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1. Introduction

In this work we discuss qualitative properties of solutions for Hamiltonian partial differ-
ential equations in the finite volume case. That is, when the space-variablex belongs to a
finite domain and appropriate boundary conditions are specified on the domain’s boundary
(or x belongs to the whole space, but the equation contains a potential term, where the
potential growths to infinity as|x| → ∞, cf. below Example 5.5 in Section 5.2). Most of
these properties have analogies in the classical finite-dimensional Hamiltonian mechanics.
In the infinite-volume case properties of the equations become rather different due to the
phenomenon of radiation, and we do not touch them here.

Our bibliography is by no means complete.

NOTATION. By T
n we denote the torusTn = R

n/2πZ
n and writeT

1 = S1; by R
n+—the

open positive octant inRn; by Z0—the set of non-zero integers. ByBδ(x;X) we denote
an openδ-ball in a spaceX, centred atx ∈ X. Abusing notation, we denote byx both
the space-variable and an element of an abstract Banach spaceX. For an invertible linear
operatorJ we setJ̄ = −J−1. The Lipschitz norm of a mapf from a metric spaceM to a
Banach space is defined as supm∈M ‖f (m)‖ + supm1 �=m2

‖f (m1)−f (m2)‖
dist(m1,m2)

.

2. Symplectic Hilbert scales and Hamiltonian equations

2.1. Hilbert scales and their morphisms

Let X be a real Hilbert space with a scalar product〈 ·, ·〉 = 〈 ·, ·〉X and a Hilbert basis
{ϕk | k ∈ Z̃}, whereZ̃ is a countable subset of someZ

n. Let us take a positive sequence
{θk | k ∈ Z̃} which goes to infinity withk. For anys we defineXs as a Hilbert space with
the Hilbert basis{ϕkθ

−s
k | k ∈ Z̃}. By ‖ · ‖s and〈 ·, ·〉s we denote the norm and the scalar

product inXs (in particular,X0 = X and 〈 ·, ·〉0 = 〈 ·, ·〉). The totality{Xs} is called a
Hilbert scale, the basis{ϕk}—the basis of the scale and the scalar product〈 ·, ·〉—the
basic scalar product of the scale.

A Hilbert scale may be continuous or discrete, depending on whethers ∈ R or s ∈ Z.
The objects we define below and the theorems we discuss are valid in both cases.

A Hilbert scale{Xs} possesses the following properties:
(1) Xs is compactly embedded inXr if s > r and is dense there;
(2) the spacesXs andX−s are conjugated with respect to the scalar product〈 ·, ·〉. That

is, for anyu ∈ Xs ∩ X0 we have

‖u‖s = sup
{〈u,u′〉 | u′ ∈ X−s ∩ X0,‖u′‖−s = 1

};
(3) the norms‖ · ‖s satisfy the interpolation inequality; linear operators in the spaces

Xs satisfy the interpolation theorem.
Concerning these and other properties of the scales see [77] and [59].
For a scale{Xs} we denote byX−∞ andX∞ the linear spacesX−∞ = ⋃

Xs andX∞ =⋂
Xs .
Scales of Sobolev functions are the most important for this work:
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EXAMPLE 2.1. Basic for us is the Sobolev scale of functions on thed-dimensional torus
{Hs(Td ;R) = Hs(Td)}. A spaceHs(Td) is formed by functionsu :Td → R such that

u =
∑
l∈Zd

ule
il·x, C 
 ul = ū−l , ‖u‖2

s =
∑

l

(
1+ |l|)2s |ul |2 < ∞.

The basis{ϕk} is formed by all distinct properly normalised functions Reeil·x and Imeil·x ,
l ∈ Zd .

We shall also use the sub-scale{Hs(Td)0}, where a spaceHs(Td)0 consists of functions
from Hs(Td) with zero mean-value.

EXAMPLE 2.2. Consider the scale{Hs
0(0,π)}, where a spaceHs

0 = Hs
0(0,π) is formed

by the odd 2π -periodic functionsu = ∑∞
k=1 uk sinkx such that‖u‖2

s = ∑ |k|2s |uk|2 < ∞.
Since{sinnx} is a complete system of eigenfunctions of the operator−� in L2(0,π) with
the domain of definition{u ∈ H 2(0,π) | u(0) = u(π) = 0}, then an equivalent definition
of these spaces is thatHs

0 = D(−�)s/2 (see [77]). In particular,

H 1
0 = {

u ∈ H 1(0,π) | u(0) = u(π) = 0
}
, H 2

0 = H 2(0,π) ∩ H 1
0 ,

(2.1)
H 3

0 = {
u ∈ H 3(0,π) | u(0) = uxx(0) = u(π) = uxx(π) = 0

}
.

Given two scales{Xs}, {Ys} and a linear mapL :X∞ → Y−∞, we denote by‖L‖s1,s2 �
∞ its norm as a mapXs1 → Ys2. We say thatL defines a (linear) morphism of order d

of the two scales fors ∈ [s0, s1], s0 � s1,1 if ‖L‖s,s−d < ∞ for every s ∈ [s0, s1]. If in
addition the inverse mapL−1 exists and defines a morphism of order−d of the scales{Ys}
and {Xs} for s ∈ [s0 + d, s1 + d], we say thatL defines anisomorphism of order d for
s ∈ [s0, s1]. If {Xs} = {Ys}, then an isomorphism is called anautomorphism.

EXAMPLE 2.3. Multiplication by a non-vanishingCr -smooth function defines a zero-
order automorphism of the Sobolev scale{Hs(Tn)} for −r � s � r .

If L is a morphism of scales{Xs}, {Ys} of orderd for s ∈ [s0, s1], then adjoint mapsL∗
form a morphism of the scales{Ys} and{Xs} of the same orderd for s ∈ [−s1+d,−s0+d].
It is called theadjoint morphism.

If L = L∗ (L = −L∗) on the spaceX∞, then the morphismL is called symmetric
(antisymmetric).

If L is a symmetric morphism of{Xs} of orderd for s ∈ [s0, d − s0], wheres0 � d/2,
then the adjoint morphismL∗ is defined fors ∈ [s0, d − s0] and coincide withL on X∞;
hence,L∗ = L. We callL a selfadjoint morphism. Anti-selfadjoint morphisms are defined
similarly.

EXAMPLE 2.4. The operator� defines a selfadjoint morphism of order 2 of the Sobolev
scale{Hs(Tn)} for −∞ < s < ∞. The operators∂/∂xj , 1� j � n, define anti-selfadjoint
morphisms of order one. The automorphism in Example 1.1 is selfadjoint.

1Or s ∈ (s0, s1), etc.
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Let {Ys}, {Ys} be two scales andOs ⊂ Xs , s ∈ [a, b], be a system of (open) domains,
compatible in the following sense:

Os1 ∩ Os2 = Os2 if a � s1 � s2 � b.

Let F :Oa → Y−∞ be a map such that for everys ∈ [a, b] its restriction toOs defines
an analytic (Ck-smooth) mapF :Os → Ys−d . ThenF is called an analytic (Ck-smooth)
morphism of orderd for s ∈ [a, b].

EXAMPLE 2.5. Let{Xs} be the Sobolev scale{Hs(Td)} andf (u, x) be a smooth function.
Then the mapF :u(x) → f (u(x), x), Xa → Xa , is smooth ifa > d

2 , so on these spaces
ordF = 0. If f is analytic, then so isF .

Now let us assume thatd = 1, f is analytic,f (0, x) ≡ 0 and considerF as a map
in the scale{Hs

0 = Hs
0(0,π), s ∈ Z}. For s � 1 the mapF :Hs

0 → Hs(0,π) is analytic.
SinceFu(0) = Fu(π) = 0, then due to (2.1) fors = 1 ands = 2 F(Hs

0) ⊂ Hs
0 . So on the

spacesH 1
0 andH 2

0 we have ordF = 0. Since in general foru ∈ H∞
0 , F(u) ∈ H 2

0 but /∈ H 3
0

(see (2.1)), then on the spacesHs
0 , s � 3, we have ordF > 0.

If f (u, x) is odd inu and even inx (e.g., isx-independent), or vice versa, thenF(Hs
0) ⊂

Hs
0 for s � 1, so ordF = 0 for anys � 1.

Given aCk-smooth functionH :Xd ⊃ Od → R, k � 1, we consider itsgradient map
with respect to the paring〈 ·, ·〉:

∇H :Od → X−d,
〈∇H(u), v

〉 = dH(u)v ∀v ∈ Xd.

The map∇H is Ck−1-smooth.
If Od belongs to a system of compatible domainsOs , a � s � b, and the gradient

map ∇H defines aCk−1-smooth morphism of orderdH for a � s � b, we write that
ord∇H = dH .

2.2. Symplectic structures

For simplicity we restrict ourselves to constant-coefficient symplectic structures. For the
general case see [59].

Let {Xs} be a Hilbert scale andJ be its anti-selfadjoint automorphism of orderd for
−∞ < s < ∞. Then the operator̄J = −J−1 defines an anti-selfadjoint automorphism of
order−d . We define a two-formα2 as

α2 = J̄ dx ∧ dx,

where by definitionJ̄ dx ∧ dx [ξ, η] = 〈J̄ ξ, η〉. Clearly, J̄ dx ∧ dx defines a continuous
skew-symmetric bilinear form onXr × Xr if r � −d/2. Therefore any spaceXr , r �
−d/2, becomes asymplectic (Hilbert) space and we shall write it as a pair(Xr,α2).

The pair({Xs}, α2) is called asymplectic (Hilbert) scale.
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EXAMPLE 2.6. Let us take the index-setZ to be the union of non-intersecting subsetsZ+
andZ−, provided with an involutionZ → Z which will be denotedj → −j , such that
−Z± = Z∓. Let us consider a Hilbert scale{Xs} with a basis{φk , k ∈ Z} and a sequence
{θk, k ∈Z}, such thatθ−j ≡ θj . TakeJ to be the linear operator, defined by the relations

Jφk = φ−k ∀k ∈ Z+, Jφk = −φ−k ∀k ∈Z−.

It defines an anti-selfadjoint automorphism of the scale of zero order, andJ̄ = J . The
symplectic scale({Xs}, α2 = J̄ dx ∧ dx = J dx ∧ dx) will be called aDarboux scale.

Let ({Xs}, α2 = J̄ dx ∧dx) and({Ys}, β2 = Υ dy ∧dy) be two symplectic Hilbert scales
andOs ⊂ Xs , a � s � b, be a system of compatible domains. AC1-smooth morphism of
orderd1

F :Os → Ys−d1, a � s � b,

is symplectic if F ∗β2 = α2. That is, if〈Υ F∗(x)ξ,F∗(x)η〉Y ≡ 〈J̄ ξ, η〉X, or

F ∗(x)Υ F∗(x) = J̄ ∀x.

A symplectic morphismF as above is called asymplectomorphism if it is a diffeomor-
phism.

2.3. Hamiltonian equations

To aC1-smooth functionh on a domainOd ⊂ Xd , the symplectic formα2 as above corre-
sponds theHamiltonian vector field Vh, defined by the usual relation (cf. [2,43]):

α2
[
Vh(x), ξ

] = −dh(x)ξ ∀ξ.

That is,〈J̄ Vh(x), ξ 〉 ≡ −〈∇h(x), ξ 〉 and

Vh(x) = J∇h(x).

The vector fieldVh defines a continuous mapOd → X−d−dJ
. Usually we shall assume that

Vh is smoother than that and defines a smooth morphism of orderd1 � 2d + dJ for all s

from some segment.
For anyC1-smooth functionh onOd × R we denote byVh the non-autonomous vector

field Vh(x, t) = J∇xh(x, t), where∇x is the gradient inx, and consider the corresponding
Hamiltonian equation (or Hamiltonian system)

ẋ = J∇xh(x, t) = Vh(x, t). (2.2)

A partial differential equation, supplemented by some boundary conditions, is called
a Hamiltonian partial differential equation, or anHPDE, if under a suitable choice of a
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symplectic Hilbert scale({Xs}, α2), a domainOd ⊂ Xd and a Hamiltonianh, it can be
written in the form (2.2). In this case the vector fieldVh is unbounded, ordVh = d1 > 0.
That is,

Vh :Od × R → Xd−d1.

UsuallyOd belongs to a system of compatible domainsOs , s � d0, andVh (as a function
of x) defines an analytic morphism of orderd1 for s � d0.

A continuous curvex : [t0, t1] → Od is called asolution of (2.2) in the space Xd if it
defines aC1-smooth mapx : [t0, t1] → Xd−d1 and both parts of (2.2) coincide as curves in
Xd−d1. A solutionx is calledsmooth if it defines a smooth curve in each spaceXs .

If a solutionx(t), t � t0, of (2.2) such thatx(t0) = x0 exists and is unique, we write
x(t1) = S

t1
t0

x0, or x(t1) = St1−t0x0 if the equation is autonomous (we do not assume that
t1 � t0). The operatorsSt1

t0
andSt are calledflow-maps of the equation. Clearly,St1

t0
equals

(S
t0
t1

)−1 on a joint domain of definition of the two operators.
A non-linear PDE is calledstrongly non-linear if its non-linear part contains as many

derivatives as the linear part. Strongly non-linear Hamiltonian PDEs may possess rather
unpleasant properties. In particular, for some of them, every non-zero solution develops a
singularity in finite time, see an example in Section 1.4 of [59].

We shall call a non-linear PDEquasilinear if its non-linear part contains less derivatives
then the linear one. A quasilinear equation can be written in the form (2.2) with

h(x, t) = 1

2
〈Ax,x〉 + h0(x, t), (2.3)

where A is a linear operator which defines a selfadjoint morphism of the scale (so
∇h(x, t) = Ax + ∇h0(x, t)) and ord∇h0 < ordA.

The class of Hamiltonian PDEs contains many important equations of mathematical
physics, some of them are discussed below. The first difficulty one comes across when
studies this class is absence of a general theorem which would guarantee that (locally in
time) an equation has a unique solution.2 Such a theorem exists for semilinear equations,
where Equation (2.2) will be calledsemilinear if its Hamiltonian has the form (2.3) and
ordJ∇h0 � 0 (see [69] and Section 1.4 of [59]).

EXAMPLE 2.7 (Equations of the Korteweg–de Vries type). Let us take for{Xs} the scale
of zero mean-value Sobolev spacesHs(S1)0 as in Example 2.1 and chooseJ = ∂/∂x, so
dJ = 1. For a Hamiltonianh we takeh(u) = ∫ 2π

0 (−1
8u′(x)2+f (u)) dx with some analytic

functionf (u). Then∇h(u) = 1
4u′′ + f ′(u) and the equation takes the form

u̇(t, x) = 1

4
u′′′ + ∂

∂x
f ′(u).

For f (u) = 1
4u3 we get the classical Korteweg–de Vries (KdV) equation. The mapVh

defines an analytic morphism of order 3 of the scale{Xs}, for s > 1/2. The equation

2Still, see [47] for a theory which applies to some classes of quasilinear HPDEs.
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has the form (2.2), (2.3), where ordJA = 3 and ordJ∇h0 = 1. It is quasilinear, but not
semilinear.

EXAMPLE 2.8 (NLS—non-linear Schrödinger equation). Let Xs = Hs(Tn;C), where
this Sobolev space is treated as a real Hilbert space, and the basic scalar product of the
scale is〈u,v〉 = Re

∫
uv̄ dx. ForJ we take the operatorJu(x) = iu(x), so ordJ = 0 and

({Xs}, J̄ du ∧ du) is a Darboux scale. We choose

h(u) = 1

2

∫
Tn

(|∇u|2 + V (x)|u|2 + g(x,u, ū)
)
dx,

whereV is a smooth real function andg(x,u, v) is a smooth function, real ifv = ū. Then
∇h(u) = −�u + V (x)u + ∂

∂ū
g and (2.2) takes the form

u̇ = i

(
−�u + V (x)u + ∂

∂ū
g(x,u, ū)

)
, u = u(t, x), x ∈ T

n. (2.4)

This is a semilinear Hamiltonian equation in any spaceXd0, d0 > n/2, with ordA = 2 and
ord∇h0 = 0.

Non-linear Schrödinger equation (2.4) withn = 1, V (x) = const andg = γ |u|4, γ �= 0,
is called theZakharov–Shabat equation. The equation withγ > 0 is calleddefocusing and
with γ < 0—focusing.

EXAMPLE 2.9 (1D NLS with Dirichlet boundary conditions). Let us choose forXs the
spaceHs

0(0,π;C) (see Example 2.2),Ju(x) = iu(x) and

h(u) = 1

2

∫ π

0

(|ux |2 + V (x)|u|2 + g
(
x, |u|2))dx,

whereg is smooth and 2π -periodic inx. Now ∇h(u) = −uxx + V (x)u + f (x, |u|2)u,
wheref = ∂g

∂|u|2 , and (2.2) becomes

u̇ = i
(−uxx + V (x)u + f

(
x, |u|2)u)

, u(0) = u(π) = 0. (2.5)

For s = 1 and 2 the non-linear term defines a smooth mapXs → Xs (see Example 2.5), so
in these spaces this is a semilinear equation with ordA = 2 and ord∇h0 = 0. If in addition
f is even inx, then the non-linear term defines a smooth map for everys � 1. This map is
analytic iff is.

EXAMPLE 2.10 (Non-linear wave equations). Now letXs = Hs(Tn)×Hs(Tn) andα2 =
J̄ dη ∧ dη, whereη = (u, v) andJ (u, v) = J̄ (u, v) = (−v,u). Let

h(u, v) =
∫

Tn

(
1

2
v2 + 1

2
|∇u|2 − f (x,u)

)
dx. (2.6)
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The corresponding Hamiltonian equation is

u̇ = −v, v̇ = −�u − f ′
u(x,u). (2.7)

Or

ü = �u + f ′
u(x,u), u = u(t, x), x ∈ T

n. (2.8)

This is anon-linear wave equation (with the periodic boundary conditions). We have seen
that this equation can be re-written as the system (2.7) which is an HPDE. This Hamiltonian
form of the equation is inconvenient since the quadratic part of the Hamiltonian (2.6) cor-
responds to the linear operator(u, v) → 1

2(−�u,v) which does not define an isomorphism
of the scale{Xs} (of some orderm). It turns out that the non-linear wave equation (2.8) ad-
mits another Hamiltonian representation (2.2), where the Hamiltonianh has the form (2.3),
the operatorA defines an isomorphism of the scale and ordA <ord∇h0 (so the equation is
quasilinear). We note that the corresponding linear operatorJA is not differential. See [52]
and [59], also see below Section 4.3, where the non-linear wave equationü = uxx − sinu

(the Sine-Gordon equation) is considered in details.

3. Basic theorems on Hamiltonian systems

Basic theorems from the classical Hamiltonian formalism (see [2,43]) remain true for
Hamiltonian equations (2.2) in Hilbert scales, provided that the theorems are properly for-
mulated. In this section we present three corresponding results. Their proofs can be found
in [52,59].

Let ({Xs}, α2 = J̄ dx ∧ dx) and({Ys}, β2 = Υ dy ∧ dy) be two symplectic scales and
(for simplicity) ordJ = ordΥ = dJ � 0. LetΦ :Q → O be aC1-smooth symplectic map,
whereQ andO are domains inYd andXd , d � 0. If dJ > 0, we have to assume that

(H1) for any|s| � d linearised mapsΦ∗(y), y ∈ Q, define linear mapsYs → Xs which
continuously depend ony.

The first theorem states that symplectic maps transform Hamiltonian equations to Hamil-
tonian:

THEOREM 3.1. Let Φ :Q → O be a symplectic map as above (so (H1) holds if dJ > 0).
Let us assume that the vector field Vh of Equation (2.2) defines a C1-smooth map Vh :
O × R → Xd−d1 of order d1 � 2d and that this vector field is tangent to the map Φ (i.e.,
for every y ∈ Q and every t the vector Vh(Φ(y), t) belong to the range of the linearised
map Φ∗(y)). Then Φ transforms solutions of the Hamiltonian equation ẏ = Υ ∇yH(y, t),
where H = h ◦ Φ, to solutions of (2.2).

COROLLARY 3.2. If under the assumptions of Theorem 3.1 {Xs} = {Ys} and h ◦ Φ = h,
Φ∗α2 = α2, then Φ preserves the class of solutions for (2.2).
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For Hamiltonian PDEs (and for Hamiltonian equations (2.2)) Theorem 2.1 plays the
same role as its classical finite-dimensional counterpart plays for usual Hamiltonian equa-
tions: it is used to transform an equation to a normal form, usually in the vicinity of an
invariant set (e.g., of an equilibrium).

To apply Theorem 3.1 one needs regular ways to construct symplectic transformations.
For classical finite-dimensional systems symplectic transformations usually are obtained
either via generating functions, or as Lie transformations (i.e., as flow-maps of additional
Hamiltonians), see [2,43,40]. For infinite-dimensional symplectic spaces generating func-
tions play negligible role, while the Lie transformations remain an important tool. An easy
but important corresponding result is stated in the theorem below.

Let ({Xs}, α2) be a symplectic Hilbert scale as above andO be a domain inXd .

THEOREM3.3. Let f be a C1-smooth function on O ×R such that the map Vf :O ×R →
Xd is Lipschitz in (x, t) and C1-smooth in x. Let O1 be a subdomain of O. Then the flow-
maps Sτ

t : (O1, α2) → (O,α2) are symplectomorphisms (provided that they map O1 to O).
If the map Vf is Ck-smooth or analytic, then the flow-maps are Ck-smooth or analytic as
well.

The assumption that the mapVf is Lipschitz can be replaced by the much weaker
assumption that for a solutionx(t) of the equationẋ = Vf (x), the linearised equation
ξ̇ = Vf ∗(x(t))ξ is such that its flow maps are bounded linear transformations of the
spaceXd . See [59].

Usually Theorem 3.3 is applied in the situation when|f | � 1, or |t − τ | � 1. In these
cases the flow-maps are close to the identity and the corresponding transformations of the
space ofC1-smooth functions onO, H → H ◦ Sτ

t , can be written as Lie series (cf. [40]).
In particular, the following simple result holds:

THEOREM 3.4. Under the assumptions of Theorem 3.3, let H be a C1-smooth function
on O. Then

d

dτ
H

(
Sτ

t (x)
) = {f,H }(Sτ

t (x)
)
, x ∈ O1. (3.1)

In this theorem{f,H } denotes thePoisson bracket of the two functions:

{f,H }(x) = 〈
J∇f (x),∇H(x)

〉
.

It is well defined sinceJ∇f = Vf ∈ Xd by assumptions.
Theorem 3.3 and formula (3.1) make from symplectic flow-mapsSτ

t a tool which is
well suited to prove KAM-theorems for Hamiltonian PDEs, see the scheme of the proof of
Theorem 5.1 in Section 5.1 below.

An immediate consequence of Theorem 3.4 is that for an autonomous Hamiltonian equa-
tion ẋ = J∇f (x) such that ordJ∇f = 0, aC1-smooth functionH is an integral of mo-
tion3 if and only if {f,H } ≡ 0.

3That is,H(x(t)) is a time-independent quantity for any solutionx(t).
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If d ′ = ordJ∇f > 0 andO = Od belongs to a system of compatible domainsOs ⊂ Xs ,
s ∈ [d0, d], whered0 = d − d ′, thenH such that{f,H } ≡ 0 is an integrable of motion for
the equatioṅx = J∇f (x), provided that

ordJ∇f = d ′ and ord∇H = dH for s ∈ [d0, d],

whered ′ + dH � 2d . Indeed, sinced0 − dH � −d0, then H is a C1-smooth function
onOd0. Since any solutionx(t) is aC1-smooth curve inOd0 by the definition of a solution,
then

d

dt
H(x) = 〈∇H(x), ẋ

〉 = 〈∇H(x), J∇f (x)
〉 = {f,H }(x) = 0.

In particular,f is an integral of motion for the equatioṅx = J∇f (x) in Od if we have
ordJ = dJ and ord∇f = df for s = d and fors ∈ [d, d −df −dJ ], whered � df +dJ /2.
That is, if the equation is being considered in sufficiently smooth spaces.

EXAMPLE 3.5. Let us consider a non-linear Schrödinger equation (2.5) such that
g(u, ū) = g0(|u|2), and takeH(u) = ‖u‖2

0 = |u|2L2
. Now d ′ := ordJ∇f = 2 for s ∈

(n/2,∞), and ord∇H = 0. Elementary calculations show that{f,H } ≡ 0. SoL2-norm is
an integral of motion for solutions of (2.5) inXs if s > n/2+ 2. (In fact this result remains
true for solutions of much lower smoothness, see [15].)

4. Lax-integrable equations

4.1. General discussion

Let us take a Hamiltonian PDE and write it as a Hamiltonian equation in a suitable sym-
plectic Hilbert scale({Xs}, α2 = J̄ du ∧ du):

u̇ = J∇H(u). (4.1)

This equation is called Lax-integrable if there exists an additional Hilbert scale{Zs} (real
or complex), and finite order linear morphismsLu andAu of this scale which depend on
the parameteru ∈ X∞, such that a curveu(t) is a smooth solution for (4.1) if and only if

d

dt
Lu(t) = [Au(t),Lu(t)]. (4.2)

The operatorsAu andLu, treated as morphisms of the scale{Zs}, are assumed to depend
smoothly onu ∈ Xd whered is sufficiently large, so the left-hand side of (4.2) is well
defined (for details see [59]). The pair of operatorsL, A is called theLax pair.4

4Due to a deep result by Krichever and Phong [48], any Lax-integrable PDE is a Hamiltonian system. The
corresponding symplectic structure belongs to a bigger class than that described in Section 2.2, so to apply our
techniques we need to assume a priori that the equation has the form (4.1).
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In most known examples of Lax-integrable equations the relation between the scales
{Xs} and {Zs} is the following: spacesXs are formed byT -periodic Sobolev vector-
functions, whileA andL are differential or integro-differential operators withu-dependent
coefficients, acting in a scale{Zs} of T L-periodic Sobolev vector-functions. HereL is
some fixed integer.

Let u(t) be a smooth solution for (4.1). We setLt = Lu(t) andAt = Au(t).

LEMMA 4.1. Let χ0 ∈ Z∞ be a smooth eigenvector of L0, i.e.,L0χ0 = λχ0. Let us assume
that the initial-value problem

χ̇ = Atχ, χ(0) = χ0, (4.3)

has a unique smooth solution χ(t). Then

Ltχ(t) = λχ(t) ∀t. (4.4)

PROOF. Let us denote the left-hand side of (4.4) byξ(t), the right-hand side—byη(t) and
calculate their derivatives. We have:

d

dt
ξ = d

dt
Lχ = [A,L]χ +LAχ = ALχ = Aξ

and

d

dt
η = d

dt
λχ = λAχ = Aη.

Thus, bothξ(t) andη(t) solve the problem (4.3) withχ0 replaced byλχ0 and coincide by
the uniqueness assumption. �

Due to this lemma the discrete spectrum of the operatorLu is an integral of motion for
Equation (4.1). In particular, a setT formed by all smooth vectorsu ∈ X∞ such that the
eigenvalues of the operatorLu belong to a fixed subset ofC × C × · · · , is invariant for
the flow of Equation (4.1). A remarkable discovery, made by Novikov [68] and Lax [61],
is that for integrable Hamiltonian PDEs, considered on finite space-intervals with suitable
boundary conditions, some setsT as above are finite-dimensional symplectic submanifolds
T 2n of all symplectic spaces(Xs,α2), and restriction of Equation (4.1) to anyT 2n is an
integrable Hamiltonian system. Moreover, for some integrable equations it is known that
the union of all these manifoldsT 2n is dense in every spaceXs . Solutions that fill a man-
ifold T 2n are calledfinite-gap solutions, and the manifold itself—afinite-gap manifold.
See, e.g., [32,83,8,59].
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4.2. Korteweg–de Vries equation

The KdV equation

u̇ = 1

4

∂

∂x

(
uxx + 3u2), u(t, x) ≡ u(t, x + 2π),

∫ 2π

0
udx ≡ 0, (4.5)

takes the form (4.1) in the symplectic Hilbert scale({Xs}, α2 = J̄ du ∧ du), whereXs is
the Sobolev spaceHs(S1)0 andJu = (∂/∂x)u, see Example 2.7. Due to Lax himself, this
equation is Lax-integrable and the corresponding Lax pair is

Lu = − ∂2

∂x2
− u, Au = ∂3

∂x3
+ 3

2
u

∂

∂x
+ 3

4
ux.

Taking for {Zs} the Sobolev scale of 4π -periodic functions and applying Lemma 4.1 we
obtain that smooth 4π -periodic spectrum of the operatorLu is an integral of motion. It is
well known that the spectrum ofLu is formed by eigenvalues

λ0 < λ1 � λ2 < λ3 � λ4 < · · · ↗ ∞,

and that the corresponding eigenfunctions are smooth, provided that the potentialu is. Let
us take any integern-vectorV,

V = (V1, . . . , Vn) ∈ N
n, V1 < · · · < Vn.

Denoting∆j = λ2j − λ2j−1 � 0, j = 1,2, . . . , we define the setT 2n
V as

T 2n
V = {

u(x) | ∆j �= 0 iff j ∈ {V1, . . . , Vn}
}
.

ClearlyT 2n
V equals to the unionT 2n

V = ⋃
r∈R

n+ T n
V(r), whereR

n+ = {r | rj > 0∀j} and

T n
V(r) = {

u(x) ∈ T 2n
V | ∆j = rj ∀j

}
.

Since the 4π -periodic spectrum{λj } is an integral of motion for (KdV), then the sets
T n

V(r) are invariant for the KdV-flow. Due to the classical theory of the Sturm–Liouville
operatorLu, the setT 2n

V is a smooth submanifold of any spaceXs , foliated to the smooth
n-tori T n

V(r). For all these results see, e.g., [46].
Due to Novikov and Lax, there exist an analytic mapΦ = ΦV : {(r, ξ)} = R

n+ ×Tn → Xs

(s is any integer), and an analytic functionh = hn(r) such thatT n
V(r) = Φ({r} × T

n), and
for any ξ0 ∈ T

n the curveu(t) = Φ(r, ξ0 + t∇h(r)) is a smooth solution for (4.5). As a
function oft , this solution is quasiperiodic.5 The celebrated Its–Matveev formula explicitly
representsΦ in terms of theta-functions, see in [32,31,8,59].

5A continuous curveu :R → X is quasiperiodic if there existn ∈ N, φ ∈ Tn, ω ∈ Rn and a continuous map
U :Tn → X such thatu(t) = U(φ + tω).



1100 S.B. Kuksin

4.3. Other examples

Sine-Gordon. The Sine-Gordon (SG) equation on the circle

ü = uxx(t, x) − sinu(t, x), x ∈ S1 = R/2πZ,

is another example of a Lax-integrable HPDE.
First the equation has to be written in a Hamiltonian form. The most straightforward

way to do this is to write (SG) as the system

u̇ = −v, v̇ = −uxx + sinu(t, x).

One immediately sees that this system is a semilinear Hamiltonian equation in the sym-
plectic scale({Xs = Hs(S) × Hs(S)}, α2 = J̄ dη ∧ dη), whereη = (u, v) andJ (u, v) =
(−v,u).

Now we derive another Hamiltonian form of (SG), more convenient for its analysis. To
do this we consider the shifted Sobolev scale{Xs = Hs+1(S1) × Hs+1(S1)}, where the
spaceX0 is given the scalar product

〈ξ1, ξ2〉 =
∫

S1

(
ξ ′

1x · ξ ′
2x + ξ1 · ξ2

)
dx,

and any spaceXs—the product〈ξ1, ξ2〉s = 〈Asξ1, ξ2〉. Here A is the operatorA =
−∂2/∂x2 + 1. Obviously,A defines a selfadjoint automorphism of the scale of order one.
The operatorJ (u,w) = (−√

Aw,
√

Au) defines an anti-selfadjoint automorphism of the
same order. We provide the scale with the symplectic formβ2 = J̄ dξ ∧ dξ . We note that
(SG) can be written as the system

u̇ = −√
Aw, ẇ = √

A
(
u + A−1f ′(u(x)

))
, (4.6)

where f (u) = −cosu − 1
2u2, and that (4.6) is a semilinear Hamiltonian equation in

the symplectic scale as above with the HamiltonianH(ξ) = 1
2〈ξ, ξ 〉 + ∫

f (u(x)) dx,
ξ = (u,w).

Let us denote byXo
s (Xe

s ) subspaces ofXs formed by odd (even) vector functionsξ(x).
Then({Xo

s }, β2) and({Xe
s }, β2) are symplectic sub-scales of the scale above. The spaceXo

s

andXe
s (with s � 0) are invariant for the flow of Equation (4.6). The restricted flows cor-

respond to the SG equation under the odd periodic and even periodic boundary conditions,
respectively.

The SG equation is Lax-integrable under periodic, odd periodic and even periodic
boundary conditions. That is, Equation (4.6) is Lax-integrable in the all three symplec-
tic scales defined above. See [8,59].
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Zakharov–Shabat equation. Let us take the symplectic Hilbert scale (Xs = Hs(S1,C),
J̄ du∧du) as in the Example 2.8. The defocusing and focusing Zakharov–Shabat equations

u̇ = i
(−uxx + mu ± γ |u|2u)

, γ > 0, (4.7)

both are Lax-integrable, see [83,8].

5. KAM for PDEs

In this section we discuss the ‘KAM for PDEs’ theory. Here we cover all relevant top-
ics, except the theory of time-periodic solutions of Hamiltonian PDEs. The latter is re-
viewed in the Appendix, written by Dario Bambusi. We avoid completely the classical
finite-dimensional KAM-theory which deals with time-quasiperiodic solutions of finite-
dimensional Hamiltonian systems and instead refer the reader to the recent survey [78].

5.1. An abstract KAM-theorem

Let ({Xs}, α2 = J̄ du ∧ du) be a symplectic Hilbert scale,−dJ = ordJ̄ � 0; A be an
operator which defines a selfadjoint automorphism of the scale of orderdA � −dJ andH

be a Fréchet–analytic functional onXd0, d0 � 0, such that ord∇H = dH < dA:

∇H :Xd0 → Xd0−dH
.

We assume thatdA � 2d0, so the quadratic form1
2〈Au,u〉 is well defined on the spaceXd0.

In this section we consider the quasilinear Hamiltonian equation with the Hamiltonian
Hε(u) = 1

2〈Au,u〉 + εH(u):

u̇(t) = J
(
Au(t) + ε∇Hu(t)

)
. (5.1)

We assume that the scale{Xs} admits a basis{ϕk, k ∈ Z0 = Z\{0}} such that

Aϕ±
j = λA

j ϕ±
j , Jϕ±

j = ∓λJ
j ϕ±

j ∀j � 1, (5.2)

with some real numbersλJ
j , λA

j . In particular, the spectrum of the operatorJA is {±iλj |
λj = λJ

j λA
j }. The numbersλj are called thefrequencies of the linear system

u̇ = JAu. (5.3)

Let us fix anyn � 1. Then the 2n-dimensional linear space

span
{
ϕ±

j | 1� j � n
}

(5.4)
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is invariant for Equation (5.3) and is foliated to the invariant tori

T n = T n(I ) =
{

n∑
j=1

u±
j ϕ±

j | uj
+2 + uj

−2 = 2Ij ∀j

}
. (5.5)

If I ∈ R
n+, thenT n(I ) is ann-torus. Providing it with the coordinatesq = (q1, . . . , qn),

whereqj = Arg(u+
j + iu−

j ), we see that Equation (5.3) defines onT n(I ) the motion

q̇ = (λ1, . . . , λn) =: ω. (5.6)

So all solutions for the linear equation inT n(I ) are quasiperiodic curves with the frequ-
ency-vectorω. Our goal in this section is to present and discuss a KAM-theorem which
implies that under certain conditions ‘most of’ trajectories of Equation (5.6) on the torus
T n(I ) persist as time-quasiperiodic solutions of the perturbed equation (5.1), ifε > 0 is
sufficiently small.

To state the result we assume that the operatorA and the functionH analytically depend
on an additionaln-dimensional parametera ∈ A, whereA is a connected bounded open
domain inR

n. Thenλj = λj (a). We assume that the firstn frequenciesλl = ωl depend on
a in the non-degenerate way:

(H1) det{∂ωl/∂ak | 1� k, l � n} �≡ 0;
and that the following spectral asymptotic holds:

(H2) |λj (a) − K1j
d1 − K1

1jd1
1 − K2

1jd2
1 − · · · | � Kjd̃, Lip λj � j d̃ ,

whered1 := dA + dJ � 1, K1 > 0, d̃ < d1 − 1 and the dots stand for a finite sum with
exponentsd1 > d1

1 > d2
1 > · · · .

Let us denote byXc
s the complexification of a spaceXs and assume that Equation (5.1)

is quasilinear and analytic:
(H3) the setXd0 × A admits inXc

d0
× C

n a complex neighbourhoodQ such that the
map∇xH :Q → Xc

d0−dH
is complex-analytic and bounded uniformly on bounded

subsets ofQ. Moreover,dH + dJ � d̃ .
Finally, we shall need the following non-resonance condition:
(H4) For all integern-vectorss and(M2 − n)-vectorsl such that|s| � M1, 1� |l| � 2

we have,

s · ω(a) + ln+1λn+1(a) + · · · + lM2λM2(a) �≡ 0, (5.7)

where the integersM1 > 0 andM2 > n are to be specified.
Relations (5.7) with|l| = 1 and|l| = 2 are called, respectively, the first and the second

Melnikov condition.
Let us fix anyI0 ∈ R

n+ and denote byΣ0 the mapTn ×A → Xd0 which sends(q, a) to
the point of the torusT n(I0) with the coordinateq.

THEOREM 5.1. Suppose the assumptions (H1)–(H3) hold. Then there exist integers
M1 > 0 and M2 > n such that if (H4) is fulfilled, then for arbitrary γ > 0 and for suf-
ficiently small ε < ε̄(γ ), a Borel subset Aε ⊂ A and a Lipschitz map Σε :Tn ×Aε → Xd0,
analytic in q ∈ T

n, can be found with the following properties:
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(a) mes(A\Aε) � γ ;
(b) the map Σε is Cε-close to Σ0|Tn×Aε

in the Lipschitz norm;
(c) each torus Σε(T

n × {a}), a ∈ Aε, is invariant for the flow of Equation (5.1) and
is filled with its time-quasiperiodic solutions of the form uε(t;q) = Σε(q + ω′t, a),
q ∈ T

n, where the frequency vector ω′(a) is Cε-close to ω(a) in the Lipschitz norm;
(d) the solutions uε are linearly stable.6

If ∇H defines an analytic map of orderdH on every spaceXd , d � d0, then the solutions
uε, constructed in the theorem, are smooth. Indeed, ifuε(t) is a solution, then due to the
equationJAuε(t) is a smooth curve inXd0−dH −dJ

. SinceJA is an automorphism of the
scale of orderd1, thenuε(t) is a smooth curve inXd0−dH −dJ +d1 ⊂ Xd0+1. Iterating this
arguments we see thatuε is a smooth curve in each spaceXs .

In the semilinear case (i.e., whendH +dJ � d̃ < d1−1 andd̃ � 0) the theorem is proved
in [49,50] (see also [52,73]). The semilinearity restrictiond̃ � 0 was removed in [57]
(see also [59] and [46]). Simultaneously with [49,50] a related KAM-theorem for infinite-
dimensionalHamiltonian systems with short interactions was proved by Pöschel [71] (fol-
lowing Eliasson’s work [33] on lower-dimensional invariant tori for finite-dimensional sys-
tems). The systems (5.1), defined by HPDEs, are not short-interacted, but results of [71] ap-
ply to some equations from non-equilibrium statistical physics. For systems with short in-
teraction a KAM-theory for infinite-dimensional invariant tori also is available, see [39,72]
and references in [72]. We note that [39] was the first work where the KAM theory was
applied to infinite-dimensional Hamiltonian systems.

For some specific HPDEs (5.1) the assertions of Theorem 5.1 can be proven for any
n � 1 even if the parametera is only one-dimensional. In particular, this can be done for
the non-linear wave equation as in Example 5.3 below, whereV (x) ≡ a and the constanta
is the one-dimensional parameter. See [16] and [4].

The proof of Theorem 5.1 is rather technical. For its well-written outline in the semilin-
ear case see [28]. Below we present the proof’s scheme in the form which suits our further
purposes.

THE SCHEME OF THE PROOF OFTHEOREM 5.1. We start with the semilinear case and
assume for simplicity thatλJ

j ≡ 1. ThenI = (I1, . . . , In) and q = (q1, . . . , qn) form a

symplectic coordinate system in the space (2.3). We setY = span{ϕ±
j , j > n} ⊂ X, and

denote byy±
j , j > n, the coordinates inY with respect to the basis{ϕ±

j }. To study the

vicinity of a torusT n(I0), we make the substitutionI = I0 + p. ThenJ̄ du ∧ du = dp ∧
dq + dy+ ∧ dy−, andT n(I0) = {p = 0, y = 0}. In the new variables Equation (2.1) takes
the form

q̇ = ∇pHε, ṗ = −∇qHε, ẏ = J∇yHε,

with the Hamiltonian

Hε = H0(p, y) + εH1(p, q, y), H0 = ω · p + 1

2
〈Ay,y〉. (5.8)

6If Equation (5.1) is not semilinear (i.e., ifdJ +dH > 0), then this assertion is proved provided that the equation
satisfies some mild regularity condition, see Theorem 8.4 in [59].



1104 S.B. Kuksin

The vectorω and the operatorA depend on the parametera; the functionH1 depends on
a andI0. We callH0 theintegrable part of the Hamiltonian Hε .

Retaining the terms ofH1 which are affine inp and quadratic iny, we writeH1 as

H1 = H 1
1 + H 3

1 , H 1
1 = h(q) + hp(q) · p + 〈

hy(q), y
〉 + 〈

hyy(q)y, y
〉
,

H 3
1 = O

(|p|2 + ‖y‖3 + |p| ‖y‖) =:O(p, q, y).

Next in the vicinity of the torusT n = {p = 0, y = 0} we make a symplectic change
of variable to kill the partεH 1

1 of the perturbationεH1. This change of variable is a
transformationS1 which is the time-ε shift along trajectories of an additional Hamil-
tonian F . Here the recipe is that to killH 1

1 , F should be of the same structure, so
F = f (q) + f p(q) · p + 〈f y(q), y〉 + 〈f yy(q)y, y〉. Due to Theorem 3.4 we can write
the transformed HamiltonianHε ◦ S1 as

Hε ◦ S1 = H0 + εH1 + ε〈J∇yF, ∇yH0〉 + ε∇pF · ∇qH0 − ε∇qF · ∇pH0

+ O
(
ε2) +O.

Since∇pH0 = ω, ∇qH0 = 0 and∇yH0 = Ay, then the linear inε term vanishes if the
following relations hold:

(ω · ∇)f = h, (ω · ∇)f p = hp,

(ω · ∇)f y − JAf y = hy, (ω · ∇)f yy + [f yy, JA] = hyy.

We take these relations as equations forf , f p, f y andf yy (called‘the homological equa-
tions’) and try to solve them.

Since the equations have constant coefficients, then decomposingf , f p, . . . in Fourier
series inq, we find for their components (and for matrix components of the operatorf yy )
explicit formulae. Certain terms in these formulae contain small divisors, which vanish for
some values of the vectorω = ω(a). Careful analysis of these divisors show that all of
them are bounded away from zero ifa /∈ A1, whereA1 is a Borel subset ofA of small
measure. When the equations are solved, we get a symplectic transformation which in a
sufficiently small neighbourhood ofT n transforms the HamiltonianHε to a Hamiltonian
which differs from its integrable part by O(ε2).

The explanation above has some flows. The most important one is that the first and the
second homological equations can be solved only if the mean values ofh andhp vanish.
To fulfil the first condition we change the HamiltonianεH1 by a constant (this change is
irrelevant since it does not affect the equations of motion), while to fulfil the second we
subtract fromεH1 the averageε〈hp〉 ·p and add it to the integrable partH0, thus changing
the termω · p to ω2 · p, whereω2 = ω + ε〈hp〉. Similar, to solve the last homological
equation we subtract from the operatorhyy the average of its diagonal part and add the
corresponding quadratic form toH0. Thus, the transformed Hamiltonian becomes

H2 := Hε ◦ S1 = ω2 · p + 1

2
〈A2y, y〉 + ε2H2(p, q, y) +O(p, q, y).
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This transformation is calledthe KAM-step.
Next we perform the second KAM-step. Under the condition thata /∈ A2 we find a trans-

formationS2 which sends the HamiltonianH2 to H3 = H2 ◦ S2 = ω3 · p + 1
2〈A3y, y〉 +

(ε2)2H2 +O(p, q, y), etc. Afterm steps we find transformationsS1, . . . , Sm such that

Hε ◦ S1 ◦ · · · ◦ Sm = ωm · p + 1

2
〈Amy, y〉 + ε2m

Hm +O(p, q, y) =:Hm.

The torusT n = {p = 0, y = 0} is ‘almost invariant’ for the equation with the Hamil-
tonianHm. Hence, the torusS1 ◦ · · · ◦ Sm(T n) is ‘almost invariant’ for the original one.
Since the sequenceε2m

converges to zero super-exponentially fast, we can choose the sets
A1,A2, . . . in such a way that mes(A∞ = A1 ∪A2 ∪ · · ·) < γ , for anya /∈A∞ the vectors
ωm(a) converge to a limiting vectorω′(a), and the transformationsS1 ◦ · · · ◦ Sm converge
to a limiting mapΣε(·, a), defined onT n. Then the torusΣε(T

n, a) is invariant for Equa-
tion (5.1) and is filled with its quasiperiodic solutionst → Σε(q + ω′t, a). �

If the equation is not semilinear, then the situation is more complicated since to solve
the forth homological equation we have to remove from the operatorhyy the whole of its
diagonal part (not only its average). Because of that the operatorA in the integrable part of
the Hamiltonian gets terms which form a smallq-dependent diagonal operator of a positive
order. Accordingly, the forth homological equation becomes more difficult and cannot be
solved by the direct Fourier method. Its resolution follows from a non-trivial lemma, based
on properties of fast-oscillating Fourier integrals, proved in [57] (see also [59,46]).

5.2. Applications to 1D HPDEs

Theorem 1 well applies to parameter-depending quasilinear HPDEs with one-dimensional
space variable in a finite interval, supplemented by boundary conditions such that spectrum
of the linear operatorJA is not multiple. Indeed, for such equations assumption (H2)
follows from usual spectral asymptotics, (H3) is obvious if the non-linearity is analytic,
while (H1) and (H4) hold if the equation depends on the additional parameter in a non-
degenerate way. More explicitly it means the following. In the examples which we consider
below, the equations depend on a potentialV (x; a), which is analytic ina and smooth inx.
The non-degeneracy means that in a functional space, formed by functions ofx anda of the
required smoothness, the potentialV should not belong to some analytic subset of infinite
codimension.

Below we just list the examples. In each case application of Theorem 5.1 is straightfor-
ward. The theorem applies if dimension of the parametera is � n and dependence of the
potentialV on a is non-degenerate as it was explained above. In the first three examples
the potentialV (x;a) is real, smooth inx and analytic ina. The functionf (x, v;a) is real,
smooth inx and analytic inv anda. Details can be found in [52,53,59,57].

EXAMPLE 5.2. Non-linear Schrödinger equation (NLS), cf. Example 2.8:

u̇ = i
(−uxx + V (x;a)u + εf

(
x, |u|2;a)

u
)
, u = u(t, x), x ∈ [0,π]; (5.9)

u(t,0) ≡ u(t, π) ≡ 0. (5.10)
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Now dJ = 0, dA = 2, d̃ = dH = 0 and we view the Dirichlet boundary conditions as the
odd periodic ones (cf. Example 2.9). The theorem applies in the scale of odd periodic
functions withd0 = 1 or 2. If f is even and 2π -periodic inx, then the theorem applies
with anyd0 � 1 and the constructed quasiperiodic solutions are smooth.

EXAMPLE 5.3. Non-linear string equation:w(t, x) satisfies (5.10) and

ẅ = wxx − V (x;a)w + εf (x,w;a),

where nowV > 0 andf (x,w) = 0 if w = 0 orx = 0. Let us denoteU = (u,−(−�)−1/2u̇).
It is a matter of direct verification thatU satisfies a semilinear Hamiltonian equation (5.1)
in a suitable symplectic Hilbert scale, formed by odd periodic Sobolev vector-functions
(cf. Equation (4.6)). NowdA = 1, dJ = 0, d̃ = dH = −1. Cf. [79] and [16,4].

EXAMPLE 5.4 (KdV-type equations). KdV-type equation

u̇ = ∂

∂x

(−uxx + V (x;a)u + εf (x,u;a)
); x ∈ S1,

∫
S1

udx ≡ 0, (5.11)

cf. Example 2.7. NowdJ = 1, dA = 2, d̃ = dH = 0.

Theorem 5.1 also applies ifx ∈ R
1 and the potentialV (x; a) grows sufficiently fast

whenx → ∞.

EXAMPLE 5.5. Non-linear Schrödinger equation on the line:

u̇ = i
(−uxx + (

x2 + µx4 + V (x;a)
)
u + εf

(|u|2;a)
u
)
, µ > 0,

u = u(t, x), x ∈ R, u → 0 as|x| → ∞.

Here the potentialV is smooth, analytic ina and vanishes as|x| → ∞. The real-valued
functionf is analytic. NowdJ = 0, dA = 4/3, dH = 0. Another example of this sort see
in [52], Section 2.5.

The time-quasiperiodic solutions, constructed in Examples 5.2–5.5, are linearly stable.
Therefore they should be observable in numerical models for the corresponding equations.
Indeed, quasiperiodic behaviour of solutions for 1D HPDEs with small non-linearity was
observed in many experiments, starting from the famous numerics of Fermi, Pasta and
Ulam [36]; e.g., see [82].

5.3. Multiple spectrum

In Examples 5.2, 5.3 the equations are considered under the Dirichlet boundary conditions.
If we replace them by the periodic ones

u(t, x) ≡ u(t, x + 2π),
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then Theorem 5.1 would not apply since now the frequencies of the corresponding linear
equations are asymptotically double: they have the form{λ±

j , j � 1}, where|λ+
j −λ−

j | → 0

asj → ∞. It is clear that the numbers{λ±
j } cannot be re-ordered to meet the spectral as-

ymptotic condition (H2). Still, for some semilinear equations (5.1) assertions of the theo-
rem remain true if the frequenciesλj are not single, but asymptotically they have the same
multiplicity m � 2 and behave regularly. A corresponding result is proved by Chierchia and
You in [27], using the scheme, explained in Section 5.1. We do not give precise statement
of their theorem, but note that it applies to the non-linear string equation in Examples 5.3
under the periodic boundary conditions. The result is the same: if the non-degeneracy con-
dition holds, then forε small enough and for most (in the sense of measure) values of
then-dimensional parametera, solutions of the linear equation (5.3) which fill in a torus
T n(I ), I ∈ R

n+, persist as linearly stable time-quasiperiodic solutions of the corresponding
non-linear equation (5.1).

We note that this persistence result was proved earlier by Bourgain [16], who used an-
other KAM-scheme, discussed in the next section.

5.4. Space-multidimensional problems

The abstract Theorem 5.1 is a flexible tool to study 1D HPDEs, but itnever applies to
space-multidimensional equations since the spectral assumption (H2) never holds in di-
mensions> 1. The first KAM-theorem which applies to higher-dimensional HPDEs, is
due to Bourgain [19]. In that work the 2D NLS equation as in Example 2.8 is considered.
For technical reasons the potential termV u is replaced there by the convolutionV ∗ u:

u̇ = i

(
−�u + V (x;a) ∗ u + ε

∂

∂ū
g(u, ū)

)
, u = u(t, x), x ∈ T

2. (5.12)

The potentialV (x;a) is real analytic andg(u, ū) is a real-valued polynomial ofu andū.
This equation has the form (5.1), whereAu = −�u + V ∗ u and Ju = iu. The basis
{ϕk} as in (5.2) is formed by normalised exponents{eis·x andieis·x, s ∈ Z

2}, re-numerated
properly, and

λJ
s ≡ 1, λA

s = |s|2 + V̂ (s;a),

where{V̂ (s;a)} are the Fourier coefficients ofV . For anyn, the linear equation (5.12)|ε=0
has quasiperiodic solutions

u =
n∑

j=1

zsj e
iλA

sj
t
ϕsj (x) (5.13)

(these are trajectories of Equation (5.6) on then-torus (5.5), whereIj = 1
2|zsj |2 andIs = 0

if s differs from allsj ). For simplicity let us assume thataj = V̂ (sj ; a), j = 1, . . . , n. Then
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the result of [19] is that for most values of the parametera (in the same sense as in The-
orem 5.1), the solution (5.13) persists as a time-quasiperiodic solution of Equation (5.12).
In contrast to the 1D case it is unknown if the new solutions are linearly stable.

The proof in [19] is based on a KAM-scheme, different from that described in Sec-
tion 5.1. Originally this scheme is due to Craig and Wayne [29] who used it to construct
periodic solutions of non-linear wave equations, using certain techniques due to Fröhlich–
Spencer [38]. Also see [16].

Now we briefly describe the scheme, using the notations from Section 5.1. When the
perturbationεH1 is decomposed as in (5.8), we extract the termε〈hyy(q)y, y〉 from εH 1

1
and add it to the integrable partH0. After this the Hamiltonian to be killed is the sum
of the three termsh(q) + hp(q) + 〈hy(q), y〉; accordingly the HamiltonianF is a sum
of three terms as well. We have to find them from the first three homological equations.
The first two are not difficult, but the third one is a real problem since the operatorA no
longer has constant coefficients but equalsA0 + Â(q), whereÂ is a bounded operator of
orderε (it changes from one KAM-step to another). The resolution of this equation for
high KAM steps is the most difficult part of implementation the Craig–Wayne–Bourgain
KAM-scheme.

Recently Bourgain managed to develop this scheme father and applied it to high-
dimensional equations. We are not ready to discuss this and related results, and instead
refer the reader to the original publications [23]. Also see [34].

5.5. Perturbations of integrable equations

Let us consider a quasilinear HPDE on a finite space-interval, which is an integrable Hamil-
tonian equation (4.1) in some symplectic Hilbert scale ({Xs}, α2 = J̄ dx ∧ dx). As we ex-
plained in Section 4.1, this equation has invariant finite-gap symplectic manifoldsT 2n such
that restriction of (4.1) to any of them is integrable. In this section we discuss the results
on persistence of quasiperiodic solutions that fill in these manifolds, provided by the KAM
for PDEs theory. We shall see that they are very similar to the celebrated Kolmogorov
theorem, which states thatmost of quasiperiodic solutions of a non-degenerate analytic in-
tegrable (finite-dimensional) Hamiltonian system persist under small perturbations of the
Hamiltonian; see [1,65,78] and Addendum in [59]. We state the main result as a

THEOREM 5.6 (Metatheorem).Most of quasiperiodic solutions that fill in any finite-gap
manifold T 2n as above persist under small Hamiltonian quasilinear analytic perturbations
of the integrable equation. If the finite-gap solutions in T 2n are linearly stable, then the
new solutions are linearly stable as well.

In the assertion above the statement ‘most of quasiperiodic solutions persist’ means the
following. Due to the Liouville–Arnold theorem [2,43], the manifoldT 2n can be cov-
ered by charts, diffeomorphic toB × T

n = {p,q} (B is a ball in R
n), with chart-maps

Φ0 :B × Tn → T 2n such thatΦ∗
0α2 = dp ∧ dq, and the curvesΦ0(p, q + t∇h(p)) are

solutions of the integrable equation, whereh(p) = H ◦ Φ0(p, q). Let us denote byε the
small coefficient in front of the perturbation. Then for every chart there exists a Borel
subsetBε ⊂ B and a mapΦε :Bε × T

n → Xd (d is fixed), with the following properties:
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(i) mes(B\Bε) → 0 asε → 0;
(ii) the mapΦε :Bε × T

n → Xd is C
√

ε-close toΦ0 in the Lipschitz norm and is
analytic inq ∈ T

n;
(iii) there exists a mapωε :Bε → R

n, Cε-close to the gradient map∇h in the Lipschitz
norm, such that the curvest → Φε(p,q + tωε(p)), p ∈ Bε, q ∈ T

n, are solutions
for the perturbed equation.

The statement of Theorem 5.6 is proven under a number of assumptions (see [59,35]).
These assumptions are checked for such basic integrable HPDEs as KdV, Sine- and Sinh-
Gordon equations. There are no doubts that they also hold for the Zakharov–Shabat equa-
tions7 (but the theorem in [59,35] does not apply to the Kadomtsev–Petviashvili equation).
Below we present a scheme of the proof and discuss the restrictions on the integrable
HPDE which allow to implement it.

We view (4.1) as an equation in the Hilbert spaceXd , and denote the quasilinear Hamil-
tonian of the perturbed equation as

Hε = 1

2
〈Ax, x〉 + h0(x) + εh1(x).

Accordingly,H0 = 1
2〈Ax, x〉+h0 is the HamiltonianH of the unperturbed equation (4.1).

Step 1. Let us consider any finite-gap solutionu0(t) = Φ0(p0, q0 + t∇h(p0)) and lin-
earise (4.1) about it:

v̇ = J
(∇H

(
u0(t)

))
∗v. (5.14)

The theory of integrable equations provides tools to reduce this equation to constant co-
efficients by means of a time-quasiperiodic substitutionv(t) = G(p0, q0 + t∇h(p0))ṽ(t),
whereG(p,q), (p, q) ∈ B × T

n, is a symplectic linear mapG(p,q) :Yd → Zd (see [59,
Sections 5, 6]). HereYd is a fixed symplectic subspace ofZd of codimension 2n. The
restriction, which we impose at this step, is that the operatorG(p,q) is a compact pertur-
bation of the embeddingYd → Zd , which analytically depends on(p, q).

Step 2. The mapG from the Step 1 defines an analytic map

B × T
n × Yd → Xd,

linear and symplectic iny ∈ Yd . This map defines a symplectomorphism

B × T
n × Bδ(Yd) → Xd, Bδ(Yd) = {‖y‖d < δ

}
, (5.15)

such that linearisation iny aty = 0 of the latter equals the former ([59, Section 7]).
Step 3. We use the map (5.15) to pass in the HamiltonianHε to the variables(p, q, y).

Retaining linear and quadratic iny terms we get

Hε(p, q, y) = h(p) + 1

2

〈
A(p)y, y

〉 + h3(p, q, y) + εh1(p, q, y), (5.16)

7See [41] for anad hoc KAM-theorem for the defocusing equation.



1110 S.B. Kuksin

whereh3 = O(‖y‖3
d). Calculations show thath3(p, q, y) contains terms such that their

gradient maps have the same order as the operatorA(p). If this really was the case, then
the Hamiltonian equation would not be quasilinear, which would complicate its study a
lot. Fortunately, this does not happen due to a cancellation of a very general nature (see
Lemma 7.5 in [59]), and we have

ord∇h3 < ordA(p) − 1. (5.17)

Step 4. Invariant tori of the unperturbed system with the HamiltonianH0(p, q, y) have
the form {p = const, y = 0}. Let us scale the variables neara torus {p = a, y = 0}:
p = a + ε2/3p̃, q = q̃, y = ε1/3ỹ. In the scaled variables the perturbed equation has the
Hamiltonian

const+ω(a) · p̃ + 1

2

〈
A(a)ỹ, ỹ

〉 + O
(
ε1/3), ω(a) = ∇h(a). (5.18)

So we have got the system (5.1), written in the form (5.8), withε replaced byε1/3. If
Theorem 5.1 applies, then most of the finite-gap tori{p = const} persist in the perturbed
equation, as states the Metatheorem. To be able to use the theorem we have to check the
assumptions (H1)–(H4).

The condition (H2) holds if the integrable equation is 1D (if the spectrum is asymp-
totically double, e.g., if the unperturbed equation is the Sine-Gordon equation under the
periodic boundary conditions, then one should use a version of the Metatheorem, based
on the Chierchia–You result). The quasilinearity condition (H3) holds due to (5.17). The
assumption (H1) now takes the form

Hessh(p) �≡ 0. (5.19)

This is exactly Kolmogorov’s non-degeneracy condition for the integrable system onT 2n.
The assumption (H4) withω = ∇h(a) is the second non-degeneracy condition, which
needs verification.

Summing up what was said above, we see that Theorem 5.1 implies the Metatheo-
rem if the unperturbed integrable equation is 1D quasilinear, the linear operatorG(p,q)

from Step 1 possesses the required regularity properly and the non-degeneracy assump-
tions (5.19) and (5.7) hold true.

The scheme we have just explained was suggested in [51], where it was used to
prove an abstract KAM-theorem, which next was applied to Birkhoff-integrable infinite-
dimensional systems and to perturbed KdV equations. See [59,35] for a more general ab-
stract theorem, based on the same scheme.

Steps 1–2 are not the only way to reduce an integrable equation to the normal
form (5.16). Another approach to get it had been initiated by Kappeler [44]. It was de-
veloped further in a number of publications and finally in [45] it was proved that the
KdV equation is Birkhoff-integrable. It means the following. Let us take the Darboux scale
({Xs}, α2) with the index-setZ = Z0, andθk = |k| (see Example 2.6). Then there exists
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a mapΦ :X∞ → H∞(S1)0 which extends to analytic mapsXs → Hs(S1)0, s � 0, such
that

h ◦ Φ(u) =
∞∑

j=1

j3(u2
j + u2−j

) + 〈
a function ofu2

l + u2−l , l = 1,2, . . .
〉
. (5.20)

Here {uk, k ∈ Z0} are coefficients of decomposition ofu ∈ Xs in the basis{ϕk} and h

is the KdV-Hamiltonian (see Example 2.7). Moreover, the Hamiltonian (5.20) defines an
analytic Hamiltonian vector field of order three in each spaceXd , d � 1. In the transformed
variables theN -gap tori of the KdV equation take the form (5.5), wheren � N and exactly
N numbersIj are non-zero. Now let us take a torus (5.5), whereI ∈ R

n+. Making a change
of variables as in Section 5.1, we arrive at the Hamiltonian (5.18). Detailed and readable
derivation of the normal form (5.20) see in [46].

Reduction to the Birkhoff normal form (5.20) uses essentially specifics of the KdV’s
L-operator. Still, similar arguments apply as well to the defocusing Zakharov–Shabat equa-
tion, see [41]. Presumably, the Birkhoff normal forms exist for some other integrable equa-
tions with selfadjointL-operators, but not for equations with non-selfadjoint operators. In
particular, the focusing Zakharov–Shabat equation cannot be reduced to the form (5.20)
since for this equation some finite-gap tori are linearly unstable [26], while all invariant
tori of the form (5.5) for the Hamiltonian (5.20) are linearly stable.

EXAMPLE 5.7 (Perturbed KdV equation). Consider the equation

u̇(t, x) = 1

4

∂

∂x

(
u′′ + 3u2 + εf (x,u)

)
, x ∈ S1;

∫
S1

udx ≡ 0, (5.21)

wheref is smooth inx, u and analytic inu. The Metatheorem applies and implies that
most of finite-gap KdV-solutions persist as time-quasiperiodic solutions of (5.21). More-
over, these solutions are smooth and linearly stable.

This result was first stated in [51]. The proof contains some gaps. Two the most serious
of them are that Theorem 5.1, proved then only for semilinear equations, was used in a
quasilinear case, and that the non-degeneracy assumptions (5.19) and (5.7) were taken for
granted. These gaps were filled in later. The quasilinear version of Theorem 5.1 was proved
in [57] (preprint of this paper appeared in 1995), and the non-degeneracy conditions were
verified in [12]. Also see [59, Section 6.2.1]. The arguments in [12,59] are general and
applies to other equations.

For a complete proof of ‘KAM for KdV’ see [59,35] and [46].

The Metatheorem (in its rigorous form as in [59,35] and [46]), applies to quasilinear
Hamiltonian perturbations of any higher equation from the KdV-hierarchy, provided that
the non-degeneracy relations are checked for this equation. It can be done in the same way
as in Example 5.7. See [46], where the non-degeneracy of the second KdV equation is
verified.
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EXAMPLE 5.8 (Perturbed SG equation). Consider the equation

ü = uxx − sinu + εf (u, x), u(t, 0) = u(t,π) = 0, (5.22)

wheref (0, x) ≡ 0 (andf ∈ C∞ is analytic inu). The Metatheorem applies to prove per-
sistence most of finite-gap solutions of the SG-equation, see [11,59,35]. In general, due
to the phenomenon explained in Example 2.9, the persisted solutions are onlyH 2-smooth
in x. But if f is x-independent and odd inu, then they are smooth.

In difference with the KdV-case, large amplitude finite-gap SG-solutions, as well as the
corresponding persisted solutions of (5.22), in general are not linearly stable.

To end this section we note that since the persisted solutionsuε(t) have the form

uε(t) = Φε

(
p,q + tωε(p)

) = Φ0
(
p,q + tωε(p)

) + O
(√

ε
)
,

then to calculate them with the accuracy
√

ε for all values of timet , we can use the “finite
gap map”Φ0 with the corrected frequency vector. Moreover,ωε(p) = ∇h(p)+ εW1(p)+
O(ε2), where the vectorW1(p) can be obtained by averaging over the corresponding finite-
gap torus of some explicit quantity, see [59, p. 147].

5.6. Small amplitude solutions of HPDEs

Let us consider the non-linear string equation

utt = uxx − mu + f (u), u = u(t, x), 0� x � π; u(t,0) = u(t,π) = 0.

(5.23)

Herem > 0 andf is an odd analytic function of the form

f (u) = κu3 + O
(
u5), κ > 0.

Sincem, κ > 0, then constantsa, b > 0 can be found such that−mu + f (u) = −a sinbu.
Hence, Equation (5.23) can be written as

utt = uxx − a sinbu + O
(
u5).

After the scalingu = εw, ε � 1, the higher-order perturbation transforms to a small one,
and we can apply the Metatheorem (cf. Example 5.8) to prove that small-amplitude parts of
the finite-gap manifoldsT 2n, n = 1,2, . . . , for the SG equationutt = uxx − a sinbu with
the Dirichlet boundary conditions mostly persist in (5.23). To put this scheme through, the
small-amplitude parts

T 2n
δ = {

(u, u̇) ∈ T 2n | ‖u‖ + ‖u̇‖ < δ
}
, 0< δ � 1,
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of the manifoldsT 2n have to be studied in details. This task was accomplished in [14],
where the following results were proved:

(i) the setsT 2n
δ are smooth manifolds which contain the origin,

(ii) they are in one-to-one correspondence with their tangent spaces at the origin,
(iii) these tangent spaces are invariant spaces for the Klein–Gordon equationutt =

uxx − (ab)u.
Another proof of (i)–(iii) was suggested in [59]. It is based on some ideas from [44] and

applies to other integrable equations. After (i)–(iii) are obtained, a version of the Metathe-
orem (or a version of Theorem 5.1) applies to prove that most of finite-gap solutions from a
manifoldT 2n

δ persist in (5.23) in the following sense: the 2n-dimensional Hausdorff mea-
sure of the persisted part of the manifold, divided by a similar measure ofT 2n

δ , converges
to one asδ → 0. See [13] for a proof and [53] for discussion.

Similar results hold for the NLS equation

iu̇ = uxx + mu + f
(|u|2)u, f (0) = 0, f ′(0) = γ �= 0, (5.24)

wheref is analytic, since it is a higher-order perturbation of the Zakharov–Shabat equa-
tion (4.7). But it turns out that it is easier to approximate (5.24) near the origin by its partial
Birkhoff normal form. The latter is an integrable infinite-dimensional Hamiltonian system
(which is not an HPDE), and a sibling of the Metatheorem applies to prove that most of its
time-quasiperiodic solutions persist in (5.24), see [60]. More on the techniques of Birkhoff
normal forms in HPDE see in [74] and [46]. The classical reference for finite-dimensional
Birkhoff normal forms is the book [65].

6. Around the Nekhoroshev theorem

The classical Nekhoroshev theorem [66] deals with nearly-integrable Hamiltonian sys-
tems with analytic HamiltoniansHε(p,q) = h(p)+ εH(p,q) on the phase-spaceP ×T

n,
P ⊂ R

n, given the usual symplectic structuredp ∧ dq. Under the assumption that the
Hamiltonianh(p) satisfies a mild non-degeneracy condition calledthe steepness, the the-
orem states that the action variables change exponentially slow along trajectories of the
system. Namely, there exist constantsa, b ∈ (0,1) such that for any trajectory(p(t), q(t))

of the system we have∣∣p(t) − p(0)
∣∣ � Cεa if |t | � exp

(
ε−b

)
. (6.1)

Strictly convex functionsh(p) form an important class of the steep Hamiltonians. An alter-
native proof of the theorem which applies in the convex case was suggested by Lochak [63].
It is based on clever approximation of a trajectory(p(t), q(t)) by a time-periodic solution
of the equation which is a high-order normal form forHε. So rational frequency-vectors
play for the Lochak approach very important role.

Original Nekhoroshev’s proof contains two parts, analytical and geometrical. The tech-
niques, developed in the analytical part of the proof, allow to get the following result,
which we call below the quasi-Nekhoroshev theorem: Let us consider the HamiltonianHε,
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depending on an additional vector-parameterω ∈ Ω � R
n, Hε = p · ω + εH(p,q). Then

for any γ > 0 there exists a Borel subsetΩγ ⊂ Ω (‘the Diophantine subset’) such that
mes(Ω\Ωγ ) < γ , and (6.1) withC = Cγ holds ifω ∈ Ωγ . Note that in the Cartesian coor-
dinates(x, y), corresponding to the action-angle variables(p, q) (i.e., xj = √

2pj cosqj ,
yj = √

2pj sinqj ), the HamiltonianHε reeds as

Hε = 1

2

∑
ωj

(
x2
j + y2

j

) + εH(x, y).

That is,Hε is a perturbation of the quadratic HamiltonianH0. So the quasi-Nekhoroshev
theorem implies long-time stability of the zero equilibrium for an analytical Hamiltonian

H(x,y) = H0 + h, h = O
(∣∣(x, y)

∣∣3), (6.2)

provided that the vectorω belongs to the Diophantine set. In [67] Niederman used the
Lochak approach to get a stronger theorem on stability for (6.2). Namely, he proved that
the equilibrium is stable during the exponentially long time if the vectorω does not satisfies
resonant relations up to order four, andh is convex in a certain sense.8

To get a corresponding theorem which applies to all small initial data is a non-trivial
task, resolved by Niederman [67] by means of the Lochak approach.

No analogy of the Nekhoroshev theorem for HPDEs is known yet, but a number ofad
hoc quasi-Nekhoroshev theorems for HPDEs were proved, mostly by Bourgain and Bam-
busi, see [3,4,22] and references therein. These works discuss stability of the equilib-
rium for HPDEs (mostly 1D) with Hamiltonians of the form (6.2). Under some restric-
tions on the quadratic partH0 and on the higher-order parth, it is proved that if the ini-
tial datau0 is an ε-small and ‘very’ smooth function, then a solution stays very close
to the corresponding invariant torus of the linear system with the HamiltonianH0, dur-
ing the time which is polynomially large inε−1, or even exponentially large. This re-
sult is obtained either under the ‘quasi-Nekhoroshev’ condition that the spectrum of the
operatorA is ‘highly non-resonant’, or under the opposite assumption (needed to ap-
ply the Lochak–Niederman technique) that the spectrum is ‘very resonant’. In particular,
the following result is proved in [3] (also see [75,22]): Let us consider the NLS equa-
tion (5.24) in the scale{Hs

0(0, π)} of odd 2π -periodic functions. Assume thatu0(x) =∑N
k=1 uk0 sinkx, denoteε = |u0(x)|L2 � 1 and write the solutionu(t, x) of (5.24) as

u = ∑
uk(t)sinkx. Then there existε∗ > 0 and constantsC1,C2 > 0 such that forε < ε∗

and|t | � C1 exp(ε∗/ε)1/N =: Tε we have

∞∑
k=1

(∣∣uk(t)
∣∣2 − |uk0|2

)2 � C2ε
4+1/N . (6.3)

Let us setT N = {u(x) = ∑N
k=1 uk sinkx | |uk| = |uk0|}. This is ann-torus of diameter

∼ ε and (6.3) implies that

distHs
0

(
u(t), T n

)
� Csε

1+1/N ∀|t | � Tε,

8Independently this result was obtained in [9] by means of the Nekhoroshev’s techniques.
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if s < −1/4. Thus, during the timeTε the trajectoryu(t) remains very close to its projection
to T N . The latter is a trajectory of anN -dimensional dynamical system, so the time of
its return to aρε-neighbourhood (ρ � 1) of the initial point ‘should’ be of orderρ−N .
Same is true for the trajectoryu(t), if ε is small in terms ofρ. The phenomenon of the
pathologically good recurrence properties of small-amplitude trajectories of some non-
integrable 1D HPDEs is well known from numerics (e.g., see [82]). We have seen that the
quasi-Nekhoroshev theorems as above explain it up to some extend.

7. Invariant Gibbs measures

If Equation (4.1) is a finite-dimensional Hamiltonian system withu = (p, q) ∈ (R2n, dp ∧
dq), then any measuref (H(p,q)) dp dq such that the functionf ◦ H is Lebesgue-
integrable, is invariant for the equation. The most important among these measures is
the Gibbs measuree−H dp dq (the HamiltonianH is assumed to grow to infinity with
|(p, q)|). Now let us consider an HPDE (4.1). Say, the zero-massφ4-equation

ü = uxx − u3, u = u(t, x), x ∈ S1.

This equation is equivalent to the system

u̇ = −Bv,

(7.1)
v̇ = Bu + B−1(u3 − u

)
,

whereB = √
1− �. Denotingξ = (u, v) we can see that this is a Hamiltonian system in

the symplectic scale({Zs = Hs+1/2(T2;R
2)}, α2 = J̄ dξ ∧ dξ), whereJ (u, v) = (−v,u),

with the Hamiltonian

H(ξ) = 1

2
‖ξ‖2

0 +
∫ (

1

4
|u|4 − 1

2
|u|2

)
dx, ξ = (u, v).

Here‖ · ‖0 is the norm in the spaceH 1/2(S1;R
2) (cf. Section 8.3). The natural question is

if the formal expression

µ = e−H(ξ) dξ (7.2)

defines a measure in a suitable function spaceΞ = {ξ(x)}, invariant for flow-maps of
Equation (7.1). Since the Lebesgue measuredξ does not exist in an infinite-dimensional
function space, then to make the right-hand side of (7.2) meaningful we write it as

µ = e− ∫
( 1

4 |u|4− 1
2 |u|2) dxe− 1

2‖ξ‖2
0 dξ.

Now exp−1
2‖ξ‖2

0 dξ is a well-defined Gaussian measure, supported by a suitable
spaceΞ , formed by functions of low smoothness, and 0< p(ξ) � C, wherep(ξ) =
e− ∫

( 1
4 |u|4− 1

2 |u|2) dx . Therefore if
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(i) p(ξ) is a Borel function onΞ , thenµ is a well-defined Borel measure onΞ .
To check that it is invariant for Equation (7.1) we have to verify that
(ii) the flow-maps of (7.1) are well-defined on suppµ and preserve the measure.

The corresponding result was first stated by Friedlander [37]. Unfortunately, his arguments
contain serious flaws. Complete proofs appeared later in works of Zhidkov, McKean and
Vaninsky and Bourgain, see the books [20,84] and references therein. Similar arguments
apply to the 1D NLS equation (2.4), where the non-quadratic termq satisfies certain re-
strictions.

For higher-dimensional HPDEs the task of constructing the Gibbs measures becomes
much more difficult. The only known result is due to Bourgain who proved that for the
defocusing 2D NLS equation

iu̇ = �u − |u|2u, x ∈ T
2,

the Gibbs measure (7.2) exists and is invariant. The main difficulty here is the step (ii)
which is now based on highly non-trivial results on regularity of corresponding flow-maps
in Sobolev spaces of low smoothness; see in [20].

8. The non-squeezing phenomenon and symplectic capacity

8.1. The Gromov theorem

Let (R2n,β2) be the spaceR2n = {x1, x−1, . . . , x−n} with the Darboux symplectic form
β2 = ∑

dxj ∧ dx−j . By Br(x) = Br(x;R
2n) andC

j
ρ = C

j
ρ(R2n), 1 � j � n, we denote

the following balls and cylinders inR2n:

Br(x) = {
y | |y − x| < r

}
, Cj

ρ = {
y = (y1, . . . , y−n) | y2

j + y2−j < ρ2}.
The famous (non-)squeezing theorem by M. Gromov [42] states that iff is a symplecto-

morphismf :Br(x) → R
2n such that its range belongs to some cylinderx1+C

j
ρ , x1 ∈ R

2n,
thenρ � r . For an alternative proof, references and discussions see [43].

8.2. Infinite-dimensional case

Let us consider a symplectic Hilbert scale({Zs}, α2) with a basis{ϕj | j ∈ Z0}. We assume
that this is a shifted Darboux scale (cf. Example 2.4 in Section 2.2). It means that the basis
can be renormalised to a basis{ϕ̃j | j ∈ Z0} (eachϕ̃j is proportional toϕj ) which is a
Darboux basis for the formα2 and a Hilbert basis of some spaceZd :

〈ϕ̃j , ϕ̃k〉d = δj,k, α2[ϕ̃j , ϕ̃−k] = sgnj δj,k ∀j, k. (8.1)

These relations imply that

α2[ξ, η] = 〈J̄ ξ, η〉d, J̄ ϕ̃j = sgnj ϕ̃−j ∀j. (8.2)
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In particular,J̄ = J .
Below we skip the tildes and re-denote the new basis back to{ϕj }.
In this scale we consider a semilinear Hamiltonian equation with the Hamiltonian

H(u) = 1
2〈Au,u〉d + h(u, t). Due to (8.2) it can be written as

u̇ = JAu + J∇dh(u, t), (8.3)

where∇d signifies the gradient inu with respect to the scalar product ofZd .
If a Hamiltonian PDE is written in the form (8.3), then the symplectic space(Zd,α2)

is called the (Hilbert) Darboux phase space for this PDE. Below we study properties of
flow-maps of Equation (8.3) in its Darboux phase space.

Let us assume that the operatorA has the form
(H1) Au = ∑∞

j=1 λj (ujϕj + u−j ϕ−j ) ∀u = ∑
ujϕj , whereλj ’s are some real num-

bers.
ThenJAu = ∑∞

j=1 λj (u−j ϕ−j − ujϕj ), so the linear operatorsetJA are direct sums of
rotations in the planesRϕj + Rϕ−j ⊂ Zd , j = 1,2, . . . .

We also assume that the gradient map∇dh is smoothing:
(H2) there existsγ > 0 such that ord∇dh = −γ for s ∈ [d − γ, d + γ ]. Moreover, the

maps

∇dh :Zs × R → Zs+γ , s ∈ [d − γ, d + γ ],

areC1-smooth and bounded.9

For anyt andT we denote byOT
t any open subset of the domain of definition of the

flow-mapST
t in Zd , such that for each bounded subsetQ ⊂ OT

t the set
⋃

τ∈[t,T ] Sτ
t (Q) is

bounded inZd .10

In the theorem below the ballsBr and the cylindersCj
ρ, j � 1, are defined in the same

way as in Section 8.1.

THEOREM 8.1. Assume that (H1) and (H2) hold and that a ball Br = Br(u0;Zd) :=
{‖y − u0‖d < r} belongs to OT

t together with some ε-neighbourhood, ε > 0. Then the
relation

ST
t (Br) ⊂ v0 + Cj

ρ(Zd) (8.4)

with some v0 ∈ Zd and j � 1 implies that ρ � r .

PROOF. Without lost of generality we may assume that

v0 = 0, j = 1.

Arguing by contradiction we assume that (8.4) holds withρ < r and choose anyρ1 ∈
(ρ, r).

9I.e., they send bounded sets to bounded.
10This set should be treated as a ‘regular part of the domain of definition’.
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For n � 1 we denote byE2n the subspace ofZd , spanned by the vectors{ϕj , |j | � n},
and provide it with the usual Darboux symplectic structure (it is given by the formα2|E2n ).
By Πn we denote the orthogonal projectionΠn :Zd → E2n. We set

Hn = 1

2
〈Au,u〉d + h

(
Πn(u), t

)
and denote byST

(n)t flow-maps of the Hamiltonian vector filedVHn . Any mapST
(n)t decom-

poses to the direct sum of a symplectomorphism ofE2n and of a linear symplectomorphism
of Zd � E2n. So the theorem’s assertion with the mapST

t replaced byST
(n)t follows from

the Gromov theorem, applied to the symplectomorphism

E2n → E2n, x → ΠnS
T
(n)t

(
i(x) + u0

)
,

wherei stands for the embedding ofE2n to Zd .
Proofs of the two easy lemmas below can be found in [54].

LEMMA 8.2. Under the theorem’s assumptions the maps ST
(n)t are defined on Br for n � n′

with some sufficiently large n′, and there exists a sequence εn −→
n→∞ 0 such that

∥∥ST
t (u) − ST

(n)t (u)
∥∥ � εn (8.5)

for n � n′ and for every u ∈ Br .

LEMMA 8.3. For any u ∈ Br we have ST
t (u) = e(T −t)JAu + S̃T

t (u), where S̃T
t is a

C1-smooth map in the scale {Zs} and ordS̃T
t = −γ for s ∈ [d − γ, d + γ ].

Now we continue the proof of the theorem. Since its assertion holds for any mapST
(n)t

(n � n′) and since the ballBr belongs to this map’s domain of definition (see Lemma 8.2),
then for eachn � n′ there exists a pointun ∈ Br such thatST

(n)t (un) /∈ C1
ρ1

(0). That is,∣∣Π1S
T
(n)t (un)

∣∣ � ρ1. (8.6)

By the weak compactness of a Hilbert ball, we can find a weakly converging subsequence

unj
⇀ u ∈ Br, (8.7)

so

unj
→ u strongly inZd−γ .

Due to Lemma 8.3 this implies that̃ST
t (unj

) → S̃T
t (u) in Zd , and using (8.7) we obtain the

convergence:

ST
t (unj

) ⇀ ST
t (u). (8.8)
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Noting that|Π1S
T
t (un)| = |Π1S

T
(n)tun + Π1(S

T
t − ST

(n)t )un| and using (8.6), (8.5) we
get: ∣∣Π1S

T
t (un)

∣∣ � ρ1 − εn, n � n′. (8.9)

Since by (8.8) Π1S
T
t (unj

) → Π1S
T
t (u) in E2, then due to (8.9) we have

|Π1S
T
t (u)| � ρ1. This contradicts (8.4) becauseρ1 > ρ. The obtained contradiction proves

the theorem. �

8.3. Examples

EXAMPLE 8.4. Let us consider the non-linear wave equation

ü = �u − f̃ (u; t, x), (8.10)

whereu = u(t, x), x ∈ T
n. The functionf̃ is a polynomial inu of a degreeD such that

its coefficients are smooth functions oft andx. We setf = f̃ − u, denote byB the linear
operatorB = √

1− � and write (8.10) as the system of two equations:

u̇ = −Bv,

v̇ = Bu + B−1f (u; t, x).
(8.11)

Let us take for{Zs} the shifted Sobolev scaleZs = Hs+1/2(Tn;R2), where〈ξ, η〉s =∫
Tn B2s+1ξ · η dx (its basic scalar product is the scalar product inH 1/2). We setα2 =

J̄ dξ ∧ dξ , whereJξ = (−v,u) for ξ = (u, v). Choosing for{ψj , j ∈ N} a Hilbert basis of
the spaceH 1/2(Tn), formed by properly normalised and enumerated non-zero functions
sins · x and coss · x (s ∈ Z

n), we set

ϕ̃j = (ψj ,0), ϕ̃−j = (0,ψj ), j ∈ N.

The obtained symplectic scale({Zs}, α2) is a Darboux scale. It is easy to see that (8.11) is
a Hamiltonian equation with the Hamiltonian

H(u,v) = 1

2

〈
B(u, v), (u, v)

〉
0 +

∫
F(u; t, x) dx,

whereF ′
u = f . SoZ0 = H 1/2(Tn,R

2) is the Darboux phase space for the non-linear wave
equation, written in the form (8.11).

To apply Theorem 8.1 we have to check the conditions (H1) and (H2). The first one (with
A = B) holds trivially sinceϕ̃j ’s are eigenfunctions of the Laplacian. The condition (H2)
holds in the following three cases:
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(a) n = 1,
(b) n = 2, D � 4,
(c) n = 3, D � 2.
The case (a) and the case (b) withD � 2 can be checked using elementary tools, see [54].

Arguments in the case (b) with 3� D � 4 and in the case (c) are based on a Strichartz-type
inequality, see [17].

In the cases (a)–(c), Theorem 8.1 applies to Equation (8.10) in the form (8.11) and
shows that the flow maps cannot squeezeH 1/2-balls to narrow cylinders. This result can
be interpreted as impossibility of ‘locally uniform’ energy transition to high modes, see
in [54].

EXAMPLE 8.5. For a non-linear Schrödinger equation

u̇ = i�u + if ′
u

(|u|2)u, x ∈ T
n (8.12)

(cf. Example 2.7), the Darboux phase space is theL2-spaceL2(T
n;C) with the basis,

formed by normalised exponents{eis·x, ieis·x}. Now the assumption (H2) fails (and it is
very unlikely that the flow-maps of (8.12) satisfy the assertions of Lemmas 8.2 and 8.3).
So we smooth out the Hamiltonian of (8.12) and replace it by

Hξ = 1

2

∫ (|∇u|2 + f
(|U |2))dx, U = u ∗ ξ,

whereu ∗ ξ is the convolution ofu with a functionξ ∈ C∞(Tn,R). The corresponding
Hamiltonian equation is

u̇ = i�u + i
(
f ′(|U |2)U) ∗ ξ. (8.13)

This smoothed equation satisfies (H1), (H2), and Theorem 8.1 applies to its flow-maps.

8.4. Symplectic capacity

Another way to prove Theorem 8.1 uses a new object—symplectic capacity —which is
interesting on its own.

Symplectic capacity in a Hilbert Darboux space(Zd,α2) as in Section 8.2 (below we
abbreviateZd to Z), is a mapc which associates to any open subsetO ⊂ Z a number
c(O) ∈ [0,∞] and satisfies the following properties:

(1) Translational invariance: c(O) = c(O + ξ) for anyξ ∈ Z;
(2) Monotonicity: if O1 ⊃ O2, thenc(O1) � c(O2);
(3) 2-homogeneity: c(τO) = τ2c(O);
(4) Normalisation: for any ballBr = Br(x;Z) and any cylinderCj

r = C
j
r (Z) we have

c(Br) = c(C
j
r ) = πr2.

(We note that forx = 0 the cylinder contains the ball and is ‘much bigger’, but both sets
have the same capacity.)
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(5) Symplectic invariance: for any symplectomorphismΦ :Z → Z and any domainO,
c(Φ(O)) = c(O).

If (Z,α2) is a finite-dimensional Darboux space, then existence of a capacity with prop-
erties (1)–(5) is equivalent to the Gromov theorem. Indeed, if a capacity exists, then the
squeezing (8.4) withρ < r is impossible due to (2), (4) and (5). On the opposite, the quan-
tity

c̃(O) = sup
{
πr2 | there exists a symplectomorphism which sendsBr in O

}
obviously satisfies (1)–(3) and (5). Using the Gromov theorem we see thatc̃ satisfies (4)
as well.

If (Z,α2) is a Hilbert Darboux space, then the finite-dimensional symplectic capacity,
obtained in [43], can be used to construct a capacityc which meets (1)–(4). This capac-
ity turns out to be invariant under symplectomorphisms, which are flow-mapsST

t as in
Theorem 8.1, see [54]. This result also implies Theorem 8.1.

9. The squeezing phenomenon and the essential part of the phase-space

Example 8.4 shows that flow-maps of the non-linear wave equation (8.11) satisfy the Gro-
mov property. This means (more or less) thatflow of generalised solutions for a non-linear
wave equation cannot squeeze a ball in a narrow cylinder. On the contrary, behaviour
of the flow formed byclassical solutions for the non-linear wave equation in sufficiently
smooth Sobolev spaces exhibits ‘a lot of squeezing’, at least if we put a small parameterδ

in front of the Laplacian. Corresponding results apply to a bigger class of equations. Be-
low we discuss them for non-linear Schrödinger equations; concerning the non-linear wave
equation (8.10) see the author’s paper in GAFA 5:4.

Let us consider the non-linear Schrödinger equation:

u̇ = −iδ�u + i|u|2pu, (9.1)

whereδ > 0 andp ∈ N, supplemented by the odd periodic boundary conditions:

u(t, x) = u(t, x1, . . . , xj + 2π, . . . , xn)

= −u(t, x1, . . . ,−xj , . . . , xn), j = 1, . . . , n, (9.2)

wheren � 3. Clearly, any function which satisfies (9.2) vanishes at the boundary of the
cubeKn of half-periods,Kn = {0 � xj � π}. The problem (9.1), (9.2) can be written in
the Hamiltonian form (2.2) if for the symplectic Hilbert scale({Xs}, α2) one takes the
scale formed by odd periodic complex Sobolev functions,Xs = Hs

odd(R
n/2πZ

n;C), and
α2 = i du ∧ du (cf. Example 2.8).

Due to a non-trivial result of Bourgain (which can be extracted from [15]), flow-
mapsSt for (9.1), (9.2) are well defined in the spacesXs , s � 1. In particular, they are
well defined in the spaceC∞ of smooth odd periodic functions. Denoting by| · |m the
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Cm-norm, |u|m = sup|α|=m supx |∂α
x u(x)|, we define below the setAm ⊂ C∞ which we

call the essential part of the smooth phase-space for the problem (9.1), (9.2) with respect
to theCm-norm, or just theessential part of the phase-space:

Am = {
u ∈ C∞ | u satisfies (9.2) and the condition (9.3)

}
,

where

|u|0 � Kmδµ|u|1/(2pm�+1)
m , (9.3)

with a suitableKm = Km(�) and µ = m�/(2pm� + 1). Here� is any fixed constant
� ∈ (0,1/3).

Intersection of the setAm with theR-sphere in theCm-norm (i.e., with the set{|u|m =
R}) has theC0-diameter� 2KmδµR1/(2pm�+1). Asymptotically (asδ → 0 or R → ∞)
this is much smaller than theC0-diameter of the sphere, which equalsCmR. Thus,Am is
an ‘asymptotically narrow’ subset of the smooth phase space.

The theorem below states that for anym � 2 the setAm is a recursion subset for the
dynamical system, and gives a control for the recursion time:

THEOREM 9.1. Let u(t) = u(t, ·) be a smooth solution for (9.1), (9.2)and |u(t0)|0 = U .
Then there exists T � t0 + δ−1/3U−4p/3 such that u(T ) ∈ Am and 1

2U � |u(T )|0 � 3
2U .

SinceL2-norm of a solution is an integral of motion (see Example 3.5) and|u(t)|0 �
|u(t)|L2(K

n), then we obtain the following

COROLLARY 9.2. Let u(t) be a smooth solution for (9.1), (9.2)and |u(t)|L2(K
n) ≡ W .

Then for any m � 2 this solution cannot stay outside Am longer than the time δ−1/3W−4p/3.

For the theorem’s proof we refer the reader to Appendix 3 in [58]. Here we explain
why ‘something like this result’ should be true. Presenting the arguments it is more con-
venient to operate with the Sobolev norms‖ · ‖m. Let us denote‖u(t0)‖0 = A. Arguing
by contradiction, we assume that for allt ∈ [t0, t1] = L, wheret1 = t0 + δ−1/3U−4p/3, we
have

Cδa‖u‖b
m < ‖u‖0, (9.4)

wherem � 3 is a fixed number. Since‖u(t)‖0 ≡ A, then (9.4) and the interpolation in-
equality imply the upper bounds∥∥u(t)

∥∥
l
� ClA

1− l
m

+ l
mb δ− la

mb , 0� l � m, t ∈ L. (9.5)

In particular, δ‖�u‖1 � C3A
1− 3

m
+ 3

mb δ1− 3a
mb . Therefore ifmb > 3a, then fort ∈ L Equa-

tion (9.1), treated as a dynamical system inH 1
odd, is a perturbation of the trivial equation

u̇ = i|u|2pu. (9.6)
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Elementary arguments show that theH 1-norm of each non-zero solution for (9.6) grows
linearly with time. This implies a lower bound for supt∈L ‖u(t)‖1, whereu(t) is the so-
lution for (9.1), (9.2) which we discuss. It turns out that one can choosea andb in such
a way thatmb > 3a and the lower bound we have just obtained contradicts (9.5) with
l = 1. This contradiction shows that (9.4) cannot be true for allt ∈ L. In other words,
‖u(τ)‖0 � Cδa‖u(τ)‖b

m for someτ ∈ L. At this momentτ the solution enters a domain,
similar to the essential partAm.

Let us consider any trajectoryu(t) for (9.1), (9.2) such that|u(t)|L2(K
n) ≡ W ∼ 1, and

discuss the time-averages〈|u|m〉 and〈‖u‖2
m〉1/2 of its Cm-norm|u|m and its Sobolev norm

‖u‖m, where we set

〈|u|m
〉 = 1

T

∫ T

0
|u|m dt,

〈‖u‖2
m

〉1/2 =
(

1

T

∫ T

0
‖u‖2 dt

)1/2

,

and the timeT of averaging is specified below. While the trajectory stays inAm, we have

|u|m �
(
WK−1

m δ−µ
)1/(1−2pµ)

.

One can show that this inequality implies that each visit toAm increases the integral∫ |u|m dt by a term bigger thanδ to a negative degree. Since these visits are sufficiently
frequent by the corollary, then we obtain a lower estimate for the quantity〈|u|m〉. Details
can be found in [55]. Here we present a better result which estimates the time-averaged
Sobolev norms. For a proof see Section 4.1 of [58].

THEOREM 9.3. Let u(t) be a smooth solution for Equation (9.1), (9.2) such that
|u(t)|L2(K

n) � 1. Then there exists a sequence km ↗ 1/3 and constants Cm > 0, δm > 0
such that 〈‖u‖2

m〉1/2 � Cmδ−2mkm , provided that m � 4, δ � δm and T � δ−1/3.

The results stated in Theorems 9.1, 9.3 remain true for Equations (9.1) with dissipation.
I.e., for the equations withδ replaced byδν, whereν is a unit complex number such that
Reν � 0 and Imν � 0.11 If Im ν > 0, then smooth solutions for (9.1), (9.2) converge to
zero in anyCm-norm. Since the essential partAm clearly contains a sufficiently small
Cm-neighbourhood of zero, then eventually any smooth solution enterAm and stays there
forever. Theorem 9.3 states that the solution will visit the essential part much earlier, before
its norm decays. Moreover, results, similar to Theorem 9.3, are true for solutions of the
damped-driven equatioṅu + δ�u − i|u|2u = η(t, x), where the forceη is a random field,
smooth inx, and stationary mixing int . See [56] and [58].
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Appendix. Families of periodic orbits in reversible PDEs, by D. Bambusi

A.1. Introduction

Some families of periodic solutions of PDEs can be constructed using KAM theory; how-
ever a different approach leading to stronger results and simpler proofs is available. It is
based on the Lyapunov–Schmidt decomposition combined with a suitable analysis of small
denominators. The main advantage of this approach is elimination of the second Melnikov
condition (see (5.7)). As a consequence it is applicable to problems with periodic boundary
conditions and to some equations in more than one space dimension. Most of the general
theory has been developed for equations that are of second order in time and we will mainly
deal with this case. Moreover, we will concentrate on problems involving small denomina-
tors and only briefly report on results of a different kind.

A.2. An abstract theorem for non-resonant PDEs

Let {Xs} be a scale of Hilbert spaces with norms‖ · ‖s and scalar product〈·; ·〉s . LetA be a
(linear) morphism of the scale, and assume that there exists a Hilbert basis{ϕj }∞j=1 of X0
such that

Aϕj = ω2
j ϕj , ωj > 0.

Let us fixs, consider a neighbourhoodU of the origin inXs and a smooth mapg :U → Xs ,
having at the origin a zero of second order. We are interested in families of small amplitude
periodic solutions of the equation

ẍ + Ax = g(x). (A.1)

EXAMPLE A.1. The non-linear wave equation with periodic boundary conditions:

wtt − wxx + V (x)w = f (x,w), (A.2)

w(x, t) = w(x + 2π, t), wx(x, t) = wx(x + 2π, t), (A.3)

where the potentialV and the non-linearityf are smooth periodic of period 2π in x, and
f (x,w) = O(|w|2). Let λj be the periodic eigenvalues of the Sturm–Liouville operator
−∂xx + V (x) and assumeλj > 0 ∀j . Then the frequencies areωj := √

λj . In this case
Xs = Hs(T), andf induces a smooth operator fromXs to itself, provided thats > 1/2.

EXAMPLE A.2. The non-linear plate equation in thed-dimensional cube:

wtt + ��w + aw = f (w), x ∈Q, (A.4)

w|∂Q = �w|∂Q = 0, (A.5)
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wherea > 0, f (w) = O(|w|3) and

Q := {
x = (x1, . . . , xd) ∈ R

d : 0< xi < π
}
.

Then the eigenfunctions of the linearised system are given by

ϕn = sin(n1x1)sin(n2x2) · · ·sin(ndxd)

and the corresponding frequencies areωn =
√

(n2
1 + · · · + n2

d)2 + a, wheren ∈ Z
d and

ni � 1. To fit the abstract scheme we order the basis in such a way that the frequencies are
in non-decreasing order. NowX0 = L2(Q), andXs = D((��)s) ⊂ H 4s endowed with
the graph norm. If the non-linearityf is smooth and odd (i.e.f (−w) = −f (w)), then it
defines a smooth map fromXs to itself for anys > [d/2]/4 (see Example 2.5).

In the linear approximation (g ≡ 0) the general solution of (A.1) is the superposition of
the linear normal modes, i.e. of the families of periodic solutions

x(j)(t) = (
aj cos(ωj t) + bj sin(ωj t)

)
ϕj . (A.6)

Fix one of the families, sayx(1). To ensure its persistence in the non-linear problem we
make the following assumptions:

(H1) (Non-resonance) For small enoughγ > 0 there exists a closed setWγ ⊂ R
+ hav-

ing ω1 as an accumulation point both from the right and from the left, and such
that for anyω ∈ Wγ one has

|ωl − ωj | � γ

l
, ∀l � 1, ∀j � 2. (A.7)

(H2) (Non-degeneracy) Letgr(x) be the first non-vanishing (homogeneous) Taylor
polynomial ofg. Assume thatr � 3 andβ0 �= 0, where

β0 :=
{

〈gr(ϕ1), ϕ1〉0 if r is odd,

〈gr+1(ϕ1), ϕ1〉0 if r is even.
(A.8)

Denotingξ1(ω1t) = cos(ω1t)ϕ1 one has

THEOREM A.3. Suppose that assumptions (H1), (H2) hold. Then there exist a set E ⊂ R

having zero as an accumulation point, a positive ω∗, and a family of periodic solutions
{xε(t)}ε∈E of (A.1) with frequencies {ωε}ε∈E fulfilling

sup
t

∥∥xε(t) − εξ1(tω
ε)

∥∥
s
� Cεr,

∣∣ωε − ω1
∣∣ � Cεr−1. (A.9)

Moreover, the set E is in one to one correspondence either with Wγ ∩ [ω1,ω1 + ω∗) if
β0 < 0, or with Wγ ∩ (ω1 − ω∗,ω1] if β0 > 0.
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PROOF. We consider only the case of oddr , the general case can be obtained by a slightly
different treatment of the forthcoming equationω. We are looking for anXs -valued func-
tion q(t) which is 2π -periodic and reversible (i.e.q(t) = q(−t)), and for a positiveω,
close toω1, such thatq(ωt) is a solution of (A.1). They must satisfy the equation

Lωq = g(q), Lω := ω2 d2

dt2
+ A, (A.10)

which will be considered as anω-dependent functional equation in the spaceH ⊂
H 1(T,Xs), formed by the reversible periodic functions. Equation (A.10) is studied us-
ing the Lyapunov–Schmidt decomposition, namely by decomposing it into an equation on
KerLω1 ≡span(ξ1) and an equation on its orthogonal complementR. Precisely, denote by
Q the projector onξ1 and byP the projector onR and make the Ansatzq = εξ1 + εru,
whereu ∈ R. Then (A.10) is equivalent to the system

ω2 = ω2
1 + βεr−1, (A.11)

Lωu = Pgr(ξ1) + PG(ε,u), (A.12)

−βξ1 = Qgr(ξ1) + QG(ε,u) (A.13)

for the unknowns (ε,u,β). HereG contains all higher-order corrections andω ∈ Wγ is a
parameter. Equations (A.11), (A.12) and (A.13) are called theω, theP and theQ equation,
respectively.

First one solves theP equation (A.12). To this end one has to invert the linear operator
Lω|R . Its eigenfunctions are cos(lt)ϕj , and the corresponding eigenvalues are

λjl = −l2ω2 + ω2
j = (lω + ωj )(ωj − lω), j � 2, l � 1.

By (A.7), |λjl | > Cγ . So(Lω|R)−1 exists and is bounded. Applying this operator to theP

equation and using the implicit function theorem one obtains a smooth functionu(ε) that
depends parametrically onω ∈ Wγ and solves theP equation.

Insertingu(ε) in theQ equation one determines the parameterβ as a function ofε. In
particular one hasβ(ε) = Cβ0 + higher-order corrections, whereC > 0. Insertingβ(ε) in
theω equation one gets an equation forε (remember thatω is fixed), which is a perturbation
of the equationω2 − ω2

1 = Cβ0ε
r−1. By the non-degeneracy this can be reduced to a fixed

point equation forεr−1 which is solvable by the contraction mapping principle. �

REMARK A.4. The theorem holds also in the caser = 2, but in this case the non-
degeneracy condition takes a more complicated form.

Theorem A.3 was proved in [5]. The technique of the Lyapunov–Schmidt decomposition
was used for the first time to construct families of periodic solutions in PDEs by Craig
and Wayne [29] who considered the model problem of the wave equation with periodic
boundary conditions (see Example A.1); we will report on this work in Section A.4.
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EXAMPLE A.5. Consider the non-linear wave equation with periodic boundary conditions
(see Example A.1). Letω1 be such thatω1 �= ωj for eachj �= 1. DecomposeV into its
averagea and a part̃V of zero average, then condition (H1) is satisfied ifa belongs to
an uncountable set which is dense in a neighbourhood of the origin (for the proof see
Lemma 3.1 of [7]). Condition (H2) can be expressed in terms of the eigenfunctions of the
Sturm–Liouville operator. If it holds, then Theorem A.3 applies and ensures persistence
of the corresponding family of periodic orbits. Note that, in a difference with the case of
Dirichlet boundary conditions (see Example 5.3), the non-linearity does not need to have
some particular parity.

EXAMPLE A.6. Consider the non-linear plate equation (see Example A.2). In the case
d = 1 all the frequencies are simple and the assumption (H1) is satisfied ifa is chosen
in a subset ofR+ having full measure. In the cased > 1, all the frequencies are multiple
except the smallest one. Taking forω1 the smallest frequency, (H1) is fulfilled ifa be-
longs to a dense uncountable subset of[0,1/4]. (H2) holds trivially provided the Taylor
expansion off at zero does not vanish identically (remember thatf (−w) = f (w)). Then
Theorem A.3 ensures persistence of the corresponding family of periodic orbits (for details
see [7]).

A.3. The resonant case

It is possible to generalise the above theorem to the case when the frequencies satisfy some
resonance relations. We will consider only the Lagrangian case, wheng = −∇H .

Fix a frequencyω1 of the linearised system. We replace the assumption (H1) by the
following one:

(H1R) For any small enoughγ there exists a closed setWγ ⊂ R
+ having ω1 as an

accumulation point both from the right and from the left, and such that for any
ω ∈ Wγ one has

either |ωl − ωj | � γ

l
, or lω1 − ωj = 0. (A.14)

To pass to the non-degeneracy assumption, we define the resonant set as

IR := {k � 1: ∃l � 1: lω1 − ωk = 0}, (A.15)

consider the linear space generated by{ϕk}k∈IR
, and denote byN its closure in the graph

norm ofD(A). Note that all solutions of the linearised system with initial datum inN and
vanishing initial velocity are periodic of period 2π/ω1. Let Hr be the first non-vanishing
Taylor coefficient ofH . Forx ∈N define the average ofHr by

〈Hr 〉(x) := ω1

2π

∫ 2π/ω1

0
Hr

(
cos(At)x

)
dt.

Consider the hypersurfaceS ⊂ N of the pointsx ∈ N such that〈x;Ax〉0 = 1.
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(H2R) There exists a non-degenerate critical pointx0 of the functional〈Hr 〉|S . The
corresponding Lagrange multiplierβ0 does not vanish.

Denote byξ0(ω1t) the solution of the linearised system with initial datumx0 and van-
ishing initial velocity.

THEOREM A.7 [6]. Suppose the assumptions (H1R), (H2R)hold. Then there exists a fam-
ily of periodic solutions {xε(t)}ε∈E of (A.1) with frequencies ωε, satisfying

sup
t

∥∥xε(t) − εξ0(tω
ε)

∥∥
s
� Cεr,

∣∣ωε − ω1
∣∣ � Cεr−1. (A.16)

The set E has the same properties as in the non-resonant case.

The proof is obtained by proceeding as in the non-resonant case. The only difference is
that in this case the kernel ofLω1 is no longer one-dimensional, but is isomorphic toN
(the isomorphism being given by the mapx → cos(At/ω1)x). So theQ equation can be
transformed into an equation inN . The latter turns out to be a perturbation of the equation
for the critical points of〈Hr 〉|S , and the non-degeneracy condition (H2R) allows to solve
it by the implicit function theorem.

Applying the above theorem, one can construct countably many families of periodic
solutions of theφ4-model

wtt − wxx = ±w3 + higher-order terms

with Dirichlet boundary conditions, and also higher frequency periodic solutions of the
non-linear plate equation of Example A.2 (see [6,7], see also [62,21]).

In general it is difficult to check condition (H2R). In the case of Hamiltonian systems
with n < ∞ degrees of freedom, topological arguments allow to avoid it. Indeed, the
Weinstein–Moser theorem (see [80,64]) ensures that close to a minimum of the energy,
on each surface of a constant energy there exist at leastn periodic orbit. In general they
do not form regular families. A corresponding result for PDEs is not available at present.
However there exists anad hoc variational result for the wave equation

wtt − wxx = ±wp + higher-order terms, p � 2, (A.17)

which ensures that, having fixedj � 1, there exists a sequence of periodic orbits accumu-
lating at zero, whose frequencies accumulate atj (which plays here the role of thej th
linear frequency). The corresponding theorem is due to Berti and Bolle [10].

Periodic solutions in the non-linear wave equation

wtt − wxx + f (x,w) = 0, u(0, t) = u(π, t) = 0, (A.18)

where constructed for the first time by Rabinowitz [76] using global variational methods
and a Lyapunov–Schmidt decomposition. Rabinowitz proved that, under suitable assump-
tions onf , Equation (A.18) has at least one periodic solution with periodT = 2πp/q, for
any choice of the integersp andq. Note that, when the periodT is commensurable with
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2π , the operatorLω|R has a compact inverse, i.e. there are no small denominators. The
work [76] was followed by a series of papers, simplifying the proof and sharpening the
result (see [24] and references therein). In particular, we mention the paper [25] by Brezis,
Coron and Nirenberg, where existence of periodic orbits is proved by a particularly simple
method: the authors write a variational principle, dual to the usual one, and look for its
critical points, using the mountain pass lemma. It is remarkable that in this approach theQ

equation becomes trivial.

A.4. Weakening the non-resonance condition

The main limitation of the results presented in Sections A.2 and A.3 rests in the non-
resonance conditions (H1) and (H1R). Indeed, such conditions are fulfilled with large
probability (in a suitable parameter space) whenωj ∼ jν with ν > 1; whenν = 1 the
non-resonance conditions are satisfied typically on uncountable sets of zero measure, but
whenν < 1 they are satisfied only exceptionally (as in the plate equation). As a conse-
quence the results of Sections A.2 and A.3 are not applicable to general equations in more
than one space dimensions. Furthermore, the method of Lyapunov–Schmidt decomposition
can be extended to the case of reversible systems of first order in time, but the approach of
Section A.2 is no more applicable.

In order to avoid such limitations one would like to be able to work with the weaker
non-resonance condition “there exists aτ > 0 such that|lω − ωj | � γ /lτ ”. This was done
by Craig and Wayne [29] who used the Nash–Moser theorem to solve theP equation. The
application of the Nash–Moser theorem requires to construct and estimate the inverse of
the linear operator describing the linearisation of theP equation at an approximate solu-
tion. This is the main difficulty of Craig–Wayne’s approach. To overcome it they use the
techniques by Fröhlich and Spencer [38], performing a careful analysis of small denomina-
tors (cf. Section 5.3). The method by Craig and Wayne was extended by Bourgain in order
to construct periodic (and also quasiperiodic) solutions in higher-dimensional equations.
The resulting method seems very general, but at present a theorem “ready for application”
is not available. We present here the result obtained by Bourgain by applying this method
to the non-linear wave equation

wtt − �w + aw + w3 = 0 (A.19)

on T
d . Fix a multiindexn ∈ Z

d different from zero, and let

ξn(ωnt, x) := cos(n · x + ωnt), ωn :=
√

n2
1 + · · · + n2

d + a,

be the corresponding symmetric reversible solution.

THEOREM A.8 [18]. If a belongs to a certain subset of R
+ of full measure, then there

exists a Cantor set E of positive measure, accumulating at zero, and a family of periodic
solutions {wε(t, x)}ε∈E of (A.19) with frequencies ωε, satisfying∣∣εξn(ω

εt, x) − wε(t, x)
∣∣ � Cε3,

∣∣ωn − ωε
∣∣ � Cε2.
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In the cased = 1, the result was proved in [29]; subsequently, still in the cased = 1,
Kuksin introduced a simpler technique to find the “large measure result” of Theorem A.8
(see in [20, pp. 90–94]).

The Craig–Wayne–Bourgain method also allows to deal with first order in time equa-
tions. For example, it was applied to the Schrödinger equation in one [30] or two space
dimensions [19] (see Section 5.4).

A.5. The water wave problem

A particular problem that has attracted the attention of many researchers since the very
beginning of the theory of PDEs is that of existence of standing water waves. The first
rigorous proof of their existence was obtained only recently by Plotnikov and Toland [70];
we present here their result.

Consider a perfect fluid lying above a horizontal bottom, and confined between two
parallel vertical walls. The fluid is subject to gravity, and atmospheric pressure acts at the
free surface. This is a dynamical system governed by the Euler equations supplemented
by appropriate boundary conditions. It was pointed out by Zakharov that this system is
Hamiltonian (see [81]). The corresponding Hamiltonian function is the energy of the fluid,
and conjugated variables are given by the wave profile and the velocity potential at the free
surface.

In the linear approximation the general solution is given by the superposition of the nor-
mal modes. The problem is to continue the normal modes to families of periodic solutions
of the non-linear system (the standing waves). Fix one of the normal modes, and denote
by η(t, x1) the corresponding profile of the free surface (x1 being the horizontal variable).
Then it is possible to choose the depthh, the widthl of the region occupied by the fluid and
the gravitational constantg in such a way that the period of the solution is normalised to 2π

and the linear frequencies fulfil a suitable non-resonance condition. Denote by(g0, l0, h0)

a choice of the parameters realising such conditions, then one has

THEOREM A.9 [70]. There exists an infinite set E ⊂ R having zero as an accumulation
point and, for any ε ∈ E , there exist gε, lε and a standing wave solution of the water wave
problem with gravity gε in a box of width lε. Moreover, denoting by ηε the corresponding
profile of the free surface, one has∣∣ηε(t, x1) − ε2η(t, x1)

∣∣ < Cε3, |gε − g0| + |lε − l0| � Cε.

The main difficulties in proving this result are as follows: firstly, the linear frequencies
behave asωn ∼ n1/2, so the non-resonance conditions that can be satisfied are quite weak.
Secondly, the mathematical formulation of the problem involves an unbounded non-linear
and non-local operator. To overcome these difficulties, Plotnikov and Toland use the La-
grangian description of the fluid motion and apply the Lyapunov–Schmidt approach to
handle the resulting non-linear problem. TheP equation now is solved by means of the
Nash–Moser theorem. The required invertibility of the linearised operator is obtained in
two steps: first it is reduced to a suitable canonical form, and next this canonical form
(which is essentially a perturbation of an operator involving derivatives and Hilbert trans-
form) is studied in detail.



Hamiltonian PDEs 1131

References

[1] V.I. Arnold, Proof of a theorem of A.N. Kolmogorov on the conservation of quasiperiodic motions under a
small change of the Hamiltonian function, Russian Math. Surveys18 (5) (1963), 9–36.

[2] V.I. Arnold, Mathematical Methods in Classical Mechanics, 3rd edn, Springer, Berlin (1989).
[3] D. Bambusi,Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equation, Math.

Z. 130 (1999), 345–387.
[4] D. Bambusi,On long time stability in Hamiltonian perturbations of non-resonant linear PDEs, Nonlinearity

12 (1999), 823–850.
[5] D. Bambusi,Lyapunov center theorem for some nonlinear PDEs: A simple proof, Ann. Scuola Norm. Sup.

Pisa Cl. Sci.29 (2000), 823–837.
[6] D. Bambusi and S. Paleari,Families of periodic orbits for resonant PDE’s, J. Nonlinear Sci.11 (2001),

69–87.
[7] D. Bambusi and S. Paleari,Families of periodic orbits for some PDE’s in higher dimensions, Comm. Pure

Appl. Anal. 1 (2002), 269–279.
[8] E.D. Belokolos, A.I. Bobenko, V.Z. Enolskii, A.R. Its and V.B. Matveev,Algebro-Geometric Approach to

Nonlinear Integrable Equations, Springer, Berlin (1994).
[9] G. Benettin, F. Fasso and M. Guzzo,Nekhoroshev stability of elliptic equilibra of Hamiltonian systems,

Comm. Math. Phys.197 (1998), 347–360.
[10] M. Berti and P. Bolle,Periodic solutions of nonlinear wave equations with general nonlinearities, Comm.

Math. Phys.243 (2003), 315–328.
[11] R.F. Bikbaev and S.B. Kuksin,A periodic boundary-value problem for the Sine-Gordon equation, small

Hamiltonian perturbations of it, and KAM-deformations of finite-gap tori, St.-Petersburg Math. J.4 (1993),
439–468.

[12] A.I. Bobenko and S.B. Kuksin,Finite-gap periodic solutions of the KdV equation are nondegenerate, Phys.
Lett. A 161 (3) (1991), 274–276.

[13] A.I. Bobenko and S.B. Kuksin,The nonlinear Klein–Gordon equation on an interval as a perturbed Sine-
Gordon equation, Comment. Math. Helv.70 (1995), 63–112.

[14] A.I. Bobenko and S.B. Kuksin,Small-amplitude solutions of the Sine-Gordon equation on an interval under
Dirichlet or Neumann boundary conditions, J. Nonlinear Sci.5 (1995), 207–232.

[15] J. Bourgain,Fourier transform restriction phenomenon for certain lattice subsets and applications to non-
linear evolution equations, Geom. Funct. Anal.3 (1993), 107–156 and 209–262.

[16] J. Bourgain,Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations
and applications to nonlinear PDE, Internat. Math. Res. Notices (1994), 475–497.

[17] J. Bourgain,Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations,
Geom. Funct. Anal.5 (1995), 105–140.

[18] J. Bourgain,Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom.
Funct. Anal.5 (1995), 629–639.

[19] J. Bourgain,Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shrödinger equation, Ann.
Math.148 (1998), 363–439.

[20] J. Bourgain,Nonlinear Schrödinger Equations, Hyperbolic Equations and Frequency Interactions, Amer.
Math. Soc. (1999).

[21] J. Bourgain,Periodic solutions of nonlinear wave equations, Harmonic Analysis and Partial Differential
Equations, Chicago University Press (1999), 69–97.

[22] J. Bourgain,On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math.80 (2000),
1–35.

[23] J. Bourgain,Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Ann. Math.
Studies, Princeton University Press, Princeton (2004).

[24] H. Brezis,Periodic solutions of nonlinear vibrating string and duality principle, Bull. Amer. Math. Soc.8
(1983), 409–426.

[25] H. Brezis, J. Coron and L. Nirenberg,Free vibrations for a nonlinear wave equation and a theorem by
P. Rabinowitz, Comm. Pure Appl. Math.33 (1980), 667–689.

[26] D. Cai, D.W. McLaughlin and K.T.R. McLaughlin,The nonlinear Schrödinger equation as both a PDE and
a dynamical system, Handbook of Dynamical Systems, Vol. 2, B. Fiedler, ed., Elsevier, Amsterdam (2002).



1132 S.B. Kuksin

[27] L. Chierchia and J. You,KAM tori for 1D nonlinear wave equations with periodic boundary conditions,
Comm. Math. Phys.211 (2000), 497–525.

[28] W. Craig,Problèmes de petitts diviseurs dans les équations aux dérivées partielles, Panoramas et Synthéses,
no. 9, Société Mathématique de France (2000).

[29] W. Craig and C.E. Wayne,Newton’s method and periodic solutions of nonlinear wave equations, Comm.
Pure Appl. Math.46 (1993), 1409–1498.

[30] W. Craig and C.E. Wayne,Periodic solutions of nonlinear Schrödinger equations and the Nash–Moser
method, Hamiltonian Mechanics. Integrability and Chaotic Behavior, NATO ASI, Vol. B331, Plenum Press
(1994), 103–122.

[31] B.A. Dubrovin,Theta-functions and nonlinear equations, Russian Math. Surveys36 (2) (1981), 11–80.
[32] B.A. Dubrovin, V.B. Matveev and S.P. Novikov,Nonlinear equations of Korteweg–de Vries type, finite zone

linear operators, and Abelian varieties, Russian Math. Surveys31 (1) (1976), 55–135.
[33] L.H. Eliasson,Perturbations of stable invariant tori, Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV Ser.15

(1988), 115–147.
[34] L.H. Eliasson and S.B. Kuksin,KAM for NLS (2005), Preprint.
[35] L.H. Eliasson, S.B. Kuksin, S.Marmi and J.-C. Yoccoz,Dynamical systems and small divisors, Lecture

Notes in Math., Vol. 1784, ch. KAM-persistence of finite-gap solutions, Springer, Berlin (2002).
[36] E. Fermi, J.R. Pasta and S.M. Ulam,Studies of nonlinear problems, Collected works of E. Fermi, Vol. 2,

Chicago University Press, Chicago (1965).
[37] L. Friedlander,An invariant measure for the equation utt − uxx + u3 = 0, Comm. Math. Phys.98 (1985),

1–16.
[38] J. Fröhlich and T. Spencer,Absence of diffusion in Anderson tight binding model for large disorder or low

energy, Comm. Math. Phys.88 (1983), 151–184.
[39] J. Fröhlich, T. Spencer and C.E. Wayne,Localization in disordered nonlinear dynamical systems, J. Statist.

Phys.42 (1986), 247–274.
[40] G.E. Giacaglia,Perturbation Methods in Non-Linear Systems, Springer, Berlin (1972).
[41] B. Grébert and T. Kappeler,Perturbation of the defocusing nonlinear Schrödinger equation, Milan J. Math.

71 (2003), 141–174.
[42] M. Gromov,Pseudoholomorphic curves in symplectic manifolds, Invent. Math.82 (1985), 307–347.
[43] H. Hofer and E. Zehnder,Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel (1994).
[44] T. Kappeler,Fibration of the phase-space for the Korteweg–de Vries equation, Ann. Inst. Fourier41 (1991),

539–575.
[45] T. Kappeler and M. Makarov,On Birkhoff coordinates for KdV, Ann. H. Poincaré2 (2001), 807–856.
[46] T. Kappeler and J. Pöschel,KAM & KdV, Springer (2003).
[47] T. Kato, Quasi-linear equations of evolutions, with applications to partial differential equations, Lecture

Notes in Math., Vol. 448, Springer, Berlin (1975), 25–70.
[48] I.M. Krichever and D.H. Phong,Symplectic forms in the theory of solitons, Surv. Differ. Geom., Vol. IV,

Int. Press, Boston (1998), 239–313.
[49] S.B. Kuksin,Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum,

Funct. Anal. Appl.21 (1987), 192–205.
[50] S.B. Kuksin,Perturbations of quasiperiodic solutions of infinite-dimensional Hamiltonian Systems, Izv.

Akad. Nauk SSSR Ser. Mat.52 (1988), 41–63: English transl. in Math. USSR-Izv.32 (1) (1989).
[51] S.B. Kuksin,The perturbation theory for the quasiperiodic solutions of infinite-dimensional Hamiltonian

systems and its applications to the Korteweg–de Vries equation, Math. USSR-Sb.64 (1989), 397–413.
[52] S.B. Kuksin,Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Springer, Berlin (1993).
[53] S.B. Kuksin,KAM-theory for partial differential equations, Proceedings of the First European Congress of

Mathematics, Vol. 2, Birkhäuser (1994), 123–157.
[54] S.B. Kuksin,Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs,

Comm. Math. Phys.167 (1995), 531–552.
[55] S.B. Kuksin,Growth and oscillations of solutions of nonlinear Schrödinger equation, Comm. Math. Phys.

178 (1996), 265–280.
[56] S.B. Kuksin,Oscillations in space-periodic nonlinear Schrödinger equations, Geom. Funct. Anal.7 (1997),

338–363.



Hamiltonian PDEs 1133

[57] S.B. Kuksin,A KAM-theorem for equations of the Korteweg–de Vries type, Rev. Math. Math. Phys.10 (3)
(1998), 1–64.

[58] S.B. Kuksin,Spectral properties of solutions for nonlinear PDEs in the turbulent regime, Geom. Funct.
Anal. 9 (1999), 141–184.

[59] S.B. Kuksin,Analysis of Hamiltonian PDEs, Oxford University Press, Oxford (2000).
[60] S.B. Kuksin and J. Pöschel,Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear

Schrödinger equation, Ann. Math.143 (1996), 149–179.
[61] P.D. Lax,Periodic solutions of the KdV equations, Comm. Pure Appl. Math.28 (1975), 141–188.
[62] B.V. Lidskij and E.I. Shulman,Periodic solutions of the equation utt − uxx + u3 = 0, Funct. Anal. Appl.

22 (1988), 332–333.
[63] P. Lochak,Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys47 (6)

(1992), 57–133.
[64] J. Moser,Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math.

29 (1976), 724–747.
[65] J. Moser and C.L. Siegel,Lectures on Celestial Mechanics, Springer, Berlin (1971).
[66] N.N. Nekhoroshev,Exponential estimate of the stability of near integrable Hamiltonian systems, Russian

Math. Surveys32 (6) (1977), 1–65.
[67] L. Niederman,Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system, Nonlin-

earity11 (1998), 1465–1479.
[68] S.P. Novikov,A periodic problem for the Korteweg–de Vries equation, I, Funct. Anal. Appl.8 (1974),

236–246.
[69] A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer,

Berlin (1983).
[70] P. Plotnikov and J. Toland,Nash–Moser theory for standing water waves, Arch. Rational Mech. Anal.159

(2001), 1–83.
[71] J. Pöschel,On elliptic lower dimensional tori in Hamiltonian systems, Math. Z.202 (1989), 559–608.
[72] J. Pöschel,Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Comm. Math.

Phys.127 (1990), 351–393.
[73] J. Pöschel,A KAM-theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV Ser. 1523

(1996), 119–148.
[74] J. Pöschel,Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv.71 (1996), 269–

296.
[75] J. Pöschel,On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi,

Nonlinearity12 (1999), 1587–1600.
[76] P. Rabinowitz,Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math.31 (1978), 31–68.
[77] M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York

(1975).
[78] M.B. Sevryuk,The classical KAM theory at the dawn of the twenty-first century, Moscow Math. J.3 (3)

(2003), 1113–1144.
[79] C.E. Wayne,Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm.

Math. Phys.127 (1990), 479–528.
[80] A. Weinstein,Normal modes for nonlinear Hamiltonian systems, Invent. Math.20 (1973), 47–57.
[81] V.E. Zakharov,Stability of periodic waves of finite amplitude on the surface of a deep fluid, Appl. Mech.

Tech. Phys.2 (1968), 190–194.
[82] V.E. Zakharov, M.F. Ivanov and L.N. Shur,On the abnormally slow stochastisation in some two-

dimensional field theory models, JETP Lett.30 (1) (1979), 39–44.
[83] V.E. Zakharov, S.V. Manakov, S.P. Novikov and L.P. Pitaevskij,Theory of Solitons, Plenum Press, New

York (1984).
[84] P.E. Zhidkov,Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Springer,

Berlin (2001).


	Hamiltonian PDEs
	Introduction
	Symplectic Hilbert scales and Hamiltonian equations
	Basic theorems on Hamiltonian systems
	Lax-integrable equations
	KAM for PDEs
	Around the Nekhoroshev theorem
	Invariant Gibbs measures
	The non-squeezing phenomenon and symplectic capacity
	The squeezing phenomenon and the essential part of the phase-space
	Acknowledgements
	Appendix. Families of periodic orbits in reversible PDEs, by D. Bambusi
	References


