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Abstract: We study the Hilbert manifold formed by all pairs (almost complex structure on the torus T’, 
pseudohofomorphic 2-torus in %) (the homotopy type of the two-tori is fixed). We prove that for a typical 
structure the number of the pseudoholomorphic two-tori is finite and even. The situations when these numbers 
are zero and non-zero both happen for open non-empty sets of almost complex structures. 
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Introduction 

Starting with M. Gromov’s work [3], compact pseudoholomorphic (PH) curves in almost 
complex symplectic manifolds became a powerful tool to study manifold’s geometry. Corre- 
spondingly manifolds formed by the PH curves were an object of intensive investigation. How- 
ever, the most attention was given to PH spheres (see e.g. [5]), since exactly the PH spheres and 
closely related PH discs are involved in the most important geometric applications (cf. [3, 51). 

Our paper is devoted to PH 2-tori. We restrict ourselves to the case when the symplectic 
rnanifold is a 4-torus with the standard symplectic structure, which is a good model comprising-- 
we hope-the main difficulties of the problem. We study the Hilbert manifold U formed by all 
pairs 

U = (tamed almost complex structure on T4, PH 2-torus corresponding to it) 

and its projection T to the manifold of tamed almost complex structures (for a definition see 
below). We show that 15 is a Fredholm map of zero index such that the image and its complement 
both have nonempty interior. Therefore a tamed almost complex 4-torus typically has an even 
number of PH 2-tori. We also show that situations when this number is equal and is unequal to 
zero are both typical. 

The approach to study PH curves for an individual almost complex structures via manifolds 
like II they jointly form is not new-it was proposed in [3] (see [5] for details). Besides, in [9] a 
direct analogy to this manifold was used to study solutions of nonlinear elliptic equations with 
potentials of the equations playing the role of the almost complex structures. 

Our interest to the subject was evoked by discussing with J. Moser his work [6], devoted to 
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noncompact PH curves in T2” which naturally led to some problems connected with compact 
PH curves in ‘Kaz. The results we present in this paper partially answer the questions which arose 
during the discussions. 

1. Tamed almost complex structures 

We supply the torus T4 = Iw4/Z4 with the global coordinates x = (x1, . . . , x4), with the usual 
Riemann metric dx2 and with the symplectic structure w2 = dxl A dx3 + dx2 A dx4. Recall that 
an almost complex structure J(x) in T T4 is turned by 04 if 

w2(.$, .I() > const ItI2 Vt E T’II’4. 

We denote by C! the set of all tamed structures with the matrix coefficients of J(x) in the 
Sobolev space W M*2(T4) with “sufficiently large M” (one can take, for example, M > m + 3, 
where m > 3 is apriori smoothness of PHcurves-see below). The set C? is contractible [3, p. 3331 
and carries a natural structure of a Hilbert manifold modeled by the space He = W”.2(T4; IRS). 

Take any Riemann curve (W, j) (j is the complex structure). A map f : (W, j) + (lr4, J) 
is called pseudoholomorphic (PH) if 

f*oj=Jof*. (1) 

The main for our purposes property of PH curves is an a priori estimate for their areas in 
homological terms, converted by M. Gromov [3] to an effective tool to study the (nonlinear 
elliptic) equation (l), which defines the curves. 

To derive the estimate we denote by s + it the local conformal coordinate in W. Then by (1) 

af 
at = f*(i) = Jf*(l) = .I$. 

As J is tamed, then we have 

so s o2 2 const area f (W), 
f(W) 

which is the a priory estimate we mentioned. 

(2) 

2. Complex 2-tori 

Now take a 2-torus T2. To give it a complex structure, one can fix period vectors (v. l), where 
u is taken from the upper half-plane U, and define T2 as 

lr; = @/(Zu + Z) 

with the natural complex structure. Two u’s equivalent by the action of the unimodular group 
SL (2; Z) define equivalent complex structures. So the equivalence classes of complex structures 
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are parameterized by points of M = U/SL(2; Z) (see more in [2]) and are represented by points 
of the fundamental domain 9, 

9 = {z E 6’ 1 IzI 3 1, Imz > 0, -1 < Rez < i}. 

For our purposes it is convenient to renormalize periods (v, 1) and replace them by 

(c, q) where 6 = v/6, ~=l/&G. (311 

Now q E II%+ and the parallelogram of periods has unit area. So 

fn > Arg 6 > fn, 161 b Iv1 and 1 < 161 . lql < 2/h. (4) 

Below we denote by r a couple of periods (6, q) as above and denote by 7 the two-dimensional 
manifold they form (diffeomorphic to ‘D via the mapping (6, Q) H t/q)). 

A PH 2-torus in T4 

f : o*, t> + P4, 4, r=((,v>ET, 

can be treated as a PH curve f : @ --+ (T4, J), f,(iu) = Jf* (v) , with periods 6, q. The curve 
should satisfy the equation 

DJ f E J(f): - g = 0, (5) 

where s + it is the complex coordinate in c. 
One can describe PH 2-tori (with fixed complex structure t = (.$, q)) differently. Consider 

the linear (over reals) map Q, :(E-+@,~H~,QI-+ 1,andtheinducedmap 

7r; = C/({;z + f$) --+ T2 = @/(Z + iZ). 

Define a complex structure j, in the standard torus T* as an image of the standard complex 
structure in 7L’f, j, = q,,i. Under this representation PH tori can be treated as maps f : @ + 

(T4, J) with periods (i, l), but the operator DJ should be replaced by the according modification 
n;, 

1 a 
D;f = i(J(f) + Ret/Im 6): - -_. Im 6 at 

3. Manifolds of PH A-tori 

Fix any nonzero non-multiple homology class A E &(‘I”; Z) and consider the set 3A of all 
maps f E W”“.*(T*, lr4), representing the class A. This set is a Hilbert manifold modeled by 
the space & = Wm+1.2(71’2; IR4). 

We call elements of 3A A-tori. An A-torus 

f : lr* = c/gz + $z) + T4 = iP/LP 

admits a simple description in terms of its lift j : @ -+ @*. A map j covers some map f as 
above if 

f(z+n,t +mrl) = f(z)+nE:I +mE*, Ej E Z4. 
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Homological type of the map f is defined by the integer vectors Ei, 82. (If two maps fo, fi 
have lifts with the same vectors E:j, then the map 7; = t 70 + (1 - t) jl is the lift of a homotopy 
ft : T2 + lr?) 

The group &(lr4; Z) is a free abelian group generated by ck 8 c,, k -C e, where cl, . . . , c4 
is the natural basis of the first homology group. The class [f] E H2(T4, Z) of the map f equals 

Lfl = c ( Elk%‘& - E,e& > ck @c,. (6) 
kce 

Indeed,foreachk < e wehave ([f], dxkAdx,) = (T2, f*(dxkAdx,)) = Elk%&- z;lp&k, 
and (6) follows. 

The group G = T 2 acts on T 2 by translations and acts on 3,4 by shifting the argument. 

Lemma 1. The group G acts on 3,4 freely, i.e., each orbit of G in 3~ is in one-to-one corre- 
spondence with G. 

Proof. First we check that for each f E 3.4 the map g H f(. + g) E 3~ has rank two at each 
point g E G. Suppose that it is not the case. Then there exists anonzero vector 6 E Tg G N lR2 such 
that allIt IrzO f(z + to = f*(z)c = 0 as a map from T* to R4. So if the curve t w z + tt E T2 
is dense in T*, then f(z) = const. If this curve defines a loop in the torus, then the image of 
the map f is one-dimensional. In both cases the map f defines zero element of H2(T4; Z) in a 
contradiction with the choice of the class A. 

Now we see that an isotropy group of f is a discrete lattice r, in G. The cycle f(lr2) in T4 
has multiplicity #P,. So #P, = 1 and the lemma is proven. 0 

We consider the factor-space PA = 3,4/G and call its elements nonparameterized A-tori. 
Denote by V the Sobolev space V = W”s2(T2; lR4) and consider the map 

cP:3,4x3xe--+v, (f, r, 0 I+ qf. 
Its zero-set 

is formed by parameterized PH A-tori jointly with the corresponding complex and almost com- 
plex structures. Observe that an application of a priori estimate (2) to (f, t, J) E U implies 
that 

(A, ~2) = 
s 

cq 2 const area f (T2) (7) 
f 02) 

with a J-dependent const, which can be chosen J-independent for J from a compact part of (5’. 
The group G naturally acts on U. We denote by ?24a the factor-space &, = U/G of nonpa- 

rameterized PH A-tori and denote by rr, 7t0 the natural projections 

Theorem 1. The maps TC and IQ are propel: 

As G = T2 is compact, then the statement for rr follows from the one for rro. The latter is 
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a particular case of Gromov’s compactness theorem [3]. We present its proof (rather traditional 
by now, cf. [5. 81) in Appendix. 

Corollary 1. The image (2, = x(U) = no@&,) is a closed subset of (2. 

The subset C?a turns out to be nontrivial: 

Proposition 1. The set C’, does not coincide with (2 (so e \ C$ is an open nonempty set). It has 
a nontrivial interior: 

Proof. The proof is based on properties of two almost complex structures from t?, studied in 
[ 61. Below we repeat corresponding arguments from this paper. 

1) (CC, # Q Take for (lr4, J) aCtorus with theconstant complex structure, T4 = T;’ = @*/L, 
1; = iZ{l + . . . + Zt4, where (1, . . . , <4 form a real basis of @*. Now take any PH 2-torus 
“f : (772, t) -+ lrrrp, r E 7. We renormalize periods r = (u, q) to achieve n = 1 (see Part 1). 
The map f defines its suspension j : Cc + C* which is a holomorphic map such that 

ftz+m+nu)=f(~)+mE~+nE~, Ej EC. (8) 

BY (8) the map a_?(z) is bounded. So it is constant and J(z) = a + pz, I_L E C* . Again due to 
(8) we have 

I-L E L, v/l. E c. (9) 

Denote by W the manifold formed by all bases of @* over reals and identify a lattice L with 
the corresponding point < E W. For different nonzero s, 1 E Z4 the relation 

@I 5‘1 + . . . + s4<4) is parallel in @* to (Il{l + . . . + /4(4) (10) 

defines a subset of W of codimension two. Thus for a typical (in the measure-sense) point of W 
the last relation is violated for all nonzeros # 1 E Z4. For the corresponding lattice L the relation 
(9) is impossible. Therefore a torus Tf with typical constant-coefficient complex structure has no 
PH 2-tori. This complex structure clearly belongs to C-the form w2 is just its Kahlerian form. 

2) (interior of t?, # 0). We can find an unimodular isomorphism of the torus T4 which sends 
the nonmultiple class A to the class given by the embedded 2-torus { (~1, ~2) E @*/(Z* + iZ*) 1 
~2 = O}. With A normalized as above we shall produce .I,-, E C.? such that for all J close 
to Jo the torus (lr4, J) has a PH A-torus. Moreover, we shall find this A-torus as a graph 
((z, u(z))} c T4 = @*/(iZ* + iZ*), with some u : T* + T*. Such a torus is an image of the 
embedding f, 

f : lr* 3 z + (z, u(z)) E T4. (11) 

This embedding is PH for some complex structure in If * if and only if each subspace f* ( Tzlr *) c 
TfCzjT4 is J-invariant. One can check (or find the calculations in [6, Part 6b]) that the latter is 
equivalent to a first-order nonlinear differential equation for the map IA: 

F(u, Du; J) = 0. (12) 
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The operator F defines a smooth map 

In a moment we shall produce a structure Jo E C?, calculate the corresponding equation 
F(u, Du; Jo) and check that 

i) u. G 0 solves (12) with J = JO; 
ii) the map 

E’O, Jo) : Wm+l+r*; R2) + Wm.*(T2; It*) (13) 

is an isomorphism. 
After this the statement we are proving will follow from the implicit function theorem. 
Take for JO the complex structure given by the operator 

J&, U)(SZ, SU) = (i 6z, -2i@(U) E + i Su), 

where 1c/ is a smooth complex function on T* (clearly Jo2 = - 1). Now the map (11) is PH if and 
only if T * is given the natural complex structure induced from C and 

So E(u, Jo) = au/a2 - e(u). We specify e(u) be equal to &i, 6 # 0, for u close to 0 E T*. 
Then we can take for the solution of (12) ua = 0, and 

E(Uo, Jo)v = $ - 6V. 

Now the map (13) is an isomorphism. Indeed, it is Fredholm of zero index; if V(Z) belongs to its 
kernel, then au/ai - 6; = 0 and 

a2 +v = - = s*v. 
azaz az 

The only periodic solution of the equation -i Au + S*v = 0 is v = 0, so (13) has trivial kernel 
and cokemel. 

If 6 > 0 is sufficiently small, then JO E CC and we got a structure with the properties we 
need. 0 

4. Fredholm property 

Now we pass to smoothness of the manifold ?2t and the map n. 

Lemma 2. The map Q is smooth and 0 E V is its regular value. 

Proof. Smoothness of the map @ results from smoothness of the composition map (J, f) I-+ 
J o f (the fact is valid because both J and f belong to Sobolev spaces embedded into the spaces 
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of continuous functions). To prove the regularity we shall show that at each point (7, T. j) E U 
we have 

Image E! + Image g = V 
af 

(14) 

with fixed t. It is convenient to pass to the first representation of a complex torus and treat it as 
a,2 (see Part 2). 

To prove (14) is equivalent to check that each vector u E V which is &-orthogonal both to 
the image of i3@/af and the image of a@/8 J, vanishes. 

Observe that for \Ir E T,e one has 

Take any point (t, s) E ‘Ir2 such that a?/& # 0 in its small neighbourhood Q. Then when \I, 
varies in T,!Z, the r.h.s. of (15), restricted to Q, gives all sufficiently smooth maps Q + R”. 
Thus, u(t, s) as above must vanish in Q. 

Observe next that 

where j = j(f). As u is &-orthogonal to the image of D, then u belongs to the kernel of the 
adjoint operator D *, 

jj*u=-;(,u)+$+ VJaf II +j*+B(r,s)u=O, 
( as’ ) Lb 

where the matrix B is sufficiently smooth. As u vanishes in the domain Q c T2, then it vanishes 
identically due to Aronshain’s uniqueness theorem (see in [S]). 0 

Remark. Aronshain’s theorem we used immediately follows from its much more known coun- 
terpart for second-order elliptic equations. Indeed we can apply to the equality D*u = 0 the 
operator (a/at + Ja/as) to get 

*u + C,(f, .d$ + &(t, x); + D(t, x)u = 0. 

Now the usual “uniqueness theorem for the Cauchy problem” (see [l, 41) implies that u s 0 
provided that u 1 p = 0. 

Lemma 3. The set U is a Hilbert manifold modeled by the space IR2 x He. The map n : 24 --+ C! 
is Fredholm of index two. 

Proof. Take any 6 = (7, 5, 5) E U and denote by r the dimension of ker a@/af at this point. 
To study U locally we can suppose that f (corr. J) varies in a ball BF c H (corr. in Be c He), 
centered at 7 (at 5). Observe that index of the operator D = a@/af vanishes because in the 
class of elliptic ifferential operators it can be deformed to 2i 8 = i au/as - au/at. 
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Denote 5, = Hy 8 ker 0. The space o(4,) has codimension r in V. By Lemma 2 there 
exists an r-dimensional subspace I]’ c He such that 

so Q*(g) defines an isomorphism of 4, $ {0} $ q’ and V. 
Locally (near $) the manifold 3A x 7 x e can be identified with a ball in the space 

By the implicit function theorem locally the equation @ = 0 defines the second summand in the 
r.h.s. as a smooth function of the first one. Thus near a point 6 E U we have constructed a chart 
which is diffeomorphic to a ball in the space 

ker~xIR2x(He@r)‘)?R2xHe. 

Clearly the transformations from one chart to another are smooth. 
The last statement of the lemma readily follows from the structure of the coordinate charts 

(cf. [9]). cl 

The group G freely acts on U (Lemma 1). So !2lo = U/G is a Hilbert manifold modeled by 
the space He and ~0 : !& + (5’ is a Fredholm map of zero index. 

Denote by t!‘* c C? the set of regular values of JQ. It is dense in e by the Sard-Smale theorem. 
As the map no is proper, then #no’ (1) < 00 for J in tZ*. Due to Proposition 1 the nontrivial 
part of e*, 

e; = e* r-l ?r&240), 

is nonempty and is not equal to e*. 
For each J E tZ* a parity of the number #TT;~(J) equals degree modulo two of the map 

~0 (the latter is well-defined since ~0 is Fredholm of zero index). So it is J-independent. As 
#n;‘(J) = 0 for J in e& then we get 

Theorem 2. The total number-#&‘(J) of nonparameterized PH A-tori is even for each regular 
structure J E C!*. This number is nonzero for J in C?$ and is zero for J in C!* \ C$. Both sets 
(2;; and C’* \ C!;T have nonempty interiors with respect to the topology of C! (where LIZ* is a dense 
subset). 

Unfortunately, the following problem due to M. Gromov is left without an answer: 

Problem (“a closing lemma”). Is the union 

U n@A) 

Ad-fz(T”.Z)\O 

of tamed structures with at least one PH torus dense in the set e of all tamed structures? For a 
nonempty open 5 c t? is the union of PH A-tori with J E e and A E H2(F, Z) \ 0 dense in T4? 
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Appendix 

Proof of Theorem 1. We should check that if J, E e, (fi. r,,, J,,) E 240 and J,, + J E (3, then 
for a subsequence we have 

fit + f E PA’ r,, -+ r E ‘J, 

where (f, t, J) E UO. 
Denote by 2, a lift of the map fn, 

0) 

.L : @ -+ C2. Xl(O) = 0, .&(&). frl(7h) E 2’ + iZ2. 

+s If] = A # 0, then both the vectors fit<&,), xl(~,J are nonzero due to (6). Thus /f,,({,,) , 
f,l(~t~)l 3 1. As k,l 3 Iv,~I, then 

SUP IdhI = suPI&zll b bh- 2 IW’. t**j 

Step 1. The maps fil : T* + T4 are uniformly bounded in Cl-norm. 
To prove the statement we should check that ldfi2 1 < C for all n. Suppose it is not the case. 

Then for a subsequence we have sup ldJ1 I = Idjiz (z,,) I = K,, 7 co. As the PH tori fi, are 
nonparameterized, we can suppose that z,* = 0 for all n. Below we treat fit as a periodic map 
(Z + ?r*. 

Due to (**) I{,, I 3 Iqlll 3 K,;‘. We shall distinguish two cases: 

and 

llm I rl,, I K, = 00 

K,,’ 6 Iv,,1 < C K,;’ Vn. 

In the first case for a subsequence we have L,, = Inn 1 K,, -+ 00. Denote Q2 = {Z E @ / Iz ( i; 
:iL,,) and 

Consider the maps 

They are PH and 
i) k&I < 1, l4s,(O)l = 1. 
Due to (4), @,, (D,,) contains no different points equivalent modulo periods &, q,, Therefore 

the maps $,, : D,, + C/(Z&, + ZQ,) are embeddings. So by (7) 

areag,,(D,,) < areaf,,(T*) < const. 

Fix any m. For n 3 m the maps g,, send D, to T4 and due to i) their Cl-norms are uni- 
formly bounded. As they are PH, they satisfy elliptic equations forming a compact family of 
equations. Therefore their W2.m+’ -norms are uniformly bounded (see Step 2 of the proof for 
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more arguments). Thus after extracting a subsequence, g,, converge strongly in Cl-norm to a PH 

map g, : D, + (T4, .I). We can apply these arguments with m = 1,2, . . . to get a PH map 

g : c -+ (T4, J) 

such that 
ii) jdg(O)l = 1, areag(@) < 00. 
Due to the “length-area” arguments of Pansu [7] (see also [5, p.3301, [S, Part 4.51) the estimate 

ii) implies that g defines a continuous map g : S2 + T4, which is PH outside the north pole 
N E S2 (we identify @ with S2 \ N). This map defines a bubble in ‘IT4 which is nontrivial because 
Idg(O)l = 1. But sn,“ ! lhble cannot exist since its area can be estimated from above (up to 
a constant faA0 Jectic area jgcsZJ 02, which vanishes because each ‘_-sphere in T4 
defines zero element t *l(T4; Z) (it bounds a 3-ball in T4 because rr?(YY’:) = rr2(R4) = (01). 

In the second case we ,,ine $,I, g, as 

$n(z> = V,lZ, g:,1 = I;, J $,1. 

Then g,, has periods 1 and t,,/q,,. Besides, 
i’) ldgn] 6 C, C-l < MY, C. 

We treat g,, as a PH me:_ , th, cy lim Y ._ .- , _ .J the torus ‘l? 

Due to (4), ]& 1 2 C-’ K,,. So the second period &/n,, of g, is of order K,f. Denote C, = {z E 
C 1 IImz] < Km}. The set r+k,I(Cm), IZ 3 m, contains no different points equivalent modulo 
periods of fit (m is sufficiently large), so for the same arguments as above g,*‘s converge in the 
Cl-topology to a PH map g : C + (T4, J), such that 

ii’) Idg(O)] 3 C-‘, areag(C) < oo. 
Consider the punctured unit disc D \ {O}. Logarithmic map defines its biholomorphic isomor- 

phism with the upper semi-cylinder C+, 

Ln: D\{O}-+ C+. 

So g o Ln : D \ {0} + (T”, J) IS a nontrivial PH map of finite area. Due to the same length- 
area arguments, g o Ln extends to a continuous map D -+ T4, and g to a continuous map 
C U {i co] + T4. Similarly g is also continuous at the “minus infinity” and defines a continuous 

map 
g : c u {i co} u {-i co} 2 s2 + P, 

which is PH outside the poles of the 2-sphere S2. For the same arguments as in the first case 
such a PH bubble cannot exist. 

Step 2. If { fil } are uniformly bounded in C1 -norm, then (*) holds. 
The estimates (4) and (**) imply that for a subsequence the parallelograms of periods (&, v,~) 

converge to a nondegenerate parallelogram t = (6, r]) of unit area. 
Now we treat T2 as C/(eZ + $Z) and ‘11’4 as C2/(Z2 + iZ2). The lift off,, is a map jI, 

j-,, : @ + c2, fn(z+m~+nrl)~f,t(z)+m%l+n~;2, Ej EZ2+iZ2. 
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We can apply the operator DJ = a/as + J,,(fil) a/at to the equality fiJ,,.t;, = 0 to get 

Af,, + B,,(t, s)% = 0, 

where 

The matrices B,, are bounded uniformly in n. Thus the usual regularity theory for the Laplace 
operator implies that fil are bounded uniformly in W,icp(@) for all p. 

We can iterate this estimate to prove that fn are bounded in 3A. Now we can extract a 
subsequence converging to some f strongly in the Cl-norm and weakly in the H:r-norm. Clearly 
f E 3,+, and @(f, r, J) = 0. I2 
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