, x_{3}, x_{0}\right)$ respectively. The angles of these comparison triangles are not smaller than the corresponding ones of the original triangles. It then follows that the angles $\bar{\alpha}_{j}$ at x_{j} of the geodesic quadrilateral $\left(\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$ in \mathbb{H}_{κ}^{2} satisfy $\bar{\alpha}_{j} \geq \pi / 2$ for $1 \leq j \leq 3$. Elementary considerations in the hyperbolic plane show that the points \bar{x}_{0}, \bar{x}_{1} and \bar{x}_{3} can be moved to points $\tilde{x}_{0}, \tilde{x}_{1}, \tilde{x}_{3} \in$ \mathbb{H}^{2} so that $a=d_{\kappa}\left(\tilde{x}_{1}, \bar{x}_{2}\right), b=d_{\kappa}\left(\bar{x}_{2}, \tilde{x}_{3}\right)$ and $\tilde{\alpha}_{j}=\pi / 2$ for $1 \leq j \leq 3$ where $\tilde{\alpha}_{j}$ is the angle at \tilde{x}_{j} of the geodesic quadrilateral ($\tilde{x}_{0}, \tilde{x}_{1}, \bar{x}_{2}, \tilde{x}_{3}$). By hyperbolic trigonometry we conclude $s h_{\kappa}(a) \cdot s h_{\kappa}(b) \leq 1(\operatorname{cf}[\mathrm{Bu}, 2.3 .1$ (i)]).

Lemma A. 2 Let $\left(x_{j}\right)_{1 \leq j \leq 3}$ be the corners of a geodesic triangle in X with $\alpha_{2} \geq \pi / 2$ and $\alpha_{1} \geq \pi / 4$ where α_{j} denotes the angle at $x_{j}(1 \leq j \leq 3)$. Then $a:=d\left(x_{1}, x_{2}\right)$ satisfies $\operatorname{sh}_{\kappa}(a) \leq 1$.

Proof: Let $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$ be a geodesic triangle in \mathbb{H}_{κ}^{2} with the same sidelengths as $\left(x_{1}, x_{2}, x_{3}\right)$. It then follows that the angles of $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$ are not smaller
than the corresponding angles of $\left(x_{1}, x_{2}, x_{3}\right)$. By elementary considerations in \mathbb{H}_{κ}^{2} one sees that the points \bar{x}_{1} and \bar{x}_{3} can be moved to points $\tilde{x}_{1}, \tilde{x}_{3} \in \mathbb{H}^{2}$ so that the angles $\tilde{\alpha}_{j}$ at \tilde{x}_{j} of the geodesic triangle ($\tilde{x}_{1}, \bar{x}_{2}, \tilde{x}_{3}$) satisfy

$$
\tilde{\alpha}_{2}=\pi / 2, \quad \tilde{\alpha}_{1} \geq \pi / 4
$$

and $d\left(\tilde{x}_{1}, \bar{x}_{2}\right)=a$. Using elementary hyperbolic trigonometry one concludes that

$$
s h_{\kappa}(a) \leq 1
$$

(cf [Bu, 2.2.2 (iv)]).

B Appendix: Manifolds of negative sectional curvature

Assume that (M, g) is a complete Riemannian manifold of negative sectional curvature with

$$
\begin{equation*}
K \leq-\kappa<0 \tag{B.1}
\end{equation*}
$$

for some constant $\kappa>0$. Then $M \cong X / \Gamma$ where X is the universal covering of M and Γ is the group of deck transformations of M. In particular any $\gamma \in \Gamma$ is an isometry of X. The universal covering is a Hadamard manifold, i.e. a complete and contractible Riemannian manifold of nonpositive - actually negative in the case at hand - sectional curvature (cf [BGS, §2]) and $\Gamma \cong$ $\pi_{1}(M)$ acts on X freely (i.e. $\gamma \in \Gamma \backslash\{i d\}$ has no fixed points) and discretely (i.e. for any $K \subseteq X$ compact, there are finitely many $\gamma \in \Gamma$ with $\gamma K \cap K \neq$ $\emptyset)$.
To a deck transformation $\gamma \in \Gamma$ we associate its displacement function $d_{\gamma}: X \rightarrow[0, \infty), d_{\gamma}(x):=d(x, \gamma x)$ where d is the distance function on X. The function d_{γ} is convex, i.e. $d_{\gamma}(x(t))$ is convex in t for any geodesic, parametrized proportional to arclength and, by the triangle inequality, 2Lipschitz continuous

$$
\left|d_{\gamma}(x)-d_{\gamma}(z)\right| \leq 2 d(x, z) \quad(\forall x, z \in X) .
$$

Thus the set

$$
\operatorname{MIN}(\gamma):=\left\{x \in X \mid d_{\gamma}(x)=\inf _{x \in X} d_{\gamma}(x)\right\}
$$

is a closed, convex subset of X. The injectivity radius $\operatorname{inj}(M)$ of M is given by

$$
\operatorname{inj}(M)=\frac{1}{2} \inf \left\{d_{\gamma}(x) \mid \gamma \in \Gamma \backslash i d, x \in X\right\}
$$

We assume that for some given constant $\varrho>0$,

$$
\begin{equation*}
\operatorname{inj}(M) \geq \varrho>0 . \tag{B.2}
\end{equation*}
$$

By standard arguments, conditions (B.1) and (B.2) imply the following

Lemma B. 1 Assume (B.1) - (B.2) hold. Then any deck transformation $\gamma \in \Gamma \backslash i d$ is hyperbolic, i.e. $\inf \left\{d_{\gamma}(x) \mid x \in X\right\}>0$ and $\operatorname{MIN}(\gamma) \neq \emptyset$.

Proof: Assume $\operatorname{MIN}(\gamma)=\emptyset$. Then there exists a point η in the ideal boundary of X such that γ leaves η and all horospheres centered at η invariant - see [BGS]. Choose $x \in X$ and $c:[0, \infty) \rightarrow X$ a ray from $x=c(0)$ to $\eta=\lim _{t \rightarrow \infty} c(t)$. By standard comparison arguments $d(c(t), \gamma \cdot c(t)) \rightarrow 0$ for $t \rightarrow \infty$ in contradiction to $\inf \left\{d_{\gamma}(x) \mid x \in X\right\} \geq 2 \varrho>0$.

As X admits no parallel geodesic in view of (B.1) (cf [BGS, Lemma 2.3]) one concludes that for any $\gamma \in \Gamma \backslash i d$ (cf [BGS, Lemma 6.5])

$$
\begin{equation*}
\operatorname{MIN}(\gamma)=\left\{c_{\gamma}(t) \mid t \in \mathbb{R}\right\} \tag{B.3}
\end{equation*}
$$

where $c_{\gamma}: \mathbb{R} \rightarrow X$ is a geodesic, parametrized by arclength. For any $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma \backslash i d$, denote by $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ the centralizer of $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$, i.e.

$$
Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\left\{\alpha \in \Gamma \mid \alpha \gamma_{i}=\gamma_{i} \alpha \quad \forall 1 \leq i \leq n\right\} .
$$

Lemma B. 2 Assume (B.1) - (B.2) hold.
(i) For any $\gamma_{1}, \gamma_{2} \in \Gamma \backslash i d$,

$$
\gamma_{1} \gamma_{2}=\gamma_{2} \gamma_{1} \text { iff } \operatorname{MIN}\left(\gamma_{1}\right)=\operatorname{MIN}\left(\gamma_{2}\right)
$$

(ii) For any $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma \backslash$ id with $n \geq 1$ either $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\{i d\}$ or $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \cong \mathbb{Z}$. In the latter case $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subseteq Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $\operatorname{MIN}(\alpha)=\operatorname{MIN}(\beta) \forall \alpha, \beta \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \backslash i d$.

Proof: (i) Assume that γ_{1} and γ_{2} commute. Then $\operatorname{MIN}\left(\gamma_{1}\right)$ is left invariant by γ_{2}. As γ_{2} is an isometry it then translates $\operatorname{MIN}\left(\gamma_{1}\right)$ and thus, by (B.3) and [BGS, Lemma 6.5], $\operatorname{MIN}\left(\gamma_{1}\right)=\operatorname{MIN}\left(\gamma_{2}\right)$. Conversely assume that $\operatorname{MIN}\left(\gamma_{1}\right)=$ $\operatorname{MIN}\left(\gamma_{2}\right)$. Then γ_{1} translates $c_{\gamma_{2}}$ and it follows that

$$
\gamma_{1} \gamma_{2} \cdot x=\gamma_{2} \gamma_{1} \cdot x \quad \forall x \in \operatorname{MIN}\left(\gamma_{2}\right)
$$

hence $\left(\gamma_{2} \gamma_{1}\right)^{-1} \gamma_{1} \gamma_{2}$ has fixed points. As Γ acts freely on $X,\left(\gamma_{2} \gamma_{1}\right)^{-1} \gamma_{1} \gamma_{2}=i d$ or $\gamma_{1} \gamma_{2}=\gamma_{2} \gamma_{1}$.
(ii) Assume that $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \neq\{i d\}$ and choose $\alpha \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \backslash i d$ arbitrary. Then, for any $1 \leq i \leq n, \alpha \gamma_{i}=\gamma_{i} \alpha$, hence by statement (i), $\operatorname{MIN}\left(\gamma_{i}\right)=\operatorname{Min}(\alpha)$ and, γ_{i} being an isometry, translates $\operatorname{MIN}(\alpha)$. In particular $\operatorname{MIN}\left(\gamma_{i}\right)=\operatorname{MIN}\left(\gamma_{j}\right) \forall i, j$, hence $\gamma_{i} \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ for any $1 \leq$ $i \leq n$ and as $\alpha \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \backslash i d$ is arbitrary it follows that for any $\beta \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \backslash i d$

$$
\operatorname{MIN}(\beta)=\operatorname{MIN}\left(\gamma_{i}\right)=\operatorname{MIN}(\alpha)
$$

Thus, again by (i), $\alpha \beta=\beta \alpha$ and therefore $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is Abelian. Recall that $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ acts by translations on $\operatorname{MIN}(\alpha)$, hence it has no torsion elements, and $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ acts discretely on $\operatorname{Min}(\alpha)$ so that $Z\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ cannot have more than one generator: Given any $\beta, \gamma \in Z\left(\gamma_{1}, \ldots, \gamma_{n}\right) \backslash i d$ there exist $t_{\beta}, t_{\gamma} \in \mathbb{R}$ so that for any $t \in \mathbb{R}$

$$
\beta \cdot c_{\alpha}(t)=c_{\alpha}\left(t+t_{\beta}\right) ; \gamma \cdot c_{\alpha}(t)=c_{\alpha}\left(t+t_{\gamma}\right) .
$$

As Γ acts freely, one has $t_{\beta} \neq 0, t_{\gamma} \neq 0$ and as Γ acts discretely, t_{β} and t_{γ} must be rationally dependent, $t_{\beta} / t_{\gamma}=m / n$ with $m, n \in \mathbb{Z} \backslash\{0\}$ relatively prime. Hence the linear congruence $m x=1 \bmod n$ has a solution $x \in \mathbb{Z}$, i.e. there exist $i, j \in \mathbb{Z}$ with $m i+n j=1$. Let $s:=t_{\beta} / m$ and note that $t_{\beta}=m s, t_{\gamma}=n s$, as well as

$$
i t_{\beta}+j t_{\gamma}=\mathrm{ims}+\mathrm{jns}=s
$$

Thus for $\alpha_{0}:=\beta^{i} \gamma^{j}$ one has $\alpha_{0} c_{\alpha}(t)=c_{\alpha}(t+s)$ for any $t \in \mathbb{R}$ or $s=t_{\alpha_{0}}$. As Γ acts freely on X one concludes $\beta=\alpha_{0}^{m}, \gamma=\alpha_{0}^{n}$.

C Appendix: Related problem in group theory

In this appendix we show that in the case M is a closed Riemannian manifold of negative sectional curvature, estimate (0.1) is equivalent to an algebraic property of the fundamental group $\Gamma:=\pi_{1}(M, m)$ of M (with base point $m \in M)$.
First let us recall a few properties of $\pi_{1}(M, m)$. As M is assumed to be negatively curved any $g \in \Gamma$ can be uniquely represented by a geodesic loop $\gamma \equiv \gamma_{g}:[0,1] \rightarrow M$ centered at m, i.e. by a geodesic $\gamma:[0,1] \rightarrow$ M, parametrized proportional to arclength with $\gamma(0)=m$ and $\gamma(1)=m$. Sometimes we will consider γ as a map from $S^{1}:=\mathbb{R} / \mathbb{Z} \rightarrow M$.
Choose a finite system of generators $\left(g_{i}\right)_{i \in I}$ on Γ and consider the word metric d on Γ associated with the Cayley graph determined by the generators $\left(g_{i}\right)_{i \in I}$ - see e.g. [BBI, Definition 3.2.22]. Denote by $\|g\|:=d(g, e)$ the length of g, i.e. the distance of an element $g \in \Gamma$ with respect to this metric from the neutral element e in Γ. The following estimate is well known - see e.g. [BBI, Theorem 8.3.19].

Lemma C. 1 There exists $C_{1}>0$ so that for any $g \in \Gamma$,

$$
C_{1}^{-1}\|g\| \leq L\left(\gamma_{g}\right) \leq C_{1}\|g\|
$$

where $L\left(\gamma_{g}\right)$ denotes the length of the geodesic loop γ_{g} associated to g.

The following result says that the estimate (0.1) implies an estimate for the length of a "short" conjugation in the fundamental group.

Theorem C. 2 Let $M, \Gamma:=\pi_{1}(M, m)$ and $\|\cdot\|$ be as above. Then there exists a constant $C_{2}>0$ with the following property: for any integer $N \geq 1$ and any two sets $\left(a_{i}\right)_{1 \leq i \leq N},\left(b_{i}\right)_{1 \leq i \leq N} \subseteq \Gamma$ satisfying $b_{i}=h a_{i} h^{-1}(1 \leq i \leq N)$ for some $h \in \Gamma$ there exists $g \in \Gamma$ with $b_{i}=g a_{i} g^{-1}(1 \leq i \leq N)$ such that

$$
\begin{equation*}
\|g\| \leq C_{2} \sum_{i=1}^{N}\left(\left\|a_{i}\right\|+\left\|b_{i}\right\|\right) \tag{C.1}
\end{equation*}
$$

Proof: Let $\alpha_{i}, \beta_{i}(1 \leq i \leq N)$ and η be the geodesic loops representing the elements $a_{i}, b_{i}(1 \leq i \leq N)$ and h respectively with $\alpha_{i}, \beta_{i}: S_{i} \rightarrow M, S_{i}$ being a copy of S^{1}, and $\eta:[0,1] \rightarrow M$. The loops $\left(\alpha_{i}\right)_{1 \leq i \leq N}$ define a continuous map $u: G \rightarrow M$ from the bouquet of circles $G=V_{i=1}^{N} S_{i}$, a graph with one vertex $0 \in G$ and N edges $I_{i}=[0,1]$, given by

$$
u(x):=\alpha_{i}(x) \quad \forall x \in S ; 1 \leq i \leq N
$$

Note that the restriction of u to any edge I_{i} of G_{i} is C^{1}. In the same way, the loops $\left(\beta_{i}\right)_{1 \leq i \leq N}$ define a continuous map $v: G \rightarrow M$ with $v(x)=\beta_{i}(x)$ for $x \in S_{i}$ and $1 \leq i \leq N$. Since $b_{i}=h a_{i} h^{-1}$ there exists for any $1 \leq i \leq N$ a continuous map $H_{i}: S_{i} \times[0,1] \rightarrow M$ so that $H_{i}(t, 0)=\alpha_{i}(t), H_{i}(t, 1)=$ $\beta_{i}(t)\left(t \in S_{i}\right)$,

$$
H_{i}(0, s)=\eta(s) \quad(0 \leq s \leq 1)
$$

and its restriction to $I_{i} \times[0,1]$ is C^{1}. The union of these maps $H_{i}(1 \leq$ $i \leq N)$ defines a C^{1}-homotopy $H: G \times[0,1] \rightarrow M$ with $H(t, 0)=u(t)$ and $H(t, 1)=v(t)(0 \leq t \leq 1)$. By Theorem 0.1 there exists a C^{1}-homotopy $H_{1}: G \times[0,1] \rightarrow M$ between u an v with

$$
\begin{aligned}
\sup _{z \in G} \ell_{H_{1}}(z) & \leq 3(L(u)+L(v)+C) \\
& \leq 3\left(C_{1} \sum_{i=1}^{N}\left(\left\|a_{i}\right\|+\left\|b_{i}\right\|\right)+C\right)
\end{aligned}
$$

where we used Lemma C. 1 for the latter inequality. In particular, the length of $\gamma_{1}: s \mapsto H_{1}(0, s)$ can be bounded by

$$
\begin{equation*}
L\left(\gamma_{1}\right) \leq 3\left(C_{1} \sum_{i=1}^{N}\left(\left\|a_{i}\right\|+\left\|b_{i}\right\|\right)+C\right) \tag{C.2}
\end{equation*}
$$

Let γ be the geodesic loop with $[\gamma]=\left[\gamma_{1}\right]$. Then $g:=[\gamma]$ conjugates a_{i} and b_{i} for any $1 \leq i \leq N$. As by Lemma C.1, $L\left(\gamma_{1}\right) \geq C_{1}^{-1}\|g\|$ it then follows from (C.2) that

$$
\|g\| \leq 3 C_{1}\left(C_{1} \sum_{j=1}^{N}\left(\left\|a_{i}\right\|+\left\|b_{i}\right\|\right)+C\right)
$$

As $\left\|a_{i}\right\|,\left\|b_{i}\right\| \in \mathbb{N}$, the claimed estimate (C.1) then follows.

We remark that in a similar fashion, one can show vice versa that the existence of an estimate (C.1) implies an estimate of the form (0.1) (possibly with a different constant C).

References

[BGS] W. Ballmann, M. Gromov, V. Schröder: Manifolds of nonpositive curvature, 1985, Birkhäuser Verlag.
[BH] M.R.Bridson, J. Howie: Conjugacy of finite subsets in hyperbolic groups, to appear in Intern. J. for Alg. and Compu.
[BBI] D. Burago, Y. Burago, S. Ivanov: A course in metric geometry, Graduate Studies in Mathematics, Vol. 33, AMS, Providence, 2001.
[Bu] P. Buser: Geometry and spectra of compact Riemann surfaces. Progress in Mathematics 106, 1992, Birkhäuser Verlag.
[KKS1] T. Kappeler, S. Kuksin, V. Schröder: Perturbations of the harmonic map equation. Preprint Series, Institute of Mathematics, University of Zürich, 2 (2001), to appear in Comm. in Contemp. Math.
[Ru] D. Ruoss: Thesis, University of Zurich, in preparation.

[^0]: *Supported in part by the Swiss National Science Foundation and the European Commission under grant HPRN-CT-1999-00118
 ${ }^{\dagger}$ Supported in part by the Swiss National Science Foundation

[^1]: ${ }^{1}$ i.e. a homotopy so that for any $x \in M, s \mapsto H(x, s)$ is a geodesic parametrized proportional to arclength

