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Hamiltonian PDEs 1089
1. Introduction

In this work we discuss qualitative properties of solutions for Hamiltonian partial differ-
ential equations in the finite volume case. That is, when the space-varibelengs to a
finite domain and appropriate boundary conditions are specified on the domain’s boundary
(or x belongs to the whole space, but the equation contains a potential term, where the
potential growths to infinity agc| — oo, cf. below Example 5.5 in Section 5.2). Most of
these properties have analogies in the classical finite-dimensional Hamiltonian mechanics.
In the infinite-volume case properties of the equations become rather different due to the
phenomenon of radiation, and we do not touch them here.

Our bibliography is by no means complete.

NOTATION. By T" we denote the toru®” = R"/27Z" and writeT! = §1; by R" —the
open positive octant ifiR”; by Zo—the set of non-zero integers. B (x; X) we denote
an opens-ball in a spaceX, centred atx € X. Abusing notation, we denote by both
the space-variable and an element of an abstract Banach Xp&oe an invertible linear
operator/ we set/ = —J 1. The Lipschitz norm of a may from a metric space/ to a

Banach space is defined as sup || f (m)|| + SUR,, 4, L=l

2. Symplectic Hilbert scales and Hamiltonian equations
2.1. Hilbert scales and their morphisms

Let X be a real Hilbert space with a scalar prodyct-) = (-, -)x and a Hilbert basis
{or | k € Z} whereZ is a countable subset of sorfi8. Let us take a positive sequence
{6k | k € Z} which goes to infinity withk. For anys we defineX; as a Hilbert space with
the Hilbert basigg;6, * | k € Z}. By || - || and(-, -); we denote the norm and the scalar
product inX; (in particular,Xo = X and{-, -)o = (-, -)). The totality {X,} is called a
Hilbert scale, the basis{¢;}—the basis of the scale and the scalar produgt, -)—the
basic scalar product of the scale.

A Hilbert scale may be continuous or discrete, depending on whetheR or s € Z.
The objects we define below and the theorems we discuss are valid in both cases.

A Hilbert scale{ X} possesses the following properties:

(1) X, is compactly embedded i, if s > r and is dense there;

(2) the space¥X; andX_; are conjugated with respect to the scalar prodegct). That

is, for anyu € X; N Xo we have

lulls = sup{{u, u’) [« € X5 O Xo, |5 = 1};

(3) the normg| - ||, satisfy the interpolation inequality; linear operators in the spaces
X, satisfy the interpolation theorem.

Concerning these and other properties of the scales see [77] and [59].

For a scalg X} we denote byX_ ., andX the linear spaceX_, = | X; andX o, =

N X,.

Scales of Sobolev functions are the most important for this work:
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ExXAMPLE 2.1. Basic for us is the Sobolev scale of functions ondfdimensional torus
{H*(T4; R) = H*(T%)}. A spaceH*(T¢) is formed by functions : T — R such that

il- s 2 25, 2
u= we'™ Cow =iy, fulf=) (L+11)7ul? < co.
lezd 1

The basigg;} is formed by all distinct properly normalised functionsd®e and Ime’**,
lezZ¢.

We shall also use the sub-sc@lé* (T%)g}, where a spac#l® (T%)q consists of functions
from H* (T¢) with zero mean-value.

EXAMPLE 2.2. Consider the scalgf;(0, w)}, where a spacély = H(0, ) is formed
by the odd 2 -periodic functions: = "2 ; uy sinkx such that|u |2 = 3~ [k|? ux|? < oo.
Since{sinnx} is a complete system of eigenfunctions of the operatarin L,(0, ) with
the domain of definitio{u € H2(0, w) | u(0) = u(r) = 0}, then an equivalent definition
of these spaces is thal) = D(—A)*/? (see [77]). In particular,

H{ = {ue HYO,7) | u(0) = u(w) =0}, HZ=H?Q0,7)N H,
(2.1)
HE ={u e H30,7) | u(0) = u, (0) = u(7) = ux, () = O}.

Given two scale$X,}, {¥;} and a linear mafh : Xoo — Y_oo, We denote by|L ||, s, <
oo its norm as a magX,, — Y;,. We say thatL defines al{near) morphism of order d
of the two scales fos € [so, s1], so < 51,1 if || L|ls.s—a < 0o for everys & [so, s1]. If in
addition the inverse map~1 exists and defines a morphism of ordef of the scalesY;}
and{X;} for s € [so + d, s1 + d], we say thatl. defines arisomorphism of order d for
s € [so, s1]. If {X;} = {¥;}, then an isomorphism is called aatomorphism.

ExamMPLE 2.3. Multiplication by a non-vanishing”-smooth function defines a zero-
order automorphism of the Sobolev scéke’ (T")} for —r <s < r.

If L is a morphism of scalefsX,}, {¥;} of orderd for s € [so, s1], then adjoint map4.*
form a morphism of the scalé¢¥, } and{X,} of the same ordef fors € [—s1+d, —so+d].
It is called theadjoint morphism.

If L =L* (L=-L%*) on the space&X, then the morphisni is called symmetric
(antisymmetric).

If L is a symmetric morphism dfX;} of orderd for s € [so, d — so], wheresg > d/2,
then the adjoint morphism* is defined fors € [so, d — so] and coincide with. on X »;
hence,L* = L. We call L asdlfadjoint morphism. Anti-selfadjoint morphisms are defined
similarly.

EXAMPLE 2.4. The operatoA defines a selfadjoint morphism of order 2 of the Sobolev
scale{H*(T")} for —oo < s < co. The operatorg/dx;, 1< j < n, define anti-selfadjoint
morphisms of order one. The automorphism in Example 1.1 is selfadjoint.

lorse (so, 51), etc.
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Let {Y,}, {¥s} be two scales and); C X, s € [a, b], be a system of (open) domains,
compatible in the following sense:

O5, N O5, =0y, ifa<sy<s2<b.

Let F: 0, - Y_~ be a map such that for evesye [a, b] its restriction toO; defines
an analytic C¥-smooth) mapF: O, — Y,_4. ThenF is called an analytic@*-smooth)
morphism of ordet! for s € [a, b].

EXAMPLE 2.5. Let{X,} be the Sobolev scaléd* (T¢)} and f (u, x) be a smooth function.
Then the mapF :u(x) — f(u(x),x), X; — X4, is smooth ifa > %, S0 on these spaces
ordF =0. If f is analytic, then so i¥'.

Now let us assume that = 1, f is analytic, (0, x) = 0 and consideF as a map
in the scale{Hy = Hy(0, ), s € Z}. Fors > 1 the mapF : Hy — H*(0, ) is analytic.
SinceFu(0) = Fu(r) =0, then due to (2.1) far = 1 ands =2 F(Hy) C Hj. So on the
spacedi3 and HZ we have ord” = 0. Since in general far € H$®, F(u) € HZ but¢ HS
(see (2.1)), then on the spadd§, s > 3, we have ord” > 0.

If f(u,x)isoddinu and eveninx (e.g., isx-independent), or vice versa, théliH;) C
H fors > 1, so ordF = 0 for anys > 1.

Given aC*-smooth functionH : X; > 04 — R, k > 1, we consider itgradient map
with respect to the paring-, -):

VH:04— X_q, (VH(u),v)=dHu)v Vv e Xq.

The mapV H is C¥~1-smooth.

If O, belongs to a system of compatible domaiflg, ¢ < s < b, and the gradient
map VH defines aC¥~1-smooth morphism of ordedy for a < s < b, we write that
ordVH =dy.

2.2. Symplectic structures

For simplicity we restrict ourselves to constant-coefficient symplectic structures. For the
general case see [59].

Let {X,} be a Hilbert scale and be its anti-selfadjoint automorphism of ordérfor
—o00 < 5 < 00. Then the operatof = —J 1 defines an anti-selfadjoint automorphism of
order—d. We define a two-forna, as

ar=Jdx Adx,

where by definition/ dx A dx [&, n] = (J&, n). Clearly, J dx A dx defines a continuous
skew-symmetric bilinear form oX, x X, if r > —d/2. Therefore any spac¥,, r >
—d /2, becomes aymplectic (Hilbert) space and we shall write it as a pafiX,, a2).

The pair({X;}, a2) is called asymplectic (Hilbert) scale.
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EXAMPLE 2.6. Let us take the index-s£&tto be the union of non-intersecting subsgts

and Z_, provided with an involutionZ — Z which will be denotedj — —, such that

—Z4 = Z-. Let us consider a Hilbert scal&l} with a basis{¢y, k € Z} and a sequence

{6k, k € Z}, such thab_; = 6;. TakeJ to be the linear operator, defined by the relations
Jor=¢_r YkeZ,, Jopr=—¢p_r VkeZ_.

It defines an anti-selfadjoint automorphism of the scale of zero orderJaad/. The
symplectic scalé{X;}, aa = J dx Adx = J dx A dx) will be called aDarboux scale.

Let ({X,}, a2 = J dx Adx) and({Y,}, B2 = T dy Ady) be two symplectic Hilbert scales
and O, C X, a < s < b, be a system of compatible domains(A-smooth morphism of
orderd;

F:0— Y5 g, a<s<b,
is symplectic if F*B, =ap. Thatis, if (Y F,(x)&, Fo(x)n)y = (JE,n)x, Or
F*(X)TFu(x)=J Vx.
A symplectic morphismF as above is called symplectomorphism if it is a diffeomor-
phism.

2.3. Hamiltonian eguations

To aCl-smooth functiorh on a domain0,; C Xy, the symplectic formx, as above corre-
sponds thédamiltonian vector field V;,, defined by the usual relation (cf. [2,43]):

az[Va(x),&] = —dh(x)§ VE.
Thatis,(J Vi (x), &) = —(Vh(x), &) and
Vi(x) = JVh(x).

The vector fieldV,, defines a continuous ma@y — X_q—4, . Usually we shall assume that
V;, is smoother than that and defines a smooth morphism of akd€r2d + d; for all s
from some segment.

For anyC!-smooth functior on O, x R we denote by, the non-autonomous vector
field Vj, (x, t) = JV,h(x, t), whereV, is the gradient irx, and consider the corresponding
Hamiltonian equation (or Hamiltonian system)

¥ = JVih(x, 1) = Vi(x, 1). (2.2)

A partial differential equation, supplemented by some boundary conditions, is called
a Hamiltonian partial differential equation, or anHPDE, if under a suitable choice of a
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symplectic Hilbert scal€{X;}, «2), a domainO; C X; and a Hamiltoniark, it can be
written in the form (2.2). In this case the vector fiélg is unbounded, ortf, = d; > 0.
That is,

ViiiOg xR — Xq_y.

Usually O, belongs to a system of compatible domaihs s > do, andV}, (as a function
of x) defines an analytic morphism of ordérfor s > dp.

A continuous curvex : [fg, t1] — Oy is called asolution of (2.2) in the space X, if it
defines aCt-smooth map: : [1g, 1] — X4—q4, and both parts of (2.2) coincide as curves in
X4—a4,- A solutionx is calledsmooth if it defines a smooth curve in each space

If a solutionx(z), r > tg, of (2.2) such that (fp) = xo exists and is unique, we write
x(n1) = S,téxo, or x(t1) = S~y if the equation is autonomous (we do not assume that

t > tg). The operator§t’g andS’ are calledlow-maps of the equation. Clearlys,’g equals

(S,’f)*l on a joint domain of definition of the two operators.

A non-linear PDE is calledtrongly non-linear if its non-linear part contains as many
derivatives as the linear part. Strongly non-linear Hamiltonian PDEs may possess rather
unpleasant properties. In particular, for some of them, every non-zero solution develops a
singularity in finite time, see an example in Section 1.4 of [59].

We shall call a non-linear PDguasilinear if its non-linear part contains less derivatives
then the linear one. A quasilinear equation can be written in the form (2.2) with

hx,t) = %(Ax,x) + ho(x, 1), (2.3)

where A is a linear operator which defines a selfadjoint morphism of the scale (so
Vh(x,t) = Ax + Vho(x,t)) and ordVhg < ordA.

The class of Hamiltonian PDEs contains many important equations of mathematical
physics, some of them are discussed below. The first difficulty one comes across when
studies this class is absence of a general theorem which would guarantee that (locally in
time) an equation has a unique solutfoBuch a theorem exists for semilinear equations,
where Equation (2.2) will be callesbmilinear if its Hamiltonian has the form (2.3) and
ordJVho < 0 (see [69] and Section 1.4 of [59]).

EXAMPLE 2.7 (Equations of the Korteweg—de Vriestype). Let us take fof{ X} the scale
of zero mean-value Sobolev spadé§(S1)g as in Example 2.1 and chooge= 3/dx, so

d; = 1. For a Hamiltoniak we takeh (i) = fOZ” —%u/(x)z—i- f (u)) dx with some analytic
function f (1). ThenVh(u) = %u” + f’(u) and the equation takes the form

u(t,x) = }u’” + i ()
’ 4 ox” '

For f(u) = ;llu3 we get the classical Korteweg—de Vries (KdV) equation. The miap
defines an analytic morphism of order 3 of the scalg}, for s > 1/2. The equation

2still, see [47] for a theory which applies to some classes of quasilinear HPDEs.
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has the form (2.2), (2.3), where afdi = 3 and ord/ Vhg = 1. It is quasilinear, but not
semilinear.

ExaMPLE 2.8 (NLS—non-linear Schrodinger equation). Let X, = H*(T"; C), where

this Sobolev space is treated as a real Hilbert space, and the basic scalar product of the
scale is(u, v) = Re [ uvdx. For J we take the operatafu(x) =iu(x), so ord/ =0 and

({X,}, J du A du) is a Darboux scale. We choose

1
h(u):E/T (IVul®> + V(@) |ul® + g(x, u, @) dx,

whereV is a smooth real function angx, u, v) is a smooth function, real if = iz. Then
Vh(u) = —Au+ V(x)u + =g and (2.2) takes the form

0
i =i<—Au +V(x)u+ Fg(x, u, ﬁ)), u=u(t,x), xeT". (2.4)
i

This is a semilinear Hamiltonian equation in any spagg, do > n/2, with ordA =2 and
ordVhgo=0.

Non-linear Schrédinger equation (2.4) with= 1, V (x) = const ancg = y |u|*, y #0,
is called theZzakharov—Shabat equation. The equation withy > 0 is calleddefocusing and
with y < 0—focusing.

ExaMPLE 2.9 (1D NLS with Dirichlet boundary conditions). Let us choose foiX; the
spaceH; (0, r; C) (see Example 2.2)Ju(x) = iu(x) and

1 T
h(u) = 5/0 (lux|? + V@)l + g (x, [ul?)) dx,

where g is smooth and 2-periodic inx. Now Vi(u) = —uy, + V(x)u + f(x, [u|?u,

where f = %, and (2.2) becomes

i=i(—txr + VOu+ f(x, ul?)u), u(0) = u(w) =0. (2.5)

Fors =1 and 2 the non-linear term defines a smooth ap> X, (see Example 2.5), so
in these spaces this is a semilinear equation withdotd2 and ordvig = 0. If in addition
f is even inx, then the non-linear term defines a smooth map for everyl. This map is
analytic if f is.

ExaMPLE 2.10 (Non-linear wave equations). Now let X; = H*(T") x H*(T") anday =

Jdn Adn, wheren = (u, v) andJ (u, v) = J (u, v) = (—v, u). Let

h(u,v):/ (}vz—i—}Wulz—f(x,u))dx. (2.6)
 \ 2 2



Hamiltonian PDES 1095

The corresponding Hamiltonian equation is

n=-uv, v=—Au— f,(x,u). 2.7)
Or

i=Au+f,(x,u), u=u(tx), xeT". (2.8)

This is anon-linear wave equation (with the periodic boundary conditions). We have seen
that this equation can be re-written as the system (2.7) which is an HPDE. This Hamiltonian
form of the equation is inconvenient since the quadratic part of the Hamiltonian (2.6) cor-
responds to the linear operatar, v) — %(—Au, v) which does not define an isomorphism

of the scalg X} (of some orderm). It turns out that the non-linear wave equation (2.8) ad-
mits another Hamiltonian representation (2.2), where the Hamiltdnkeas the form (2.3),

the operatod defines an isomorphism of the scale and4rd ord Vi (so the equation is
quasilinear). We note that the corresponding linear opevadadis not differential. See [52]

and [59], also see below Section 4.3, where the non-linear wave equation ,, — Sinu

(the Sine-Gordon equation) is considered in details.

3. Basictheoremson Hamiltonian systems

Basic theorems from the classical Hamiltonian formalism (see [2,43]) remain true for
Hamiltonian equations (2.2) in Hilbert scales, provided that the theorems are properly for-
mulated. In this section we present three corresponding results. Their proofs can be found
in [52,59].

Let ({X,}, a2 = Jdx A dx) and ({Ys}, B2 = T dy A dy) be two symplectic scales and
(for simplicity) ordJ = ordY =d; > 0. Let® : Q — O be aC'-smooth symplectic map,
whereQ and O are domains ir¥; andXy, d > 0. If d; > 0, we have to assume that

(H1) for any|s| < d linearised map®.(y), y € Q, define linear map¥; — X, which

continuously depend on.

The first theorem states that symplectic maps transform Hamiltonian equations to Hamil-

tonian:

THEOREM3.1. Let @ : O — O be a symplectic map as above (so (H1) holdsif d; > 0).
Let us assume that the vector field V;, of Equation (2.2) defines a C1-smooth map Vj, :
O xR — X,_4, of order d1 < 2d and that this vector field is tangent to the map @ (i.e.,
for every y € Q and every r the vector V;,(®(y), r) belong to the range of the linearised
map @.(y)). Then @ transforms solutions of the Hamiltonian equation y = 'V, H (y, 1),
where H = h o @, to solutions of (2.2).

COROLLARY 3.2. If under the assumptions of Theorem 3.1 {X} = {Y,} and h o @ = h,
®*ap = ap, then @ preserves the class of solutions for (2.2).
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For Hamiltonian PDEs (and for Hamiltonian equations (2.2)) Theorem 2.1 plays the
same role as its classical finite-dimensional counterpart plays for usual Hamiltonian equa-
tions: it is used to transform an equation to a normal form, usually in the vicinity of an
invariant set (e.g., of an equilibrium).

To apply Theorem 3.1 one needs regular ways to construct symplectic transformations.
For classical finite-dimensional systems symplectic transformations usually are obtained
either via generating functions, or as Lie transformations (i.e., as flow-maps of additional
Hamiltonians), see [2,43,40]. For infinite-dimensional symplectic spaces generating func-
tions play negligible role, while the Lie transformations remain an important tool. An easy
but important corresponding result is stated in the theorem below.

Let ({Xs}, a2) be a symplectic Hilbert scale as above ahde a domain inx,.

THEOREM3.3. Let f bea Ct-smooth function on O x R such that the map ViiOxR—
X, isLipschitzin (x, 1) and C1-smoothin x. Let O1 be a subdomain of O. Then the flow-
maps S7 : (01, a2) — (O, a2) are symplectomor phisms (provided that they map O1 to O).
If the map V is C*-smooth or analytic, then the flow-maps are C*-smooth or analytic as
well.

The assumption that the mapy is Lipschitz can be replaced by the much weaker
assumption that for a solution(z) of the equationi = V,(x), the linearised equation
£ = Vi«(x(t))& is such that its flow maps are bounded linear transformations of the
spaceX . See [59].

Usually Theorem 3.3 is applied in the situation whe¢ih < 1, or |t — 7| < 1. In these
cases the flow-maps are close to the identity and the corresponding transformations of the
space ofC!-smooth functions o, H > H o ST, can be written as Lie series (cf. [40]).
In particular, the following simple result holds:

THEOREM 3.4. Under the assumptions of Theorem 3.3, let H be a C1-smooth function
on O. Then

d
d—rH(Sf(x)) = {f, H}(ST()), xe€O1 (3.1)

In this theorem{ f, H} denotes théoisson bracket of the two functions:
{f, H}x) =(JV f(x), VH (x)).

It is well defined since/ V f = V¢ € X4 by assumptions.

Theorem 3.3 and formula (3.1) make from symplectic flow-mé&psa tool which is
well suited to prove KAM-theorems for Hamiltonian PDEs, see the scheme of the proof of
Theorem 5.1 in Section 5.1 below.

An immediate consequence of Theorem 3.4 is that for an autonomous Hamiltonian equa-
tion x = JV f(x) such that ord V f = 0, aC'-smooth functionH is an integral of mo-
tion® if and only if { f, H} = 0.

3Thatis, H (x(¢)) is a time-independent quantity for any solutiofr).
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If d =ordJV f > 0andO = O, belongs to a system of compatible domaihsc X,
s € [do, d], wheredg =d — d’, thenH such thaf f, H} = 0 is an integrable of motion for
the equationt = JV f(x), provided that

ord/JVf=d and ordvH =dy fors e[do,d],

whered’ + dy < 2d. Indeed, sincelg — dy > —do, then H is a C1-smooth function
on Og,. Since any solution(¢) is aCl-smooth curve ir0, by the definition of a solution,
then

d .
EH(x) =(VH(x),%)=(VH(x),JV f(x))={f, H}(x) =0.

In particular, f is an integral of motion for the equatian= JV f(x) in O, if we have
ordJ =d; and ordV f =dy fors =d andfors € [d,d —d; —d;],whered > dy+d;/2.
That is, if the equation is being considered in sufficiently smooth spaces.

ExaAMPLE 3.5. Let us consider a non-linear Schrédinger equation (2.5) such that
g(u, ) = go(|ul?), and takeH (u) = ||ull§ = |u|Z,. Now d’ :=ordJV f =2 for 5 €

(n/2, >0), and ordv H = 0. Elementary calculations show tHat H} = 0. SoL>-norm is

an integral of motion for solutions of (2.5) i if s > n/2+ 2. (In fact this result remains
true for solutions of much lower smoothness, see [15].)

4. Lax-integrable equations
4.1. General discussion

Let us take a Hamiltonian PDE and write it as a Hamiltonian equation in a suitable sym-
plectic Hilbert scal&{X}, a2 = J du A du):

i=JVH@u). (4.1)

This equation is called Lax-integrable if there exists an additional Hilbert $Zale(real
or complex), and finite order linear morphismig and.A, of this scale which depend on
the parametet € X, such that a curve(r) is a smooth solution for (4.1) if and only if

d
o L) = [Auary> Luy]- (4.2)

t
The operators4,, and,,, treated as morphisms of the scéf& }, are assumed to depend
smoothly onu € X; whered is sufficiently large, so the left-hand side of (4.2) is well
defined (for details see [59]). The pair of operatSrsA is called the_ax pair.*

4Due to a deep result by Krichever and Phong [48], any Lax-integrable PDE is a Hamiltonian system. The
corresponding symplectic structure belongs to a bigger class than that described in Section 2.2, so to apply our
techniques we need to assume a priori that the equation has the form (4.1).



1098 SB. Kuksin

In most known examples of Lax-integrable equations the relation between the scales
{Xs} and {Z,} is the following: spaces(; are formed byT-periodic Sobolev vector-
functions, while4 and£ are differential or integro-differential operators witkdependent
coefficients, acting in a scalgZ;} of T L-periodic Sobolev vector-functions. Hefeis
some fixed integer.

Letu(r) be a smooth solution for (4.1). We sét= L, ) and A, = A, ).

LEMMA 4.1. Let xo € Zo beasmooth eigenvector of Lo, i.e., Loxo = A xo. Let usassume
that the initial-value problem

x=Ax, x(0) = xo, (4.3)
has a unique smooth solution x (¢). Then
Lix()=xrx(t) Vt. (4.4)

PrROOF Let us denote the left-hand side of (4.4)41y), the right-hand side—by(z) and
calculate their derivatives. We have:

d d
Eé: EEX =[A Ll + LAy =ALx = At

and

d d
—n=—Ax =2Ax =An.
dtn di X X n

Thus, both () andn(¢) solve the problem (4.3) witho replaced by xo and coincide by
the uniqueness assumption. |

Due to this lemma the discrete spectrum of the operéfois an integral of motion for
Equation (4.1). In particular, a s&t formed by all smooth vectons € X, such that the
eigenvalues of the operatdy, belong to a fixed subset & x C x ---, is invariant for
the flow of Equation (4.1). A remarkable discovery, made by Novikov [68] and Lax [61],
is that for integrable Hamiltonian PDEs, considered on finite space-intervals with suitable
boundary conditions, some séftsas above are finite-dimensional symplectic submanifolds
T2 of all symplectic spacegX;, a»), and restriction of Equation (4.1) to afy?” is an
integrable Hamiltonian system. Moreover, for some integrable equations it is known that
the union of all these manifolds?” is dense in every spacg,. Solutions that fill a man-
ifold 72" are calledfinite-gap solutions, and the manifold itself—4dinite-gap manifold.

See, e.9g., [32,83,8,59].
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4.2. Korteweg—de Vries equation

The KdV equation

n=

P 2
a—(Mxx +3u2), u(t,x)=u(t,x + 2m), / udx =0, (4.5)
X 0

N

takes the form (4.1) in the symplectic Hilbert sc8&(,}, o = J du A du), whereX; is
the Sobolev spac#* (S1)o andJu = (3/9x)u, see Example 2.7. Due to Lax himself, this
equation is Lax-integrable and the corresponding Lax pair is

92 ¥ 3 4 3
—W—M, Au: +—Mx.

L, = _ .,
u o3 T2 T2

Taking for {Z,} the Sobolev scale ofperiodic functions and applying Lemma 4.1 we
obtain that smoothA-periodic spectrum of the operatgy, is an integral of motion. It is
well known that the spectrum df, is formed by eigenvalues

AM<AKA2<AzSAg <o SO0,

and that the corresponding eigenfunctions are smooth, provided that the potasitiabt
us take any integer-vectorV,

V=W1,....,V)eN', Vi< <V,

DenotingA; =Ap; —Azj—120,j=1,2,..., we define the sél(,zn as
T2 ={u(x)| A; #0iff je(V,..., Vul).

Clearly 77" equals to the unio)" = U, cp: Ty (1), whereR), = {r | r; > 0V,j} and
TG (r) = {u(x) e T" | Aj =r; Vj}.

Since the #-periodic spectrun(A;} is an integral of motion for (KdV), then the sets
Ty, (r) are invariant for the KdV-flow. Due to the classical theory of the Sturm-Liouville
operatorZ,, the setZ(,Z” is a smooth submanifold of any spa¥e, foliated to the smooth
n-tori T\} (r). For all these results see, e.g., [46].

Due to Novikov and Lax, there exist an analytic m@ap= ¢y : {(r,§)} =R’} xT" — X;
(s is any integer), and an analytic functién= 4" (r) such that?\; (r) = @ ({r} x T"), and
for any &g € T" the curveu(t) = @ (r, &0 + t Vh(r)) is a smooth solution for (4.5). As a
function oft, this solution is quasiperiod®The celebrated lts—Matveev formula explicitly
represents in terms of theta-functions, see in [32,31,8,59].

5A continuous curver:R — X is quasiperiodic if there exist € N, ¢ € T", v € R and a continuous map
U:T" — X such thau(r) = U (¢ + tw).
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4.3. Other examples
Sne-Gordon. The Sine-Gordon (SG) equation on the circle
i =uy(t,x) —sinu(t,x), xeS*=R/27Z,

is another example of a Lax-integrable HPDE.
First the equation has to be written in a Hamiltonian form. The most straightforward
way to do this is to write (SG) as the system

In=-—uv, D= —uy, + Sinu(t, x).

One immediately sees that this system is a semilinear Hamiltonian equation in the sym-
plectic scale{X; = HS(S) x H*(S)}, a2 = Jdn A dn), wheren = (u,v) and J (u, v) =
(—v,u).

Now we derive another Hamiltonian form of (SG), more convenient for its analysis. To
do this we consider the shifted Sobolev scgtg = H*t1(s1) x Ht1(s1)}, where the
spaceXg is given the scalar product

6= [ (66 +-E2)dx,

and any spaceX;—the product(&s, &), = (A%&1, &2). Here A is the operatorA =
—32/9x2 + 1. Obviously,A defines a selfadjoint automorphism of the scale of order one.
The operatot (1, w) = (—/A w, ~/Au) defines an anti-selfadjoint automorphism of the
same order. We provide the scale with the symplectic f8gra= J d& A d&. We note that
(SG) can be written as the system

n=—-+vAuw, w:x/z(u—i—A_lf’(u(x))), (4.6)
where f(u) = —cosu — %uz, and that (4.6) is a semilinear Hamiltonian equation in
the symplectic scale as above with the Hamiltonidigs) = %(g,g) + [ fu(x))dx,
§=(u,w).

Let us denote by ¢ (X¢) subspaces aX,; formed by odd (even) vector functiogéx).
Then({X¢}, B2) and({X¢}, B2) are symplectic sub-scales of the scale above. The space
and X¢ (with s > 0) are invariant for the flow of Equation (4.6). The restricted flows cor-
respond to the SG equation under the odd periodic and even periodic boundary conditions,
respectively.

The SG equation is Lax-integrable under periodic, odd periodic and even periodic
boundary conditions. That is, Equation (4.6) is Lax-integrable in the all three symplec-
tic scales defined above. See [8,59].



Hamiltonian PDES 1101

Zakharov-Shabat equation.  Let us take the symplectic Hilbert scalk (= H* (81, C),
J du ndu) as in the Example 2.8. The defocusing and focusing Zakharov—Shabat equations

i=i(—uxy +mu£ylul®u), y>0, 4.7)

both are Lax-integrable, see [83,8].

5. KAM for PDEs
In this section we discuss the ‘KAM for PDESs’ theory. Here we cover all relevant top-
ics, except the theory of time-periodic solutions of Hamiltonian PDEs. The latter is re-
viewed in the Appendix, written by Dario Bambusi. We avoid completely the classical
finite-dimensional KAM-theory which deals with time-quasiperiodic solutions of finite-
dimensional Hamiltonian systems and instead refer the reader to the recent survey [78].
5.1. An abstract KAM-theorem
Let ({X,}, a2 = Jdu A du) be a symplectic Hilbert scale;d; = ordJ < 0; A be an
operator which defines a selfadjoint automorphism of the scale of ayder—d; and H
be a Fréchet—analytic functional éfy,, do > 0, such that or¥ H = dy < dy:

VH: X4y —> Xdg—dy -
We assume that, < 2dp, so the quadratic forré(Au, u) is well defined on the spacgy,.

In this section we consider the quasilinear Hamiltonian equation with the Hamiltonian

He(u) = 3(Au,u) + e H (u):

iw(t) = J(Au(t) + eVHu(1)). (5.1)
We assume that the scdl¥,} admits a basi$py, k € Zo = Z\{0}} such that

ApF =rtef,  Jer =FAler Vizl, (5.2)

with some real numbe%f, A;‘. In particular, the spectrum of the operatbod is {£i}; |
Aj= Ajk?}. The numbers. ; are called thdrequencies of the linear system

u=JAu. (5.3)
Let us fix anyn > 1. Then the 2-dimensional linear space

spar{e; | 1< j <n} (5.4)
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is invariant for Equation (5.3) and is foliated to the invariant tori
. 2 2
T"=T"(I)=1{> ure: luj™"+u;""=21;Vjt. (5.5)
j=1

If I eR%, thenT"(I) is ann-torus. Providing it with the coordinates= (q1, ..., qx),
whereg; = Arg(uj.r +iu;), we see that Equation (5.3) defines®h(I) the motion

G=010. . k) = . (5.6)

So all solutions for the linear equation ' (/) are quasiperiodic curves with the frequ-
ency-vectorw. Our goal in this section is to present and discuss a KAM-theorem which
implies that under certain conditions ‘most of’ trajectories of Equation (5.6) on the torus
T"(I) persist as time-quasiperiodic solutions of the perturbed equation (5&l); D is
sufficiently small.

To state the result we assume that the operatand the functiord analytically depend
on an additionak-dimensional parameter € A, where A is a connected bounded open
domain inR". Theni ; = 4 (a). We assume that the firgtfrequencies., = «; depend on
a in the non-degenerate way:

(H1) defdw;/dax | 1<k, I <n}#0;
and that the following spectral asymptotic holds:

(H2) 1hj(@) — Kpjét — K1j& — K2j — | < Kj4, Lipa; < j4,
wheredy :=ds +d; >1,K1>0,d < di — 1 and the dots stand for a finite sum with
exponentsl > di > d? > ...

Let us denote by ¢ the complexification of a spacé, and assume that Equation (5.1)
is quasilinear and analytic:

(H3) the setX4, x A admits ianl0 x C" a complex neighbourhoo@ such that the

mapV,H:Q — X;O_dH is complex-analytic and bounded uniformly on bounded

subsets o). Moreoverdy +d; <d.

Finally, we shall need the following non-resonance condition:

(H4) For all integem:-vectorss and (M2 — n)-vectors! such thats| < My, 1< |/ <2
we have,

s-w(a) + lig1rng1(a@) + -+ IypAm,(a) #0, (5.7)

where the integers/; > 0 andM; > n are to be specified.
Relations (5.7) with/| = 1 and|l/| = 2 are called, respectively, the first and the second
Melnikov condition.
Let us fix anylp € R, and denote by the mapl” x A — X4, which send€g, a) to
the point of the torug™ (Ip) with the coordinate;.

THEOREM 5.1. Suppose the assumptions (H1)—(H3) hold. Then there exist integers
M1 > 0 and M, > n such that if (H4) is fulfilled, then for arbitrary y > 0 and for suf-
ficiently small ¢ < &(y), a Borel subset A, C A and a Lipschitzmap X, : T" x A, — Xy,
analyticin g € T", can be found with the following properties:
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(@) mesA\A,) <y;

(b) themap X, is Ce-closeto Xyl 4, inthe Lipschitz norm;

(c) each torus X (T" x {a}), a € A, isinvariant for the flow of Equation (5.1) and
isfilled with its time-quasiperiodic solutions of the form u, (z; ¢) = X (¢ + @'t, a),
q € T", where the frequency vector ' (a) is Ce-closeto w(a) in the Lipschitz norm;

(d) the solutions u, arelinearly stable.®

If VH defines an analytic map of ordég on every spac& 4, d > dp, then the solutions
ug, constructed in the theorem, are smooth. Indeed, (if) is a solution, then due to the
equationJ Au,(¢) is a smooth curve itX j,—q,—a,. SinceJ A is an automorphism of the
scale of orderly, thenu,(¢) is a smooth curve K gy—a, —a,+4; C Xdp+1. Iterating this
arguments we see that is a smooth curve in each spake.

In the semilinear case (i.e., whép +d; < d <di—1landd < 0) the theoremis proved
in [49,50] (see also [52,73]). The semilinearity restrictiér< 0 was removed in [57]
(see also [59] and [46]). Simultaneously with [49,50] a related KAM-theorem for infinite-
dimensionaHamiltonian systems with short interactionswas proved by Pdschel [71] (fol-
lowing Eliasson’s work [33] on lower-dimensional invariant tori for finite-dimensional sys-
tems). The systems (5.1), defined by HPDESs, are not short-interacted, but results of [71] ap-
ply to some equations from non-equilibrium statistical physics. For systems with short in-
teraction a KAM-theory for infinite-dimensional invariant tori also is available, see [39,72]
and references in [72]. We note that [39] was the first work where the KAM theory was
applied to infinite-dimensional Hamiltonian systems.

For some specific HPDEs (5.1) the assertions of Theorem 5.1 can be proven for any
n > 1 even if the parameter is only one-dimensional. In particular, this can be done for
the non-linear wave equation as in Example 5.3 below, whére = a and the constart
is the one-dimensional parameter. See [16] and [4].

The proof of Theorem 5.1 is rather technical. For its well-written outline in the semilin-
ear case see [28]. Below we present the proof's scheme in the form which suits our further
purposes.

THE SCHEME OF THE PROOF OAHEOREM 5.1. We start with the semilinear case and
assume for simplicity thaxj’. =1.Thenl = (I1,...,1,) andg = (q1,...,q,) form a

symplectic coordinate system in the space (2.3). Wé’setspar{gof, j>n}CX,and
denote byy]jF, j > n, the coordinates irY with respect to the basi{gof}. To study the

vicinity of a torusT” (Ip), we make the substitutioh= Iy + p. ThenJ du A du =dp A
dg +dyt Ady~,andT"(Ip) = {p =0, y = 0}. In the new variables Equation (2.1) takes
the form

q:VpHg, pz_Vqu, )}ZJVyHg,
with the Hamiltonian

1
He = Ho(p, y) +eHi(p.q.y), Ho=w~p+§(Ay,y)- (5.8)

61f Equation (5.1) is not semilinear (i.e..dfy +dy > 0), then this assertion is proved provided that the equation
satisfies some mild regularity condition, see Theorem 8.4 in [59].
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The vectorw and the operatoA depend on the parameteythe functionH; depends on
a andlp. We call Hp theintegrable part of the Hamiltonian ..
Retaining the terms aff; which are affine inp and quadratic iry, we write H; as

Hi=H{ +H, Hi=h(q)+h"@) - p+{n@.y)+ (> @)y.y).
HE=O(IpP + lIyI® + Ipl Iyll) =: O(p, 4, y).

Next in the vicinity of the torus™” = {p = 0, y = 0} we make a symplectic change
of variable to kill the partsHll of the perturbatiore H;. This change of variable is a
transformationS; which is the timee shift along trajectories of an additional Hamil-
tonian F. Here the recipe is that to kil#}, F should be of the same structure, so
F=f@+ fP(q@) -p+{f7 @,y + {(f?(q)y,y). Due to Theorem 3.4 we can write
the transformed Hamiltoniai, o S1 as

M, 0 S1= Ho+eHy +&(JVyF, VyHo) + &V, F - VyHo — eV, F - V., Ho
+ 0(82) + 0.

SinceV,Hy = w, V,Ho =0 andV, Hy = Ay, then the linear ire term vanishes if the
following relations hold:

(@-V)f=h, (@-V) fP=h?,
(-V)fY—JAfY =h’, (- V) Y+, JA]=h".

We take these relations as equationsforf”, f¥ and 7> (called’the homological equa-
tions') and try to solve them.

Since the equations have constant coefficients, then decomppsifig, ... in Fourier
series ing, we find for their components (and for matrix components of the opeyatgr
explicit formulae. Certain terms in these formulae contain small divisors, which vanish for
some values of the vectes = w(a). Careful analysis of these divisors show that all of
them are bounded away from zerauif¢ A1, where A; is a Borel subset ofd of small
measure. When the equations are solved, we get a symplectic transformation which in a
sufficiently small neighbourhood af” transforms the Hamiltoniat{, to a Hamiltonian
which differs from its integrable part by @?).

The explanation above has some flows. The most important one is that the first and the
second homological equations can be solved only if the mean valueamdz2? vanish.
To fulfil the first condition we change the Hamiltonia#/; by a constant (this change is
irrelevant since it does not affect the equations of maotion), while to fulfil the second we
subtract frome Hy the average (h”) - p and add it to the integrable paftk, thus changing
the termw - p to w? - p, wherew? = w + ¢(h”). Similar, to solve the last homological
equation we subtract from the operatg? the average of its diagonal part and add the
corresponding quadratic form fdg. Thus, the transformed Hamiltonian becomes

1
Hai="HeoS1=wz: p+ (A2, ) +e2Ha(p,q,y) +O(p,q, ).
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This transformation is calletthe KAM-step.

Next we perform the second KAM-step. Under the condition &hat4, we find a trans-
formation S, which sends the Hamiltonial, to Hz = Hz 0 So = w3 - p + 3(Azy, y) +
(€2)2Ho 4+ O(p, q, v), etc. Afterm steps we find transformatiorss, .. ., S,, such that

HeoS100Sy=wm p+ %<Amy, Y+ &% Hy + O(p.q.y) =: H.
The torusT" = {p = 0,y = 0} is ‘almost invariant’ for the equation with the Hamil-
tonian’H,,. Hence, the torusi o --- o 5, (T") is ‘almost invariant’ for the original one.
Since the sequeneé" converges to zero super-exponentially fast, we can choose the sets
Az, Az, ...insuch away that mégl,, = A1 UA2U--+) < y, foranya ¢ A the vectors
w, (a) converge to a limiting vectay’(a), and the transformation$ o - - - o S, converge
to a limiting mapX, (-, a), defined orT”. Then the torus’. (7", a) is invariant for Equa-
tion (5.1) and is filled with its quasiperiodic solutions> X.(q + 't, a). O

If the equation is not semilinear, then the situation is more complicated since to solve
the forth homological equation we have to remove from the operdtothe whole of its
diagonal part (not only its average). Because of that the opefatothe integrable part of
the Hamiltonian gets terms which form a smgltlependent diagonal operator of a positive
order. Accordingly, the forth homological equation becomes more difficult and cannot be
solved by the direct Fourier method. Its resolution follows from a non-trivial lemma, based
on properties of fast-oscillating Fourier integrals, proved in [57] (see also [59,46]).

5.2. Applicationsto 1D HPDEs

Theorem 1 well applies to parameter-depending quasilinear HPDEs with one-dimensional
space variable in a finite interval, supplemented by boundary conditions such that spectrum
of the linear operato/ A is not multiple. Indeed, for such equations assumption (H2)
follows from usual spectral asymptotics, (H3) is obvious if the non-linearity is analytic,
while (H1) and (H4) hold if the equation depends on the additional parameter in a non-
degenerate way. More explicitly it means the following. In the examples which we consider
below, the equations depend on a poteritiat; a), which is analytic irs and smooth inx.

The non-degeneracy means that in a functional space, formed by functioasdé of the
required smoothness, the potentiakhould not belong to some analytic subset of infinite
codimension.

Below we just list the examples. In each case application of Theorem 5.1 is straightfor-
ward. The theorem applies if dimension of the parametisr> n and dependence of the
potentialV ona is non-degenerate as it was explained above. In the first three examples
the potentialV (x; a) is real, smooth inc and analytic iru. The functionf (x, v; a) is real,
smooth inx and analytic irv anda. Details can be found in [52,53,59,57].

ExAMPLE 5.2. Non-linear Schrodinger equation (NLS), cf. Example 2.8:
L't:i(—uxx+V(x;a)u+sf(x,|u|2; a)u), u=u(t,x),xel0,rx]; (5.9)
ut,0)=u(, m)=0. (5.10)
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Now d; =0, ds =2,d =dy = 0 and we view the Dirichlet boundary conditions as the
odd periodic ones (cf. Example 2.9). The theorem applies in the scale of odd periodic
functions withdg =1 or 2. If f is even and 2-periodic inx, then the theorem applies
with anydp > 1 and the constructed quasiperiodic solutions are smooth.

ExamMpPLE 5.3. Non-linear string equatiom: (¢, x) satisfies (5.10) and
W=wyy — Vx;a)w+ef (x, w; a),
where nowV > 0 andf (x, w) = 0if w =0 orx = 0. Letus denot& = (u, —(—A)~Y2x).
It is a matter of direct verification thdf satisfies a semilinear Hamiltonian equation (5.1)

in a suitable symplectic Hilbert scale, formed by odd periodic Sobolev vector-functions
(cf. Equation (4.6)). Nowly =1,d; =0,d =dy = —1. Cf. [79] and [16,4].

ExXAMPLE 5.4 (KdV-type equations). KdV-type equation

0
L't:8—(—uxx+V(x;a)u+8f(x,u;a)); x e St / udx =0, (5.11)
X st

cf. Example 2.7. Nowl; =1,d4 =2,d =dy =0.

Theorem 5.1 also applies if € R! and the potentialV/ (x; a) grows sufficiently fast
whenx — oo.

ExXAMPLE 5.5. Non-linear Schrédinger equation on the line:
u =i(—uxx + (x2 + /Lx4+ Vix; a))u +8f(|u|2; a)u), u >0,
u=u(, x), xeR, u— 0as|x| - oo.

Here the potential/ is smooth, analytic im and vanishes als| — oo. The real-valued
function f is analytic. Nowd; =0, d4 = 4/3, dg = 0. Another example of this sort see
in [52], Section 2.5.

The time-quasiperiodic solutions, constructed in Examples 5.2-5.5, are linearly stable.
Therefore they should be observable in numerical models for the corresponding equations.
Indeed, quasiperiodic behaviour of solutions for 1D HPDEs with small non-linearity was
observed in many experiments, starting from the famous numerics of Fermi, Pasta and
Ulam [36]; e.g., see [82].

5.3. Multiple spectrum

In Examples 5.2, 5.3 the equations are considered under the Dirichlet boundary conditions.
If we replace them by the periodic ones

u,x)=ut,x +2n),
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then Theorem 5.1 would not apply since now the frequencies of the corresponding linear
equations are asymptotically double: they have the f{mjtn j =1}, whereM;r —A]T| -0

asj — oo. Itis clear that the numbeffg*} cannot be re-ordered to meet the spectral as-
ymptotic condition (H2). Still, for some semilinear equations (5.1) assertions of the theo-
rem remain true if the frequencies are not single, but asymptotically they have the same
multiplicity m > 2 and behave regularly. A corresponding result is proved by Chierchia and
You in [27], using the scheme, explained in Section 5.1. We do not give precise statement
of their theorem, but note that it applies to the non-linear string equation in Examples 5.3
under the periodic boundary conditions. The result is the same: if the non-degeneracy con-
dition holds, then fore small enough and for most (in the sense of measure) values of
the n-dimensional parameter, solutions of the linear equation (5.3) which fill in a torus
T"(I), I e R", persist as linearly stable time-quasiperiodic solutions of the corresponding
non-linear equation (5.1).

We note that this persistence result was proved earlier by Bourgain [16], who used an-
other KAM-scheme, discussed in the next section.

5.4. Space-multidimensional problems

The abstract Theorem 5.1 is a flexible tool to study 1D HPDESs, bogvitr applies to
space-multidimensional equations since the spectral assumption (H2) never holds in di-
mensions> 1. The first KAM-theorem which applies to higher-dimensional HPDEs, is
due to Bourgain [19]. In that work the 2D NLS equation as in Example 2.8 is considered.
For technical reasons the potential te¥n is replaced there by the convolutidhs u:

d
u= i(—Au +V(x;a)xu +8Fg(u, ﬁ)), u=u(,x), x € T2 (5.12)
i

The potentialV (x; a) is real analytic ang («, i) is a real-valued polynomial of andi.
This equation has the form (5.1), wheAe: = —Au + V xu and Ju = iu. The basis
{¢r} asin (5.2) is formed by normalised exponef#$* andie’*™*, s € Z2}, re-numerated
properly, and

W=1 =152+ Vissa),

N

where{V(s; a)} are the Fourier coefficients &f. For anyn, the linear equation (5.1R)-o
has quasiperiodic solutions

n A
u=Y "z gy () (5.13)
j=1

(these are trajectories of Equation (5.6) on#ih@rus (5.5), wherd; = %|zs_,. |2andl; =0
if s differs from alls ;). For simplicity let us assume thaf = V(sj; a), j=1,...,n.Then
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the result of [19] is that for most values of the parametéin the same sense as in The-
orem 5.1), the solution (5.13) persists as a time-quasiperiodic solution of Equation (5.12).
In contrast to the 1D case it is unknown if the new solutions are linearly stable.

The proof in [19] is based on a KAM-scheme, different from that described in Sec-
tion 5.1. Originally this scheme is due to Craig and Wayne [29] who used it to construct
periodic solutions of non-linear wave equations, using certain techniques due to Frohlich—
Spencer [38]. Also see [16].

Now we briefly describe the scheme, using the notations from Section 5.1. When the
perturbatiore H; is decomposed as in (5.8), we extract the tefm’” (¢)y, y) from sHll
and add it to the integrable paHy. After this the Hamiltonian to be killed is the sum
of the three term&(g) + h”(q) + (k¥ (q), y); accordingly the HamiltoniarF is a sum
of three terms as well. We have to find them from the first three homological equations.
The first two are not difficult, but the third one is a real problem since the opetataor
longer has constant coefficients but equéds+ A(q), whereA is a bounded operator of
ordere (it changes from one KAM-step to another). The resolution of this equation for
high KAM steps is the most difficult part of implementation the Craig—Wayne—Bourgain
KAM-scheme.

Recently Bourgain managed to develop this scheme father and applied it to high-
dimensional equations. We are not ready to discuss this and related results, and instead
refer the reader to the original publications [23]. Also see [34].

5.5. Perturbations of integrable equations

Let us consider a quasilinear HPDE on a finite space-interval, which is an integrable Hamil-
tonian equation (4.1) in some symplectic Hilbert sc&lé{, ax = J dx A dx). As we ex-
plained in Section 4.1, this equation has invariant finite-gap symplectic mariféfdsuch

that restriction of (4.1) to any of them is integrable. In this section we discuss the results
on persistence of quasiperiodic solutions that fill in these manifolds, provided by the KAM
for PDEs theory. We shall see that they are very similar to the celebrated Kolmogorov
theorem, which states thabst of quasiperiodic solutions of a non-degenerate analytic in-
tegrable (finite-dimensional) Hamiltonian system persist under small perturbations of the
Hamiltonian; see [1,65,78] and Addendum in [59]. We state the main result as a

THEOREM 5.6 (Metatheorem)Most of quasiperiodic solutions that fill in any finite-gap
manifold 72" as above persist under small Hamiltonian quasilinear analytic perturbations
of the integrable equation. If the finite-gap solutions in 72" are linearly stable, then the
new solutions are linearly stable as well.

In the assertion above the statement ‘most of quasiperiodic solutions persist’ means the
following. Due to the Liouville—Arnold theorem [2,43], the manifo®®* can be cov-
ered by charts, diffeomorphic t8 x T" = {p, g} (B is a ball inR"), with chart-maps
®o:B x T" — T2" such thatdja, = dp A dg, and the curveo(p, ¢ + tVh(p)) are
solutions of the integrable equation, whéig) = H o &o(p, ¢). Let us denote by the
small coefficient in front of the perturbation. Then for every chart there exists a Borel
subsetB, C B and a mappb, : B. x T" — X, (d is fixed), with the following properties:
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(i) megB\B,;) — 0 ase — 0;
(i) the map @, : B, x T" — X, is C./e-close to®g in the Lipschitz norm and is
analytic ing € T";

(i) there exists a map, : B, — R", Ce-close to the gradient mayh in the Lipschitz

norm, such that the curves— ®.(p, q + tw:(p)), p € B¢, g € T", are solutions
for the perturbed equation.

The statement of Theorem 5.6 is proven under a number of assumptions (see [59,35]).
These assumptions are checked for such basic integrable HPDEs as KdV, Sine- and Sinh-
Gordon equations. There are no doubts that they also hold for the Zakharov—Shabat equa-
tions’ (but the theorem in [59,35] does not apply to the Kadomtsev—Petviashvili equation).
Below we present a scheme of the proof and discuss the restrictions on the integrable
HPDE which allow to implement it.

We view (4.1) as an equation in the Hilbert spage and denote the quasilinear Hamil-
tonian of the perturbed equation as

Hy = - (Ax, x) + ho(x) + eh1(x).

NI =

Accordingly, Ho = %(Ax, x)+ ho is the HamiltonianH of the unperturbed equation (4.1).
Sep 1. Let us consider any finite-gap solutiep(t) = ®o(po, go + tVh(po)) and lin-
earise (4.1) about it;

v =J(VH (uo(1))),v. (5.14)

The theory of integrable equations provides tools to reduce this equation to constant co-
efficients by means of a time-quasiperiodic substitution = G (po, go + t Vi(po))v(t),
whereG(p, g), (p,q) € B x T", is a symplectic linear mag (p, q):Ys — Z4 (see [59,
Sections 5, 6]). Her&; is a fixed symplectic subspace 4f; of codimension 2. The
restriction, which we impose at this step, is that the oper@igr, ¢) is a compact pertur-
bation of the embedding; — Z;, which analytically depends o, g).

Sep 2. The mapG from the Step 1 defines an analytic map

BxT"xY;— Xy,
linear and symplectic iy € Y;. This map defines a symplectomorphism

B xT" x Bs(Ya) = Xa,  Bs(Ya) ={lylla <8}, (5.15)
such that linearisation in at y = 0 of the latter equals the former ([59, Section 7]).

Sep 3. We use the map (5.15) to pass in the Hamiltorfirto the variablegp, ¢, y).
Retaining linear and quadratic interms we get

1
He(p, 4, ) =h(p) + 5(AP)y, ¥) + h3(p, g, ) + h1(p. 4, y), (5.16)

See [41] for arad hoc KAM-theorem for the defocusing equation.
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wherehs = O(||y||§). Calculations show thais(p, g, y) contains terms such that their
gradient maps have the same order as the operttpy. If this really was the case, then

the Hamiltonian equation would not be quasilinear, which would complicate its study a
lot. Fortunately, this does not happen due to a cancellation of a very general nature (see
Lemma 7.5 in [59]), and we have

ordVhz <ord A(p) — 1. (5.17)

Sep 4. Invariant tori of the unperturbed system with the Hamiltont&yip, ¢, y) have
the form {p = consty = 0}. Let us scale the variables neartorus {p = a,y = 0}:
p=a+¢e?3p, g =3, y=¢e35. In the scaled variables the perturbed equation has the
Hamiltonian

const+ w(a) - p+ %(A(a)jz, 5)+0(e?),  w(a)=Vh(a). (5.18)

So we have got the system (5.1), written in the form (5.8), witteplaced bysY/3. If
Theorem 5.1 applies, then most of the finite-gap {pri= const persist in the perturbed
equation, as states the Metatheorem. To be able to use the theorem we have to check the
assumptions (H1)—(H4).

The condition (H2) holds if the integrable equation is 1D (if the spectrum is asymp-
totically double, e.g., if the unperturbed equation is the Sine-Gordon equation under the
periodic boundary conditions, then one should use a version of the Metatheorem, based
on the Chierchia—You result). The quasilinearity condition (H3) holds due to (5.17). The
assumption (H1) now takes the form

Hessi(p) # 0. (5.19)

This is exactly Kolmogorov’s non-degeneracy condition for the integrable systehton
The assumption (H4) witlw = Vi(a) is the second non-degeneracy condition, which
needs verification.

Summing up what was said above, we see that Theorem 5.1 implies the Metatheo-
rem if the unperturbed integrable equation is 1D quasilinear, the linear op€&rgiory)
from Step 1 possesses the required regularity properly and the non-degeneracy assump-
tions (5.19) and (5.7) hold true.

The scheme we have just explained was suggested in [51], where it was used to
prove an abstract KAM-theorem, which next was applied to Birkhoff-integrable infinite-
dimensional systems and to perturbed KdV equations. See [59,35] for a more general ab-
stract theorem, based on the same scheme.

Steps 1-2 are not the only way to reduce an integrable equation to the normal
form (5.16). Another approach to get it had been initiated by Kappeler [44]. It was de-
veloped further in a number of publications and finally in [45] it was proved that the
KdV equation is Birkhoff-integrable. It means the following. Let us take the Darboux scale
({Xs}, a2) with the index-setZ = Zg, and6, = |k| (see Example 2.6). Then there exists
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amap® : Xo — H®(S1)o which extends to analytic maps, — H*(S1)g, s > 0, such
that

o0
hod ()= j*u%+u?;)+(afunction ofuf +u?,, 1=1,2,...). (5.20)
j=1

Here {uy, k € Zo} are coefficients of decomposition afe X; in the basis{¢p,} and i

is the KdV-Hamiltonian (see Example 2.7). Moreover, the Hamiltonian (5.20) defines an
analytic Hamiltonian vector field of order three in each sp¥ged > 1. In the transformed
variables theV-gap tori of the KdV equation take the form (5.5), where N and exactly

N numbers/; are non-zero. Now let us take a torus (5.5), wheeeR’, . Making a change

of variables as in Section 5.1, we arrive at the Hamiltonian (5.18). Detailed and readable
derivation of the normal form (5.20) see in [46].

Reduction to the Birkhoff normal form (5.20) uses essentially specifics of the KdV's
L-operator. Still, similar arguments apply as well to the defocusing Zakharov—Shabat equa-
tion, see [41]. Presumably, the Birkhoff normal forms exist for some other integrable equa-
tions with selfadjointL-operators, but not for equations with non-selfadjoint operators. In
particular, the focusing Zakharov—Shabat equation cannot be reduced to the form (5.20)
since for this equation some finite-gap tori are linearly unstable [26], while all invariant
tori of the form (5.5) for the Hamiltonian (5.20) are linearly stable.

EXAMPLE 5.7 (Perturbed KdV eguation). Consider the equation

190
zl(t,x)=Za(u”+3u2+8f(x,u)), xe st Lludxzo, (5.21)

where f is smooth inx, u and analytic inu. The Metatheorem applies and implies that
most of finite-gap KdV-solutions persist as time-quasiperiodic solutions of (5.21). More-
over, these solutions are smooth and linearly stable.

This result was first stated in [51]. The proof contains some gaps. Two the most serious
of them are that Theorem 5.1, proved then only for semilinear equations, was used in a
quasilinear case, and that the non-degeneracy assumptions (5.19) and (5.7) were taken for
granted. These gaps were filled in later. The quasilinear version of Theorem 5.1 was proved
in [57] (preprint of this paper appeared in 1995), and the non-degeneracy conditions were
verified in [12]. Also see [59, Section 6.2.1]. The arguments in [12,59] are general and
applies to other equations.

For a complete proof of ‘KAM for KdV’ see [59,35] and [46].

The Metatheorem (in its rigorous form as in [59,35] and [46]), applies to quasilinear
Hamiltonian perturbations of any higher equation from the KdV-hierarchy, provided that
the non-degeneracy relations are checked for this equation. It can be done in the same way
as in Example 5.7. See [46], where the non-degeneracy of the second KdV equation is
verified.
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ExXAMPLE 5.8 (Perturbed SG equation). Consider the equation
i =uyy —Sinu+ef (u, x), u@,0)=u(,7)=0, (5.22)
where (0, x) =0 (and f € C* is analytic inu). The Metatheorem applies to prove per-
sistence most of finite-gap solutions of the SG-equation, see [11,59,35]. In general, due
to the phenomenon explained in Example 2.9, the persisted solutions arBl ®siyooth
in x. Butif f is x-independent and odd in then they are smooth.
In difference with the KdV-case, large amplitude finite-gap SG-solutions, as well as the
corresponding persisted solutions of (5.22), in general are not linearly stable.
To end this section we note that since the persisted solutigins have the form
ue(t) = e (p, g + tws(p)) = Po(p. q +twx(p)) + O(Ve),
then to calculate them with the accuragy for all values of timer, we can use the “finite
gap map”®do with the corrected frequency vector. Moreoweys(p) = Vh(p) +eWi(p) +

O(£?), where the vectoW; (p) can be obtained by averaging over the corresponding finite-
gap torus of some explicit quantity, see [59, p. 147].

5.6. Small amplitude solutions of HPDES
Let us consider the non-linear string equation
Uy =Uyx —mu+ f(u), u=u(t,x), 0<x<m; u(@,0) =u(t,7)=0.
(5.23)
Herem > 0 andf is an odd analytic function of the form
fu)= kus + O(MS), k> 0.

Sincem, « > 0, then constants, b > 0 can be found such thatmu + f(u) = —a sinbu.
Hence, Equation (5.23) can be written as

Uy = Uxy —aSinbu + O(us).

After the scalinge = sw, ¢ « 1, the higher-order perturbation transforms to a small one,
and we can apply the Metatheorem (cf. Example 5.8) to prove that small-amplitude parts of
the finite-gap manifold§?*, n = 1,2, ..., for the SG equation,; = u., — a Sinbu with

the Dirichlet boundary conditions mostly persist in (5.23). To put this scheme through, the
small-amplitude parts

T2 = (i) € T | llu) + il <38}, 0<s8 <1,
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of the manifoldsZ7?* have to be studied in details. This task was accomplished in [14],
where the following results were proved:

(i) the setsfaz" are smooth manifolds which contain the origin,
(i) they are in one-to-one correspondence with their tangent spaces at the origin,

(iii) these tangent spaces are invariant spaces for the Klein-Gordon equatien

Uy — (ab)u.

Another proof of (i)—(iii)) was suggested in [59]. It is based on some ideas from [44] and
applies to other integrable equations. After (i)—(iii) are obtained, a version of the Metathe-
orem (or a version of Theorem 5.1) applies to prove that most of finite-gap solutions from a
manifold?;z” persist in (5.23) in the following sense: the-dimensional Hausdorff mea-
sure of the persisted part of the manifold, divided by a similar measufﬁ’bfconverges
to one as§ — 0. See [13] for a proof and [53] for discussion.

Similar results hold for the NLS equation

it =y +mu+ f(Jul?)u, f0) =0, f'(O=y#0, (5.24)

where f is analytic, since it is a higher-order perturbation of the Zakharov—Shabat equa-
tion (4.7). But it turns out that it is easier to approximate (5.24) near the origin by its partial
Birkhoff normal form. The latter is an integrable infinite-dimensional Hamiltonian system
(which is not an HPDE), and a sibling of the Metatheorem applies to prove that most of its
time-quasiperiodic solutions persist in (5.24), see [60]. More on the techniques of Birkhoff
normal forms in HPDE see in [74] and [46]. The classical reference for finite-dimensional
Birkhoff normal forms is the book [65].

6. Around the Nekhoroshev theorem

The classical Nekhoroshev theorem [66] deals with nearly-integrable Hamiltonian sys-
tems with analytic Hamiltonian&; (p, ) = h(p) +&H (p, q) on the phase-spadex T",

P C R”", given the usual symplectic structug® A dg. Under the assumption that the
Hamiltoniani(p) satisfies a mild non-degeneracy condition catlesisteepness, the the-

orem states that the action variables change exponentially slow along trajectories of the
system. Namely, there exist constami$ € (0, 1) such that for any trajectorgp(z), ¢ (t))

of the system we have

|p() — p(O)| < Ce” if |t] <exple™). (6.1)

Strictly convex functiong (p) form an important class of the steep Hamiltonians. An alter-
native proof of the theorem which applies in the convex case was suggested by Lochak [63].
It is based on clever approximation of a trajectopyr), ¢ (t)) by a time-periodic solution
of the equation which is a high-order normal form fdg. So rational frequency-vectors
play for the Lochak approach very important role.

Original Nekhoroshev's proof contains two parts, analytical and geometrical. The tech-
nigues, developed in the analytical part of the proof, allow to get the following result,
which we call below the quasi-Nekhoroshev theorem: Let us consider the HamiltEpjan
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depending on an additional vector-parameter 2 € R", H. = p-w + ¢H(p, q). Then
for any y > O there exists a Borel subsgt, C £2 (‘the Diophantine subset’) such that
mes2\£2,) <y, and (6.1) withC = C,, holds ifw € £2,,. Note that in the Cartesian coor-
dinates(x, y), corresponding to the action-angle variablgsq) (i.e., x; = \/ECOSC]./,

yj =+/2pjsing;), the HamiltonianH, reeds as

1
H, = Ezwj(foryf-) +eH(x, ).

That is, H, is a perturbation of the quadratic Hamiltoniafy. So the quasi-Nekhoroshev
theorem implies long-time stability of the zero equilibrium for an analytical Hamiltonian

H(x,y)=Ho+h, h=0(|x,»[%, (6.2)

provided that the vecto® belongs to the Diophantine set. In [67] Niederman used the
Lochak approach to get a stronger theorem on stability for (6.2). Namely, he proved that
the equilibriumis stable during the exponentially long time if the veetdoes not satisfies
resonant relations up to order four, ains convex in a certain sen8e.

To get a corresponding theorem which applies to all small initial data is a non-trivial
task, resolved by Niederman [67] by means of the Lochak approach.

No analogy of the Nekhoroshev theorem for HPDES is known yet, but a numiaer of
hoc quasi-Nekhoroshev theorems for HPDEs were proved, mostly by Bourgain and Bam-
busi, see [3,4,22] and references therein. These works discuss stability of the equilib-
rium for HPDEs (mostly 1D) with Hamiltonians of the form (6.2). Under some restric-
tions on the quadratic paffp and on the higher-order pait it is proved that if the ini-
tial dataug is ane-small and ‘very’ smooth function, then a solution stays very close
to the corresponding invariant torus of the linear system with the HamiltoHrdur-
ing the time which is polynomially large ia—%, or even exponentially large. This re-
sult is obtained either under the ‘quasi-Nekhoroshev’ condition that the spectrum of the
operatorA is ‘highly non-resonant’, or under the opposite assumption (needed to ap-
ply the Lochak—Niederman technique) that the spectrum is ‘very resonant’. In particular,
the following result is proved in [3] (also see [75,22]): Let us consider the NLS equa-
tion (5.24) in the scal¢H;(0, )} of odd 2r-periodic functions. Assume thab(x) =

Z,](V:lukosinkx, denotee = |ug(x)|r, < 1 and write the solution(z, x) of (5.24) as
u =Y ug(t)sinkx. Then there exist, > 0 and constant€1, C, > 0 such that for < &,
and|r| < C1exples/e)YN =: T, we have

o
Z(|uk(l)|2— Iuk0|2)2<C284+l/N- (6.3)
k=1

Let us setT’N = {u(x) = Z,i\':luk sinkx | |ux| = |uk,|}. This is ann-torus of diameter
~ ¢ and (6.3) implies that

distys (u(t), T") < Ce™™ N V1| < T3,

8Independently this result was obtained in [9] by means of the Nekhoroshev’s techniques.
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if s < —1/4. Thus, during the tim&, the trajectory:(¢) remains very close to its projection

to TV. The latter is a trajectory of ai-dimensional dynamical system, so the time of

its return to aps-neighbourhood 4 < 1) of the initial point ‘should’ be of ordep=".

Same is true for the trajectomy(r), if ¢ is small in terms ofo. The phenomenon of the
pathologically good recurrence properties of small-amplitude trajectories of some non-
integrable 1D HPDEs is well known from numerics (e.g., see [82]). We have seen that the
guasi-Nekhoroshev theorems as above explain it up to some extend.

7. Invariant Gibbs measures

If Equation (4.1) is a finite-dimensional Hamiltonian system witk (p, ¢) € (R?", dp A

dq), then any measur¢ (H(p,q))dpdg such that the functionf o H is Lebesgue-
integrable, is invariant for the equation. The most important among these measures is
the Gibbs measure™* dpdq (the HamiltonianH is assumed to grow to infinity with

|(p, ¢)]). Now let us consider an HPDE (4.1). Say, the zero-rgdssquation

U=y — ud, u= u(t,x), x € st
This equation is equivalent to the system
iw=—Buv,
(7.1)
V= Bu+ Bil(u?’ — u)
whereB = 4/1— A. Denotingé = (u, v) we can see that this is a Hamiltonian system in

the symplectic scal§{Z, = HTY2(T?; R?)}, ap = J d& A dE), whereJ (u, v) = (—v, u),
with the Hamiltonian

1 1 1
HE) = §||s||%+/ (Z'”'4‘ §|u|2) dx, &= (u,v).

Here|| - ||o is the norm in the spacH 1/2(s1; R?) (cf. Section 8.3). The natural question is
if the formal expression

n=eH® gg (7.2)

defines a measure in a suitable function space- {£(x)}, invariant for flow-maps of
Equation (7.1). Since the Lebesgue measifraloes not exist in an infinite-dimensional
function space, then to make the right-hand side of (7.2) meaningful we write it as

= e~ [ =3Py dx = 3113 g

Now ex —%||§||Sd§ is a well-defined Gaussian measure, supported by a suitable
spacez, formed by functions of low smoothness, andQp(¢) < C, where p(§) =

e~ [ Glul*=3 ) dx Therefore if
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(i) p(¢)isaBorel function org, thenu is a well-defined Borel measure @

To check that it is invariant for Equation (7.1) we have to verify that

(i) the flow-maps of (7.1) are well-defined on syp@nd preserve the measure.
The corresponding result was first stated by Friedlander [37]. Unfortunately, his arguments
contain serious flaws. Complete proofs appeared later in works of Zhidkov, McKean and
Vaninsky and Bourgain, see the books [20,84] and references therein. Similar arguments
apply to the 1D NLS equation (2.4), where the non-quadratic tgsatisfies certain re-
strictions.

For higher-dimensional HPDESs the task of constructing the Gibbs measures becomes
much more difficult. The only known result is due to Bourgain who proved that for the
defocusing 2D NLS equation

in=Au— |u|2u, X € 'JTZ,
the Gibbs measure (7.2) exists and is invariant. The main difficulty here is the step (ii)
which is now based on highly non-trivial results on regularity of corresponding flow-maps
in Sobolev spaces of low smoothness; see in [20].
8. Thenon-squeezing phenomenon and symplectic capacity
8.1. The Gromov theorem
Let (R%, Bo) be the spac®?" = {x1,x_1,...,x_,} with the Darboux symplectic form

B2=Ydx; Adx_j. By B.(x) = B,(x; R?") andC}, = C}(R?"), 1< j < n, we denote
the following balls and cylinders iR?":

B ={ylly—xl<r},  Cl={y=01....y-n) ¥ +)%; <p%}.

The famousifon-)squeezing theoremby M. Gromov [42] states that if is a symplecto-
morphismf : B, (x) — R?" such that its range belongs to some cylindet C;, x; € R?",
thenp > r. For an alternative proof, references and discussions see [43].

8.2. Infinite-dimensional case
Let us consider a symplectic Hilbert sc&|&;}, a2) with a basidy; | j € Zo}. We assume
that this is a shifted Darboux scale (cf. Example 2.4 in Section 2.2). It means that the basis

can be renormalised to a bagig; | j € Zo} (eachg; is proportional top;) which is a
Darboux basis for the form, and a Hilbert basis of some spaZg:

(@) Pr)a =8k a2l@j, ¢—kl=sgnjd;k Vj, k. (8.1)
These relations imply that

alé nl=(JE g,  Jgj=sONjg_; Vj. (8.2)
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In particular,J = J.

Below we skip the tildes and re-denote the new basis bag;to

In this scale we consider a semilinear Hamiltonian equation with the Hamiltonian
Hu) = %(Au, u)g + h(u,t). Due to (8.2) it can be written as

iw=JAu+ JVehu,1), (8.3)

whereV¢ signifies the gradient in with respect to the scalar product 5.

If a Hamiltonian PDE is written in the form (8.3), then the symplectic spate a?)
is called the Hilbert) Darboux phase space for this PDE. Below we study properties of
flow-maps of Equation (8.3) in its Darboux phase space.

Let us assume that the operatbhas the form

(H1) Au= 3721 4j(ujp; +u—jo_;) Yu=3 u;p;, wherex;’s are some real num-

bers.
ThenJAu =352, j(u_jp_j —u;g;), so the linear operatowd’* are direct sums of
rotations in the planeRy; +Ro_; C Zy, j=1,2,....

We also assume that the gradient mh is smoothing:

(H2) there existy > 0 such that or&/¢h = —y for s € [d — y,d + y]. Moreover, the

maps

Vih:1Z, xR — Zsyy, se€ld—y,d+vyl,

areC1-smooth and boundet.

For anyt and T we denote byo any open subset of the domain of definition of the
flow-maps/ in Z,, such that for each bounded subget O/ the set J, ., 7157 (Q) is
bounded inz,;.10 A

In the theorem below the balB, and the cylinder<’;}, j > 1, are defined in the same
way as in Section 8.1.

THEOREM 8.1. Assume that (H1) and (H2) hold and that a ball B, = B, (uo; Z4) :=

{lly — uolla < r} belongs to O] together with some e-neighbourhood, & > 0. Then the
relation

S/ (B:) Cvo+C}(Za) (8.4)
withsomevg € Z; and j > 1 impliesthat p > r.
PrRoOOF Without lost of generality we may assume that

vo =0, j=1

Arguing by contradiction we assume that (8.4) holds witk: r and choose any; €
(p,r).

e, they send bounded sets to bounded.
10This set should be treated as a ‘regular part of the domain of definition’.
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Forn > 1 we denote bye?" the subspace at,, spanned by the vectofg;, | j| < n},
and provide it with the usual Darboux symplectic structure (it is given by the &ofpp. ).
By 17, we denote the orthogonal projectioh, : Z; — E2*. We set

1
H" = E(Au, udg + h(Un(u), t)

and denote b)E(Tn)t flow-maps of the Hamiltonian vector fileidy- . Any mapS(Tn)[ decom-

poses to the direct sum of a symplectomorphistB#fand of a linear symplectomorphism
of Zs © E?". So the theorem's assertion with the mgfreplaced bys/,, follows from
the Gromov theorem, applied to the symplectomorphism

EZ"—>E2”, xHHnS(Tn)t(i(x)—i—uo),

wherei stands for the embedding & to Z,.
Proofs of the two easy lemmas below can be found in [54].

LEMMA 8.2. Under the theorem's assumptionsthe maps S(Tn)t aredefinedon B, for n > n’

with some sufficiently large n’, and there exists a sequence e, — 0 such that
n— o0

IS5 ) = SEy )| <en (8.5)
for n > n’ and for every u € B, .

LEMMA 8.3. For any u € B, we have S/ (u) = eT =4y + 5] (u), where ST is a
C1-smooth map in the scale { Z,} and ordS! =—yforseld—y,d+yl

Now we continue the proof of the theorem. Since its assertion holds for anyﬁmgp
(n > n’) and since the balB, belongs to this map’s domain of definition (see Lemma 8.2),

then for eactn > n’ there exists a point,, € B, such thaS(Tn)t(un) ¢ C;l (0). That is,

|18 Gy ()| = 1. (8.6)

By the weak compactness of a Hilbert ball, we can find a weakly converging subsequence
Un; = U € B, (8.7)

S0
Un; —> U strongly inZ—,, .

Due to Lemma 8.3 this implies thaf () — S7 («) in Zy, and using (8.7) we obtain the
convergence:

Sl uny) = S] (). (8.8)
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Noting that|I71ST (u,)| = |nls(fwun + (S — S&),)uﬂ and using (8.6), (8.5) we
get:

|MS] un)| = p1—ene n=n' (8.9)

Since by (8.8) HlStT(unj) — MST(w) in E? then due to (8.9) we have
|H1StT (u)| = p1. This contradicts (8.4) becauge > p. The obtained contradiction proves
the theorem. O

8.3. Examples

EXAMPLE 8.4. Let us consider the non-linear wave equation

ii=Au— f(u;t,x), (8.10)

whereu = u(z, x), x € T". The functionf is a polynomial inu of a degreeD such that
its coefficients are smooth functionsondx. We setf = f — u, denote byB the linear
operatorB = 4/1 — A and write (8.10) as the system of two equations:

i =—Buv,
. 1 (8.11)
V=Bu+ B f(u;t, x).

Let us take for{Z,} the shifted Sobolev scalg, = H*t1/2(T"; R?), where (&, n), =

Jon B¥TE - ndx (its basic scalar product is the scalar productdi’2). We seta, =

J d& AdE, whereJ& = (—v, u) for &£ = (u, v). Choosing fo{y;, j € N} a Hilbert basis of

the space/2(T"), formed by properly normalised and enumerated non-zero functions

sins - x and cos - x (s € Z"), we set

gi=W;.0, ¢-;=0y), jeN

The obtained symplectic scalgZ,}, az) is a Darboux scale. It is easy to see that (8.11) is
a Hamiltonian equation with the Hamiltonian

Hu,v) = %(B(u, v), (u, v))g + / F(u;t,x)dx,

whereF, = f. SoZo = HY?(T", R?) is the Darboux phase space for the non-linear wave
equation, written in the form (8.11).

To apply Theorem 8.1 we have to check the conditions (H1) and (H2). The first one (with
A = B) holds trivially sinceg;’s are eigenfunctions of the Laplacian. The condition (H2)
holds in the following three cases:
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(@n=1,

(b) n=2,D < 4,

(c) n=3,D<2.

The case (a) and the case (b) with< 2 can be checked using elementary tools, see [54].
Arguments in the case (b) with3 D < 4 and in the case (c) are based on a Strichartz-type
inequality, see [17].

In the cases (a)-(c), Theorem 8.1 applies to Equation (8.10) in the form (8.11) and
shows that the flow maps cannot sque&z€é?-balls to narrow cylinders. This result can
be interpreted as impossibility of ‘locally uniform’ energy transition to high modes, see
in [54].

ExAMPLE 8.5. For a non-linear Schrodinger equation
i=iAu+if,(lul®)u, xeT" (8.12)

(cf. Example 2.7), the Darboux phase space isthespaceL2(T"; C) with the basis,
formed by normalised exponents’s~, ie’s*}. Now the assumption (H2) fails (and it is
very unlikely that the flow-maps of (8.12) satisfy the assertions of Lemmas 8.2 and 8.3).
So we smooth out the Hamiltonian of (8.12) and replace it by

1
H§=§/(|W|2+f(|U|2))dx, U=uxE,

whereu x & is the convolution of: with a functioné € C*°(T", R). The corresponding
Hamiltonian equation is

i=iAu+i(f'(IUP)U) & (8.13)

This smoothed equation satisfies (H1), (H2), and Theorem 8.1 applies to its flow-maps.

8.4. Symplectic capacity

Another way to prove Theorem 8.1 uses a new object—symplectic capacity —which is
interesting on its own.

Symplectic capacity in a Hilbert Darboux spacg&;, o) as in Section 8.2 (below we
abbreviateZ; to Z), is a mapc which associates to any open subéett Z a number
¢(0) € [0, o] and satisfies the following properties:

(1) Trandational invariance: c(0) = c(0 + &) for any& € Z;

(2) Monotonicity: if O1 D 02, thenc(01) = ¢(02);

(3) 2-homogeneity: ¢(t 0) = 2¢(0);

(4) Normalisation: for any ball B, = B, (x; Z) and any cylindeC} = C/(Z) we have

¢(B,) = c(Cl) =nr?.

(We note that forr = 0 the cylinder contains the ball and is ‘much bigger’, but both sets
have the same capacity.)
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(5) Symplectic invariance: for any symplectomorphisi® : Z — Z and any domair0,
c(@(0)) = c(0).

If (Z, ap) is a finite-dimensional Darboux space, then existence of a capacity with prop-
erties (1)—(5) is equivalent to the Gromov theorem. Indeed, if a capacity exists, then the
squeezing (8.4) with < r is impossible due to (2), (4) and (5). On the opposite, the quan-
tity

¢(0) = sup{yrr2 | there exists a symplectomorphism which seBdén 0}

obviously satisfies (1)—(3) and (5). Using the Gromov theorem we se€ Haisfies (4)
as well.

If (Z,a2) is a Hilbert Darboux space, then the finite-dimensional symplectic capacity,
obtained in [43], can be used to construct a capacityhich meets (1)—(4). This capac-
ity turns out to be invariant under symplectomorphisms, which are flow-n§Apas in
Theorem 8.1, see [54]. This result also implies Theorem 8.1.

9. Thesqueezing phenomenon and the essential part of the phase-space

Example 8.4 shows that flow-maps of the non-linear wave equation (8.11) satisfy the Gro-
mov property. This means (more or less) thatv of generalised solutions for a non-linear
wave eguation cannot squeeze a ball in a narrow cylinder. On the contrary, behaviour
of the flow formed byclassical solutions for the non-linear wave equation in sufficiently
smooth Sobolev spaces exhibits ‘a lot of squeezing’, at least if we put a small pardmeter
in front of the Laplacian. Corresponding results apply to a bigger class of equations. Be-
low we discuss them for non-linear Schrédinger equations; concerning the non-linear wave
equation (8.10) see the author’s paper in GAFA 5:4.

Let us consider the non-linear Schrédinger equation:

= —i8Au+ilu|® u, (9.1)
whereé > 0 andp € N, supplemented by the odd periodic boundary conditions:

u(t,x) =ut,x1,...,x; +2m,...,x,)

=—u(t,x1,...,—Xj,.... %), j=1...,n, (9.2)

wheren < 3. Clearly, any function which satisfies (9.2) vanishes at the boundary of the
cubeK™ of half-periods,K” = {0 < x; < w}. The problem (9.1), (9.2) can be written in
the Hamiltonian form (2.2) if for the symplectic Hilbert scalgX,}, az) one takes the
scale formed by odd periodic complex Sobolev functickis= H;,(R"/2xZ"; C), and
a2 =idu A du (cf. Example 2.8).

Due to a non-trivial result of Bourgain (which can be extracted from [15]), flow-
mapsS’ for (9.1), (9.2) are well defined in the spacEs, s > 1. In particular, they are
well defined in the spac€* of smooth odd periodic functions. Denoting by |, the
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C™-norm, |ul, = SURy |, SUR |07u(x)|, we define below the sé1,, C C* which we
call the essential part of the smooth phase-space for the problem (9.1), (9.2) with respect
to theC™-norm, or just theessential part of the phase-space:

Ay = {u € C* | u satisfies (9.2) and the condition (9}3)
where
lulo < K" Julzy @+, (9.3)

with a suitablek,, = K,,,(x) and u = mx/(2pmsx + 1). Here x is any fixed constant
x €(0,1/3).

Intersection of the sedl,,, with the R-sphere in theC™-norm (i.e., with the sef|u|,, =
R}) has theC®-diameter< 2K,,8" RY@rmx+1 - Asymptotically (ass — 0 or R — 00)
this is much smaller than the®-diameter of the sphere, which equélg R. Thus,2,, is
an ‘asymptotically narrow’ subset of the smooth phase space.

The theorem below states that for amy> 2 the set,, is a recursion subset for the
dynamical system, and gives a control for the recursion time:

THEOREM9.1. Let u(t) = u(t, -) be a smooth solution for (9.1), (9.2)and |u(f0)|o = U.
Then there exists T < 1o + 8 /30 ~47/3 such that u(T) € 2,, and U < [u(T)|o < 3U.

Since L>-norm of a solution is an integral of motion (see Example 3.5) jarid)|o >
lu(t)|L,(kmy, then we obtain the following

COROLLARY 9.2. Let u(t) be a smooth solution for (9.1), (9.2)and |u(t)|Lx» = W.
Then for any m > 2 thissolution cannot stay outside 2, longer than thetime s /3w —4r/3,

For the theorem’s proof we refer the reader to Appendix 3 in [58]. Here we explain
why ‘something like this result’ should be true. Presenting the arguments it is more con-
venient to operate with the Sobolev norihs ||,,,. Let us denotéu(zg)|lo = A. Arguing
by contradiction, we assume that for al [z, 11] = L, wherer, = 1o + § /30U ~4P/3, we
have

C8llully, < llullo, (9.4)

wherem > 3 is a fixed number. Sincu(z)]lo = A, then (9.4) and the interpolation in-
equality imply the upper bounds

|u)|, < cra™ntims=ni, 0<I<m, teL. (9.5)

In particular, §||Au|1 < C3A1‘%+% 5155 . Therefore ifmb > 3a, then fort € L Equa-
tion (9.1), treated as a dynamical systenﬂg},d, is a perturbation of the trivial equation

i=ilu?u. (9.6)
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Elementary arguments show that tHé-norm of each non-zero solution for (9.6) grows
linearly with time. This implies a lower bound for syp [lu(z)| 1, whereu(z) is the so-
lution for (9.1), (9.2) which we discuss. It turns out that one can chaasedb in such
a way thatmb > 3a and the lower bound we have just obtained contradicts (9.5) with
[ = 1. This contradiction shows that (9.4) cannot be true for &lL. In other words,
lu(t)]lo < C8“||u(r)||§1 for somer € L. At this momentr the solution enters a domain,
similar to the essential pa?t,, .

Let us consider any trajectomn(r) for (9.1), (9.2) such that«(t)|r,x» =W ~ 1, and
discuss the time-averagés|,,) and(||u||,2n)1/2 of its C"™-norm|u|,, and its Sobolev norm
llull,n, where we set

1 T 1/2 1 T 1/2
(|M|m>=?/0 |ulm dt, (IIMIIVZ,Z)/ =<7/(; ||M||2dt> ,

and the timeT of averaging is specified below. While the trajectory stayd,jn we have

One can show that this inequality implies that each visiRfp increases the integral

J lul dt by a term bigger thad to a negative degree. Since these visits are sufficiently
frequent by the corollary, then we obtain a lower estimate for the quaity). Details

can be found in [55]. Here we present a better result which estimates the time-averaged
Sobolev norms. For a proof see Section 4.1 of [58].

THEOREM 9.3. Let u(t) be a smooth solution for Equation (9.1), (9.2) such that
lu(t)| L,k = 1. Then there exists a sequence k,, /* 1/3 and constants C,,, > 0, §,, > 0
such that (|u |22 > C,,6 72", provided that m > 4,8 < 8, and T > §~/3,

The results stated in Theorems 9.1, 9.3 remain true for Equations (9.1) with dissipation.
l.e., for the equations with replaced byv, wherev is a unit complex number such that
Rev >0 and Imv > 0.1 If Im v > 0, then smooth solutions for (9.1), (9.2) converge to
zero in anyC™-norm. Since the essential pa&t, clearly contains a sufficiently small
C™-neighbourhood of zero, then eventually any smooth solution €hteaind stays there
forever. Theorem 9.3 states that the solution will visit the essential part much earlier, before
its norm decays. Moreover, results, similar to Theorem 9.3, are true for solutions of the
damped-driven equatiain+ § Au — i|u|?u = n(t, x), where the force) is a random field,
smooth inx, and stationary mixing in. See [56] and [58].
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Appendix. Families of periodic orbitsin reversible PDEs, by D. Bambusi
A.l. Introduction

Some families of periodic solutions of PDEs can be constructed using KAM theory; how-
ever a different approach leading to stronger results and simpler proofs is available. It is
based on the Lyapunov—Schmidt decomposition combined with a suitable analysis of small
denominators. The main advantage of this approach is elimination of the second Melnikov
condition (see (5.7)). As a consequence it is applicable to problems with periodic boundary
conditions and to some equations in more than one space dimension. Most of the general
theory has been developed for equations that are of second order in time and we will mainly
deal with this case. Moreover, we will concentrate on problems involving small denomina-
tors and only briefly report on results of a different kind.

A.2. An abstract theorem for non-resonant PDEs
Let {X,} be a scale of Hilbert spaces with noring|; and scalar produgt; -);. Let A be a
(linear) morphism of the scale, and assume that there exists a Hilberl{&o,’;@gl of Xo
such that

Av: = w20; S0

pj=wjej, wj>0.

Let us fixs, consider a neighbourhoédof the origin inX; and a smooth map: U/ — Xj,
having at the origin a zero of second order. We are interested in families of small amplitude
periodic solutions of the equation

X+ Ax = g(x). (A1)

ExamMPLE A.1. The non-linear wave equation with periodic boundary conditions:

Wy — Wiy + VXw = f(x, w), (A2)
w(x,t) =wkx + 2m,1), wy(x, 1) =wy(x + 27, 1), (A.3)

where the potentiaV and the non-linearity are smooth periodic of period:2in x, and
f(x,w) =0(wl?). Let ) j be the periodic eigenvalues of the Sturm—Liouville operator
—dxx + V(x) and assume; > 0 V. Then the frequencies atg; := \/E In this case
X, = H*(T), and f induces a smooth operator frokf to itself, provided that > 1/2.

ExAMPLE A.2. The non-linear plate equation in thedimensional cube:

wy + AAw +aw = f(w), xe€Q, (A.4)

wlpo = Awlzo =0, (A.5)
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wherea > 0, f(w) = O(lw|®) and
Q= {x:(xl,...,xd)eRd: 0<ux; <7T}.
Then the eigenfunctions of the linearised system are given by

@n = SiN(n1x1) Sin(nax2) - - - SiN(ngxy)

and the corresponding frequencies are= \/(nf +-+-+n2)2+a, wheren € Z¢ and

n; > 1. To fit the abstract scheme we order the basis in such a way that the frequencies are
in non-decreasing order. NoWo = L2(Q), and Xy = D((AA)*) ¢ H* endowed with

the graph norm. If the non-linearity is smooth and odd (i.ef (—w) = — f (w)), then it
defines a smooth map froi to itself for anys > [d/2]/4 (see Example 2.5).

In the linear approximationg(= 0) the general solution of (A.1) is the superposition of
the linear normal modes, i.e. of the families of periodic solutions

xD(t) = (a; cosw;t) + b; sin(w;1))g;. (A.6)

Fix one of the families, say. To ensure its persistence in the non-linear problem we
make the following assumptions:
(H1) (Non-resonance) For small enough- O there exists a closed sBt, ¢ Rt hav-
ing w1 as an accumulation point both from the right and from the left, and such
that for anyw € W,, one has

lwl —w;| >

~|=

. VI>1 Vj>2 (A7)

(H2) (Non-degeneracy) Leg, (x) be the first non-vanishing (homogeneous) Taylor
polynomial ofg. Assume that > 3 andgp # 0, where

o { (8(g1).@r)o  if ris odd A8)

(gr+1(¢p1), p1)0 if riseven

Denotingé1(w1t) = coSwit)p1 one has
THEOREMA.3. Suppose that assumptions (H1), (H2) hold. Then thereexist aset £ C R
having zero as an accumulation point, a positive w,, and a family of periodic solutions

{xe () }cce Of (A.1) with frequencies {w°} ¢ fulfilling

sup||xe () — ega(te) ||, < Ce”, |0 —w1| < Ceh (A.9)
t

Moreover, the set £ is in one to one correspondence either with W, N [w1, w1 + wy) if
Bo < 0, 0or with W,, N (w1 — ws, w1] if fo > 0.



1126 SB. Kuksin

PrROOF We consider only the case of odgdthe general case can be obtained by a slightly
different treatment of the forthcoming equati@nWe are looking for ark;-valued func-
tion ¢g(¢) which is 2r-periodic and reversible (i.e;(t) = g(—t)), and for a positivev,
close tow1, such thay (wr) is a solution of (A.1). They must satisfy the equation

2

d
Log=1¢8(q), Lo 5=wzﬁ+A, (A.10)

which will be considered as am-dependent functional equation in the spadec
H(T, X,), formed by the reversible periodic functions. Equation (A.10) is studied us-
ing the Lyapunov—Schmidt decomposition, namely by decomposing it into an equation on
Ker L., =sparn(é1) and an equation on its orthogonal complemgnPrecisely, denote by

Q the projector org; and by P the projector onR and make the Ansatz = &1 + &' u,
whereu € R. Then (A.10) is equivalent to the system

w?=w?+ B (A.11)
Lyu=Pgr(§1) + PG(e, u), (A.12)
—Bé1= 0gr(61) + OG(s,u) (A.13)

for the unknownsd, u, 8). HereG contains all higher-order corrections aads W, is a
parameter. Equations (A.11), (A.12) and (A.13) are calledsthtbe P and theQ equation,
respectively.

First one solves th@ equation (A.12). To this end one has to invert the linear operator
L, |r. Its eigenfunctions are c@s)yp;, and the corresponding eigenvalues are

rji=—1?0 + 0f = (o + o) (w; —lw), j>2.1>1

By (A.7), [xji| > Cy. So(L,|r) " exists and is bounded. Applying this operator to the
equation and using the implicit function theorem one obtains a smooth funatgrhat
depends parametrically eme W, and solves the® equation.

Insertingu(¢) in the Q equation one determines the paramgtexs a function ot. In
particular one hag(s) = CpBo + higher-order corrections, whete > 0. Inserting8(e) in
thew equation one gets an equation fqremember thab is fixed), which is a perturbation
of the equatiorw? — w? = CBoe" 1. By the non-degeneracy this can be reduced to a fixed
point equation foe” ~1 which is solvable by the contraction mapping principle. |

REMARK A.4. The theorem holds also in the case= 2, but in this case the non-
degeneracy condition takes a more complicated form.

Theorem A.3 was proved in [5]. The technique of the Lyapunov—Schmidt decomposition
was used for the first time to construct families of periodic solutions in PDEs by Craig
and Wayne [29] who considered the model problem of the wave equation with periodic
boundary conditions (see Example A.1); we will report on this work in Section A.4.



Hamiltonian PDES 1127

ExAMPLE A.5. Consider the non-linear wave equation with periodic boundary conditions
(see Example A.1). Leb; be such thato; # w; for eachj # 1. Decomposé/ into its
averagen and a partV of zero average, then condition (H1) is satisfied ibelongs to

an uncountable set which is dense in a neighbourhood of the origin (for the proof see
Lemma 3.1 of [7]). Condition (H2) can be expressed in terms of the eigenfunctions of the
Sturm-Liouville operator. If it holds, then Theorem A.3 applies and ensures persistence
of the corresponding family of periodic orbits. Note that, in a difference with the case of
Dirichlet boundary conditions (see Example 5.3), the non-linearity does not need to have
some particular parity.

ExAMPLE A.6. Consider the non-linear plate equation (see Example A.2). In the case
d = 1 all the frequencies are simple and the assumption (H1) is satisfiedsithosen

in a subset oR™ having full measure. In the cage> 1, all the frequencies are multiple
except the smallest one. Taking feq the smallest frequency, (H1) is fulfilled if be-

longs to a dense uncountable subsef®fl/4]. (H2) holds trivially provided the Taylor
expansion off at zero does not vanish identically (remember thétw) = f(w)). Then
Theorem A.3 ensures persistence of the corresponding family of periodic orbits (for details
see [7]).

A.3. Theresonant case

It is possible to generalise the above theorem to the case when the frequencies satisfy some
resonance relations. We will consider only the Lagrangian case, wherV H.
Fix a frequencyw; of the linearised system. We replace the assumption (H1) by the
following one:
(H1R) For any small enough there exists a closed s&, C R™ havingw; as an
accumulation point both from the right and from the left, and such that for any
w € W,, one has

either |(1)l—(1)j|>%, or lwy—wj=0. (A.14)

To pass to the non-degeneracy assumption, we define the resonant set as
Ir:={k>1: 31> 1: lwg — wx =0}, (A.15)

consider the linear space generatedcz,, and denote by its closure in the graph
norm of D(A). Note that all solutions of the linearised system with initial datunvimand
vanishing initial velocity are periodic of periodi2w;. Let H, be the first non-vanishing
Taylor coefficient ofH. Forx € A define the average df, by

0= 2 [ b (costanx) d
(H,)(x) ._Z/O »(cogAr)x) dt.

Consider the hypersurfacec A of the pointsx € A such thatx; Ax)g = 1.
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(H2R) There exists a non-degenerate critical paintof the functional(H,)|s. The
corresponding Lagrange multipligs does not vanish.
Denote byéo(wi?) the solution of the linearised system with initial datwgand van-
ishing initial velocity.

THEOREMA.7 [6]. Supposetheassumptions (H1R), (H2R)hold. Then there exists a fam-
ily of periodic solutions {x. (t)}.cc of (A.1) with frequencies »®, satisfying

sup||xe (1) — eéo(te) | < Ce",  |of —w1| < Ce™ . (A.16)
t

The set £ hasthe same properties asin the non-resonant case.

The proof is obtained by proceeding as in the non-resonant case. The only difference is
that in this case the kernel d@f,, is no longer one-dimensional, but is isomorphicho
(the isomorphism being given by the map> cogAr/w1)x). So theQ equation can be
transformed into an equation ixf. The latter turns out to be a perturbation of the equation
for the critical points of H,)|s, and the non-degeneracy condition (H2R) allows to solve
it by the implicit function theorem.

Applying the above theorem, one can construct countably many families of periodic
solutions of thep*-model

Wi — wyy = £w? + higher-order terms

with Dirichlet boundary conditions, and also higher frequency periodic solutions of the
non-linear plate equation of Example A.2 (see [6,7], see also [62,21]).

In general it is difficult to check condition (H2R). In the case of Hamiltonian systems
with n < oo degrees of freedom, topological arguments allow to avoid it. Indeed, the
Weinstein—Moser theorem (see [80,64]) ensures that close to a minimum of the energy,
on each surface of a constant energy there exist at depstiodic orbit. In general they
do not form regular families. A corresponding result for PDEs is not available at present.
However there exists aad hoc variational result for the wave equation

wyy — wyy = Tw? + higher-order terms p > 2, (A.17)

which ensures that, having fixgd> 1, there exists a sequence of periodic orbits accumu-
lating at zero, whose frequencies accumulatg &which plays here the role of thgth
linear frequency). The corresponding theorem is due to Berti and Bolle [10].

Periodic solutions in the non-linear wave equation

Wy — Wyy + f(x, w) =0, u(,t) =u(m,t) =0, (A.18)

where constructed for the first time by Rabinowitz [76] using global variational methods
and a Lyapunov—Schmidt decomposition. Rabinowitz proved that, under suitable assump-
tions on f, Equation (A.18) has at least one periodic solution with peficd 27 p/q, for

any choice of the integers andg. Note that, when the periofl is commensurable with
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27, the operatotl, | has a compact inverse, i.e. there are no small denominators. The
work [76] was followed by a series of papers, simplifying the proof and sharpening the
result (see [24] and references therein). In particular, we mention the paper [25] by Brezis,
Coron and Nirenberg, where existence of periodic orbits is proved by a particularly simple
method: the authors write a variational principle, dual to the usual one, and look for its
critical points, using the mountain pass lemma. It is remarkable that in this approagh the
equation becomes trivial.

A.4. \Weakening the non-resonance condition

The main limitation of the results presented in Sections A.2 and A.3 rests in the non-
resonance conditions (H1) and (H1R). Indeed, such conditions are fulfilled with large
probability (in a suitable parameter space) when~ ;j” with v > 1; whenv = 1 the
non-resonance conditions are satisfied typically on uncountable sets of zero measure, but
whenv < 1 they are satisfied only exceptionally (as in the plate equation). As a conse-
guence the results of Sections A.2 and A.3 are not applicable to general equations in more
than one space dimensions. Furthermore, the method of Lyapunov—Schmidt decomposition
can be extended to the case of reversible systems of first order in time, but the approach of
Section A.2 is no more applicable.

In order to avoid such limitations one would like to be able to work with the weaker
non-resonance condition “there exists & 0 such that/w — w;| > y/I*". This was done
by Craig and Wayne [29] who used the Nash—Moser theorem to solv #ugiation. The
application of the Nash—Moser theorem requires to construct and estimate the inverse of
the linear operator describing the linearisation of thequation at an approximate solu-
tion. This is the main difficulty of Craig—Wayne’s approach. To overcome it they use the
techniques by Fréhlich and Spencer [38], performing a careful analysis of small denomina-
tors (cf. Section 5.3). The method by Craig and Wayne was extended by Bourgain in order
to construct periodic (and also quasiperiodic) solutions in higher-dimensional equations.
The resulting method seems very general, but at present a theorem “ready for application”
is not available. We present here the result obtained by Bourgain by applying this method
to the non-linear wave equation

Wiy — Aw+aw+w3=0 (A.19)

onT?. Fix a multiindexn € Z¢ different from zero, and let

& (wpt, x) :=co9n - x + wut), wy :=,/n%+ .- +n§ +a,

be the corresponding symmetric reversible solution.

THEOREM A.8 [18]. If a belongs to a certain subset of R™ of full measure, then there
exists a Cantor set £ of positive measure, accumulating at zero, and a family of periodic
solutions {w, (¢, x)}.cg Of (A.19) with frequencies »?, satisfying

|e&n (@t x) — we(t,x)| < Ce3,  |w, — 0| < Ce2.



1130 SB. Kuksin

In the casal = 1, the result was proved in [29]; subsequently, still in the easel,
Kuksin introduced a simpler technique to find the “large measure result” of Theorem A.8
(seein [20, pp. 90-94]).

The Craig—Wayne—Bourgain method also allows to deal with first order in time equa-
tions. For example, it was applied to the Schrédinger equation in one [30] or two space
dimensions [19] (see Section 5.4).

A.5. The water wave problem

A particular problem that has attracted the attention of many researchers since the very
beginning of the theory of PDEs is that of existence of standing water waves. The first
rigorous proof of their existence was obtained only recently by Plotnikov and Toland [70];
we present here their result.

Consider a perfect fluid lying above a horizontal bottom, and confined between two
parallel vertical walls. The fluid is subject to gravity, and atmospheric pressure acts at the
free surface. This is a dynamical system governed by the Euler equations supplemented
by appropriate boundary conditions. It was pointed out by Zakharov that this system is
Hamiltonian (see [81]). The corresponding Hamiltonian function is the energy of the fluid,
and conjugated variables are given by the wave profile and the velocity potential at the free
surface.

In the linear approximation the general solution is given by the superposition of the nor-
mal modes. The problem is to continue the normal modes to families of periodic solutions
of the non-linear system (the standing waves). Fix one of the normal modes, and denote
by n(z, x1) the corresponding profile of the free surfaee peing the horizontal variable).
Thenitis possible to choose the depththe width! of the region occupied by the fluid and
the gravitational constagtin such a way that the period of the solution is normalisedito 2
and the linear frequencies fulfil a suitable non-resonance condition. Dendge,By, /o)

a choice of the parameters realising such conditions, then one has

THEOREM A.9 [70]. There exists an infinite set £ C R having zero as an accumulation
point and, for any ¢ € £, there exist g, /. and a standing wave solution of the water wave
problem with gravity g. in a box of width .. Moreover, denoting by n. the corresponding
profile of the free surface, one has

|ne(t,x1) — e®n(t,x1)| < Ce3,  |ge — gol + Ile — lo| < Ce.

The main difficulties in proving this result are as follows: firstly, the linear frequencies
behave a®, ~ n'/2, so the non-resonance conditions that can be satisfied are quite weak.
Secondly, the mathematical formulation of the problem involves an unbounded non-linear
and non-local operator. To overcome these difficulties, Plotnikov and Toland use the La-
grangian description of the fluid motion and apply the Lyapunov—Schmidt approach to
handle the resulting non-linear problem. TReequation now is solved by means of the
Nash—Moser theorem. The required invertibility of the linearised operator is obtained in
two steps: first it is reduced to a suitable canonical form, and next this canonical form
(which is essentially a perturbation of an operator involving derivatives and Hilbert trans-
form) is studied in detail.
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