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Abstract

We prove that the dynamical system defined by the hydrodynamical
Euler equation on any closed Riemannian 3-manifold M is not mixing
in the Ck topology (k > 4 and non-integer) for any prescribed value of
helicity and sufficiently large values of energy. This can be regarded as a
3D version of Nadirashvili’s theorem showing the existence of wandering
solutions for the 2D Euler equation. Moreover, we obtain an obstruction
for the mixing under the Euler flow of Ck-neighborhoods of divergence-
free vectorfields on M . On the way we construct a family of functionals
on the space of divergence-free C1 vectorfields on the manifold, which are
integrals of motion of the 3D Euler equation. Given a vectorfield these
functionals measure the part of the manifold foliated by ergodic invariant
tori of fixed isotopy types. We use the KAM theory to establish some
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continuity properties of these functionals in the Ck-topology. This allows
one to get a lower bound for the Ck-distance between a divergence-free
vectorfield (in particular, a steady solution) and a trajectory of the Euler
flow.

1 Introduction

One of achievements of the KAM theory was establishing that a typical Hamil-
tonian system close to a completely integrable one has many invariant tori and
hence cannot be ergodic. On the other hand, the celebrated Arnold’s theorem on
the structure of typical 3D steady flows of an ideal fluid proves that such flows
are almost everywhere fibered by invariant tori. In this paper we show how this
similarity of steady flows and integrable systems implies non-ergodicity of the
dynamical system defined by the hydrodynamical Euler equation.

Namely, the motion of an ideal fluid on a Riemannian closed manifold M is
described by its velocity field u(·, t), which satisfies the Euler equation

∂tu+∇uu = −∇p , div u = 0 , (1.1)

for a pressure function p(·, t) defined by these equations up to a constant. Here
∇uu is the covariant derivative of u along itself. This equation implies that the
vorticity field ω := rotu is transported by the flow, i.e.

∂tω + [ω, u] = 0 , (1.2)

and hence in any flow the vortex lines at t = 0 are diffeomorphic to the vortex
lines at any other t (for which the solution exists). This phenomenon is known
as Kelvin’s circulation theorem.

A solution u to the Euler equation is called steady (or stationary) when it
does not depend on time, so it satisfies the equation

∇uu = −∇p , div u = 0 .

In particular, Eq. (1.2) implies that the vorticity and the velocity fields commute
for stationary solutions, that is [ω, u] = 0. The topology of “typical” steady
solutions of 3D Euler flows was described by Arnold in his structure theorem [1].
Namely, under the assumption of sufficient smoothness and non-collinearity of u
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and rotu, the manifold M , away from a singular set, is fibred by 2-tori invariant
for both fields u and rotu. The motion on these tori is periodic or quasi-periodic.
Accordingly, a steady flow in 3D looks like an integrable Hamiltonian system with
two degrees of freedom on a fixed energy level.

Inspired by the mechanism of vorticity transport and the existence of many
invariant tori of the vorticity in steady fluid flows, we introduce a new conservation
law for the Euler equation that is independent of the energy and the helicity (the
classical first integrals of 3D Euler). This conserved quantity is a functional κ on
the space of divergence-free vectorfields which measures the fraction of M which is
covered by ergodic invariant tori of rotu. Moreover, the way how the invariant tori
are embedded (knotted) in M is also an invariant and it gives a family κa, a ∈ Z,
of infinitely many conserved quantities. The whole family of quantities {κa}a∈Z
for a given divergence-free vectorfield will be called the integrability spectrum
of this field on the manifold. This setting provides a framework to apply the
KAM theory, which in fact allows us to prove basic continuity properties of κa
evaluated at certain nondegenerate vectorfields.

Roughly speaking, the key idea is as follows. The fraction of M filled in
with invariant tori of the vorticity does not change during the evolution as a
consequence of the vorticity transport. If the vorticity of a non-stationary solution
approaches an integrable (i.e. a.e. fibered by tori) divergence-free field v, then the
KAM theory of divergence-free vectorfields guarantees that the time-dependent
vorticity must possess many invariant tori of the same topology as those for v,
under certain nondegeneracy conditions. This allows us to estimate how close a
non-stationary solution of the Euler equation can get to a given vectorfield, and
in particular to a steady solution.

Using the conserved quantities κa, the KAM theory, and simple differential
topology, we prove the main results of this article: First, the Euler flow (1.1) is not
ergodic in the Ck-topology, k > 4 and non-integer1, on the space of divergence-
free vectorfields of fixed helicity and sufficiently large energy, see Theorem 6.4.
This property is a 3D version of Nadirashvili’s theorem on the existence of wan-
dering solutions for the Euler equation on a 2D annulus [15]. Second, if two
divergence-free vectorfields have different integrability spectra and their vorticities
are integrable, then any sufficiently small Ck-neighborhoods of these vectorfields
do not mix under the Euler flow, see Theorem 6.5. Both results hold for any
closed Riemannian manifold, so the metric does not play a relevant role, in par-

1We assume that k is a non-integer so that the Euler equation defines a local flow in the
Hölder space Ck. To the best of our knowledge this property has not been proved for integer k.
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ticular negative curvature does not imply mixing for the 3D Euler flow in the
Ck-topology.

In the particular case of T3 and S3, we prove the existence of open domains
of divergence-free vectorfields with fixed energy and helicity, in the Ck-topology
(k > 4), which cannot approach certain steady solutions under the evolution of
the Euler equation, and in the case of T3 we show that there are pairs of steady
states that cannot be joint by a heteroclinic connection.

We would like to remark that, being well known that any smooth invariant
of the vorticity is a conserved quantity of the Euler flow on account of Kelvin’s
circulation theorem, we are not aware of any use of this invariant to study the
asymptotic behavior of the 3D Euler equation. In particular, the integrability
spectrum {κa}a∈Z that we introduce in this paper is especially suited to give
information on the Euler flow near steady states. This approach might be useful in
constructing other conserved quantities in order to analyze the 3D Euler equation
combining tools from dynamical systems and PDEs.

The paper is organized as follows. In Section 2 we recall some basic facts
of exact divergence-free vectorfields and Hodge theory of closed manifolds. A
KAM theorem for divergence-free vectorfields satisfying appropriate nondegener-
acy conditions is stated in Section 3. The conserved quantities κ and κa, their
main properties and some intermediate constructions are introduced in Sections 4
and 5, where we also give examples of steady solutions to the Euler equation which
are integrable and nondegenerate. Finally, in Section 6 we apply the previously
developed machinery to prove some non-mixing properties of the Euler flow and
to estimate the distance between time-dependent solutions of the Euler equation
and nondegenerate divergence-free vectorfields.

Acknowledgments. This paper was conceived when one of us (B.K.) was
visiting École Polytechnique in 2011. We are very grateful for comments and
discussions to Y. Eliashberg, B. Fayad, J. Fernández de Bobadilla, L. Polterovich,
F. Presas and M. Sevryuk. The research of B.K. was partially supported by
CNRS and NSERC research grants. S.K. was supported by l’Agence Nacionale
de la Recherche through the grant ANR-10-BLAN 0102. D.P.-S was supported by
the ERC grant 335079 and the Spanish MINECO grants MTM2010-21186-C02-01
and SEV-2011-0087.
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2 Divergence-free vectorfields on 3D Rieman-

nian manifolds

All along this paper M is a smooth (C∞) closed 3D manifold endowed with a
smooth Riemannian metric (·, ·) and the corresponding volume form µ. We shall
assume this form to be normalised in such a way that the total volume of M
equals 1, that is ∫

M

µ = 1 .

The measure of a subset U of M with respect to the volume form µ will be
denoted by meas (U).

Convention 2.1. Since we shall consider analytic (Cω) functions in some parts
of the paper, we establish the convention that if a function on a manifold M is
said to be analytic, then the manifold itself and the volume form µ are assumed
to be analytic as well.

A vectorfield V on M is called divergence-free or solenoidal (with respect to
the volume form µ), and we write div V = 0, if the 2-form iV µ is closed, and V
is called exact divergence-free or globally solenoidal (with respect to µ), see [3], if
the 2-form iV µ is exact. In local coordinates (x, y, z), the volume form reads as
µ = p(x, y, z)dx ∧ dy ∧ dz for some positive function p, and the divergence-free
condition is written as

∂(pVx)

∂x
+
∂(pVy)

∂y
+
∂(pVz)

∂z
= 0 . (2.1)

For a vectorfield V we denote by V [ its dual 1-form, corresponding to V with
respect to the Riemannian structure, i.e., (V,W ) = V [(W ) for any vectorfield W
on M . It is well known [20] that a vectorfield V is divergence-free if and only if
the 1-form V [ is coclosed, i.e., d∗V [ = 0, where d∗ is the codifferential operator.
Recall that the gradient of a function f on M is a vectorfield ∇f defined by
(∇f)[ = df . The vorticity field U := rotV of a vectorfield V is defined by the
relation

iUµ = d(V [). (2.2)

Clearly U = rotV is an exact divergence-free vectorfield, and rot ◦∇ ≡ 0.

Example 2.2. Consider the 3-torus M = T3 = (R/2πZ)3 endowed with the flat
metric, so that µ = dx ∧ dy ∧ dz. Then a vectorfield V = f∂x + g∂y + h∂z is
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divergence-free if ∂f/∂x + ∂g/∂y + ∂h/∂z = 0, and is exact divergence-free if,
in addition,∫

M

f dx ∧ dy ∧ dz =

∫
M

g dx ∧ dy ∧ dz =

∫
M

h dx ∧ dy ∧ dz = 0 .

Indeed, the divergence-free condition for V is equivalent to closedness of the 2-
form iV µ, while to be exact this 2-form has to give zero when integrated against
any closed 1-form over T3. The above three relations are equivalent to

∫
iV µ ∧

dx =
∫
iV µ ∧ dy =

∫
iV µ ∧ dz = 0. In fact, the above condition of zero averages

means that the divergence-free field V “does not move the mass center”, and
hence is exact on the torus. Actually, the averages of the functions f, g, and h
represent the cohomology class of the field V , or equivalently, of the corresponding
2-form iV µ. Also note that, in these flat coordinates, the vorticity of V is given
by the classical relation rotV = ∇× V .

Let Ck(M), k ≥ 0, be the Hölder space of order k of functions on M (for
k ∈ N this is the space of k times continuously differentiable functions), and
Vectk(M) be the space of vectorfields on M of the same smoothness. For k ≥
1, by SVectk and SVectkex we denote the closed subspaces of Vectk(M), formed
by the divergence-free and exact divergence-free vectorfields, respectively. The
Helmholtz decomposition for vectorfields is dual to the Hodge decomposition for
1-forms (see [20, 19]) under the duality V 7→ V [. It states that any vectorfield
V ∈ Vectk, k ≥ 1, can be uniquely decomposed into the sum

V = ∇f +W + π, (2.3)

where W ∈ SVectkex and π ∈ H ⊂ Vectk is a harmonic vectorfield. The latter
means that ∆π[ = 0 where ∆ is the Hodge Laplacian or, equivalently, dπ[ = 0 and
d∗π[ = 0 (see [20]). It is easy to check that each vectorfield in this decomposition
is L2-orthogonal to the other components. By the Hodge theory the harmonic
vectorfields are smooth; they form a finite-dimensional subspace of Vect∞(M),
independent of k, whose dimension equals the first Betti number of M . Moreover,
the projections of V onto ∇f , W and π are continuous operators in Vectk(M) if
k is not an integer. A vectorfield V is divergence-free if and only if its gradient
component vanishes, i.e. ∇f ≡ 0 in Eq. (2.3).

In the following lemma we state some properties of the operator rot which
will be useful later. The result is well known, but we provide a proof for the sake
of completeness.
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Lemma 2.3. For k ≥ 2 the vorticity operator defines a continuous map

rot : SVectk(M)→ SVectk−1
ex (M) . (2.4)

If k > 2 is not an integer, then the map is surjective and its kernel is formed by
harmonic vectorfields.

Proof. In local coordinates rot is a first-order differential operator. Since its image
is formed by exact divergence-free vectorfields, then for k ≥ 2 this map defines a
continuous linear operator (2.4). Let U ∈ SVectk−1

ex be an exact divergence-free
vectorfield. Then U satisfies Eq. (2.2) with a suitable 1-form V̄ [. If k is not
an integer, then by the Hodge theory, V̄ [ is Ck-smooth [20], whence V̄ ∈ Vectk.
Consider the decomposition (2.3) for the field V̄ = ∇f+W+π. Since rot∇f = 0,
take a new field V = W + π ∈ SVectk. By construction, rotV = rot V̄ = U , i.e.
the mapping (2.4) is surjective.

Let V belong to the kernel of (2.4). Since div V = 0, then in the decompo-
sition (2.3) we have ∇f = 0. As we explained above, rotπ = 0, so rotW = 0.
Then dW [ = 0 and d∗W [ = 0, hence being L2-orthogonal to harmonic forms, this
implies that W = 0. Accordingly, V = π is a harmonic vectorfield. Since any
such vectorfield is divergence-free, the lemma is proved.

3 A KAM theorem for divergence-free vector-

fields.

Let V be a Ck divergence-free vectorfield (k ≥ 1) on a closed 3-manifold M
endowed with a volume form µ, and let T 2 ⊂ M be an invariant 2-torus of V of
class Ck. We assume that in a neighbourhoodO of the torus T 2, one can construct
Ck-coordinates (x, y, z), where (x, y) ∈ T2 = (R/2πZ)2 and z ∈ (−γ, γ) (γ > 0),
such that µ|O = dx ∧ dy ∧ dz and T 2 = {z = 0}.
Remark 3.1. An invariant torus T 2 can be embedded in a 3-manifold M in many
non-equivalent ways. In this and the next section the embedding of T 2 is not
relevant since our analysis is in a tubular neighborhood O of the torus, which
is diffeomorphic to T2 × (−γ, γ) independently of the embedding. The different
ways an invariant torus can be embedded in M will be exploited later.
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Next we state a KAM theorem for divergence-free vectorfields, for which we
assume that there are functions f(z), g(z) of class Ck defined on (−γ, γ), and
a Borelian subset Q ⊂ (−γ, γ), satisfying the following KAM nondegeneracy
conditions:

1. For each z ∈ Q we have f 2(z)+g2(z) 6= 0, and the torus T2×{z} is invariant
for the vectorfield V , which assumes the form (for this value of z):

ẋ = f(z), ẏ = g(z), ż = 0. (3.1)

2. The Wronskian of f and g is uniformly bounded from 0 on Q, i.e. there is
a positive τ such that for each z ∈ Q we have the twist condition:

|f ′(z)g(z)− f(z)g′(z)| ≥ τ > 0 . (3.2)

Observe that Condition 1 above implies that iV (dx ∧ dy ∧ dz) is exact in
the domain O (in particular, V is divergence-free), provided that Q = (−γ, γ).
Indeed,

α := iV (dx ∧ dy ∧ dz) = −g(z)dx ∧ dz + f(z)dy ∧ dz ,

so α = dβ, where β is the 1-form

β =
(∫ z

0

g(s)ds
)
dx−

(∫ z

0

f(s)ds
)
dy .

We also note that if V satisfies Conditions 1 and 2 and is divergence-free with
respect to a volume form p(x, y, z)dx ∧ dy ∧ dz, then it is easy to check that we
must have p = p(z) (see Eq. (2.1)). Modifying the coordinate z to a suitable z̃(z)
we achieve that µ|O = dx ∧ dy ∧ dz̃, and Conditions 1 and 2 still hold. So the
assumption that µ|O = dx∧dy∧dz in coordinates (x, y, z) is in fact a consequence
of Conditions 1 and 2.

Consider an exact divergence-free vector field W of class Ck and denote by
ε := ‖V −W‖Ck the Ck-distance between V and W .

Theorem 3.2. Assume that the divergence-free vectorfield V satisfies the previous
assumptions 1-2 with Q = (−γ, γ). Then there are real numbers k0 and ε0 =
ε0(V ) > 0 such that if k > k0 and ε < ε0, there exists a C1-diffeomorphism
Ψ : (x, y, z) 7→ (x̄, ȳ, z̄), preserving the volume µ, a Borelian set Q̄ ⊂ (−γ, γ),
and C1-functions f̄(z), ḡ(z) such that
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• meas ((−γ, γ) \ Q̄
)
≤ Cτ−1

√
ε as ε → 0, where C depends on k and the

Ck-norm of V , and τ is defined in the inequality (3.2).

• ‖Ψ− id‖C1 → 0 as ε→ 0,

• ‖f − f̄‖C1 + ‖g − ḡ‖C1 → 0 as ε→ 0,

• for z̄ ∈ Q̄ the vectorfield W transformed by the diffeomorphism Ψ assumes
the form

˙̄x = f̄(z̄), ˙̄y = ḡ(z̄), ˙̄z = 0,

and the ratio (f̄/ḡ)(z̄) is an irrational number.

Herman’s theorem on the optimal differentiable class for which Moser’s twist
theorem holds [11] implies that k0 = 3. So Theorem 3.2 holds for any

k > 3 . (3.3)

For the case of Hamiltonian systems, the reader can consult [16, 18]. (Note that
the smoothness of V and W corresponds in [16, 18] not to the smoothness of the
Hamiltonian H, but to that of the Hamiltonian vectorfields J∇H.) For the case
when the vectorfield V is analytic, this result is proved in [6].

Remark 3.3. The KAM theorem stated above can be proved by taking a Poincaré
section and reducing the problem to area-preserving perturbations of a twist map
in the annulus in that section. Assume that g(z) 6= 0 in (3.1) (the case f(z) 6= 0
is similar) and consider the Poincaré section {y = const}. The only point to
take into account is that the Poincaré map of V (which is a twist map with a
nonconstant frequency) preserves the area form dx∧dz, which is generally differ-
ent from the area form AW preserved by the perturbed Poincaré map associated
to the vector field W . This problem can be overcome using Moser’s trick [14]
to transform AW into dx ∧ dz with a diffeomorphism close to the identity. The
theorem then follows by applying Moser’s twist theorem to the pull-back of the
perturbed map. The details are left to the interested reader. Observe that the
use of a Poincaré section in the proof implies that the result does not depend on
the parametrization of the vectorfield.

Remark 3.4. The condition on the exactness of the divergence-free vectorfield W
in Theorem 3.2 is automatically satisfied if W is a vorticity field. This assumption
is key in order that the KAM theorem holds. Indeed, if the 2-form iWµ is exact,
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Stokes theorem implies that the flux of the vectorfield W across any closed surface
is zero, and in particular ∫

T 2

iWµ = 0 ,

which implies the exactness of the Poincaré map, a necessary condition for ap-
plying Moser’s twist theorem.

Other KAM theorems in the context of volume-preserving maps have been
obtained in [5], while for divergence-free vectorfields the reader can consult [4].
These references work in the analytic (Cω) setting. The fact that their assertions
remain true for vectorfields of finite smoothness follows from the reduction to
Moser’s twist theorem, explained in Remark 3.3.

4 A measure of non-integrability of divergence-

free vectorfields.

The main goal of this section is to define a functional on the set of exact divergence-
free vectorfields which measures how far a vectorfield V is from an integrable
nondegenerate vectorfield. We start by introducing a precise definition of inte-
grability, inspired by the celebrated Arnold’s structure theorem [1] (see also [3,
Section II]).

Definition 4.1. (1) If V is a divergence-free vectorfield with an invariant domain
Oj ∼= T2× (−γj, γj) covered by invariant tori of V , and V satisfies condition 1 in
Section 3 for z ∈ Qj = (−γj, γj), we say that V is canonically integrable on Oj.
(2) A divergence-free C1-vectorfield V on M is called (Arnold) integrable, if there
is a closed subset G ⊂ M , meas (G) = 0, such that its complement M \ G is
a union of a finite or countable system of V -invariant domains Oj, where V is
canonically integrable. If the system of domains Oj is finite, V is called well
integrable.
(3) An Arnold integrable vectorfield V is called nondegenerate if the system of
domains Oj can be chosen in such a way that condition 2 in Section 3 holds for
each j.
(4) An invariant torus T 2 ⊂ Oj, T 2 ∼= T2 × {z}, z ∈ Qj, is called ergodic if the
number f(z)/g(z) is finite and irrational.
(5) If the set G introduced above is any Borel subset of M and we do not require
Qj to be the whole interval (−γj, γj), then V is called partially integrable on M
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and integrable on M outside G with “holes”, corresponding to T2×
(
(−γj, γj)\Qj

)
,

j ≥ 1.

Example 4.2. Let u be a steady solution of the 3D Euler equation (1.1) in M ,
i.e.

∇uu = −∇p, div u = 0 in M .

This equation can be rewritten as

iωiuµ = dα ,

where ω := rotu is the vorticity, α := p + |u|2/2 is the Bernoulli function and
µ is the volume form on M . It is immediate that the Bernoulli function is a
first integral for both the vectorfields u and ω. The regular level sets of α must
be 2-tori, since they admit non-vanishing vectorfields tangent to them, see [1] or
[3, Section II]. Assume that the set of critical points for the function α has zero
measure.2 Then the vorticity ω is Arnold integrable in M .

The minimal set D for which V is integrable on M \ D measures the non-
integrability of V . To develop this idea we define the following functional:

Definition 4.3. The partial integrability functional κ on the space of C1 exact
divergence-free vector fields

κ : SVect1
ex(M)→ [0, 1]

assigns to a vectorfield V ∈ SVect1
ex(M) the inner measure3 of the set equal to the

union of all ergodic V -invariant two-dimensional C1-tori. Since the total measure
of M is normalized by 1, then κ ∈ [0, 1].

The functional κ does not distinguish between different isotopy classes of
invariant tori. In the following section we shall define such a functional taking into
account the way in which invariant tori are embedded in M . Before describing
properties of κ, let us provide explicit examples of stationary solutions to 3D
Euler whose vorticities are integrable and nondegenerate. The examples are on
T3 and S3, with the canonical metrics.

2Note that this non-degeneracy property fails for the important class of Beltrami solutions,
defined by the equation rotu = λu (λ is a constant).

3We recall that the inner measure of a set is the supremum of the measures of its compact
subsets.
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Example 4.4. (Existence of steady solutions of the Euler equation in T3 whose
vorticities are integrable and nondegenerate). Consider the divergence-free vec-
torfield uz defined by uz = f(z)∂x + g(z)∂y, where f and g are analytic noncon-
stant 2π-periodic functions. The function z is a first integral of uz, hence the
trajectories of this vectorfield are tangent to the tori Tc := {z = c}, and on each
torus the field is linear. The same happens with the vorticity rotuz = −g′(z)∂x+
f ′(z)∂y. Now note that:

1. The fields uz and rotuz commute, [uz, rotuz] = 0, and the Bernoulli function
is given by α = 1

2
(f 2 + g2). This implies that uz is a solution of the steady

Euler equation on T3, cf. Example 4.2.

2. For generic f and g the field rotuz satisfies the nondegeneracy conditions
1 and 2 of Section 3 everywhere except for finitely many values of z.

Therefore, one has κ(rotuz) = 1. Note that all the invariant tori of rotuz are
in one and the same isotopy class, which is nontrivial, because the tori Tc are
homologically nontrivial. Similarly, one can construct steady solutions ux and uy

of the Euler equation on T3 whose invariant tori are given by {x = c} or {y = c},
and hence not isotopic to the tori {z = c}.

Example 4.5. (Existence of steady solutions of the Euler equation in S3 whose
vorticities are integrable and nondegenerate.) It is convenient to represent S3

as the set of points {(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 1}. Consider
the Hopf fields u1 and u2 on S3 that satisfy the equations rotu1 = 2u1 and
rotu2 = −2u2, and hence they are divergence-free. In coordinates these fields
read as u1 = (−y, x, w,−z)|S3 and u2 = (−y, x,−w, z)|S3 . It is evident that the
function F := (x2 +y2)|S3 is a first integral of both u1 and u2, and its regular level
sets are tori, so these vectorfields are well integrable. Since all the trajectories of
ui are periodic, they are completely degenerate. It is not difficult to check the
following properties:

• (u1, u1) = (u2, u2) = 1 and (u1, u2) = 2F − 1, where (·, ·) is the scalar
product on S3 with respect to the round metric.

• u1 × u2 = ∇F , where × and ∇ are the vector product and the gradient
operator, respectively, on S3 with respect to the round metric.

Now define the vectorfield

u := f(F )u1 + g(F )u2 ,
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where f, g are analytic functions. Of course, u is divergence-free because F is a
first integral of ui, and is non-vanishing whenever f 2 + g2 6= 0 because {u1, u2}
defines a basis on each level set of F . After a few straightforward computations
we get

rotu = [f ′(1− 2F ) + 2f − g′]u1 + [g′(2F − 1)− 2g + f ′]u2 ,

u× rotu = [ff ′ + gg′ − 4fg + (2F − 1)(fg′ + gf ′)]∇F .

Therefore, defining H(F ) := ff ′ + gg′ − 4fg + (2F − 1)(fg′ + gf ′), we conclude
that u is a steady solution of the Euler equation on S3 with Bernoulli function
α =

∫ F
0
H(s)ds, cf. Example 4.2. The vorticity rotu is well integrable (F is a

first integral) and for generic choices of f and g it is nondegenerate. Therefore,
κ(rotu) = 1. Moreover, all the invariant tori of rotu are in the same isotopy
class, which is in fact the trivial one because the tori are unknotted.

The proposition below summarizes the main elementary properties of the par-
tial integrability functional κ.

Proposition 4.6. The partial integrability functional κ satisfies the following
properties:

1. If V is partially integrable and for some j and z ∈ Qj which is a point of
density for Qj the corresponding functions f and g satisfy the twist condi-
tion (3.2), then κ(V ) > 0.

2. If V is Arnold integrable and nondegenerate, then κ(V ) = 1.

3. If Φ is a volume-preserving C2-diffeomorphism of M , then κ(V ) = κ(Φ∗V ).

4. If all the trajectories of V in the complement of an invariant zero-measure
subset of M are periodic, then κ(V ) = 0. The same result holds if V has
two first integrals which are independent almost everywhere on M .

5. If a domain O ⊂M is V -invariant and all the trajectories of V in O have
positive maximal Lyapunov exponent, then κ(V ) ≤ 1−meas (O).

6. Let ξ(t) be a trajectory of V and denote its closure in M by F . Then
κ(V ) ≤ 1−meas (F).
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Proof. Statements 1-5 follow almost straightforwardly from the definitions, so
we leave their proofs to the reader. Let us focus on statement 6. Consider the
domains Oj as in Definition 4.1 and the sets Õj ⊂ Oj consisting of ergodic
invariant tori. It suffices to show that meas (Õj ∩ F) = 0 for each j. In the
coordinates

(
x, y, z

)
, corresponding to Oj, denote by πz the natural z-projection.

Assume the contrary, i.e. that the measure above is nonzero, then meas (J) > 0,
where J := πz(Õj ∩ F). Choose any three points z1 < z2 < z3 in J . Since
z1, z3 ∈ πz(F), then for suitable t1, t3 we have πz(ξ(t1)) < z2 < πz(ξ(t3)). By
continuity, there exists t2 ∈ (t1, t3) such that ξ(t2) ∈ (πz)

−1(z2) =: T 2. Since T 2

is an ergodic invariant torus under the flow of V , then ξ(t) ∈ T 2 for all t. Hence
J = {z2}, which is of measure zero. This contradiction proves statement 6.

The following theorem establishes that the functional κ(V ) is continuous at
V if the vectorfield is integrable and nondegenerate. This property, which will
be the key in our study of the 3D Euler dynamics, is a consequence of the KAM
theorem, stated in Section 3, and generally fails at points which are not integrable
nondegenerate vectorfields. Moreover, if V is analytic we prove that κ is Hölder
continuous at V , using the properties of analytic functions to control the contri-
bution to κ(W ) from a neighborhood of the singular set of V . We recall that, by
definition, a function is analytic on a closed set if it is analytic in a neighborhood
of the set.

Theorem 4.7. Let V ∈ SVectkex(M) be an integrable nondegenerate vectorfield.
Then the functional κ is continuous at V in the Ck-topology, provided that k > 3.
Moreover, if V is analytic (Cω) and well integrable, then κ is Hölder-continuous
at V with some exponent θ > 0:

κ(V ) = 1 ≥ κ(W ) ≥ 1− CV ‖V −W‖θCk , (4.1)

for all W ∈ SVectkex(M).

Proof. Let V be an integrable nondegenerate vector field and W ∈ SVectkex(M)
an exact divergence-free vectorfield that is close to V . By definition we have that
κ(V ) = 1. Consider a domain Oj as in Definition 4.1 and set ε := ‖V −W‖Ck .
We now take a subset Õj(δ) ⊂ Oj for any small δ > 0 such that:

• meas (Oj\Õj(δ))→ 0 as δ → 0.

• V is canonically integrable in Õj(δ).

14



• V satisfies the uniform twist condition 2 of Section 3, cf. the inequality (3.2),
with τ = δ, i.e.

|f ′(z)g(z)− f(z)g′(z)| ≥ δ > 0 . (4.2)

Then the KAM theorem 3.2 implies that the contribution κ(j)(W ) to κ(W ),
coming from a set Õj(δ), is

κ(j)(W ) ≥ meas (Õj(δ))− Cjδ−1‖V −W‖1/2

Ck , (4.3)

where Cj is a δ-independent positive constant. In order to get an estimate for
κ(W ) that just depends on ε, we relate the small parameters δ and ε by choosing
δ = ε1/2−θ1 for some θ1 ∈ (0, 1/2). Accordingly, denoting by Ωε

j the set Õj(ε1/2−θ1)
for each j, we get from Eq. (4.3) that

κ(j)(W ) ≥
(
meas (Oj)−meas (Oj\Ωε

j)− Cjεθ1
)
−→ meas (Oj) as ε→ 0 .

(4.4)
Since κ(W ) ≥

∑
j κ(j)(W ) and

∑
j meas (Oj) = 1, then summing relations (4.4)

in j we conclude that

1 ≥ κ(W ) −→ 1 as ε −→ 0.

That is, κ is continuous at V .
If V is an analytic vectorfield, then the measure of the set Oj\Ωε

j where
Eq. (4.2) fails, satisfies

meas (Oj\Ωε
j) ≤ Cjε

θ2 (4.5)

for some θ2 > 0, on account of Lojasiewicz’s vanishing theorem [13, Section 6.3],
which we apply to the analytic function in the LHS of Eq. (4.2). Therefore,
Eq. (4.4) and (4.5) imply that

κ(j)(W ) ≥ meas (Oj)− Cjεθ3 . (4.6)

Finally, summing up for finitely many j in Eq. (4.6) (we recall that now V is well
integrable), we conclude that

1 ≥ κ(W ) ≥ 1− CV εθ ,

thus proving Eq. (4.1).
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Corollary 4.8. If M is analytic and V ∈ SVectkex(M) is analytic on the closure
Oj of some domain Oj, where V is canonically integrable and nondegenerate,
then

κ(W ) ≥ meas (Oj)− CV ‖V −W‖θCk ∀W ∈ SVectkex ,

for some θ > 0 and a positive constant CV . If the manifold M is smooth and the
vectorfield V is not assumed to be analytic in Oj, then

κ(W ) ≥ meas (Oj)− E(‖V −W‖Ck) ,

where E(t) is a continuous function satisfying limt→0E(t) = 0.

We finish this section by observing that on any closed 3-manifold M there is
a nontrivial vector field W ∈ SVectkex(M) such that κ(W ) = 0. Indeed, take a
couple of functions (f1, f2) : M → R2 which are independent almost everywhere
in M , i.e. rank(df1(x), df2(x)) = 2 for all x ∈ M except for a zero-measure set.
Of course such a couple exists on any analytic M , e.g. two generic Cω functions.
Now we define W as the unique vectorfield such that:

iWµ = df1 ∧ df2 .

It is obvious that W is divergence-free and exact because iWµ = d(f1df2), and
that f1, f2 are first integrals of W . It then follows from Proposition 4.6, item 4,
that κ(W ) = 0.

In contrast, the following seemingly obvious fact is still an open problem: to
prove that there are open domains in SVectkex(M) where κ < 1/2. To bypass this
difficulty, in the next section we shall define and study a version of the partial
integrability functional κ, where the isotopy type of the invariant tori is fixed.

5 Isotopy classes of invariant tori

In the previous section we have introduced the partial integrability functional
κ which gives the measure of ergodic invariant tori, without distinguishing be-
tween different isotopy classes. Now we are going to exploit the different ways
an invariant torus can be embedded in M and define a countable number of such
quantities. We recall that two embedded tori T 2

0 and T 2
1 are isotopic if there exists

a family of embedded tori T 2
t , t ∈ [0, 1], connecting T 2

0 and T 2
1 . It is well known

that this property is equivalent to the existence of an isotopy Θt : M× [0, 1]→M
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such that Θ0 = id and Θ1(T 2
0 ) = T 2

1 [9]. This equivalence relation defines the
set of isotopy classes of embedded tori in M , we denote this set by I(M). Of
course, we can identify I(M) with the homotopy group π0(Emb(T2,M)). It is
well known that the set of isotopy classes I(M) is countable.

The invariant tori in each domain Oj introduced in Definition 4.1 have the
same isotopy class, but the class can vary for different values of j. In this section,
to be more precise, for each isotopy class a ∈ I(M) we consider the sets Oaj which
are the domains Oj whose invariant tori are in the isotopy class a. Accordingly,
now we can define a family of functionals κa, a ∈ I(M), on the space of exact
divergence-free vectorfields.

Definition 5.1. Given an isotopy class a ∈ I(M), the partial integrability func-
tional

κa : SVect1
ex(M)→ [0, 1]

assigns to an exact C1-smooth divergence-free vectorfield V the inner measure of
the set of ergodic V -invariant two-dimensional C1-tori lying in the isotopy class
a. The sequence

I(M) 3 a 7→ κa(V )

is called the integrability spectrum of V . By definition κ(V ) =
∑

a κa(V ).

Remark 5.2. It is easy to check that items 1 and 3–6 of Proposition 4.6, and
Corollary 4.8 hold true if we substitute κ by κa and Oj by Oaj . Moreover,
Theorem 4.7 also holds for κa, where the estimate (4.1) now takes the form

|κa(W )− κa(V )| ≤ CV ‖V −W‖θCk ∀W ∈ SVectkex(M) .

Remark 5.2 implies that the integrability spectrum is continuous at points V
which are integrable nondegenerate vectorfields (here k > 3):

Proposition 5.3. Let V ∈ SVectkex(M) be an integrable nondegenerate vector-
field. Then for each a ∈ I(M) the function V 7→ κa(V ) is continuous at V .

In the following lemma we introduce a subset I0(M) consisting of tori, lying in
a fixed 3-ball, embedded in M . This subset of I(M) is key to prove Theorem 5.7
below. Roughly speaking the lemma shows that knotted tori in a ball cannot be
unknotted in M .

Lemma 5.4. Let M be a closed 3-manifold and B ⊂ M a 3-ball. Two-tori
embedded in B whose core knots are neither isotopic nor mirror images in B, are
not isotopic in M . In particular, the subset I0(M) ⊂ I(M) of isotopy classes of
such tori is isomorphic to Z.
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Proof. Let us take two knots L1, L2 contained in B ⊂ M . Recall that a knot is
a smoothly embedded circle. For each i ∈ {1, 2}, define a torus T 2

i ⊂ B ⊂ M ,
which is the boundary of a tubular neighborhood N(Li) of the knot Li ⊂ B, i.e.
T 2
i = ∂N(Li). Let us prove that if T 2

1 and T 2
2 are isotopic in M , then the knots L1

and L2 are isotopic in B or they are mirror images of each other. First, T 2
1 and T 2

2

being isotopic it follows that there is a diffeomorphism Θ′ : M\T 2
1 →M\T 2

2 , and
we claim that this implies that M\N(L1) is diffeomorphic to M\N(L2). Indeed,
the manifold M\T 2

i consists of two connected components, that is N(Li) and
M\N(Li), so the existence of Θ′ implies that:

• either there is a diffeomorphism Θ : M\N(L1)→M\N(L2), as desired,

• or diffeomorphisms Θi : M\N(Li)→ N(Li+1), i = 1, 2 mod. 2.

In the second case, since there is a diffeomorphism Φ′ : N(L2) → N(L1) be-
cause both sets are solid tori, we conclude that the diffeomorphism Θ−1

2 ◦Θ′ ◦Θ1

transforms M\N(L1) onto M\N(L2), as we wanted to prove.
Accordingly, M\N(L1) is diffeomorphic to M\N(L2), so performing the con-

nected sum prime decomposition [10] of M\N(Li), its uniqueness readily implies
that there exists a diffeomorphism Φ : B\N(L1) → B\N(L2). It is easy to see
that B\N(Li) is diffeomorphic to B\Li, so we get that B\L1 is diffeomorphic
to B\L2. We conclude from Gordon-Luecke’s theorem [8] that either L1 and L2

are isotopic in B if Φ is orientation-preserving or they are mirror images of each
other otherwise.

The previous discussion implies that different isotopy classes of knots in B
that are not mirror images, define different isotopy classes of embedded tori in
M ⊃ B, where the tori are just the boundaries of tubular neighborhoods of the
knots. Therefore, we can define each element in I0(M) as the set of embedded tori
in a 3-ball whose core knots are either isotopic or mirror images. It is standard
that the set I0(M) is isomorphic to Z, see e.g. [17].

Remark 5.5. In general, the set of isotopy classes I(M) is bigger than I0(M), e.g.
an embedded torus T 2 can be homologically nontrivial in M , that is 0 6= [T 2] ∈
H2(M ;Z), so different homology classes give rise to different isotopy classes. Of
course I(M) = I0(M) if e.g. M = S3.

While the index a ∈ I(M) takes values in the set of all isotopy classes of
embedded tori in M , for our purposes often it suffices to assume that a takes
values in the subset I0(M) of embedded tori in a 3-ball of M , i.e. a ∈ I0(M) ∼= Z,
cf. Lemma 5.4. The existence of “many” invariant tori of a vectorfield, taking
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into account their isotopy classes, will be exploited in our analysis of the Euler
equation below.

Example 5.6. In Example 4.4 of an integrable vectorfield on T3, all invariant
tori of the field rotuz are defined by {z = c}, and hence they are in the same
isotopy class, call it a0 ∈ I(T3). Therefore, κa0(rotuz) = 1 and κa(rotuz) = 0
for all a 6= a0. As we discussed in Example 4.4, the isotopy class a0 is not trivial,
and in fact it does not belong to I0(T3), cf. Lemma 5.4.

We finish this section by constructing an exact divergence-free vectorfield Va,
for any a ∈ Z, on a closed 3-manifold M which is canonically integrable and
nondegenerate on a domain Oa1 ⊂ M whose measure can be made arbitrarily
close to 1. Moreover, the Va-invariant tori in Oa1 correspond to the isotopy class
a ∈ I0(M).

Theorem 5.7. Let M be closed 3-manifold with volume form µ. Then, for any
a ∈ I0(M) ∼= Z and 0 < δ < 1 there exists a partially integrable vectorfield
Va ∈ SVect∞ex(M) such that:

• It admits a Va-invariant domain Oa1 with meas (Oa1) = 1− δ.

• Va|Oa
1

is canonically integrable and nondegenerate, and so κa(Va) ≥ 1− δ.

• Va|Oa
1

can be taken analytic if M and µ are analytic.

Proof. We divide the construction of the vectorfield Va in three steps:

Step 1: Let La be a knot in a 3-ball B. Take a solid torus Ωa ⊂ B which is
a tubular neighborhood of the knot La, and hence diffeomorphic to S1 × (0, 1)2.
We assume that for different a ∈ Z, the knots La are neither isotopic nor mirror
images in B. It is easy to see that for any 0 < δ < 1, one can smoothly glue a
big ball B̃ to Ωa to get a new domain, which we still denote by Ωa, which is a
solid torus isotopic to the original one, La being at its core, and

meas (B\Ωa) =
δ

4
. (5.1)

Next, we embed the 3-ball B in M in such a way that Eq. (5.1) holds (with
respect to the volume form µ) and

meas (M\B) =
δ

4
. (5.2)
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If the manifold M is analytic, the submanifolds La, Ωa and B can be slightly
perturbed to make them analytic [12], keeping Eqs. (5.1) and (5.2). Let N(La)
be a small closed tubular neighborhood of the curve La of measure

meas (N(La)) =
δ

4
, (5.3)

and define the set Ôa1 := Ωa\N(La) ⊂ B ⊂ M . This set is obviously fi-
bred by tori belonging to the same isotopy class a ∈ I0(M) in M on account
of Lemma 5.4 (so for different a, the isotopy classes of the tori are different).
Proceeding as in Section 3 we parameterize the domain Ôa1 with coordinates
(x, y, z) ∈ T2× (−1, 1). We can choose these coordinates so that the volume form
µ|Ôa

1
= dx ∧ dy ∧ dz. Indeed, for general coordinates the volume form has the

expression µ|Ôa
1

= p(x, y, z)dx∧dy∧dz for some positive function p, so defining a

new variable
∫ z
−1
p(x, y, s)ds that we still call z, we can get the desired coordinate

system.

Step 2: Now we construct a smooth vectorfield Va on M that is divergence-
free with respect to the volume form µ and that is canonically integrable and
nondegenerate in a domain O1

a ⊂ Ô1
a. This vectorfield can be easily defined using

the local coordinates (x, y, z) by the expression:

Va :=

{
f(z)∂x + g(z)∂y in Ôa1 ,
0 in M\Ôa1 ,

where the functions f, g are smooth, satisfy the twist condition (3.2) with a
constant τ(c) > 0 in each interval [−c, c] for c < 1, and are chosen in such
a way that they glue smoothly with 0 as z → ±1. By construction, the tori
T 2(c) := T2 × {c} are Va-invariant and nondegenerate for c ∈ (−1, 1). It is
obvious from the expression of the volume form µ in the coordinate (x, y, z) that

diVaµ = 0 . (5.4)

Accordingly, defining a Va-invariant set Oa1 ⊂ Ôa1 , expressed in the coordinates
(x, y, z) as T2 × (−c0, c0) for some c0 < 1, and such that meas (Ôa1\Oa1) = δ/4,
then the set Oa1 has measure

meas (Oa1) = 1− δ

by Eqs. (5.1)– (5.3). Moreover, Va is canonically integrable and nondegenerate
in Oa1 , so κa(Va) ≥ 1− δ. If the manifold and the volume form are analytic, it is
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clear that the vectorfield Va can be taken analytic in Oa1.

Step 3: It remains to prove that Va is exact, that is the 2-form β := iVaµ is exact.
Hodge decomposition explained in Section 2 implies that this is equivalent to∫

M

h ∧ β = 0

for any closed 1-form h on M . To prove this, we notice that β is supported in the
solid torus Ωa ⊂ B, and h = dR in the 3-ball B for some function R ∈ C∞(B)
because any closed form is exact in a contractible domain, so we have∫

M

h ∧ β =

∫
Ωa

h ∧ β =

∫
Ωa

dR ∧ β =

∫
Ωa

d(Rβ)−
∫

Ωa

Rdβ

=

∫
∂Ωa

Rβ = 0 ,

where we have used Eq. (5.4), Stokes theorem and that β = 0 in ∂Ωa. This
completes the proof of the theorem.

6 A non-ergodicity theorem for the 3D Euler

equation

Our goal in this section is to apply the previously developed machinery to study
the evolution of the Euler equation (1.1) on a closed 3-manifold M . In what fol-
lows k > 1 is any non-integer number. The classical result of Lichtenstein (see e.g.
in [7]) shows that the Euler equation defines a local flow {St} of homeomorphisms
of the space SVectk(M), where for any u ∈ SVectk(M) the solution

u(t, ·) = St(u) , S0(u) = u ,

is defined for t∗(u) < t < t∗(u) and is C1-smooth in t. It is unknown whether the
numbers t∗ < 0 and t∗ > 0 are finite.

For this u and for t∗ < t < t∗ we denote by St0 : M →M the (non-autonomous)
flow of the equation

ẋ = u(t, x), x ∈M ,
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which describes the Lagrangian map of the fluid flow. According to Kelvin’s cir-
culation theorem (see e.g. [3]), the corresponding vorticity field rotu(t) is trans-
ported by the fluid flow:

rotu(t) = St0∗
(

rotu(0)
)
. (6.1)

Since the maps St0 are volume-preserving Ck-diffeomorphisms of M , then
item 3 in Proposition 4.6 and Remark 5.2 imply:

Theorem 6.1. If u ∈ SVectk(M), then κa(rotSt(u)) = const for all a ∈ I(M).
In other words, the integrability spectrum of rotu, that is

a ∈ I(M) 7→ κa(rot(u))

is an integral of motion of the Euler equation on the space SVectk(M), if k > 2
and non-integer.

The classical conserved quantities of the Euler equation (e.g. [3, Section I.9])
are the energy,

E(u) :=

∫
M

(u, u)µ ,

and the helicity

H(u) :=

∫
M

(u, rotu)µ .

(Note that in terms of the vorticity field ω = rotu the helicity assumes the form
H(u) = Ĥ(ω) :=

∫
M

(rot−1 ω, ω)µ). Theorem 6.1 introduces other conserved
quantities κa, a ∈ I(M), of the Euler flow. Below we are going to make use of
the continuity property of these functionals.

The following lemma is a version of Theorem 5.7 where we fix the energy and
helicity, and construct a vectorfield with prescribed values of those quantities, as
well as a prescribed value of a partial integrability functional κa.

Lemma 6.2. Let M be a closed 3-manifold endowed with a volume form µ, and
fix arbitrary h ∈ R and a sufficiently large e > 0. Then, for any a ∈ I0(M) ∼= Z
and 0 < δ < 1 there exists a vectorfield ua ∈ SVect∞(M) such that:

1. rotua has an invariant domain Oa1 with meas (Oa1) = 1− δ.

2. rotua|Oa
1

is canonically integrable and nondegenerate, so that κa(rotua) ≥
1− δ.
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3. rotua|Oa
1

can be taken analytic provided that M and µ are analytic.

4. H(ua) = h and E(ua) = e.

Proof. For each a ∈ I0(M), let Va be the exact smooth divergence-free vectorfield
constructed in Theorem 5.7, which is supported on the set Õa1 and is analytic in
a set Oa1 provided that the manifold M and the volume form µ are analytic.
Applying Lemma 2.3 we obtain that there exists a vectorfield u′a ∈ SVect∞(M)
such that rotu′a = Va. The properties of the vectorfield Va imply that conditions
1, 2 and 3 above hold, so it remains to prove that one can modify u′a to fulfill
condition 4 without altering the other conditions.

Indeed, define the vectorfield ua := u′a + v + λv′, λ ∈ R, where v and v′ are
divergence-free vectorfields supported on a set K and K ′ respectively such that
K ∩ Ωa = K

′ ∩ Ωa = K ∩K ′ = ∅. We also assume that the helicity H(v′) = 0.
Then

H(ua) = H(u′a) +H(v) ,

where we have used that∫
M

v rotu′a =

∫
M

v′ rotu′a =

∫
M

v rot v′ =

∫
M

v′ rot v = 0

because the supports of v, v′ and rotu′a are pairwise disjoint, and that∫
M

u′a rot v =

∫
M

v rotu′a = 0

integrating by parts, and the same for v′. Since the helicity of v can take any real
value, it follows that we can choose it so that H(ua) = h. Regarding the energy
we have

E(ua) = E(u′a + v) + 2λ

∫
M

v′(u′a + v) + λ2E(v′) ,

and hence choosing appropriate λ and v′ we get that E(ua) = e for an arbitrary
real e ≥ E(u′a + v). By construction, rotua = Va in the domain Ωa, which
completes the proof of the lemma.

Remark 6.3. For a given vector field ω = rotu its helicity and energy satisfy
the Schwartz inequality |Ĥ(ω)| ≤ CE(ω), where the constant C depends on the
Riemannian geometry of the manifold M , as described by Arnold [2], see also [3,
Chapter III]. This constant is the maximal absolute value of the eigenvalues of the
(bounded) operator rot−1 on exact divergence-free vectorfields. In terms of the
velocity field u, to compare H(u) and E(u) we are dealing with the unbounded
operator rot, and so the above inequality is no longer relevant.
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Now we are in a position to prove the non-ergodicity of the Euler flow. Ev-
erywhere below:

k > 4 is a non-integer number.

Theorem 6.4. Let M be a closed 3-manifold with a volume form µ. Fix two
constants h ∈ R and e� 1. Then there is a non-empty open set Γa ⊂ SVectk(M)
for each a ∈ Z such that H(Γa) = h, E(Γa) = e, and

Γa ∩ St(Γb) = ∅

if a 6= b, for all t for which the local flow is defined.

Proof. Take the vectorfields ua ∈ SVectk(M) constructed in Lemma 6.2, all of
them of fixed energy e and helicity h. Since meas (O1

a) = 1 − δ and rotua|O1
a

is
nondegenerate, Corollary 4.8 and Remark 5.2 imply that any vectorfield u′a ∈ Γa
which is ε-close to ua in the Ck topology satisfies

κa(rotu′a) ≥ 1− δ − E(ε) ,

where E is an error function satisfying limε→0E(ε) = 0, and hence κb(rotu′a) ≤
δ + E(ε) for any b 6= a. Since the quantity κa(rotu′a) is conserved by the Euler
flow, cf. Theorem 6.1, the theorem follows taking δ and ε small enough.

This theorem implies that the dynamical system defined by the Euler flow (1.1)
in the space Λe,h ⊂ SVectk(M) of fixed energy e � 1 and helicity h, is neither
ergodic nor mixing. The reason is that there are open sets of Λe,h which do not
intersect under the evolution of the Euler equation. We recall that due to a result
of N. Nadirashvili [15] (see also [3, Section II.4.B]) the dynamical system defined
by the 2D Euler equation on an annulus has wandering trajectories in the C1-
topology, which is the strongest form of non-ergodicity. Namely, for the Euler
equation in a 2D annulus there is a divergence-free vectorfield u0, such that for all
fields in a sufficiently small C1-neighborhood U of u0 and sufficiently large time
T the Euler flow St after this time is “never returning”: U ∩ St(U) = ∅ for all
t > T , [15]. Our result can be regarded as a 3D version of the 2D Nadirashvili’s
theorem.

Our next theorem provides a criterion to guarantee that neighborhoods (in
the Ck-topology) of two divergence-free vectorfields do not intersect under the
Euler flow. The result is stated in terms of the integrability spectrum introduced
in Definition 5.1.
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Theorem 6.5. Let u, v ∈ SVectk(M) be vectorfields such that rotu and rot v are
integrable and nondegenerate. Assume that the integrability spectra of rotu and
rot v are different. Then the orbit of a small enough Ck-neighbourhood of u under
the Euler flow stays at a positive Ck-distance from v.

Proof. By assumption, there is some a ∈ I(M) for which κa(rot v) > κa(rotu).
Then Proposition 5.3 implies that this inequality remains true for all vector-
fields v′ ∈ U(v) and u′ ∈ U(u), where U(v) and U(u) are small enough Ck-
neighbourhoods of v and u. Since κa(rotu′) is a conserved quantity of the Euler
flow according to Theorem 6.1, the claim follows.

If u ∈ SVectk(M) is an analytic divergence-free vectorfield, we can get an
explicit estimate for the Ck-distance between u and a trajectory St(v) of the
Euler flow, as stated in the following theorem.

Theorem 6.6. Let u, v ∈ SVectk(M) be vectorfields such that rotu and rot v
are canonically integrable and nondegenerate in domains Oa1 and Ob1, a 6= b,
respectively. We also assume that u is analytic in Oa1 and that meas (Oa1) =:
σa(u) > 1/2 and meas (Ob1) =: σb(v) > 1/2. There are constants η > 0 and Cu
(the latter depending only on u) such that for all t we have the estimate

distCk(u,St(v)) ≥ Cu(σa(u) + σb(v)− 1)η > 0 . (6.2)

Proof. The assumptions imply that κa(rotu) ≥ σa(u) > 1/2 and κb(rot v) ≥
σb(v) > 1/2, so κa(rot v) ≤ 1 − κb(rot v) < 1/2. The theorem then follows from
Corollary 4.8 and Remark 5.2, where η = 1/θ.

In Examples 4.4 and 4.5 (see also Example 5.6) we have constructed analytic
steady solutions of the Euler equation in T3 and S3 whose vorticities are inte-
grable and nondegenerate vectorfields. Applying Theorem 6.6 we can estimate
from below the Ck-distance of these steady solutions u to the trajectories of the
Euler flow for many initial conditions. For instance, take a vectorfield v as in
Lemma 6.2, analytic in Oa1 and whose invariant tori are not trivially knotted,
and let w be a field from an ε-neighborhood U(v) of v in the Ck-topology. In this
case, κa0(rotu) = 1 and κa(rotw) ≥ 1−δ−Cvεθ by Corollary 4.8 and Remark 5.2
(here a0 6= a denotes the isotopy class of the invariant tori of the steady state),
so we conclude that

distCk(u,St(w)) ≥ Cu(1− δ − Cvεθ)η .

25



In fact, in Example 4.4 we have constructed steady solutions ux, uy and uz on T3

whose invariant tori are given by {x = c}, {y = c} and {z = c}, respectively, so
they are not isotopic (and homologically nontrivial). Therefore, the steady states
ux, uy and uz have Ck-neighbourhoods Ux, Uy and Uz such that a trajectory of the
3D Euler equation cannot pass through two different neighbourhoods, i.e. these
neighbourhoods do not mix under the Euler flow. In particular, no two of these
steady states can be joined by a heteroclinic connection.

Remark 6.7. One should mention that there are other dynamical properties of
C1 vectorfields that are invariant under diffeomorphisms and that can be used
to analyze the behavior of the 3D Euler equation, similarly to the invariants κa
introduced in this paper. For example, one can consider the functional n(V ),
defined as the number of singular points of the field V if all the singularities
are hyperbolic and as infinity otherwise, and it is obviously invariant under dif-
feomorphisms. The hyperbolic permanence theorem implies that n(V ) is locally
constant at V if n(V ) <∞, so proceeding as we explain in this section, one could
prove the non-ergodicity of 3D Euler using n instead of κa. The main advantages
of the invariants κa compared with n (and other invariants of vectorfields) are:

• It is easy to show that the conserved quantities κa are independent of the
energy and the helicity (see Lemma 6.2). Additionally, the construction of
exact divergence-free vectorfields with prescribed κa is not very hard (see
Theorem 5.7), while it is not clear how to construct exact divergence-free
vectorfields whose all singularities are hyperbolic.

• The invariants κa are well behaved for vectorfields that are close to non-
degenerate integrable stationary solutions of the Euler equation, which are
“typical” according to Arnold’s structure theorem. The latter allows one
to analyze the role of these steady states for the long time dynamics of 3D
Euler in Ck, k > 4.
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[1] V.I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension
infinie et ses application à l’hydrodynamique des fluides parfaits, Ann. Inst.
Fourier (Grenoble) 16 (1966) 319–361.

26



[2] V.I. Arnold, The asymptotic Hopf invariant and its applications, Proc.
Summer School in Diff. Eq. (1974); Engl. transl.: Selecta Math. Soviet. 5
(1986) 327–345.

[3] V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics,
Springer-Verlag, New York 1998.

[4] H.W. Broer, G.B. Huitema and M.B. Sevryuk, Quasi-periodic motions
in families of dynamical systems. Order amidst chaos, Lecture Notes in
Mathematics, vol. 1645, Springer-Verlag, Berlin 1996.

[5] C.-Q. Cheng and Y.-S. Sun, Existence of invariant tori in three-
dimensional measure-preserving maps, Cel. Mech. Dyn. Ast. 47 (1990)
275–292.
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