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0 Introduction

Everybody knows that the time-1-shift of the flow of a hamiltonian vector field
is a symplectic diffeomorphism homotopic to the identity. Moreover, if the underlying
symplectic structure is exact, then this diffeomorphism is exact symplectic. Thus one
may ask what the set of all maps arising this way looks like. That is, which exact
symplectic diffeomorphisms homotopic to the identity can be included in the flow of
a hamiltonian vector field?

Asked in such a global manner, the answer to this question is unknown, and we
will not try to tackle it, either. Instead, we restrict ourselves to a local, perturbative
situation. Given a small, exact symplectic perturbation of some integrable map, is
this map included in the flow of some hamiltonian vector field? This vector field
may be autonomous or non-autonomous. In the latter case, however, we ask the time
dependence to be of period 1.

Posing the question this way, the answer is essentially “yes”. Within the cate-
gory of smooth maps and flows the argument is actually fairly straightforward, using
the technique of generating functions. See the note [5] by Raphaël Douady. Within
the category of real analytic maps and flows, however, the situation is less clear and
more involved. Here, the first affirmative answer was given again by Raphaël Douady
in his thesis [6] in a more qualitative manner. A more explicit, quantitative construc-
tion was recently given by the first author in [12].
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Unfortunately, both these references are not easily available, and the argument
in [12] is quite cumbersome. In this note we therefore want to describe one more
version of this analytic interpolation theorem, which is more quantitative and explicit
than the result in [5], yet whose proof is — we think — more straightforward and
comprehensible than the one in [12].

There are at least two reasons for being interested in this interpolation problem.
First, the problem is interesting in itself. But second, there is a significant number of
results in the analytic perturbation theory of symplectic maps and hamiltonian flows,
which are parallel and almost identical, yet are proven independently. But while it is
easier to think a problem over in terms of maps, it is usually simpler to give a proof
in terms of flows. Using interpolation, one can make use of this advantage and avoid
redoing lengthy proofs for maps.

We illustrate this point by deriving an exponential stability estimate — also
known as Nekhoroshev estimate — for almost integrable exact symplectic maps from
the corresponding estimate for flows. The latter are well established, and we refer to
the original paper by Nekhoroshev [18], the recent papers [13,19], and the references
therein. For maps the corresponding result was conjectured in [18], and some special
cases were recently proven in [3] and elsewhere. The proofs, however, are quite
technical. By interpolation, they are greatly shortened.

We conclude this introduction by describing the two kinds of integrable maps
whose perturbations we are going to study.

In the first case, let D ⊂ R
n , n ≥ 1, be a bounded, convex domain, let

T
n = R

n/Zn be the usual n -torus, and let D × T
n be the symplectic manifold

endowed with the standard exact symplectic structure υ = dα , where α = ∑
j Ij dφj .

Suppose the map

F0: D × Tn → D × Tn, (I, φ) �→ (I, φ + ω(I ))

is real analytic and symplectic. Then 0 = ∑
j dωj (I ) ∧ d Ij = d

(∑
j ωj d Ij

)
, so by

convexity there exists a real analytic function h on D such that

ω(I ) = ∂h

∂ I
.

The function h defines an integrable hamiltonian system on D × Tn with equations
of motions İ = 0, φ̇ = ∂I h = ω(I ) . Hence its flow Xt

h interpolates F0 . That is,
we have

X1
h = Xt

h

∣∣
t=1 = F0

on D × Tn .
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In the second case, let R2n = R
n × Rn be the euclidean 2n -space with coor-

dinates z = (x, y) endowed with the standard exact symplectic structure

υ =
∑

j
dxj ∧ dyj = 〈J · , · 〉 , J =

(
0 I

−I 0

)
,

where 〈 · , · 〉 denotes the usual scalar product and I the n -dimensional identity
matrix. Suppose the linear map

F∗: R2n → R
2n, z �→ �z

is symplectic. It is a standard fact, recalled in Appendix B, that one can write
� = exp(JA) with a real symmetric matrix A , provided that either the spectrum of �

contains no zero or negative eigenvalues, or � is the square of another symplectic
matrix. The hamiltonian h = 1

2 〈Az, z〉 with equations of motions ż = JAz then
gives rise to a flow Xt

h on R2n such that

Xt
h

∣∣
t=1 = exp(JA) = F∗

as required.
In both these cases the interpolating hamiltonian is autonomous. This, however,

is not typical, and in general one has to allow for time-dependent hamiltonians.
Consider, for example, a real analytic, exact symplectic perturbation F of a one degree
of freedom annulus map F0: (I, φ) �→ (I, φ+ω(I )) . If the interpolating hamiltonian
were autonomous, then it would be integrable, and so F would be integrable, too. But
generically, arbitrarily small perturbations of F0 give rise to transversal homoclinic
intersections, thus destroying integrability [10,23]. So generically, the interpolating
hamiltonian has to be time-dependent. — It is an open problem how to characterize
all those maps which arise from autonomous hamiltonian flows.

1 Statement of the Interpolation Theorems

Again, let D ⊂ R
n be bounded and convex. We consider a real analytic family

of real analytic maps

Fε : D × Tn → R
n × Tn, −ε0 < ε < ε0,

perturbing an integrable map F0: (I, φ) �→ (I, φ + ω(I )) , where ω(I ) = ∂h/∂ I
with some real analytic function h on D . Moreover, the Fε are assumed to be exact
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symplectic: there exists a family of differentiable functions Wε on D ×Tn such that,
for α = ∑

j Ij dφj ,

F∗
ε α − α = dWε, −ε0 < ε < ε0.

The domains of analyticity are assumed to be uniform and independent of ε .
That is, each Fε is assumed to be real analytic on a fixed complex neighbourhood
Vr D × VrT

n of D × Tn , where

Vr D =
⋃
I0∈D

{
I ∈ Cn : |I − I0| < r

} ⊂ C
n,

| · | the euclidean norm, and likewise VrT
n . The same domain of analyticity is

assumed for h . Possibly decreasing r and ε0 we then also have a uniform bound for
the sup-norms |Fε |Vr D×VrT

n for all ε . Moreover,

|Fε − F0|Vr D×VrT
n = O(ε)

by Cauchy’s estimate.

Theorem 1. Suppose Fε satisfies the preceding assumptions. Then for all
sufficiently small ε there exists a real analytic, 1-periodic time dependent hamilton-
ian Hε on D × Tn+1 , such that

Xt
Hε

∣∣
t=1

= Fε

on D × T
n . Moreover, there exists a ρ > 0 such that Hε is real analytic in

Vρ D × VρT
n+1 for all small ε and satisfies

|Hε − h|Vρ D×VρT
n+1 = O(ε).

as ε → 0 .

In general, the flow Xt
Hε

of Hε does not stay in D × Tn . But its time-1-map
is still well defined for all small ε , since Hε extends to a uniform neighbourhood
of D × Tn (that is, a δ -neighbourhood with respect to some norm).

For symplectic maps near fixed points the corresponding result is simpler to
state. Let

F : U → R
2n, z �→ �z + F̂(z), F̂(z) = O(z2)

be a real analytic, symplectic map in some neighbourhood U of the origin in R2n .
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Theorem 2. Suppose that � = exp(JA) with some real symmetric matrix A .
Then there exists a 1-periodic time-dependent hamiltonian

H = 1

2
〈Az, z〉 + Ĥ(z, t), Ĥ(z, t) = O(z3),

which is jointly real analytic in some neighbourhood of the origin in R2n and in t ,
such that

Xt
H

∣∣
t=1 = F

on that neighbourhood.

The proof of Theorem 2 is a variation of the proof of Theorem 1. In the following
we therefore focus attention on the latter and add a few remarks on the former.

It would be natural to construct the interpolating time-dependent hamilton-
ian Hε directly on the phase space P = D × T

n+1 , for example by some kind of
implicit function theorem. However, we are not able to do this. Instead, we first con-
struct another family of real analytic hamiltonians H̄ε on the extended phase space

P̄ = D̄ × Tn+1, D̄ = D × R,

together with a family of symplectic section surfaces Σε in the energy levels H̄ε = 0
such that the induced Poincaré map �ε of the hamiltonian flow is well defined and
conjugate to Fε , for all small ε . Then Hε is found by the standard procedure of
reducing H̄ε to its zero energy level [1,§45.B].

To set the stage let us first consider the unperturbed, integrable case. If the co-
ordinates in P̄ are denoted by I, E, φ, θ , then one naturally chooses the hamiltonian
H̄0 = h(I ) + E with flow

Xt
H̄0

: P̄ → P̄, (I, E, φ, θ) �→ (I, E, φ + tω(I ), θ + t).

Its Poincaré map �0 with respect to the surface {θ = 0} is well defined and coincides
with its time-1-shift: �0 = X1

H̄0
. Its further restriction to the symplectic, isoenergetic

surface

Σ0 = {
H̄0 = 0, θ = 0

} ⊂ P̄

is conjugate to F0 in the sense that �0 � j0 = j0 � F0, where j0 is the canonical real
analytic, symplectic embedding of P into P̄ , which is the identity in I and φ :

j0: P ↪→ Σ0, (I, φ) �→ (I, −h(I ), φ, 0).
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The isoenergetic reduction of H̄0 to {H̄0 = 0} then yields H0 = h .
To state the corresponding result for the family Fε the following notation turns

out to be convenient. We write

Tε : X −→
ε

Y

for a family of real analytic maps Tε from a bounded domain X in some euclidean
space into another euclidean space containing Y , if first the Tε have a — necessarily
unique — analytic extension to a uniform neighbourhood of X for all small ε , and
second, if for every a > 0 there exists a b > 0 such that

Tε : Uaε X → UbεY and Tε : U−bε X → U−aεY

for all sufficiently small ε , depending on a . Here, Uρ X = Vρ X ∩Rm and U−ρ X =
R

m\Uρ(R
m\X) for X ⊂ R

m .
For example,

Fε : P −→
ε

P, F−1
ε : P −→

ε
P,

since Fε − F0 = O(ε) . The composition of two families of such “ε -maps” is again
a family of “ε -maps”.

Theorem 3. Suppose the assumptions of Theorem 1 hold. Then for all suf-
ficiently small ε there exists a real analytic hamiltonian H̄ε on the extended phase
space P̄ = D̄ × Tn+1 and a real analytic, symplectic embedding

jε : P −→
ε

Σε = {
H̄ε = 0, θ = 0

} ⊂ P̄,

such that the Poincaré map �ε of H̄ε is well defined for the embedded manifold Σε

and satisfies

�ε � jε = jε � Fε .

Moreover, there exists a ρ > 0 such that H̄ε and jε extend analytically to Vρ P̄ and
Vρ P , respectively, for all sufficiently small ε , and satisfy

∣∣H̄ε − H̄0

∣∣
Vρ P̄ , | jε − j0|Vρ P = O(ε)

as ε → 0 .

Theorem 1 follows from Theorem 3 by isoenergetic reduction [1]. By the
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estimates we have
∂ H̄ε

∂ E
= 1 + O(ε)

uniformly on Vρ/2 P̄ . Hence the equation H̄ε = 0 can be solved for E everywhere by

E = −Hε(I, φ, θ), or Hε(I, φ, θ) + E = 0,

where Hε is real analytic in some smaller fixed neighbourhood of D × Tn+1 for all
small ε , with |Hε − h| = O(ε) . Moreover, we may introduce the angle θ as time
instead of t , since dθ/dt = ∂ H̄ε/∂ E = 1+ O(ε) . On the hypersurface H̄ε = 0 one
then finds

∂ I

∂θ
= −∂ Hε

∂φ
,

∂φ

∂θ
= ∂ Hε

∂ I
.

This proves Theorem 1.
Conversely, Theorem 3 obviously follows from Theorem 1, so the two are

equivalent.

Theorem 3 is a slimmed down version of another, more quantitative interpola-
tion theorem mentioned in the introduction. To state this result, assume that

|h| , |Dh| , ∣∣D2h
∣∣ ≤ K

uniformly on Vr D with respect to some fixed norms for vectors and matrices.

Theorem 4. Suppose the map F : P → R
n ×Tn is real analytic in Vr P and

exact symplectic. If

|F − F0|Vr P = ε < ε0(K , n, r),

then there exists a real analytic hamiltonian H̄ on P̄ with a regular energy surface
{H̄ = 0} and a real analytic, symplectic embedding

j : P ↪→ Σ = {
H̄ = 0, θ = 0

}
,

such that the Poincaré map � of H̄ is well defined on the embedded surface and
satisfies � � j = j � F . Moreover, H̄ and j are real analytic on Vρ P̄ and Vρ P ,
respectively, and satisfy

∣∣H̄ − H̄0

∣∣
Vρ P̄

, | j − j0|Vρ P ≤ cε,

where ρ and c only depend on K , n, r . In particular, ρ = r

(1 + 3K )2
.
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Theorem 4 is proven in [12]. It sharpens the original result by Douady [6] in two
important respects. First, the “smoothness of the interpolating hamiltonian is under
control” — that is, there is an explicit control of the radius of analyticity ρ in terms
of r and K . Second, H − H0 and j − j0 are shown to be of the order of F − F0 ,
and not just to converge to zero as F − F0 converges to zero. These improvements
are essential for more quantitative applications such as Nekhoroshev estimates.

Theorem 3 is simpler to prove than Theorem 4 as the map F is included in a real
analytic family Fε of maps. Thus we are able to state the result “for all sufficiently
small ε ” without making the smallness condition explicit. The proof itself is based
on the Grauert embedding theorem and mostly follows the rather natural scheme
proposed by Douady [6].

2 Applications

1. Nekhoroshev Estimates. As a first application of the preceding results
we derive an exponential stability estimate for symplectic maps from corresponding
estimates for hamiltonian flows, which are also known as Nekhoroshev estimates.

Again, let D ⊂ R
n be bounded and convex, and consider a family

Fε : D × Tn → R
n × Tn, −ε0 < ε < ε0,

of real analytic, exact symplectic maps as in Theorem 1. In particular, Fε is a
perturbation of an integrable map

F0: D × Tn → D × Tn, (I, φ) �→ (I, φ + ω(I )),

where ω(I ) = ∂h/∂ I with some real analytic function h on D .
We call F0 m-steep on D , if its extended hamiltonian

h̄ = h(I ) + E

is steep on D̄ = D × R as defined in [18] or [14]. We do not repeat this definition
here, however, as it is quite technical and not very illuminating. Moreover, an elegant,
sufficient characterization of steepness may be found in [11].

We just observe the following. The map F0 is in particular m-steep on D , if h
is strictly convex on D , because then h̄ is quasi-convex on D̄ . Moreover, steepness
is a generic property in the following sense. The set of all non-steep functions h is
given by infinitely many polynomial relations in the Taylor coefficients of H at any
given point in D . The set of non-steep functions thus has infinite codimension [18].
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With every initial position (I0, φ0) in D×Tn we associate its — possibly finite
— orbit

(In, φn) = Fn
ε (I0, φ0),

which is defined as long as its iterates (In, φn) are again in D × Tn for positive or
negative n . For simplicity, we do not indicate its dependence on ε . For ε = 0, we
have In = I0 for all integers n on every orbit. For ε �= 0 the result is the following.

Theorem 5. Suppose Fε satisfies the assumptions of Theorem 1. If F0 is
m-steep on D , then for all sufficiently small ε one has

|In − I0| ≤ c1ε
b for |n| ≤ c2 exp

(
c3ε

−a
)

for every initial position (I0, φ0) in D × Tn , where the positive constants a and b
depend on h and n , while the constants c1, c2, c3 depend on h , n and the analyticity
properties of Fε . In particular, one has

a = 1

2n + 2
= b,

if h is strictly convex.

Proof. Interpolating Fε with the help of Theorem 3 we obtain a family H̄ε of
real analytic perturbations of H̄0 = h + E . The latter is steep by assumption, and in
particular quasi-convex, if h is strictly convex. So the estimates of [18,13,19] apply,
giving the exponential stability of the flow of H̄ε :

|I (t) − I (0)| ≤ c1ε
b for |t | ≤ c2 exp

(
c3ε

−a
)

for every initial position in D̄×Tn+1 . This implies the corresponding estimate for Fε

with a different c1 , since the embedding jε is ε -close to j0 .

Instead of considering a family Fε we may also consider a single real analytic,
exact symplectic map F , requiring that |F − F0|Vr P is sufficiently small for some
r > 0. In this case we have to appeal to Theorem 4 instead of Theorem 3 in the proof
below.

Theorem 5*. Suppose F0 is m-steep on D , and F satisfies the conditions of
Theorem 4. If |F − F0|Vr P = ε ≤ ε0(h, n, r), then one has

|In − I0| ≤ c1ε
b for |n| ≤ c2 exp

(
c3ε

−a
)
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for every initial position (I0, φ0) in D × Tn , where the positive constants a and b
depend on h and n , while c1, c2, c3 depend on h, n, r . In particular, a = 1/(2n +
2) = b , if h is strictly convex.

This result was conjectured by Nekhoroshev, and stated as a theorem in [18],
but no proof was given yet.

2. KAM-Theorems. For the same family Fε of symplectic maps we may also
derive, by interpolation, the well known classical KAM theorem about the persistence
of invariant tori from the corresponding result for flows. In the analytic category
this was first done by Douady [5] – indeed, this was the very motivation for his
interpolation theorem. To this end we assume that the unperturbed integrable map F0

is nondegenerate on D in the sense that

det
∂2h

∂ I 2
= det

∂ω

∂ I
�= 0

on D . This condition is also known as the twist condition.

Theorem 6. Suppose Fε satisfies the assumptions of Theorem 1. If F0 is
nondegenerate on D , then for all sufficiently small ε the map Fε possesses a Cantor
family of real analytic invariant n -tori on which the mapping is conjugate to a rigid
translation ϕ �→ ϕ + ω . Moreover, the measure of its complement in D × Tn is of
the order of

√
ε , provided the boundary of D is piecewise smooth.

Sketch of Proof. Again we interpolate Fε by Theorem 3 with a family H̄ε

of real analytic hamiltonians perturbing H̄0 = h + E . The latter is isoenergetically
nondegenerate on D̄ , since

det

(
∂2 H̄0 ∂ H̄0

∂ H̄ T
0 0

)
= det


 ∂2h 0 ∂h

0 0 1
∂hT 1 0


 = − det ∂2h �= 0

on D̄ . Hence the isoenergetic KAM theorem [1,2] applies, and for sufficiently small ε

the level set {H̄ε = 0} is filled, up to a set of measure O(
√

ε) , by an n -dimensional
Cantor family of real analytic invariant n + 1-tori, which is a O(

√
ε) -deformation

of some trivial Cantor subfamily of invariant n + 1-tori for H̄0 . Moreover, on this
family of tori there are real analytic coordinates ϕ̄ , depending smoothly on the torus,
so that the flow is given by ϕ̄ �→ ϕ̄ + ω̄t for some ω̄ parametrizing the tori.

In these coordinates, ϕ̄n+1 = 0 defines a transversal family of n -tori, which fills
a 2n -dimensional section up to measure O(

√
ε) , and on which the induced flow map
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is a rigid translation. In the coordinates of the phase space of H̄ε , this in turn defines
a section Sε which is O(

√
ε) -close to the section �ε = {H̄ε = 0, θ = 0} considered

in Theorem 3. Arguing as in section 4.3 below the map Fε is also conjugated to the
flow map on Sε as well, and the conclusion of Theorem 6 follows.

Along the same lines we may also obtain another type of KAM theorem for
maps concerned with the preservation of lower dimensional tori. For hamiltonian
flows such a theory was established recently – see [9,20] and the references therein
– but for symplectic maps it seems to be new. For a reversible analogue see [21]

We briefly indicate the result. We consider a real analytic family Fε of exactly
symplectic maps perturbing the integrable map

F0: D × Tn × R2m → D × Tn × R2m

(I, φ, z) �→ (
I, φ + ω(I ), �(I )z

)
,

where n, m ≥ 1, ω(I ) = ∂h/∂ I with some real analytic function h , and �(I ) is
diagonal with eigenvalues

λ1(I ), . . . , λm(I ), λ1(I )−1, . . . , λm(I )−1.

This map admits an n -parameter family Tn × {I } × {0} of invariant n -tori filling
completely a 2n -dimensional submanifold of the 2n +2m -dimensional phase space.
The objective is to prove the persistence of a large subfamily of it for small ε �= 0.

To this end the following nondegeneracy conditions are imposed. First, the
determinant det ∂2h/∂ I 2 does not vanish identically on D . Second, also none of the
functions

eik·ω − λj , eik·ω − λj

λl
, eik·ω − λjλl

vanishes identically on D for all k ∈ Z
n and 1 ≤ j, l ≤ m . – So in particular,

no eigenvalue is identically equal to 1 or -1, and no two eigenvalues are identically
equal. Note that the second condition is automatically satisfied for all large k , so it
is in fact a finite condition.

Theorem 7. Suppose F0 satisfies the preceding assumptions, and Fε is jointly
real analytic in a uniform complex neighbourhood of Tn×D×{0} and −ε0 < ε < ε0 .
Then for all sufficiently small ε there exists an n -parameter Cantor family of real
analytic invariant n -tori filling some 2n -dimensional submanifold in phase space up
to a subset whose measure tends to zero with ε . Moreover, on each torus the map is
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conjugate to a rigid translation, and around it the variational equations (with discrete
time) can be put into constant coefficient form.

The proof consists in interpolating the map Fε by combining the ideas of
Theorems 1 and 2 and applying a slightly modified version of the KAM theorem on
lower dimensional tori in [20]. We forego the technical details. We just point out that
the measure of the complementary set can not be made more explicit because of the
non-quantitative nature of the nondegeneracy conditions.

3. Another Application. As another possible application of the interpolation
theorems we mention the problem of establishing the exponentially small splitting
of separatrices in nearly integrable maps. For the standard map, for instance, one
rather laborious approach was proposed by Lazutkin in 1984 – see [15]. However,
the recent work of Gelfreich in St. Petersburg and Delshams and Seara in Barcelona
made it clear that this approach is much simpler in the framework of vector fields.
It is conceivable that by interpolation the splitting problem for the standard map is
more easily solved to hamiltonian flows, although more work is still required.

3 Proof of Theorem 3

The proof proceeds in four steps. First, an abstract real analytic manifold is
constructed, on which the interpolation problem is trivially solved. Second, this
manifold is embedded into a manifold with action angle coordinates, but with a
nonstandard symplectic structure. In the third step, this structure is put back into
constant standard form by the Moser-Weinstein Theorem. Finally, the surface of
section defining the Poincaré map is straightened out.

Step 1. Abstract Suspension Manifold. We introduce the space

A = D × Tn × R× �,

where � = (θ0, θ1) is some interval of length θ1 − θ0 < 2 containing [0, 1] . The
A -coordinates are denoted by Ĩ , φ̃, Ẽ, θ̃ to distinguish them from the usual action
angle coordinates later on. We identify points in A through the map

Tε : ( Ĩ , φ̃, Ẽ, θ̃ ) �→ (Fε( Ĩ , φ̃), Ẽ, θ̃ − 1).

In particular, T0: ( Ĩ , φ̃, Ẽ, θ̃ ) �→ ( Ĩ , φ̃ + ω( Ĩ ), Ẽ, θ̃ − 1) . We then have

Tε : A+ −→
ε

A− and T −1
ε : A− −→

ε
A+

Section 3: Proof of Theorem 3 13

for the subdomains A− = {θ̃0 < θ̃ < θ1 − 1} and A+ = {θ̃0 + 1 < θ̃ < θ̃1} of A
by the analogous properties of the map Fε . Note that A− and A+ are disjoint, since
θ1 − θ0 < 2.

The map Tε is real analytic and preserves the symplectic structure

υ̃ =
∑

j
d Ĩj ∧ dφ̃j + d Ẽ ∧ d θ̃ ,

since Fε is symplectic. Hence, the quotient space

Bε = A/Tε

is a real analytic manifold with a real analytic symplectic structure υ̃ε . The hamil-
tonian H̃ = Ẽ is real analytic and well defined on Bε , since it is Tε -invariant, too.
Its flow Xt

H̃
is simply a shift of the θ̃ -variable, and starting at θ̃ = 0 we find that

X1
H̃ ( Ĩ , φ̃, Ẽ, 0) = ( Ĩ , φ̃, Ẽ, 1) ∼= (Fε( Ĩ , φ̃), Ẽ, 0).

Thus, X1
H̃

� ı̃ = ı̃ � Fε on P , where ı̃ denotes the canonical symplectic embedding
of P into the isoenergetic surface of section

S̃ = {
H̃ = 0, θ̃ = 0

} ⊂ P̄.

That is, ı̃ is the identity on corresponding I - and φ -coordinates. Obviously, H̃
and ı̃ extend to uniform complex neighbourhoods of Bε and P , respectively, for all
sufficiently small ε . — This is the “abstract solution” of the interpolation problem.

Step 2. Embedding of Bε . We now seek a real analytic embedding of Bε into
the symplectic space P̄ = D̄ × Tn+1 , where D̄ = D × R . The P̄ -coordinates are
the usual action angle coordinates I, E, φ, θ .

For ε = 0 this embedding is given as the inverse of the map

Γ0:




Ĩ = I

Ẽ = h(I ) + E

φ̃ = φ − θω(I )

θ̃ = θ

.

One checks that T0 � Γ0 = Γ0 � σθ , where σθ : θ �→ θ − 1. So equivalent points are
mapped into equivalent points, whence Γ0: P̄ → B0 . Obviously,
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H̄0 = H̃ � Γ0 = h(I ) + E,

S0 = Γ −1
0 (S̃) = {

h(I ) + E = 0, θ = 0
}
,

and one easily calculates that

υ0 = Γ ∗
0 υ̃0 =

∑
j
d Ij ∧ dφj + d E ∧ dθ,

as it ought to be. — For ε �= 0 the key is the following result.

Proposition 1. For all sufficiently small ε there exists a map

Gε : Bε −→
ε

B0,

which is jointly real analytic in the A-coordinates and ε in a fixed complex neigh-
bourhood of A × {0} and reduces to the identity for ε = 0 . That is to say, there is a
lift

G̃ε : A −→
ε

A,

satisfying G̃ε � Tε = T0 � G̃ε , having these analyticity properties and reducing to
the identity for ε = 0 . Moreover, Gε is the identity on the E -coordinate, and also
G−1

ε : B0 −→
ε

Bε .

We then define

Γε = G−1
ε � Γ0: P̄ −→

ε
Bε .

We have |Γε − Γ0| = O(ε) , and similarly for their derivatives, which is again an ab-
breviation of the analogous statements for the lifted maps. Hence, for the transformed
symplectic structure we find

υε = Γ ∗
ε υ̃ε = Γ ∗

0 υ̃0 + O(ε) = υ0 + O(ε) .

All these estimates hold on some fixed complex neighbourhood of the real domains
considered, uniformly for all small ε .

Proof of Proposition 1. In the following construction we may ignore the co-
ordinate E , since it does not interfere with any other coordinate through Tε and may
thus be mapped identically.
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Consider the real analytic manifold A = A×∆ with coordinates (X, δ) , where
∆ = (−δ0, δ0) denotes some small interval, and identify points via the map

T:

(
X
δ

)
�→

(
Tδ(X)

δ

)
.

For ∆ sufficiently small, T and T−1 are well defined and real analytic on the domains
A+ × ∆ and A− × ∆ , respectively, with analytic extensions to some uniform neigh-
bourhoods of them. The quotient manifold B = A/T is thus real analytic, too, with
a real analytic extension to Bo = Ao/T , where Ao denotes some uniform neigh-
bourhood of A . Hence, by the Grauert embedding theorem [17], there exists a real
analytic embedding

G: Bo ↪→ R
N

of this extended manifold into euclidean N -space, where N is a sufficiently large
integer.

Consider now the submanifolds Bo
ε = { (X, δ) ∈ Bo : δ = ε } and their real

analytic embeddings

Gε = G|Bo
ε

: Bo
ε ↪→ Mo

ε ⊂ R
N .

Let Bε = Bo
ε ∩ B � Bε , and let Mε ⊂ Mo

ε be the image of Bε ⊂ Bo
ε . Around

Mo
0 we fix a tubular neighbourhood U and a real analytic normal projection P of U

onto Mo
0 . Letting Pε = P|Mε

, we have

Pε : Mε −→
ε

M0, P−1
ε : M0 −→

ε
Mε

for all sufficiently small ε , since Mε depends analytically on ε and reduces to M0

for ε = 0. Thus we can define a mapping

Gε = G−1
0 � Pε � Gε

from Bε � Bε into Bo
0 which reduces to the identity for ε = 0.

This map can be lifted to a map G̃ε of some uniform neighbourhood of A
into some neighbourhood of A as follows. The middle portion of A , the domain
{θ1−1 < θ̃ < θ0+1} , is projected one-to-one onto Bε , and Gε is close to the identity.
So there is a uniquely defined lift on this part for all small ε , which is ε -close to the
identity. Extending this lift continuously in the usual manner, it remains uniformly
ε -close to the identity. Therefore, for all sufficiently small ε , it extends to a map
G̃ε from some small uniform neighbourhood of A into the uniform neighbourhood
defining Ao . Moreover, G̃ε : A −→

ε
A .
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The relation G̃ε � Tε = T0 � G̃ε is obvious for a lifting, and the claim about
G−1

ε also follows immediately.

Step 3. Standard Symplectic Structure. We now put the symplectic structure
υε on P̄ into standard form, using the Moser-Weinstein theorem [16]. To this end
we need to know that υε is exact.

Proposition 2. For all sufficiently small ε there exists a 1-form αε on P̄
such that dαε = υε . Moreover, αε can be chosen to be real analytic jointly in the
P̄ -coordinates and ε .

Proof. We first observe that υε is smoothly exact, since Fε is exact symplectic.
That is, for all small ε there exists a 1-form βε with smooth coefficients, such that
υε = dβε . The proof is fairly easy and given in Appendix A.

By the abstract de Rham theorem [22] the existence of a smooth solution βε

implies the existence of a real analytic solution αε , since the real analytic de Rham
complex on a real analytic manifold is acyclic [4]. However, this existence result is
not constructive, and in particular does not provide the analytic dependence of αε on
the parameter ε . Therefore, we are going to construct αε explicitly, making use of
specific properties of the manifold P̄ .

Fix some ρ > 0 so that υε extends analytically to Uρ P̄ for all small ε . Since
D is assumed to be convex, there exists a real analytic retraction

πt : Uρ P̄ → Uρ P̄, 0 ≤ t ≤ 1,

such that π1 = id , while π0 retracts D̄ to a single point (I0, 0) and leaves Tn+1

untouched. The two 2-forms π∗
1 υε = υε and π∗

0 υε = υ ′
ε are then analytically

cohomological. Indeed, there is an exact formula for a 1-form α′
ε such that

υε = υ ′
ε + dα′

ε,

and α′
ε is jointly analytic in the P̄ -coordinates and ε in a uniform neighbourhood

of P̄ [7].
The form υ ′

ε is real analytic and closed. Its coefficients do not depend on I
or E , and it vanishes on the tangent vectors ∂/∂ Ij , 1 ≤ j ≤ n , and ∂/∂ E . Therefore,

υ ′
ε =

∑
i< j

ai j (φ̄) dφ̄i ∧ dφ̄j ,

where φ̄ = (φ̄1, . . . , φ̄n+1) = (φ, θ) . Such a form is cohomological to its averaged
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form

υ ′′
ε =

∑
i< j

bi j dφ̄i ∧ dφ̄j , bi j = 1

volTn+1

∫
Tn+1

ai j (φ̄) dφ̄.

That is, there exists a 1-form α′′
ε , such that

υ ′
ε = υ ′′

ε + dα′′
ε ,

and α′′
ε is jointly analytic in the P̄ -coordinates and ε [7].
We thus arrive at a 2-form υ ′′

ε on Tn+1 with constant coefficients, which we
know is differentiably exact: υ ′′

ε = dβ ′′
ε with some differentiable 1-form β ′′

ε . This,
however, implies that υ ′′

ε vanishes. Consider, for example, the coefficient b12 . Av-
eraging over the 2-torus T = {φ̄3 = · · · = φ̄n+1 = 0} we find

b12 = 1

vol T

∫
T

υ ′′
ε = 1

vol T

∫
T

dβ ′′
ε = 0.

Thus υ ′′
ε = 0, whence υε = υ ′

ε + dα′
ε = dα′

ε + dα′′
ε . This proves the proposition.

We may now put the symplectic structure into standard form.

Proposition 3. For all sufficiently small ε there exists a diffeomorphism
∆ε : P̄ −→

ε
P̄, such that ∆∗

ευε = υ0 . Moreover, ∆0 = id , and ∆ε is jointly real
analytic in the P̄ -coordinates and ε in a fixed complex neighbourhood of P̄ .

Proof. This follows from the Moser-Weinstein theorem. Just observe that ∆ε

is given as the time-1-map of the real analytic, time-dependent vector field Xε on P̄
obtained as the solution of

iXε
υ t

ε = αε − α0,

where υ t
ε = (1 − t)υ0 + tυε .

Composing with the map Γε we obtain, for all sufficiently small ε , a diffeo-
morphism

Λε = Γε � ∆ε : P̄ −→
ε

Bε, Λ0 = Γ0,

which is symplectic in the sense that

Λ∗
ε υ̃ε = υ0

for all these ε . Moreover, Λε is jointly real analytic in the P̄ -coordinates and ε in
a fixed complex neighbourhood of P̄ .
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In Bε the Poincaré map of the real analytic hamiltonian H̃ with respect to
the isoenergetic section S̃ is well defined and interpolates the map Fε . Indeed, it is
simply the time-1-map of the hamiltonian H̃ . The same is now true for their pull
backs to P̄ . The time-1-map of the real analytic hamiltonian H̄ε = H̃ � Λε is well
defined on the surface Sε = Λ−1

ε (S̃) and interpolates Fε . That is, we have a real
analytic, symplectic embedding

iε = Λ−1
ε � ı̃ : P −→

ε
Sε ⊂ P̄

such that X1
H̄ε

� iε = iε � Fε on P for all sufficiently small ε .

Step 4. Standard Surface of Section. The section Sε is ε -close to the standard
isoenergetic section

Σε = {
H̄ε = 0, θ = 0

} ⊂ P̄,

since they coincide for ε = 0 and depend analytically on ε . Moreover, the vector
field X H̄ε

is transversal to the hypersurface {θ = 0} in P̄ , since we have θ̇ = 1 for
ε = 0. Hence there exists a well defined Poincaré flow map

 ε : Sε −→
ε

Σε,  −1
ε : Σε −→

ε
Sε

for all sufficiently small ε . This map is real analytic and symplectic, and  0 = id .
Thus we also have a real analytic, symplectic embedding

jε =  ε � iε : P −→
ε

Σε,

such that �ε � jε = jε � Fε on P , where

�ε =  ε � X1
H̄ε

�  −1
ε : Σε −→

ε
Σε

is the Poincaré map of the hamiltonian vector field X H̄ε
with respect to Σε . Finally,

H̄ε

∣∣
ε=0 = H̄0 = h(I ) + E, jε |ε=0 = j0 = Γ −1

0 � ı̃ .

Both H̄ε and jε have a uniform radius of analyticity for all sufficiently small ε . The
estimates of the theorem therefore follow from Cauchy’s estimate, and the proof is
finished.
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4 Proof of Theorem 2

Rescaling coordinates by the dilation z �→ εz we obtain a real analytic family
of real analytic symplectic maps

Fε : P → R
2n, −ε0 < ε < ε0,

where P = {|z| < r} ⊂ R
2n with some radius r to be chosen later, and

Fε(z) = ε−1 F(εz) = �z + ε−1 F̂(εz) = �z + O(e |z|2).

In particular, F0 is linearly symplectic, and Fε is conjugate to F on an εr -neigh-
bourhood of the origin for all small ε �= 0. This family is interpolated in essentially
the same way as in the preceding section, with a few modifications, which we indicate
now.

Step 1. Abstract Suspension Manifold. We set A = P × R× � and identify
points through the map

Tε : (z̃, Ẽ, θ̃ ) �→ (Fε(z̃), Ẽ, θ̃ − 1).

In particular, T0: (z̃, Ẽ, θ̃ ) �→ (�z̃, Ẽ, θ̃ − 1) . The symplectic form υ̃ is changed
accordingly. Everything else remains the same.

Step 2. Embedding of Bε . We now seek a real analytic embedding of Bε =
A/Tε into the space P̄ = P × R × T . For ε = 0 this embedding is given as the
inverse of the map

Γ0: P̄ → B0,




z̃ = e−θ JAz

Ẽ = 1
2 〈Az, z〉 + E

θ̃ = θ

,

which takes the symplectic structure on B0 into the standard structure

υ0 =
∑

j
dxj ∧ dyj + d E ∧ dθ

on P̄ . Moreover, we obtain H̄0 = 1
2 〈Az, z〉 + E . — For ε �= 0 we make use of the

simple topology of P̄ to normalize the maps Gε in a useful way.
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Addendum to Proposition 1. The map Gε may be defined so that

T0G̃ε = id,

where T0G̃ε denotes the tangential map of the lifting G̃ε restricted to the tangent
space of A along the submanifold {z̃ = 0} .

With this provision we find that Γε = G−1
ε �Γ0 takes the symplectic structure on

Bε into υε = Γ ∗
ε υ̃ε = υ0 + O(ε |z|) . Moreover, the hamiltonian H̃ = Ẽ transforms

into

Ĥε = 1

2
〈Az, z〉 + E + O(ε |z|3),

since the E -coordinate transforms identically.

Proof of the Addendum. Again, we ignore the coordinate E . Otherwise, the
construction of Gε is modified in the following way.

Let L = T0π be the tangential of the projection

π : A → A, (X, δ) �→ (X, 0)

restricted to the submanifold Z = {z̃ = 0} . We have T T � L = L � T T , so L is also
defined on the tangent bundle along Z/T � T in B . Using the Grauert embedding
map G , this defines a corresponding map, again denoted by L for simplicity, on
the tangent space to M along the image N of the submanifold Z . Moreover, its
restriction Lε to the tangent space of the slices Mε is a linear isomorphism.

As embedded manifolds, M and each of the Mε carry a natural real analytic
riemannian metric, so that locally exponential maps are well defined. In particular,
we can define an exponential map Eε from some neighbourhood of the zero section
of the tangent bundle along N ∩ Mε � T orthogonal to the tangent bundle T N , to
some neighbourhood Uε of N ∩ Mε in Mε . Moreover, those neighbourhoods Uε

can be chosen as a δ -neighbourhood uniformly for all small ε .
This way we obtain a real analytic family of maps

E0 � Lε � E−1
ε : Uε −→

ε
U0,

whose tangential at N is equal to Lε . Pulling them back to the abstract manifolds Bε

and choosing the radius r in the definition of P sufficiently small, we obtain a real
analytic family of maps Gε : Bε −→

ε
B0 , whose tangential at the submanifold Z is

equal to L , hence is the identity.
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Step 3. Standard Symplectic Structure. The 2-form υε is closed on P̄ =
P ×R×T and of the form υ0 + O(ε |z|) . By the convexity of P ×R and a retraction
argument, υε is also exact on P̄ , with a 1-form

αε = α0 + O(ε |z|2),

where α0 is any constant 1-form with dα0 = υ0 . It follows that in the proof of
Proposition 3 one obtains Xε = O(ε |z|2) , and consequently

∆ε = id + O(ε |z|2)

as its time-1-map.

Step 4. Final Transformations. We now proceed as before, observing that
the transformed hamiltonian H̄ε = Ĥε � ∆ε is exactly of the same form as Ĥε . Its
isoenergetic reduction to H̄ε = 0 is thus given by a hamiltonian

Hε(z, θ) = 1

2
〈Az, z〉 + O(ε |z|3).

The time-1-map of Hε interpolates Fε on P for all sufficiently small ε . Fixing such
an ε and scaling coordinates back we find that the time-1-map of

H = ε2 Hε(z/ε, θ) = 1

2
〈Az, z〉 + O(|z|3)

interpolates F in an εr -neighbourhood of the origin. This completes the proof of
Theorem 2.
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A Smooth Exactness of υε

We are going to show that the 2-form υε is smoothly exact on P̄ . This is
equivalent to showing that upstairs the 2-form υ̃ is smoothly exact in Bε . To simplify
the notation we drop the ˜ and make the Ansatz

βε = αs + Edθ + dVε, αs =
∑

j
Ij dφj .

Then dβε = υ . The point is to choose the function Vε so that T ∗
ε βε = βε to make

βε a 1-form on Bε .
By hypotheses, Fε is exact, so F∗

ε αs = αs + dWε with some real analytic
function Wε . Hence,

T ∗
ε βε = F∗

ε αs + Edθ + T ∗
ε dVε

= αs + dWε + Edθ + T ∗
ε dVε

= βε − dVε + dWε + d(Vε � Tε).

So it suffices to find Vε such that

Vε = Wε + Vε � Tε .

It is easy to solve this equation in terms of smooth functions, since A− and T −1
ε (A−)

are disjoint. If V o is any smooth function on A− , then set

Vε =
{

V o on A−
Wε + V o � Tε on T −1

ε (A−)
,

and extend Vε smoothly to the rest of A .

B The Logarithm of an Operator

Lemma B.1. Let � be a nonsingular linear operator on Rm . (a) There
exists a linear operator B on Cm such that � = exp(B) . (b) If � has no negative
eigenvalues, then B can be chosen to be real. (c) The same holds, if � is the square
of another linear operator on Rm .

Thus, a real logarithm always exists for the square of a nonsingular real operator.
The converse is obviously also true: the existence of a real logarithm implies the
existence of a real square root.
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Proof. (a) Since Λ is nonsingular, there exists a contour ! in C enclosing all
the eigenvalues of Λ , but not 0. On ! we may fix a branch of the complex logarithm
to define the complex operator

B = log Λ
def= 1

2π i

∮
!

log z

z I − Λ
dz.

Then exp(B) = Λ by the functional calculus of operators [8].
(b) In the absence of negative eigenvalues we can choose ! to be symmetric

to the real axis, but disjoint from its negative part. On ! we may then choose the
principal branch of the complex logarithm, so that we have log z = log z . The reality
of B then follows by straightforward computation.

(c) Let Λ = M2 . Write M = Mr ⊕ Mc , where Mr has only real and Mc only
non-real eigenvalues. By (b) we have M2

r = exp(Br ) and Mc = exp(Bc) with real
operators Br and Bc . They commute, since Mr and Mc commute. Therefore,

Λ = exp(Br ) ⊕ exp(2Bc) = exp(Br ⊕ 2Bc),

and B = Br ⊕ 2Bc is real.

Let m = 2n and endow R
2n with the standard symplectic structure J .

Lemma B.2. Let Λ be symplectic. If the assumptions of (b) or (c) above are
satisfied, then the real logarithm B of Λ is hamiltonian in the sense that J−1 B is
symmetric.

Thus, Λ = exp(JA) with the real symmetric operator A = J−1 B .

Proof. We have to show equivalently that J B J = Bt . By symplecticity
of Λ , we have JΛJ = −Λ−t , and by the definition of B = log Λ ,

J B J = −1

2π i

∮
!

log z

z I + JΛJ
dz = −1

2π i

∮
!

log z

z I − Λ−t
dz = − log Λ−t

Now, under the assumption of (b), we can choose ! not to intersect the negative real
axis, and the complex logarithm to be real on the positive real axis. This implies that
log z−1 = − log z on ! , and thus log Λ−1 = − log Λ . It follows that J B J = Bt . –
The proof under the assumption of (c) is straightforward.
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