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Abstract

We consider a non-linear Schrédinger equation with a small real coefficient §
in front of the Laplacian. The equation is forced by a random forcing which is
a white noise in time and is smooth in the space-variable z from a unit cube;
Dirichlet boundary conditions are assumed on the cub’s boundary. We prove that
the equation has a unique solution which vanishes at ¢ = 0. This solution is almost
certainly smooth in z and k-th moment of its m-th Sobolev norm in z is bounded
by Cp i §—km=k/2 " The proof is based on a lemma which can be treated as a
stochastic maximum principle.

Introduction. We consider the nonlinear Schrédinger equation, forced by a random
force ¢“:

0 =0/ —i|v[*v + C“(t, z), (0.1)
v=uv(t,x), t>0, z€eR", V)= = 0.

Solution v is a complex function, odd periodic in x:
v(t,zy, . x,) =0,y 2,00 = <ot —y,.), J=1,000m (0.3)

dimension n = 1,2 or 3 and the dissipation § is 0 < 6 < 1. The boundary condition
implies that v vanishes at the boundary of the cube of the half-periods {0 < z; < 1}.

In [K1, K2] we conside the problem (0.1) - (0.3) with a forcing ¢ which is a random
field, smooth in = and stationary mixing in ¢t. * There we examine the quantities F,,,
equal to the squared Sobolev norms [|u(t, -)||?, of a solution v, averaged in ensemble and
locally averaged in time and prove that

C-1=3m/1T+ < g1/2 < §=3m/2-1 (0.4)

where in the first inequality m has to be > 6. In [K2| we reformulate (0.4) as estimates for
the space-scale of the solution v and use them to study averaged spectral characteristics of

Publications [K1, K2] deal with more general equations and allow the coefficient § to be complex



v. Thus we obtaine estimates for the spectrum of v, related to the Kolmogorov-Obukhov
law from the theory of turbulence. It was clear for us that the estimates (0.4) are not
optimal (as well as their spectral counterparts) and it was plausible that better estimates
might be available for solutions of a stochastic nonlinear Schrédinger (SNLS) equation,
which is an equation (0.1) where the random field ¢* is a white noise in time. To check
these hopes we choose for the object of our next research the SNLS equation with the
forcing ¢“ of the form

¢(t,x) = (¢, z)uw(t), (0.5)

where w(t) is a Wiener process and n“ is an adapted process, continuous in (¢,z) and
smooth in z. 2 The first step to study (0.1)-(0.3), (0.5) is to prove existence and
uniqueness of a solution v and to estimate its norms. By analogy with deterministic
PDEs and with equation (0.1) forced by a smooth in 2 bounded random field ¢ we thought
that this will be a routine work, forming an introductory part of a larger research. To
our surprise it was not so and a proof of unique solvability of the SNLS equation and
derivation of corresponding a priori estimates occupies the whole of this paper.
Our main result is the following theorem, proved in Section 4:

Theorem. The SNLS equation (0.1)-(0.3), (0.5) has a unique solution v*(t,z). This
solution is a.s. continuous in (t,z) and smooth in x. For any real numberst > 0,q > 1
and any integer m > 0 it satisfies the estimates

E s suplo(s, )| < Cd % Elo(t)]f, < Cppd ™0

t<s<t4+6—1 =z

In the theorem || - ||,, stands for the norm of the Sobolev space H™ = H}»(R",C) of
odd periodic complex function on R":

Julfy, = [ 3 loeuias. (0:6)

En lal=m

Proof of the theorem is based on the following result, related to the maximum principle
for parabolic equations: if u“(t, ) is a real odd periodic solution for the linear SPDE

u(t,x) — Au(t,x) = f(t, z)w(t), wu(0,z2)=0,

where f“ is an adapted process such that |f“| < 1, then for any 7" > 0 and ¢ > 1 we
have E | sup |u|irr41)xrn|? < Cy. We prove this estimate in the Appendix.

Due to the theorem and the usual arguments by Krylov-Bogoliubov, the stochastic
differential equation, defined by the SNLS in a space of odd periodic functions, has an
invariant measure, supported by the space of smooth functions (see Section 5).

The theorem implies better than in (0.4) upper bound for the quantity E,,(t) =
Ello(t) 2

En(t)Y? < Cpo™™ Y2 for any t.

In a forthcoming publication we shall present a lower bound for FE,,(¢) and shall study
spectral properties of solutions v, following [K2].

2Qur arguments generalize to equations (0.1) with ¢ = Zjoo:1 7;w;, where the random fields n; and
the independent Wiener processes w; are as above and ) |n;| < oo.



Notations. By C, C etc. we denote different constants, independent of 6. By ||-||,, m €
N, — the norms in the Sobolev spaces H™ (see (0.6)) and by |- |,, 1 < p < oo, — the norms
in L,-spaces. We consider random fields (r.f.’s) u“(¢,z), depending on time ¢ and space
x. Often we treat them as random processes in spaces of xz-dependent functions and write
as u“(t,) or u¥(t) (e.g. we may write that u* is a random process u*(t) € H™). We say
that a r.f. or a random process is continuous (or smooth, etc) if it has a modification
which is almost surely (a.s.) continuous (or smooth, etc).

1 Preliminaries on SPDEs

In this paper we discuss SPDEs of the form
u(t,z) —oAu(t,x) + F(u(t,z)) = (“(t,z), t>0, xeR", (1.1)

where n = 1,2 or 3, ¢ > 0 and u(t,z) is a complex function which satisfies the odd
periodic boundary conditions:

w(t,xr, . ty) =u(t, .z +2,000) = —ult, .., —x,..), F=1,...,n. (1.2)

These boundary conditions are assumed everywhere below, unless other conditions are
specified. The equation (1.1) will be studied in Sobolev spaces H™ = H}(R"; C), formed
by odd 2-periodic complex functions

HP(R";C) = {u € H, (R*;C) | u satisfies (1.2)}.

The spaces are given the homogeneous Hilbert norms || - ||,, as in (0.6) i.e.,

[l = (t wm (0} = Re 2™ 3 /---/(agu(x)ag@(x)dxl...dg;n.

lal=m 7

We note that odd periodic functions u(z) vanish at the boundary of the cube of half-
periods:
w() lggn=0, K"={z|0<x; <1}

Accordingly, we treat them as periodic functions on R", or as functions defined on the
torus T" = R" /2Z™, or as functions on K™ which satisfy Dirichlet boundary conditions.

The nonlinearity F' in (1.1) is assumed to define a locally Lipschitz or uniformly
Lipschitz map of a space H™ to itself. That is,

1F' () = F()[lm < C(ltllm V [[0]lm) 1t = 0llom, (1.3)
or
|F(u) — F(v)||m < Cllu—0|m Yu,ve H™, (1.4)
where a V b signifies the maximum of two numbers.
Example 1. Let f(r) be a smooth real-valued function and (1.1) has the form
= olu+if(Jul*)u+ ¢t z),

where the noise (* is as above. The nonlinearity if(|u|*)u defines a map H™ — H™
which is smooth and locally Lipschitz if m > 2 since n < 3.
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Example 2. Now we cut out the nonlinearity for big ||ul|,, to get the equation:
= oD+ ip(|[uflm) f(Jul*)u+ C(t, ), (1.5)

where ¢ € C§°(R). The cut nonlinearity defines a map HY — H™ which is smooth
locally Lipschitz if M > m > 2 and is globally Lipschitz if M =m > 2.

The forcing (“ (¢, x) is a random field corresponding to a complete probability space
(Q,F,P). It is assumed to be white noise in time ¢ and smooth in the space-variable
x. To simplify presentation we restrict ourselves to the case which contains the main
difficulties and gives rise to the phenomena we are interested in:

C“(t,x) = n“(t,x)w(t). (1.6)

Here w(t) is a Wiener process with respect to an increasing system {F;} of o-algebras in
F, and the complex r.f. n* satisfies the following restrictions:

(HO) |n*(t,x)] <1 forall w,tand z.

(H1) n* is continuous in (¢, z), smooth odd periodic in x for a.a. w and is adapted to
the o algebras F;. That is for any ¢ > 0 and € R" the r.v. n“(¢,z) is F;-measurable.

(H2) For any m,p € N and any t > 0,

E([n*(, [ < C(m,p). (1.7)

Assuming (1.6) we define the integral of r.h.s. of (1.1) as follows:

t

/t C(sva)ds ™ [ (s, ).

to

That is, we treat n* as an adapted random process in H™ (the space is given the Borelian
o-algebra) with uniformly bounded second momenta (we refer to (1.7) with p = 2) and
define the Ito integral [n“(s)dw(s) € H™ in the usual Ly-way, see [Dyn, Roz|. 3

The process fot ndw(s) € H™ is a.s. continuous. We find a null-set y (i.e., Qy € F
and PQy = 0) such that for any m € N, the processes t — n“(t) € H™ and t —
fot n¥(s)dw(s) € H™ are continuous for any w ¢ . The bad null-set €y will be increased
during our proofs countable number of times; we shall not control this process explicitly.

The Burkholder-Davis-Gundy (B-D-G) inequality applies to Ito integrals [ £“(s)dw(s),
where ¢ is a random process in some H™ and provides us with the following result:

Lemma 1. Let an adapted process €“(t) € H™ satisfies (1.7) with p =2 for 0 <t <T.
Then

t t
a/
B swp || [ el < on( [lekds) " <o

to<t<t1

forany 0 <ty <ty <T and any q > 1.

3In [Dyn] the integrand 7 is assumed to be an adapted vector-process. The arguments presented in
this reference, do not use the fact that the vector space where 7 is valued, is finite dimensional.



In [IW] the inequality is proven for finite-dimensional vector processes with universal
constants Cy, independent of the dimension. To get the B-D-G inequality stated in the
lemma, the process £ € H™ should be decomposed to a Hilbert basis of the space H™.
Then the finite-dimensional inequality applied to finite-dimensional approximations to
the process implies the result after transition to limit in the dimension of the approxi-
mation.

Applying to an integral [ {dw(s) as above the Kolmogorov criterion (which remains
true for processes valued in a Banach space, see [PZ,Ad]), using (H2) and Lemma 1 with
a large q we get:

Corollary 1. Under the assumptions of Lemma 1, let E||“(t)]|9, < C(m,q) for all t
and q. Then the process t — fot Edw € H™ 1is Holder continuous for any fized exponent
6 <1/2.

1.1 Notion of a Solution.

Let us supplement the equation (1.1) with initial condition:
u(0,z) = ug(z) for a.a. w. (1.8)

Definition 1. A random field u®(¢, x) is a solution of (1.1), (1.8) in a space H™, m > 2,
(or, for short, is an H™-solution) if the process t — u“(t,-) € H™ is adapted, continuous
and

u(t, ) = (") +/(0Au(s,-) +F(u(s,-))ds+/ws, Sduw(s), (1.9)

for any ¢ > 0 and a.a. w.

The first integral in the r.h.s. of (1.9) is a curve in H™ 2 which depends on the
parameter w, the second is an Ito integral. The Lh.s. and the r.h.s. of (1.9) equal as
curves in H™? for a.a. w.

Since H™ is embedded to the space of continuous functions if M > 2 (we recall that
n < 3), then a solution u“(t, z) is a continuous r.f..

We say that a r.f. uis a (space-) smooth solution for (1.1), (1.8) if it is a solution in
each space H™ (m > 2).

Definitions of H™-solutions and smooth solutions of the problem (1.1), (1.8) for ¢ €
[0, 7] are quite similar. Obviously a r.f. u(t,z),t > 0, is a solution of (1.1), (1.8) if it is
a solution for ¢ € [0, T for each T' > 0.

Some elementary properties of solutions u“ (¢, x) are given in the following

Proposition 1. 1) Any two solutions uy,us for the problem (1.1), (1.8) coincide a.s.

2) If St is a semi group generated by the operator o /A under the odd periodic boundary
conditions, then u®(t,x) is a solution for (1.1), (1.8) if and only if it satisfies the following
integral equation.:

t t

u(t, ) = Spuo(x) + /St_SF(u)(s,x)ds+ /St_snw(s,x)dw(s). (1.10)

0 0



Statement 2) of the proposition means that u(t, z) is a mild solution for the problem
(1.1), (1.8), see [PZ].

Proof. 1) The difference pu“ (¢, z) of the solutions u; and us a.s. satisfies the deterministic
equation

f—oAp+ (Fuy) — F(ug)) =0 (1.11)

(with the odd periodic boundary conditions). By this equation, u € C([0,00), H™) N
CY([0,00), H™%). So u vanishes due to the usual arguments based on the Granwall
lemma.

2) Let {¢;} be an exponential basis of the Ly-space of odd periodic complex functions,
formed by eigen functions of the operator —A with eigen values {A;}. Denoting by u$(t)
coefficients of decomposition of the solution u* in this basis we write (1.9) as

t t t

wt) =+ [ Ny = [ Fluts)ds+ [ (s)dus).

0 0 0

That is, du; = (—oXju;+ F(u);)dt+n;dw(t). For the function v; = e”*u; we have (e.g.,
using the Ito lemma) that

t t

v (t) = vjo + /e”’\jsF(u)jds + /eAfSnjdw(s).
0 0

Hence,
¢ ¢
u;(t) = ujo + /e")‘j(St)(F(u))jds + /eaAj(St)njdw(s).
0 0
This is exactly the j-th component of the relation (1.10). O

1.2 Existence of solutions for equations with uniformly Lips-
chitz nonlinearities.

The same classical arguments which prove solvability of a stochastic ODE with a Lipschitz
nonlinearity are applicable to equation (1.1) with a uniformly Lipschitz nonlinearity:

Theorem 1. If the nonlinearity F(u) satisfies (1.4) and a random field ug(x) is such
that El|ug||?, < C, for some p > 2, then the problem (1.1), (1.8) has a unique solution
u’(t,x) in the space H™. Besides, E||u“(t, )|k, < Cy(t) for any t > 0.

This is a well-known result, see [PZ, MaS].
In particular, the initial-value problem for equation (1.5) in Example 2 has a unique
solution for any cut-off function ¢ € C§°.



1.3 Stopping times and localisation

Let u“(t,z) be an H™-solution of equation (1.1) and 7 > 0 be a stopping time with
respect to the system of o-algebras {F;}. We denote by u,(t,z) the stopped process:
ur(t,x) =u(t A1, x).

This process satisfies the stopped equation:

t t

ur(t,-) = uo(+) + /(UAu(s, ) — F(u(s,-))xs<rds + /77“(8, )X s<rdw(s). (1.12)

(To deduce (1.12) from (1.9) one should repeat for the process t — u(t) € H™ usual
finite-dimensional arguments, see [Dyn], section 11.13)

Adapting Definition 1 to the equation (1.12) we say that a r.f. u“(¢,x) as in Defini-
tion 1 is an H™-solution of (1.12) if u*(t,x) = u*(t A 7,x) and left and right hand sides
of (1.12) with u, := u coincide a.s. as continuous curves in H™.

The most important for us are the stopping times 7y = Tar, of the form

ras = maa () = min ¢ > 0 | [u(t)] > M}, (1.13)

Lemma 2. For j = 1,2, let v’ be a solution of equation (1.12) with 7 = 77. Then a.s.

ul = u?, where 7 = 7' A 72, The result remains true if v’ is a solution of (1.12) with

F = F; and 7 = 77, provided that both stopping times 77 have the form 7 = 75, and

Proof. In both cases for ¢t < 7% the difference p© = u; — uy satisfies the deterministic
equation (1.11) with zero initial conditions, so it vanishes. O

For any M € N let us take a real function ¢y € C§°(R) such that o (r) = 1 for
0 <r < M. We cut out the nonlinearity F' of equation (1.1), multiplying it by @as(||w/|m)
and consider the equation

U —olu+ pu(|[uflm) F(u) = ¢(t, ), (1.1)

(cf. Example 2). The nonlinearity is uniformly Lipschitz, so the problem (1.1,/), (1.8) has
a unique H™-solution v = u™. If u* and u™2 are solutions for the problem (1.1;), (1.8)
with M = M, and M = M, respectively and M; < M,, then by Lemma 2 7y, (u?) =
Tar, (uM2). Hence,

My — M2 38 N < My, Ms.

UTN TN

In particular, the stopping time 7n does not depend on a solution u™i used for its

construction, provided that N < M;. In this way we obtain a well-defined r.f. u§ (¢, z) =
(uM*), (t,z), M > N, and a stopping time 7y. Moreover, any two solutions uy, and
upn, agree in the sense that

(uny )ry = (Uny)ry where N < Ny, No. (1.14)
Let us fix any finite 7" > 0 and define the sets Qy € F:
Qv ={w |7~ >T}.

By (1.14), the random fields uy, and wuy, coincide for w from Qy if Ny, Ny > N. Hence,
the map w — u%(t;-) € C(0,7; H™) converges as N — oo to a limiting map u¥_(¢;-) for
each w € QO = UQy.

We sum up information on the stopped solutions and on their convergence in the
following;:



Lemma 3. Let u™“(t,x) be a solution for the problem (1.1y), (1.8) and for N < M let
7 = 75 (uM) be the stopping time defined as in (1.13). Then,

1) the r.f. u%(t, x) == (uM¥), (t, ) is well defined — it does not depend on M > N;

2) the r.f.’s un, and uy, coincide for w € Qy if Ny, No < N. Altogether they define a
measurable map Qoo = UQy — u(t,-) € C(0,T; H™).

3) IfP(Qn) — 1 as N — oo, then the r.f. u“(t,x), defined as u%, for w € Qy and as
zero for w ¢ Qo is a solution of the problem (1.1), (1.8) for 0 <t <T.

Proof. It remains to check the last assertion of the lemma. For M > N the stopped

solution (uM),, = uy satisfies the equation

t t

un(t, x) = uo(z) + / (cAun(s,z) + ppmF(un)) xds + /77‘”(8, Jxdw(s),

where 0 < ¢ < T and x = Xs<ry. Let us compare this equation with (1.9). For w € Qy
we have u = uy,py = 1 and x = 1. Thus, the Lh.s.’s of (1.9) and of the last equation
coincide for w € Qly, as well as the two first terms in the r.h.s.’s. Since n = nx in Qy,
then the stochastic integrals in the r.h.s.’s also are equal for a.a. w € 2y due to a basic
property of the Ito integral (see [Dyn], section 7.3).

We have seen that the function u satisfies (1.9) a.s. in Qy, for any N. It means that
(1.9) holds a.s. and the lemma is proven. O

1.4 Ito Lemma.

We denote V(u) = o Au — F(u) and abbreviate the stopped equation (1.12) as follows:
t t
ur(t) = ug ~|—/V(u7(s))xd$+ /n(s)xdw(s), (1.15)
0 0

where x = x¥-.. Let u, be a solution of (1.15). That is, the r.f. u¥(t,z) = u¥(t A 7, )
defines a continuous process u,(t) € H™ such that the r.h.s. and Lh.s. of (1.15) coincide
as curves in H™ 2,

Let G : H™ 2 — Z be a C*-smooth map to a Hilbert space Z such that the maps
G(u),dG(u) and d*G(u) are uniformly bounded on bounded subsets of H™ 2.

Lemma 4. The process g*(t) = G(u%(t)) € Z satisfies the following stochastic equation
m 4:
t

9(0) = 9(0) + [ (4G ($)V (e (5)4 586 s () (n(5), m(s) ) s

0 . (1.16)

n / 4G (u (3))n(s)xdu(s),

0

provided that for any finite T" we have:
E|dG (u.(s))n(s)x|* < Cr < oo for 0 <s<T. (1.17)

The lemma is proved in [PZ], section 4.5, without the extra restriction (1.17). We
imposed it here to be able to treat the stochastic integral in (1.16) in the Lo-sense.

8



2 SNLS and stopped SNLS equations.

Now we pass to the stochastic nonlinear Schrédinger (SNLS) equations, which are our
main goal in this work:

o(t,z) — §Av +ilv|*v = ¢“(t, ), (2.1)
Ult:O = gw(x)7

where 0 < 0 <1 and the r.f. ¢ has the form (1.6), i.e.
¢e(t, ) = (L, w)ar (t).
The initial condition £“(x) is such that
EI¢“[5 < G0 "2, BIIE]7, < Cnd " (23)

for any p > 1 and any m € N. The r.f.’s ( and £ are odd periodic in x, as well as the
solution v we are looking for.

Introducing the fast time ¢ = §t and denoting v(#/6,z) = u(t,r) we rewrite the
equation (2.1) in the form

O sl = 57 (86, ) w0 (£/6) = 57 (16,2) < (54w (115)).

The random process @¥(s) = §/?w*(s/8) is Wiener and the random field 7 (¢, 1) =
n“(t/d, x) satisfies the assumptions (H0) — (H2) as soon as n does. Abusing notations
we drop the tildes and rewrite the equation for u in the following form:

i — Au+ i K ulPu = Kn(t,2)w(t), K=0562
U |i=o = 9 (2).

Below we fix any m > 2 and study H™-solutions for the problem (2.4) with large K
(i.e., with small §). A solution for this problem satisfies the integral equation:

(2.4)

t t

ult,z) = £ (z) + / (Auls,z) — ik ulPu)ds + K / n(s,2)dw(s), t>0.  (25)

Proceeding as in the section 1.3, we fix any N > 1 and modify the nonlinearity —i K?|u|*u,
multiplying it by ¢n(||]])m, where on € C§° and @y (r) =1 for |r| < N:
t ¢
u(t,z) =& (x) + /(Au(s,x) — i K2 n (|| ) |u|*u)ds + K/n(s, z)dw(s). (2.5n)
0 0

By Theorem 1 the equation (2.5x) has a unique smooth solution u™“(¢,z). Let 7 =
Ty (u) be the stopping time (1.13), i.e.,

T =min {t > 0] [[u™(t)[|,, > M}. (2.6)

By Lemma 2 the r.f. u?(t,z) = uN“(t A 7ar,z) does not depend on N > M and satisfies
the stopped equation:



t t

u,(t,x) = §w(x)+/(AuT(s,x) —iK2|uT|2uT)XS<Tds+K/n(s,x)xs<7dw(s). (2.5;)

0

Below we omit the cut-off parameter N which was originally used to construct the stopped
solution u..

Since the process t — u“(t,-) € H™ is continuous, then a.s. the deterministic integral
in (2.5,) defines a Lipschitz curve in H™ 2. By Corollary 1, the stochastic integral in
(2.5;) defines a continuous random process in H™.

Lemma 5. For any L € N the process t — u.(t,-) € H' is continuous. For any T < oo
and p > 1 it satisfies the estimate

E sup ([lu-(t,)ll7 xi<r) < 00 (2.7)
0<t<T

Proof. To prove (2.7) we shall compare u, with a solution for the linear equation

v(t,x) = &9(x) + /Av(s,x)ds + K/n(s,x)dw(s), 0<t<T. (2.8)

This equation has a unique smooth solution which satisfies the estimate
Ellv@t)|} <C(L,p, T,K) Vp>1,V0<t<T, (2.9)
see [Roz, PZ]. The difference h = u, — v vanishes at t = 0 and solves the equation
h—Ah=—iK?u*u,, 0<t<71°AT. (2.10)
Since ||t |, < M, then ||iK?|u, |*u, |, < CK*M3 and
1A ||my1 < CrK*M?. (2.11)
This estimate is a consequence of the a priori bound

sup  ||B(t)|lee1 < COVT  sup  |JiK|ur Py, . (2.12)
0

0<t<TAT <t<TAT

(It follows immediately after h and the r.h.s. of the equation are decomposed to Fourier
series in x.)
By (2.9), (2.11) all momenta of the r.v.

Xt<r Sup Huf(t)Herl (213)
0<t<T

are bounded. Due to (2.12) with ¢ = m + 1 this implies that the momenta of supy<;<rn,
|A(t)]|m+2 are bounded, as well as all momenta of the r.v. (2.13) with m + 1 replaced by
m + 2. Hence, (2.7) holds true for any L and p. Due to (2.7), the solution A of (2.10) is
a.s. H"-continuous for 0 <t < 7¢, as well as u, = h + v. Since u, is constant for ¢t > T,
then it is continuous for 0 < ¢ < T and the lemma is proven. O

Corollary 2. The r.f. u, is a smooth solution of (2.5;).
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3 L™-estimates for stopped solutions.

In this section we obtain estimates for momenta of the r.v. sup,|u.(t, )|, independent
of the stopping level M.

3.1 An equation for |u(t,z)|.

Let us fix any smooth function ((r) equal r for » > 1 and vanishing for r < 1/2. We
denote by Z* the Sobolev space Z° = H (R",R) formed by real-valued functions from
H* and consider the map G : H* — Z*, u(:zc) — ((Ju(z)|). This map is smooth if £ > 2.
Besides,

dG(u(z))v(z) = ¢ (Ju(@))7— v

|ul
and

PC(u(w)) (v(2), v(2)) = ¢ ([u()) (ﬁ) # ¢ (= oste0?)),

Jul

where - stands for the scalar product in R? ~ C, u-v = Reuw.

Due to Lemma 5 and (H2), assumption (1.17) holds and Lemma 4 applies to the
equation (2.5;). Before to write an equation for the process g¢,(t) = ((|u,(t,-)|), we
transform the term dG(u)V (u). We have:

L (A — K ulPu) = C(Ju])— - A,

Jul |ul

Writing u, = u.(¢,z) in the polar forms as u, = re’?, where r = |u.,|, we have:

dG(u)(Au — ik ul*u) = ¢'(Ju])

Du, = (Ar —r|Ve|?)e +i(2Vr - Vo + rAp)e'.
Therefore,
ur - Au; = Re (4,Au,) = rAr —r?|Vpl?,
Now Lemma 4 implies the following relation:

t

(o)) = [ (CONAr = r|VoP) + 3K () -0y

0

SR = @ nf))xds 4 K [ X0 ndu(s)

The idea to study the r.f. r = |u,| is to compare {(r) with a solution v(t,z) for the
following linear stochastic equation:

dv — Avdt = Ki“(t, x)dw(t), (3.1)
v(0,2) = [€°(x)] =: vo(), (3.2)

where 77 = ¢'(r)e' - 1. Obviously, 7 is a continuous adapted r.f. which vanishes near 9K

and satisfies the estimate
it 7)) < C Vi,
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We have to estimate |u,| and v, for x € K™. To do it we fix odd periodic extensions
of 77 and vy from K™ to the whole R® and denote the extended r.f.’s also as 1 and vy. Now
we specify v as an odd periodic solution for (3.1), (3.2). This solution satisfies certain
estimates which play for the theory we develop in this work a role similar to the role
which the maximum principle (see e.g. [La]) plays for deterministic equations:

Theorem 2. The problem (3.1), (3.2) has a unique H™-solution v. Forany J =0,1,...
and any q > 1 it satisfies the estimate

q
E( sup sup |v|) < C, K. (3.3)
J<t<J+1  wEKT
Existence and uniqueness of a solution are obvious since ||7(t)],, < C(M) for any ¢.
To prove (3.3) we write v as v = vy + vy, where v; is a solution of the problem (3.1),
(3.2) with zero r.h.s. (i.e., K7 := 0) and v is a solution of the equation (3.1) with zero
initial condition at ¢ = 0. By the maximum principle, 0 < v¢(t,2) < |£€¥(2)|w. So the
estimate (3.3) for v; follows from (2.3). It remains to get the estimate (3.3) for v (¢, z)
which is a solution of (3.1) subject zero initial conditions. We present its proof in the
Appendix (in fact, we do more and prove there an estimate for a Holder norm of the
function vy s41)xx»). We note that estimates, similar to (3.3), follow from a general
theory developed in [Kry].
To compare ((r) with v we denote by h the difference h = {(r) —v. For 0 <t <7
the function A satisfies the deterministic equation, depending on the parameter w:

i(t, ) =(¢'(r)Ar — ) = ¢ (r)r| Vil
Lo -1 2 i 2 Lo i 2 (3‘4)
F SRl = (9 - n)?) + S K2 )
Let us fix any finite 7' > 0 and denote 7% = T A 7¢. All estimates below are T-
independent, unless T-dependence is stated explicitly.
We shall study the equation (3.4) in piece-wise cylindric sub-domains of the cylinder
Q. =10,T¥] x K", where

Definition 2. An open sub-domain QQr C @, is called piece-wise cylindric if there exist
points 0 = tg < 1 < ty < --- < tg = T* and C'-smooth open domains D; C K", j =
0,...,R—1 (some of them may be empty) such that Qg equals to interior of the set

[to,tl) X DO U [tl,tg) X Dl J---uU [tRfl,tR) X DRfl. (35)

By 0,Qr we denote a part of the boundary of Qg where the external normal is not
parallel to the time-axis, ie. 0;Qg equals to the boundary of the set (3.5) (see Fig. 1
where 0, Qp is drawn in bold). We also denote

(90QR = {to,tl} X 8D0 U {tl,tg} X (9D1 J---u {tR—l} X 8DR_1

and Qp = Qg \ 0, Qr.

We note that the set JyQr contains all singularities of the boundary 0@z minus the
set {tr} X ODgr_1. The former set (i.e. 9yQr) is bigger than the latter if some domains
D; coincide. We also note that the number R of pieces of a piece-wise cylindric domain
is not uniquely defined since, for example, the cylinder (), may be viewed as a domain
Qg with any R > 1 and with Dy =--- = Dr_1 = K™

12



Fig. 1.

Since the r.f. w, is Holder, then a.s. we can find a piece-wise cylindric domain
Qr C Q. (possibly disconnected) such that

1 1
r=lu| > K- : inside Qr and r <K+ 3 outside Qr. (3.6)

Inside Qg we have ((r) = r and equation (3.4) simplifies to
j K2 0 K2
h—Ah = §|77| o ?"|ng| + 5(6 ’ 77) = g(t> .’L'), (t,$) € QRa (37)
h|<9+QR =(r— U)|<9+QR =:m(t, ). (3.8)

Due to the initial condition (3.2), m(0,z) = 0.

3.2 Heat equation in piece-wise cylindric domains.

In this subsection we consider the boundary value problem (3.7), (3.8), forgetting the
specific form of the r.h.s. ¢ and of the boundary function m.

Lemma 6. If g(t,z) is a Holder function in Qg and m(t,x) is a bounded Borel function
on 01 Qr, continuous outside OyQr, then (3.7), (3.8) has a unique solution h(t,x) such
that

1) h € CY*(QR), is bounded in Qg and satisfies there the equation (3.7);

2) h is continuous in Qr\OoQr and satisfies the boundary condition (3.8) in 0. Qr\OvQr;
3) if g <0, then h satisfies the mazimum principle:

h(t,z) < sup sup m(T,y) (3.9)
Tt (T.9)€0+Qr

for any (t,x) € Qg.
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Proof. i) Existence. For j = 0,1,..., R — 1 we denote Q; = (tj,t;+1] x D;, define sets
04+Qj,0Q; C 0Q; as in Definition 2 and set I'; = [t;,t;41] X dD;. In the domain Q)
we solve the first boundary value problem for the heat equation (3.7) and find a solution
ho(t, z) such that

holi=o = mli=0, holr, = m|r,.

The function hy is as smooth as specify items 1), 2) of the lemma (see [LSU], Theorems
16.1, 16.2).

Next we find a function hy(t, z) in the cylinder () which satisfies (3.7) as well as the
boundary conditions:

hl(tl,l') = ho(tl,l') forx € Do, hl(tl,l') = m(tl,x) forx € D1 \ Do,

hi |p,=m|r, .

The function hg;, equal to hg in Qg and equal to h; in @), is continuous in the domain
Qo1 = Qo U Q1. In the vicinity of dQ, N dQ, in this domain hg, is a generalised solution
of (3.7), so it is C"*— smooth there (see [La, LSU]). That is, in the domain Qy the
function hg; satisfies 1) and 2).

Iterating this procedure we get a solution h = hgy_(g—1) of (3.7) in Qr, which meets
1) and 2).

it) Maximum principle for g = 0. Now we shall show that any solution h of (3.7),
(3.8) with g = 0 which satisfies 1) and 2), also satisfies the estimate (3.9).

First we prove the estimate for hy = h|g,. Let O. be the e-neighbourhood of 9yQ in
Qo (see Fig. 2) and Q. = Qo \ O.. The function h. = h|g. is a classical solution for a
boundary-value problem for (3.7) in Q..

Fig. 2. (0,Qo N Q. is drawn in bold)

To estimate h. we extend the continuous function m|, . Qon@, to a continuous function
mie. on 9Q. \ {t;} x Dy having the same C%-norm and denote by hy. a classical solution
for the corresponding boundary-value problem for (3.7) in Q.. By classical arguments
[La] this function satisfies the maximum principle (3.9) with the function m replaced by
mi.. The difference hy. = h. — hy. solves (3.7) in Q., vanishes at 9;Qy N JQ. and at
00.N Q. it is bounded by C, :=suph + supm < oo.

By classical arguments (see [La]),

sup sup |he(t, )| < Cy-0o(1) (e —0) (3.10)
t>6 (t,7)eQ.

for any fixed 6 > 0.
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Since for t > ¢ we have h = h. = ha. + hy., then (3.8) is proven for t > ¢V § with m
replaced by m + C.o(1). Sending to zero € and 6, we recover (3.8).

iii) Uniqueness is now obvious since the difference of any two solutions solves the
problem (3.7), (3.8) with g = 0, m = 0 and must vanish.

iv) Mazimum principle for g < 0 follow from its counterpart with ¢ = 0. Indeed, a
solution for (3.7), (3.8) with a Hélder function g < 0 equals to the sum of a classical
solution for the problem with g := ¢, m := 0 and a solution for the problem with g := 0,
m := mgy. The former is < 0 by the classical maximum principle while the latter satisfies
(3.9) due to the step ii) of the proof. O

By the lemma, the problem (3.7), (3.8) with g = 0 defines positive linear functionals
CO(8+QR) 2 m() - u(t> .’L'), (ta $) € Qr.

Their norms are bounded by one due to (3.9). Hence, there exist a (¢, x)-dependent Borel
measure G(t,x;-) on 0, Qg such that

u(t,z) = / G(t,x;ds) m(§), €= (te, xe).
0+Qr
The measures G(t,x;-) are probabilistic since to the function m = 1 they correspond the
solution u = 1. We call G the Green measure for the problem (3.7), (3.8) and treat it as

a measure on (Qg, supported by 0, Qrg.
For any a < b let us denote by Q4 the layer in Qg,

Q[Chb] = QR N [a, b] x K™.

The sets Qa5 and Q) are defined similar. The Green measure G is future independent:

G(t,l’; Q(t,R}) =0. (311)

Indeed, G(t,2;Qus1/nr) = 0 for any N > 1 by (3.9) so (3.11) follows due to the
continuity of the measure G. What is more important, the Green measure forgets the
past exponentially fast:

Lemma 7. For any 0 < s <t' <T% we have:
Gt 7', Quu_g) <2V s/ v (3.12)

Proof. Let us denote the function in the Lh.s. of (3.12) by f(¢,2’). This function solves
(3.7), (3.8) with g = 0 and m = my(t, ), where m, equals one for ¢t < ¢’ — s and equals
zero otherwise. This solution suits Lemma 6 if we add to the piece-wise cylindric domain
Qr an artificial singularity at the point ¢ = ¢’ — s and replace Qi by the corresponding
domain Qg (i.e., we find a segment (;,¢;11) which contains ¢ and replace in (3.5) the
cylinder [t;,¢;11] x Dj by [tj,1) x D; U[t,t;11) x D;). To estimate f(¢,z) from above we
come back to the cylinder 11, = [0,7%] x K". In the cube K™ we consider the function

v(z) =2T] cosg (xj - %) . (3.13)

Obviously, 2"/2 > ¥ > 1 everywhere in K" and —AW = 27*W. The function U(t,z) =
e~ =D/ (1) solves (3.7) in the cylinder IT,. Let us compare f(t,z) with U Q.-
Since U(f,z) = ¥(z) > 1 > f(f,2) everywhere in Qr N {t = ¢}, then U > f in 9, Qpj 1.
Hence, U > f in Q) by the maximum principle (3.9) and (3.12) follows.
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3.3 Estimate for |u.|.

Now we can continue to study the function h = ((Ju,|) — v in the domain Qg as in (3.6).
Since the defined in (3.7) function g is < K?|n|?/2r and since r < K + 3 < 2K on 9, Qg,
then by the maximum principle (3.9) we have

h(t, .Z') S hl(t, .’L') + hg(t, .’L') in QR,

where the random fields h; and hy satisfy the following boundary value problems in the
random domain Qg:

ill - Ahl = 0, h1|<9+QR =2K — U|3+QR> (314)

. K2 9
hg — Ahg = 2—7“|17| s h2|6+QR =0. (315)

It remains to estimate hy and hy. We start with the easier problem (3.15) and consider

the function Wq(¢, x),

4K
‘Ijl = —\I](.Z'),

nm?
where ¥ was defined in (3.13). Obviously, ¥; > hy in 0,Qg. Besides,

0 K?
A = AU, = KU(z)> K > —|p|?
(815 ) ¥ ¥ () = K > 2r u

in Qg, since there r > K — 2 > K/2 and |n|> < 1 by (HO). Hence, Uy > hy in Qg and
ho(t,z) < 2"/2K in Qp.

To estimate in Qg the solution hy(t,x) of (3.14) we write it in terms of the Green
measure:

mita) = [ @K - v©)G(taid) =2K ~ [ w(©G(twd). (ta) € Qn
91Qr 0+ QR
Applying (3.11) and (3.12) we get an estimate which holds uniformly in t € [J,J + 1]
and v € K™
J
mtae <264y [ Gltmap©)
I=0Q1) 57— y111N04Qr

J
< 2K 422 Z e~/ sup sup (7, y)|-

Since |u,| = r = ((r) inside Qg and r < 2K outside, then r < max (2K, hy + hy) and the
r.v.

SJ ‘= Sup Ssup |u’r(t7‘r)|xt§7'
J<t<J+1l ®
satisfies the estimate
J

Sy S 2PVK 2K 422 Y e sup suplo(ry).

]:0 J_]STSJ_]JFl Yy
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By Theorem 2, the m-th moment of the sum in the r.h.s. is bounded by C,,, K. Hence
EST < C,K™ VYm > 1. (3.16)
Since the constants C),, are T-independent, then we have proved O

Theorem 3. Let 7 be any stopping time of the form (2.6) and u.(t,x) be a stopped
solution for problem (2.4). Then for any natural number J and any m > 1 the random

variable S; = sup sup |u(t, z)|xi<, satisfies the estimate (3.16). The constant C,,
J<t<J+1 =z

does not depend on J and on M from (2.6).

4 Estimating of Sobolev norms of stopped solutions
and passing to a limit

We continue to study a solution u.(t,z) for the stopped equation (2.5;). In this section
we are interested in M-independent estimates for its Sobolev norms.

From the Corollary to Lemma 5 we know that for any L > 2 the function u, is
an H%-solution for the equation (2.5;) and satisfies the estimates (2.7). Hence, the Ito
formula (Lemma 4) applies to the functional G(u) = ||u,||?. Since dG(u)é = 2{u, &)L,
and d*G(u)(&,€) = 2||€]|3, then taking the expectation of (1.16) and abbreviating ys<,
to x we get:

t
Elu.(t)l|7 = E[E]IL + E/(2<Un Ay + 20 [ucur) + [|n(s)]IL) xds.
0
Let us denote gr.(t) = E|lu.(t)||2. Then the last equality and (H2) imply that
t
42(t) < gu(0) +2 /(—gL+1(S) KBy, [u Puy)p X + C)ds. (4.1)
0
Lemma 8. If L > 2, then

o, ] < Ol T

and
ulPull, < Cplul?|lull..

The estimates follow by straight forward application of the Gagliardo-Nirenberg in-
equality, see e.g. [K2] (see there (6.5) for the first one and (7.6) for the second).
By the lemma, the Holder inequality and Theorem 3,

2L+4
Bty JrPtr) x| < OB (fur o7 ||u7||f,rlx)

< O (Blu, 2P ™1 (Bflu,|3,,) ™ < K g7,

Substituting this estimate to (4.1) we find that

gr(t) < gr(0) +2 / (—9L+1(8) + O KT +2ggﬁ + c) ds. (4.2)
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Hence, the continuous function g (¢) decays in the vicinity of ¢ if gr4(¢f) > 2C and
L
gr1(t) > 201K T gLLﬁ The second inequality implies the first. It holds if
gr41(t) > CKAA6, (4.3)

1/(L+1) H THL/ (L+1)

Since ||u-||r < |lurllp Il ) by the interpolation inequality, then

2 2L
91 < Bl 77 a3 < (Bllurl3) 7 (Bllur 3,,) 7

1 L
<gogi < CKL“gLLIi

(we used (3.16)). Hence, gr41 > C1K2/F (LH)/L This inequality and (4.3) show that
the function g () decays near ¢ if C1 K~ 2/L g(LLJrl > CKAH6 e, if

gL, > CK4L+2.

Since initially we have g (0) = E||£||2 < Crd271 (see (2.3)), then g (t) < CpK4E+2
with some new constant C;. That is,

El|u-(t)[[} < CLE*" (4.4)

for all ¢ > 0.
By Lemma 8, Theorem 3 and (4.4),

E|l[ur*ur || < OB (JuclS[lurllz) < C1E*2,
Now we go back to the equation (2.5,) and denote by I;(t) and I5(t) the two integrals
in its right hand side. By the last inequality, for any 7" > 0 we have

T
E sup [[L(#)]L < E/ (lurllzre + K| |urPullL) ds < CLTE**.

0<t<T
0

To estimate the stochastic integral I5(¢) we apply Lemma 1 with ¢ = 1 to get that

1/2
E sup L), < CKE /un(s)uids < CKT.
0<t<T
We have proved that
E sup |[lu,(t)]r < CLTK* ", (4.5)

0<t<T
for any 7' > 0 and any stopping time 7 = 73, as in (2.6). Abbreviating wu,,, to uys, we
have for V > 1:
P( sup |luar ()|l > V) < C TK*+y~t,

0<t<T

It means that if we define a set Qy € F as Qy = {w | |[up(@)|[m SV for 0 <t < T}
with any M >V (this set is M-independent by Lemma 3), then PQy 71 as V — oc.
Hence, we have the convergence:

up(+) = u(-)in C ([0, T); H™), a.s.as M — oo,
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where u(t) is an H™-solution of (2.4). In fact, the sequence {u(-)} stabilises to u(-),
ie. uy = u for M > My(w), where My is a random variable, which is a.s. finite (see
Lemma 3).

Applying Fatout lemma to estimates (3.16) and (4.4), (4.5) we find that they remain
valid for the limiting process u:

q
E( sup  sup |u(s,x)|) < C,K¢Y, (4.6)
J<s<J+1 zeK™
Ellu(t)|[j < CLE**?, (4.7)
E sup |u(t)|r < CLTE*, (4.8)
0<t<T

for any L > 2, any J € N and any ¢ > 0.
Let us fix ¢ > 0 and abbreviate u(t) to u. Applying (4.6) with ¢ = 2p — 2 and (4.7)
with L = pm (p is any integer > 2) we get:

L—m

P P p—1
Efully, <Ellully * [lull," = Efjullg [lull

< (Blul22) " (Ellu)2,)"* < CK7 K>met = cRremD

Since L,-norms satisfy the M. Riesz interpolation inequality, then this estimate remains
true for any real p > 2.
Going back to the problem (2.1), (2.2) we arrive at the main result of this work:

Theorem 4. The problem (2.1), (2.2) has a unique smooth solution v*(t,z),t > 0. For
any integer m > 2 and any real numberst > 0, ¢ > 1 this solution satisfies the estimates:

q
E( sup  sup |vw(s,x)|> < 0,072, (4.9)

t<s<t+é6-! =

E[v*(1)[|4, < Cqmé ™92, (4.10)

We note that (4.9) follows from (4.6) with J = [¢] and J = [t] + 1.
The theorem admits a less specific version for solutions of a single equation (2.1) with
fixed § € (0, 1]:

Corollary 3. If ar.f. &“(x) is such that for any m > 0 all momenta of the r.v. ||£“(-)]|m
are finite, then the problem (2.1), (2.2) has a unique smooth solution v*(t,z),t > 0.
This solution is such that for any m > 0 and any 0 < T' < oo all momenta of the r.v.

X2 = sup |[v¥(t)||m are finite.
0<t<T

Proof. The r.v. xo has finite momenta due to (4.9). For m > 0 the interpolation

inequality implies that y,, < XéL_m)/ Lx?/ L

. Hence,
Exm < (Exo) "™/ (Ex)™".

The first factor in the right hands side is finite by (4.9) and the second is finite by (4.8)
(more specifically, by a version of this estimate for a solution for the problem (2.1),
(2.2)). O
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We shall also need a result which follows from the proof of Theorem 4 rather than
from its assertions:

Proposition 2. Let us fix any T > 0. Then solutions u™(t,z) (0 < t < T) for the
problems (2.5y) a.s. converge as N — oo to a solution u(t,x) for the problem (2.4) in
the norm of the space C([0,T], H™).

Proof. Let Q0 € F be the set defined as above in this section. Then P(y,) > 1—-CV ™!
with some C' = C(§, T, m). The solution wuy, (¢, x) was defined as a stopped solution of the
equation (2.5y), un(t, ) o ul (t,z), where N> M >V. Forwe Qyand 0<¢ < T
we clearly have uJTV]\ ;= uV. Besides, for w and t like that we have uy; = u. Hence, u = u

for w € Qy and N > V. So the assertion follows. O

5 The Markov property and an invariant measure

Below we call a r.f. £¥(x) smooth if E||¢||L < oo for all m and L.
Let us consider the SNLS equation (2.1) with a stationary and non-random smooth
function n = n(z):

u(t, r) — 0Au + i|ul*u = n(x)w(t). (5.1)

By the Corollary from Theorem 4, for any t, and any F;,—measurable smooth r.f. £“(x)
this equation has a unique smooth solution u“ (¢, x), t > to, such that

u’(to, ) = &¥(x). (5.2)
Denoting this solution as u(t, z; t, £(x)) and using the uniqueness we get that
U(t, €, tO) 5([17)) =u (t7 x; tl) u(th ‘T)) )

for any ¢ty < t; <t. Since for t > t;, the right hand side of (5.1) is independent of F;,,
then the increment u(t,-) — u(ty, ) is Fy,-independent. (This property is well known for
solutions of SPDEs with Lipschitz nonlinearities [PZ]. For solutions of the SNLS equation
(5.1) it follows from Proposition 2).

Now usual arguments (see [PZ], section 9.2, and [Roz]) show that the solution for
(5.1), (5.2) is a Markov process in any space H™,m > 2.

Let us denote by L(u(t)) distribution of the r.f. w(t,-) (in some space H™) and
consider the measure ji;,

Using (4.10) and the Chebyshev inequality we get that g {||ul,, > L} < L™'C,, for
any m > 2. Hence, by the Prokhorov theorem the system of measures {fi; | t > 0} is
precompact in H™ for any m. So for r = 2,3,... there are sequences t" = {t] < t} <
th--- / oo} such that t" D ¢ for [ > r and

fig; = i weakly in H" as j — oo. (5.3)

By the classical arguments due to Krylov-Bogoliubov (see [PZ]), this measure is invariant
for the Markov process which (5.1) defines in H". Since the sequences t" form a nested
family, then " is an r-independent measure fi. By (5.3), i(H") = 1 for any r. Hence,
A NH" = C®(K";C)) =1 and we get:
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Theorem 5. The SNLS equation (5.1) defines a Markov process in any space H™, m >
2. This process has an invariant measure, supported by the space of smooth odd periodic
functions.

A Appendix. A linear SPDE with additive noise.

Here we consider a linear SPDE:

0(t,x) — Av(t,x) = f(t, x)w(t), (1)
v(0,z) =0, (2)

where w(t) is a Wiener process with respect to the system of o-algebras {F;} as in the
main text; f is a continuous r.f., odd periodic in x and such that:

i) [fet )l <1,
ii) f is adapted to the flow {F;}.

Let us fix any # < 1. By C? we denote the space of Holder functions u(y) with the norm:

Hu(y)HC(? = max |U|oo, sup |u(y1) — U(?6J2)|
Y17y2 ly1 — ol
ly1—y2|<1

and by C%2% — the space of Holder functions u(t, z) with the norm:
u(t ,X1) — U t , T
|u(t, )| cos20 = max | |, sup |u(ts, z1) (ta, 22)|

(t1,20) £ (t2,m2)  |T1 — to|?/2 + |1y — 257
[(t1,21)—(t2,m2)|<1

The constants in the theorem below and in its proof depend on 6.

Let {S;} be the semi-group, generated by the Laplacian in the space of odd periodic
functions. The operators S; extend by continuity to linear contractions in the Lo- and
L..-spaces of odd periodic functions and can be written using the fundamental solution
of the heat equation:

Syu(x) = / Vito—yul)dy, V(L x) = (dxt) 3e . (3)

R
Let v*(t,z) be a mild solution for (1), (2), ie

t

v¥(t,x) = /Stsfw(s,x)dw(s).

0

We recall that the mild solution coincide with a solution as defined in section 1.1 (see
Proposition 1).

Theorem. For any T > 0 and g > 1 the mild solution v satisfies the estimate:

Ellv |z iaxrn [[goze < Co- (4)

21



Below we present an elementary proof of the estimate (4). For a more general related
result see [KNP].

Proof. Step 1. Some estimates for the flow-maps S;.

Lemma Al. Let u(z) be any odd periodic function such that |ule < 1 and u(t,x) =
Syu(x). Then

1) ift > 1, then |ju(t,")||co < Ce™,

2) if 0 <t <1, then |ju(t, )||ce < Cyt0/2,

3)if0<t<1and0<A <1, then |u(t + A, z) —u(t,z)] < CoA%= for any x.
The constants ¢ and C' — Cy do not depend on wu.

Proof. 1) The first estimate readily follows from decomposition of u(z) and Syu(x) to

Fourier series since the mean value of u(x) vanishes.
2) Since |V, V (t,z)| = |(dmt) "2 (x/2t)e 1#1"/4| < Ct=7/2-|g|e~1#"/4 | then

Vu(t,z)| < Ct /2 / |z|e 1At gy = Ot 1/? / |z]e” 4 dz = Cyt 12,

By the maximum principle, |u(t,z)| < 1. Using these two estimates we get that
lu(t,z +A) —u(t,z)| < Cit™Y2A,  |u(t,z + A) —u(t,z)| <2.

Raising the first inequality to degree 6, the second to degree 1 — 6 and multiplying the
results we obtain the estimate |u(t,z + A) — u(t,z)| < C?2'%+92A% The second
assertion is proven.

3) Similarly, since [OV (¢, z)/0t] < Ct~™/? (t71 + |z[>t=2) e71*7*/4 | then

2
u(t, z)| < Ct"/Q/ (tl + %) e 1T/t g — C/tl (14 [2]?) e ¥ dz = Y,
Rn Rn

and the estimate for the increment |u(t+A, x) —u(t, z)| follows in the same way as above.
U

Step 2. Space-time increments of v. Let us fix any two points, x1, 2z, € R" such that
|21 — 29| < 1 and consider the random process U (t) = v*(t, z1) — v“(t, x2). We write it
as:

¢ ¢
U“(t) = / (Si—s [ (s) (1) = Si—sf*(s)(22)) dw(s) =: /gw(s, t = s)dw(s).
0 0
Let us consider the integral X¢( fo (s,t—s)2ds. Using items 1), 2) of the lemma we

get that the following estimate holds uniformly in w: X“(t) < Clzy —29|% f(f s e ds <
Ci|r1 — 24]?°. Now application of the B-D-G inequality (see Lemma 1) to the process U%
yields that

E|UP < C, (BX(®)"? < Cplay — ).
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To estimate a time-increment we take any 0 < A < 1, ¢ > 0, x € R", and write the
increment as

t+A

We(t) ==v(t+ A, x) —v(t,z) = / Stra—sf(s)(z)dw(s)

t
t

+ / (Seeaaf(s) = Siof“(s) ) (2)dw(s) = Wi (1) + W (1),

0

Denoting by h¢(s,z) the integrand in the first integral W) we get that |h{(s,z)| <
sup | f¢(7,y)| <1 by the maximum principle. Hence, by B-D-G we have:

tHA p/2
EW? < C,E / Rlds | < C,AP2

t

Denoting by h3 the integrand in the second integral W, and using items 1) and 3) of
Lemma A1, we get that |hy|? < Ct=2? A=< for any § < 1/2. Hence,

¢ ¢
/|h2|2ds < CAY / 52005 g < ClAQé,
0 0

and
t p/2

EW? < C,E /|h2|2ds < Ciav
0

for any 6<1 /2. We have got an estimate for the time-increment W: EW? < C’,,Ape/ 2,
Finally, at this step we have proved that

E|U(t1,ZL’1) — U(tg,[lfg)lp S Cp (|t1 — t2|6/2 + |l‘1 — $2|6)p, (5)

for any p > 1, if (t; —t2) <1 and (x; — z5) < 1.
Step 3. Continuity of the r.f. v and boundedness of its momenta.

Due to (5), Elv(t, z1) — v(ty, 72) [P < Crypl(ts, x1) — (t2, 22)[P%/? for any (¢, 1) and
(ty,z2) in [0,T] x T". Choosing here p > 4(n + 1)0~! we get that the r.f. v is as.
Hélder-continuous in [0, 7] x T due to the Kolmogorov criterion (see [Ad], p.48). Hence,
u is a.s. Holder-continuous in the whole [0,00) x T". Below we present a “qualified”
version of classical Kolmogorov’s arguments in order to estimate momenta of the random
variables |v|,_ and |v|qo/2.0.

For any fixed T' > 0, we denote Q = [T, T +1] x K™ C R*™ and consider the random
variable U = sup |v |g |.

For any N € N we define a subset Ky C ZV! as Ky = 2VQ N ZN L. Now we shall
construct some events and estimate their probabilities:

i) for any s € Ky, k> 0 and ¢ < 1 we set

/
AN ={u || (%) — v ( i ) | > kq"  for some neighbour s’ of s in Ky},

: 2N
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where points s, s" € Ky are called neighbours if max; |s; — s} = 1. By (5),

Elv(y1) —v(y2)|? < Cplyr — ZJQW/2 Yy, y2 € Q.

Hence, E[v(27Vs) — v(27Vs)|P < C27NP/2 for any neighbours s,s’, and P(AN) <
C2-NP/2|;=p¢=Np by the Chebyshev inequality.
ii) Let AN be the union of all sets A* with s € K. Since |[Ky| < C2V0+D | then

P(AN) < CQN(n—i—l)—NpG/Qk—pq—Np — C’/{:_p,uN,
where p = 2" +1P/2¢7p Clearly p < 1 if
29/2q > 2(n+1)/p' (6)

This relation holds if ¢ > 2792 and p is sufficiently large.
Assuming (6) we construct the last set:
iii) A =Un>1AN. Since pu < 1, then P(A) < Ck™P, where C depends on p and g.
Now, when the set A = UAY is constructed and measured, we write Q = {y = (¢, z)}
as the 1-cube @ = {0 < y; < 1} and write any y € ) as a binary expansion:

y:(y17”‘7yn+1 ZI]T —7’7

where each zj; equals 0 or 1. Let us take any w ¢ A and consider v(y) = v“(y).
Denoting y™ = (y1", ..., ¥ny1), Where yi* = > " ;27" we have v(y) = limv(y™) and
v(y) = v(0) = 0. Since 2™y™ ! and 2™y™ are neighbouring points of K, and since
w ¢ A™, then

lo(y™ ") —o(y™)] < kg™ (7)
Hence,

vy™ <kY d <k/(1-q)

for any m > 1. It means that |v(y)| < k/(1 —¢q) for w ¢ A for any y € @. Since
P(A) < Ck™P, then the r.v. U =sup|v |g | is such that

P(U>R)<C,R? YR>C,

if p is sufficiently large. Therefore,

/quFU ) < Cq<1 - /quP{U > x}) <2CF + qCp/quxpdx.
0 Co Co
Choosing p bigger than ¢ + 1 we get:
EU? < (. (8)

This proves (4) with the Holder norm replaced by the L.,-norm. Since (8) (not 5) is the
estimate we use in the main part of the paper, our arguments at the last step are sketchy.
Moreover, we shall prove (4) in a weaker form, with the norm of the space C?/%9 replaced
by the norm of the homogeneous space C%2.

Step 4. Holder norm of v.
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Lemma A2. If a function u(y) on the cylinder Q is such that for any lattice 2= N 7"+
and for any its cell Jy we have osc (v ]1yn0) < v, then [v(y+A) —v(y)| < 2V0g, |a]-1]
forany y,y+ A € Q.

Proof. Let us note that y and y + A lie in the same cell or in adjacent cells of the lattice
27NZn L provided that 27Vt < |A| < 27V, That is, if N = [log, |A|7!]. Hence,
lv(y + A) — v(y)| is bounded by the double oscillation along a cell Jy and the result
follows. O

Ifw ¢ A, then the function v = v* is such that for any N and any cell Jy the oscillation
of v along Jy is bounded by 2k Y~ ., ¢ = 2kq"*?/(1 — ¢) (this follows from (7) since
all points y € Jy have the same y™)). Applying Lemma A2 with vy = 2k¢V*2/(1 — q)
we get that

1

2%k ) 2% .
Idy+A)—Mw|§T——qm““1“<9——%Aw&q-

9)

—q 1—g¢q

Our calculations hold provided that (6) is fulfilled, i.e. if ¢ = 27%/2 0, < 6, and
p is sufficiently large. For this choice of ¢ we get from (9) that for w ¢ A we have
[o(y + A) —o(y)| < 2k[AI"?/(1—q) if y,y + A € Q. Hence,

P([lvglloorz = R) < Gy, pB7*

if p is sufficiently large. As at the Step 3 this implies that EHU‘C’,H‘]CQI/2 < Cy, 4 for any
0, < 1. The theorem is proven. O
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